prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import sys import pickle import pandas as pd import numpy as np import word2vec as wv from tqdm import tqdm def get_new_dataframe_names(df_path): file_name = df_path.rsplit('/')[-1] return 'sentence_' + file_name def create_sentence_df(df): sentences = {} indices = {} classes = {} verb_class = {} noun_class = {} verbs = {} nouns = {} unique_sents = df.narration.unique() for i, sent in tqdm(enumerate(unique_sents), total=len(unique_sents)): sentences[i] = sent subset_df = df[df.narration.apply(lambda x: x == sent)] indices[i] = subset_df.index[0] classes[i] = subset_df.iloc[0].action_class verb_class[i] = subset_df.iloc[0].verb_class noun_class[i] = subset_df.iloc[0].all_noun_classes verbs[i] = subset_df.iloc[0].verb nouns[i] = subset_df.iloc[0].all_nouns missing_classes = set(df.action_class.unique()) - set(classes.values()) i = len(indices) for class_ in missing_classes: sentences[i] = subset_df.iloc[0].narration subset_df = df[df.action_class.apply(lambda x: x == class_)] indices[i] = subset_df.index[0] classes[i] = subset_df.iloc[0].action_class verb_class[i] = subset_df.iloc[0].verb_class noun_class[i] = subset_df.iloc[0].all_noun_classes verbs[i] = subset_df.iloc[0].verb nouns[i] = subset_df.iloc[0].all_nouns i += 1 sentence_df = pd.DataFrame([sentences]).T sentence_df.columns = ['sentence'] sentence_df['action_class'] = pd.Series(classes) sentence_df['index'] = pd.Series(indices) sentence_df['verb_class'] = pd.Series(verb_class) sentence_df['noun_class'] =
pd.Series(noun_class)
pandas.Series
import detailed_table import pandas as pd from locale import atof import json # KAP 19 COL_PROFIT_STOCKS = 'Aktien G/V' COL_DIVIDENDS_STOCKS = 'Aktien Dividende' COL_PROFIT_CFDS = 'CFD G/V' COL_FEES_CFDS = 'CFD Gebühren' # KAP 20 COL_PROFIT_ON_SALE_STOCKS = 'Aktien - Enthaltene Gewinne aus Aktienveräußerungen' COL_PROFIT_ON_SALE_CFDS = 'CFD - Enthaltene Gewinne aus Aktienveräußerungen' # KAP 22 COL_LOSS_ON_SALE_CFDS = 'CFD G/W - darin enthaltene Verluste aus Kapitalerträgen ohne Aktienveräußerung' COL_FEES_ON_SALE_CFDS = 'CFD Gebühren - darin enthaltene Verluste aus Kapitalerträgen ohne Aktienveräußerung' # KAP 23 COL_LOSS_ON_SALE_STOCKS = 'Aktien G/W - Enthaltene Verluste aus Aktienveräußerungen' def roundTo2Decimals(dict): result = {} for key in dict: result[key] = round(dict[key], 2) return result def calcKapSummary(detailedTable): resultColumns = [COL_PROFIT_STOCKS, COL_DIVIDENDS_STOCKS, COL_PROFIT_CFDS, COL_FEES_CFDS, COL_PROFIT_ON_SALE_STOCKS, COL_LOSS_ON_SALE_CFDS, COL_FEES_ON_SALE_CFDS, COL_LOSS_ON_SALE_STOCKS] resultTable =
pd.DataFrame(columns=resultColumns)
pandas.DataFrame
import pandas as pd import random from src.func import tweet_utils from src.func import regex from src.func import labmtgen from src.scripts.process_tweets import * from labMTsimple.storyLab import * def get_tweets_timestamp(park_user_tweets): """ Take a list of lists (tweets by user) and assigns a random control tweet. Returns a list of tweets. Each item in return list has in-park tweet text, control tweet tet, park name, nimestamp. Args: park_user_tweets (list]): [description] Returns: [list]: [List of park tweets] """ park_tweet_list = [] for user, tweet_list in park_user_tweets.items(): tweet_count = len(tweet_list) tweet_list_parks = [tweet for tweet in tweet_list if not pd.isnull(tweet['ParkID'])] park_tweet_count = len(tweet_list_parks) not_park_count = tweet_count-park_tweet_count if park_tweet_count > 0 and not_park_count > 0: tweet_choice = random.choice(tweet_list_parks) park_text = tweet_choice['pure_text'] control_text = tweet_choice['control_text'] tweet_time = tweet_choice['tweet_created_at'] park_name = tweet_choice['Park_Name'] park_tweet_list.append({'park_text': park_text, 'control_text': control_text, 'park_name': park_name, 'tweet_created_at': tweet_time}) return park_tweet_list def get_time_control_text_park(park_user_tweets): """ Take a list of lists (tweets by user) and assigns a random control tweet based on timestamp. Returns a list of tweets. Each item in return list has in-park tweet text, control tweet tet, park name, nimestamp. Args: park_user_tweets (list]): [description] Returns: [list]: [List of park tweets] """ park_tweet_list = [] for user, tweet_list in park_user_tweets.items(): tweet_count = len(tweet_list) tweet_list_parks = [tweet for tweet in tweet_list if not pd.isnull(tweet['ParkID'])] park_tweet_count = len(tweet_list_parks) not_park_count = tweet_count-park_tweet_count if park_tweet_count > 0 and not_park_count > 0: tweet_choice = random.choice(tweet_list_parks) park_text = tweet_choice['pure_text'] control_text = tweet_choice['control_text'] park_name = tweet_choice['Park_Name'] park_id = tweet_choice['ParkID'] park_tweet_list.append({'park_id': park_id, 'park_name': park_name, 'park_text': park_text, 'control_text': control_text}) return park_tweet_list def get_both_control_text(park_user_tweets): """ Take a list of lists (tweets by user) and assigns a random control tweet based on timestamp and a random control tweet from same user. Returns a list of tweets. Each item in return list has in-park tweet text, control tweet tet, park name, nimestamp. Args: park_user_tweets (list]): [description] Returns: [list]: [List of park tweets] """ park_tweet_text = [] user_tweet_text = [] time_tweet_text = [] park_list = [] for user, tweet_list in park_user_tweets.items(): tweet_list_parks = [tweet for tweet in tweet_list if not
pd.isnull(tweet['ParkID'])
pandas.isnull
"""Class for creating a Parallel Pipeline.""" from iguanas.exceptions.exceptions import DataFrameSizeError, NoRulesError from iguanas.pipeline._base_pipeline import _BasePipeline from iguanas.utils.typing import PandasDataFrameType, PandasSeriesType from iguanas.utils.types import PandasDataFrame, PandasSeries, Dictionary import iguanas.utils.utils as utils from iguanas.rules import Rules from iguanas.warnings import NoRulesWarning from copy import deepcopy from typing import List, Tuple, Union import pandas as pd import warnings class ParallelPipeline(_BasePipeline): """ Generates a parallel pipeline, which is a set of steps which run independently - their outputs are then concatenated and returned. Each step should be an instantiated class with both `fit` and `transform` methods. Parameters ---------- steps : List[Tuple[str, object]] The steps to be applied as part of the pipeline. Each element of the list corresponds to a single step. Each step should be a tuple of two elements - the first element should be a string which refers to the step; the second element should be the instantiated class which is run as part of the step. verbose : int, optional Controls the verbosity - the higher, the more messages. >0 : gives the overall progress of the training of the pipeline; >1 : shows the current step being trained. Attributes ---------- steps_ : List[Tuple[str, object]] The steps corresponding to the fitted pipeline. rule_names : List[str] The names of the rules in the concatenated output. rules : Rules The Rules object containing the rules produced from fitting the pipeline. Examples -------- >>> from iguanas.pipeline import ParallelPipeline >>> from iguanas.rbs import RBSOptimiser, RBSPipeline >>> from iguanas.rule_generation import RuleGeneratorDT, RuleGeneratorOpt >>> from iguanas.metrics import FScore >>> from sklearn.ensemble import RandomForestClassifier >>> import pandas as pd >>> X = pd.DataFrame({ ... 'A': [1, 0, 1, 0], ... 'B': [1, 1, 1, 0] ... }) >>> y = pd.Series([ ... 1, 0, 1, 0 ... ]) >>> f1 = FScore(beta=1) >>> rg_dt = RuleGeneratorDT( ... metric=f1.fit, ... n_total_conditions=2, ... tree_ensemble=RandomForestClassifier(random_state=0), ... rule_name_prefix='RuleGenDT' ... ) >>> rg_opt = RuleGeneratorOpt( ... metric=f1.fit, ... n_total_conditions=2, ... num_rules_keep=10, ... rule_name_prefix='RuleGenOpt' ... ) >>> pp = ParallelPipeline( ... steps=[ ... ('rg_dt', rg_dt), ... ('rg_opt', rg_opt) ... ] ... ) >>> X_rules = pp.fit_transform(X=X, y=y) >>> print(X_rules) RuleGenDT_0 RuleGenDT_1 RuleGenDT_2 RuleGenOpt_0 0 1 1 1 1 1 0 0 1 0 2 1 1 1 1 3 0 0 0 0 >>> X_rules = pp.transform(X=X) >>> print(X_rules) RuleGenDT_0 RuleGenDT_1 RuleGenDT_2 RuleGenOpt_0 0 1 1 1 1 1 0 0 1 0 2 1 1 1 1 3 0 0 0 0 """ def __init__(self, steps: List[Tuple[str, object]], verbose=0) -> None: _BasePipeline.__init__(self, steps=steps, verbose=verbose) self.rules = Rules() def fit_transform(self, X: Union[PandasDataFrameType, dict], y: Union[PandasSeriesType, dict], sample_weight=None) -> PandasDataFrameType: """ Independently runs the `fit_transform` method of each step in the pipeline, then concatenates the output of each step column-wise. Parameters ---------- X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. Returns ------- PandasDataFrameType The transformed dataset. """ utils.check_allowed_types(X, 'X', [PandasDataFrame, Dictionary]) utils.check_allowed_types(y, 'y', [PandasSeries, Dictionary]) if sample_weight is not None: utils.check_allowed_types( sample_weight, 'sample_weight', [PandasSeries, Dictionary]) self.steps_ = deepcopy(self.steps) X_rules_list = [] rules_list = [] steps_ = utils.return_progress_ready_range( verbose=self.verbose == 1, range=self.steps_ ) for step_tag, step in steps_: if self.verbose > 1: print( f'--- Applying `fit_transform` method for step `{step_tag}` ---' ) # Try applying fit_transform for `step` try: X_rules_list.append( self._pipeline_fit_transform( step_tag, step, X, y, sample_weight ) ) rules_list.append(step.rules) # If no rules generated/remain, raise warning and skip `step` except (DataFrameSizeError, NoRulesError) as e: warnings.warn( message=f'No rules remain in step `{step_tag}` as it raised the following error: "{e}"', category=NoRulesWarning ) X_rules_list.append(pd.DataFrame()) rules_list.append(Rules()) X_rules = pd.concat(X_rules_list, axis=1) self.rules = sum(rules_list) self.rule_names = X_rules.columns.tolist() return X_rules def transform(self, X: Union[PandasDataFrameType, dict]) -> PandasDataFrameType: """ Independently runs the `transform` method of each step in the pipeline, then concatenates the output of each step column-wise. Note that before using this method, you should first run the `fit_transform` method. Parameters ---------- X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. Returns ------- PandasDataFrameType The transformed dataset. """ utils.check_allowed_types(X, 'X', [PandasDataFrame, Dictionary]) X_rules_list = [] for step_tag, step in self.steps_: # Try applying transform for `step` try: X_rules_list.append( self._pipeline_transform( step_tag, step, X ) ) # If no rules present, raise warning and skip `step`; else raise # exception except Exception as e: if str(e) == '`rule_dicts` must be given' or str(e) == '`X` has been reduced to zero columns after the `sf` step in the pipeline.': warnings.warn( message=f'No rules present in step `{step_tag}` - `transform` method cannot be applied for this step.', category=NoRulesWarning ) X_rules_list.append(
pd.DataFrame()
pandas.DataFrame
""" This script visualises the prevention parameters of the first and second COVID-19 waves. Arguments: ---------- -f: Filename of samples dictionary to be loaded. Default location is ~/data/interim/model_parameters/COVID19_SEIRD/calibrations/national/ Returns: -------- Example use: ------------ """ __author__ = "<NAME>" __copyright__ = "Copyright (c) 2020 by <NAME>, BIOMATH, Ghent University. All Rights Reserved." # ---------------------- # Load required packages # ---------------------- import json import argparse import datetime import random import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.transforms import offset_copy from covid19model.models import models from covid19model.data import mobility, sciensano, model_parameters from covid19model.models.time_dependant_parameter_fncs import ramp_fun from covid19model.visualization.output import _apply_tick_locator from covid19model.visualization.utils import colorscale_okabe_ito, moving_avg # covid 19 specific parameters plt.rcParams.update({ "axes.prop_cycle": plt.cycler('color', list(colorscale_okabe_ito.values())), }) # ----------------------- # Handle script arguments # ----------------------- parser = argparse.ArgumentParser() parser.add_argument("-n", "--n_samples", help="Number of samples used to visualise model fit", default=100, type=int) parser.add_argument("-k", "--n_draws_per_sample", help="Number of binomial draws per sample drawn used to visualize model fit", default=1, type=int) args = parser.parse_args() ################################################# ## PART 1: Comparison of total number of cases ## ################################################# youth = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame()) cases_youth_nov21 = youth[youth.index == pd.to_datetime('2020-11-21')].values cases_youth_rel = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame())/cases_youth_nov21*100 work = moving_avg((df_sciensano['C_20_29']+df_sciensano['C_30_39']+df_sciensano['C_40_49']+df_sciensano['C_50_59']).to_frame()) cases_work_nov21 = work[work.index == pd.to_datetime('2020-11-21')].values cases_work_rel = work/cases_work_nov21*100 old = moving_avg((df_sciensano['C_60_69']+df_sciensano['C_70_79']+df_sciensano['C_80_89']+df_sciensano['C_90+']).to_frame()) cases_old_nov21 = old[old.index == pd.to_datetime('2020-11-21')].values cases_old_rel = old/cases_old_nov21*100 fig,ax=plt.subplots(figsize=(12,4.3)) ax.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax.set_ylim([0,320]) ax.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax = _apply_tick_locator(ax) ax.set_yticks([0,100,200,300]) ax.grid(False) plt.tight_layout() plt.show() def crosscorr(datax, datay, lag=0): """ Lag-N cross correlation. Parameters ---------- lag : int, default 0 datax, datay : pandas.Series objects of equal length Returns ---------- crosscorr : float """ return datax.corr(datay.shift(lag)) lag_series = range(-15,8) covariance_youth_work = [] covariance_youth_old = [] covariance_work_old = [] for lag in lag_series: covariance_youth_work.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_youth_old.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_work_old.append(crosscorr(cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariances = [covariance_youth_work, covariance_youth_old, covariance_work_old] for i in range(3): n = len(covariances[i]) k = max(covariances[i]) idx=np.argmax(covariances[i]) tau = lag_series[idx] sig = 2/np.sqrt(n-abs(k)) if k >= sig: print(tau, k, True) else: print(tau, k, False) fig,(ax1,ax2)=plt.subplots(nrows=2,ncols=1,figsize=(15,10)) # First part ax1.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax1.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax1.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax1.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax1.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax1.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax1.set_ylim([0,300]) ax1.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax1.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax1 = _apply_tick_locator(ax1) # Second part ax2.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax2.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax2.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax2.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax2.axvline(0,linewidth=1, color='black') ax2.grid(False) ax2.set_ylabel('lag-$\\tau$ cross correlation (-)') ax2.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() fig,ax = plt.subplots(figsize=(15,5)) ax.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax.axvline(0,linewidth=1, color='black') ax.grid(False) ax.set_ylabel('lag-$\\tau$ cross correlation (-)') ax.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() ##################################################### ## PART 1: Calibration robustness figure of WAVE 1 ## ##################################################### n_calibrations = 6 n_prevention = 3 conf_int = 0.05 # ------------------------- # Load samples dictionaries # ------------------------- samples_dicts = [ json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-15.json')), # 2020-04-04 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-13.json')), # 2020-04-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-23.json')), # 2020-05-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-18.json')), # 2020-05-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-21.json')), # 2020-06-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-22.json')) # 2020-07-01 ] warmup = int(samples_dicts[0]['warmup']) # Start of data collection start_data = '2020-03-15' # First datapoint used in inference start_calibration = '2020-03-15' # Last datapoint used in inference end_calibrations = ['2020-04-04', '2020-04-15', '2020-05-01', '2020-05-15', '2020-06-01', '2020-07-01'] # Start- and enddate of plotfit start_sim = start_calibration end_sim = '2020-07-14' # --------- # Load data # --------- # Contact matrices initN, Nc_home, Nc_work, Nc_schools, Nc_transport, Nc_leisure, Nc_others, Nc_total = model_parameters.get_interaction_matrices(dataset='willem_2012') Nc_all = {'total': Nc_total, 'home':Nc_home, 'work': Nc_work, 'schools': Nc_schools, 'transport': Nc_transport, 'leisure': Nc_leisure, 'others': Nc_others} levels = initN.size # Google Mobility data df_google = mobility.get_google_mobility_data(update=False) # --------------------------------- # Time-dependant parameter function # --------------------------------- # Extract build contact matrix function from covid19model.models.time_dependant_parameter_fncs import make_contact_matrix_function, ramp_fun contact_matrix_4prev, all_contact, all_contact_no_schools = make_contact_matrix_function(df_google, Nc_all) # Define policy function def policies_wave1_4prev(t, states, param, l , tau, prev_schools, prev_work, prev_rest, prev_home): # Convert tau and l to dates tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-09-01') # end of summer holidays # Define key dates of second wave t5 = pd.Timestamp('2020-10-19') # lockdown (1) t6 = pd.Timestamp('2020-11-02') # lockdown (2) t7 = pd.Timestamp('2020-11-16') # schools re-open t8 = pd.Timestamp('2020-12-18') # Christmas holiday starts t9 = pd.Timestamp('2021-01-04') # Christmas holiday ends t10 = pd.Timestamp('2021-02-15') # Spring break starts t11 = pd.Timestamp('2021-02-21') # Spring break ends t12 = pd.Timestamp('2021-04-05') # Easter holiday starts t13 = pd.Timestamp('2021-04-18') # Easter holiday ends # ------ # WAVE 1 # ------ if t <= t1: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 < t < t1 + tau_days: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 + tau_days < t <= t1 + tau_days + l_days: t = pd.Timestamp(t.date()) policy_old = all_contact(t) policy_new = contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) return ramp_fun(policy_old, policy_new, t, tau_days, l, t1) elif t1 + tau_days + l_days < t <= t2: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t2 < t <= t3: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t3 < t <= t4: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) # ------ # WAVE 2 # ------ elif t4 < t <= t5 + tau_days: return contact_matrix_4prev(t, school=1) elif t5 + tau_days < t <= t5 + tau_days + l_days: policy_old = contact_matrix_4prev(t, school=1) policy_new = contact_matrix_4prev(t, prev_schools, prev_work, prev_rest, school=1) return ramp_fun(policy_old, policy_new, t, tau_days, l, t5) elif t5 + tau_days + l_days < t <= t6: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t6 < t <= t7: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t7 < t <= t8: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t8 < t <= t9: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t9 < t <= t10: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t10 < t <= t11: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t11 < t <= t12: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t12 < t <= t13: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) else: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) # -------------------- # Initialize the model # -------------------- # Load the model parameters dictionary params = model_parameters.get_COVID19_SEIRD_parameters() # Add the time-dependant parameter function arguments params.update({'l': 21, 'tau': 21, 'prev_schools': 0, 'prev_work': 0.5, 'prev_rest': 0.5, 'prev_home': 0.5}) # Define initial states initial_states = {"S": initN, "E": np.ones(9)} # Initialize model model = models.COVID19_SEIRD(initial_states, params, time_dependent_parameters={'Nc': policies_wave1_4prev}) # ------------------------ # Define sampling function # ------------------------ def draw_fcn(param_dict,samples_dict): # Sample first calibration idx, param_dict['beta'] = random.choice(list(enumerate(samples_dict['beta']))) param_dict['da'] = samples_dict['da'][idx] param_dict['omega'] = samples_dict['omega'][idx] param_dict['sigma'] = 5.2 - samples_dict['omega'][idx] # Sample second calibration param_dict['l'] = samples_dict['l'][idx] param_dict['tau'] = samples_dict['tau'][idx] param_dict['prev_home'] = samples_dict['prev_home'][idx] param_dict['prev_work'] = samples_dict['prev_work'][idx] param_dict['prev_rest'] = samples_dict['prev_rest'][idx] return param_dict # ------------------------------------- # Define necessary function to plot fit # ------------------------------------- LL = conf_int/2 UL = 1-conf_int/2 def add_poisson(state_name, output, n_samples, n_draws_per_sample, UL=1-0.05*0.5, LL=0.05*0.5): data = output[state_name].sum(dim="Nc").values # Initialize vectors vector = np.zeros((data.shape[1],n_draws_per_sample*n_samples)) # Loop over dimension draws for n in range(data.shape[0]): binomial_draw = np.random.poisson( np.expand_dims(data[n,:],axis=1),size = (data.shape[1],n_draws_per_sample)) vector[:,n*n_draws_per_sample:(n+1)*n_draws_per_sample] = binomial_draw # Compute mean and median mean = np.mean(vector,axis=1) median = np.median(vector,axis=1) # Compute quantiles LL = np.quantile(vector, q = LL, axis = 1) UL = np.quantile(vector, q = UL, axis = 1) return mean, median, LL, UL def plot_fit(ax, state_name, state_label, data_df, time, vector_mean, vector_LL, vector_UL, start_calibration='2020-03-15', end_calibration='2020-07-01' , end_sim='2020-09-01'): ax.fill_between(pd.to_datetime(time), vector_LL, vector_UL,alpha=0.30, color = 'blue') ax.plot(time, vector_mean,'--', color='blue', linewidth=1.5) ax.scatter(data_df[start_calibration:end_calibration].index,data_df[state_name][start_calibration:end_calibration], color='black', alpha=0.5, linestyle='None', facecolors='none', s=30, linewidth=1) ax.scatter(data_df[pd.to_datetime(end_calibration)+datetime.timedelta(days=1):end_sim].index,data_df[state_name][
pd.to_datetime(end_calibration)
pandas.to_datetime
import pandas as pd import numpy as np import lightgbm as lgb import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import KFold, RepeatedKFold from scipy import sparse # 显示所有列
pd.set_option('display.max_columns', None)
pandas.set_option
import pandas as pd import os import itertools from collections import defaultdict """ Description: This script performs automatic filtering/aggregation of Qualys scans intended for analysis. Reads in a csv file and outputs a csv file. """ def main(): root = os.path.dirname(os.path.abspath(__file__)) in_file = "supp.csv" out_file = "testsupp_results_v2.csv" # Get first and last valid lines for entries in the CSV (automatically detect header/footer and skip) def get_line_number(phrase, file_path): with open(file_path, encoding="utf8") as f: for i, line in enumerate(f, 1): if phrase in line: return i top_line_number = get_line_number("host scanned", root + os.path.sep + in_file) bottom_line_number = get_line_number("hosts not scanned", root + os.path.sep + in_file) total_line_number = 0 # Get total # of lines to calculate how many to skip with open(root + os.path.sep + in_file, encoding="utf8") as f: total_line_number = sum(1 for _ in f) skip_top_lines = top_line_number - 2 # 1 for header, 1 for blank line skip_bottom_lines = total_line_number - bottom_line_number + 1 # DEBUG # print(top_line_number, bottom_line_number, total_line_number) # print(skip_top_lines, skip_bottom_lines) """ read_cols = ["IP", "DNS", "NetBIOS", "OS", "IP Status", "QID", "Title", "Type", "Severity", "Port", "Protocol", "FQDN", "SSL", "CVE ID", "Vendor Reference", "Bugtraq ID", "CVSS Base", \ "CVSS Temporal", "CVSS3 Base", "CVSS3 Temporal", "Threat", "Impact", "Solution", "Exploitability", "Associated Malware", "Results", "PCI Vuln", "Instance", "Category"] """ read_cols = ["IP", "QID", "Title", "Type", "Severity", "Port", "CVE ID", "Threat"] req_cols = [i for i in read_cols if i not in ["IP", "Port", "CVE ID"]] df = pd.read_csv(root + os.path.sep + in_file, index_col=False, skiprows=skip_top_lines, skipfooter=skip_bottom_lines, usecols=read_cols) # DEBUG # print(df.head()) # print(df.tail()) IP_DICT = defaultdict(set) PORT_DICT = defaultdict(set) CVE_DICT = defaultdict(set) COUNT_DICT = defaultdict(int) def add_to_dict(key, value, dict): # if not pd.isna(value): # exclude NaNs (empty cells) dict[key].add(value) def generate_df_from_dict(dict, col_name): # note: this disallows display of lists of considerable length data = [[key, str(list(val))[1:-1]] for key, val in dict.items() if len(val) < 1337] return pd.DataFrame(data, columns=["QID", col_name]) # Iterating over two columns, use `zip` for x, y in zip(df["QID"], df["IP"]): if not pd.isna(y): # exclude NaNs (empty cells) add_to_dict(x, str(y), IP_DICT) for x, y in zip(df["QID"], df["Port"]): if not pd.isna(y): # exclude NaNs (empty cells) add_to_dict(x, str(int(y)), PORT_DICT) for x, y in zip(df["QID"], df["CVE ID"]): if not
pd.isna(y)
pandas.isna
# https://github.com/bokeh/bokeh/issues/5701 # https://groups.google.com/a/continuum.io/forum/#!searchin/bokeh/selected/bokeh/ft2U4nX4fVo/srBMki9FAQAJ import pandas as pd import sys import io import os.path as op import MetaVisLauncherConfig as config from bokeh.io import show, output_file, save from bokeh.embed import file_html from bokeh.resources import CDN from LongformReader import _generateWideform from bokeh.util.browser import view from jinja2 import Environment, FileSystemLoader, select_autoescape from metaVis import * import numpy as np import logging logger = logging.getLogger('debug_logger') logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler('spam2.log') fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.ERROR) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch) def error_check(data, ptid_md, measures_md): data_colnames = list(data.columns.values) data_rownames = list(data.index) ptid_names = list(ptid_md.index) measures_names = list(measures_md.index) if (data.shape[1] != measures_md.shape[0]): error = "<p>Error: Number of measurements in base dataset does not match the number of measurements in the measurement metadata.</br>" error += "&emsp;Base Data: " + str(data.shape[1]) + "</br>" error += "&emsp;Measures Metadata: " + str(measures_md.shape[0]) return error if (data.shape[0] != ptid_md.shape[0]): error = "<p>Error: Number of PtID's in base dataset does not match the number of PtID's in the PtID metadata. </br>" error += "&emsp;Base Data: " + str(data.shape[0]) + "</br>" error += "&emsp;PtID's Metadata: " + str(ptid_md.shape[0]) error += "</p>" return error if (ptid_names != data_rownames): error = "<p>Error: PtID's in base dataset do not match PtID's in PtID metadata.</p>" print(ptid_names) print(data_rownames) return error if (measures_names != data_colnames): error = "<p>Error: Measures in base dataset do not match measures in measurement metadata. </br>" error += str(list(measures_names)) + "</br>" error += str(list(data_colnames)) + "</p>" return error return None # Generates the heatmap html at config.tmp_dir/config.output_file def gen_heatmap_html(data=None, row_md=None, col_md=None, raw_data=None, metric='euclidean', method='complete', transform='none', standardize=True, impute=True, params=['', '', '']): # TODO - Metavis currently does not work without imputing # if (longform is not None and rx is not None): # data, row_md, col_md = _generateWideform(longform, rx) ret_val = {} ret_val['error'] = error_check(data, row_md, col_md) if ret_val['error'] is not None: return ret_val ptid_md = row_md measures_md = col_md if metric[-1] == "'": metric = metric[2: -1] method = method[2: -1] logger.info(type(metric)) logger.info(metric) # TODO - double check clusterData param handling data, ptid_md, measures_md, rowDend, colDend = clusterData(data, ptid_md, measures_md, metric=metric, method=method, standardize=standardize, impute=impute) sources = initSources(data, ptid_md, measures_md, raw_data, transform=transform, params=params) cbDict = initCallbacks(sources) html = generateLayout(sources, cbDict, rowDend, colDend) with io.open(op.join(config.tmp_dir, config.output_file), mode='w', encoding='utf-8') as f: f.write(html) return ret_val def _errorDisplay(data, row_md, col_md): data_colnames = list(data.columns.values) data_rownames = list(data.index) rowmd_names = list(row_md.index) colmd_names = list(col_md.index) env = Environment( loader=FileSystemLoader('templates'), autoescape=select_autoescape(['html', 'xml']) ) template = env.get_template("error.html") # html = template.render(tables=[data.to_html(), row_md.to_html(), col_md.to_html()], titles=['na', 'Base Data', 'Row Metadata', 'Column Metadata']) count_err, count_loc, base_count, meta_count = _checkCounts(data, row_md, col_md) html = "" has_error = False if count_err is True: has_error = True print(count_err) message = "Error: There are mismatched counts between your metadata and your base data. " if count_loc == 'col': message += "Your base data has " + str(data.shape[1]) + " columns but your Column Metadata has " + str(col_md.shape[0]) + " entries." data_col_df = pd.DataFrame({"Columns from data": data_colnames}) colmd_df =
pd.DataFrame({"Columns from Col Metadata": colmd_names})
pandas.DataFrame
try: from TACT import logger except ImportError: pass from TACT.readers.config import Config from future.utils import itervalues, iteritems import pandas as pd import re import sys from string import printable import numpy as np class Data(Config): """Class to hold data, derivative features, and metadata for TACT analysis of a single site. Inherits from Config class Attributes ---------- inputdata : DataFrame DataFrame with all anemometer, RSD data, and site atmospheric data timestamps : DateTime array array of timestamps for each row of inputdata a : numpy array Edges of Reference TI bins lab_a : numpy array Center values of Reference TI bins RSD_alphaFlag : bool whether there exists an additional upper of lower RSD height to compute wind shear Ht_1_RSD : int Lower height to compute wind shear from RSD Ht_1_RSD : int Upper height to compute wind shear from RSD """ def get_inputdata(self): """Ingests and formats data from inputdata and config data Parameters ---------- None Uses object attributes Returns ------- Silent Sets inputdata attribute to pandas array """ filename = self.input_filename if str(filename).split(".")[-1] == "csv": self.inputdata = pd.read_csv(self.input_filename) elif str(filename).split(".")[-1] == "xlsx": self.inputdata =
pd.read_excel(self.input_filename)
pandas.read_excel
""" Script for the calculation of A_uv, A_dv & A_g, and the python graph for the xPDFs at initial scale. The parametrizations were taken from: <NAME>., & <NAME>. (2019). A new simple PDF parametrization: improved description of the HERA data. The European Physical Journal Plus, 134(10), 531. """ import math # for the gamma function import scipy.special as ss import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd #sns.set_style("white") # constants f_s = 0.4 gamma_s = f_s/(1-f_s) # fitted parameters of the paper (NNLO + NLLx Hell 3.0) B_uv, C_uv, E_uv, F_uv, G_uv = 0.76, 4.6, 2.6, 0.35, 0.049 B_g, C_g, F_g, G_g = -0.52, 4.5, 0.217, 0.0112 B_dv, C_dv = 0.99, 4.7 A_dbar, B_dbar, C_dbar, D_dbar, F_dbar = 0.14, -0.33, 24, 38, 0.071 A_ubar, B_ubar, C_ubar, D_ubar, F_ubar = A_dbar, B_dbar, 11, 18, F_dbar """ # NNLO global minimum parameters B_uv, C_uv, E_uv, F_uv, G_uv = 0.83, 4.6, 1.9, 0.37, 0.058 B_g, C_g, F_g, G_g = -0.55, 4.5, 0.230, 0.0131 B_dv, C_dv = 0.98, 4.7 A_dbar, B_dbar, C_dbar, D_dbar, F_dbar = 0.13, -0.34, 24, 40, 0.072 A_ubar, B_ubar, C_ubar, D_ubar, F_ubar = A_dbar, B_dbar, 11, 20, F_dbar """ # integral equivalents # for uv and dv def I1 (B_i, C_i): return math.gamma(B_i) * math.gamma(C_i+1) / math.gamma(B_i+C_i+1) def I2 (B_i, C_i): return I1 (B_i+2, C_i) def I3 (B_i, C_i): return I1 (B_i, C_i) * (ss.polygamma(0, B_i) - ss.polygamma(0, B_i+C_i+1)) def I4 (B_i, C_i): return I1 (B_i, C_i) * ( (ss.polygamma(0, B_i) - ss.polygamma(0, B_i+C_i+1))**2 + (ss.polygamma(1, B_i) - ss.polygamma(1, B_i+C_i+1)) ) # for gl: def I1_i (B_i, C_i): return I1(B_i+1, C_i) def I2_i (B_i, C_i): return I3 (B_i+1, C_i) #(sympy.harmonic(B_i)-sympy.harmonic(B_i+C_i+1)) , domde ss.polygamma(0, B_i+1) = sympy.harmonic(B_i) cuando B_i > 0. # Había un problema cuando B_i <0 (entonces wolfram esta mal?), por ende decido cambiar a polygamma function. def I3_i (B_i, C_i): return I4(B_i+1, C_i) def I4_i (B_i, C_i): return I2 (B_i, C_i) def I5_i (B_i, C_i): return I1(B_i+3, C_i) # A_uv calculation A_uv = 2 / (I1 (B_uv, C_uv) + E_uv*I2 (B_uv, C_uv) + F_uv*I3 (B_uv, C_uv) + G_uv*I4 (B_uv, C_uv)) print("A_uv: ", A_uv) # A_dv calculation A_dv = 1 / (I1(B_dv, C_dv)) print("A_dv: ", A_dv) # Ag calculation I1_uv, I1_dv, I1_g, I1_ubar, I1_dbar = I1_i (B_uv, C_uv), I1_i (B_dv, C_dv), I1_i (B_g, C_g), I1_i (B_ubar, C_ubar), I1_i (B_dbar, C_dbar) I2_uv, I2_ubar, I2_dbar, I2_g = I2_i (B_uv, C_uv), I2_i (B_ubar, C_ubar), I2_i (B_dbar, C_dbar), I2_i (B_g, C_g) I3_uv, I3_g = I3_i (B_uv, C_uv), I3_i (B_g, C_g) I4_ubar, I4_dbar = I4_i (B_ubar, C_ubar), I4_i (B_dbar, C_dbar) I5_uv = I5_i (B_uv, C_uv) A_g = (1 - (A_uv*(I1_uv + E_uv*I5_uv + F_uv*I2_uv + G_uv*I3_uv) + A_dv*I1_dv + 2*A_ubar*(I1_ubar + D_ubar*I4_ubar + F_ubar*I2_ubar) + 2*(1+gamma_s)*A_dbar*(I1_dbar + D_dbar*I4_dbar + F_dbar*I2_dbar)) ) / (I1_g + F_g*I2_g + G_g*I3_g) print("A_g: ", A_g) # PDFs graphs at initial scale x0 = 5.2427e-4#5.2427e-4 # cero del xgl x = np.linspace(x0, 1, 10000) # PDFs parametrization def x_pdf(x, A, B, C , D, E, F, G): return A*x**B * (1-x)**C * (1 + D*x + E*x**2 + F*np.log(x) + G*(np.log(x))**2) # xpdf values in de x minimums print("xuv = ", x_pdf(x0, A_uv, B_uv, C_uv, 0, E_uv, F_uv, G_uv)) print("xdv = ", x_pdf(x0, A_dv, B_dv, C_dv , 0, 0, 0, 0)) print("xgl = ", x_pdf(x0, A_g, B_g, C_g , 0, 0, F_g, G_g)) print("xubar = ", x_pdf(x0, A_ubar, B_ubar, C_ubar , 0, 0, F_ubar, 0)) print("xdbar = ", x_pdf(x0, A_dbar, B_dbar, C_dbar , 0, 0, F_dbar, 0)) xg = x_pdf(x, A_g, B_g, C_g , 0, 0, F_g, G_g) x_uv, x_dv = x_pdf(x, A_uv, B_uv, C_uv , 0, E_uv, F_uv, G_uv), x_pdf(x, A_dv, B_dv, C_dv , 0, 0, 0, 0) x_ubar, x_dbar = x_pdf(x, A_ubar, B_ubar, C_ubar , D_ubar, 0, F_ubar, 0), x_pdf(x, A_dbar, B_dbar, C_dbar , D_dbar, 0, F_dbar, 0) x_qv = x_uv + x_dv x_qs = x_ubar + x_dbar x_Sigma = x_uv + x_dv + 2*x_ubar + 2*(1+gamma_s)*x_dbar # converting to pd.DataFrames for graph in seaborn. And for convert easily into .csv x_q = pd.DataFrame({'x$u_{v}$': x_uv, 'x$d_{v}$': x_dv, 'x$\\overline{u}$': x_ubar, 'x$\\overline{d}$': x_dbar}, index=x) x_q_gl =
pd.DataFrame({'x$u_{v}$': x_uv, 'x$d_{v}$': x_dv, 'x$\\overline{u}$': x_ubar, 'x$\\overline{d}$': x_dbar, 'x$gl$': xg}, index=x)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 14 16:13:16 2021 @author: nicolasnavarre """ import pandas as pd import math data = 'data/' def crop_yield(POM_data, fish_products, meat_products, feed_list, crop_proxie, diet_div_crop, diet_source_crop): POM_crop_data = POM_data[~POM_data.Item.isin(fish_products)] POM_crop_data = POM_crop_data[~POM_crop_data.group.isin(meat_products)] FAO_Crop_yield = pd.read_csv(data+"FAOSTAT_crop Yield.csv") FAO_Crop_yield.loc[FAO_Crop_yield.Area == "Cote d'Ivoire", "Area"] = "Côte d'Ivoire" FAO_Crop_yield.loc[FAO_Crop_yield.Area == "United Kingdom of Great Britain and Northern Ireland", "Area"] = "United Kingdom" FAO_Crop_yield["Value"] = FAO_Crop_yield["Value"] / 10000 / 1000 #convert to 1000 tons/ha FAO_Crop_yield["Unit"] = "1000 tons/ha" FAO_Crop_yield_5 = pd.read_csv(data+"FAOSTAT_crop Yield_5.csv") FAO_Crop_yield_5.loc[FAO_Crop_yield_5.Area == "Cote d'Ivoire", "Area"] = "Côte d'Ivoire" FAO_Crop_yield_5.loc[FAO_Crop_yield_5.Area == "United Kingdom of Great Britain and Northern Ireland", "Area"] = "United Kingdom" FAO_Crop_yield_5["Value"] = FAO_Crop_yield_5["Value"] / 10000 / 1000 #convert to 1000 tons/ha FAO_Crop_yield_5["Unit"] = "1000 tons/ha" FAO_Crop_yield_5 = FAO_Crop_yield_5.groupby(['Area', 'Item']).mean().reset_index() FAO_Crop_yield = pd.merge(FAO_Crop_yield, FAO_Crop_yield_5[['Area', 'Item', 'Value']], on = ["Area", "Item"], how = 'left') FAO_Crop_yield['Value'] = FAO_Crop_yield['Value_y'] FAO_Crop_yield = FAO_Crop_yield.drop(columns = ["Value_x", "Value_y"]) if crop_proxie == True: for i,j in zip (diet_div_crop, diet_source_crop): fao_fix = FAO_Crop_yield.loc[FAO_Crop_yield.Area == j] fao_fix['Area'] = i FAO_Crop_yield = FAO_Crop_yield[FAO_Crop_yield.Area != i] FAO_Crop_yield = pd.concat([FAO_Crop_yield,fao_fix]) FAO_Crops = pd.merge(FAO_Crop_yield, POM_data, on = ["Area", "Item"], how = "left") POM_data.loc[POM_data.Area == 'China, mainland', 'REGION'] = 'CHN' extra_nations = ['Puerto Rico', 'Palestine', 'Greenland', 'Falkland Islands (Malvinas)'\ 'New Caledonia', 'China', 'China, Taiwan Province of' ] FAO_Crops = FAO_Crops[~FAO_Crops['Area'].isin(extra_nations)] FAO_Crops = FAO_Crops.reset_index() yield_avg = pd.DataFrame() yield_avg ["avg yield"] = FAO_Crops.groupby(["Item", "GROUP"]).apply(lambda x: x["Value"].mean()) yield_avg = yield_avg.reset_index(level = ["Item", "GROUP"]) yield_avg_feed = yield_avg[yield_avg.Item.isin(feed_list)] yield_avg_crop = yield_avg[~yield_avg.Item.isin(feed_list)] Feed_crops = POM_data[POM_data.Item.isin(feed_list)] FAO_Crops = pd.concat([FAO_Crops, Feed_crops]).drop_duplicates(subset=['Area', 'Item'], keep='first').reset_index(drop=True) FAO_Crops['Element'] = 'Yield' FAO_Crops['Unit_x'] = '1000 tons/ha' global_avg = yield_avg.groupby(['Item']).apply(lambda x: x['avg yield'].mean()) global_avg = pd.DataFrame(global_avg) global_avg = global_avg.rename(columns = {0: "avg yield"}) #Fill in missing values with the nation's imagegroup average for i in FAO_Crops.index: if math.isnan(FAO_Crops['Value'][i]) == True: for j in yield_avg.index: if FAO_Crops['Item'][i] == yield_avg['Item'][j] and FAO_Crops['GROUP'][i] == yield_avg['GROUP'][j]: FAO_Crops['Value'][i] = yield_avg['avg yield'][j] for i in FAO_Crops.index: if math.isnan(FAO_Crops['Value'][i]) == True: if FAO_Crops['Item'][i] in feed_list: if FAO_Crops['Item'][i] == 'grass': FAO_Crops['Value'][i] = (6800/0.17)/1000/1000 else: FAO_Crops['Value'][i] = global_avg["avg yield"][str(FAO_Crops['Item'][i])] FAO_Crops = FAO_Crops.dropna(subset = ['for feed EAT']) FAO_Crops['Value Org'] = FAO_Crops['Value'] global_avg = global_avg.reset_index(level = 'Item') global_avg_feed = global_avg[global_avg['Item'].isin(feed_list)] global_avg_crop = global_avg[~global_avg['Item'].isin(feed_list)] return FAO_Crops, FAO_Crop_yield, yield_avg_feed, yield_avg_crop, global_avg_feed, global_avg_crop def crop_area(FAO_Crops, yield_avg_feed, change_feed_yields,regional_change_feed,feed_standard,feed_regions,\ feed_countries,global_avg_feed,change_crop_yields,regional_change_crop,yield_avg_crop,crop_standard,\ cr_y_regions,cr_y_countries,global_avg_crop): if change_feed_yields == True: if regional_change_feed == True: yield_avg_feeds = yield_avg_feed.loc[(yield_avg_feed.GROUP == feed_standard)] for j in yield_avg_feeds.index: for region_name in feed_regions: for i in FAO_Crops.loc[(FAO_Crops.GROUP == region_name) & (FAO_Crops.Item == yield_avg_feed.Item[j])].index: if yield_avg_feed['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = yield_avg_feed['avg yield'][j] for c_name in feed_countries: for i in FAO_Crops.loc[(FAO_Crops.Area == c_name) & (FAO_Crops.Item == yield_avg_feed.Item[j])].index: if yield_avg_feed['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = yield_avg_feed['avg yield'][j] else: #global average for j in global_avg_feed.index: for region_name in feed_regions: for i in FAO_Crops.loc[(FAO_Crops.GROUP == region_name) & (FAO_Crops.Item == global_avg_feed.Item[j])].index: if global_avg_feed['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = global_avg_feed['avg yield'][j] for c_name in feed_countries: for i in FAO_Crops.loc[(FAO_Crops.Area == c_name) & (FAO_Crops.Item == global_avg_feed.Item[j])].index: if global_avg_feed['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = global_avg_feed['avg yield'][j] if change_crop_yields == True: if regional_change_crop == True: #imagegroup based averages yield_avg_sub = yield_avg_crop.loc[(yield_avg_crop.GROUP == crop_standard)] for j in yield_avg_sub.index: for region_name in cr_y_regions: for i in FAO_Crops.loc[(FAO_Crops.GROUP == region_name) & (FAO_Crops.Item == yield_avg_sub.Item[j])].index: if yield_avg_sub['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = yield_avg_sub['avg yield'][j] for c_name in cr_y_countries: for i in FAO_Crops.loc[(FAO_Crops.Area == c_name) & (FAO_Crops.Item == yield_avg_sub.Item[j])].index: if yield_avg_sub['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = yield_avg_sub['avg yield'][j] else: #global average for j in global_avg_crop.index: for region_name in cr_y_regions: for i in FAO_Crops.loc[(FAO_Crops.GROUP == region_name) & (FAO_Crops.Item == global_avg_crop.Item[j])].index: if global_avg_crop['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = global_avg_crop['avg yield'][j] for c_name in cr_y_countries: for i in FAO_Crops.loc[(FAO_Crops.Area == c_name) & (FAO_Crops.Item == global_avg_crop.Item[j])].index: if global_avg_crop['avg yield'][j] > FAO_Crops.Value[i]: FAO_Crops.Value[i] = global_avg_crop['avg yield'][j] FAO_all_crops = FAO_Crops FAO_all_crops['POM Org Area'] = FAO_all_crops['POM Org (with waste & feed)']/FAO_all_crops['Value Org'] FAO_all_crops['POM EAT Area'] = FAO_all_crops['POM EAT (with waste & feed)']/FAO_all_crops['Value'] average_yield_nat = FAO_all_crops.groupby(['Area']).apply(lambda x: x['EAT POM'].sum()/x['POM EAT Area'].sum()) average_yield_group_nat = FAO_all_crops.groupby(['Area', 'EAT_group']).apply(lambda x: x['EAT POM'].sum()/x['POM EAT Area'].sum()) Crop_Area_only = FAO_all_crops.groupby(["Area"]).apply(lambda x: x["POM Org Area"].sum()) Crop_Area_only = Crop_Area_only.reset_index(level = 'Area') Crop_Area_only = Crop_Area_only.rename(columns = {0: "Org"}) Crop_group_only = FAO_all_crops.groupby(["EAT_group"]).apply(lambda x: x["POM Org Area"].sum()) Crop_group_only = Crop_group_only.reset_index(level = 'EAT_group') Crop_group_only = Crop_group_only.rename(columns = {0: "Org"}) Crop_group_only_EAT = FAO_all_crops.groupby(["EAT_group"]).apply(lambda x: x["POM EAT Area"].sum()) Crop_group_only_EAT = Crop_group_only_EAT.reset_index(level = 'EAT_group') Crop_group_only_EAT = Crop_group_only_EAT.rename(columns = {0: "EAT"}) FAO_all_crops_group = pd.merge(Crop_group_only, Crop_group_only_EAT, on = 'EAT_group') Crop_Area_only_EAT = FAO_all_crops.groupby(["Area"]).apply(lambda x: x["POM EAT Area"].sum()) Crop_Area_only_EAT = Crop_Area_only_EAT.reset_index(level = 'Area') Crop_Area_only_EAT = Crop_Area_only_EAT.rename(columns = {0: "EAT"}) FAO_all_crops_area = pd.merge(Crop_Area_only, Crop_Area_only_EAT, on = 'Area') FAO_all_crops_area = FAO_all_crops_area.set_index('Area') FAO_all_crops['feed Area EAT'] = FAO_all_crops['for feed EAT']/FAO_all_crops['Value'] Crops_group_area = FAO_all_crops.groupby(["Area", "EAT_group"]).apply(lambda x: x["POM EAT Area"].sum()) Crops_group_area = Crops_group_area.reset_index(level = 'Area') Crops_group_area = Crops_group_area.rename(columns = {0:'EAT'}) Crops_group_area_feed = FAO_all_crops.groupby(["Area", "EAT_group"]).apply(lambda x: x["feed Area EAT"].sum()) Crops_group_area_feed = Crops_group_area_feed.reset_index(level = 'Area') Crops_group_area_feed = Crops_group_area_feed.rename(columns = {0:'feed'}) Crops_group_area['% feed'] = Crops_group_area_feed['feed']/Crops_group_area['EAT']*100 national_area = FAO_all_crops.groupby(["Area"]).apply(lambda x: x['POM EAT Area'].sum()) Feed_crop_area= FAO_all_crops[FAO_all_crops['feed Area EAT'] > 0] return FAO_all_crops_area, Crops_group_area, FAO_all_crops, FAO_all_crops_group def feed_crop_area(FAO_Crops, POM_protein_feed, feed_list, FAO_Livestock, POM_data): """*** Now figure out crops for feed to break down Int vs Ext meat ***""" FAO_Crops.drop(FAO_Crops[FAO_Crops['for feed EAT'] == 0].index, inplace = True) FAO_Crops = FAO_Crops.reset_index(drop = True) FAO_Crops = FAO_Crops.drop(columns = ["Domain Code", "Domain", "Area Code",\ "Element Code", "Year", "Year Code", "Flag", "Flag Description", "Item Code_y"]) FAO_Crops = FAO_Crops.rename(columns = {"Item Code_x" : "Item Code"}) FAO_Crops["POM Org Area (Ha)"] = FAO_Crops["POM Org (with waste & feed)"] / FAO_Crops["Value Org"] FAO_Crops["POM EAT Area (Ha)"] = FAO_Crops["POM EAT (with waste & feed)"] / FAO_Crops["Value"] FAO_Crops['Yield Crops (1000tons/ha)'] = FAO_Crops ['Value'] FAO_Crops = FAO_Crops.loc[:,~FAO_Crops.columns.duplicated()] POM_protein_feed ['Maize (Ha)'] = POM_protein_feed ['Maize'] POM_protein_feed ['Soybeans (Ha)'] = POM_protein_feed ['Soybeans'] POM_protein_feed ['Wheat (Ha)'] = POM_protein_feed ['Wheat'] POM_protein_feed ['Rapeseed (Ha)'] = POM_protein_feed ['Rapeseed'] POM_protein_feed ['Oats (Ha)'] = POM_protein_feed ['Oats'] POM_protein_feed ['Peas, dry (Ha)'] = POM_protein_feed ['Peas, dry'] POM_protein_feed ['Barley (Ha)'] = POM_protein_feed ['Barley'] feed_area_list = ['Maize (Ha)', 'Soybeans (Ha)', 'Wheat (Ha)', 'Rapeseed (Ha)', 'Oats (Ha)', 'Peas, dry (Ha)', 'Barley (Ha)'] for i,k in zip(feed_list, feed_area_list): for j in FAO_Crops.index: POM_protein_feed.loc[(POM_protein_feed['Area'] == FAO_Crops['Area'][j]) & (FAO_Crops['Item'][j] == i), [k]] /= FAO_Crops['Value'][j] POM_direct_protein_int = FAO_Livestock[['Area', 'feed group', 'POM EAT Area (Ha) int', '% Protein', 'Item']] POM_direct_protein_int = POM_direct_protein_int.groupby(['Area', 'feed group']).apply(lambda x: x['POM EAT Area (Ha) int'].sum()) POM_direct_protein_int = POM_direct_protein_int.reset_index(level = ['Area', 'feed group']) POM_direct_protein_int = POM_direct_protein_int.rename(columns = {0: 'Ha int'}) POM_direct_1000TP_int = FAO_Livestock[['Area', 'feed group', '1000T P EAT int']] POM_direct_1000TP_int = POM_direct_1000TP_int.groupby(['Area', 'feed group']).apply(lambda x: x['1000T P EAT int'].sum()) POM_direct_1000TP_int = POM_direct_1000TP_int.reset_index(level = ['Area', 'feed group']) POM_direct_1000TP_int = POM_direct_1000TP_int.rename(columns = {0: '1000T P EAT int'}) POM_direct_protein_ext = FAO_Livestock[['Area', 'feed group', 'POM EAT Area (Ha) ext', '% Protein',]] POM_direct_protein_ext = POM_direct_protein_ext.groupby(['Area', 'feed group']).apply(lambda x: x['POM EAT Area (Ha) ext'].sum()) POM_direct_protein_ext = POM_direct_protein_ext.reset_index(level = ['Area', 'feed group']) POM_direct_protein_ext = POM_direct_protein_ext.rename(columns = {0: 'Ha ext'}) POM_direct_1000TP_ext = FAO_Livestock[['Area', 'feed group', '1000T P EAT ext']] POM_direct_1000TP_ext = POM_direct_1000TP_ext.groupby(['Area', 'feed group']).apply(lambda x: x['1000T P EAT ext'].sum()) POM_direct_1000TP_ext = POM_direct_1000TP_ext.reset_index(level = ['Area', 'feed group']) POM_direct_1000TP_ext = POM_direct_1000TP_ext.rename(columns = {0: '1000T P EAT ext'}) POM_direct_protein_int = pd.merge(POM_direct_protein_int, POM_direct_1000TP_int, on = ['Area', 'feed group']) POM_direct_protein_ext = pd.merge(POM_direct_protein_ext, POM_direct_1000TP_ext, on = ['Area', 'feed group']) POM_direct_protein = pd.merge(POM_direct_protein_int, POM_direct_protein_ext, on = ['Area', 'feed group']) POM_protein_feed = POM_protein_feed.rename(columns = {'group' : 'feed group'}) POM_protein_feed = pd.merge(POM_protein_feed, POM_direct_protein, on = ["Area", "feed group"], how ='right') POM_protein_feed = POM_protein_feed.rename(columns = {0 : 'direct Area'}) POM_protein_feed['Total int Ha'] = 0 for i in POM_protein_feed: if i in feed_area_list or i == 'Ha int': POM_protein_feed['Total int Ha'] += POM_protein_feed[i] POM_protein_feed['Total Ha'] = POM_protein_feed['Total int Ha'] + POM_protein_feed['Ha ext'] POM_protein_feed['Total 1000T P'] = POM_protein_feed['1000T P EAT int'] + POM_protein_feed['1000T P EAT ext'] POM_protein_feed['Overall kgP/ha'] = (POM_protein_feed['Total 1000T P']*10**6) / POM_protein_feed['Total Ha'] POM_protein_feed['int kgP/ha'] = (POM_protein_feed['1000T P EAT int']*10**6) / POM_protein_feed['Total int Ha'] POM_protein_feed['ext kgP/ha'] = (POM_protein_feed['1000T P EAT ext']*10**6) / POM_protein_feed['Ha ext'] POM_pop = POM_data[['Area', 'GROUP', 'Population (2016), 1000person']] POM_pop = POM_pop.drop_duplicates().reset_index(drop=True) POM_protein_feed ['GROUP'] = POM_protein_feed ['feed group'] POM_protein_feed ['Population (2016), 1000person'] = POM_protein_feed ['feed group'] for i in POM_protein_feed.index: for j in POM_pop.index: if POM_protein_feed['Area'][i] == POM_pop['Area'][j]: POM_protein_feed['GROUP'][i] = POM_pop['GROUP'][j] POM_protein_feed ['Population (2016), 1000person'][i] = POM_pop['Population (2016), 1000person'][j] POM_protein_feed = POM_protein_feed.fillna(0) Weighted_final_area = POM_protein_feed.groupby(['feed group', 'Area']).apply(lambda x: x['Total Ha'].sum()) Weighted_final_area = Weighted_final_area.reset_index(level = ['feed group', 'Area']) Weighted_final_area = Weighted_final_area.rename(columns = {0 : 'Total Ha'}) #Area Weighted_final_area_int = POM_protein_feed.groupby(['feed group', 'Area']).apply(lambda x: x['Total int Ha'].sum()) Weighted_final_area_int = Weighted_final_area_int.reset_index(level = ['feed group', 'Area']) Weighted_final_area_int = Weighted_final_area_int.rename(columns = {0 : 'Total int Ha'}) #Area Weighted_final_area_ext = POM_protein_feed.groupby(['feed group', 'Area']).apply(lambda x: x['Ha ext'].sum()) Weighted_final_area_ext = Weighted_final_area_ext.reset_index(level = ['feed group', 'Area']) Weighted_final_area_ext = Weighted_final_area_ext.rename(columns = {0 : 'Ha ext'}) #People temp_weight_final = POM_protein_feed.groupby(['feed group', 'Area']).apply(lambda x: x['Population (2016), 1000person'].sum()) temp_weight_final = temp_weight_final.reset_index(level = ['feed group', 'Area']) temp_weight_final = temp_weight_final.rename(columns = {0: 'pop (1000p)' }) #Protein protein_weight_final = POM_protein_feed.groupby(['feed group', 'Area']).apply(lambda x: x['Total 1000T P'].sum()) protein_weight_final = protein_weight_final.reset_index(level = ['feed group', 'Area']) protein_weight_final = protein_weight_final.rename(columns = {0 : 'Total 1000T P'}) #Protein int protein_weight_final_int = POM_protein_feed.groupby(['feed group', 'Area']).apply(lambda x: x['1000T P EAT int'].sum()) protein_weight_final_int = protein_weight_final_int.reset_index(level = ['feed group', 'Area']) protein_weight_final_int = protein_weight_final_int.rename(columns = {0 : '1000T P int'}) #Prtoein ext protein_weight_final_ext = POM_protein_feed.groupby(['feed group', 'Area']).apply(lambda x: x['1000T P EAT ext'].sum()) protein_weight_final_ext = protein_weight_final_ext.reset_index(level = ['feed group', 'Area']) protein_weight_final_ext = protein_weight_final_ext.rename(columns = {0 : '1000T P ext'}) Weighted_final = pd.merge(Weighted_final_area, temp_weight_final, on = ['feed group', 'Area']) Weighted_final = pd.merge(Weighted_final, Weighted_final_area_int, on = ['feed group', 'Area']) Weighted_final = pd.merge(Weighted_final, Weighted_final_area_ext, on = ['feed group', 'Area']) Weighted_final = pd.merge(Weighted_final, protein_weight_final, on = ['feed group', 'Area']) Weighted_final = pd.merge(Weighted_final, protein_weight_final_int, on = ['feed group', 'Area']) Weighted_final = pd.merge(Weighted_final, protein_weight_final_ext, on = ['feed group', 'Area']) Weighted_final = Weighted_final[Weighted_final['Total 1000T P'] > 0] Weighted_final ['Total kgP/ha'] = Weighted_final['Total 1000T P']*10**6/Weighted_final['Total Ha'] Weighted_final ['Total kgP/ha/p'] = Weighted_final['Total 1000T P']*10**6/(Weighted_final['pop (1000p)']*10**3)/Weighted_final['Total Ha'] Weighted_final ['Total int kgP/ha/p'] = Weighted_final['1000T P int']*10**6/(Weighted_final['pop (1000p)']*10**3)/Weighted_final['Total int Ha'] Weighted_final ['Total ext kgP/ha/p'] = Weighted_final['1000T P ext']*10**6/(Weighted_final['pop (1000p)']*10**3)/Weighted_final['Ha ext'] Weighted_final ['Total kgP/ha'] = Weighted_final['Total 1000T P']*10**6/Weighted_final['Total Ha'] Weighted_final ['Total int kgP/ha'] = Weighted_final['1000T P int']*10**6/Weighted_final['Total int Ha'] Weighted_final ['Total ext kgP/ha'] = Weighted_final['1000T P ext']*10**6/Weighted_final['Ha ext'] Weighted_final ['1000T P/p'] = Weighted_final['Total 1000T P']*10**6/(Weighted_final['pop (1000p)']*10**3) Weighted_final = Weighted_final.fillna(0) #Weighted_final = Weighted_final[Weighted_final['GROUP'] != 'Other'] Weighted_final = pd.merge(Weighted_final, POM_protein_feed[['Area','GROUP']], on = 'Area', how = 'left') Weighted_final = Weighted_final.drop_duplicates() Weighted_group_int = Weighted_final.groupby(['GROUP']).apply(lambda x: (x['1000T P int'].sum()*10**6)/x['Total int Ha'].sum())#/(x['pop (1000p)'].sum()*1000)) Weighted_group_int = Weighted_group_int.reset_index(level = 'GROUP') Weighted_group_int = Weighted_group_int.rename(columns = {0: 'kg/ha int'}) Weighted_group_ext = Weighted_final.groupby(['GROUP']).apply(lambda x: (x['1000T P ext'].sum()*10**6)/x['Ha ext'].sum())#/(x['pop (1000p)'].sum()*1000)) Weighted_group_ext = Weighted_group_ext.reset_index(level = 'GROUP') Weighted_group_ext = Weighted_group_ext.rename(columns = {0: 'kg/ha ext'}) Weighted_group_tot = Weighted_final.groupby(['GROUP']).apply(lambda x: (x['Total 1000T P'].sum()*10**6)/x['Total Ha'].sum())#/(x['pop (1000p)'].sum()*1000)) Weighted_group_tot = Weighted_group_tot.reset_index(level = 'GROUP') Weighted_group_tot = Weighted_group_tot.rename(columns = {0: 'kg/ha tot'}) Weighted_group_tot = pd.merge(Weighted_group_tot, Weighted_group_int, on = 'GROUP') Weighted_group_tot = pd.merge(Weighted_group_tot, Weighted_group_ext, on = 'GROUP') #Weighted_group['kg/ha ext'] = Weighted_final.groupby(['GROUP']).apply(lambda x: (x['1000T P ext'].sum()*10**6)/x['Ha ext'].sum()) #Weighted_group['kg/ha tot'] = Weighted_final.groupby(['GROUP']).apply(lambda x: (x['Total 1000T P'].sum()*10**6)/x['Total Ha'].sum()) Weighted_national_int = Weighted_final.groupby(['Area']).apply(lambda x: (x['1000T P int'].sum()*10**6)/x['Total int Ha'].sum())#/(x['pop (1000p)'].sum()*1000)) Weighted_national_int = Weighted_national_int.reset_index(level = ['Area']) Weighted_national_int = Weighted_national_int.rename(columns = {0: 'kg/ha int'}) Weighted_national_ext = Weighted_final.groupby(['Area']).apply(lambda x: (x['1000T P ext'].sum()*10**6)/x['Ha ext'].sum())#/(x['pop (1000p)'].sum()*1000)) Weighted_national_ext = Weighted_national_ext.reset_index(level = ['Area']) Weighted_national_ext = Weighted_national_ext.rename(columns = {0: 'kg/ha ext'}) Weighted_national_tot = Weighted_final.groupby(['Area']).apply(lambda x: (x['Total 1000T P'].sum()*10**6)/x['Total Ha'].sum())#/(x['pop (1000p)'].sum()*1000)) Weighted_national_tot = Weighted_national_tot.reset_index(level = ['Area']) Weighted_national_tot = Weighted_national_tot.rename(columns = {0: 'kg/ha tot'}) Weighted_national_tot = pd.merge(Weighted_national_tot, Weighted_national_int, on = 'Area') Weighted_national_tot = pd.merge(Weighted_national_tot, Weighted_national_ext, on = 'Area') Weighted_item_int = Weighted_final.groupby(["Area"]).apply(lambda x: x["1000T P int"]/x["1000T P int"].sum()) Weighted_item_int = Weighted_item_int.reset_index(level = ['Area']) Weighted_item_int = Weighted_item_int.rename(columns = {'1000T P int': '% of int'}) Weighted_item_ext = Weighted_final.groupby(["Area"]).apply(lambda x: x["1000T P ext"]/x["1000T P ext"].sum()) Weighted_item_ext = Weighted_item_ext.reset_index(level = ['Area']) Weighted_item_ext = Weighted_item_ext.rename(columns = {'1000T P ext': '% of ext'}) Weighted_item_tot = Weighted_final.groupby(["Area"]).apply(lambda x: x["Total 1000T P"]/x["Total 1000T P"].sum()) Weighted_item_tot = Weighted_item_tot.reset_index(level = ['Area']) Weighted_item_tot = Weighted_item_tot.rename(columns = {'Total 1000T P': '% of Total'}) Weighted_item_tot = pd.merge(Weighted_item_tot, Weighted_item_int['% of int'], left_index = True, right_index = True) Weighted_item_tot =
pd.merge(Weighted_item_tot, Weighted_item_ext['% of ext'], left_index = True, right_index = True)
pandas.merge
''' __author__=<NAME> MIT License Copyright (c) 2020 crewml Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import pandas as pd import itertools import datetime from crewml.common import DATA_DIR import logging import traceback class FlightCategorizer: ''' List of Delta Flight Attantant (FA) bases. Generally base is set of a city which may have more than one airport in it. E.g. NYC base has JFK and LGA airports 0 2020_feb_classify_b2b.csv, 1 2020_feb_classify_b2b_missing.csv, 2 2020_feb_classify_ b2nb_nb2b.csv, 3 2020_feb_classify_b2nb_nb2b_missing.csv, 4 2020_feb_classify_nb2nb.csv ''' def __init__(self, fa_bases, fa_non_bases, clean_output, classify_files): self.logger = logging.getLogger(__name__) self.fa_bases = fa_bases.split(",") self.fa_non_bases = fa_non_bases self.clean_output = clean_output self.classify_files = classify_files self.flights_df = None def process(self): try: # Read flights data self.flights_df = pd.read_csv(DATA_DIR+self.clean_output) self.logger.info("flight data read from:", self.clean_output) del self.flights_df['CRS_DEP_TIME'] del self.flights_df['CRS_ARR_TIME'] del self.flights_df['ORIGIN_TZ'] del self.flights_df['DEST_TZ'] del self.flights_df['MKT_UNIQUE_CARRIER'] origin_dest = list( zip(self.flights_df.ORIGIN, self.flights_df.DEST)) # use set to remove duplicate flight pairs b2b = [x for x in origin_dest if x[0] in self.fa_bases and x[1] in self.fa_bases] b2b = list(set(b2b)) nb2nb = [x for x in origin_dest if x[0] in self.fa_non_bases and x[1] in self.fa_non_bases] nb2nb = list(set(nb2nb)) b2nb = [x for x in origin_dest if x[0] in self.fa_bases and x[1] in self.fa_non_bases] b2nb = list(set(b2nb)) nb2b = [x for x in origin_dest if x[0] in self.fa_non_bases and x[1] in self.fa_bases] nb2b = list(set(nb2b)) # departure from nonbase to arrival nonbase flights nb2nb_df = self.group_flights(nb2nb) nb2nb_df.to_csv(DATA_DIR+self.classify_files[4]) self.logger.info("len of nb2nb_df=", len(nb2nb_df)) # departure base to arrival base flight pairs b2b_df = self.group_flights(b2b) b2b_fl_pair_df, df1 = self.assemble_B2B_flights(b2b_df) b2b_fl_pair_df = self.calculateDuty(b2b_fl_pair_df) b2b_fl_pair_df.to_csv(DATA_DIR+self.classify_files[0]) df1.to_csv(DATA_DIR+self.classify_files[1]) self.logger.info("b2b Total=", len(b2b_df)) self.logger.info("len of file %s:%s", self.classify_files[0], len(b2b_fl_pair_df)) self.logger.info("len of file %s:%s", self.classify_files[1], len(df1)) self.logger.info("difference between %s and %s=%s", self.classify_files[0], self.classify_files[1], len(b2b_df) - (len(df1)+len(b2b_fl_pair_df))) # departure base to arrival non-base flight b2nb_df = self.group_flights(b2nb) # departure non-base to arrival base flight nb2b_df = self.group_flights(nb2b) b2nb_nb2b_pair_df, df2 = self.assemble_B2NB_NB2B_flights( b2nb_df, nb2b_df) b2nb_nb2b_pair_df = self.calculateDuty(b2nb_nb2b_pair_df) # df=self.calculateDuty(df2) b2nb_nb2b_pair_df.to_csv(DATA_DIR+self.classify_files[2]) df2.to_csv(DATA_DIR+self.classify_files[3]) self.logger.info("len of %s=%s", self.classify_files[2], len(b2nb_nb2b_pair_df)) self.logger.info("len of %s=%s", self.classify_files[3], len(df2)) self.logger.info("total=", len( b2b_fl_pair_df)+len(df1)+len(nb2nb_df) + len(b2nb_nb2b_pair_df)+len(df2)) except Exception as e: self.logger.error(traceback.format_exc()) raise ''' The fl_pairs contain all combinations of tuple like ('CVG', 'MSP'), ('EWR', 'DTW'), etc for B2B flights. Similiarly it will have for NB2NB flights. This method extract B2B, B2NB, NB2B, NB2NB flights from the flight list based on fl_pairs ''' def group_flights(self, fl_pairs): df = pd.DataFrame() for index, tuple in enumerate(fl_pairs): org_airport = tuple[0] dest_airport = tuple[1] df = df.append(self.flights_df[(self.flights_df['ORIGIN'].isin( [org_airport])) & (self.flights_df['DEST'].isin([dest_airport]))]) df.drop(df.filter(regex="Unname"), axis=1, inplace=True) df = df.sort_values('ORIGIN_UTC') df.reset_index(drop=True, inplace=True) return df ''' This method creates fligh pairs that departs from a base airport and arrives to a base airport. The pairs will be combined to create a Duty. b2b_df contains all B2B flights ''' def assemble_B2B_flights(self, b2b_df): b2b_df['ORIGIN_UTC'] = pd.to_datetime(b2b_df['ORIGIN_UTC']) b2b_df["DEST_UTC"] = pd.to_datetime(b2b_df['DEST_UTC']) finished_pair = [] aiport_pair = list(itertools.permutations(self.fa_bases, 2)) final_df = pd.DataFrame() missing_df = pd.DataFrame() for index, tuple in enumerate(aiport_pair): org_airport = tuple[0] dest_airport = tuple[1] if (org_airport, dest_airport) in finished_pair: continue org_df = b2b_df[(b2b_df['ORIGIN'].isin([org_airport])) & ( b2b_df['DEST'].isin([dest_airport]))] org_df.drop(org_df.filter(regex="Unname"), axis=1, inplace=True) org_df = org_df.sort_values('ORIGIN_UTC') org_df.reset_index(drop=True, inplace=True) dest_df = b2b_df[(b2b_df['ORIGIN'].isin([dest_airport])) & ( b2b_df['DEST'].isin([org_airport]))] dest_df = dest_df.drop(dest_df.filter(regex="Unname"), axis=1) dest_df = dest_df.sort_values('ORIGIN_UTC') dest_df.reset_index(drop=True, inplace=True) if (len(org_df) != 0) and (len(dest_df) != 0): # org_df contains all same origin flights like ATL and # dest_df contains all same dest flights # like MSP. assemble_B2NB_NB2B_flights function find the # best flight to match the org and dest d1, d2 = self.assemble_B2NB_NB2B_flights(org_df, dest_df) final_df = final_df.append(d1) missing_df = missing_df.append(d2) else: missing_df = missing_df.append(org_df) missing_df = missing_df.append(dest_df) finished_pair.append((dest_airport, org_airport)) # final_df contains flight pairs that starts and ends in same base # missing_df contains flight thta starts in a base couldn't be paired return final_df, missing_df ''' This method creates flight pairs for B2NB and NB2B.These two pairs will be combined to create a Duty. B2NB - Flights departs from Base airport and arrives to non base airport NB2B - Flights dpearts from non base airport and arrives to base airport ''' def assemble_B2NB_NB2B_flights(self, df1, df2): total = len(df1)+len(df2) print("toal entering df1=", len(df1), "len(df2)=", len(df2), "total=", total) final_duty_df = pd.DataFrame() missing_df = pd.DataFrame() df1['ORIGIN_UTC'] = pd.to_datetime(df1['ORIGIN_UTC']) df1["DEST_UTC"] = pd.to_datetime(df1['DEST_UTC']) df2['ORIGIN_UTC'] = pd.to_datetime(df2['ORIGIN_UTC']) df2["DEST_UTC"] = pd.to_datetime(df2['DEST_UTC']) df1 = df1.sort_values('ORIGIN_UTC') df2 = df2.sort_values('ORIGIN_UTC') for index, first_fl_pair in df1.iterrows(): print("len of final_duty_df=", len(final_duty_df)) org_airport = first_fl_pair["ORIGIN"] dest_airport = first_fl_pair["DEST"] # Collect all the matching fligh pairs for the second pair matching_fl_pairs = df2[(df2.ORIGIN == dest_airport) & (df2.DEST == org_airport)] total = len(matching_fl_pairs) matching_fl_pairs.reset_index(drop=True, inplace=True) # for each one of first_fl_pair loop through matching_fl_pairs # to find a matching matching flight pair if second pair flgiht # ORIGIN_UTC > first_fl_pair DEST_UTC+40 min i = 0 temp1 = "" while(i < total): if matching_fl_pairs.iloc[i].ORIGIN_UTC > first_fl_pair['DEST_UTC'] + \ datetime.timedelta(minutes=+45): temp1 = matching_fl_pairs.iloc[i] break else: i += 1 continue if(len(temp1) > 0): del_id = temp1.FL_ID final_duty_df = final_duty_df.append(first_fl_pair) final_duty_df = final_duty_df.append(temp1) df2 = df2[df2.FL_ID != del_id] else: missing_df = missing_df.append(first_fl_pair) missing_df = missing_df.append(df2) return final_duty_df, missing_df ''' Duty Report time starts 45 minutes before flight departure time Duty Release time starts 45 minuts after flight arrival time ''' def calculateDuty(self, df): if(len(df) == 0): return df['DUTY_REP_TM_UTC'] = '' df['DUTY_REL_TM_UTC'] = '' dtyRepTmUTC = [] dtyRelTmUTC = [] df['ORIGIN_UTC'] = pd.to_datetime(df['ORIGIN_UTC']) df["DEST_UTC"] = pd.to_datetime(df['DEST_UTC']) first = True for orgUTC, destUTC in zip(df.ORIGIN_UTC, df.DEST_UTC): if first: temp1 = orgUTC+datetime.timedelta(minutes=-45) dtyRepTmUTC.append(temp1) first = False else: dtyRepTmUTC.append(temp1) dtyRelTmUTC.append(destUTC+datetime.timedelta(minutes=+45)) dtyRelTmUTC.append(destUTC+datetime.timedelta(minutes=+45)) first = True if len(dtyRepTmUTC) != len(dtyRelTmUTC): dtyRepTmUTC.pop() dtyRepTmUTC.append("") dtyRelTmUTC.append("") df["DUTY_REP_TM_UTC"] = dtyRepTmUTC df["DUTY_REL_TM_UTC"] = dtyRelTmUTC df.reset_index(drop=True, inplace=True) return df # return calculate_dutyNo(df) ''' If the total duty time (dtyRepTmUTC-dtyRelTmUTC) for the flight pair is greater than 6 hours then those two flights in the pair will get seperate dutyId. If not it will get same dutyId ''' def calculate_dutyNo(self, df): df.reset_index(drop=True, inplace=True) df['DTY_REP_TM_UTC'] =
pd.to_datetime(df['DTY_REP_TM_UTC'], utc=True)
pandas.to_datetime
from flask import Flask, session, jsonify, request import pandas as pd import numpy as np import pickle import os from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import json import glob #################Load config.json and get path variables with open('config.json','r') as f: config = json.load(f) model_path = os.path.join(config['output_model_path']) test_data_path = os.path.join(config['test_data_path']) #################Function for model scoring def score_model(): #this function should take a trained model, load test data, and calculate an F1 score for the model relative to the test data #it should write the result to the latestscore.txt file all_files = glob.glob(test_data_path + "/*.csv") df_from_each_file = (pd.read_csv(f) for f in all_files) test_df =
pd.concat(df_from_each_file, ignore_index=True)
pandas.concat
from dataExtractor import reviewToList from dataExtractor200 import dataExtractor200 import numpy as np import random """IMPORTING FILES""" reviewList_p = dataExtractor200("positive.review") reviewList_n = dataExtractor200("negative.review") X_pos_test = reviewList_p[1055:] X_neg_test = reviewList_n[665:] """Y_train and Y_test""" Y_train = [] # 0 and 1 Y_test = [] for item in range(1720): if(item<=665): Y_train.append(0) else: Y_train.append(1) #random.shuffle(Y_train) print("Y_train shape :" +str(len(Y_train))) for item in range(431): if(item<=166): Y_test.append(0) else: Y_test.append(1) #random.shuffle(Y_test) print("Y_test shape: "+str(len(Y_test))) print(Y_test) """X_Train and X_test""" X_train =[] pos_index = 0 neg_index =0 for item in range(len(Y_train)): if(Y_train[item]==0): X_train.append(reviewList_n[item-neg_index]) pos_index +=1 elif(Y_train[item]==1): X_train.append(reviewList_p[item-pos_index]) neg_index +=1 print("X_train shape: "+str(len(X_train))) X_test =[] X_neg_index = 0 X_pos_index =0 for item in range(len(Y_test)): if(Y_test[item]==0): X_test.append(X_neg_test[X_neg_index]) X_neg_index +=1 elif(Y_test[item]==1): X_test.append(X_pos_test[X_pos_index]) X_pos_index +=1 print("Test Y and X--"+str(Y_test[0])+" : "+X_test[0]) print("Train Y and X--"+str(Y_train[0])+" : "+X_train[0]) print("X_test shape: "+str(len(X_test))) if(len(X_test)!=len(Y_test) and len(X_train)!=len(Y_train)): print("X and Y shapes does not exists!") else: print("Data hazırlama tamam \n --Data temizleme giriliyor.") #---------------------------------------------------------------------------------- """DATA CLEANING""" from nltk.tokenize import RegexpTokenizer from nltk.stem.porter import PorterStemmer from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords from sklearn.feature_extraction._stop_words import ENGLISH_STOP_WORDS import string import re tokenizer = RegexpTokenizer(r'\w+') # a-zA-Z0-9 en_stopwords = set(stopwords.words('english')) en_stopwordsv2 = set(en_stopwords).union(set(ENGLISH_STOP_WORDS)) ps = PorterStemmer() def getCleanedText(text): words = re.sub(r"[^A-Za-z\-]", " ",text).lower().split() tokens = [w for w in words if not w in en_stopwordsv2] lemmatizer = WordNetLemmatizer() cleaned_text = " ".join([lemmatizer.lemmatize(token) for token in tokens]) return cleaned_text X_train_clean = [getCleanedText(i) for i in X_train] print(X_train_clean[0]) X_test_clean = [getCleanedText(i) for i in X_test] print("Data temizleme tamam \n --Vektörize giriliyor.") """VECTORIZATION""" from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(ngram_range=(1,2), max_df =0.5, min_df=10) # N-gram olarak temizlenen metin vektörize edildi. Ve diziye aktarıldı. X_vec = cv.fit_transform(X_train_clean).toarray() # eğitim verisi X_test_vect = cv.transform(X_test_clean).toarray() print("Data vektörize tamam \n --Sonuçlar gösterilecek.") print("Makine öğrenme algoritması çalıştırılıyor.") from sklearn.naive_bayes import MultinomialNB from sklearn import model_selection, svm from sklearn.metrics import accuracy_score, classification_report, confusion_matrix mn = MultinomialNB() mn.fit(X_vec,Y_train) # X_vec = Metinler, / Y_train = 0,1 lerden oluşan liste print(X_vec.shape) print(X_test_vect.shape) Y_test_pred = mn.predict(X_test_vect) print(Y_test_pred) print("Naive bayes accuracy score : ",accuracy_score(Y_test_pred,Y_test)*100) print(classification_report(Y_test,Y_test_pred)) cnf_matrix = confusion_matrix(Y_test,Y_test_pred) import seaborn as sns import pandas as pd from matplotlib import pyplot as plt labels = [0, 1] fig, ax = plt.subplots() tick_marks = np.arange(len(labels)) plt.xticks(tick_marks, labels) plt.yticks(tick_marks, labels) sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu", fmt='g') ax.xaxis.set_label_position("bottom") plt.title('Confusion matrix') plt.ylabel('Actual Value') plt.xlabel('Predicted') plt.show() print("--------------------------------------------") print("SVM çalışıyor.") SVM = svm.SVC(C=0.6995,kernel='linear',gamma='auto') SVM.fit(X_vec,Y_train) predict_SVM = SVM.predict(X_test_vect) print("SVM bitti.") print(predict_SVM) print("For linear kernel") print("SVM accuracy score : ", accuracy_score(predict_SVM,Y_test)*100) print(classification_report(Y_test,predict_SVM)) cnf_matrix = confusion_matrix(Y_test,predict_SVM) import seaborn as sns import pandas as pd labels = [0, 1] fig, ax = plt.subplots() tick_marks = np.arange(len(labels)) plt.xticks(tick_marks, labels) plt.yticks(tick_marks, labels) sns.heatmap(
pd.DataFrame(cnf_matrix)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.ensemble import ExtraTreesClassifier from cause.plotter import Plotter from cause.predictor import ClassificationSet class Breakdown(): def __init__(self, data, weights, algos, name): self.__data = data self.__weights = weights self.__algos = algos self.__name = name # todo validate input: # data is an np.array with dims (num algos, num weights) @property def data(self): return self.__data @property def weights(self): return self.__weights @property def algos(self): return self.__algos @property def name(self): return self.__name def save_to_latex(self, outfolder="/tmp", weight=1.): outfile = "%s/breakdown_%s" % (outfolder, self.name) index = np.where(self.weights==weight)[0][0] # location for lambda=weight breakdown_perc = self.data[:,index] * 100. / self.data[:,index].sum() # write latex table to file with open(outfile, "w") as f: for algo in range(self.data.shape[0]): f.write("&\t%s\t&\t%.2f\\%%\t\t\n" % ( self.data[algo, index], breakdown_perc[algo])) def plot(self, outfolder="/tmp"): Plotter.plot_breakdown(self, outfolder) class Postprocessor(): def __init__(self, dataset): self.__dataset = dataset @property def dataset(self): return self.__dataset def breakdown(self): breakdown = np.empty(shape=(0,0)) for weight in self.dataset.weights: column = self.dataset.lstats[weight].get_breakdown(self.dataset.algos) if breakdown.shape[0] == 0: breakdown = column else: breakdown = np.vstack([breakdown, column]) breakdown = np.transpose(breakdown) return Breakdown(breakdown, self.dataset.weights, self.dataset.algos, self.dataset.name) class FeatsPostprocessor(Postprocessor): def __init__(self, dataset, features): super().__init__(dataset) self.__features = features @property def features(self): return self.__features def save_feature_importances_by_weight(self, outfolder, weight): lstats = self.dataset.lstats[weight] clsset = ClassificationSet.sanitize_and_init( self.features.features, lstats.winners, lstats.costs) clf = ExtraTreesClassifier() clf = clf.fit(clsset.X, clsset.y.ravel()) importances = pd.DataFrame(data=clf.feature_importances_.reshape( (1, len(clf.feature_importances_)) ), columns=self.features.features.columns) # sort feature names by average importance sorted_feature_names = [name for _,name in sorted(zip(importances.mean(axis=0), self.features.features.columns)) ][::-1] importances = importances[sorted_feature_names] feats = pd.DataFrame(columns=["order", "value", "name"]) feats["order"] = np.arange(len(self.features.features.columns))[::-1] feats["value"] = np.transpose(importances.values) feats["name"] = sorted_feature_names feats.to_csv("%s/feats_%.1f" % (outfolder, weight), sep="&", index=False, line_terminator="\\\\\n") def save_feature_importances(self, outfolder): # compute feature importances for each weight importances = np.empty(shape=(0,0)) for weight in self.dataset.weights: lstats = self.dataset.lstats[weight] clsset = ClassificationSet.sanitize_and_init( self.features.features, lstats.winners, lstats.costs) clf = ExtraTreesClassifier() clf = clf.fit(clsset.X, clsset.y) if importances.shape[0] == 0: importances = clf.feature_importances_ else: importances = np.vstack([importances, clf.feature_importances_]) # sort feature names by average importance sorted_feature_names = [name for _,name in sorted(zip(importances.mean(axis=0), self.features.features.columns)) ][::-1] importances = pd.DataFrame(data=importances, columns=self.features.features.columns) importances = importances[sorted_feature_names] feats =
pd.DataFrame(columns=["order", "value", "name", "error"])
pandas.DataFrame
'''Python script to generate Revenue Analysis given ARR by Customer''' '''Authors - <NAME> ''' import numpy as np import pandas as pd from datetime import datetime import collections from .helpers import * class RevAnalysis: def __init__(self, json): print("INIT REV ANALYSIS") self.arr = pd.DataFrame(json) self.years = [] self.rev_brackets = {} self.cust_brackets = {} def run(self): self.clean_inputs() print(self.arr) self.mrr_by_customer() self.rev_cohorts() self.cy_ttm_revenue() self.revenue_brackets("CY", "TTM") self.customer_brackets("CY", "TTM") self.revenue_brackets("ARR", "ARR*") self.customer_brackets("ARR", "ARR*") self.clean_outputs() json = { "MRR by Customer": self.mrr.to_dict(orient='records'), "Revenue Cohorts (Monthly)": self.rev_cohorts.to_dict(orient='records'), "Revenue Calculations": self.cy_ttm_revenue.to_dict(orient='records'), "Revenue Brackets (CY, TTM)": self.rev_brackets["CY"].to_dict(orient='records'), "Customer Brackets (CY, TTM)": self.cust_brackets["CY"].to_dict(orient='records'), "Revenue Brackets (ARR)": self.rev_brackets["ARR"].to_dict(orient='records'), "Customer Brackets (ARR)": self.cust_brackets["ARR"].to_dict(orient='records') } return json def clean_inputs(self): self.arr.set_index("Customer", inplace=True) self.arr.apply(filter_to_dec_list) def clean_outputs(self): self.mrr = self.mrr.astype(object) self.mrr.apply(zero_to_blank_list) self.mrr.apply(dec_to_dollars_list) self.mrr.reset_index(inplace=True) self.rev_cohorts = self.rev_cohorts.astype(object) self.rev_cohorts.iloc[:, 1:-1] = self.rev_cohorts.iloc[:, 1:-1].apply(zero_to_blank_list) self.rev_cohorts.iloc[:, 1:-1] = self.rev_cohorts.iloc[:, 1:-1].apply(dec_to_dollars_list) self.rev_cohorts.reset_index(inplace=True) cy = [col for col in self.cy_ttm_revenue.columns if "CY" in col and "YOY" not in col] ttm = [col for col in self.cy_ttm_revenue.columns if "TTM" in col] yoy = [col for col in self.cy_ttm_revenue.columns if "YOY" in col] yoy_indices = [i for i in range(self.cy_ttm_revenue.shape[1]) if "YOY" in self.cy_ttm_revenue.columns[i] or "Total ARR" in self.cy_ttm_revenue.columns[i]] not_yoy_indices = list(set(range(self.cy_ttm_revenue.shape[1])) - set(yoy_indices)) arr = [col for col in self.cy_ttm_revenue.columns if "ARR" in col] self.cy_ttm_revenue = self.cy_ttm_revenue.astype(object) self.cy_ttm_revenue.apply(zero_to_blank_list) self.cy_ttm_revenue.iloc[:, not_yoy_indices] = self.cy_ttm_revenue.iloc[:, not_yoy_indices].apply(dec_to_dollars_list) self.cy_ttm_revenue.iloc[:, yoy_indices] = self.cy_ttm_revenue.iloc[:, yoy_indices].apply(dec_to_percents_list) self.cy_ttm_revenue.sort_values(self.cy_ttm_revenue.columns[-1]) self.cy_ttm_revenue = self.cy_ttm_revenue.reindex(cy + ttm + yoy + arr, axis=1) self.cy_ttm_revenue.reset_index(inplace=True) self.clean_brackets_outputs("CY", "TTM") self.clean_brackets_outputs("ARR", "ARR*") print("MRR BY CUSTOMER") print(self.mrr) print("REVENUE COHORTS") print(self.rev_cohorts) print("CY TTM ARR") print(self.cy_ttm_revenue) print("CY TTM BRACKETS") print(self.rev_brackets["CY"]) print("REVENUE CUSTOMER BRACKETS") print(self.cust_brackets["CY"]) print("ARR BRACKETS") print(self.rev_brackets["ARR"]) print("ARR CUSTOMER BRACKETS") print(self.cust_brackets["ARR"]) def clean_brackets_outputs(self, type, not_type): cy_only = [col for col in self.rev_brackets[type].columns if type in col and not_type not in col and "% Rev" not in col] cy_rev = [col for col in self.rev_brackets[type].columns if "% Rev" in col and not_type not in col] new_cy = [j for i in zip(cy_only,cy_rev) for j in i] ttm_all = [col for col in self.rev_brackets[type].columns if not_type in col] rev_indices = [i for i in range(self.rev_brackets[type].shape[1]) if "% Rev" in self.rev_brackets[type].columns[i]] not_rev_indices = list(set(range(self.rev_brackets[type].shape[1])) - set(rev_indices)) self.rev_brackets[type] = self.rev_brackets[type].astype(object) self.rev_brackets[type].iloc[:, not_rev_indices] = self.rev_brackets[type].iloc[:, not_rev_indices].apply(numbers_with_commas_list) self.rev_brackets[type].iloc[:, rev_indices] = self.rev_brackets[type].iloc[:, rev_indices].apply(dec_to_percents_list) self.rev_brackets[type] = self.rev_brackets[type].reindex(new_cy + ttm_all, axis=1) self.rev_brackets[type].index = self.rev_brackets[type].index.map(dec_to_dollars) self.rev_brackets[type].reset_index(inplace=True) self.cust_brackets[type] = self.cust_brackets[type].astype(object) self.cust_brackets[type].apply(numbers_with_commas_list) self.cust_brackets[type].index = self.cust_brackets[type].index.map(dec_to_dollars) cust_brackets_index = self.cust_brackets[type].index index_labels_dict = {cust_brackets_index[i]: str(cust_brackets_index[i])+"-"+str(cust_brackets_index[i+1]) for i in range(len(cust_brackets_index)-1)} index_labels_dict[cust_brackets_index[-1]] = str(cust_brackets_index[-1])+'+' self.cust_brackets[type].rename(index=index_labels_dict, inplace=True) self.cust_brackets[type].reset_index(inplace=True) def mrr_by_customer(self): self.mrr = self.arr.copy()/12 self.mrr.loc["Grand Total"] = self.mrr.sum() self.mrr.loc["ARR"] = (self.mrr.loc["Grand Total"]*12).iloc[0] # Only keep the last 3 years self.years = pd.to_datetime(self.mrr.columns).strftime('%Y') counter = collections.Counter(self.years) num_trailing_months = counter[max(counter.keys())] del counter[max(counter.keys())] last_index = min(36, 12*len(counter.keys())) + num_trailing_months self.mrr = self.mrr.iloc[:, -last_index:] self.years = pd.to_datetime(self.mrr.columns).strftime('%Y') def rev_cohorts(self): first_rev = np.argmax(self.mrr.values!=0.0,axis=1) last_rev = self.mrr.shape[1] - np.argmax(self.mrr.iloc[:, ::-1].values!=0.0,axis=1) - 1 self.rev_cohorts = pd.DataFrame(index=np.arange(self.mrr.shape[0])) self.rev_cohorts.set_index(self.mrr.index, inplace=True) self.rev_cohorts['Cohort'] = self.mrr.columns[first_rev] self.rev_cohorts['Cohort'] =
pd.to_datetime(self.rev_cohorts['Cohort'])
pandas.to_datetime
import pandas as pd import numpy as np from datetime import timedelta import matplotlib.pyplot as plt from scipy.interpolate import griddata class spatial_mapping(): def __init__(self, data, gps, gps_utc=0): df=pd.DataFrame(data) df[0]=pd.to_datetime(df[0]-693962,unit='D',origin=pd.Timestamp('1900-01-01'),utc=True) df=df.rename(columns={0:'Time'}) self.data=df if type(gps)==str: if gps[-3:].lower()=='csv': self.gps=pd.read_csv(gps) if 'time' in self.gps: self.gps.time=pd.to_datetime(self.gps.time)+timedelta(hours=gps_utc) def extract_fragments(self, fragments, mean=True, fragment_method='time'): # fragments: a csv file contains beginning and ending time of recording sessions # Or providing a time interval (seconds) for separating recording sessions if type(fragments)==str: if fragments[-3:].lower()=='csv': slice_df=pd.read_csv(fragments, sep=',') if fragment_method=='time': slice_df['Begin_time']=pd.to_datetime(slice_df['Begin_time'],utc=True) slice_df['End_time']=
pd.to_datetime(slice_df['End_time'],utc=True)
pandas.to_datetime
#!/usr/bin/env python # -- coding: utf-8 -- # PAQUETES PARA CORRER OP. import netCDF4 import pandas as pd import numpy as np import datetime as dt import json import wmf.wmf as wmf import hydroeval import glob import MySQLdb #modulo pa correr modelo import hidrologia from sklearn.linear_model import LinearRegression import math import os #spatial import cartopy.crs as crs import geopandas as gpd import pyproj from pyproj import transform from cartopy.feature import ShapelyFeature import cartopy.crs as ccrs from cartopy.io.shapereader import Reader from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import seaborn as sns sns.set(style="whitegrid") sns.set_context('notebook', font_scale=1.13) #FORMATO # fuente import matplotlib matplotlib.use('Agg') import pylab as pl #avoid warnings import warnings warnings.filterwarnings('ignore') #--------------- #Funciones base. #--------------- def get_rutesList(rutas): ''' Abre el archivo de texto en la ruta: rutas, devuelve una lista de las lineas de ese archivo. Funcion base. #Argumentos rutas: string, path indicado. ''' f = open(rutas,'r') L = f.readlines() f.close() return L def set_modelsettings(ConfigList): ruta_modelset = get_ruta(ConfigList,'ruta_proj')+get_ruta(ConfigList,'ruta_modelset') # model settings Json with open(ruta_modelset, 'r') as f: model_set = json.load(f) # Model set wmf.models.max_aquifer = wmf.models.max_gravita * 10 wmf.models.retorno = model_set['retorno'] wmf.models.show_storage = model_set['show_storage'] wmf.models.separate_fluxes = model_set['separate_fluxes'] wmf.models.dt = model_set['dt'] def round_time(date = dt.datetime.now(),round_mins=5): ''' Rounds datetime object to nearest 'round_time' minutes. If 'dif' is < 'round_time'/2 takes minute behind, else takesminute ahead. Parameters ---------- date : date to round round_mins : round to this nearest minutes interval Returns ---------- datetime object rounded, datetime object ''' dif = date.minute % round_mins if dif <= round_mins/2: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) else: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) + dt.timedelta(minutes=round_mins) def get_credentials(ruta_credenciales): credentials = json.load(open(ruta_credenciales)) #creds para consultas mysqlServer = credentials['MySql_Siata'] for key in np.sort(list(credentials['MySql_Siata'].keys()))[::-1]: #1:hal, 2:sal try: connection = MySQLdb.connect(host=mysqlServer[key]['host'], user=mysqlServer[key]['user'], password=mysqlServer[key]['password'], db=mysqlServer[key]['db']) print('SERVER_CON: Succesful connection to %s'%(key)) host=mysqlServer[key]['host'] user=mysqlServer[key]['user'] password=mysqlServer[key]['password'] db=mysqlServer[key]['db'] break #si conecta bien a SAL para. except: print('SERVER_CON: No connection to %s'%(key)) pass #creds para copiar a var user2copy2var = credentials['cred_2copy2var']['user']; host2copy2var = credentials['cred_2copy2var']['host'] return host,user,password,db,user2copy2var,host2copy2var def coord2hillID(ruta_nc, df_coordxy): #lee simubasin pa asociar tramos, saca topologia basica cu = wmf.SimuBasin(rute= ruta_nc) cu.GetGeo_Cell_Basics() cu.GetGeo_Parameters() #saca coordenadas de todo el simubasin y las distancias entre ellas coordsX = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[0] coordsY = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[1] disty = np.unique(np.diff(np.unique(np.sort(coordsY)))) distx = np.unique(np.diff(np.unique(np.sort(coordsX)))) df_ids = pd.DataFrame(index = df_coordxy.index,columns=['id']) #identifica el id de la ladera donde caen los ptos for index in df_coordxy.index: df_ids.loc[index]=cu.hills_own[np.where((coordsY+disty[0]/2>df_coordxy.loc[index].values[1]) & (coordsY-disty[0]/2<df_coordxy.loc[index].values[1]) & (coordsX+distx[0]/2>df_coordxy.loc[index].values[0]) & (coordsX-distx[0]/2<df_coordxy.loc[index].values[0]))[0]].data return df_ids #----------------------------------- #----------------------------------- #Funciones de lectura del configfile #----------------------------------- #----------------------------------- def get_ruta(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega rutas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i.split(' ')[-1][:-1] else: return 'Aviso: no existe linea con el key especificado' def get_line(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega lineas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i[:-1].split(' ')[2:] else: return 'Aviso: no existe linea con el key especificado' def get_modelPlot(RutesList, PlotType = 'Qsim_map'): ''' #Devuelve un diccionario con la informacion de la tabla Plot en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - PlotType= boolean, tipo del plot? . Default= 'Qsim_map'. ''' for l in RutesList: key = l.split('|')[1].rstrip().lstrip() if key[3:] == PlotType: EjecsList = [i.rstrip().lstrip() for i in l.split('|')[2].split(',')] return EjecsList return key def get_modelPars(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in RutesList: c = [float(i) for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c}) return DCalib def get_modelPaths(List): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in List: c = [i for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c[0]}) return DCalib def get_modelStore(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Store en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStore = {} for l in RutesList: l = l.split('|') DStore.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'Actualizar': l[3].rstrip().lstrip(), 'Tiempo': float(l[4].rstrip().lstrip()), 'Condition': l[5].rstrip().lstrip(), 'Calib': l[6].rstrip().lstrip(), 'BackSto': l[7].rstrip().lstrip(), 'Slides': l[8].rstrip().lstrip()}}) return DStore def get_modelStoreLastUpdate(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Update en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStoreUpdate = {} for l in RutesList: l = l.split('|') DStoreUpdate.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'LastUpdate': l[3].rstrip().lstrip()}}) return DStoreUpdate def get_ConfigLines(RutesList, key, keyTable = None, PlotType = None): ''' #Devuelve un diccionario con la informacion de las tablas en el configfile: Calib, Store, Update, Plot. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - key= string, palabra clave de la tabla que se quiere leer. Puede ser: -s,-t. - Calib_Storage= string, palabra clave de la tabla que se quiere leer. Puede ser: Calib, Store, Update, Plot. - PlotType= boolean, tipo del plot? . Default= None. ''' List = [] for i in RutesList: if i.startswith('|'+key) or i.startswith('| '+key): List.append(i) if len(List)>0: if keyTable == 'Pars': return get_modelPars(List) if keyTable == 'Paths': return get_modelPaths(List) if keyTable == 'Store': return get_modelStore(List) if keyTable == 'Update': return get_modelStoreLastUpdate(List) if keyTable == 'Plot': return get_modelPlot(List, PlotType=PlotType) return List else: return 'Aviso: no se encuentran lineas con el key de inicio especificado.' #----------------------------------- #----------------------------------- #Funciones generacion de radar #----------------------------------- #----------------------------------- def file_format(start,end): ''' Returns the file format customized for siata for elements containing starting and ending point Parameters ---------- start : initial date end : final date Returns ---------- file format with datetimes like %Y%m%d%H%M Example ---------- ''' start,end = pd.to_datetime(start),pd.to_datetime(end) format = '%Y%m%d%H%M' return '%s-%s'%(start.strftime(format),end.strftime(format)) def hdr_to_series(path): ''' Reads hdr rain files and converts it into pandas Series Parameters ---------- path : path to .hdr file Returns ---------- pandas time Series with mean radar rain ''' s = pd.read_csv(path,skiprows=5,usecols=[2,3]).set_index(' Fecha ')[' Lluvia'] s.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],s.index))) return s def hdr_to_df(path): ''' Reads hdr rain files and converts it into pandas DataFrame Parameters ---------- path : path to .hdr file Returns ---------- pandas DataFrame with mean radar rain ''' if path.endswith('.hdr') != True: path = path+'.hdr' df = pd.read_csv(path,skiprows=5).set_index(' Fecha ') df.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],df.index))) df = df.drop('IDfecha',axis=1) df.columns = ['record','mean_rain'] return df def bin_to_df(path,ncells,start=None,end=None,**kwargs): ''' Reads rain fields (.bin) and converts it into pandas DataFrame Parameters ---------- path : path to .hdr and .bin file start : initial date end : final date Returns ---------- pandas DataFrame with mean radar rain Note ---------- path without extension, ejm folder_path/file not folder_path/file.bin, if start and end is None, the program process all the data ''' start,end = pd.to_datetime(start),pd.to_datetime(end) records = df['record'].values rain_field = [] for count,record in enumerate(records): if record != 1: rain_field.append(wmf.models.read_int_basin('%s.bin'%path,record,ncells)[0]/1000.0) count = count+1 # format = (count*100.0/len(records),count,len(records)) else: rain_field.append(np.zeros(ncells)) return pd.DataFrame(np.matrix(rain_field),index=df.index) def get_radar_rain(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, mask=None,meanrain_ALL=True,path_masks_csv=None,complete_naninaccum=False,save_bin=False, save_class = False,path_res=None,umbral=0.005, verbose=True, zero_fill = None): start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de rutas y la de las fechas a las que corresponde cada ruta. ListRutas.sort() ListDatesinNC.sort()#con estas fechas se asignaran los barridos a cada timestep. #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC = pd.to_datetime(datesinNC) #Obtiene el index con la resolucion deseada, en que se quiere buscar datos existentes de radar, textdt = '%d' % Dt #Agrega hora a la fecha inicial if hora_1 != None: inicio = fechaI+' '+hora_1 else: inicio = fechaI #agrega hora a la fecha final if hora_2 != None: final = fechaF+' '+hora_2 else: final = fechaF datesDt = pd.date_range(inicio,final,freq = textdt+'s') #Obtiene las posiciones de acuerdo al dt para cada fecha, si no hay barrido en ese paso de tiempo se acumula #elbarrido inmediatamente anterior. #Saca una lista con las pos de los barridos por cada timestep, y las pega en PosDates #Si el limite de completar faltantes con barrido anterior es de 10 min, solo se completa si dt=300s #limite de autocompletar : 10m es decir, solo repito un barrido. PosDates = [] pos1 = [] pos_completed = [] lim_completed = 3 #ultimos 3 barridos - 15min for ind,d1,d2 in zip(np.arange(datesDt[:-1].size),datesDt[:-1],datesDt[1:]): pos2 = np.where((datesinNC<d2) & (datesinNC>=d1))[0].tolist() # si no hay barridos en el dt de inicio sellena con zero - lista vacia #y no esta en los primero 3 pasos : 15min. # si se puede completar # y si en el los lim_completed pasos atras no hubo más de lim_completed-1 pos con pos_completed=2, lim_completed-1 para que deje correr sólo hasta el lim_completed. #asi solo se pueded completar y pos_completed=2 una sola vez. if len(pos2) == 0 and ind not in np.arange(lim_completed) and complete_naninaccum == True and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : #+1 porque coge los ultimos n-1 posiciones. pos2 = pos1 pos_completed.append(2) elif len(pos2) == 0: pos2=[] pos_completed.append(0) else: pos_completed.append(1) #si se quiere completar y hay barridos en este dt, guarda esta pos para si es necesario completar las pos de dt en el sgte paso if complete_naninaccum == True and len(pos2) != 0 and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : pos1 = pos2 else: pos1 = [] PosDates.append(pos2) # si se asigna, se agregas dates y PosDates para barridos en cero al final. if zero_fill is not None: #se redefinen datesDt luego que los PosDates fueron asignados final = (pd.to_datetime(final) + pd.Timedelta('%ss'%Dt*zero_fill)).strftime('%Y-%m-%d %H:%M') datesDt = pd.date_range(inicio,final,freq = textdt+'s') # se agrega a PosDates pasos del futuro con barridos en cero, y se cambia end. end = end + pd.Timedelta('%ss'%Dt*zero_fill) #pasos de tiempo:steps, independiente del Dt for steps in np.arange(zero_fill): PosDates.append([]) # paso a hora local datesDt = datesDt - dt.timedelta(hours=5) datesDt = datesDt.to_pydatetime() #Index de salida en hora local rng= pd.date_range(start.strftime('%Y-%m-%d %H:%M'),end.strftime('%Y-%m-%d %H:%M'), freq= textdt+'s') df = pd.DataFrame(index = rng,columns=codigos) #mascara con shp a parte de wmf if mask is not None: #se abre un barrido para sacar la mascara g = netCDF4.Dataset(ListRutas[PosDates[0][0]]) field = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0)#g['Rain'][:]# RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] g.close() longs=np.array([RadProp[2]+0.5*RadProp[4]+i*RadProp[4] for i in range(RadProp[0])]) lats=np.array([RadProp[3]+0.5*RadProp[5]+i*RadProp[5] for i in range(RadProp[1])]) x,y = np.meshgrid(longs,lats) #mask as a shp if type(mask) == str: #boundaries shp = gpd.read_file(mask) poly = shp.geometry.unary_union shp_mask = np.zeros([len(lats),len(longs)]) for i in range(len(lats)): for j in range(len(longs)): if (poly.contains(Point(longs[j],lats[i])))==True: shp_mask[i,j] = 1# Rain_mask es la mascara l = x[shp_mask==1].min() r = x[shp_mask==1].max() d = y[shp_mask==1].min() a = y[shp_mask==1].max() #mask as a list with coordinates whithin the radar extent elif type(mask) == list: l = mask[0] ; r = mask[1] ; d = mask[2] ; a = mask[3] x,y = x.T,y.T #aun tengo dudas con el recorte, si en nc queda en la misma pos que los lats,longs. #boundaries position x_wh,y_wh = np.where((x>l)&(x<r)&(y>d)&(y<a)) #se redefine sfield con size que corresponde field = field[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] if save_bin and len(codigos)==1 and path_res is not None: #open nc file f = netCDF4.Dataset(path_res,'w', format='NETCDF4') #'w' stands for write tempgrp = f.createGroup('rad_data') # as folder for saving files lon = longs[np.unique(x_wh)[0]:np.unique(x_wh)[-1]] lat = lats[np.unique(y_wh)[0]:np.unique(y_wh)[-1]] #set name and leght of dimensions tempgrp.createDimension('lon', len(lon)) tempgrp.createDimension('lat', len(lat)) tempgrp.createDimension('time', None) #building variables longitude = tempgrp.createVariable('longitude', 'f4', 'lon') latitude = tempgrp.createVariable('latitude', 'f4', 'lat') rain = tempgrp.createVariable('rain', 'f4', (('time', 'lat', 'lon'))) time = tempgrp.createVariable('time', 'i4', 'time') #adding globalattributes f.description = "Radar rainfall dataset containing one group" f.history = "Created " + dt.datetime.now().strftime("%d/%m/%y") #Add local attributes to variable instances longitude.units = 'degrees east - wgs4' latitude.units = 'degrees north - wgs4' time.units = 'minutes since 2020-01-01 00:00' rain.units = 'mm/h' #passing data into variables # use proper indexing when passing values into the variables - just like you would a numpy array. longitude[:] = lon #The "[:]" at the end of the variable instance is necessary latitude[:] = lat else: # acumular dentro de la cuenca. cu = wmf.SimuBasin(rute= cuenca) if save_class: cuConv = wmf.SimuBasin(rute= cuenca) cuStra = wmf.SimuBasin(rute= cuenca) #accumulated in basin if accum: if mask is not None: rvec_accum = np.zeros(field.shape) dfaccum = pd.DataFrame(index = rng) #este producto no da con mask. else: rvec_accum = np.zeros(cu.ncells) # rvec = np.zeros(cu.ncells) dfaccum = pd.DataFrame(np.zeros((cu.ncells,rng.size)).T,index = rng) else: pass #all extent if all_radextent: radmatrix = np.zeros((1728, 1728)) #ITERA SOBRE LOS BARRIDOS DEL PERIODO Y SE SACAN PRODUCTOS # print ListRutas for ind,dates,pos in zip(np.arange(len(datesDt[1:])),datesDt[1:],PosDates): #escoge como definir el size de rvec if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells, dtype = int) rStra = np.zeros(cu.ncells, dtype = int) try: #se lee y agrega lluvia de los nc en el intervalo. for c,p in enumerate(pos): #lista archivo leido if verbose: print (ListRutas[p]) #Lee la imagen de radar para esa fecha g = netCDF4.Dataset(ListRutas[p]) rainfield = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0) RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] #if all extent if all_radextent: radmatrix += rainfield #if mask if mask is not None and type(mask) == str: rvec += (rainfield*shp_mask)[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] elif mask is not None and type(mask) == list: rvec += rainfield[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] # on WMF. else: #Agrega la lluvia en el intervalo rvec += cu.Transform_Map2Basin(rainfield,RadProp) if save_class: ConvStra = cu.Transform_Map2Basin(g.variables['Conv_Strat'][:].T, RadProp) # 1-stra, 2-conv rConv = np.copy(ConvStra) rConv[rConv == 1] = 0; rConv[rConv == 2] = 1 rStra = np.copy(ConvStra) rStra[rStra == 2] = 0 rvec[(rConv == 0) & (rStra == 0)] = 0 Conv[rvec == 0] = 0 Stra[rvec == 0] = 0 #Cierra el netCDF g.close() #muletilla path = 'bla' except: print ('error - no field found ') path = '' if accum: if mask is not None: rvec += np.zeros(shape = field.shape) rvec = np.zeros(shape = field.shape) else: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) #acumula dentro del for que recorre las fechas if accum: rvec_accum += rvec if mask is None: #esto para mask no sirve dfaccum.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]= rvec else: pass # si se quiere sacar promedios de lluvia de radar en varias cuencas definidas en 'codigos' #subbasins defined for WMF if meanrain_ALL and mask is None: mean = [] df_posmasks = pd.read_csv(path_masks_csv,index_col=0) for codigo in codigos: if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec*df_posmasks['%s'%codigo])/float(df_posmasks['%s'%codigo][df_posmasks['%s'%codigo]==1].size)) # se actualiza la media de todas las mascaras en el df. df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean else: pass #guarda binario y df, si guardar binaria paso a paso no me interesa rvecaccum if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: mean = [] #guarda en binario dentro = cu.rain_radar2basin_from_array(vec = rvec, ruta_out = path_res, fecha = dates, dt = Dt, umbral = umbral) #si guarda nc de ese timestep guarda clasificados if dentro == 0: hagalo = True else: hagalo = False #mira si guarda o no los clasificados if save_class: #Escribe el binario convectivo aa = cuConv.rain_radar2basin_from_array(vec = rConv, ruta_out = path_res+'_conv', fecha = dates, dt = Dt, doit = hagalo) #Escribe el binario estratiforme aa = cuStra.rain_radar2basin_from_array(vec = rStra, ruta_out = path_res+'_stra', fecha = dates, dt = Dt, doit = hagalo) #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean elif mask is None and save_bin == True and len(codigos)==1 and path_res is None: #si es una cuenca pero no se quiere guardar binarios. mean = [] #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean #guardar .nc con info de recorte de radar: mask. if mask is not None and save_bin and len(codigos)==1 and path_res is not None: mean = [] #https://pyhogs.github.io/intro_netcdf4.html rain[ind,:,:] = rvec.T time[ind] = int((dates - pd.to_datetime('2010-01-01 00:00')).total_seconds()/60) #min desde 2010 if ind == np.arange(len(datesDt[1:]))[-1]: f.close() print ('.nc saved') #guarda en df meanrainfall. if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec)/float(shp_mask[shp_mask==1].size)) #save df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: #Cierrra el binario y escribe encabezado cu.rain_radar2basin_from_array(status = 'close',ruta_out = path_res) print ('.bin & .hdr saved') if save_class: cuConv.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_conv') cuStra.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_stra') print ('.bin & .hdr escenarios saved') else: print ('.bin & .hdr NOT saved') pass #elige los retornos. if accum == True and path_tif is not None: cu.Transform_Basin2Map(rvec_accum,path_tif) return df,rvec_accum,dfaccum elif accum == True and mask is not None: return df,rvec_accum elif accum == True and mask is None: return df,rvec_accum,dfaccum elif all_radextent: return df,radmatrix else: return df def get_radar_rain_OP(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, meanrain_ALL=True,complete_naninaccum=False, evs_hist=False,save_bin=False,save_class = False, path_res=None,umbral=0.005,include_escenarios = None, verbose=True): ''' Read .nc's file forn rutaNC:101Radar_Class within assigned period and frequency. Por ahora solo sirve con un barrido por timestep, operacional a 5 min, melo. 0. It divides by 1000.0 and converts from mm/5min to mm/h. 1. Get mean radar rainfall in basins assigned in 'codigos' for finding masks, if the mask exist. 2. Write binary files if is setted. - Cannot do both 1 and 2. - To saving binary files (2) set: meanrain_ALL=False, save_bin=True, path_res= path where to write results, len('codigos')=1, nc_path aims to the one with dxp and simubasin props setted. Parameters ---------- start: string, date&time format %Y-%m%-d %H:%M, local time. end: string, date&time format %Y-%m%-d %H:%M, local time. Dt: float, timedelta in seconds. For this function it should be lower than 3600s (1h). cuenca: string, simubasin .nc path with dxp and format from WMF. It should be 260 path if whole catchment analysis is needed, or any other .nc path for saving the binary file. codigos: list, with codes of stage stations. Needed for finding the mask associated to a basin. rutaNC: string, path with .nc files from radar meteorology group. Default in amazonas: 101Radar_Class Optional Parameters ---------- accum: boolean, default False. True for getting the accumulated matrix between start and end. Change returns: df,rvec (accumulated) path_tif: string, path of tif to write accumlated basin map. Default None. all_radextent:boolean, default False. True for getting the accumulated matrix between start and end in the whole radar extent. Change returns: df,radmatrix. meanrain_ALL: boolean, defaul True. True for getting the mean radar rainfall within several basins which mask are defined in 'codigos'. save_bin: boolean, default False. True for saving .bin and .hdr files with rainfall and if len('codigos')=1. save_class: boolean,default False. True for saving .bin and .hdr for convective and stratiform classification. Applies if len('codigos')=1 and save_bin = True. path_res: string with path where to write results if save_bin=True, default None. umbral: float. Minimum umbral for writing rainfall, default = 0.005. Returns ---------- - df whith meanrainfall of assiged codes in 'codigos'. - df,rvec if accum = True. - df,radmatrix if all_radextent = True. - save .bin and .hdr if save_bin = True, len('codigos')=1 and path_res=path. ''' #### FECHAS Y ASIGNACIONES DE NC#### start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de dias y de rutas ListDatesinNC.sort() ListRutas.sort() #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC = pd.to_datetime(datesinNC) #Obtiene el index con la resolucion deseada, en que se quiere buscar datos existentes de radar, textdt = '%d' % Dt #Agrega hora a la fecha inicial if hora_1 != None: inicio = fechaI+' '+hora_1 else: inicio = fechaI #agrega hora a la fecha final if hora_2 != None: final = fechaF+' '+hora_2 else: final = fechaF datesDt = pd.date_range(inicio,final,freq = textdt+'s') #Obtiene las posiciones de acuerdo al dt para cada fecha, si no hay barrido en ese paso de tiempo se acumula #elbarrido inmediatamente anterior. PosDates = [] pos1 = [0] for d1,d2 in zip(datesDt[:-1],datesDt[1:]): pos2 = np.where((datesinNC<d2) & (datesinNC>=d1))[0].tolist() if len(pos2) == 0 and complete_naninaccum == True: # si no hay barridos en el dt de inicio ellena con cero pos2 = pos1 elif complete_naninaccum == True: #si hay barridos en este dt guarda esta pos para si es necesario completar las pos de dt en el sgte paso pos1 = pos2 elif len(pos2) == 0: pos2=[] PosDates.append(pos2) paths_inperiod = [[ListRutas[p] for c,p in enumerate(pos)] for dates,pos in zip(datesDt[1:],PosDates)] pospaths_inperiod = [[p for c,p in enumerate(pos)] for dates,pos in zip(datesDt[1:],PosDates)] ######### LISTA EN ORDEN CON ARCHIVOS OBSERVADOS Y ESCENARIOS#############3 ##### buscar el ultimo campo de lluvia observado ###### datessss = [] nc010 = [] for date,l_step,lpos_step in zip(datesDt[1:],paths_inperiod,pospaths_inperiod): for path,pospath in zip(l_step[::-1],lpos_step[::-1]): # que siempre el primer nc leido sea el observado si lo hay #siempre intenta buscar en cada paso de tiempo el observado, solo si no puede, busca escenarios futuros. if path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): nc010.append(path) datessss.append(date) ######punto a partir del cual usar escenarios #si dentro del periodo existe alguno len(date)>1, sino = 0 (todo el periodo corresponde a forecast) #si no existe pos_lastradarfield = pos del primer paso de tiempo paraque se cojan todos los archivos if len(datessss)>0: pos_lastradarfield = np.where(datesDt[1:]==datessss[-1])[0][0] else: pos_lastradarfield = 0 list_paths= [] # escoge rutas y pos organizados para escenarios, por ahora solo sirve con 1 barrido por timestep. for ind,date,l_step,lpos_step in zip(np.arange(datesDt[1:].size),datesDt[1:],paths_inperiod,pospaths_inperiod): # pos_step = []; paths_step = [] if len(l_step) == 0: list_paths.append('') else: # ordenar rutas de ncs for path,pospath in zip(l_step[::-1],lpos_step[::-1]): # que siempre el primer nc leido sea el observado si lo hay # print (ind,path,pospath) #si es un evento viejo if evs_hist: #primero escanarios futuros. if include_escenarios is not None and path.split('/')[-1].split('_')[-1].startswith(include_escenarios): list_paths.append(path) break #despues observados. elif path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): list_paths.append(path) #si es rigth now else: #primero observados y para ahi si se lo encontro if path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): list_paths.append(path) break #despues escenarios futuros, y solo despues que se acaban observados elif include_escenarios is not None and path.split('/')[-1].split('_')[-1].startswith(include_escenarios) and ind > pos_lastradarfield: list_paths.append(path) ######### LECTURA DE CUENCA, DATOS Y GUARDADO DE BIN.########### # acumular dentro de la cuenca. cu = wmf.SimuBasin(rute= cuenca) if save_class: cuConv = wmf.SimuBasin(rute= cuenca) cuStra = wmf.SimuBasin(rute= cuenca) # paso a hora local datesDt = datesDt - dt.timedelta(hours=5) datesDt = datesDt.to_pydatetime() #Index de salida en hora local rng= pd.date_range(start.strftime('%Y-%m-%d %H:%M'),end.strftime('%Y-%m-%d %H:%M'), freq= textdt+'s') df = pd.DataFrame(index = rng,columns=codigos) #accumulated in basin if accum: rvec_accum = np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) dfaccum = pd.DataFrame(np.zeros((cu.ncells,rng.size)).T,index = rng) else: pass #all extent if all_radextent: radmatrix = np.zeros((1728, 1728)) #itera sobre ncs abre y guarda ifnfo for dates,path in zip(datesDt[1:],list_paths): if verbose: print (dates,path) rvec = np.zeros(cu.ncells) if path != '': #sino hay archivo pone cero. try: #Lee la imagen de radar para esa fecha g = netCDF4.Dataset(path) #if all extent if all_radextent: radmatrix += g.variables['Rain'][:].T/(((1*3600)/Dt)*1000.0) #on basins --> wmf. RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] #Agrega la lluvia en el intervalo rvec += cu.Transform_Map2Basin(g.variables['Rain'][:].T/(((1*3600)/Dt)*1000.0),RadProp) if save_class: ConvStra = cu.Transform_Map2Basin(g.variables['Conv_Strat'][:].T, RadProp) # 1-stra, 2-conv rConv = np.copy(ConvStra) rConv[rConv == 1] = 0; rConv[rConv == 2] = 1 rStra = np.copy(ConvStra) rStra[rStra == 2] = 0 rvec[(rConv == 0) & (rStra == 0)] = 0 rConv[rvec == 0] = 0 rStra[rvec == 0] = 0 #Cierra el netCDF g.close() except: print ('error - zero field ') if accum: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) else: print ('error - zero field ') if accum: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) #acumula dentro del for que recorre las fechas if accum: rvec_accum += rvec dfaccum.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]= rvec else: pass # si se quiere sacar promedios de lluvia de radar en varias cuencas definidas en 'codigos' if meanrain_ALL: mean = [] #para todas for codigo in codigos: if '%s.tif'%(codigo) in os.listdir('/media/nicolas/Home/nicolas/01_SIATA/info_operacional_cuencas_nivel/red_nivel/tif_mascaras/'): mask_path = '/media/nicolas/Home/nicolas/01_SIATA/info_operacional_cuencas_nivel/red_nivel/tif_mascaras/%s.tif'%(codigo) mask_map = wmf.read_map_raster(mask_path) mask_vect = cu.Transform_Map2Basin(mask_map[0],mask_map[1]) else: mask_vect = None if mask_vect is not None: if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: try: mean.append(np.sum(mask_vect*rvec)/float(mask_vect[mask_vect==1].size)) except: # para las que no hay mascara. mean.append(np.nan) # se actualiza la media de todas las mascaras en el df. df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean else: pass #guarda binario y df, si guardar binaria paso a paso no me interesa rvecaccum if save_bin == True and len(codigos)==1 and path_res is not None: #guarda en binario dentro = cu.rain_radar2basin_from_array(vec = rvec, ruta_out = path_res, fecha = dates, dt = Dt, umbral = umbral) #guarda en df meanrainfall. mean = [] if path != '': mean.append(rvec.mean()) else: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean if save_bin == True and len(codigos)==1 and path_res is not None: #Cierrra el binario y escribe encabezado cu.rain_radar2basin_from_array(status = 'close',ruta_out = path_res) print ('.bin & .hdr saved') if save_class: cuConv.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_conv') cuStra.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_stra') print ('.bin & .hdr escenarios saved') else: print ('.bin & .hdr NOT saved') #elige los retornos. if accum == True and path_tif is not None: cu.Transform_Basin2Map(rvec_accum,path_tif) return df,rvec_accum,dfaccum elif accum == True: return df,rvec_accum,dfaccum elif all_radextent: return df,radmatrix else: return df def get_radar_rain_OP_newmasks(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, meanrain_ALL=True,complete_naninaccum=False, evs_hist=False,save_bin=False,save_class = False, path_res=None,umbral=0.005,include_escenarios = None, path_masks_csv = None,verbose=True): ''' Read .nc's file forn rutaNC:101Radar_Class within assigned period and frequency. Por ahora solo sirve con un barrido por timestep, operacional a 5 min, melo. 0. It divides by 1000.0 and converts from mm/5min to mm/h. 1. Get mean radar rainfall in basins assigned in 'codigos' for finding masks, if the mask exist. 2. Write binary files if is setted. - Cannot do both 1 and 2. - To saving binary files (2) set: meanrain_ALL=False, save_bin=True, path_res= path where to write results, len('codigos')=1, nc_path aims to the one with dxp and simubasin props setted. Parameters ---------- start: string, date&time format %Y-%m%-d %H:%M, local time. end: string, date&time format %Y-%m%-d %H:%M, local time. Dt: float, timedelta in seconds. For this function it should be lower than 3600s (1h). cuenca: string, simubasin .nc path with dxp and format from WMF. It should be 260 path if whole catchment analysis is needed, or any other .nc path for saving the binary file. codigos: list, with codes of stage stations. Needed for finding the mask associated to a basin. rutaNC: string, path with .nc files from radar meteorology group. Default in amazonas: 101Radar_Class Optional Parameters ---------- accum: boolean, default False. True for getting the accumulated matrix between start and end. Change returns: df,rvec (accumulated) path_tif: string, path of tif to write accumlated basin map. Default None. all_radextent:boolean, default False. True for getting the accumulated matrix between start and end in the whole radar extent. Change returns: df,radmatrix. meanrain_ALL: boolean, defaul True. True for getting the mean radar rainfall within several basins which mask are defined in 'codigos'. save_bin: boolean, default False. True for saving .bin and .hdr files with rainfall and if len('codigos')=1. save_class: boolean,default False. True for saving .bin and .hdr for convective and stratiform classification. Applies if len('codigos')=1 and save_bin = True. path_res: string with path where to write results if save_bin=True, default None. umbral: float. Minimum umbral for writing rainfall, default = 0.005. include_escenarios: string wth the name of scenarios to use for future. path_masks_csv: string with path of csv with pos of masks, pos are related tu the shape of the simubasin designated. Returns ---------- - df whith meanrainfall of assiged codes in 'codigos'. - df,rvec if accum = True. - df,radmatrix if all_radextent = True. - save .bin and .hdr if save_bin = True, len('codigos')=1 and path_res=path. ''' #### FECHAS Y ASIGNACIONES DE NC#### start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de dias y de rutas ListDatesinNC.sort() ListRutas.sort() #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC = pd.to_datetime(datesinNC) #Obtiene el index con la resolucion deseada, en que se quiere buscar datos existentes de radar, textdt = '%d' % Dt #Agrega hora a la fecha inicial if hora_1 != None: inicio = fechaI+' '+hora_1 else: inicio = fechaI #agrega hora a la fecha final if hora_2 != None: final = fechaF+' '+hora_2 else: final = fechaF datesDt = pd.date_range(inicio,final,freq = textdt+'s') #Obtiene las posiciones de acuerdo al dt para cada fecha, si no hay barrido en ese paso de tiempo se acumula #elbarrido inmediatamente anterior. PosDates = [] pos1 = [0] for d1,d2 in zip(datesDt[:-1],datesDt[1:]): pos2 = np.where((datesinNC<d2) & (datesinNC>=d1))[0].tolist() if len(pos2) == 0 and complete_naninaccum == True: # si no hay barridos en el dt de inicio ellena con cero pos2 = pos1 elif complete_naninaccum == True: #si hay barridos en este dt guarda esta pos para si es necesario completar las pos de dt en el sgte paso pos1 = pos2 elif len(pos2) == 0: pos2=[] PosDates.append(pos2) paths_inperiod = [[ListRutas[p] for c,p in enumerate(pos)] for dates,pos in zip(datesDt[1:],PosDates)] pospaths_inperiod = [[p for c,p in enumerate(pos)] for dates,pos in zip(datesDt[1:],PosDates)] ######### LISTA EN ORDEN CON ARCHIVOS OBSERVADOS Y ESCENARIOS#############3 ##### buscar el ultimo campo de lluvia observado ###### datessss = [] nc010 = [] for date,l_step,lpos_step in zip(datesDt[1:],paths_inperiod,pospaths_inperiod): for path,pospath in zip(l_step[::-1],lpos_step[::-1]): # que siempre el primer nc leido sea el observado si lo hay #siempre intenta buscar en cada paso de tiempo el observado, solo si no puede, busca escenarios futuros. if path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): nc010.append(path) datessss.append(date) ######punto a partir del cual usar escenarios #si dentro del periodo existe alguno len(date)>1, sino = 0 (todo el periodo corresponde a forecast) #si no existe pos_lastradarfield = pos del primer paso de tiempo paraque se cojan todos los archivos if len(datessss)>0: pos_lastradarfield = np.where(datesDt[1:]==datessss[-1])[0][0] else: pos_lastradarfield = 0 list_paths= [] # escoge rutas y pos organizados para escenarios, por ahora solo sirve con 1 barrido por timestep. for ind,date,l_step,lpos_step in zip(np.arange(datesDt[1:].size),datesDt[1:],paths_inperiod,pospaths_inperiod): # pos_step = []; paths_step = [] if len(l_step) == 0: list_paths.append('') else: # ordenar rutas de ncs for path,pospath in zip(l_step[::-1],lpos_step[::-1]): # que siempre el primer nc leido sea el observado si lo hay # print (ind,path,pospath) #si es un evento viejo if evs_hist: #primero escanarios futuros. if include_escenarios is not None and path.split('/')[-1].split('_')[-1].startswith(include_escenarios): list_paths.append(path) break #despues observados. elif path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): list_paths.append(path) #si es rigth now else: #primero observados y para ahi si se lo encontro if path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): list_paths.append(path) break #despues escenarios futuros, y solo despues que se acaban observados elif include_escenarios is not None and path.split('/')[-1].split('_')[-1].startswith(include_escenarios) and ind > pos_lastradarfield: list_paths.append(path) ######### LECTURA DE CUENCA, DATOS Y GUARDADO DE BIN.########### # acumular dentro de la cuenca. cu = wmf.SimuBasin(rute= cuenca) if save_class: cuConv = wmf.SimuBasin(rute= cuenca) cuStra = wmf.SimuBasin(rute= cuenca) # paso a hora local datesDt = datesDt - dt.timedelta(hours=5) datesDt = datesDt.to_pydatetime() #Index de salida en hora local rng= pd.date_range(start.strftime('%Y-%m-%d %H:%M'),end.strftime('%Y-%m-%d %H:%M'), freq= textdt+'s') df = pd.DataFrame(index = rng,columns=codigos) #accumulated in basin if accum: rvec_accum = np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) dfaccum = pd.DataFrame(np.zeros((cu.ncells,rng.size)).T,index = rng) else: pass #all extent if all_radextent: radmatrix = np.zeros((1728, 1728)) #itera sobre ncs abre y guarda ifnfo for dates,path in zip(datesDt[1:],list_paths): if verbose: print (dates,path) rvec = np.zeros(cu.ncells) if path != '': #sino hay archivo pone cero. try: #Lee la imagen de radar para esa fecha g = netCDF4.Dataset(path) #if all extent if all_radextent: radmatrix += g.variables['Rain'][:].T/(((1*3600)/Dt)*1000.0) #on basins --> wmf. RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] #Agrega la lluvia en el intervalo rvec += cu.Transform_Map2Basin(g.variables['Rain'][:].T/(((1*3600)/Dt)*1000.0),RadProp) if save_class: ConvStra = cu.Transform_Map2Basin(g.variables['Conv_Strat'][:].T, RadProp) # 1-stra, 2-conv rConv = np.copy(ConvStra) rConv[rConv == 1] = 0; rConv[rConv == 2] = 1 rStra = np.copy(ConvStra) rStra[rStra == 2] = 0 rvec[(rConv == 0) & (rStra == 0)] = 0 rConv[rvec == 0] = 0 rStra[rvec == 0] = 0 #Cierra el netCDF g.close() except: print ('error - zero field ') if accum: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) else: print ('error - zero field ') if accum: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) #acumula dentro del for que recorre las fechas if accum: rvec_accum += rvec dfaccum.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]= rvec else: pass # si se quiere sacar promedios de lluvia de radar en varias cuencas definidas en 'codigos' if meanrain_ALL: mean = [] #para todas df_posmasks = pd.read_csv(path_masks_csv,index_col=0) for codigo in codigos: if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: try: mean.append(np.sum(rvec*df_posmasks[codigo])/float(df_posmasks[codigo][df_posmasks[codigo]==1].size)) except: # para las que no hay mascara. mean.append(np.nan) # se actualiza la media de todas las mascaras en el df. df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean else: pass #guarda binario y df, si guardar binaria paso a paso no me interesa rvecaccum if save_bin == True and len(codigos)==1 and path_res is not None: #guarda en binario dentro = cu.rain_radar2basin_from_array(vec = rvec, ruta_out = path_res, fecha = dates, dt = Dt, umbral = umbral) #guarda en df meanrainfall. mean = [] if path != '': mean.append(rvec.mean()) else: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean if save_bin == True and len(codigos)==1 and path_res is not None: #Cierrra el binario y escribe encabezado cu.rain_radar2basin_from_array(status = 'close',ruta_out = path_res) print ('.bin & .hdr saved') if save_class: cuConv.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_conv') cuStra.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_stra') print ('.bin & .hdr escenarios saved') else: print ('.bin & .hdr NOT saved') #elige los retornos. if accum == True and path_tif is not None: cu.Transform_Basin2Map(rvec_accum,path_tif) return df,rvec_accum,dfaccum elif accum == True: return df,rvec_accum,dfaccum elif all_radextent: return df,radmatrix else: return df def get_rainfall2sim(ConfigList,cu,path_ncbasin,starts_m,end, #se corre el bin mas largo. Dt= float(wmf.models.dt),include_escenarios=None, evs_hist= False, check_file=True,stepback_start = '%ss'%int(wmf.models.dt *1), complete_naninaccum=True,verbose=False,zero_fill=None): #generacion o lectura de lluvia start,end = starts_m[-1],end start,end = (pd.to_datetime(start)-
pd.Timedelta(stepback_start)
pandas.Timedelta
import pgpasslib from sqlalchemy import create_engine import pandas as pd from pymedextcore.document import Document from .med import MedicationAnnotator def get_engine(): password = pgpasslib.getpass('10.172.28.101', 5432, '<PASSWORD>', '<PASSWORD>') return create_engine(f'postgresql+psycopg2://coronascientist:{password}@10.172.28.101:5432/coronaomop') def construct_query(limit, min_date='2020-03-01', view='unstable', note_ids = None): if limit != -1: limit = "LIMIT {}".format(limit) else: limit = "" notes = "" if note_ids is not None: notes = f"AND note_id IN {tuple(note_ids)}" query = f""" SELECT note_id, person_id, note_text, note_date FROM {view}.note WHERE note_date > '{min_date}' {notes} AND (note_text IS NOT NULL OR note_text not in ('', ' ') ) {limit} """ #print(query) #logger.debug('query set with parameters: view = {}, min_date= {}, limit={}'.format(view, min_date, limit)) return query def get_note_ids(engine, min_date='2020-03-01', view='unstable'): query = f""" SELECT note_id FROM {view}.note WHERE note_date > '{min_date}' AND (note_text IS NOT NULL OR note_text not in ('', ' ') ) """ with engine.connect() as connection: ids = pd.read_sql_query(query, engine) return set(ids.note_id.values) def rawtext_pg(limit, min_date, engine,chunksize=100): query = construct_query(limit, min_date) with engine.connect() as connection: return pd.read_sql_query(query, connection,chunksize=chunksize) def get_from_omop_note(engine, limit = -1, min_date='2020-03-01', note_ids= None): query = construct_query(limit = limit, min_date =min_date, note_ids = note_ids) with engine.connect() as connection: query_res = connection.execute(query) return query_res.fetchall() def convert_chunk_to_doc(query_res, chunksize): res = [] for note_id, person_id, raw_text, note_date in query_res.fetchmany(chunksize): res.append(Document(raw_text=raw_text, ID = note_id, attributes = {'person_id':person_id}, documentDate = note_date.strftime("%Y/%m/%d") )) return res def convert_notes_to_doc(notes): res = [] for note_id, person_id, raw_text, note_date in notes: res.append(Document(raw_text=raw_text, ID = note_id, attributes = {'person_id':person_id}, documentDate = note_date.strftime("%Y/%m/%d") )) return res def load_processed_ids(filename = 'data/omop_tables/notes_processed_med.txt'): processed = [] with open(filename, 'r') as f: for ID in f: processed.append(int(ID.strip())) return set(processed) def chunk_to_omop(annotated_chunk): omop = [MedicationAnnotator.doc_to_omop(x) for x in annotated_chunk] omop = [item for sublist in omop for item in sublist] return
pd.DataFrame.from_records(omop)
pandas.DataFrame.from_records
import argparse import six from tqdm import tqdm import pandas as pd import string, re from nltk.translate.bleu_score import corpus_bleu from typing import List, Tuple, Dict, Set, Union def compute_corpus_level_bleu_score(references: List[str], hypotheses: List[str]) -> float: """ Given decoding results and reference sentences, compute corpus-level BLEU score. @param references (List[List[str]]): a list of gold-standard reference target sentences @param hypotheses (List[Hypothesis]): a list of hypotheses, one for each reference @returns bleu_score: corpus-level BLEU score """ bleu_score = corpus_bleu([[ref] for ref in references], [hyp for hyp in hypotheses]) return bleu_score def standardize_punctuation_and_lowercase(sentences: List[str]) -> List[str]: ''' This function removes the last punctuation mark and lowers the words. Input: 'realmente gostei dessa camisa . deveria ter comprado .' Output: 'realmente gostei dessa camisa . deveria ter comprado' ''' for i, sentence in enumerate(sentences): punkt_occurrences = 0 sentence_list = [] matches = re.finditer(r'[.?!]', sentence) output_generator = [match for match in matches] if len(output_generator) == 0: continue last_match = output_generator[-1] last_match_ind = last_match.start() # remove space before punctuation if sentence[last_match_ind-1:last_match_ind+1].__contains__(' '): sentences[i] = sentence[:last_match_ind-1].lower() else: sentences[i] = sentence[:last_match_ind].lower() return sentences def translate_sentences(text_list, output): """Translates text into the target language. Target must be an ISO 639-1 language code. See https://g.co/cloud/translate/v2/translate-reference#supported_languages """ from google.cloud import translate_v2 as translate # RODAR export GOOGLE_APPLICATION_CREDENTIALS="/home/arthurtelles/gtranslate-api-290022-4899f0c9d3f7.json" translate_client = translate.Client() # text = 'ola eu gosto de framboesa' result_list = [] # Text can also be a sequence of strings, in which case this method # will return a sequence of results for each text. for line in tqdm(text_list): if isinstance(line, six.binary_type): line = line.decode("utf-8") result = translate_client.translate(line, target_language='en') result_list.append(result) # print(u"Text: {}".format(result["input"])) # print(u"Translation: {}".format(result["translatedText"])) # print(u"Detected source language: {}".format(result["detectedSourceLanguage"])) text_file2 = open("eng_gtranslate.txt", "a") for line in result_list: text_file2.write(f"{line['translatedText']}\n") text_file2.close() return result_list parser = argparse.ArgumentParser() parser.add_argument('-input_file', required=True) parser.add_argument('-reference_file', required=True) parser.add_argument('-bleu_output', required=True) parser.add_argument('-google_translate_api', action='store_true') parser.add_argument('-output_translations_csv', type=str) opt = parser.parse_args() print(f'Inputs: {opt}\n') # class InputArgs(): # def __init__(self): # self.input_file = 'seq2seq_test_translations2.txt' # self.reference_file = 'data/eng_test.txt' # 'rnn_naive_model_translations.txt' # 'vanilla_transformer.txt' # self.bleu_output = 'seq2seq_test_bleu2.txt' # 'weights_test' # 'rnn_naive_model' # 'transformer_test' # self.google_translate_api = False # self.output_translations_csv = 'seq2seq_test_bleu2.csv' # opt = InputArgs() # print(opt.__dict__) ref_file = open(opt.reference_file, "r+").read() ref_list = ref_file.split('\n') # não rodar pois já sabemos o resultado if opt.google_translate_api == True: result_list = translate_sentences(translated_list) translated_list = [result['translatedText'] for result in result_list] else: text_file1 = open(opt.input_file, "r+").read() translated_list = text_file1.split('\n') ref_list = standardize_punctuation_and_lowercase(ref_list) translated_list = standardize_punctuation_and_lowercase(translated_list) bleu_score = compute_corpus_level_bleu_score(ref_list, translated_list) print(f"Corpus bleu from file {opt.input_file}: {bleu_score}\n") if opt.output_translations_csv is not None: data_list = [{'Reference': ref_list[i], 'Hypothesis': translated_list[i]} for i in range(len(ref_list))] data_df =
pd.DataFrame(data_list)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Apr 04 18:33:27 2018 @author: Prodipta """ import pandas as pd import datetime as dt import numpy as np from pyfolio.utils import extract_rets_pos_txn_from_zipline from pyfolio.timeseries import perf_stats from empyrical.stats import cum_returns_final, aggregate_returns import json VaR_CUTOFF = 0.05 MAX_TXN = 50000 def convert_zipline_results_to_json(results): #make the json out of the day-wise dataframe res = results.drop(['transactions','orders','positions',],1) s = res.to_json(orient='index', date_format ='iso') jsonDict = json.loads(s) jsonArray = [] for index in jsonDict: jsonDict[index]['start'] = index jsonArray.append(jsonDict[index]) # compute drawdowns seperately value = results['portfolio_value'] max_dd = np.zeros(len(value)) for i in range(len(value)): max_dd[i] = (value[i]/value[0:i].max() - 1) results["max_drawdown"] = max_dd # algo returns vs benchmark returns for the main plot - this is cumulative returns returns = results['algorithm_period_return'] benchmark_rets = results['benchmark_period_return'] max_dd = results['max_drawdown'] positions = results['positions'] transactions = results['transactions'] gross_lev = results['gross_leverage'] average_txn = 0 # extract structured info using pyfolio if any(results['transactions'].apply(len)) > 0: returns, positions, transactions, _ = extract_rets_pos_txn_from_zipline(results) average_txn = np.mean(abs(transactions['txn_dollars'])) # for plotting daily transaction, use <transactions> transactions['id'] = pd.Series([str(i) for i in range(len(transactions))],index=transactions.index) transactions = transactions.set_index(keys='id') transactions = transactions.drop(['sid'],1) # resize transactions if exceeds limit if len(transactions) > MAX_TXN: frames = [transactions.head(MAX_TXN/2),transactions.tail(MAX_TXN/2)] transactions =
pd.concat(frames)
pandas.concat
import numpy as np import pandas as pd import os import argparse import json import tensorflow.keras as k def readData(tumorFileName, normalFileName): x_true = pd.read_csv(tumorFileName, sep='\t', header=0, index_col=0).T x_false = pd.read_csv(normalFileName, sep='\t', header=0, index_col=0).T # if this data set has some nulls fill it so it does not crash the program x =
pd.concat([x_true, x_false])
pandas.concat
from surf.script_tab import keytab from surf.surf_tool import regex2pairs import os, json, time, re, codecs, glob, shutil import matplotlib.pyplot as plt import matplotlib as mpl import logging.handlers import pandas as pd import itertools import numpy as np import random import tensorflow as tf from sklearn.model_selection import KFold from sklearn.model_selection._split import _BaseKFold, indexable, _num_samples from sklearn.utils.validation import _deprecate_positional_args # 拆分时间序列的类 class PurgedGroupTimeSeriesSplit(_BaseKFold): """Time Series cross-validator variant with non-overlapping groups. Allows for a gap in groups to avoid potentially leaking info from train into test if the model has windowed or lag features. Provides train/test indices to split time series data samples that are observed at fixed time intervals according to a third-party provided group. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate. This cross-validation object is a variation of :class:`KFold`. In the kth split, it returns first k folds as train set and the (k+1)th fold as test set. The same group will not appear in two different folds (the number of distinct groups has to be at least equal to the number of folds). Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of splits. Must be at least 2. max_train_group_size : int, default=Inf Maximum group size for a single training set. group_gap : int, default=None Gap between train and test max_test_group_size : int, default=Inf We discard this number of groups from the end of each train split """ @_deprecate_positional_args def __init__(self, n_splits=5, *, max_train_group_size=np.inf, max_test_group_size=np.inf, group_gap=None, verbose=False ): super().__init__(n_splits, shuffle=False, random_state=None) self.max_train_group_size = max_train_group_size self.group_gap = group_gap self.max_test_group_size = max_test_group_size self.verbose = verbose def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Always ignored, exists for compatibility. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ if groups is None: raise ValueError( "The 'groups' parameter should not be None") X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits group_gap = self.group_gap max_test_group_size = self.max_test_group_size max_train_group_size = self.max_train_group_size n_folds = n_splits + 1 group_dict = {} u, ind = np.unique(groups, return_index=True) unique_groups = u[np.argsort(ind)] n_samples = _num_samples(X) n_groups = _num_samples(unique_groups) for idx in np.arange(n_samples): if (groups[idx] in group_dict): group_dict[groups[idx]].append(idx) else: group_dict[groups[idx]] = [idx] if n_folds > n_groups: raise ValueError( ("Cannot have number of folds={0} greater than" " the number of groups={1}").format(n_folds, n_groups)) group_test_size = min(n_groups // n_folds, max_test_group_size) group_test_starts = range(n_groups - n_splits * group_test_size, n_groups, group_test_size) for group_test_start in group_test_starts: train_array = [] test_array = [] group_st = max(0, group_test_start - group_gap - max_train_group_size) for train_group_idx in unique_groups[group_st:(group_test_start - group_gap)]: train_array_tmp = group_dict[train_group_idx] train_array = np.sort(np.unique( np.concatenate((train_array, train_array_tmp)), axis=None), axis=None) train_end = train_array.size for test_group_idx in unique_groups[group_test_start: group_test_start + group_test_size]: test_array_tmp = group_dict[test_group_idx] test_array = np.sort(np.unique( np.concatenate((test_array, test_array_tmp)), axis=None), axis=None) test_array = test_array[group_gap:] if self.verbose > 0: pass yield [int(i) for i in train_array], [int(i) for i in test_array] # 拆分时间序列的类 class PurgedGroupTimeSeriesSplitStacking(_BaseKFold): """Time Series cross-validator variant with non-overlapping groups. Allows for a gap in groups to avoid potentially leaking info from train into test if the model has windowed or lag features. Provides train/test indices to split time series data samples that are observed at fixed time intervals according to a third-party provided group. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate. This cross-validation object is a variation of :class:`KFold`. In the kth split, it returns first k folds as train set and the (k+1)th fold as test set. The same group will not appear in two different folds (the number of distinct groups has to be at least equal to the number of folds). Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of splits. Must be at least 2. stacking_mode : bool, default=True Whether to provide an additional set to test a stacking classifier or not. max_train_group_size : int, default=Inf Maximum group size for a single training set. max_val_group_size : int, default=Inf Maximum group size for a single validation set. max_test_group_size : int, default=Inf We discard this number of groups from the end of each train split, if stacking_mode = True and None it defaults to max_val_group_size. val_group_gap : int, default=None Gap between train and validation test_group_gap : int, default=None Gap between validation and test, if stacking_mode = True and None it defaults to val_group_gap. """ @_deprecate_positional_args def __init__(self, n_splits=5, *, stacking_mode=True, max_train_group_size=np.inf, max_val_group_size=np.inf, max_test_group_size=np.inf, val_group_gap=None, test_group_gap=None, verbose=False ): super().__init__(n_splits, shuffle=False, random_state=None) self.max_train_group_size = max_train_group_size self.max_val_group_size = max_val_group_size self.max_test_group_size = max_test_group_size self.val_group_gap = val_group_gap self.test_group_gap = test_group_gap self.verbose = verbose self.stacking_mode = stacking_mode def split(self, X, y=None, groups=None): if self.stacking_mode: return self.split_ensemble(X, y, groups) else: return self.split_standard(X, y, groups) def split_standard(self, X, y=None, groups=None): """Generate indices to split data into training and validation set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Always ignored, exists for compatibility. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/validation set. Yields ------ train : ndarray The training set indices for that split. val : ndarray The validation set indices for that split. """ if groups is None: raise ValueError("The 'groups' parameter should not be None") X, y, groups = indexable(X, y, groups) n_splits = self.n_splits group_gap = self.val_group_gap max_val_group_size = self.max_val_group_size max_train_group_size = self.max_train_group_size n_folds = n_splits + 1 group_dict = {} u, ind = np.unique(groups, return_index=True) unique_groups = u[np.argsort(ind)] n_samples = _num_samples(X) n_groups = _num_samples(unique_groups) for idx in np.arange(n_samples): if (groups[idx] in group_dict): group_dict[groups[idx]].append(idx) else: group_dict[groups[idx]] = [idx] if n_folds > n_groups: raise ValueError( ("Cannot have number of folds={0} greater than" " the number of groups={1}").format(n_folds, n_groups)) group_val_size = min(n_groups // n_folds, max_val_group_size) group_val_starts = range(n_groups - n_splits * group_val_size, n_groups, group_val_size) for group_val_start in group_val_starts: train_array = [] val_array = [] group_st = max(0, group_val_start - group_gap - max_train_group_size) for train_group_idx in unique_groups[group_st:(group_val_start - group_gap)]: train_array_tmp = group_dict[train_group_idx] train_array = np.sort(np.unique(np.concatenate((train_array, train_array_tmp)), axis=None), axis=None) train_end = train_array.size for val_group_idx in unique_groups[group_val_start: group_val_start + group_val_size]: val_array_tmp = group_dict[val_group_idx] val_array = np.sort(np.unique(np.concatenate((val_array, val_array_tmp)), axis=None), axis=None) val_array = val_array[group_gap:] if self.verbose > 0: pass yield [int(i) for i in train_array], [int(i) for i in val_array] def split_ensemble(self, X, y=None, groups=None): """Generate indices to split data into training, validation and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Always ignored, exists for compatibility. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. val : ndarray The validation set indices for that split (testing indices for base classifiers). test : ndarray The testing set indices for that split (testing indices for final classifier) """ if groups is None: raise ValueError("The 'groups' parameter should not be None") X, y, groups = indexable(X, y, groups) n_splits = self.n_splits val_group_gap = self.val_group_gap test_group_gap = self.test_group_gap if test_group_gap is None: test_group_gap = val_group_gap max_train_group_size = self.max_train_group_size max_val_group_size = self.max_val_group_size max_test_group_size = self.max_test_group_size if max_test_group_size is None: max_test_group_size = max_val_group_size n_folds = n_splits + 1 group_dict = {} u, ind = np.unique(groups, return_index=True) unique_groups = u[np.argsort(ind)] n_samples = _num_samples(X) n_groups = _num_samples(unique_groups) for idx in np.arange(n_samples): if (groups[idx] in group_dict): group_dict[groups[idx]].append(idx) else: group_dict[groups[idx]] = [idx] if n_folds > n_groups: raise ValueError(("Cannot have number of folds={0} greater than" " the number of groups={1}").format(n_folds, n_groups)) group_val_size = min(n_groups // n_folds, max_val_group_size) group_test_size = min(n_groups // n_folds, max_test_group_size) group_test_starts = range(n_groups - n_splits * group_test_size, n_groups, group_test_size) train_indices = [] val_indices = [] test_indices = [] for group_test_start in group_test_starts: train_array = [] val_array = [] test_array = [] val_group_st = max(max_train_group_size + val_group_gap, group_test_start - test_group_gap - max_val_group_size) train_group_st = max(0, val_group_st - val_group_gap - max_train_group_size) for train_group_idx in unique_groups[train_group_st:(val_group_st - val_group_gap)]: train_array_tmp = group_dict[train_group_idx] train_array = np.sort(np.unique(np.concatenate((train_array, train_array_tmp)), axis=None), axis=None) train_end = train_array.size for val_group_idx in unique_groups[val_group_st:(group_test_start - test_group_gap)]: val_array_tmp = group_dict[val_group_idx] val_array = np.sort(np.unique(np.concatenate((val_array, val_array_tmp)), axis=None), axis=None) val_array = val_array[val_group_gap:] for test_group_idx in unique_groups[group_test_start:(group_test_start + group_test_size)]: test_array_tmp = group_dict[test_group_idx] test_array = np.sort(np.unique(np.concatenate((test_array, test_array_tmp)), axis=None), axis=None) test_array = test_array[test_group_gap:] yield [int(i) for i in train_array], [int(i) for i in val_array], [int(i) for i in test_array] def sharp_ratio(data, base_ratio=0.0): num = len(data) t_return = (data.shift(-1) - data) / data std = t_return.std() sharpratio = (t_return.mean() - base_ratio) * (np.sqrt(num)) / std return sharpratio class Pre_data(object): def __init__(self): self.funcmap = { "种子": self.set_all_seeds, "填充": self.pipe_pad, # 一个数组栏,一个dataframe "取列": self.split_columns, "取行": self.split_rows, } def set_all_seeds(self, dataobj, seed): np.random.seed(seed) random.seed(seed) # tf.random.set_seed(seed) return dataobj def pipe_pad(self, dataobj, paras={}): if paras["值"] is None: if paras["方式"] == "向前": # 再向上填充 dataobj.fillna(method='bfill', inplace=True) elif paras["方式"] == "向后": # 先向下填充 dataobj.fillna(method='ffill', inplace=True) else: raise Exception("paras error {}".format(paras)) else: dataobj.fillna(value=paras["值"], inplace=True) return dataobj def split_columns(self, dataobj, paras): return dataobj[paras] def split_rows(self, dataobj, paras): if isinstance(paras[0], str): outdata = dataobj.loc[paras[0]:] elif isinstance(paras[0], int): outdata = dataobj.iloc[paras[0]:] else: raise Exception("type error {}".format(paras)) if isinstance(paras[1], str): outdata = outdata.loc[:paras[1]] elif isinstance(paras[1], int): outdata = outdata.iloc[:paras[1]] else: raise Exception("type error {}".format(paras)) return outdata def __call__(self, infiles, commands): outdata = [] for infile in infiles: pdobj = pd.read_csv(infile, header=0, encoding="utf8") pdobj.set_index("date", inplace=True) # 顺序处理 for command in commands: tkey = list(command.keys())[0] pdobj = self.funcmap[tkey](pdobj, command[tkey]) outdata.append(pdobj) return outdata class Train_split(object): def __init__(self): self.funcmap = { # 一个数组栏,一个dataframe "拆分": self.split_train_test, } def split_train_test(self, dataobj, paras): outlist = [] if isinstance(paras[0], str): outlist.append(dataobj.loc[:paras[0]]) if len(paras) > 1: outlist.append(dataobj.loc[paras[0]:paras[1]]) outlist.append(dataobj.loc[paras[1]:]) else: outlist.append(dataobj.loc[paras[0]:]) elif isinstance(paras[0], int): outlist.append(dataobj.iloc[:paras[0]]) if len(paras) > 1: outlist.append(dataobj.iloc[paras[0]:paras[1]]) outlist.append(dataobj.iloc[paras[1]:]) else: outlist.append(dataobj.iloc[paras[0]:]) elif isinstance(paras[0], float): tsplit = len(dataobj) tsplit1 = int(tsplit * paras[0]) outlist.append(dataobj.iloc[:tsplit1]) if len(paras) > 1: tsplit2 = int(tsplit * sum(paras)) outlist.append(dataobj.iloc[tsplit1:tsplit2]) outlist.append(dataobj.iloc[tsplit2:]) else: outlist.append(dataobj.iloc[tsplit1:]) else: raise Exception("type error {}".format(paras)) return outlist def __call__(self, infiles, commands): outdata = [] for infile in infiles: pdobj = pd.read_csv(infile, header=0, encoding="utf8") pdobj.set_index("date", inplace=True) # 顺序处理 for command in commands: tkey = list(command.keys())[0] pdobj = self.funcmap[tkey](pdobj, command[tkey]) outdata.append(pdobj) return outdata class SequenceChara(object): def __init__(self): self.funcmap = { "均值n": self.mean_n, "标准差n": self.std_n, "涨幅比n": self.ratio_n, "回撤n": self.draw_n, "最涨n": self.maxrise_n, "夏普n": self.sharp_n, "label_最大n": self.l_max_n, "label_最小n": self.l_min_n, "label_回撤n": self.l_draw_n, "label_最涨n": self.l_maxrise_n, } def mean_n(self, dataobj, n): outdata = dataobj.iloc[:, 0].rolling(window=n, center=False).mean() return outdata def std_n(self, dataobj, n): outdata = dataobj.iloc[:, 0].rolling(window=n, center=False).std() return outdata def ratio_n(self, dataobj, n): outdata = dataobj.iloc[:, 0].rolling(window=n, center=False).apply(lambda x: x[-1] / x[0]) return outdata def draw_n(self, dataobj, n): pricepd = dataobj.iloc[:, 0] maxfallret = pd.Series(index=pricepd.index) for i in range(0, len(dataobj) - n): tmpsec = pricepd[i + 1:i + n + 1] tmpmax = pricepd[i] tmpmin = pricepd[i] tmpdrawdown = [1.0] for t in range(0, n): if tmpsec[t] > tmpmax: tmpmax = tmpsec[t] tmpdrawdown.append(tmpdrawdown[-1]) elif tmpsec[t] <= tmpmin: tmpmin = tmpsec[t] tmpdrawdown.append(tmpmin / tmpmax) else: pass maxfallret[i] = min(tmpdrawdown) return maxfallret def maxrise_n(self, dataobj, n): pricepd = dataobj.iloc[:, 0] maxraiseret =
pd.Series(index=pricepd.index)
pandas.Series
import pandas as pd import numpy as np from scipy.sparse.linalg import svds from skbio import OrdinationResults from skbio.stats.composition import clr import seaborn as sns import matplotlib.pyplot as plt plt.style.use("ggplot") def apca(df): """Performs Aitchison PCA on a feature table. Parameters ---------- df: pd.DataFrame A numeric DataFrame whose rows are "features" and whose columns are "samples." Returns ------- A 3-tuple (U, p, V) where: U: pd.DataFrame Feature loadings. p: pd.DataFrame Proportions of variance explained. V: pd.DataFrame Sample loadings. """ # do A-PCA U, s, V = svds(clr(df), k=2) V = V.T # reverse (see SVDs docs) U = np.flip(U, axis=1) V = np.flip(V, axis=1) s = s[::-1] # Rename columns; we use "Axis 1", etc. to be consistent with the Qurro # interface pcs = min(V.shape) cols = ["Axis {}".format(pc+1) for pc in range(pcs)] # Make DataFrames from the feature (U) and sample (V) loadings U = pd.DataFrame(U[:, :pcs], df.index, cols) V = pd.DataFrame(V[:, :pcs], df.columns, cols) # For clarity, rename top-left cell in both loading DataFrames U.index.name = "FeatureID" V.index.name = "SampleID" # get prop. var. explained p = s**2 / np.sum(s**2) p =
pd.Series(p.T, index=cols)
pandas.Series
import numpy as np import pandas as pd from collections import namedtuple import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.cluster import KMeans from fcutils.maths.geometry import calc_distance_from_point from fcutils.maths.geometry import calc_distance_between_points_in_a_vector_2d, calc_distance_between_points_2d from fcutils.plotting.colors import salmon, colorMap, goldenrod, desaturate_color from fcutils.maths.filtering import median_filter_1d from behaviour.utilities.signals import get_times_signal_high_and_low from analysis.dbase.tables import Session, Tracking, ProcessedMouse """ Bunch of utils to facilitated the loading and processing of locomotion data """ # --------------------------------- Fetchers --------------------------------- # def fetch_tracking_processed(experiment = None, subexperiment = None, mouse = None, injected = None, just_mouse=False): if not just_mouse: q = (Session * ProcessedMouse) else: q = (Session) if experiment is not None: q = q & f'exp_name="{experiment}"' if subexperiment is not None: q = q & f'subname="{subexperiment}"' if mouse is not None: q = q & f'mouse_id="{mouse}"' if injected is not None: q = q * Session.IPinjection & f'injected="{injected}"' if len(q) == 1: df = pd.DataFrame(q.fetch1()) else: df = pd.DataFrame(q.fetch()) if df.empty: raise ValueError("Could not fetch tracking data processed...") else: return df def fetch_tracking(for_bp=True, bp = None, bp1 = None, bp2 = None, experiment = None, subexperiment = None, mouse = None, injected = None): q = (Session * Tracking) if for_bp: q = q * Tracking.BodyPartTracking if bp is not None: q = q & f"bp='{bp}'" else: q = q * Tracking.BodySegmentTracking if bp1 is not None: q = q & f"1='{bp1}'" if bp2 is not None: q = q & f"bp='{bp2}'" if experiment is not None: q = q & f'exp_name="{experiment}"' if subexperiment is not None: q = q & f'subname="{subexperiment}"' if mouse is not None: q = q & f'mouse_id="{mouse}"' if injected is not None: q = q * Session.IPinjection & f'injected="{injected}"' if len(q) == 1: return pd.DataFrame(q.fetch1()) else: return pd.DataFrame(q.fetch()) # --------------------------------- Analysis --------------------------------- # def get_frames_state(tracking): if not len(tracking): return tracking # Standardise try: speed = preprocessing.scale(np.nan_to_num(tracking.speed.values)) angular_velocity = preprocessing.scale(np.nan_to_num(tracking.ang_vel.values)) except Exception as e: speed = preprocessing.scale(np.nan_to_num(tracking.speed.values[0])) angular_velocity = preprocessing.scale(np.nan_to_num(tracking.ang_vel.values[0])) # Fit kmeans dataset = pd.DataFrame(dict(speed=speed, angular_velocity=angular_velocity)) kmeans = KMeans(n_clusters = 10, init = 'k-means++', random_state = 42) res = kmeans.fit(dataset) # Get cluster and state y_kmeans = kmeans.fit_predict(dataset) tracking['cluster'] = y_kmeans dataset['cluster'] = y_kmeans # Get state from clusters clusters_means = round(dataset.groupby('cluster').mean(),1) right_clusters = clusters_means.loc[clusters_means.angular_velocity < -.5] right_clusters_index = list(right_clusters.index.values) left_clusters = clusters_means.loc[clusters_means.angular_velocity > .5] left_clusters_index = list(left_clusters.index.values) clusters = dict( left_turn = 'left', right_turn = 'right', ) running_clusters = clusters_means.loc[ (clusters_means.angular_velocity > -.5) & (clusters_means.angular_velocity < .5)].sort_values('speed') for i, idx in enumerate(running_clusters.index.values): clusters[f'locomotion_{i}'] = idx clusters_lookup = {v:k for k,v in clusters.items()} # Clean up states y_kmeans = ['left' if k in left_clusters_index else 'right' if k in right_clusters_index else k for k in y_kmeans] state = [clusters_lookup[v] for v in y_kmeans] tracking['state'] = state return tracking def get_when_in_center(tracking, center, radius): xy = np.vstack([tracking.x, tracking.y]) dist = calc_distance_from_point(xy.T, center) to_exclude = np.where(dist > radius)[0] in_center = np.ones_like(tracking.x) in_center[to_exclude] = 0 tracking['in_center'] = in_center return tracking def get_center_bouts(datasets): all_bouts = {} for dn, (dataset, datas) in enumerate(datasets.items()): bts = dict(start=[], end=[], speed=[], orientation=[], ang_vel=[], x=[], y=[], duration=[], distance=[], state=[], in_center=[], mouse=[], abs_ang_displ=[], ang_displ=[]) for mouse,data in datas.items(): in_center = data.in_center.values onsets, offsets = get_times_signal_high_and_low(in_center, th=.1) if offsets[0] < onsets[0]: offsets = offsets[1:] # Loop over bouts for onset, offset in zip(onsets, offsets): onset += 1 if offset < onset: raise ValueError elif offset - onset < 5: continue # skip bouts that are too short bts['start'].append(onset) bts['end'].append(offset) bts['duration'].append(offset - onset) bts['speed'].append(data.speed.values[onset:offset]) bts['distance'].append(np.sum(data.speed.values[onset:offset])) bts['orientation'].append(data.orientation.values[onset:offset]) bts['ang_vel'].append(data.ang_vel.values[onset:offset]) bts['abs_ang_displ'].append(np.sum(np.abs(data.ang_vel.values[onset:offset]))) bts['ang_displ'].append(np.sum(data.ang_vel.values[onset:offset])) bts['x'].append(data.x.values[onset:offset]) bts['y'].append(data.y.values[onset:offset]) bts['state'].append(data.state.values[onset:offset]) bts['in_center'].append(data.in_center.values[onset:offset]) bts['mouse'].append(mouse) all_bouts[dataset] =
pd.DataFrame(bts)
pandas.DataFrame
from typing import Dict from typing import Union import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset from etna.transforms import ResampleWithDistributionTransform DistributionDict = Dict[str, pd.DataFrame] @pytest.fixture def daily_exog_ts() -> Dict[str, Union[TSDataset, DistributionDict]]: df1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_1", "target": 1, } ) df2 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_2", "target": [1] + 23 * [0] + [1] + 23 * [0], } ) df = pd.concat([df1, df2], ignore_index=True) df_exog1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="D", periods=3), "segment": "segment_1", "regressor_exog": 2, } ) df_exog2 = pd.DataFrame( { "timestamp":
pd.date_range(start="2020-01-05", freq="D", periods=3)
pandas.date_range
# # Copyright 2021 Grupo de Sistemas Inteligentes, DIT, Universidad Politecnica de Madrid (UPM) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processing of the PL05 dataset. URL: http://www.cs.cornell.edu/people/pabo/movie-review-data/ REF: <NAME> and <NAME> Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales Proceedings of ACL 2005. """ import os import logging import codecs import pandas as pd import numpy as np from glob import glob from gsitk.datasets import utils from gsitk.datasets.datasets import Dataset from gsitk.preprocess import normalize logger = logging.getLogger(__name__) class Pl05(Dataset): def normalize_data(self): dataset =
pd.DataFrame(columns=['id', 'text', 'polarity'])
pandas.DataFrame
### preprocessing """ code is taken from tunguz - Surprise Me 2! https://www.kaggle.com/tunguz/surprise-me-2/code """ import glob, re import numpy as np import pandas as pd from sklearn import * from datetime import datetime import matplotlib.pyplot as plt data = { 'tra': pd.read_csv('../input/air_visit_data.csv'), 'as': pd.read_csv('../input/air_store_info.csv'), 'hs': pd.read_csv('../input/hpg_store_info.csv'), 'ar': pd.read_csv('../input/air_reserve.csv'), 'hr': pd.read_csv('../input/hpg_reserve.csv'), 'id': pd.read_csv('../input/store_id_relation.csv'), 'tes':
pd.read_csv('../input/sample_submission.csv')
pandas.read_csv
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ df = pd.read_csv(filename).drop_duplicates() # remove rows with invalid values: to_remove = pd.concat([df.loc[(df.bedrooms <= 0) & (df.bathrooms <= 0)], df.loc[(df.sqft_living <= 0) | (df.sqft_lot <= 0) | (df.sqft_above <= 0) | (df.sqft_basement < 0) | (df.sqft_living15 < 0) | (df.sqft_lot15 < 0) | (df.price < 0) | (df.price > 5_000_000) | (df.price.isnull())]]).drop_duplicates() df.drop(to_remove.index, inplace=True) # parse the date column: df['date'] =
pd.to_datetime(df.date, errors='coerce')
pandas.to_datetime
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2 assert_panel_equal(result, expected) # reduction to DataFrame result = self.panel.apply(lambda x: x.dtype, axis='items') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.minor_axis) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='major_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.minor_axis, columns=self.panel.items) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='minor_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.items) assert_frame_equal(result, expected) # reductions via other dims expected = self.panel.sum(0) result = self.panel.apply(lambda x: x.sum(), axis='items') assert_frame_equal(result, expected) expected = self.panel.sum(1) result = self.panel.apply(lambda x: x.sum(), axis='major_axis') assert_frame_equal(result, expected) expected = self.panel.sum(2) result = self.panel.apply(lambda x: x.sum(), axis='minor_axis') assert_frame_equal(result, expected) # pass kwargs result = self.panel.apply(lambda x, y: x.sum() + y, axis='items', y=5) expected = self.panel.sum(0) + 5 assert_frame_equal(result, expected) def test_apply_slabs(self): # same shape as original result = self.panel.apply(lambda x: x * 2, axis=['items', 'major_axis']) expected = (self.panel * 2).transpose('minor_axis', 'major_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['items', 'minor_axis']) expected = (self.panel * 2).transpose('major_axis', 'minor_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'minor_axis']) expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'major_axis']) assert_panel_equal(result, expected) # reductions result = self.panel.apply(lambda x: x.sum(0), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(1).T assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.sum(1), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(0) assert_frame_equal(result, expected) # transforms f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T # make sure that we don't trigger any warnings with tm.assert_produces_warning(False): result = self.panel.apply(f, axis=['items', 'major_axis']) expected = Panel(dict([(ax, f(self.panel.loc[:, :, ax])) for ax in self.panel.minor_axis])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['major_axis', 'minor_axis']) expected = Panel(dict([(ax, f(self.panel.loc[ax])) for ax in self.panel.items])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['minor_axis', 'items']) expected = Panel(dict([(ax, f(self.panel.loc[:, ax])) for ax in self.panel.major_axis])) assert_panel_equal(result, expected) # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply(lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) # this ok result = self.panel.reindex() assert_panel_equal(result, self.panel) self.assertFalse(result is self.panel) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, method='pad') assert_frame_equal(larger.major_xs(self.panel.major_axis[1]), smaller.major_xs(smaller_major[0])) # don't necessarily copy result = self.panel.reindex(major=self.panel.major_axis, copy=False) assert_panel_equal(result, self.panel) self.assertTrue(result is self.panel) def test_reindex_multi(self): # with and without copy full reindexing result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) self.assertIs(result.items, self.panel.items) self.assertIs(result.major_axis, self.panel.major_axis) self.assertIs(result.minor_axis, self.panel.minor_axis) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) assert_panel_equal(result, self.panel) # multi-axis indexing consistency # GH 5900 df = DataFrame(np.random.randn(4, 3)) p =
Panel({'Item1': df})
pandas.core.panel.Panel
# %% import packages import numpy as np import pandas as pd import itertools import warnings import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import Normalize from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.stattools import acf, pacf from statsmodels.tsa.stattools import adfuller import statsmodels.api as sm from pandas.api.types import CategoricalDtype from scipy.stats import boxcox def timeStampToDays(series: pd.Series) -> pd.Series: """ Convert a datetime series into float series with the number of days Args: series (pd.Series): input pandas series. Returns: result (pd.Series): pandas series with float of days. """ D = series.dt.components['days'] H = series.dt.components['hours'] M = series.dt.components['minutes'] result = D + (H / 24) + (M / (60 * 24)) return result def sampleTimeSeries(series: pd.Series, sampleInterval: str) -> pd.Series: """ Sample a pandas series using a sampling interval Args: series (pd.Series): input pandas datetime series. sampleInterval (str): type of sampling required. Raises: ValueError: error in case of invalid sampling parameter. Returns: series (TYPE): Output sampled seried. """ if sampleInterval not in ['day', 'week', 'month', 'year']: raise ValueError(f"""sampleInterval parameter: {sampleInterval} not a valid sample interval. Choose between ['day', 'week', 'month', 'year']""") if sampleInterval == 'day': series = series.dt.strftime('%Y-%j') elif sampleInterval == 'week': series = series.dt.strftime('%Y-%U') elif sampleInterval == 'month': series = series.dt.strftime('%Y-%m') elif sampleInterval == 'year': series = series.dt.strftime('%Y') return series def groupPerWeek(df: pd.DataFrame, timeVariable: str, groupVariable: str, groupType: str) -> pd.DataFrame: """ Perform a weekly groupby based on a datetime variable, applying a specific type of grouping Args: df (pd.DataFrame): input pandas dataframe. timeVariable (str): column name corresponding to the time variable. groupVariable (str): column name corresponding to the grouping variable. groupType (str): type of grouping function. Raises: ValueError: error in case of invalid sampling parameter. Returns: df (TYPE): Output grouped DataFrame. """ if groupType not in ['count', 'sum']: raise ValueError(f"""groupType parameter: {groupType} not a valid grouping function. Choose between ['count', 'sum']""") # convert to dataframe if a series if isinstance(df, pd.Series): df = pd.DataFrame([[df.index.values.T, df.values]], columns=[timeVariable, groupVariable]) df['DatePeriod'] = pd.to_datetime(df[timeVariable]) - pd.to_timedelta(7, unit='d') if groupType == 'count': df = df.groupby([pd.Grouper(key=timeVariable, freq='W-MON')])[groupVariable].size() elif groupType == 'sum': df = df.groupby([pd.Grouper(key=timeVariable, freq='W-MON')])[groupVariable].sum() df = df.sort_index() return df def groupPerMonth(df: pd.DataFrame, timeVariable: str, groupVariable: str, groupType: str) -> pd.DataFrame: """ Perform a monthly groupby based on a datetime variable, applying a specific type of grouping Args: df (pd.DataFrame): input pandas dataframe. timeVariable (str): column name corresponding to the time variable. groupVariable (str): column name corresponding to the grouping variable. groupType (str): type of grouping function. Raises: ValueError: error in case of invalid sampling parameter. Returns: df (pd.DataFrame): Output grouped DataFrame. """ if groupType not in ['count', 'sum']: raise ValueError(f"""groupType parameter: {groupType} not a valid grouping function. Choose between ['count', 'sum']""") if isinstance(df, pd.Series): # convert to dataframe if a series df = pd.DataFrame([[df.index.values.T, df.values]], columns=[timeVariable, groupVariable]) # df['DatePeriod'] = pd.to_datetime(df[timeVariable]) - pd.to_timedelta(7, unit='d') if groupType == 'count': df = df.groupby([pd.Grouper(key=timeVariable, freq='M')])[groupVariable].size() elif groupType == 'sum': df = df.groupby([pd.Grouper(key=timeVariable, freq='M')])[groupVariable].sum() df = df.sort_index() return df def groupPerWeekday(df: pd.DataFrame, timeVariable: str, groupVariable: str) -> pd.DataFrame: """ Perform a groupby per weekday based on a datetime variable, applying a specific type of grouping Args: df (pd.DataFrame): input pandas dataframe. timeVariable (str): column name corresponding to the time variable. groupVariable (str): column name corresponding to the grouping variable. Returns: D_grouped (pd.DataFrame): Output grouped DataFrame. """ cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] cat_type =
CategoricalDtype(categories=cats, ordered=True)
pandas.api.types.CategoricalDtype
""" GridFrame -- subclass of wx.Frame. Contains grid and buttons to manipulate it. GridBuilder -- data methods for GridFrame (add data to frame, save it, etc.) """ import wx import pandas as pd import numpy as np from dialogs import drop_down_menus3 as drop_down_menus from dialogs import pmag_widgets as pw from dialogs import magic_grid3 as magic_grid #from pmagpy.controlled_vocabularies3 import vocab import pmagpy.contribution_builder as cb class GridFrame(wx.Frame): # class GridFrame(wx.ScrolledWindow): """ make_magic """ def __init__(self, contribution, WD=None, frame_name="grid frame", panel_name="grid panel", parent=None, exclude_cols=(), huge=False, main_frame=None): self.parent = parent self.main_frame = main_frame wx.GetDisplaySize() title = 'Edit {} data'.format(panel_name) super(GridFrame, self).__init__(parent=parent, id=wx.ID_ANY, name=frame_name, title=title) wait = wx.BusyInfo("Please wait, working...") wx.SafeYield() self.remove_cols_mode = False self.deleteRowButton = None self.selected_rows = set() self.contribution = contribution self.huge = huge self.df_slice = None self.exclude_cols = exclude_cols self.error_frame = None self.panel = wx.Panel(self, name=panel_name, size=wx.GetDisplaySize()) self.grid_type = str(panel_name) dm = self.contribution.data_model.dm[self.grid_type] dm['str_validations'] = dm['validations'].str.join(", ") # these are the headers that are required no matter what for this datatype self.reqd_headers = dm[dm['str_validations'].str.contains("required\(\)").fillna(False)].index self.dm = dm if self.parent: self.Bind(wx.EVT_WINDOW_DESTROY, self.parent.Parent.on_close_grid_frame) if self.grid_type == 'ages': self.child_type = None self.parent_type = None else: try: child_ind = self.contribution.ancestry.index(self.grid_type) - 1 if child_ind < 0: self.child_type = None self.child_type = self.contribution.ancestry[child_ind] parent_ind = self.contribution.ancestry.index(self.grid_type) + 1 if parent_ind >= len(self.contribution.ancestry): self.parent_type = None else: self.parent_type = self.contribution.ancestry[parent_ind] except ValueError: self.child_type = None self.parent_type = None self.WD = WD self.InitUI() # remove 'level' column from age grid if present if self.grid_type == 'ages': try: ind = self.grid.col_labels.index('level') self.remove_col_label(col=ind) except ValueError: pass # if grid is empty except for defaults, reset grid.changes if self.grid_builder.current_grid_empty(): self.grid.changes = set() del wait ## Initialization functions def InitUI(self): """ initialize window """ self.main_sizer = wx.BoxSizer(wx.VERTICAL) if self.grid_type in self.contribution.tables: dataframe = self.contribution.tables[self.grid_type] else: dataframe = None self.grid_builder = GridBuilder(self.contribution, self.grid_type, self.panel, parent_type=self.parent_type, reqd_headers=self.reqd_headers, exclude_cols=self.exclude_cols, huge=self.huge) self.grid = self.grid_builder.make_grid() self.grid.InitUI() ## Column management buttons self.add_cols_button = wx.Button(self.panel, label="Add additional columns", name='add_cols_btn', size=(170, 20)) self.Bind(wx.EVT_BUTTON, self.on_add_cols, self.add_cols_button) self.remove_cols_button = wx.Button(self.panel, label="Remove columns", name='remove_cols_btn', size=(170, 20)) self.Bind(wx.EVT_BUTTON, self.on_remove_cols, self.remove_cols_button) ## Row management buttons self.remove_row_button = wx.Button(self.panel, label="Remove last row", name='remove_last_row_btn') self.Bind(wx.EVT_BUTTON, self.on_remove_row, self.remove_row_button) many_rows_box = wx.BoxSizer(wx.HORIZONTAL) self.add_many_rows_button = wx.Button(self.panel, label="Add row(s)", name='add_many_rows_btn') self.rows_spin_ctrl = wx.SpinCtrl(self.panel, value='1', initial=1, name='rows_spin_ctrl') many_rows_box.Add(self.add_many_rows_button, flag=wx.ALIGN_CENTRE) many_rows_box.Add(self.rows_spin_ctrl) self.Bind(wx.EVT_BUTTON, self.on_add_rows, self.add_many_rows_button) self.deleteRowButton = wx.Button(self.panel, id=-1, label='Delete selected row(s)', name='delete_row_btn') self.Bind(wx.EVT_BUTTON, lambda event: self.on_remove_row(event, False), self.deleteRowButton) self.deleteRowButton.Disable() # measurements table should not be able to add new rows # that should be done elsewhere if self.huge: self.add_many_rows_button.Disable() self.rows_spin_ctrl.Disable() self.remove_row_button.Disable() # can't remove cols (seg fault), but can add them #self.add_cols_button.Disable() self.remove_cols_button.Disable() ## Data management buttons self.importButton = wx.Button(self.panel, id=-1, label='Import MagIC-format file', name='import_btn') self.Bind(wx.EVT_BUTTON, self.onImport, self.importButton) self.exitButton = wx.Button(self.panel, id=-1, label='Save and close grid', name='save_and_quit_btn') self.Bind(wx.EVT_BUTTON, self.onSave, self.exitButton) self.cancelButton = wx.Button(self.panel, id=-1, label='Cancel', name='cancel_btn') self.Bind(wx.EVT_BUTTON, self.onCancelButton, self.cancelButton) self.Bind(wx.EVT_CLOSE, self.onCancelButton) ## Input/output buttons self.copyButton = wx.Button(self.panel, id=-1, label="Start copy mode", name="copy_mode_btn") self.Bind(wx.EVT_BUTTON, self.onCopyMode, self.copyButton) self.selectAllButton = wx.Button(self.panel, id=-1, label="Copy all cells", name="select_all_btn") self.Bind(wx.EVT_BUTTON, self.onSelectAll, self.selectAllButton) self.copySelectionButton = wx.Button(self.panel, id=-1, label="Copy selected cells", name="copy_selection_btn") self.Bind(wx.EVT_BUTTON, self.onCopySelection, self.copySelectionButton) self.copySelectionButton.Disable() ## Help message and button # button self.toggle_help_btn = wx.Button(self.panel, id=-1, label="Show help", name='toggle_help_btn') self.Bind(wx.EVT_BUTTON, self.toggle_help, self.toggle_help_btn) # message self.help_msg_boxsizer = wx.StaticBoxSizer(wx.StaticBox(self.panel, -1, name='help_msg_boxsizer'), wx.VERTICAL) if self.grid_type == 'measurements': self.default_msg_text = "Edit measurements here.\nIn general, measurements should be imported directly into Pmag GUI,\nwhich has protocols for converting many lab formats into the MagIC format.\nIf we are missing your particular lab format, please let us know: https://github.com/PmagPy/PmagPy/issues.\nThis grid is just meant for looking at your measurements and doing small edits.\nCurrently, you can't add/remove rows here. You can add columns and edit cell values." else: self.default_msg_text = 'Edit {} here.\nYou can add or remove both rows and columns, however required columns may not be deleted.\nControlled vocabularies are indicated by **, and will have drop-down-menus.\nSuggested vocabularies are indicated by ^^, and also have drop-down-menus.\nTo edit all values in a column, click the column header.\nYou can cut and paste a block of cells from an Excel-like file.\nJust click the top left cell and use command "v".'.format(self.grid_type) txt = '' if self.grid_type == 'locations': txt = '\n\nNote: you can fill in location start/end latitude/longitude here.\nHowever, if you add sites in step 2, the program will calculate those values automatically,\nbased on site latitudes/logitudes.\nThese values will be written to your upload file.' if self.grid_type == 'samples': txt = "\n\nNote: you can fill in lithology, class, and type for each sample here.\nHowever, if the sample's class, lithology, and type are the same as its parent site,\nthose values will propagate down, and will be written to your sample file automatically." if self.grid_type == 'specimens': txt = "\n\nNote: you can fill in lithology, class, and type for each specimen here.\nHowever, if the specimen's class, lithology, and type are the same as its parent sample,\nthose values will propagate down, and will be written to your specimen file automatically." if self.grid_type == 'ages': txt = "\n\nNote: only ages for which you provide data will be written to your upload file." self.default_msg_text += txt self.msg_text = wx.StaticText(self.panel, label=self.default_msg_text, style=wx.TE_CENTER, name='msg text') self.help_msg_boxsizer.Add(self.msg_text) self.help_msg_boxsizer.ShowItems(False) ## Code message and button # button self.toggle_codes_btn = wx.Button(self.panel, id=-1, label="Show method codes", name='toggle_codes_btn') self.Bind(wx.EVT_BUTTON, self.toggle_codes, self.toggle_codes_btn) # message self.code_msg_boxsizer = pw.MethodCodeDemystifier(self.panel, self.contribution.vocab) self.code_msg_boxsizer.ShowItems(False) ## Add content to sizers self.hbox = wx.BoxSizer(wx.HORIZONTAL) col_btn_vbox = wx.StaticBoxSizer(wx.StaticBox(self.panel, -1, label='Columns', name='manage columns'), wx.VERTICAL) row_btn_vbox = wx.StaticBoxSizer(wx.StaticBox(self.panel, -1, label='Rows', name='manage rows'), wx.VERTICAL) self.main_btn_vbox = wx.StaticBoxSizer(wx.StaticBox(self.panel, -1, label='Manage data', name='manage data'), wx.VERTICAL) input_output_vbox = wx.StaticBoxSizer(wx.StaticBox(self.panel, -1, label='In/Out', name='manage in out'), wx.VERTICAL) col_btn_vbox.Add(self.add_cols_button, flag=wx.ALL, border=5) col_btn_vbox.Add(self.remove_cols_button, flag=wx.ALL, border=5) row_btn_vbox.Add(many_rows_box, flag=wx.ALL, border=5) row_btn_vbox.Add(self.remove_row_button, flag=wx.ALL, border=5) row_btn_vbox.Add(self.deleteRowButton, flag=wx.ALL, border=5) self.main_btn_vbox.Add(self.importButton, flag=wx.ALL, border=5) self.main_btn_vbox.Add(self.exitButton, flag=wx.ALL, border=5) self.main_btn_vbox.Add(self.cancelButton, flag=wx.ALL, border=5) input_output_vbox.Add(self.copyButton, flag=wx.ALL, border=5) input_output_vbox.Add(self.selectAllButton, flag=wx.ALL, border=5) input_output_vbox.Add(self.copySelectionButton, flag=wx.ALL, border=5) self.hbox.Add(col_btn_vbox) self.hbox.Add(row_btn_vbox) self.hbox.Add(self.main_btn_vbox) self.hbox.Add(input_output_vbox) #self.panel.Bind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK, self.onLeftClickLabel, self.grid) self.grid.Bind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK, self.onLeftClickLabel, self.grid) # self.Bind(wx.EVT_KEY_DOWN, self.on_key_down) self.panel.Bind(wx.EVT_TEXT_PASTE, self.do_fit) # add actual data! self.grid_builder.add_data_to_grid(self.grid, self.grid_type) # fill in some default values self.grid_builder.fill_defaults() # set scrollbars self.grid.set_scrollbars() ## this would be a way to prevent editing ## some cells in age grid. ## with multiple types of ages, though, ## this doesn't make much sense #if self.grid_type == 'ages': # attr = wx.grid.GridCellAttr() # attr.SetReadOnly(True) # self.grid.SetColAttr(1, attr) self.drop_down_menu = drop_down_menus.Menus(self.grid_type, self.contribution, self.grid) self.grid_box = wx.StaticBoxSizer(wx.StaticBox(self.panel, -1, name='grid container'), wx.VERTICAL) self.grid_box.Add(self.grid, 1, flag=wx.ALL|wx.EXPAND, border=5) # final layout, set size self.main_sizer.Add(self.hbox, flag=wx.ALL|wx.ALIGN_CENTER,#|wx.SHAPED, border=20) self.main_sizer.Add(self.toggle_help_btn, 0, flag=wx.BOTTOM|wx.ALIGN_CENTRE,#|wx.SHAPED, border=5) self.main_sizer.Add(self.help_msg_boxsizer, 0, flag=wx.BOTTOM|wx.ALIGN_CENTRE, border=10) self.main_sizer.Add(self.toggle_codes_btn, 0, flag=wx.BOTTOM|wx.ALIGN_CENTRE,#|wx.SHAPED, border=5) self.main_sizer.Add(self.code_msg_boxsizer, 0, flag=wx.BOTTOM|wx.ALIGN_CENTRE,#|wx.SHAPED, border=5) self.main_sizer.Add(self.grid_box, 2, flag=wx.ALL|wx.ALIGN_CENTER|wx.EXPAND, border=10) self.panel.SetSizer(self.main_sizer) panel_sizer = wx.BoxSizer(wx.VERTICAL) panel_sizer.Add(self.panel, 1, wx.EXPAND) self.SetSizer(panel_sizer) panel_sizer.Fit(self) ## this keeps sizing correct if the user resizes the window manually #self.Bind(wx.EVT_SIZE, self.do_fit) # self.Centre() self.Show() def on_key_down(self, event): """ If user does command v, re-size window in case pasting has changed the content size. """ keycode = event.GetKeyCode() meta_down = event.MetaDown() or event.GetCmdDown() if keycode == 86 and meta_down: # treat it as if it were a wx.EVT_TEXT_SIZE self.do_fit(event) def do_fit(self, event, min_size=None): """ Re-fit the window to the size of the content. """ #self.grid.ShowScrollbars(wx.SHOW_SB_NEVER, wx.SHOW_SB_NEVER) if event: event.Skip() self.main_sizer.Fit(self) disp_size = wx.GetDisplaySize() actual_size = self.GetSize() # if there isn't enough room to display new content # resize the frame if disp_size[1] - 75 < actual_size[1]: self.SetSize((actual_size[0], disp_size[1] * .95)) # make sure you adhere to a minimum size if min_size: actual_size = self.GetSize() larger_width = max([actual_size[0], min_size[0]]) larger_height = max([actual_size[1], min_size[1]]) if larger_width > actual_size[0] or larger_height > actual_size[1]: self.SetSize((larger_width, larger_height)) self.Centre() # this forces a resize which works s = self.GetSize() self.SetSize((0,0)) self.SetSize(s) def toggle_help(self, event, mode=None): """ Show/hide help message on help button click. """ # if mode == 'open', show no matter what. # if mode == 'close', close. otherwise, change state btn = self.toggle_help_btn shown = self.help_msg_boxsizer.GetStaticBox().IsShown() # if mode is specified, do that mode if mode == 'open': self.help_msg_boxsizer.ShowItems(True) btn.SetLabel('Hide help') elif mode == 'close': self.help_msg_boxsizer.ShowItems(False) btn.SetLabel('Show help') # otherwise, simply toggle states else: if shown: self.help_msg_boxsizer.ShowItems(False) btn.SetLabel('Show help') else: self.help_msg_boxsizer.ShowItems(True) btn.SetLabel('Hide help') self.do_fit(None) def toggle_codes(self, event): """ Show/hide method code explanation widget on button click """ btn = event.GetEventObject() if btn.Label == 'Show method codes': self.code_msg_boxsizer.ShowItems(True) btn.SetLabel('Hide method codes') else: self.code_msg_boxsizer.ShowItems(False) btn.SetLabel('Show method codes') self.do_fit(None) def show_errors(self, event): from dialogs import thellier_gui_dialogs import os error_file = os.path.join(self.WD, self.grid_type + "_errors.txt") if not os.path.exists(error_file): pw.simple_warning("No error file for this grid") return frame = thellier_gui_dialogs.MyForm(0, error_file) frame.Show() self.error_frame = frame # frame should be destroyed when grid frame is ## Grid event methods def remove_col_label(self, event=None, col=None): """ check to see if column is required if it is not, delete it from grid """ if event: col = event.GetCol() if not col: return label = self.grid.GetColLabelValue(col) if '**' in label: label = label.strip('**') elif '^^' in label: label = label.strip('^^') if label in self.reqd_headers: pw.simple_warning("That header is required, and cannot be removed") return False else: print('That header is not required:', label) # remove column from wxPython grid self.grid.remove_col(col) # remove column from DataFrame if present if self.grid_type in self.contribution.tables: if label in self.contribution.tables[self.grid_type].df.columns: del self.contribution.tables[self.grid_type].df[label] # causes resize on each column header delete # can leave this out if we want..... self.main_sizer.Fit(self) def on_add_cols(self, event): """ Show simple dialog that allows user to add a new column name """ col_labels = self.grid.col_labels dia = pw.ChooseOne(self, yes="Add single columns", no="Add groups") result1 = dia.ShowModal() if result1 == wx.ID_CANCEL: return elif result1 == wx.ID_YES: items = sorted([col_name for col_name in self.dm.index if col_name not in col_labels]) dia = pw.HeaderDialog(self, 'columns to add', items1=list(items), groups=[]) dia.Centre() result2 = dia.ShowModal() else: groups = self.dm['group'].unique() dia = pw.HeaderDialog(self, 'groups to add', items1=list(groups), groups=True) dia.Centre() result2 = dia.ShowModal() new_headers = [] if result2 == 5100: new_headers = dia.text_list # if there is nothing to add, quit if not new_headers: return if result1 == wx.ID_YES: # add individual headers errors = self.add_new_grid_headers(new_headers) else: # add header groups errors = self.add_new_header_groups(new_headers) if errors: errors_str = ', '.join(errors) pw.simple_warning('You are already using the following headers: {}\nSo they will not be added'.format(errors_str)) # problem: if widgets above the grid are too wide, # the grid does not re-size when adding columns # awkward solution (causes flashing): if self.grid.GetWindowStyle() != wx.DOUBLE_BORDER: self.grid.SetWindowStyle(wx.DOUBLE_BORDER) self.main_sizer.Fit(self) self.grid.SetWindowStyle(wx.NO_BORDER) self.Centre() self.main_sizer.Fit(self) # self.grid.changes = set(range(self.grid.GetNumberRows())) dia.Destroy() def add_new_header_groups(self, groups): """ compile list of all headers belonging to all specified groups eliminate all headers that are already included add any req'd drop-down menus return errors """ already_present = [] for group in groups: col_names = self.dm[self.dm['group'] == group].index for col in col_names: if col not in self.grid.col_labels: col_number = self.grid.add_col(col) # add to appropriate headers list # add drop down menus for user-added column if col in self.contribution.vocab.vocabularies: self.drop_down_menu.add_drop_down(col_number, col) elif col in self.contribution.vocab.suggested: self.drop_down_menu.add_drop_down(col_number, col) elif col in ['specimen', 'sample', 'site', 'location', 'specimens', 'samples', 'sites']: self.drop_down_menu.add_drop_down(col_number, col) elif col == 'experiments': self.drop_down_menu.add_drop_down(col_number, col) if col == "method_codes": self.drop_down_menu.add_method_drop_down(col_number, col) else: already_present.append(col) return already_present def add_new_grid_headers(self, new_headers): """ Add in all user-added headers. If those new headers depend on other headers, add the other headers too. """ already_present = [] for name in new_headers: if name: if name not in self.grid.col_labels: col_number = self.grid.add_col(name) # add to appropriate headers list # add drop down menus for user-added column if name in self.contribution.vocab.vocabularies: self.drop_down_menu.add_drop_down(col_number, name) elif name in self.contribution.vocab.suggested: self.drop_down_menu.add_drop_down(col_number, name) elif name in ['specimen', 'sample', 'site', 'specimens', 'samples', 'sites']: self.drop_down_menu.add_drop_down(col_number, name) elif name == 'experiments': self.drop_down_menu.add_drop_down(col_number, name) if name == "method_codes": self.drop_down_menu.add_method_drop_down(col_number, name) else: already_present.append(name) #pw.simple_warning('You are already using column header: {}'.format(name)) return already_present def on_remove_cols(self, event): """ enter 'remove columns' mode """ # open the help message self.toggle_help(event=None, mode='open') # first unselect any selected cols/cells self.remove_cols_mode = True self.grid.ClearSelection() self.remove_cols_button.SetLabel("end delete column mode") # change button to exit the delete columns mode self.Unbind(wx.EVT_BUTTON, self.remove_cols_button) self.Bind(wx.EVT_BUTTON, self.exit_col_remove_mode, self.remove_cols_button) # then disable all other buttons for btn in [self.add_cols_button, self.remove_row_button, self.add_many_rows_button]: btn.Disable() # then make some visual changes self.msg_text.SetLabel("Remove grid columns: click on a column header to delete it.\nRequired headers for {} may not be deleted.".format(self.grid_type)) self.help_msg_boxsizer.Fit(self.help_msg_boxsizer.GetStaticBox()) self.main_sizer.Fit(self) self.grid.SetWindowStyle(wx.DOUBLE_BORDER) self.grid_box.GetStaticBox().SetWindowStyle(wx.DOUBLE_BORDER) self.grid.Refresh() self.main_sizer.Fit(self) # might not need this one self.grid.changes = set(range(self.grid.GetNumberRows())) def on_add_rows(self, event): """ add rows to grid """ num_rows = self.rows_spin_ctrl.GetValue() #last_row = self.grid.GetNumberRows() for row in range(num_rows): self.grid.add_row() #if not self.grid.changes: # self.grid.changes = set([]) #self.grid.changes.add(last_row) #last_row += 1 self.main_sizer.Fit(self) def on_remove_row(self, event, row_num=-1): """ Remove specified grid row. If no row number is given, remove the last row. """ text = "Are you sure? If you select delete you won't be able to retrieve these rows..." dia = pw.ChooseOne(self, "Yes, delete rows", "Leave rows for now", text) dia.Centre() result = dia.ShowModal() if result == wx.ID_NO: return default = (255, 255, 255, 255) if row_num == -1: # unhighlight any selected rows: for row in self.selected_rows: attr = wx.grid.GridCellAttr() attr.SetBackgroundColour(default) self.grid.SetRowAttr(row, attr) row_num = self.grid.GetNumberRows() - 1 self.deleteRowButton.Disable() self.selected_rows = {row_num} # remove row(s) from the contribution df = self.contribution.tables[self.grid_type].df row_nums = list(range(len(df))) df = df.iloc[[i for i in row_nums if i not in self.selected_rows]] self.contribution.tables[self.grid_type].df = df # now remove row(s) from grid # delete rows, adjusting the row # appropriately as you delete for num, row in enumerate(self.selected_rows): row -= num if row < 0: row = 0 self.grid.remove_row(row) attr = wx.grid.GridCellAttr() attr.SetBackgroundColour(default) self.grid.SetRowAttr(row, attr) # reset the grid self.selected_rows = set() self.deleteRowButton.Disable() self.grid.Refresh() self.main_sizer.Fit(self) def exit_col_remove_mode(self, event): """ go back from 'remove cols' mode to normal """ # close help messge self.toggle_help(event=None, mode='close') # update mode self.remove_cols_mode = False # re-enable all buttons for btn in [self.add_cols_button, self.remove_row_button, self.add_many_rows_button]: btn.Enable() # unbind grid click for deletion self.grid.Unbind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK) # undo visual cues self.grid.SetWindowStyle(wx.DEFAULT) self.grid_box.GetStaticBox().SetWindowStyle(wx.DEFAULT) self.msg_text.SetLabel(self.default_msg_text) self.help_msg_boxsizer.Fit(self.help_msg_boxsizer.GetStaticBox()) self.main_sizer.Fit(self) # re-bind self.remove_cols_button self.Bind(wx.EVT_BUTTON, self.on_remove_cols, self.remove_cols_button) self.remove_cols_button.SetLabel("Remove columns") def onSelectRow(self, event): """ Highlight or unhighlight a row for possible deletion. """ grid = self.grid row = event.Row default = (255, 255, 255, 255) highlight = (191, 216, 216, 255) cell_color = grid.GetCellBackgroundColour(row, 0) attr = wx.grid.GridCellAttr() if cell_color == default: attr.SetBackgroundColour(highlight) self.selected_rows.add(row) else: attr.SetBackgroundColour(default) try: self.selected_rows.remove(row) except KeyError: pass if self.selected_rows and self.deleteRowButton: self.deleteRowButton.Enable() else: self.deleteRowButton.Disable() grid.SetRowAttr(row, attr) grid.Refresh() def onLeftClickLabel(self, event): """ When user clicks on a grid label, determine if it is a row label or a col label. Pass along the event to the appropriate function. (It will either highlight a column for editing all values, or highlight a row for deletion). """ if event.Col == -1 and event.Row == -1: pass if event.Row < 0: if self.remove_cols_mode: self.remove_col_label(event) else: self.drop_down_menu.on_label_click(event) else: if event.Col < 0 and self.grid_type != 'age': self.onSelectRow(event) ## Meta buttons -- cancel & save functions def onImport(self, event): """ Import a MagIC-format file """ if self.grid.changes: print("-W- Your changes will be overwritten...") wind = pw.ChooseOne(self, "Import file anyway", "Save grid first", "-W- Your grid has unsaved changes which will be overwritten if you import a file now...") wind.Centre() res = wind.ShowModal() # save grid first: if res == wx.ID_NO: self.onSave(None, alert=True, destroy=False) # reset self.changes self.grid.changes = set() openFileDialog = wx.FileDialog(self, "Open MagIC-format file", self.WD, "", "MagIC file|*.*", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) result = openFileDialog.ShowModal() if result == wx.ID_OK: # get filename filename = openFileDialog.GetPath() # make sure the dtype is correct f = open(filename) line = f.readline() if line.startswith("tab"): delim, dtype = line.split("\t") else: delim, dtype = line.split("") f.close() dtype = dtype.strip() if (dtype != self.grid_type) and (dtype + "s" != self.grid_type): text = "You are currently editing the {} grid, but you are trying to import a {} file.\nPlease open the {} grid and then re-try this import.".format(self.grid_type, dtype, dtype) pw.simple_warning(text) return # grab old data for concatenation if self.grid_type in self.contribution.tables: old_df_container = self.contribution.tables[self.grid_type] else: old_df_container = None old_col_names = self.grid.col_labels # read in new file and update contribution df_container = cb.MagicDataFrame(filename, dmodel=self.dm, columns=old_col_names) # concatenate if possible if not isinstance(old_df_container, type(None)): df_container.df = pd.concat([old_df_container.df, df_container.df], axis=0, sort=True) self.contribution.tables[df_container.dtype] = df_container self.grid_builder = GridBuilder(self.contribution, self.grid_type, self.panel, parent_type=self.parent_type, reqd_headers=self.reqd_headers) # delete old grid self.grid_box.Hide(0) self.grid_box.Remove(0) # create new, updated grid self.grid = self.grid_builder.make_grid() self.grid.InitUI() # add data to new grid self.grid_builder.add_data_to_grid(self.grid, self.grid_type) # add new grid to sizer and fit everything self.grid_box.Add(self.grid, flag=wx.ALL, border=5) self.main_sizer.Fit(self) self.Centre() # add any needed drop-down-menus self.drop_down_menu = drop_down_menus.Menus(self.grid_type, self.contribution, self.grid) # done! return def onCancelButton(self, event): """ Quit grid with warning if unsaved changes present """ if self.grid.changes: dlg1 = wx.MessageDialog(self, caption="Message:", message="Are you sure you want to exit this grid?\nYour changes will not be saved.\n ", style=wx.OK|wx.CANCEL) result = dlg1.ShowModal() if result == wx.ID_OK: dlg1.Destroy() self.Destroy() else: self.Destroy() if self.main_frame: self.main_frame.Show() self.main_frame.Raise() def onSave(self, event, alert=False, destroy=True): """ Save grid data """ # tidy up drop_down menu if self.drop_down_menu: self.drop_down_menu.clean_up() # then save actual data self.grid_builder.save_grid_data() if not event and not alert: return # then alert user wx.MessageBox('Saved!', 'Info', style=wx.OK | wx.ICON_INFORMATION) if destroy: self.Destroy() ### Custom copy/paste functionality def onCopyMode(self, event): # first save all grid data self.grid_builder.save_grid_data() self.drop_down_menu.clean_up() # enable and un-grey the exit copy mode button self.copyButton.SetLabel('End copy mode') self.Bind(wx.EVT_BUTTON, self.onEndCopyMode, self.copyButton) # disable and grey out other buttons btn_list = [self.add_cols_button, self.remove_cols_button, self.remove_row_button, self.add_many_rows_button, self.importButton, self.cancelButton, self.exitButton] for btn in btn_list: btn.Disable() self.copySelectionButton.Enable() # next, undo useless bindings (mostly for drop-down-menus) # this one works: self.drop_down_menu.EndUI() # these ones don't work: (it doesn't matter which one you bind to) #self.grid.Unbind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK) #self.Unbind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK) #self.panel.Unbind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK) # this works hack-like: self.grid.Bind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK, self.do_nothing) # this one is irrelevant (it just deals with resizing) #self.Unbind(wx.EVT_KEY_DOWN) # # make grid uneditable self.grid.EnableEditing(False) self.Refresh() # change and show help message copy_text = """You are now in 'copy' mode. To return to 'editing' mode, click 'End copy mode'. To copy the entire grid, click the 'Copy all cells' button. To copy a selection of the grid, you must first make a selection by either clicking and dragging, or using Shift click. Once you have your selection, click the 'Copy selected cells' button, or hit 'Ctrl c'. You may then paste into a text document or spreadsheet! """ self.toggle_help_btn.SetLabel('Hide help') self.msg_text.SetLabel(copy_text) self.help_msg_boxsizer.Fit(self.help_msg_boxsizer.GetStaticBox()) self.main_sizer.Fit(self) self.help_msg_boxsizer.ShowItems(True) self.do_fit(None) # then bind for selecting cells in multiple columns self.grid.Bind(wx.grid.EVT_GRID_RANGE_SELECT, self.onDragSelection) # bind Cmd c for copy self.grid.Bind(wx.EVT_KEY_DOWN, self.onKey) # done! def onDragSelection(self, event): """ Set self.df_slice based on user's selection """ if self.grid.GetSelectionBlockTopLeft(): #top_left = self.grid.GetSelectionBlockTopLeft() #bottom_right = self.grid.GetSelectionBlockBottomRight() # awkward hack to fix wxPhoenix memory problem, (Github issue #221) bottom_right = eval(repr(self.grid.GetSelectionBlockBottomRight()).replace("GridCellCoordsArray: ", "").replace("GridCellCoords", "")) top_left = eval(repr(self.grid.GetSelectionBlockTopLeft()).replace("GridCellCoordsArray: ", "").replace("GridCellCoords", "")) # top_left = top_left[0] bottom_right = bottom_right[0] else: return # GetSelectionBlock returns (row, col) min_col = top_left[1] max_col = bottom_right[1] min_row = top_left[0] max_row = bottom_right[0] self.df_slice = self.contribution.tables[self.grid_type].df.iloc[min_row:max_row+1, min_col:max_col+1] def do_nothing(self, event): """ Dummy method to prevent default header-click behavior while in copy mode """ pass def onKey(self, event): """ Copy selection if control down and 'c' """ if event.CmdDown() or event.ControlDown(): if event.GetKeyCode() == 67: self.onCopySelection(None) def onSelectAll(self, event): """ Selects full grid and copies it to the Clipboard """ # do clean up here!!! if self.drop_down_menu: self.drop_down_menu.clean_up() # save all grid data self.grid_builder.save_grid_data() df = self.contribution.tables[self.grid_type].df # write df to clipboard for pasting # header arg determines whether columns are taken # index arg determines whether index is taken pd.DataFrame.to_clipboard(df, header=False, index=False) print('-I- You have copied all cells! You may paste them into a text document or spreadsheet using Command v.') # done! def onCopySelection(self, event): """ Copies self.df_slice to the Clipboard if slice exists """ if self.df_slice is not None:
pd.DataFrame.to_clipboard(self.df_slice, header=False, index=False)
pandas.DataFrame.to_clipboard
# coding=utf-8 """ PAT - the name of the current project. instrument.py - the name of the new file which you specify in the New File dialog box during the file creation. Hossein - the login name of the current user. 6 / 15 / 18 - the current system date. 8: 03 AM - the current system time. PyCharm - the name of the IDE in which the file will be created. """ import pandas import datetime import pytz import logging from requests import exceptions from price_fetcher.bigquery import GoogleQuery from price_fetcher.stock_api import Iex logger = logging logging.basicConfig(filename='ERRORS.log', level=logging.ERROR) class Instrument: """ base class for Stocks """ def __init__(self, name): self.ticker = name self._stats = None self._financials = None self._news = None self._price = None self._score = None self._iex = Iex('iexfinance', self.ticker) self._price_history = None self.gquery = GoogleQuery(ticker=name, dataset_id='my_dataset', table_id='live_' + name) self.latest_info = {'Time': None, 'Ticker': name, 'Price': None, 'Volume': None} self.changed = True self._timezone = 'America/Chicago' @property def timezone(self): """ the time zone of the user :return: str time zone """ return self._timezone @timezone.setter def timezone(self, value): self._timezone = value @staticmethod def _append(df, time, price, volume): new_row = [{'Time': time, 'Price': price, 'Volume': volume}] new_df =
pandas.DataFrame(new_row)
pandas.DataFrame
from typing import List import pandas as pd import plotly.graph_objs as go from dash import Dash import dash_core_components as dcc import dash_html_components as html import dash_table from dash.dependencies import Input, Output GOOGLE_SHEETS_URL = "https://docs.google.com/spreadsheets/d/e/{}&single=true&output=csv" SCHEDULE_URL = "2PACX-1vQys0oYM-7DvOA2QwVzeyjmYLX_jBv39gahspHoiWvAlqbms3U-yezehPPHFUD_kg/pub?gid=1056981259" POINTS_URL = "2PACX-1vQys0oYM-7DvOA2QwVzeyjmYLX_jBv39gahspHoiWvAlqbms3U-yezehPPHFUD_kg/pub?gid=131097540" WEEK_COL = "Week" PLAYER_COL = "Player" AGAINST_COL = "Against" POINTS_COL = "Points" RANK_COL = "Rank" COL_JOIN = "{} {}" CLOSE_MATCH_DIFF = 10 COLORS = [ "#EC7063", "#AF7AC5", "#5DADE2", "#48C9B0", "#F9E79F", "#E59866", "#F06292", "#58D68D", "#AED6F1", "#F8BBD0", ] def determine_points_against( points_data: pd.DataFrame, schedule: pd.DataFrame, id_col: str, player_col: str, against_col: str, points_col: str, ) -> pd.DataFrame: """Determine points against. Args: points_wide: DataFrame, weekly points data schedule: DataFrame, schedule information id_col: str, name of identifier column player_col: str, player column name against_col: str, vs column name points_col: str, points column name Returns: points_against: DataFrame, weekly points against """ against =
pd.merge(points_data, schedule, on=[id_col, player_col], how="left")
pandas.merge
# -*- coding: utf-8 -*- """ Created on Sat Dec 2 23:17:22 2017 @author: roshi """ import pandas as pd import matplotlib.pyplot as plt import dash import dash_core_components as dcc import dash_html_components as html import plotly.graph_objs as go from app import app data =
pd.read_csv('./data/youth_tobacco_analysis.csv')
pandas.read_csv
import pandas as pd import pyomo.environ as pe import os import shutil class invsys: def __init__(self,inp_folder='',dshed_cost=1000000,rshed_cost=500,vmin=0.8,vmax=1.2,sbase=100,ref_bus=0): """Initialise the investment problem. :param str inp_folder: The input directory for the data. It expects to find several CSV files detailing the system input data (Default current folder) :param float dshed_cost: Demand Shedding Price (Default 1000000) :param float rshed_cost: Renewable Shedding Price (Default 500) :param float vmin: Minimum node voltage (Default 0.8) :param float vmax: Maximum node voltage (Default 1.2) :param float sbase: Base Apparent Power (default 100 MVA) :param int ref_bus: Reference node (Default 0) :Example: >>> import pyeplan >>> sys_inv = pyeplan.invsys("3bus_inv") """ self.cgen = pd.read_csv(inp_folder+os.sep+'cgen_dist.csv') self.egen = pd.read_csv(inp_folder+os.sep+'egen_dist.csv') self.cren = pd.read_csv(inp_folder+os.sep+'cren_dist.csv') self.eren = pd.read_csv(inp_folder+os.sep+'eren_dist.csv') self.clin = pd.read_csv(inp_folder+os.sep+'elin_dist.csv') self.elin = pd.read_csv(inp_folder+os.sep+'elin_dist.csv') self.pdem = pd.read_csv(inp_folder+os.sep+'pdem_dist.csv') self.qdem = pd.read_csv(inp_folder+os.sep+'qdem_dist.csv') self.pren = pd.read_csv(inp_folder+os.sep+'pren_dist.csv') self.qren = pd.read_csv(inp_folder+os.sep+'qren_dist.csv') self.ncg = len(self.cgen) self.neg = len(self.egen) self.ncr = len(self.cren) self.ner = len(self.eren) self.ncl = len(self.clin) self.nel = len(self.elin) self.nbb = self.pdem.shape[1] self.ntt = self.pdem.shape[0] self.cds = dshed_cost self.crs = rshed_cost self.sb = sbase self.vmin = vmin self.vmax = vmax self.inp_folder = inp_folder def solve(self,solver='cbc',network=True,commit=True): """Solve the investment problem. :param str solver: the solver to be used (Default is 'cbc') :param bool network: Include the network constraints :param bool commit: ??? :returns: ??? :rtype: int :Example: >>> import pyeplan >>> sys_inv = pyeplan.invsys("3bus_inv") >>> sys_inv.solve(outdir='res_inv') """ #Define the Model m = pe.ConcreteModel() #Define the Sets m.cg = pe.Set(initialize=list(range(self.ncg)),ordered=True) m.eg = pe.Set(initialize=list(range(self.neg)),ordered=True) m.cr = pe.Set(initialize=list(range(self.ncr)),ordered=True) m.er = pe.Set(initialize=list(range(self.ner)),ordered=True) m.cl = pe.Set(initialize=list(range(self.ncl)),ordered=True) m.el = pe.Set(initialize=list(range(self.nel)),ordered=True) m.bb = pe.Set(initialize=list(range(self.nbb)),ordered=True) m.tt = pe.Set(initialize=list(range(self.ntt)),ordered=True) #Define Variables #Objective Function m.z = pe.Var() #Active and Reactive Power Generations (Conventional) m.pcg = pe.Var(m.cg,m.tt,within=pe.NonNegativeReals) m.peg = pe.Var(m.eg,m.tt,within=pe.NonNegativeReals) m.qcg = pe.Var(m.cg,m.tt,within=pe.NonNegativeReals) m.qeg = pe.Var(m.eg,m.tt,within=pe.NonNegativeReals) #Active and Reactive Power Generations (Renewable) m.pcr = pe.Var(m.cr,m.tt,within=pe.NonNegativeReals) m.per = pe.Var(m.er,m.tt,within=pe.NonNegativeReals) m.qcr = pe.Var(m.cr,m.tt,within=pe.Reals) m.qer = pe.Var(m.er,m.tt,within=pe.Reals) #Demand and Renewable Shedding m.pds = pe.Var(m.bb,m.tt,within=pe.Binary) m.prs = pe.Var(m.bb,m.tt,within=pe.NonNegativeReals) #Voltage Magnitude m.vol = pe.Var(m.bb,m.tt,within=pe.Reals,bounds=(self.vmin,self.vmax)) #Active and Reactive Line Flows m.pcl = pe.Var(m.cl,m.tt,within=pe.Reals) #Active Power m.pel = pe.Var(m.el,m.tt,within=pe.Reals) #Active Power m.qcl = pe.Var(m.cl,m.tt,within=pe.Reals) #Reactive Power m.qel = pe.Var(m.el,m.tt,within=pe.Reals) #Reactive Power #Commitment Status if commit: m.cu = pe.Var(m.cg,m.tt,within=pe.Binary) m.eu = pe.Var(m.eg,m.tt,within=pe.Binary) else: m.cu = pe.Var(m.cg,m.tt,within=pe.NonNegativeReals,bounds=(0,1)) m.eu = pe.Var(m.eg,m.tt,within=pe.NonNegativeReals,bounds=(0,1)) #Investment Status (Conventional) m.xg = pe.Var(m.cg,within=pe.Binary) #Investment Status (Renewable) m.xr = pe.Var(m.cr,within=pe.Binary) #Investment Status (Line) m.xl = pe.Var(m.cr,within=pe.Binary) #Objective Function def obj_rule(m): return m.z m.obj = pe.Objective(rule=obj_rule) #Definition Cost def cost_def_rule(m): if commit: return m.z == sum(self.cgen['icost'][cg]*m.xg[cg] for cg in m.cg) + \ sum(self.cren['icost'][cr]*m.xr[cr] for cr in m.cr) + \ sum(self.clin['icost'][cl]*m.xl[cl] for cl in m.cl) + \ sum(self.cgen['scost'][cg]*m.cu[cg,tt] for cg in m.cg for tt in m.tt) + \ sum(self.egen['scost'][eg]*m.cu[eg,tt] for eg in m.eg for tt in m.tt) - \ sum(self.cgen['scost'][cg]*m.cu[cg,tt-1] for cg in m.cg for tt in m.tt if tt>1) - \ sum(self.egen['scost'][eg]*m.eu[eg,tt-1] for eg in m.eg for tt in m.tt if tt>1) + \ self.sb*(sum(self.cgen['ocost'][cg]*m.pcg[cg,tt] for cg in m.cg for tt in m.tt) + \ sum(self.egen['ocost'][eg]*m.peg[eg,tt] for eg in m.eg for tt in m.tt) + \ sum(self.cren['ocost'][cr]*m.pcr[cr,tt] for cr in m.cr for tt in m.tt) + \ sum(self.eren['ocost'][er]*m.per[er,tt] for er in m.er for tt in m.tt) + \ sum(self.cds*self.pdem.iloc[tt,bb]*m.pds[bb,tt] for bb in m.bb for tt in m.tt) + \ sum(self.crs*m.prs[bb,tt] for bb in m.bb for tt in m.tt)) else: return m.z == sum(self.cgen['icost'][cg]*m.xg[cg] for cg in m.cg) + \ sum(self.cren['icost'][cr]*m.xr[cr] for cr in m.cr) + \ sum(self.clin['icost'][cl]*m.xl[cl] for cl in m.cl) + \ self.sb*(sum(self.cgen['ocost'][cg]*m.pcg[cg,tt] for cg in m.cg for tt in m.tt) + \ sum(self.egen['ocost'][eg]*m.peg[eg,tt] for eg in m.eg for tt in m.tt) + \ sum(self.cren['ocost'][cr]*m.pcr[cr,tt] for cr in m.cr for tt in m.tt) + \ sum(self.eren['ocost'][er]*m.per[er,tt] for er in m.er for tt in m.tt) + \ sum(self.cds*self.pdem.iloc[tt,bb]*m.pds[bb,tt] for bb in m.bb for tt in m.tt) + \ sum(self.crs*m.prs[bb,tt] for bb in m.bb for tt in m.tt)) m.cost_def = pe.Constraint(rule=cost_def_rule) #Active Energy Balance def act_bal_rule(m,bb,tt): return sum(m.pcg[cg,tt] for cg in m.cg if self.cgen['bus'][cg] == bb) + \ sum(m.peg[eg,tt] for eg in m.eg if self.egen['bus'][eg] == bb) + \ sum(m.pcr[cr,tt] for cr in m.cr if self.cren['bus'][cr] == bb) + \ sum(m.per[er,tt] for er in m.er if self.eren['bus'][er] == bb) + \ sum(m.pcl[cl,tt] for cl in m.cl if self.clin['to'][cl] == bb) + \ sum(m.pel[el,tt] for el in m.el if self.elin['to'][el] == bb) == \ sum(m.pcl[cl,tt] for cl in m.cl if self.clin['from'][cl] == bb) + \ sum(m.pel[el,tt] for el in m.el if self.elin['from'][el] == bb) + \ self.pdem.iloc[tt,bb]*(1 - m.pds[bb,tt]) m.act_bal = pe.Constraint(m.bb, m.tt, rule=act_bal_rule) #Reactive Energy Balance def rea_bal_rule(m,bb,tt): return sum(m.qcg[cg,tt] for cg in m.cg if self.cgen['bus'][cg] == bb) + \ sum(m.qeg[eg,tt] for eg in m.eg if self.egen['bus'][eg] == bb) + \ sum(m.qcr[cr,tt] for cr in m.cr if self.cren['bus'][cr] == bb) + \ sum(m.qer[er,tt] for er in m.er if self.eren['bus'][er] == bb) + \ sum(m.qcl[cl,tt] for cl in m.cl if self.clin['to'][cl] == bb) + \ sum(m.qel[el,tt] for el in m.el if self.elin['to'][el] == bb) == \ sum(m.qcl[cl,tt] for cl in m.cl if self.clin['from'][cl] == bb) + \ sum(m.qel[el,tt] for el in m.el if self.elin['from'][el] == bb) + \ self.qdem.iloc[tt,bb]*(1 - m.pds[bb,tt]) m.rea_bal = pe.Constraint(m.bb, m.tt, rule=rea_bal_rule) #Minimum Active Generation (Conventional) def min_act_cgen_rule(m,cg,tt): return m.pcg[cg,tt] >= m.cu[cg,tt]*self.cgen['pmin'][cg] m.min_act_cgen = pe.Constraint(m.cg, m.tt, rule=min_act_cgen_rule) def min_act_egen_rule(m,eg,tt): return m.peg[eg,tt] >= m.eu[eg,tt]*self.egen['pmin'][eg] m.min_act_egen = pe.Constraint(m.eg, m.tt, rule=min_act_egen_rule) #Minimum Active Generation (Renewable) def min_act_cren_rule(m,cr,tt): return m.pcr[cr,tt] >= self.cren['pmin'][cr] m.min_act_cren = pe.Constraint(m.cg, m.tt, rule=min_act_cren_rule) def min_act_eren_rule(m,er,tt): return m.per[er,tt] >= self.eren['pmin'][er] m.min_act_eren = pe.Constraint(m.eg, m.tt, rule=min_act_eren_rule) #Maximum Active Generation (Conventional) def max_act_cgen_rule(m,cg,tt): return m.pcg[cg,tt] <= m.cu[cg,tt]*self.cgen['pmax'][cg] m.max_act_cgen = pe.Constraint(m.cg, m.tt, rule=max_act_cgen_rule) def max_act_egen_rule(m,eg,tt): return m.peg[eg,tt] <= m.eu[eg,tt]*self.egen['pmax'][eg] m.max_act_egen = pe.Constraint(m.eg, m.tt, rule=max_act_egen_rule) #Maximum Active Generation (Renewable) def max_act_cren_rule(m,cr,tt): return m.pcr[cr,tt] <= m.xr[cr]*self.cren['pmax'][cr]*sum(self.pren.iloc[tt,bb] for bb in m.bb if self.cren['bus'][cr] == bb) m.max_act_cren = pe.Constraint(m.cr, m.tt, rule=max_act_cren_rule) def max_act_eren_rule(m,er,tt): return m.per[er,tt] <= self.eren['pmax'][er]*sum(self.pren.iloc[tt,bb] for bb in m.bb if self.eren['bus'][er] == bb) m.max_act_eren = pe.Constraint(m.er, m.tt, rule=max_act_eren_rule) #Minimum Reactive Generation (Conventional) def min_rea_cgen_rule(m,cg,tt): return m.qcg[cg,tt] >= m.cu[cg,tt]*self.cgen['qmin'][cg] m.min_rea_cgen = pe.Constraint(m.cg, m.tt, rule=min_rea_cgen_rule) def min_rea_egen_rule(m,eg,tt): return m.qeg[eg,tt] >= m.eu[eg,tt]*self.egen['qmin'][eg] m.min_rea_egen = pe.Constraint(m.eg, m.tt, rule=min_rea_egen_rule) #Minimum Reactive Generation (Renewable) def min_rea_cren_rule(m,cr,tt): return m.qcr[cr,tt] >= m.xr[cr]*self.cren['qmin'][cr] m.min_rea_cren = pe.Constraint(m.cr, m.tt, rule=min_rea_cren_rule) def min_rea_eren_rule(m,er,tt): return m.qer[er,tt] >= self.eren['qmin'][er] m.min_rea_eren = pe.Constraint(m.er, m.tt, rule=min_rea_eren_rule) #Maximum Reactive Generation (Conventional) def max_rea_cgen_rule(m,cg,tt): return m.qcg[cg,tt] <= m.cu[cg,tt]*self.cgen['qmax'][cg] m.max_rea_cgen = pe.Constraint(m.cg, m.tt, rule=max_rea_cgen_rule) def max_rea_egen_rule(m,eg,tt): return m.qeg[eg,tt] <= m.eu[eg,tt]*self.egen['qmax'][eg] m.max_rea_egen = pe.Constraint(m.eg, m.tt, rule=max_rea_egen_rule) #Maximum Reactive Generation (Renewable) def max_rea_cren_rule(m,cr,tt): return m.qcr[cr,tt] <= m.xr[cr]*self.cren['qmax'][cr] m.max_rea_cren = pe.Constraint(m.cr, m.tt, rule=max_rea_cren_rule) def max_rea_eren_rule(m,er,tt): return m.qer[er,tt] <= self.eren['qmax'][er] m.max_rea_eren = pe.Constraint(m.er, m.tt, rule=max_rea_eren_rule) #Maximum Renewable Shedding def max_shed_rule(m,bb,tt): return m.prs[bb,tt] <= (sum(m.xr[cr]*self.cren['pmax'][cr]*sum(self.pren.iloc[tt,bb] for bb in m.bb if self.cren['bus'][cr] == bb) for cr in m.cr) + \ sum(self.eren['pmax'][er]*sum(self.pren.iloc[tt,bb] for bb in m.bb if self.eren['bus'][er] == bb) for er in m.er)) - \ (sum(m.pcr[cr,tt] for cr in m.cr if self.cren['bus'][cr] == bb) + \ sum(m.per[er,tt] for er in m.er if self.eren['bus'][er] == bb)) m.max_shed = pe.Constraint(m.bb, m.tt, rule=max_shed_rule) #Line flow Definition def flow_rule(m,cl,el,tt): if network: if el == cl: return (m.vol[self.clin['from'][cl],tt] - m.vol[self.clin['to'][cl],tt]) == \ self.clin['res'][cl]*(m.pcl[cl,tt]+m.pel[el,tt]) + \ self.clin['rea'][cl]*(m.qcl[cl,tt]+m.qel[el,tt]) else: return pe.Constraint.Skip else: return pe.Constraint.Skip m.flow = pe.Constraint(m.cl, m.el, m.tt, rule=flow_rule) #Max Active Line Flow def max_act_cflow_rule(m,cl,tt): if network: return m.pcl[cl,tt] <= self.clin['pmax'][cl]*m.xl[cl] else: return pe.Constraint.Skip m.max_act_cflow = pe.Constraint(m.cl, m.tt, rule=max_act_cflow_rule) def max_act_eflow_rule(m,el,tt): if network: return m.pel[el,tt] <= self.elin['pmax'][el]*self.elin['ini'][el] else: return pe.Constraint.Skip m.max_act_eflow = pe.Constraint(m.el, m.tt, rule=max_act_eflow_rule) #Min Active Line Flow def min_act_cflow_rule(m,cl,tt): if network: return m.pcl[cl,tt] >= -self.clin['pmax'][cl]*m.xl[cl] else: return pe.Constraint.Skip m.min_act_cflow = pe.Constraint(m.cl, m.tt, rule=min_act_cflow_rule) def min_act_eflow_rule(m,el,tt): if network: return m.pel[el,tt] >= -self.elin['pmax'][el]*self.elin['ini'][el] else: return pe.Constraint.Skip m.min_act_eflow = pe.Constraint(m.el, m.tt, rule=min_act_eflow_rule) #Max Reactive Line Flow def max_rea_cflow_rule(m,cl,tt): if network: return m.qcl[cl,tt] <= self.clin['qmax'][cl]*m.xl[cl] else: return pe.Constraint.Skip m.max_rea_cflow = pe.Constraint(m.cl, m.tt, rule=max_rea_cflow_rule) def max_rea_eflow_rule(m,el,tt): if network: return m.qel[el,tt] <= self.elin['qmax'][el]*self.elin['ini'][el] else: return pe.Constraint.Skip m.max_rea_eflow = pe.Constraint(m.el, m.tt, rule=max_rea_eflow_rule) #Min Reactive Line Flow def min_rea_cflow_rule(m,cl,tt): if network: return m.qcl[cl,tt] >= -self.clin['qmax'][cl]*m.xl[cl] else: return pe.Constraint.Skip m.min_rea_cflow = pe.Constraint(m.cl, m.tt, rule=min_rea_cflow_rule) def min_rea_eflow_rule(m,el,tt): if network: return m.qel[el,tt] >= -self.elin['qmax'][el]*self.elin['ini'][el] else: return pe.Constraint.Skip m.min_rea_eflow = pe.Constraint(m.el, m.tt, rule=min_rea_eflow_rule) #Voltage Magnitude at Reference Bus def vol_ref_rule(m,tt): if network: return sum(m.vol[bb,tt] for bb in m.bb if bb==0) == 1 else: return pe.Constraint.Skip m.vol_ref = pe.Constraint(m.tt, rule=vol_ref_rule) #Investment Status def inv_stat_rule(m,cg,tt): return m.cu[cg,tt] <= m.xg[cg] m.inv_stat = pe.Constraint(m.cg, m.tt, rule=inv_stat_rule) #Solve the optimization problem solver_manager = pe.SolverManagerFactory('neos') opt = pe.SolverFactory(solver) opt.options['threads'] = 1 opt.options['mipgap'] = 1e-9 result = solver_manager.solve(m,opt=opt,symbolic_solver_labels=True,tee=True) print(result['Solver'][0]) print(m.display()) #Save the results self.output = m self.xg_output = pyomo2dfinv(m.xg,m.cg).T self.xr_output = pyomo2dfinv(m.xr,m.cr).T self.xl_output = pyomo2dfinv(m.xl,m.cl).T self.cu_output = pyomo2dfopr(m.cu,m.cg,m.tt).T self.eu_output = pyomo2dfopr(m.eu,m.eg,m.tt).T self.pcg_output = pyomo2dfopr(m.pcg,m.cg,m.tt).T self.qcg_output = pyomo2dfopr(m.qcg,m.cg,m.tt).T self.peg_output = pyomo2dfopr(m.peg,m.eg,m.tt).T self.qeg_output = pyomo2dfopr(m.qeg,m.eg,m.tt).T self.pcr_output = pyomo2dfopr(m.pcr,m.cr,m.tt).T self.qcr_output = pyomo2dfopr(m.qcr,m.cr,m.tt).T self.per_output = pyomo2dfopr(m.per,m.er,m.tt).T self.qer_output = pyomo2dfopr(m.qer,m.er,m.tt).T self.pds_output = pyomo2dfopr(m.pds,m.bb,m.tt).T self.prs_output = pyomo2dfopr(m.prs,m.bb,m.tt).T self.vol_output = pyomo2dfopr(m.vol,m.bb,m.tt).T self.pcl_output = pyomo2dfopr(m.pcl,m.cl,m.tt).T self.qcl_output = pyomo2dfopr(m.qcl,m.cl,m.tt).T self.pel_output = pyomo2dfopr(m.pel,m.cl,m.tt).T self.qel_output = pyomo2dfopr(m.qel,m.cl,m.tt).T # Setup the results folder outdir = self.inp_folder + os.sep + 'results' if os.path.exists(outdir): shutil.rmtree(outdir) os.makedirs(outdir) self.xg_output.to_csv(outdir+os.sep+'investment_conventional.csv',index=False) self.xr_output.to_csv(outdir+os.sep+'investment_renewable.csv',index=False) self.xr_output.to_csv(outdir+os.sep+'investment_line.csv',index=False) self.cu_output.to_csv(outdir+os.sep+'cu.csv',index=False) self.eu_output.to_csv(outdir+os.sep+'eu.csv',index=False) self.pcg_output.to_csv(outdir+os.sep+'pcg.csv',index=False) self.qcg_output.to_csv(outdir+os.sep+'qcg.csv',index=False) self.peg_output.to_csv(outdir+os.sep+'peg.csv',index=False) self.qeg_output.to_csv(outdir+os.sep+'qeg.csv',index=False) self.pcr_output.to_csv(outdir+os.sep+'pcr.csv',index=False) self.qcr_output.to_csv(outdir+os.sep+'qcr.csv',index=False) self.per_output.to_csv(outdir+os.sep+'per.csv',index=False) self.qer_output.to_csv(outdir+os.sep+'qer.csv',index=False) self.pds_output.to_csv(outdir+os.sep+'pds.csv',index=False) self.prs_output.to_csv(outdir+os.sep+'prs.csv',index=False) self.vol_output.to_csv(outdir+os.sep+'vol.csv',index=False) self.pcl_output.to_csv(outdir+os.sep+'pcl.csv',index=False) self.qcl_output.to_csv(outdir+os.sep+'qcl.csv',index=False) self.pel_output.to_csv(outdir+os.sep+'pel.csv',index=False) self.qel_output.to_csv(outdir+os.sep+'qel.csv',index=False) def pyomo2dfinv(pyomo_var,index1): mat = [] for i in index1: row = [] row.append(pyomo_var[i].value) mat.append(row) return
pd.DataFrame(mat)
pandas.DataFrame
import pytest from pandas import ( Index, MultiIndex, Series, ) import pandas._testing as tm class TestSeriesRenameAxis: def test_rename_axis_mapper(self): # GH 19978 mi =
MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
pandas.MultiIndex.from_product
""" inserindo dados com pandas C - CREATE R - READ U - UPDATE D - DELETE """ import pandas as pd BASE_PATH = 'base.csv' # CREATE def post(dados: dict): df_antigo = pd.DataFrame(get()) df_novo = pd.DataFrame(dados, index=[0]) df = df_antigo.append(df_novo) df.to_csv(BASE_PATH, sep=',', index=False) # READ def get(id: int=None): try: df = pd.read_csv(BASE_PATH, sep=',') lista_dados = df.to_dict('records') if not id: return df.to_dict('records') # [{"id":1 ...}, {"id": 2 ...}, ...] for dado in lista_dados: if dado['id'] == id: return [dado] except: return [] # UPDATE def put(id: int, dados_alterar): lista_antiga = get() lista_dados_novos = [] for dado in lista_antiga: if dado["id"] == id: dado = dados_alterar lista_dados_novos.append(dado) df = pd.DataFrame(lista_dados_novos) df.to_csv(BASE_PATH, sep=',', index=False) return # DELETE def delete(id: int): lista_antiga = get() lista_dados_novos = [] for dado in lista_antiga: if not dado["id"] == id: lista_dados_novos.append(dado) df =
pd.DataFrame(lista_dados_novos)
pandas.DataFrame
import numpy as np import pandas as pd from analysis.transform_fast import load_raw_cohort, transform def test_immuno_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF IMMRX_DAT <> NULL | Select | Next if pd.notnull(row["immrx_dat"]): assert row["immuno_group"] continue # IF IMMDX_COV_DAT <> NULL | Select | Reject if pd.notnull(row["immdx_cov_dat"]): assert row["immuno_group"] else: assert not row["immuno_group"] def test_ckd_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF CKD_COV_DAT <> NULL (diagnoses) | Select | Next if pd.notnull(row["ckd_cov_dat"]): assert row["ckd_group"] continue # IF CKD15_DAT = NULL (No stages) | Reject | Next if pd.isnull(row["ckd15_dat"]): assert not row["ckd_group"] continue # IF CKD35_DAT>=CKD15_DAT | Select | Reject if gte(row["ckd35_dat"], row["ckd15_dat"]): assert row["ckd_group"] else: assert not row["ckd_group"] def test_ast_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF ASTADM_DAT <> NULL | Select | Next if pd.notnull(row["astadm_dat"]): assert row["ast_group"] continue # IF AST_DAT <> NULL | Next | Reject if pd.isnull(row["ast_dat"]): assert not row["ast_group"] continue # IF ASTRXM1 <> NULL | Next | Reject if pd.isnull(row["astrxm1_dat"]): assert not row["ast_group"] continue # IF ASTRXM2 <> NULL | Next | Reject if pd.isnull(row["astrxm2_dat"]): assert not row["ast_group"] continue # IF ASTRXM3 <> NULL | Select | Reject if pd.notnull(row["astrxm3_dat"]): assert row["ast_group"] else: assert not row["ast_group"] def test_cns_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF CNS_COV_DAT <> NULL | Select | Reject if pd.notnull(row["cns_cov_dat"]): assert row["cns_group"] else: assert not row["cns_group"] def test_resp_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF AST_GROUP <> NULL | Select | Next if row["ast_group"]: assert row["resp_group"] continue # IF RESP_COV_DAT <> NULL | Select | Reject if pd.notnull(row["resp_cov_dat"]): assert row["resp_group"] else: assert not row["resp_group"] def test_bmi_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF SEV_OBESITY_DAT > BMI_DAT | Select | Next if gt(row["sev_obesity_dat"], row["bmi_dat"]): assert row["bmi_group"] continue # IF BMI_VAL >=40 | Select | Reject if gte(row["bmi_val"], 40): assert row["bmi_group"] else: assert not row["bmi_group"] def test_diab_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF DIAB_DAT > DMRES_DAT | Select | Reject if gt(row["diab_dat"], row["dmres_dat"]): assert row["diab_group"] else: assert not row["diab_group"] def test_sevment_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF SEV_MENTAL_DAT > SMHRES_DAT | Select | Reject if gt(row["sev_mental_dat"], row["smhres_dat"]): assert row["sevment_group"] else: assert not row["sevment_group"] def test_atrisk_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF IMMUNOGROUP <> NULL | Select | Next if row["immuno_group"]: assert row["atrisk_group"] continue # IF CKD_GROUP <> NULL | Select | Next if row["ckd_group"]: assert row["atrisk_group"] continue # IF RESP_GROUP <> NULL | Select | Next if row["resp_group"]: assert row["atrisk_group"] continue # IF DIAB_GROUP <> NULL | Select | Next if row["diab_group"]: assert row["atrisk_group"] continue # IF CLD_DAT <>NULL | Select | Next if pd.notnull(row["cld_dat"]): assert row["atrisk_group"] continue # IF CNS_GROUP <> NULL | Select | Next if row["cns_group"]: assert row["atrisk_group"] continue # IF CHD_COV_DAT <> NULL | Select | Next if pd.notnull(row["chd_cov_dat"]): assert row["atrisk_group"] continue # IF SPLN_COV_DAT <> NULL | Select | Next if pd.notnull(row["spln_cov_dat"]): assert row["atrisk_group"] continue # IF LEARNDIS_DAT <> NULL | Select | Next if
pd.notnull(row["learndis_dat"])
pandas.notnull
import json import datetime import re import sys import ipdb import pandas as pd def logging(message): sys.stderr.write('\r') sys.stderr.write(message) sys.stderr.flush() def clean_company_name(name): company_token = [ '^\"', '\"$', 'Inc\W', 'Inc$', 'Co\W', 'Co$', 'Corp\W', 'Corp$', 'Technology', ',.*$', '\.com', 'Company', 'ltd\W', 'Class A', 'Class C', 'Corporation', '& Co\.' ] company_pattern = '|'.join(company_token) return re.sub(company_pattern, '', name).strip() def generate_news_label(): snp = pd.read_csv('data/constituents.csv') for name in snp['Name']: sys.stdout.write(clean_company_name(name) + '\n') sys.stdout.flush() df = pd.DataFrame() date = datetime.datetime.strptime('20180702', '%Y%m%d') end_date = datetime.datetime.strptime('20180930', '%Y%m%d') one_day = datetime.timedelta(days=1) count = 0 while date <= end_date: date_str = date.strftime('%Y%m%d') file_path = 'data/reuters/news_{0:s}.json'.format(date_str) with open(file_path, 'r') as f: data = json.load(f) title_map = {} total_articles = len(data) for index, item in enumerate(data): count += 1 logging('{0:s}: {1:d}/{2:d}'.format(date_str, index + 1, total_articles)) published_time = item['published_time'] title = item['title'] text = item['text'] cleaned_title = re.sub(r'[^\w\s]', '', title) cleaned_title = re.sub(r' +', ' ', cleaned_title) if cleaned_title in title_map: continue title_map[cleaned_title] = 1 for ticker, name in zip(snp['Symbol'], snp['Name']): ticker_pattern = '\W{0:s}\W'.format(ticker) cleaned_name = clean_company_name(name) name_pattern = '{0:s}\W'.format(cleaned_name) add_datum = False ''' if len(ticker) != 1 and ticker != 'CA': if re.search(ticker_pattern, title) is not None or \ re.search(ticker_pattern, text) is not None: add_datum = True ''' if cleaned_name != 'CA': if '*' in cleaned_name: name_pattern = re.sub('\\*', '\\\\*', name_pattern) if '.' in cleaned_name: name_pattern = re.sub('\\.', '\\\\.', name_pattern) if re.search(name_pattern, title) is not None or \ re.search(name_pattern, title) is not None: add_datum = True if (ticker == 'GOOGL' or ticker == 'GOOG') and 'Google' in text: add_datum = True if add_datum: sys.stdout.write('{0:s}: {1:s}, {2:s}, {3:s}\n'.format(date_str, cleaned_title, ticker, cleaned_name)) sys.stdout.write('\t{0:s}\n'.format(text)) sys.stdout.flush() datum = pd.Series( data={ 'published_time':published_time, 'title':title, 'text':text, 'ticker':ticker, 'name':name } ) df = df.append(datum, ignore_index=True) date = date + one_day print('\nnews articles: ', count) return df def label_webhose_data(): webhose =
pd.read_csv('webhose_data.csv')
pandas.read_csv
from os import path import os.path from datetime import datetime as dt import datetime # import plotly.express as px # from dash.dependencies import Input, Output, State # import dash_html_components as html # import dash_core_components as dcc import json import pandas as pd import numpy as np # from jupyter_dash import JupyterDash # import plotly.graph_objs as go # import dash # import traceback import sys import os import copy import os import glob # import grasia_dash_components as gdc import json # import jsonify # import ciso8601 old_env = os.environ['PATH'] df_return = [] # couleur(5,98,138) # 72,145,118 #489176 # # 206,136,87 #ce8857 # 154,80,82 #9a5052 # 160,175,82 #a0af52 # 88,158,157 #589e9d # 103,120,132 #677884 # 206,182,75 #ceb64b # 40,72,101 #284865 # 166,135,103 #a68767 from flask import Flask, jsonify,render_template # from flask_cors import CORS from flask_cors import CORS, cross_origin app = Flask(__name__) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' # CORS(app, support_credentials=True) today = dt.today().strftime("%m-%d-%Y") # csv_today_path = 'C:/Users/Utilisateur/PycharmProjects/montee_en_competence/csv_vaccin/' + today + ".csv" csv_today_path = today + ".csv" if path.exists(csv_today_path): df_vaccin_quotidien = pd.read_csv(csv_today_path) @app.route('/somme/<reg>/<vaccin>') def filter_data_somme_quotidien(reg,vaccin): # print(type(reg)) reg=np.int64(reg) vaccin=np.int64(vaccin) return df_vaccin_quotidien.query('reg==@reg & vaccin==@vaccin').to_json() @app.route('/detail/<reg>/<vaccin>') def filter_data_detail(reg,vaccin): # print(type(reg)) reg=np.int64(reg) vaccin=np.int64(vaccin) # response=df_vaccin_detail.query('reg==@reg & vaccin==@vaccin').to_json() # response.headers.add("Access-Control-Allow-Origin", "*") return df_vaccin_detail.query('reg==@reg & vaccin==@vaccin').reset_index().to_json() @app.route("/") def helloWorld(): return "Hello, cross-origin-world!" @app.route('/color') def choose_color(i): color_list = ["#489176", "#ce8857", "#9a5052", "#a0af52", " #589e9d", "#677884", "#ceb64b", "#284865", "#a68767"] if i>=len(color_list): return color_list[len(color_list)-i] else: return color_list[i] # liste_des_vaccins df_liste_vaccin = ["Tous","COMIRNATY Pfizer/BioNTech", "Moderna", "AstraZeneka"] print(df_liste_vaccin) # CHargement liste des régions src = 'C:/Users/Utilisateur/PycharmProjects/montee_en_competence/stat_pop.csv' # df_population=pd.read_csv(src,sep=";")///////////////a remettre # bilan des données actuelle # Le fichier est mis à jour quotidiennement et il comprend la somme par région et par vaccin. Cependant pour certaines # régions et vaccins,la valeur peut manquer à un jour donné. On créee donc un fichier à jour cumulant les données # de la journée selon data-france et celles données par data-fr&ance il y a pluysieurs jours pour les valeurs manquantes date_min=datetime.datetime.strptime("27/12/2020","%d/%m/%Y").timestamp() date_max=datetime.datetime.timestamp(datetime.datetime.today()-datetime.timedelta(days=1)) print(date_min) labels = ["A1", "A2", "A3", "A4", "A5", "B1", "B2"] parents = ["", "", "", "", "", "", ""] values = ["11", "12", "13", "14", "15", "20", "30"] # fig = go.Figure(go.Treemap( # labels = labels, # values = values, # parents = parents, # marker_colors = [ choose_color(i) for i in range(len(labels))] # )) @app.route('/req/proutos') def maj_data_complete(): today = dt.today().strftime("%m-%d-%Y") csv_today_path = 'C:/Users/Utilisateur/PycharmProjects/montee_en_competence/csv_vaccin/' + today + ".csv" if path.exists(csv_today_path + "r"): df_vaccin_quotidien = pd.read_csv(csv_today_path) else: src = 'https://www.data.gouv.fr/fr/datasets/r/900da9b0-8987-4ba7-b117-7aea0e53f530' df_vaccin_quotidien = pd.read_csv(src, sep=";") dernier_jour = df_vaccin_quotidien.tail(1) dernier_jour = str(dernier_jour['jour'].values[0]) df_vaccin_quotidien = df_vaccin_quotidien.query('jour==@dernier_jour') df_vaccin_quotidien.query('reg!=6', inplace=True) df_vaccin_quotidien.query('reg!=8', inplace=True) # df_vaccin_quotidien.to_csv('C:/Users/Utilisateur/PycharmProjects/montee_en_competence/csv_vaccin/01-03-2021.csv') df_vaccin_quotidien.query('reg!=1', inplace=True) reg_sans_data = [ x for x in pd.unique( df_population["id"]) if x not in pd.unique( df_vaccin_quotidien["reg"])] # recherche de données dans des anciennes stats day_diff = 0 # for reg in reg_sans_data: data_full = False # boucle sur les archives de données while not data_full: day_diff += 1 today = dt.today().strftime("%m-%d-%Y") day_delta = dt.today() + datetime.timedelta(days=-day_diff) day_delta_str = day_delta.strftime("%m-%d-%Y") files = glob.glob( "C:/Users/Utilisateur/PycharmProjects/montee_en_competence/csv_vaccin/*-*-*.csv") df_reg_manquant = pd.read_csv(files[-1]) df_reg_manquant = df_reg_manquant[df_reg_manquant.reg.isin( reg_sans_data)] if pd.unique(df_reg_manquant.reg) == len(reg_sans_data): data_full = True if not data_full: print("data pas complète") exit() df_reg_manquant.sort_values(['jour'], inplace=True) # on reprend la dernière ligne du fichier de données manquante dernier_jour = df_reg_manquant.tail(1) dernier_jour = str(dernier_jour['jour'].values[0]) df_reg_manquant.query('jour==@dernier_jour', inplace=True) df_vaccin_quotidien = pd.concat([df_vaccin_quotidien, df_reg_manquant]) # sauvegarde des données df_vaccin_quotidien.iloc[:-2, : 7].to_csv(csv_today_path) return df_vaccin_quotidien.iloc[:-2, : 7].to_json() # return "e" # df_vaccin_quotidien=maj_data_complete() # somme des datas par jour même incomplète pour pouvoir viusaliser les changements depuis lavaeille #dans df_vaccin_detail on peut avoir des journées manquantes @app.route('/b') def make_vaccin_detail(): today = dt.today().strftime("%m-%d-%Y") csv_today_path = 'C:/Users/Utilisateur/PycharmProjects/montee_en_competence/csv_vaccin_detail/' + today + ".csv" if path.exists(csv_today_path): return pd.read_csv(csv_today_path) else: src = 'https://www.data.gouv.fr/fr/datasets/r/900da9b0-8987-4ba7-b117-7aea0e53f530' df_vaccin_detail = pd.read_csv(src, sep=";") df_vaccin_detail['datetime']=pd.to_datetime(df_vaccin_detail['jour'], format='%Y-%m-%d') df_vaccin_detail['timestamp']=df_vaccin_detail['datetime'].apply(lambda x: datetime.datetime.timestamp(x)) # df_vaccin_detail['somme_jour_vaccin'] = df_vaccin_detail.groupby(['jour', 'vaccin'])['n_cum_dose1'].transform( # sum) df_vaccin_detail.to_csv(csv_today_path) return df_vaccin_detail #le seul truc qui nous manque c'est le cumul par jour par vaccin sur toutes les régions df_vaccin_detail=make_vaccin_detail() # month_options = [{'label': month, 'value': i} # for (month,i) in enumerate(pd.unique(df_liste_vaccin))] #somme_jour_vaccin tient compte du fait qu'il peut y voir plusieurs ligns pour une meme journée et uneme meme re #gion et un meme vaccin # dataframe=pd.DataFrame([]); # dataframe['somme_jour_vaccin'] = df_vaccin_detail.groupby(['jour', 'vaccin'])[ # 'n_dose1'].transform(sum) # dataframe.drop(['reg','n_dose1','n_dose2','n_cum_dose1','n_cum_dose2'],axis=1,inplace=True) @app.route('/c') def make_data(df_vaccin_detail=df_vaccin_detail,liste_vaccin=[0,1,2,3],date_range=[]): if liste_vaccin is None: liste_vaccin = [0, 1, 2, 3] dataframe = df_vaccin_detail.copy() dataframe.drop_duplicates() dataframe = dataframe.sort_values(by=['jour']) for vaccin in liste_vaccin: dataframe['cumsum_' + str(vaccin)] = dataframe.loc[dataframe.vaccin == vaccin, "n_dose1"].cumsum() dataframe.to_clipboard(sep=',', index=False) if date_range != []: date_min = date_range[0] date_max= date_range[1] dataframe = dataframe.loc[dataframe['timestamp']>date_min,] dataframe = dataframe.loc[dataframe['timestamp']<date_max,] dataframe.drop(['timestamp','datetime'],axis=1,inplace=True) data = [] for vaccin in liste_vaccin: dataframe2 = dataframe.query('vaccin==@vaccin') trace = go.Scatter(x=dataframe2.jour, y=dataframe2['cumsum_' + str(vaccin)], name=df_liste_vaccin[vaccin]) data.append(trace) return data # data=make_data(df_vaccin_detail) # layout # layout = go.Layout(xaxis={'title': 'Time'}, # yaxis={'title': 'Produced Units'}, # margin={'l': 40, 'b': 40, 't': 50, 'r': 50}, # hovermode='closest') # figChart = go.Figure(data=data, layout=layout) gg = 0 df = [] # ratio de pop vacciné @app.route('/f') def ratio(): df_vaccin_quotidien['somme_jour'] = df_vaccin_quotidien.groupby(['reg', 'jour'])[ 'n_dose1'].transform(sum) population_totale = 65000000 pop_totale_vacciné = population_totale / df_vaccin_quotidien["n_dose1"].sum() liste_vaccin = pd.unique(df_vaccin_quotidien["vaccin"]) # df_vaccin_quotidien['reg'] = df_vaccin_quotidien['reg'].apply(lambda x: x.zfill(2)) # df_vaccin_quotidien['reg']=df_vaccin_quotidien['reg'].astype("string") df_tot = df_population.merge(df_vaccin_quotidien, left_on='id', right_on='reg') df_tot = df_tot.query('vaccin==0') # vaccin=0 somme des vaccins df_tot["ratio"] = 100 * (df_tot["n_cum_dose1"] / df_tot["pop"]) df_tot["ratio_dose_2"] = 100 * \ (df_tot["n_cum_dose1"] + df_tot["n_cum_dose2"]) / df_tot["pop"] return df_tot # external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css','./assets/yah.css'] # external_scripts = ['https://polyfill.io/v3/polyfill.min.js?features=default', # 'france_geojson.js', 'https://cdn.jsdelivr.net/npm/[email protected]/underscore-min.js', # 'load_gmap.js', # 'https://maps.googleapis.com/maps/api/js?key=<KEY>' # 'MNcHVdkLgHctexkayh5tAMOWjA&callback=initMap&libraries=&v=weekly'] # app = dash.Dash(__name__, external_scripts=external_scripts) @app.route('/g') def load_geojson(): with open('C:/Users/Utilisateur/PycharmProjects/montee_en_competence/france_geojson.json') as f: geojson = json.load(f) for i, x in enumerate(geojson["features"]): df.append([x["properties"]["code"], x["properties"] ["nom"], "pink", x["properties"]["code"]]) df =
pd.DataFrame(df, columns=['code', 'nom', 'color', 'custom_data'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder # In[2]: pd.set_option('display.max_rows', 1000) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) # In[3]: df = pd.read_csv('data.csv') # ## Grouping Players Dataset by Teams # In[4]: df_teams = df # ### Dropping NaNs in `Club` and `Position` Features # In[5]: df_teams = df_teams.drop('Unnamed: 0', axis=1) # In[6]: df_teams = df_teams.dropna(subset=['Club', 'Position'], axis=0) # ### Goal Keeper rows: Replacing NaNs with 0s in `Position` Column # In[7]: # Raplacing NaNs with 0s for Goal Keeper rows df_teams.iloc[:,27:53] = df_teams.iloc[:,27:53].fillna(value=0) # ### Dropping `Joined` and Replacing NaNs in `Release Clause` and `Loaned From` # In[8]: # Dropping 'Joined' column df_teams = df_teams.drop('Joined', axis=1) # In[9]: # Replacing NaNs in 'Release Clause' and 'Loaned From' features df_teams['Release Clause'] = df_teams['Release Clause'].fillna(0) df_teams['Loaned From'] = df_teams['Loaned From'].fillna('Not Loaned') # ### Adding `Field Position` Feature # In[10]: defense = ['CB', 'RB', 'LB', 'RWB', 'LWB', 'RCB', 'LCB'] midfield = ['RW', 'LW', 'RM', 'LM', 'CM', 'CDM', 'CAM', 'RCM', 'LCM', 'LAM', 'RAM', 'RDM', 'LDM'] attack = ['ST', 'CF', 'RF', 'LF', 'RS', 'LS'] goalkeeper = ['GK'] # In[11]: # function to create Field Position for each player def field(row): if row['Position'] in defense: val = 'Defense' elif row['Position'] in midfield: val = 'Midfield' elif row['Position'] in attack: val = 'Attack' else: val = 'GK' return val # In[12]: df_teams['Field Position'] = df_teams.apply(field, axis=1) # ### Editing values in `Value` and `Wage` columns # In[13]: def change_value(row): if (row['Value'][-1]=='K'): return int(pd.to_numeric(row['Value'][1:-1])*1000) elif (row['Value'][-1]=='M'): return int(pd.to_numeric(row['Value'][1:-1])*1000000) elif (row['Value'][-1]=='0'): return 0 # In[14]: df_teams['Value'] = df_teams.apply(change_value, axis=1) # In[15]: def change_wage(row): if (row['Wage'][-1]=='K'): return (pd.to_numeric(row['Wage'][1:-1])) elif (row['Wage'][-1]=='0'): return 0 # In[16]: df_teams['Wage'] = df_teams.apply(change_wage, axis=1) # ### Applying Player Overvalue Ratio # In[17]: df_teams['Overvalue Ratio'] = df_teams['Wage'] / df_teams['Overall'] df_teams['Overvalue Ratio'] = df_teams['Overvalue Ratio'].apply(lambda x: round(x,2)) # ### Multiplying Wage by 1000 # In[18]: df_teams['Wage'] = df_teams['Wage']*1000 # ### Adding New Feature: Field Position Num (Numerically Encoded Field Positions) # In[19]: le = LabelEncoder() df_teams['Field Position Num'] = le.fit_transform(df_teams['Field Position']) # ### Getting Club players # In[20]: def get_club_players(club): if club in df_teams.Club.values: club_players = [] club = df_teams['Club'] == club vals = df_teams.loc[club] names = list(vals['Name']) overvalue_ratios = list(vals['Overvalue Ratio']) potential = list(vals['Potential']) overall_ratings = list(vals['Overall']) # list of player ratings from highest to lowest position = list(vals['Position']) wage = list(vals['Wage']) # If club is a user's 'custom' club elif type(club) == list: player_indexes = [] for dic in club: for key, value in dic.items(): if key == "id": player_indexes.append(value -1) names = df_teams.iloc[player_indexes]['Name'].values overvalue_ratios = df_teams.iloc[player_indexes]['Overvalue Ratio'].values potential = df_teams.iloc[player_indexes]['Potential'].values overall_ratings = df_teams.iloc[player_indexes]['Overall'].values position = df_teams.iloc[player_indexes]['Position'].values wage = df_teams.iloc[player_indexes]['Wage'].values else: return 'Your club entry was not located.' club_list = list(zip(names, position, overvalue_ratios, overall_ratings, potential, wage)) cols = ['Name', 'Position', 'Overvalue Ratio', 'Overall Rating', 'Potential Rating', 'Wage'] df_club_list = pd.DataFrame(data=club_list, columns=cols) top_2_rated_players = sorted(club_list, key=lambda x: x[2], reverse=True)[:2] df_top_2_rated_players =
pd.DataFrame(data=top_2_rated_players, columns=cols)
pandas.DataFrame
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt sns.set(font_scale=2.2) plt.style.use("seaborn") from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler, OneHotEncoder from sklearn.model_selection import StratifiedKFold, train_test_split, ShuffleSplit from sklearn.metrics import f1_score import itertools import lightgbm as lgb import xgboost as xgb from xgboost import XGBClassifier import shap from tqdm import tqdm import featuretools as ft import warnings warnings.filterwarnings("ignore") import time df_train = pd.read_csv("./costa-rican-household-poverty-prediction/train.csv") df_test = pd.read_csv("./costa-rican-household-poverty-prediction/test.csv") print("df_train shape:", df_train.shape, " ", "df_test shape: ", df_test.shape) df_train.head() df_train.describe() df_test.head() # 1.2 Make description df description = pd.read_csv("./costa-rican-household-poverty-prediction/codebook.csv") description # 1.3 Check null data total = df_train.isnull().sum().sort_values(ascending=False) percent = 100 * (df_train.isnull().sum() / df_train.isnull().count()).sort_values(ascending=False) missing_df = pd.concat( [total, percent], axis=1, keys=["Total", "Percent"]) missing_df.head(20) # 1.4 Fill missing values # Below cell is from this kernel: # if education is "yes" and person is head of household, fill with escolari df_train.loc[(df_train["edjefa"] == "yes") & (df_train["parentesco1"] == 1), "edjefa"] = df_train.loc[ (df_train["edjefa"] == "yes") & (df_train["parentesco1"] == 1), "escolari"] df_train.loc[(df_train["edjefe"] == "yes") & (df_train["parentesco1"] == 1), "edjefe"] = df_train.loc[ (df_train["edjefe"] == "yes") & (df_train["parentesco1"] == 1), "escolari"] df_test.loc[(df_test["edjefa"] == "yes") & (df_test["parentesco1"] == 1), "edjefa"] = df_test.loc[ (df_test["edjefa"] == "yes") & (df_test["parentesco1"] == 1), "escolari"] df_test.loc[(df_test["edjefe"] == "yes") & (df_test["parentesco1"] == 1), "edjefe"] = df_test.loc[ (df_test["edjefe"] == "yes") & (df_test["parentesco1"] == 1), "escolari"] # This field is supposed to be interaction between gender and escolari, but it isn't clear what "yes" means, let's fill it with 4 df_train.loc[df_train["edjefa"] == "yes", "edjefa"] = 4 df_train.loc[df_train["edjefe"] == "yes", "edjefe"] = 4 df_test.loc[df_test["edjefa"] == "yes", "edjefa"] = 4 df_test.loc[df_test["edjefe"] == "yes", "edjefe"] = 4 # create feature with max education of either head of household df_train["edjef"] = np.max(df_train[["edjefa", "edjefe"]], axis=1) df_test["edjef"] = np.max(df_test[["edjefa", "edjefe"]], axis=1) # fix some inconsistencies in the data - some rows indicate both that the household does and does not have a toilet, # if there is no water we'll assume they do not df_train.loc[(df_train.v14a == 1) & (df_train.sanitario1 == 1) & (df_train.abastaguano == 0), "v14a"] = 0 df_train.loc[(df_train.v14a == 1) & (df_train.sanitario1 == 1) & (df_train.abastaguano == 0), "sanitario1"] = 0 df_test.loc[(df_test.v14a == 1 ) & (df_test.sanitario1 == 1) & (df_test.abastaguano == 0), "v14a"] = 0 df_test.loc[(df_test.v14a == 1 ) & (df_test.sanitario1 == 1) & (df_test.abastaguano == 0), "sanitario1"] = 0 # rez_esz, SQBmeaned # - rez_esc : Years behind in school -> filled with 0 # - SQBmeaned : square of the mean years of education of adults (>=18) in the household agesq, Age squared -> same with rez_esc -> filled with 0 df_train["rez_esc"].fillna(0, inplace=True) df_test["rez_esc"].fillna(0, inplace=True) df_train["SQBmeaned"].fillna(0, inplace=True) df_test["SQBmeaned"].fillna(0, inplace=True) # meaneduc # - meaneduc: average years of education for adults (18+) -> filled with 0 df_train["meaneduc"].fillna(0, inplace=True) df_test["meaneduc"].fillna(0, inplace=True) # v18q1 # - v18q1: number of tablets household owns -> if v18q (Do you own a tablet?) == 1, there are some values. If not, only NaN values in v18q1. See below 3 cells. df_train["v18q"].value_counts() df_train.loc[df_train["v18q"] == 1, "v18q1"].value_counts() df_train.loc[df_train["v18q"] == 0, "v18q1"].value_counts() df_train["v18q1"].fillna(0, inplace=True) df_test["v18q1"].fillna(0, inplace=True) # - v2a1 : number of tablets household owns -> if tipovivi3 (rented?) == 1, there are some values. If not, there are also some values. # - NaN value could be replaced by 0. df_train["tipovivi3"].value_counts() sns.kdeplot(df_train.loc[df_train["tipovivi3"] == 1, "v2a1"], label = "Monthly rent payment of household(rented=1") sns.kdeplot(df_train.loc[df_train["tipovivi3"] == 0, "v2a1"], label = "Monthly rent payment of household(rented=0") plt.xscale("log") plt.show() df_train["v2a1"].fillna(0, inplace=True) df_test["v2a1"].fillna(0, inplace=True) total = df_train.isnull().sum().sort_values(ascending=False) percent = 100 * (df_train.isnull().sum() / df_train.isnull().count()).sort_values(ascending=False) missing_df = pd.concat([total, percent], axis=1, keys=["Total", "Percent"]) missing_df.head(20) total = df_test.isnull().sum().sort_values(ascending=False) percent = 100 * (df_test.isnull().sum() / df_test.isnull().count()).sort_values(ascending=False) missing_df = pd.concat([total, percent], axis=1, keys=["Total", "Percent"]) missing_df.head(20) # For now, there are no NaN values. # 2. Feature engineering # 2.1 Object features features_object = [col for col in df_train.columns if df_train[col].dtype == "object"] features_object # dependency # some dependencies are NA, fill those with the square root of the square df_train["dependency"] = np.sqrt(df_train["SQBdependency"]) df_test["dependency"] = np.sqrt(df_test["SQBdependency"]) # edjefe # - edjefe, years of education of male head of household, based on the interaction of escolari (years of education), head of household and gender, yes=1 and no=0 # - replace yes -> 1 and no -> 0 def replace_edjefe(x): if x == "yes": return 1 elif x == "no": return 0 else: return x df_train["edjefe"] = df_train["edjefe"].apply(replace_edjefe).astype(float) df_test["edjefe"] = df_test["edjefe"].apply(replace_edjefe).astype(float) # edjefa # - edjefa, years of education of female head of household, based on the interaction of escolari (years of education), head of household and gender, yes=1 and no=0 # - replace yes -> 1 and no -> 0 def replace_edjefa(x): if x == "yes": return 1 elif x == "no": return 0 else: return x df_train["edjefa"] = df_train["edjefa"].apply(replace_edjefa).astype(float) df_test["edjefa"] = df_test["edjefa"].apply(replace_edjefa).astype(float) # create feature with max education of either head of household df_train["edjef"] = np.max(df_train[["edjefa", "edjefe"]], axis=1) df_test["edjef"] = np.max(df_test[["edjefa", "edjefe"]], axis=1) # roof and electricity # I refered to https://www.kaggle.com/mineshjethva/exploratory-data-analysis-lightgbm. # Thanks! df_train["roof_waste_material"] = np.nan df_test["roof_waste_material"] = np.nan df_train["electricity_other"] = np.nan df_test["electricity_other"] = np.nan def fill_roof_exception(x): if (x["techozinc"] == 0) and (x["techoentrepiso"] == 0) and (x["techocane"] == 0) and (x["techootro"] == 0): return 1 else: return 0 def fill_no_electricity(x): if (x["public"] == 0) and (x["planpri"] == 0) and (x["noelec"] == 0) and (x["coopele"] == 0): return 1 else: return 0 df_train["roof_waste_material"] = df_train.apply(lambda x : fill_roof_exception(x), axis=1) df_test["roof_waste_material"] = df_test.apply(lambda x : fill_roof_exception(x), axis=1) df_train["electricity_other"] = df_train.apply( lambda x: fill_no_electricity(x), axis=1) df_test["electricity_other"] = df_test.apply( lambda x: fill_no_electricity(x), axis=1) # 2.2 Extract cat features # - According to data description, there are many binary category features. binary_cat_features = [col for col in df_train.columns if df_train[col].value_counts().shape[0] == 2 ] # 2.3 Make new features using continuous feature continuous_features = [col for col in df_train.columns if col not in binary_cat_features] continuous_features = [col for col in df_train.columns if col not in features_object] continuous_features = [col for col in df_train.columns if col not in ["Id", "Target", "idhogar"]] print("There are {} continuous features".format(len(continuous_features))) for col in continuous_features: print("{}: {}".format(col, description.loc[description["Variable name"] == col, "Variable description"].values)) # - hhsize : household size # - tamhog : size of the household # what is different? # - As you can see, the meaning of two features are same but the exact number are different. Are they different? # - I don't know For now, I decided to drop one feature "tamhog". df_train["edjef"].value_counts() df_train.drop("tamhog", axis=1, inplace=True) df_test.drop("tamhog", axis=1, inplace=True) # Squared features # - There are many squared features. # - Actually, tree models like lightgbm don't need them. But at this kernel, I want to use lightgbm as feature filter model and set entity-embedding as classifier. # So, let's keep them. # Family features # - hogar_nin, hogar_adul, hogar_mayor, hogar_total, r4h1, r4h2, r4h3, r4m1, r4m2, r4m3, r4t1, r4t2, r4t3, tmbhog, tamvid, rez_esc, escolari # - Family size features (substract, ratio) df_train["adult"] = df_train["hogar_adul"] - df_train["hogar_mayor"] df_train["dependency_count"] = df_train["hogar_nin"] + df_train["hogar_mayor"] df_train["dependency"] = df_train["dependency_count"] / df_train["adult"] df_train["child_percent"] = df_train["hogar_nin"] / df_train["hogar_total"] df_train["elder_percent"] = df_train["hogar_mayor"] / df_train["hogar_total"] df_train["adult_percent"] = df_train["hogar_adul"] / df_train["hogar_total"] df_train["males_younger_12_years_percent"] = df_train["r4h1"] / df_train["hogar_total"] df_train["males_older_12_years_percent"] = df_train["r4h2"] / df_train["hogar_total"] df_train["males_percent"] = df_train["r4h3"] / df_train["hogar_total"] df_train["females_younger_12_years_percent"] = df_train["r4m1"] / df_train["hogar_total"] df_train["females_older_12_years_percent"] = df_train["r4m2"] / df_train["hogar_total"] df_train["females_percent"] = df_train["r4m3"] / df_train["hogar_total"] df_train["persons_younger_12_years_percent"] = df_train["r4t1"] / df_train["hogar_total"] df_train["persons_older_12_years_percent"] = df_train["r4t2"] / df_train["hogar_total"] df_train["persons_percent"] = df_train["r4t3"] / df_train["hogar_total"] df_test["adult"] = df_test["hogar_adul"] - df_test["hogar_mayor"] df_test["dependency_count"] = df_test["hogar_nin"] + df_test["hogar_mayor"] df_test["dependency"] = df_test["dependency_count"] / df_test["adult"] df_test["child_percent"] = df_test["hogar_nin"] / df_test["hogar_total"] df_test["elder_percent"] = df_test["hogar_mayor"] / df_test["hogar_total"] df_test["adult_percent"] = df_test["hogar_adul"] / df_test["hogar_total"] df_test["males_younger_12_years_percent"] = df_test["r4h1"] / df_test["hogar_total"] df_test["males_older_12_years_percent"] = df_test["r4h2"] / df_test["hogar_total"] df_test["males_percent"] = df_test["r4h3"] / df_test["hogar_total"] df_test["females_younger_12_years_percent"] = df_test["r4m1"] / df_test["hogar_total"] df_test["females_older_12_years_percent"] = df_test["r4m2"] / df_test["hogar_total"] df_test["females_percent"] = df_test["r4m3"] / df_test["hogar_total"] df_test["persons_younger_12_years_percent"] = df_test["r4t1"] / df_test["hogar_total"] df_test["persons_older_12_years_percent"] = df_test["r4t2"] / df_test["hogar_total"] df_test["persons_percent"] = df_test["r4t3"] / df_test["hogar_total"] df_train['males_younger_12_years_in_household_size'] = df_train['r4h1'] / df_train['hhsize'] df_train['males_older_12_years_in_household_size'] = df_train['r4h2'] / df_train['hhsize'] df_train['males_in_household_size'] = df_train['r4h3'] / df_train['hhsize'] df_train['females_younger_12_years_in_household_size'] = df_train['r4m1'] / df_train['hhsize'] df_train['females_older_12_years_in_household_size'] = df_train['r4m2'] / df_train['hhsize'] df_train['females_in_household_size'] = df_train['r4m3'] / df_train['hogar_total'] df_train['persons_younger_12_years_in_household_size'] = df_train['r4t1'] / df_train['hhsize'] df_train['persons_older_12_years_in_household_size'] = df_train['r4t2'] / df_train['hhsize'] df_train['persons_in_household_size'] = df_train['r4t3'] / df_train['hhsize'] df_test['males_younger_12_years_in_household_size'] = df_test['r4h1'] / df_test['hhsize'] df_test['males_older_12_years_in_household_size'] = df_test['r4h2'] / df_test['hhsize'] df_test['males_in_household_size'] = df_test['r4h3'] / df_test['hhsize'] df_test['females_younger_12_years_in_household_size'] = df_test['r4m1'] / df_test['hhsize'] df_test['females_older_12_years_in_household_size'] = df_test['r4m2'] / df_test['hhsize'] df_test['females_in_household_size'] = df_test['r4m3'] / df_test['hogar_total'] df_test['persons_younger_12_years_in_household_size'] = df_test['r4t1'] / df_test['hhsize'] df_test['persons_older_12_years_in_household_size'] = df_test['r4t2'] / df_test['hhsize'] df_test['persons_in_household_size'] = df_test['r4t3'] / df_test['hhsize'] df_train["overcrowding_room_and_bedroom"] = (df_train["hacdor"] + df_train["hacapo"]) / 2 df_test["overcrowding_room_and_bedroom"] = (df_test["hacdor"] + df_test["hacapo"]) / 2 df_train['escolari_age'] = df_train['escolari']/df_train['age'] df_test['escolari_age'] = df_test['escolari']/df_test['age'] df_train['age_12_19'] = df_train['hogar_nin'] - df_train['r4t1'] df_test['age_12_19'] = df_test['hogar_nin'] - df_test['r4t1'] df_train['phones-per-capita'] = df_train['qmobilephone'] / df_train['tamviv'] df_train['tablets-per-capita'] = df_train['v18q1'] / df_train['tamviv'] df_train['rooms-per-capita'] = df_train['rooms'] / df_train['tamviv'] df_train['rent-per-capita'] = df_train['v2a1'] / df_train['tamviv'] df_test['phones-per-capita'] = df_test['qmobilephone'] / df_test['tamviv'] df_test['tablets-per-capita'] = df_test['v18q1'] / df_test['tamviv'] df_test['rooms-per-capita'] = df_test['rooms'] / df_test['tamviv'] df_test['rent-per-capita'] = df_test['v2a1'] / df_test['tamviv'] # - You can see that "Total persons in the household" != "# of total individuals in the household". # - Somewhat weired. But for now I will keep it. (df_train["hogar_total"] == df_train["r4t3"]).sum() # Rent per family features # - I will reduce the number of features using shap, so let's generate many features!! # Hope catch some fortune features :) family_size_features = ["adult", "hogar_adul", "hogar_mayor", "hogar_nin", "hogar_total", "r4h1", "r4h2", "r4h3", "r4m1", "r4m2", "r4m3", "r4t1", "r4t2", "r4t3", "hhsize"] new_feats = [] for col in family_size_features: new_col_name = "new_{}_per_{}".format("v2a1", col) new_feats.append(new_col_name) df_train[new_col_name] = df_train["v2a1"] / df_train[col] df_test[new_col_name] = df_test["v2a1"] / df_test[col] # Ratio feature can have infinite values. So let them be filled with 0. for col in new_feats: df_train[col].replace([np.inf], np.nan, inplace=True) df_train[col].fillna(0, inplace=True) df_test[col].replace([np.inf], np.nan, inplace=True) df_test[col].fillna(0, inplace=True) # Room per family features new_feats = [] for col in family_size_features: new_col_name = "new_{}_per_{}".format("rooms", col) new_feats.append(new_col_name) df_train[new_col_name] = df_train["rooms"] / df_train[col] df_test[new_col_name] = df_test["rooms"] / df_test[col] for col in new_feats: df_train[col].replace([np.inf], np.nan, inplace=True) df_train[col].fillna(0, inplace=True) df_test[col].replace([np.inf], np.nan, inplace=True) df_test[col].fillna(0, inplace=True) # BedRoom per family features new_feats = [] for col in family_size_features: new_col_name = "new_{}_per_{}".format("bedrooms", col) new_feats.append(new_col_name) df_train[new_col_name] = df_train["bedrooms"] / df_train[col] df_test[new_col_name] = df_test["bedrooms"] / df_test[col] for col in new_feats: df_train[col].replace(np.inf, np.nan, inplace=True) df_train[col].fillna(0, inplace=True) df_test[col].replace(np.inf, np.nan, inplace=True) df_test[col].fillna(0, inplace=True) print(df_train.shape, df_test.shape) new_feats = [] for col in family_size_features: new_col_name = "new_{}_per_{}".format("v18q1", col) new_feats.append(new_col_name) df_train[new_col_name] = df_train["v18q1"] / df_train[col] df_test[new_col_name] = df_test["v18q1"] / df_test[col] for col in new_feats: df_train[col].replace([np.inf], np.nan, inplace=True) df_train[col].fillna(0, inplace=True) df_test[col].replace([np.inf], np.nan, inplace=True) df_test[col].fillna(0, inplace=True) # Phone per family features new_feats = [] for col in family_size_features: new_col_name = "new_{}_per_{}".format("qmobilephone", col) new_feats.append(new_col_name) df_train[new_col_name] = df_train["qmobilephone"] / df_train[col] df_test[new_col_name] = df_train["qmobilephone"] / df_test[col] for col in new_feats: df_train[col].replace([np.inf], np.nan, inplace=True) df_train[col].fillna(0, inplace=True) df_test[col].replace([np.inf], np.nan, inplace=True) df_test[col].fillna(0, inplace=True) # rez_esc (Years behind in school) per family features new_feats = [] for col in family_size_features: new_col_name = "new_{}_per_{}".format("rez_esc", col) new_feats.append(new_col_name) df_train[new_col_name] = df_train["rez_esc"] / df_train[col] df_test[new_col_name] = df_train["rez_esc"] / df_train[col] for col in new_feats: df_train[col].replace([np.inf], np.nan, inplace=True) df_train[col].fillna(0, inplace=True) df_test[col].replace([np.inf], np.nan, inplace=True) df_test[col].fillna(0, inplace=True) df_train["rez_esc_age"] = df_train["rez_esc"] / df_train["age"] df_train["rez_esc_escolari"] = df_train["rez_esc"] / df_train["escolari"] df_test["rez_esc_age"] = df_test["rez_esc"] / df_test["age"] df_test["rez_esc_escolari"] = df_test["rez_esc"] / df_test["escolari"] # Rich features # I think the more richer, the larger number of phones and tabulets df_train["tabulet_x_qmobilephone"] = df_train["v18q1"] * df_train["qmobilephone"] df_test["tabulet_x_qmobilephone"] = df_test["v18q1"] * df_test["qmobilephone"] # wall, roof, floor may be key factor # Let's multiply each of them. Because they are binary cat features, so multiplification of each feature generates new categorical features. # wall and roof for col1 in ["epared1", "epared2", "epared3"]: for col2 in ["etecho1", "etecho2", "etecho3"]: new_col_name = "new_{}_x_{}".format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] for col1 in ["epared1", "epared2", "epared3"]: for col2 in ["eviv1", "eviv2", "eviv3"]: new_col_name = "new_{}_x_{}".format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] # roof and floor for col1 in ["etecho1", "etecho2", "etecho3"]: for col2 in ["eviv1", "eviv2", "eviv3"]: new_col_name = "new_{}_x_{}".format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] # combination using three features for col1 in ["epared1", "epared2", "epared3"]: for col2 in ["etecho1", "etecho2", "etecho3"]: for col3 in ["eviv1", "eviv2", "eviv3"]: new_col_name = "new_{}_x_{}_x_{}".format(col1, col2, col3) df_train[new_col_name] = df_train[col1] * df_train[col2] * df_train[col3] df_test[new_col_name] = df_test[col1] * df_test[col2] * df_test[col3] print(df_train.shape, df_test.shape) # I want to mix electricity and energy features -> energy features for col1 in ["public", "planpri", "noelec", "coopele"]: for col2 in ["energcocinar1", "energcocinar2", "energcocinar3", "energcocinar4"]: new_col_name = "new_{}_x_{}".format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] # I want to mix toilet and rubbish disposal features -> other_infra features for col1 in ["sanitario1", "sanitario2", "sanitario3", "sanitario5", "sanitario6"]: for col2 in ["elimbasu1", "elimbasu2", "elimbasu3", "elimbasu4", "elimbasu5", "elimbasu6"]: new_col_name = "new_{}_x_{}".format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] # I want to mix toilet and water provision features -> water features for col1 in ["abastaguadentro", "abastaguafuera", "abastaguano"]: for col2 in ["sanitario1", "sanitario2", "sanitario3", "sanitario5", "sanitario6"]: new_col_name = "new_{}_x_{}".format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] print(df_train.shape, df_test.shape) # I want to mix education and area features -> education_zone_features for col1 in ['area1', 'area2']: for col2 in ['instlevel1', 'instlevel2', 'instlevel3', 'instlevel4', 'instlevel5', 'instlevel6', 'instlevel7', 'instlevel8', 'instlevel9']: new_col_name = 'new_{}_x_{}'.format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] # Mix region and education for col1 in ['lugar1', 'lugar2', 'lugar3', 'lugar4', 'lugar5', 'lugar6']: for col2 in ['instlevel1', 'instlevel2', 'instlevel3', 'instlevel4', 'instlevel5', 'instlevel6', 'instlevel7', 'instlevel8', 'instlevel9']: new_col_name = 'new_{}_x_{}'.format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] print(df_train.shape, df_test.shape) # Multiply television / mobilephone / computer / tabulet / refrigerator -> electronics features df_train["electronics"] = df_train["computer"] * df_train["mobilephone"] * df_train["television"] * df_train["v18q"] * df_train["refrig"] df_test["electronics"] = df_test["computer"] * df_test["mobilephone"] * df_test["television"] * df_test["v18q"] * df_test["refrig"] df_train["no_appliances"] = df_train["refrig"] + df_train["computer"] + df_train["television"] + df_train["mobilephone"] df_test["no_appliances"] = df_test["refrig"] + df_test["computer"] + df_test["television"] + df_test["mobilephone"] # Mix wall materials of roof, floor, wall for col1 in ['paredblolad', 'paredzocalo', 'paredpreb', 'pareddes', 'paredmad', 'paredzinc', 'paredfibras', 'paredother']: for col2 in ['pisomoscer', 'pisocemento', 'pisoother', 'pisonatur', 'pisonotiene', 'pisomadera']: new_col_name = 'new_{}_x_{}'.format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] for col1 in ['pisomoscer', 'pisocemento', 'pisoother', 'pisonatur', 'pisonotiene', 'pisomadera']: for col1 in ['techozinc', 'techoentrepiso', 'techocane', 'techootro']: new_col_name = 'new_{}_x_{}'.format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] for col1 in ['paredblolad', 'paredzocalo', 'paredpreb', 'pareddes', 'paredmad', 'paredzinc', 'paredfibras', 'paredother']: for col2 in ['techozinc', 'techoentrepiso', 'techocane', 'techootro']: new_col_name = 'new_{}_x_{}'.format(col1, col2) df_train[new_col_name] = df_train[col1] * df_train[col2] df_test[new_col_name] = df_test[col1] * df_test[col2] for col1 in ['paredblolad', 'paredzocalo', 'paredpreb', 'pareddes', 'paredmad', 'paredzinc', 'paredfibras', 'paredother']: for col2 in ['pisomoscer', 'pisocemento', 'pisoother', 'pisonatur', 'pisonotiene', 'pisomadera']: for col3 in ['techozinc', 'techoentrepiso', 'techocane', 'techootro']: new_col_name = 'new_{}_x_{}_x_{}'.format(col1, col2, col3) df_train[new_col_name] = df_train[col1] * df_train[col2] * df_train[col3] df_test[new_col_name] = df_test[col1] * df_test[col2] * df_train[col3] print(df_train.shape, df_test.shape) # Wow without any aggregation features, we have 446 features for now. # Actually, mixing the materials of wall make thousands of features. # I don't want to do that because of computational costs! # Remove features with only one value. cols_with_only_one_value = [] for col in df_train.columns: if col == "Target": continue if df_train[col].value_counts().shape[0] == 1 or df_test[col].value_counts().shape[0] == 1: print(col) cols_with_only_one_value.append(col) # Let's remove them! df_train.drop(cols_with_only_one_value, axis=1, inplace=True) df_test.drop(cols_with_only_one_value, axis=1, inplace=True) # Check whether both train and test have same features cols_train = np.array(sorted([col for col in df_train.columns if col != "Target"])) cols_test = np.array(sorted([col for col in df_test.columns if col != "Target"])) (cols_train == cols_test).sum() == len(cols_train) # Good, let's move! # 2.4 Aggregating features # In this competition, each sample are member of specific household (idhogar). # So let's aggregate based on "idhogar" values. # Aggregation for family features. def max_min(x): return x.max() - x.min() agg_train = pd.DataFrame() agg_test = pd.DataFrame() for item in tqdm(family_size_features): for i, function in enumerate(["mean", "std", "min", "max", "sum", "count", max_min]): group_train = df_train[item].groupby(df_train["idhogar"]).agg(function) group_test = df_test[item].groupby(df_test["idhogar"]).agg(function) if i == 6: new_col = item + "_new_" + "max_min" else: new_col = item + "_new_" + function agg_train[new_col] = group_train agg_test[new_col] = group_test print("new aggregated train set has {} rows and {} features".format(agg_train.shape[0], agg_train.shape[1])) print("new aggregated test set has {} rows and {} features".format(agg_test.shape[0], agg_test.shape[1])) aggr_list = ["rez_esc", "dis", "male", "female", "estadocivil1", "estadocivil2", "estadocivil3", "estadocivil4", "estadocivil5", "estadocivil6", "estadocivil7", "parentesco2", "parentesco3", "parentesco4", "parentesco5", "parentesco6", "parentesco7", "parentesco8", "parentesco9", "parentesco10", "parentesco11", "parentesco12", "instlevel1", "instlevel2", "instlevel3", "instlevel4", "instlevel5", "instlevel6", "instlevel7", "instlevel8", "instlevel9", "epared1", "epared2", "epared3", "etecho1", "etecho2", "etecho3", "eviv1", "eviv2", "eviv3", "refrig", "television", "mobilephone", "area1", "area2", "v18q", "edjef"] for item in tqdm(aggr_list): for function in ["count", "sum"]: group_train = df_train[item].groupby(df_train["idhogar"]).agg(function) group_test = df_test[item].groupby(df_test["idhogar"]).agg(function) new_col = item + "_new1_" + function agg_train[new_col] = group_train agg_test[new_col] = group_test print("new aggregated train set has {} rows and {} features".format(agg_train.shape[0], agg_train.shape[1])) print("new aggregated test set has {} rows and {} features".format(agg_test.shape[0], agg_test.shape[1])) aggr_list = ['escolari', 'age', 'escolari_age', 'dependency', 'bedrooms', 'overcrowding', 'rooms', 'qmobilephone', 'v18q1'] for item in tqdm(aggr_list): for function in ['mean','std','min','max','sum', 'count', max_min]: group_train = df_train[item].groupby(df_train['idhogar']).agg(function) group_test = df_test[item].groupby(df_test['idhogar']).agg(function) if i == 6: new_col = item + '_new2_' + 'max_min' else: new_col = item + '_new2_' + function agg_train[new_col] = group_train agg_test[new_col] = group_test print('new aggregate train set has {} rows, and {} features'.format(agg_train.shape[0], agg_train.shape[1])) print('new aggregate test set has {} rows, and {} features'.format(agg_test.shape[0], agg_test.shape[1])) agg_train = agg_train.reset_index() agg_test = agg_test.reset_index() train_agg =
pd.merge(df_train, agg_train, on="idhogar")
pandas.merge
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n, pd.Period('2011-01', freq='D'), n]) assert lib.infer_dtype(arr) == 'period' # different type of nat arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' @pytest.mark.parametrize( "data", [ [datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)], [Timestamp("20170612"), Timestamp("20170311")], [Timestamp("20170612", tz='US/Eastern'), Timestamp("20170311", tz='US/Eastern')], [date(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')], [np.datetime64("2017-06-12"), np.datetime64("2017-03-11")], [np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)] ] ) def test_infer_datetimelike_array_datetime(self, data): assert lib.infer_datetimelike_array(data) == "datetime" @pytest.mark.parametrize( "data", [ [timedelta(2017, 6, 12), timedelta(2017, 3, 11)], [timedelta(2017, 6, 12), date(2017, 3, 11)], [np.timedelta64(2017, "D"), np.timedelta64(6, "s")], [np.timedelta64(2017, "D"), timedelta(2017, 3, 11)] ] ) def test_infer_datetimelike_array_timedelta(self, data): assert lib.infer_datetimelike_array(data) == "timedelta" def test_infer_datetimelike_array_date(self): arr = [date(2017, 6, 12), date(2017, 3, 11)] assert lib.infer_datetimelike_array(arr) == "date" @pytest.mark.parametrize( "data", [ ["2017-06-12", "2017-03-11"], [20170612, 20170311], [20170612.5, 20170311.8], [Dummy(), Dummy()], [Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')], [Timestamp("20170612"), 20170311], [timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')] ] ) def test_infer_datetimelike_array_mixed(self, data): assert lib.infer_datetimelike_array(data) == "mixed" @pytest.mark.parametrize( "first, expected", [ [[None], "mixed"], [[np.nan], "mixed"], [[pd.NaT], "nat"], [[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"], [[np.datetime64("2017-06-12"), pd.NaT], "datetime"], [[date(2017, 6, 12), pd.NaT], "date"], [[timedelta(2017, 6, 12), pd.NaT], "timedelta"], [[np.timedelta64(2017, "D"), pd.NaT], "timedelta"] ] ) @pytest.mark.parametrize("second", [None, np.nan]) def test_infer_datetimelike_array_nan_nat_like(self, first, second, expected): first.append(second) assert lib.infer_datetimelike_array(first) == expected def test_infer_dtype_all_nan_nat_like(self): arr = np.array([np.nan, np.nan]) assert lib.infer_dtype(arr) == 'floating' # nan and None mix are result in mixed arr = np.array([np.nan, np.nan, None]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([None, np.nan, np.nan]) assert lib.infer_dtype(arr) == 'mixed' # pd.NaT arr = np.array([pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([None, pd.NaT, None]) assert lib.infer_dtype(arr) == 'datetime' # np.datetime64(nat) arr = np.array([np.datetime64('nat')]) assert lib.infer_dtype(arr) == 'datetime64' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([pd.NaT, n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([pd.NaT, n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' # datetime / timedelta mixed arr = np.array([pd.NaT, np.datetime64('nat'), np.timedelta64('nat'), np.nan]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64('nat'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_is_datetimelike_array_all_nan_nat_like(self): arr = np.array([np.nan, pd.NaT, np.datetime64('nat')]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.datetime64('nat'), np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, np.nan], dtype=object) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) assert lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='US/Eastern')], dtype=object)) assert not lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='CET')], dtype=object)) @pytest.mark.parametrize( "func", [ 'is_datetime_array', 'is_datetime64_array', 'is_bool_array', 'is_timedelta_or_timedelta64_array', 'is_date_array', 'is_time_array', 'is_interval_array', 'is_period_array']) def test_other_dtypes_for_array(self, func): func = getattr(lib, func) arr = np.array(['foo', 'bar']) assert not func(arr) arr = np.array([1, 2]) assert not func(arr) def test_date(self): dates = [date(2012, 1, day) for day in range(1, 20)] index = Index(dates) assert index.inferred_type == 'date' dates = [date(2012, 1, day) for day in range(1, 20)] + [np.nan] result = lib.infer_dtype(dates) assert result == 'mixed' result = lib.infer_dtype(dates, skipna=True) assert result == 'date' def test_is_numeric_array(self): assert lib.is_float_array(np.array([1, 2.0])) assert lib.is_float_array(np.array([1, 2.0, np.nan])) assert not lib.is_float_array(np.array([1, 2])) assert lib.is_integer_array(np.array([1, 2])) assert not lib.is_integer_array(np.array([1, 2.0])) def test_is_string_array(self): assert lib.is_string_array(np.array(['foo', 'bar'])) assert not lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=False) assert lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=True) assert not lib.is_string_array(np.array([1, 2])) def test_to_object_array_tuples(self): r = (5, 6) values = [r] result = lib.to_object_array_tuples(values) try: # make sure record array works from collections import namedtuple record = namedtuple('record', 'x y') r = record(5, 6) values = [r] result = lib.to_object_array_tuples(values) # noqa except ImportError: pass def test_object(self): # GH 7431 # cannot infer more than this as only a single element arr = np.array([None], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' def test_to_object_array_width(self): # see gh-13320 rows = [[1, 2, 3], [4, 5, 6]] expected = np.array(rows, dtype=object) out = lib.to_object_array(rows) tm.assert_numpy_array_equal(out, expected) expected = np.array(rows, dtype=object) out = lib.to_object_array(rows, min_width=1) tm.assert_numpy_array_equal(out, expected) expected = np.array([[1, 2, 3, None, None], [4, 5, 6, None, None]], dtype=object) out = lib.to_object_array(rows, min_width=5) tm.assert_numpy_array_equal(out, expected) def test_is_period(self): assert lib.is_period(pd.Period('2011-01', freq='M')) assert not lib.is_period(pd.PeriodIndex(['2011-01'], freq='M')) assert not lib.is_period(
pd.Timestamp('2011-01')
pandas.Timestamp
#!/usr/bin/env python from scipy import interpolate import numpy as np from numpy.lib.recfunctions import append_fields import scipy.signal as sig import scipy.stats as st import time, os import pandas as pd import math #import report_ctd import ctdcal.report_ctd as report_ctd import warnings import ctdcal.fit_ctd as fit_ctd import datetime from decimal import Decimal import settings import sys sys.path.append('ctdcal/') import oxy_fitting import gsw warnings.filterwarnings("ignore", 'Mean of empty slice.') def cast_details(stacast, log_file, p_col, time_col, b_lat_col, b_lon_col, alt_col, inMat=None): ''' We determine the cast details using pandas magic. First find alternating periods of pumps on and pumps off, then select the pumps on period with the highest pressure. Get values from the row with the highest pressure, and return all values to be sent to log. Input: stacast - integer, the station and cast, as SSSCC format log_file - file handle or string, log_file p_col - string, name of the pressure column time_col - string, name of the time column b_lat_col - string, name of the latitude column b_lon_col - string, name of the longitude column alt_col - string, name of the altimeter column inMat - pandas dataframe, the dataframe to come in Output: start_cast_time - float, unix epoch seconds?, start of cast time, to be reported to log file end_cast_time - float, unix epoch seconds?, end of cast time, to be reported to log file bottom_cast_time - float, unix epoch seconds?, bottom of cast time, to be reported to log file start_pressure - float, pressure at which cast started, to be reported to log file max_pressure - float, bottom of the cast pressure, to be reported to log file b_lat - float, latitude at bottom of cast b_lon - float, longitude at bottom of cast b_alti - float, altimeter reading at bottom of cast - volts only! inMat - the dataframe that came in, with soak period trimmed off don't need end_cast_time, max_pressure inMat is trimmed to start and end of cast ''' df_test = pd.DataFrame.from_records(inMat) dfs = find_pump_on_off_dfs(df_test) dfs_1 = find_pumps_on_dfs(dfs) df_cast = find_max_pressure_df(dfs_1) df_cast1 = find_last_soak_period(df_cast) df_cast2 = trim_soak_period_from_df(df_cast1) start_cast_time = float(df_cast2['scan_datetime'].head(1)) start_pressure = float(df_cast2['CTDPRS'].head(1)) end_cast_time = float(df_cast2['scan_datetime'].tail(1)) max_pressure = float(df_cast2['CTDPRS'].max()) bottom_cast_time = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['scan_datetime']) b_lat = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['GPSLAT']) b_lon = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['GPSLON']) b_alti = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['ALT']) #last two lines must be in to return the same as old - change to slices of df later report_ctd.report_cast_details(stacast, log_file, start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_alti, b_lat, b_lon) #reconvert to ndarray - might need to be altered to remove second index # inMat = df_cast2.loc[:df_cast2['CTDPRS'].idxmax()].to_records(index=False) inMat = df_cast2.loc[:df_cast2['CTDPRS'].idxmax()] return start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_lat, b_lon, b_alti, inMat #Move next four functions to a library or class(?) Clean up module def find_pump_on_off_dfs(df): '''Find pump_on patterns of dataframes, and return a list(?) of dataframes to iterate over. ''' return [g for i,g in df.groupby(df['pump_on'].ne(df['pump_on'].shift()).cumsum())] def find_max_pressure_df(dfs): '''Giving a list of data frames, return a reference to the frame with which contians the highest pressure value ''' max_pressure_df = dfs[0] max_pressure = max_pressure_df['CTDPRS'].max() #TODO make into config var for df in dfs: if df['CTDPRS'].max() > max_pressure: max_pressure_df = df return max_pressure_df def find_pumps_on_dfs(dfs): '''given a list of dataframes, remove all the frames with one or more rows containing a "false" pump on flag ''' return list(filter(lambda df: df['pump_on'].all(), dfs)) def trim_soak_period_from_df(df): '''Look for minimum pressure in dataframe, then return everything after minimum pressure/top of cast. ''' test = int(df.iloc[1:int((len(df)/4))]['CTDPRS'].idxmin()) return df.loc[test:] def find_last_soak_period(df_cast, surface_pressure=2, time_bin=8, downcast_pressure=50): """Find the soak period before the downcast starts. The algorithm is tuned for repeat hydrography work, specifically US GO-SHIP parameters. This assumes the soak depth will be somewhere between 10 and 30 meters, the package will sit at the soak depth for at least 20 to 30 seconds before starting ascent to the surface and descent to target depth. Parameters ---------- df_cast : DataFrame DataFrame of the entire cast surface_pressure : integer Minimum surface pressure threshold required to look for soak depth. 2 dbar was chosen as an average rosette is roughly 1.5 to 2 meters tall. time_bin : integer Time, in whole seconds. downcast_pressure : integer Minimum pressure threshold required to assume downcast has started. 50 dbar has been chosen as double the deep soak depth of 20-30 dbar. Returns ------- df_cast_ret : DataFrame DataFrame starting within time_bin seconds of the last soak period. The algorithm is not guaranteed to catch the exact start of the soak period, but within a minimum period of time_bin seconds(?) from end of the soak if the soak period assumption is valid. This should be shorter than the total soak period time, and able to catch the following rise and descent of the package that signals the start of the cast. The algorithm has been designed to handle four general cases of casts: * A routine cast with pumps turning on in water and normal soak * A cast where the pumps turn on in air/on deck * A cast where the pumps turn on and off due to rosette coming out of water * A cast where there are multiple stops on the downcast to the target depth """ #Validate user input if time_bin <= 0: raise ValueError('Time bin value should be positive whole seconds.') if downcast_pressure <=0: raise ValueError('Starting downcast pressure threshold must be positive integers.') if downcast_pressure < surface_pressure: raise ValueError(f'Starting downcast pressure threshold must be greater \ than surface pressure threshold.') # If pumps have not turned on until in water, return DataFrame if df_cast.iloc[0]['CTDPRS'] > surface_pressure: return df_cast #Bin the data by time, and compute the average rate of descent df_blah = df_cast.loc[:,:] df_blah['bin'] = pd.cut(df_blah.loc[:,'index'], range(df_blah.iloc[0]['index'],df_blah.iloc[-1]['index'],time_bin*24), labels=False, include_lowest=True) df_blah2 = df_blah.groupby('bin').mean() #Compute difference of descent rates and label bins df_blah2['prs_diff'] = df_blah2['CTDPRS'].diff().fillna(0).round(0) df_blah2['movement'] = pd.cut(df_blah2['prs_diff'], [-1000,-0.5,0.5,1000], labels=['up','stop','down']) #Find all periods where the rosette is not moving df_stop = df_blah2.groupby('movement').get_group('stop') groupby_test = df_blah2.groupby(df_blah2['movement'].ne(df_blah2['movement'].shift()).cumsum()) list_test = [g for i,g in groupby_test] #Find a dataframe index of the last soak period before starting descent def poop(list_obj, downcast_pressure): """ Return dataframe index in the last soak period before starting descent to target depth. """ for i, x in zip(range(len(list_test)),list_test): if x['CTDPRS'].max() < downcast_pressure: if x.max()['movement'] == 'stop': index = i if x['CTDPRS'].max() > downcast_pressure: return index return index #Truncate dataframe to new starting index : end of dataframe start_index = np.around(list_test[poop(list_test, downcast_pressure)].head(1)['index']) df_cast = df_cast.set_index('index') df_cast = df_cast.loc[int(start_index):,:] df_cast_ret = df_cast.reset_index() return df_cast_ret #End move four functions # def cast_details_old(stacast, log_file, p_col, time_col, b_lat_col, b_lon_col, alt_col, inMat=None): # """cast_details function # # Function takes full NUMPY ndarray with predefined dtype array # and adjusts ndarray to remove all extraneous surface data. # Function returns cast start time, end time, bottom time and # cleaned up matrix. # # Args: # param1 (str): stacast, station cast input # param2 (str): log_file, log file to write cast data. # param3 (str): p_col, pressure data column name # param4 (str): time_col, time data column name # param5 (ndarray): inMat, numpy ndarray with dtype array # # Returns: # Narray: The return value is ndarray with adjusted time of parameter # specified. # # """ # # # if inMat is None: # print("In cast_details: No data") # return # else: # # Top of cast time, bottom of cast time, end of cast time, # start_cast_time = 0.0 # bottom_cast_time = 0.0 # end_cast_time = 0.0 # # Test cycle time constant # fl = 24 # # starting P # start_pressure = 2.0 # # Max P # max_pressure = 10000.0 # lm = len(inMat)-1 # rev = np.arange(int(lm/4),0,-1) # # # Find starting top of cast # # Smallest P from reverse array search # for i in rev: # if start_pressure < inMat[p_col][i]: # tmp = i # elif start_pressure > inMat[p_col][i]: # start_pressure = inMat[p_col][i] # tmp = abs(i - 24) #patched to not break through the c(sea)-floor, can be made cleaner # break # start_cast_time = inMat[time_col][tmp] # # # Remove everything before cast start # inMat = inMat[tmp:] # # # Max P and bottom time # max_pressure = max(inMat[p_col]) # tmp = np.argmax((inMat[p_col])) # bottom_cast_time = inMat[time_col][tmp] # b_lat = inMat[b_lat_col][tmp] # b_lon = inMat[b_lon_col][tmp] # b_alti = inMat[alt_col][tmp] # # tmp = len(inMat) # # Find ending top of cast time # for i in range(int(tmp/2),tmp): # if start_pressure > inMat[p_col][i]: # end_cast_time = inMat[time_col][i] # if i < tmp: tmp = i + 24 # break # # # Remove everything after cast end # inMat = inMat[:tmp] # # report_ctd.report_cast_details(stacast, log_file, start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_alti, b_lat, b_lon) # # return start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_lat, b_lon, b_alti, inMat def ctd_align(inMat=None, col=None, time=0.0): """ctd_align function Function takes full NUMPY ndarray with predefined dtype array and adjusts time of sensor responce and water flow relative to the time frame of temperature sensor. Args: param1 (ndarray): inMat, numpy ndarray with dtype array param2 (float): col, column to apply time advance to. param3 (float): time, advance in seconds to apply to raw data. Returns: Narray: The return value is ndarray with adjusted time of parameter specified. """ # Num of frames per second. fl = 24 if (inMat is not None) & (col is not None) & ( time > 0.0): # Time to advance advnc = int(fl * time) tmp = np.arange(advnc, dtype=np.float) last = inMat[col][len(inMat)-1] tmp.fill(float(last)) inMat[col] = np.concatenate((inMat[col][advnc:],tmp)) return inMat def ctd_quality_codes(column=None, p_range=None, qual_code=None, oxy_fit=False, p_qual_col=None, qual_one=None, inMat=None): """ctd_quality_codes function Function takes full NUMPY ndarray with predefined dtype array Args: param1 (ndarray): param2 (float): Returns: Narray: The return value is ndarray with adjusted time of parameter specified. """ #If p_range set apply qual codes to part of array and return if p_range is not None: print("Some algoirythm for formatting qual codes per pressure range") return else: q_df = pd.DataFrame(index=np.arange(len(inMat)), columns=p_qual_col) for pq in p_qual_col: if pq in list(qual_one): q_df[pq] = q_df[pq].fillna(1) elif oxy_fit and pq is column: q_df[pq] = q_df[pq].fillna(2) else: q_df[pq] = q_df[pq].fillna(2) q_nd = q_df.as_matrix(columns=q_df.columns) return q_nd def formatTimeEpoc(time_zone='UTC', time_pattern='%Y-%m-%d %H:%M:%S', input_time = None): """formatTimeEpoc function Function takes pattern of time input, relative time zone, and date time data array and returns array of epoc time. title and the second row are the units for each column. Args: param1 (str): relative time zone for data. param2 (str): pattern of incoming data. param3 (ndarray): input_time, numpy 1d ndarray time array Returns: 1D ndarray: The return array of epoch time """ if input_time is None: print("In formatTimeEpoc: No data entered.") return else: os.environ['TZ'] = 'UTC' epoch_time = input_time for i in range(0,len(input_time)): epoch_time[i] = int(time.mktime(time.strptime(str(input_time[i], "utf-8"), time_pattern))) return epoch_time def dataToDataFrame(inFile): """dataToDataFrame function Function takes full file path to csv type data file and returns a PANDAS dataframe for data treatment with a two row header. Data file should have a two row header. The first row being the column title and the second row are the units for each column. Args: param1 (str): Full path to data file. Returns: DataFrame: The return value is a full dataframe with header. .. REF PAGE: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html#pandas.read_csv """ #df = pd.read_csv(inFile, header=[0,2]) df = pd.read_csv(inFile) return df def dataToNDarray(inFile, dtype=None, names=None, separator=',', skip=None): """dataToNDarray function Function takes full file path to csv type data file and returns NUMPY ndarray type ndarray for data manipulation with a two row header. Data file should have a two row header. The first row being the column title and the second row are the units for each column. Args: param1 (str): inFile, full path to csv file param2 (arr): dtype list param3 (str): separator, default comma ',' Returns: Narray: The return value is a full data ndarray with two row header. Reference Page: https://scipy.github.io/old-wiki/pages/Cookbook/InputOutput.html """ try: return pd.read_pickle(inFile).to_records() except: if skip is None: arr = np.genfromtxt(inFile, delimiter=separator, dtype=dtype, names=names) else: arr = np.genfromtxt(inFile, delimiter=separator, dtype=dtype, names=names, skip_header=skip) return arr def hysteresis_correction(H1=-0.033, H2=5000, H3=1450, inMat = None): """Hysteresis Correction function Function takes data ndarray and hysteresis coefficiants and returns hysteresis corrected oxygen data. Args: param1 (float): H1, hysteresis correction coefficiant 1 param2 (float): H2, hysteresis correction coefficiant 2 param3 (float): H3, hysteresis correction coefficiant 3 param5 (array): inMat, raw ctd data. Returns: array: Return dissolved oxygen hysteresis corrected data. .. REF PAGE: http://http://www.seabird.com/document/an64-3-sbe-43-dissolved-oxygen-do-sensor-hysteresis-corrections """ Oxnewconc = np.arange(0,len(inMat),1) Oxnewconc[0] = inMat['o1_mll'][1] if inMat is None: print("Hysteresis Correction function: No data") return else: for i in range(1,len(inMat)-1): D = 1 + H1 * (math.exp(inMat['p_dbar'][i] / H2) - 1) C = math.exp(-1 * 0.04167/ H3) Oxnewconc[i] = ((inMat['o1_mll'][i] + (Oxnewconc[i-1] * C * D)) - (inMat['o1_mll'][i-1] * C)) / D inMat['o1_mll'][:] = Oxnewconc[:] return inMat def data_interpolater(inArr): """data_interpolater to handle indices and logical indices of NaNs. Input: - inArr, 1d numpy array with return True np.isnans() Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices - interpolated array Example: >>> # linear interpolation of NaNs >>> outArray = data_interpolater(inArr) """ nans, tmp= np.isnan(inArr), lambda z: z.nonzero()[0] inArr[nans] = np.interp(tmp(nans), tmp(~nans), inArr[~nans]) return inArr def o2pl2pkg(p_col, t_col, sal_col, dopl_col, dopkg_col, lat_col, lon_col, inMat): """o2pl2pkg convert ml/l dissolved oxygen to umol/kg Input: - t_col, temperature column header deg c. - sal_col, salinity column header psu. - dopl_col, dissolved column header ml/l. - dopkg_col, dissolved column header umol/kg - lat_col, latitude for entire cast deg. - lon_col, longitude for entire cast deg. - inMat, dtype ndarray processed ctd time data. Output: - Converted Oxygen column umol/kg Example: >>> # linear interpolation of NaNs >>> outArray = o2pl2kg(inArr) """ pkg = np.ndarray(shape=len(inMat), dtype=[(dopkg_col, np.float)]) # Absolute sailinity from Practical salinity. SA = gsw.SA_from_SP(inMat[sal_col], inMat[p_col], inMat[lat_col], inMat[lon_col]) # Conservative temperature from insitu temperature. CT = gsw.CT_from_t(SA, inMat[t_col], inMat[p_col]) s0 = gsw.sigma0(SA, CT) # Potential density from Absolute Salinity g/Kg Conservative temperature deg C. # Convert DO ml/l to umol/kg for i in range(0,len(inMat[dopl_col])): pkg[i] = inMat[dopl_col][i] * 44660 / (s0[i] + 1000) return pkg def oxy_to_umolkg(df_sal, df_pressure, df_lat, df_lon, df_temp, df_oxy): '''Rewritten from Courtney's method to use array-likes (aka use dataframes and ndarrays). ''' # Absolute salinity from Practical salinity. SA = gsw.SA_from_SP(df_sal, df_pressure, df_lat, df_lon) # Conservative temperature from insitu temperature. CT = gsw.CT_from_t(SA, df_temp, df_pressure) s0 = gsw.sigma0(SA, CT) # Potential density from Absolute Salinity g/Kg Conservative temperature deg C. series = df_oxy * 44660 / (s0 + 1000) return series def raw_ctd_filter(input_array=None, filter_type='triangle', win_size=24, parameters=None): """raw_ctd_filter function Function takes NUMPY array of raw ctd data and returns filtered data. This function also needs one of three filter types (boxcar, gaussian, triangle) as well as window size. Args: param1 (ndarray): Numpy ndarray with predefined header with at param2 (str): One of three tested filter types boxcar, gaussian_std, triangle. default is triangle param3 (int): A window size for the filter. Default is 24, which is the number of frames per second from a SBE9+/11 CTD/Dech unit. param4 (ndarray): parameters the dtype names used in filtering the analytical inputs. Returns: Narray: The return value is a matrix of filtered ctd data with the above listed header values. """ if input_array is None: print("In raw_ctd_filter: No data array.") return else: return_array = input_array if parameters is None: print("In raw_ctd_filter: Empty parameter list.") else: for p in parameters: if filter_type is 'boxcar': win = sig.boxcar(win_size) return_array[str(p)] = sig.convolve(input_array[str(p)], win, mode='same')/len(win) elif filter_type is 'gaussian': sigma = np.std(arr) win = sig.general_gaussian(win_size, 1.0, sigma) return_array[str(p)] = sig.convolve(input_array[str(p)], win, mode='same')/(len(win)) elif filter_type is 'triangle': win = sig.triang(win_size) return_array[p] = 2*sig.convolve(input_array[p], win, mode='same')/len(win) return return_array def ondeck_pressure(stacast, p_col, c1_col, c2_col, time_col, inMat=None, conductivity_startup=20.0, log_file=None): """ondeck_pressure function Function takes full NUMPY ndarray with predefined dtype array of filtered ctd raw data the stores, analizes and removes ondeck values from data. Args: param1 (str): stacast, station cast info param1 (str): p_col, pressure data column name param2 (str): c1_col, cond1 data column name param3 (str): c2_col, cond2 data column name param4 (str): time_col, time data column name param5 (ndarray): numpy ndarray with dtype array param6 (float): conductivity_startup, threshold value param7 (str): log_file, log file name Returns: Narray: The return ndarray with ondeck data removed. Also output start/end ondeck pressure. """ start_pressure = [] tmpMat = [] outMat = [] tmp = 0 start_p = 0.0 n = 0 ep = [] end_p = 0.0 # Frequency fl = 24 fl2 = fl*2 # One minute mt = 60 # Half minute ms = 30 time_delay = fl*ms if inMat is None: print("Ondeck_pressure function: No data.") return else: # Searches first quarter of matrix, uses conductivity # threshold min to capture startup pressure for j in range(0,int(len(inMat)/4)): if ((inMat[c1_col][j] < conductivity_startup) and (inMat[c2_col][j] < conductivity_startup)): tmp = j start_pressure.append(inMat[p_col][j]) # Evaluate starting pressures if not start_pressure: start_p = "Started in Water" else: n = len(start_pressure) if (n > time_delay): start_p = np.average(start_pressure[fl2:n-(time_delay)]) else: start_p = np.average(start_pressure[fl2:n]) # Remove on-deck startup inMat = inMat[tmp:] tmp = len(inMat); # Searches last half of NDarray for conductivity threshold if len(inMat) % 2 == 0: inMat_2 = inMat.copy() else: inMat_2 = inMat.iloc[1:].copy() inMat_half1, inMat_half2 = np.split(inMat_2,2) ep = inMat_half2[(inMat_half2[c1_col] < conductivity_startup) & (inMat_half2[c2_col] < conductivity_startup)][p_col] # for j in range(int(len(inMat)*0.5), len(inMat)): # if ((inMat[c1_col][j] < conductivity_startup) and (inMat[c2_col][j] < conductivity_startup)): # ep.append(inMat[p_col][j]) # if (tmp > j): tmp = j # Evaluate ending pressures if (len(ep) > (time_delay)): end_p = np.average(ep[(time_delay):]) else: end_p = np.average(ep[(len(ep)):]) # Remove on-deck ending outMat = inMat[:tmp] # Store ending on-deck pressure report_ctd.report_pressure_details(stacast, log_file, start_p, end_p) return outMat def _roll_filter(df, pressure_column="CTDPRS", direction="down"): #fix/remove try/except once serialization is fixed try: if direction == 'down': monotonic_sequence = df[pressure_column].expanding().max() elif direction == 'up': monotonic_sequence = df[pressure_column].expanding().min() else: raise ValueError("direction must be one of (up, down)") except KeyError: pressure_column = 'CTDPRS' if direction == 'down': monotonic_sequence = df[pressure_column].expanding().max() elif direction == 'up': monotonic_sequence = df[pressure_column].expanding().min() else: raise ValueError("direction must be one of (up, down)") return df[df[pressure_column] == monotonic_sequence] def roll_filter(inMat, p_col, up='down', frames_per_sec=24, search_time=15, **kwargs): """roll_filter function Function takes full NUMPY ndarray with predefined dtype array and subsample arguments to return a roll filtered ndarray. Args: param1 (str): stacast, station cast info param2 (ndarray): inMat, numpy ndarray with dtype array param3 (str): up, direction to filter cast (up vs down) param4 (int): frames_per_sec, subsample selection rate param5 (int): seach_time, search time past pressure inversion Returns: Narray: The return value ndarray of data with ship roll removed """ #When the "pressure sequence" code is fixed, uncomment and use this instead start = kwargs.get("start", 0) end = kwargs.get("end", -1) full_matrix = kwargs.get("full_matrix", inMat) tmp_df = pd.DataFrame.from_records(full_matrix[start:end]) tmp_df = _roll_filter(tmp_df) #return tmp_df.to_records(index=False) return tmp_df remove = [] frequency = 24 # Hz of package if (frames_per_sec > 0) & (frames_per_sec <= 24): sample = int(frequency/frames_per_sec) # establish subsample rate to time ratio else: sample = frequency # Adjusted search time with subsample rate search_time = int(sample*frequency*int(search_time)) if inMat is None: print("Roll filter function: No input data.") return else: P = inMat[p_col] dP = np.diff(P,1) if up is 'down': index_to_remove = np.where(dP < 0)[0] # Differential filter subMat = np.delete(inMat, index_to_remove, axis=0) P = subMat[p_col] tmp = np.array([]) for i in range(0,len(P)-1): if P[i] > P[i+1]: deltaP = P[i+1] + abs(P[i] - P[i+1]) # Remove aliasing k = np.where(P == min(P[i+1:i+search_time], key=lambda x:abs(x-deltaP)))[0] tmp = np.arange(i+1,k[0]+1,1) remove = np.append(remove,tmp) deltaP = 0 elif up is 'up': index_to_remove = np.where(dP > 0)[0] # Differential filter subMat = np.delete(inMat, index_to_remove, axis=0) P = subMat[p_col] tmp = np.array([]) for i in range(0,len(P)-1): if P[i] < P[i+1]: deltaP = P[i+1] - abs(P[i] - P[i+1]) # Remove aliasing k = np.where(P == min(P[i+1:i+search_time], key=lambda x:abs(x-deltaP)))[0] tmp = np.arange(i+1,k[0]+1,1) remove = np.append(remove,tmp) deltaP = 0 subMat = np.delete(subMat,remove,axis=0) return subMat def pressure_sequence(df, p_col='CTDPRS', intP=2.0, startT=-1.0, startP=0.0, up='down', sample_rate=12, search_time=15): """pressure_sequence function Function takes a dataframe and several arguments to return a pressure sequenced data ndarray. Pressure sequencing includes rollfilter. Necessary inputs are input Matrix (inMat) and pressure interval (intP). The other inputs have default settings. The program will figure out specifics for those settings if left blank. Start time (startT), start pressure (startP) and up are mutually exclusive. If sensors are not not fully functional when ctd starts down cast analyst can select a later start time or start pressure but not both. There is no interpolation to the surface for other sensor values. 'up' indicates direction for pressure sequence. If up is set startT and startP are void. Args: param1 (Dataframe: Dataframe containing measurement data param2 (str): p_col, pressure column name param3 (float): starting pressure interval param5 (float): start time (startT) for pressure sequence param6 (float): start pressure (startP) for pressure sequence param7 (str): pressure sequence direction (down/up) param8 (int): sample_rate, sub sample rate for roll_filter. Cleans & speeds processing. param9 (int): search_time, truncate search index for the aliasing part of ship roll. param10 (ndarray): inMat, input data ndarray Returns: Narray: The return value is a matrix of pressure sequenced data todo: deep data bin interpolation to manage empty slices """ # change to take dataframe with the following properties # * in water data only (no need to find cast start/end) # * The full down and up time series (not already split since this method will do it) # New "algorithm" (TODO spell this right) # * if direction is "down", use the input as is # * if direction is "up", invert the row order of the input dataframe # Use the "roll filter" method to get only the rows to be binned # * the roll filter will treat the "up" part of the cast as a giant roll to be filtered out # * the reversed dataframe will ensure we get the "up" or "down" part of the cast # * there is no need to reverse the dataframe again as the pressure binning process will remove any "order" information (it doesn't care about the order) # That's basically all I (barna) have so far TODO Binning, etc... # pandas.cut() to do binning #lenP, prvPrs not used # Passed Time-Series, Create Pressure Series start = 0 # Roll Filter roll_filter_matrix = roll_filter(df, p_col, up, sample_rate, search_time, start=start) df_roll_surface = fill_surface_data(roll_filter_matrix, bin_size=2) #bin_size should be moved into config binned_df = binning_df(df_roll_surface, bin_size=2) binned_df = binned_df.reset_index(drop=True) return binned_df def binning_df(df, **kwargs): '''Bins records according to bin_size, then finds the mean of each bin and returns a df. ''' bin_size = kwargs.get("bin_size", 2) try: labels_in = [x for x in range(0,int(np.ceil(df['CTDPRS_DBAR'].max())),2)] df['bins'] = pd.cut(df['CTDPRS_DBAR'], range(0,int(np.ceil(df['CTDPRS_DBAR'].max()))+bin_size,bin_size), right=False, include_lowest=True, labels=labels_in) df['CTDPRS_DBAR'] = df['bins'].astype('float64') df_out = df.groupby('bins').mean() return df_out except KeyError: labels_in = [x for x in range(0,int(np.ceil(df['CTDPRS'].max())),2)] df['bins'] = pd.cut(df['CTDPRS'], range(0,int(np.ceil(df['CTDPRS'].max()))+bin_size,bin_size), right=False, include_lowest=True, labels=labels_in) df['CTDPRS'] = df['bins'].astype('float64') df_out = df.groupby('bins').mean() return df_out def fill_surface_data(df, **kwargs): '''Copy first scan from top of cast, and propgate up to surface ''' surface_values = [] bin_size = kwargs.get("bin_size", 2) try: for x in range(1, int(np.floor(df.iloc[0]['CTDPRS_DBAR'])), bin_size): surface_values.append(x) df_surface = pd.DataFrame({'CTDPRS_DBAR': surface_values}) df_surface['interp_bol'] = 1 df_merged = pd.merge(df_surface, df, on='CTDPRS_DBAR', how='outer') except KeyError: for x in range(1, int(np.floor(df.iloc[0]['CTDPRS'])), bin_size): surface_values.append(x) df_surface = pd.DataFrame({'CTDPRS': surface_values}) # Added by KJ to keep track of backfilled values df_surface['interp_bol'] = 1 if len(df_surface['interp_bol']) == 1: df_surface['interp_bol'] = 0 df_merged = pd.merge(df_surface.astype('float64'), df, on='CTDPRS', how='outer') if 'interp_bol' not in df_merged.columns: df_merged['interp_bol'] = np.NaN df_merged['interp_bol'].fillna(0,inplace=True) return df_merged.fillna(method='bfill') def load_reft_data(reft_file,index_name = 'btl_fire_num'): """ Loads reft_file to dataframe and reindexes to match bottle data dataframe""" reft_data = pd.read_csv(reft_file,usecols=['btl_fire_num','T90']) reft_data.set_index(index_name) reft_data['SSSCC_TEMP'] = reft_file[-14:-9] reft_data['REFTMP'] = reft_data['T90'] return reft_data def load_salt_data(salt_file, index_name= 'SAMPNO'): salt_data = pd.read_csv(salt_file,usecols = ['SAMPNO','SALNTY','BathTEMP','CRavg']) salt_data.set_index(index_name) salt_data['SSSCC_SALT'] = salt_file[-15:-10] salt_data.rename(columns={'SAMPNO':'SAMPNO_SALT'}, inplace=True) return salt_data def load_btl_data(btl_file,cols=None): """ex. '/Users/k3jackson/p06e/data/bottle/00201_btl_mean.pkl'""" btl_data = dataToNDarray(btl_file,float,True,',',0) btl_data = pd.DataFrame.from_records(btl_data) if cols != None: btl_data = btl_data[cols] ssscc = btl_file[-18:-13] btl_data['SSSCC'] = ssscc return btl_data def load_time_data(time_file): time_data = dataToNDarray(time_file,float,True,',',1) time_data = pd.DataFrame.from_records(time_data) return time_data def calibrate_param(param,ref_param,press,calib,order,ssscc,btl_num,xRange=None,): ### NOTE: REF VALUES DEEMED QUESTIONABLE ARE STILL BEING USED FOR CALIBRATION df_good = quality_check(param,ref_param,press,ssscc,btl_num,find='good') df_ques = quality_check(param,ref_param,press,ssscc,btl_num,find='quest') df_ques['Parameter'] = param.name #report questionable data to a csv file #constrain pressure to within limits of xRange if xRange != None: x0 = int(xRange.split(":")[0]) x1 = int(xRange.split(":")[1]) df_good_cons = df_good[(df_good[press.name] >= x0) & (df_good[press.name] <= x1)] else: #Take full range of temperature values x0 = df_good[param.name].min() x1 = df_good[param.name].max() df_good_cons = df_good[(df_good[param.name] >= x0) & (df_good[param.name] <= x1)] if 'P' in calib: coef = get_param_coef(df_good_cons[press.name],df_good_cons['Diff'],order,calib) elif 'T' or 'C' in calib: coef = get_param_coef(df_good_cons[param.name],df_good_cons['Diff'],order,calib) else: print('calib argument not valid, use CP TP T or C') return coef,df_ques def quality_check(param,param_2,press,ssscc,btl_num,find,thresh=[0.002, 0.005, 0.010, 0.020]): param = fit_ctd.array_like_to_series(param) param_2 = fit_ctd.array_like_to_series(param_2) press = fit_ctd.array_like_to_series(press) ssscc = fit_ctd.array_like_to_series(ssscc) btl_num = fit_ctd.array_like_to_series(btl_num) diff = param_2 - param df = pd.concat([ssscc,btl_num.rename('Bottle'),param.rename('Param_1'),param_2.rename('Param_2'),press.rename('CTDPRS'),diff.rename('Diff')],axis=1) if find == 'good': # Find data values for each sensor that are below the threshold (good) df['Flag'] = 1 #df_range_comp = df_range[(df_range[diff].abs() < threshold)]# & (df_range[d_2].abs() < threshold) & (df_range[d_12].abs() < threshold)] df.loc[(df.CTDPRS > 2000) & (df.Diff.abs() < thresh[0]), 'Flag'] = 2 df.loc[(df.CTDPRS <= 2000) & (df.CTDPRS >1000) & (df.Diff.abs() < thresh[1]), 'Flag'] = 2 df.loc[(df.CTDPRS <= 1000) & (df.CTDPRS >500) & (df.Diff.abs() < thresh[2]), 'Flag'] = 2 df.loc[(df.CTDPRS <= 500) & (df.Diff.abs() < thresh[3]), 'Flag'] = 2 # # Filter out bad values df = df[df['Flag'] == 2] # Rename Columns back to what they were if param.name != None: df.rename(columns = {'Param_1' : param.name}, inplace=True) if param_2.name != None: df.rename(columns = {'Param_2' : param_2.name},inplace=True) if press.name != None: df.rename(columns = {'CTDPRS' : press.name}, inplace=True ) elif find == 'quest': # Find data values for each sensor that are above the threshold (questionable) df['Flag'] = 1 df.loc[(df.CTDPRS > 2000) & (df.Diff.abs() > thresh[0]), 'Flag'] = 3 df.loc[(df.CTDPRS <= 2000) & (df.CTDPRS >1000) & (df.Diff.abs() > thresh[1]), 'Flag'] = 3 df.loc[(df.CTDPRS <= 1000) & (df.CTDPRS >500) & (df.Diff.abs() > thresh[2]), 'Flag'] = 3 df.loc[(df.CTDPRS <= 500) & (df.Diff.abs() > thresh[3]), 'Flag'] = 3 # Filter out good values df = df[df['Flag'] == 3] # Remove unneeded columns df = df.drop(['Param_1','Param_2'],axis=1) # Re-Order Columns for better readability df = df[[ssscc.name,'Bottle',press.name,'Flag','Diff']] else: print('Find argument not valid, please enter "good" or "quest" to find good or questionable values') return df def get_param_coef(calib_param,diff,order,calib): cf1 = np.polyfit(calib_param, diff, order) if 'T' in calib: coef = np.zeros(shape=5) if order is 0: coef[4] = cf1[0] elif (order is 1) and (calib == 'TP'): coef[1] = cf1[0] coef[4] = cf1[1] elif (order is 2) and (calib == 'TP'): coef[0] = cf1[0] coef[1] = cf1[1] coef[4] = cf1[2] elif (order is 1) and (calib == 'T'): coef[3] = cf1[0] coef[4] = cf1[1] elif (order is 2) and (calib == 'T'): coef[2] = cf1[0] coef[3] = cf1[1] coef[4] = cf1[2] if 'C' in calib: coef = np.zeros(shape=7) if order is 0: coef[6] = cf1[0] elif (order is 1) and (calib == 'CP'): coef[1] = cf1[0] coef[6] = cf1[1] elif (order is 2) and (calib == 'CP'): coef[0] = cf1[0] coef[1] = cf1[1] coef[6] = cf1[2] elif (order is 1) and (calib == 'C'): coef[5] = cf1[0] coef[6] = cf1[1] elif (order is 2) and (calib == 'C'): coef[4] = cf1[0] coef[5] = cf1[1] coef[6] = cf1[2] return coef def combine_quality_flags(df_list): combined_df = pd.concat(df_list) combined_df = combined_df.sort_values(['SSSCC','Bottle']) combined_df = combined_df.round(4) return combined_df #Combine these three into a dataframe and write out to a csv #Sort by sta/cast, bottle number, rev. press def calibrate_conductivity(df,order,calib_param,sensor,xRange=None, refc_col='BTLCOND',cond_col_1='CTDCOND1',cond_col_2='CTDCOND2', p_col='CTDPRS'):#refc_data ### NOTE: REF VALUES DEEMED QUESTIONABLE ARE STILL BEING USED FOR CALIBRATION if sensor == 1: postfix = 'c1' cond_col = 'CTDCOND1' t_col = 'CTDTMP1' elif sensor ==2: postfix = 'c2' cond_col = 'CTDCOND2' t_col = 'CTDTMP2' else: print('No sensor name supplied, difference column name will be: diff') if calib_param == 'P': calib_col = p_col elif calib_param == 'T': calib_col = t_col elif calib_param == 'C': calib_col = cond_col else: print('No calib_param supplied') diff = 'd_'+postfix #Difference between ref and prim sensor # Calculate absolute differences between sensors and salt sample data #df[diff] = refc_data[refc_col] - df[cond_col] df[diff] = df[refc_col] - df[cond_col] #df['primary_diff'] = refc_data[refc_col] - df[cond_col_1] df['primary_diff'] = df[refc_col] - df[cond_col_1] #df['secondary_diff'] = refc_data[refc_col] - df[cond_col_2] df['secondary_diff'] = df[refc_col] - df[cond_col_2] df['P-S'] = df[cond_col_1] - df[cond_col_2] #Greater than 2000 dBar lower_lim = 2000 upper_lim = df[p_col].max() threshold = 0.002 df_deep_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_deep_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_deep_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #Between 2000 and 1000 lower_lim = 1000 upper_lim = 2000 threshold = 0.005 df_lmid_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_lmid_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_lmid_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #Between 1000 and 500 lower_lim = 500 upper_lim = 1000 threshold = 0.010 df_umid_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_umid_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_umid_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #Less than 500 lower_lim = df[p_col].min() - 1 upper_lim = 500 threshold = 0.020 df_shal_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_shal_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_shal_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #concat dataframes into two main dfs df_good = pd.concat([df_deep_good,df_lmid_good,df_umid_good,df_shal_good]) df_ques = pd.concat([df_deep_ques,df_lmid_ques,df_umid_ques,df_shal_ques]) df_ref = pd.concat([df_deep_ref,df_lmid_ref,df_umid_ref,df_shal_ref]) if sensor == 1: df_ques['Parameter'] = 'C1' df_ques['Flag'] = 3 df_ref['Parameter'] = 'C' df_ref['Flag'] = 3 elif sensor == 2: df_ques['Parameter'] = 'C2' df_ques['Flag'] = 3 df_ref['Flag'] = 3 if xRange != None: x0 = int(xRange.split(":")[0]) x1 = int(xRange.split(":")[1]) df_good_cons = df_good[(df_good[calib_col] >= x0) & (df_good[calib_col] <= x1)] else: #Take full range of temperature values # x0 = df_good[t_col].min() # x1 = df_good[t_col].max() df_good_cons = df_good#[(df_good[calib_col] >= x0) & (df_good[calib_col] <= x1)] cf = np.polyfit(df_good_cons[calib_col], df_good_cons[diff], order) sensor = '_c'+str(sensor) coef = np.zeros(shape=7) if order is 0: coef[6] = cf[0] elif (order is 1) and (calib_param == 'P'): coef[1] = cf[0] coef[6] = cf[1] elif (order is 2) and (calib_param == 'P'): coef[0] = cf[0] coef[1] = cf[1] coef[6] = cf[2] elif (order is 1) and (calib_param == 'T'): coef[3] = cf[0] coef[6] = cf[1] elif (order is 2) and (calib_param == 'T'): coef[2] = cf[0] coef[3] = cf[1] coef[6] = cf[2] elif (order is 1) and (calib_param == 'C'): coef[5] = cf[0] coef[6] = cf[1] elif (order is 2) and (calib_param == 'C'): coef[4] = cf[0] coef[5] = cf[1] coef[6] = cf[2] return coef,df_ques,df_ref def prepare_fit_data(df,ref_col): good_data = df.copy() good_data = good_data[np.isfinite(good_data[ref_col])] return good_data def prepare_conductivity_data(ssscc,df,refc,ssscc_col = 'SSSCC',index_col = 'btl_fire_num'): btl_concat = pd.DataFrame() for x in ssscc: btl_data = df[df[ssscc_col] == x] refc_data = refc[refc[ssscc_col] == x] btl_data_clean = prepare_fit_data(btl_data,refc_data,'C') btl_concat = pd.concat([btl_concat,btl_data_clean]) refc = refc[refc[index_col] != 0] refc = refc.reset_index(drop=True) btl_concat = btl_concat.reset_index(drop=True) return btl_concat, refc def prepare_all_fit_data(ssscc,df,ref_data,param): data_concat = pd.DataFrame() for x in ssscc: btl_data = df[df['SSSCC']==x] ref_data_stn= ref_data[ref_data['SSSCC']==x] btl_data_good = prepare_fit_data(btl_data,ref_data_stn,param) data_concat = pd.concat([data_concat,btl_data_good]) return data_concat def get_pressure_offset(start_vals,end_vals): """ Finds unique values and calclates mean for pressure offset Parameters ---------- start_vals :array_like Array containing initial ondeck pressure values end_vals :array_like Array containing ending ondeck pressure values Returns ------- p_off :float Average pressure offset """ p_start = pd.Series(np.unique(start_vals)) p_end = pd.Series(np.unique(end_vals)) p_start = p_start[p_start.notnull()] p_end = p_end[p_end.notnull()] p_off = p_start.mean() - p_end.mean() # <NAME> THIS METHOD SHOULD BE USED TO KEEP START END PAIRS # p_df = pd.DataFrame() # p_df['p_start'] = p_start # p_df['p_end'] = p_end # p_df = p_df[p_df['p_end'].notnull()] # p_df = p_df[p_df['p_start'].notnull()] # p_off = p_df['p_start'].mean() - p_df['p_end'].mean() ########################################################## p_off = np.around(p_off,decimals=4) return p_off def load_pressure_logs(file): """ Loads pressure offset file from logs. Parameters ---------- file : string Path to ondeck_pressure log Returns ------- df : DataFrame Pandas DataFrame containing ondeck start and end pressure values """ df = pd.read_csv(file,names=['SSSCC','ondeck_start_p','ondeck_end_p']) # Change vaules in each row by removing non-number parts df['SSSCC'] = df['SSSCC'].str[-5:] df['ondeck_start_p'] = df['ondeck_start_p'].str[16:] df['ondeck_end_p'] = df['ondeck_end_p'].str[14:] df.loc[df['ondeck_start_p'].str[-5:] == 'Water','ondeck_start_p'] = np.NaN df['ondeck_start_p'] = df['ondeck_start_p'].astype(float) df['ondeck_end_p'] = df['ondeck_end_p'].astype(float) return df def write_offset_file(df,p_off,write_file='data/logs/poffset_test.csv'): """ """ df_out = pd.DataFrame() df_out['SSSCC'] = df['SSSCC'] df_out['offset'] = p_off df_out.to_csv(write_file,index=False) return def pressure_calibrate(file): pressure_log = load_pressure_logs(file) p_off = get_pressure_offset(pressure_log) return p_off def load_hy_file(path_to_hyfile): df = pd.read_csv(path_to_hyfile, comment='#', skiprows=[0]) df = df[df['EXPOCODE'] != 'END_DATA'] return df def load_all_ctd_files(ssscc,prefix,postfix,series,cols,reft_prefix='data/reft/',reft_postfix='_reft.csv', refc_prefix='data/salt/',refc_postfix='_salts.csv',press_file='data/logs/ondeck_pressure.csv', cast_details = 'data/logs/cast_details.csv', oxy_prefix='data/oxygen/', oxy_postfix='',index_col='btl_fire_num',t_col='CTDTMP1', p_col='CTDPRS',ssscc_col='SSSCC'): """ LOAD ALL CTD FILES was changed (commented out) Lines 1324-1328,1335,1337, 1338,345 """ df_data_all = pd.DataFrame() if series == 'bottle': for x in ssscc: print('Loading BTL data for station: ' + x + '...') btl_file = prefix + x + postfix btl_data = load_btl_data(btl_file,cols) reft_file = reft_prefix + x + reft_postfix try: reft_data = load_reft_data(reft_file) except FileNotFoundError: print('Missing (or misnamed) REFT Data Station: ' + x + '...filling with NaNs') reft_data = pd.DataFrame() reft_data[index_col] = pd.Series(btl_data[index_col].values.astype(int)) reft_data['T90'] = pd.Series([np.nan]*len(btl_data)) ref_ssscc = ssscc_col + '_TEMP' reft_data[ref_ssscc] = x reft_data.index = btl_data.index #refc_file = refc_prefix + x + refc_postfix refc_file = refc_prefix + x + refc_postfix try: #refc_data = fit_ctd.salt_calc(refc_file,index_col,t_col,p_col,btl_data) refc_data = load_salt_data(refc_file, index_name= 'SAMPNO') except FileNotFoundError: print('Missing (or misnamed) REFC Data Station: ' + x + '...filling with NaNs') refc_data = pd.DataFrame() refc_data['SAMPNO_SALT'] = pd.Series(btl_data[index_col].values.astype(int)) refc_data['CRavg'] = pd.Series([np.nan]*len(btl_data)) refc_data['BathTEMP'] = pd.Series([np.nan]*len(btl_data)) refc_data['BTLCOND'] = pd.Series([np.nan]*len(btl_data)) refc_data.index = btl_data.index #Fix Index for each parameter to bottle number # btl_data[index_col] = btl_data[index_col].astype(int) # btl_data=btl_data.set_index(btl_data[index_col].values) # # reft_data = reft_data.set_index(reft_data[index_col].values) oxy_file = oxy_prefix + x + oxy_postfix try: oxy_data,params = oxy_fitting.oxy_loader(oxy_file) except FileNotFoundError: print('Missing (or misnamed) REFO Data Station: ' + x + '...filling with NaNs') oxy_data = pd.DataFrame() oxy_data['BOTTLENO_OXY'] = pd.Series(btl_data[index_col].values.astype(int)) oxy_data['STNNO_OXY'] = pd.Series([np.nan]*len(btl_data)) oxy_data['CASTNO_OXY'] = pd.Series([np.nan]*len(btl_data)) oxy_data['FLASKNO'] = pd.Series([np.nan]*len(btl_data)) oxy_data['TITR_VOL'] = pd.Series([np.nan]*len(btl_data)) oxy_data['TITR_TEMP'] = pd.Series([np.nan]*len(btl_data)) oxy_data['DRAW_TEMP'] = pd.Series([np.nan]*len(btl_data)) oxy_data['TITER_TIME'] = pd.Series([np.nan]*len(btl_data)) oxy_data['END_VOLTS'] = pd.Series([np.nan]*len(btl_data)) oxy_data.index = btl_data.index # #Horizontally concat DFs to have all data in one DF # btl_data_full = pd.concat([btl_data,reft_data,refc_data,oxy_data],axis=1) btl_data = pd.merge(btl_data,reft_data,on='btl_fire_num',how='outer') btl_data = pd.merge(btl_data,refc_data,left_on='btl_fire_num',right_on='SAMPNO_SALT',how='outer') btl_data = pd.merge(btl_data,oxy_data,left_on='btl_fire_num',right_on='BOTTLENO_OXY',how='outer') if len(btl_data) > 36: print("***** Len of btl data for station: ",x,' is > 36, check for multiple stations/casts in reference parameter files *****') ### Calculate dv/dt for oxygen fitting btl_data['dv_dt'] = oxy_fitting.calculate_dVdT(btl_data['CTDOXYVOLTS'],btl_data['scan_datetime']) #btl_data = get_btl_time(btl_data,'btl_fire_num','scan_datetime') # Add bottom of cast information (date,time,lat,lon,etc.) btl_data = add_btl_bottom_data(btl_data, x, cast_details) # #Drop columns that have no CTD data # btl_data_full = btl_data_full.dropna(subset=cols) #btl_data = btl_data.set_index(['SSSCC','GPSLAT','GPSLON','CTDPRS'],drop=True) try: df_data_all = pd.concat([df_data_all,btl_data],sort=False) except AssertionError: raise AssertionError('Colums of ' + x + ' do not match those of previous columns') print('* Finished BTL data station: ' + x + ' *') #Drops duplicated columns generated by concatenation df_data_all = df_data_all.loc[:,~df_data_all.columns.duplicated()] #if 'GPSLAT' in df_data_all.keys(): # df_data_all['LATITUDE'] = df_data_all['GPSLAT'] #if 'GPSLON' in df_data_all.keys(): # df_data_all['LONGITUDE'] = df_data_all['GPSLON'] elif series == 'time': for x in ssscc: print('Loading TIME data for station: ' + x + '...') file = prefix + x + postfix time_data = load_time_data(file) time_data['SSSCC'] = str(x) time_data['dv_dt'] = oxy_fitting.calculate_dVdT(time_data['CTDOXYVOLTS'],time_data['scan_datetime']) df_data_all = pd.concat([df_data_all,time_data], sort=False) print('** Finished TIME data station: ' + x + ' **') df_data_all['master_index'] = range(len(df_data_all)) return df_data_all def merge_refcond_flags(btl_data, qual_flag_cond): # Merge df mask = qual_flag_cond[qual_flag_cond['Parameter'] == 'REF_COND'].copy() mask['SSSCC'] = mask['SSSCC'].astype(str) btl_data = btl_data.merge(mask,left_on=['SSSCC','btl_fire_num'], right_on=['SSSCC','Bottle'],how='left') # Rename Columns btl_data.rename(columns={'CTDPRS_x':'CTDPRS','SSSCC_x':'SSSCC','Flag':'SALNTY_FLAG_W'},inplace=True) btl_data.drop(columns=['Parameter','CTDPRS_y','Bottle','Diff'],inplace=True) btl_data['SALNTY_FLAG_W'].fillna(value=2,inplace=True) try: btl_data.loc[btl_data['BTLCOND'].isna(),'SALNTY_FLAG_W'] = 9 except: btl_data[btl_data['SALNTY'].isna(),'SALNTY_FLAG_W'] = 9 btl_data['SALNTY_FLAG_W'] = btl_data['SALNTY_FLAG_W'].astype(int) return btl_data def merge_cond_flags(btl_data, qual_flag_cond,parameter): # Merge df #if sensor == 1: # parameter = 'CTDCOND1' #elif sensor == 2: # parameter = 'CTDCOND2' mask = qual_flag_cond[qual_flag_cond['Parameter'] == parameter].copy() mask['SSSCC'] = mask['SSSCC'].astype(str) btl_data = btl_data.merge(mask,left_on=['SSSCC','btl_fire_num'], right_on=['SSSCC','Bottle'],how='left') # Rename Columns btl_data.rename(columns={'CTDPRS_x':'CTDPRS','SSSCC_x':'SSSCC','Flag':'CTDSAL_FLAG_W'},inplace=True) btl_data.drop(columns=['Parameter','CTDPRS_y','Bottle','Diff'],inplace=True) btl_data['CTDSAL_FLAG_W'].fillna(value=2,inplace=True) btl_data.loc[btl_data[parameter].isna(),'CTDSAL_FLAG_W'] = 9 btl_data['CTDSAL_FLAG_W'] = btl_data['CTDSAL_FLAG_W'].astype(int) return btl_data def merged_reftemp_flags(btl_data, qual_flag_temp): mask = qual_flag_temp[qual_flag_temp['Parameter'] == 'REF_TEMP'].copy() mask['SSSCC'] = mask['SSSCC'].astype(str) btl_data = btl_data.merge(mask,left_on=['SSSCC','btl_fire_num'], right_on=['SSSCC','Bottle'],how='left') # Rename Columns btl_data.rename(columns={'CTDPRS_x':'CTDPRS','SSSCC_x':'SSSCC','Flag':'REFTMP_FLAG_W'},inplace=True) btl_data.drop(columns=['Parameter','CTDPRS_y','Bottle','Diff'],inplace=True) btl_data['REFTMP_FLAG_W'].fillna(value=2,inplace=True) try: btl_data.loc[btl_data['T90'].isna(),'REFTMP_FLAG_W'] = 9 except: btl_data[btl_data['REFTMP'].isna()]['REFTMP_FLAG_W'] = 9 btl_data['REFTMP_FLAG_W'] = btl_data['REFTMP_FLAG_W'].astype(int) return btl_data def merge_temp_flags(btl_data, qual_flag_temp, parameter): mask = qual_flag_temp[qual_flag_temp['Parameter'] == parameter].copy() mask['SSSCC'] = mask['SSSCC'].astype(str) btl_data = btl_data.merge(mask,left_on=['SSSCC','btl_fire_num'], right_on=['SSSCC','Bottle'],how='left') # Rename Columns btl_data.rename(columns={'CTDPRS_x':'CTDPRS','SSSCC_x':'SSSCC','Flag':'CTDTMP_FLAG_W'},inplace=True) btl_data.drop(columns=['Parameter','CTDPRS_y','Bottle','Diff'],inplace=True) btl_data['CTDTMP_FLAG_W'] = btl_data['CTDTMP_FLAG_W'].fillna(value=2) btl_data['CTDTMP_FLAG_W'] = btl_data['CTDTMP_FLAG_W'].astype(int) return btl_data def merge_oxy_flags(btl_data): mask = (btl_data['OXYGEN'].isna()) btl_data.loc[mask,'OXYGEN_FLAG_W'] = 9 def find_cast_depth(press,lat,alt,threshold=80): # Create Dataframe containing args df = pd.DataFrame() df['CTDPRS'] = press df['LAT'] = lat df['ALT'] = alt # Calculate DEPTH using gsw df['DEPTH'] = np.abs(gsw.z_from_p(df['CTDPRS'],df['LAT'])) # Find max depth and see if ALT has locked in bottom_alt = df.loc[df['CTDPRS'] == df['CTDPRS'].max(),'ALT'] if bottom_alt.values[0] <= threshold: max_depth = bottom_alt + df['CTDPRS'].max() max_depth = int(max_depth.values[0]) else: print('Altimeter reading is not reporting values below the threshold ',threshold,' setting max depth to NaN') max_depth = np.NaN return max_depth def format_time_data(df): format_columns = settings.pressure_series_output['column_names'].copy() if 'SSSCC' not in format_columns: print('Adding SSSCC') format_columns.append('SSSCC') if 'DEPTH' not in format_columns: print('Adding DEPTH') format_columns.append('DEPTH') try: df = df[format_columns] except: print('missing required pressure series output columns!') df_columns = list(df.keys()) missing_list = list(np.setdiff1d(format_columns,df_columns)) raise KeyError('missing columns: ',missing_list) return df def add_btlnbr_cols(df,btl_num_col): df['BTLNBR'] = df[btl_num_col].astype(int) # default to everything being good df['BTLNBR_FLAG_W'] = 2 return df def castno_from_ssscc(ssscc): # ssscc: column (pandas series) containing station and cast numbers in the SSSCC format ssscc = pd.Series(ssscc) castno = ssscc.str[3:].astype(int) return castno def stnnbr_from_ssscc(ssscc): # ssscc: column (pandas series) containing station and cast numbers in the SSSCC format ssscc =
pd.Series(ssscc)
pandas.Series
import numpy as np import pandas as pd import logging DISTANCE_THRESHOLD = 1.4 #: max threshold for distnr SCORE_THRESHOLD = 0.4 #: max threshold for sgscore CHINR_THRESHOLD = 2 #: max threshold for chinr SHARPNR_MAX = 0.1 #: max value for sharpnr SHARPNR_MIN = -0.13 #: min value for sharpnr ZERO_MAG = 100. #: default value for zero magnitude (a big value!) TRIPLE_NAN = (np.nan, np.nan, np.nan) MAGNITUDE_THRESHOLD = 13.2 logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(name)s.%(funcName)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S',) def correction(magnr, magpsf, sigmagnr, sigmapsf, isdiffpos, oid=None): """ Correction function. Implement of correction formula. :param magnr: Magnitude of nearest source in reference image PSF-catalog within 30 arcsec [mag] :type magnr: float :param magpsf: Magnitude from PSF-fit photometry [mag] :type magpsf: float :param sigmagnr: 1-sigma uncertainty in magnr within 30 arcsec [mag] :type sigmagnr: float :param sigmapsf: 1-sigma uncertainty in magpsf [mag] :type sigmapsf: float :param isdiffpos: 1 => candidate is from positive (sci minus ref) subtraction; 0 => candidate is from negative (ref minus sci) subtraction :type isdiffpos: int :return: Correction for magnitude, sigma and sigma_ext :rtype: tuple Example:: (m_corr, s_corr, s_corr_ext) = correction(a, b, c, d, e) """ if magnr < 0 or magpsf < 0: return TRIPLE_NAN try: aux1 = 10**(-0.4 * magnr) aux2 = 10**(-0.4 * magpsf) aux3 = aux1 + isdiffpos * aux2 if aux3 > 0: magpsf_corr = -2.5 * np.log10(aux3) aux4 = aux2**2 * sigmapsf**2 - aux1**2 * sigmagnr**2 if aux4 >= 0: sigmapsf_corr = np.sqrt(aux4) / aux3 else: sigmapsf_corr = ZERO_MAG sigmapsf_corr_ext = aux2 * sigmapsf / aux3 else: magpsf_corr = ZERO_MAG sigmapsf_corr = ZERO_MAG sigmapsf_corr_ext = ZERO_MAG return magpsf_corr, sigmapsf_corr, sigmapsf_corr_ext except Exception as e: logging.error('Object {}: {}'.format(oid, e)) return TRIPLE_NAN def apply_correction(candidate): """ Correction function for a set of detections :param candidate: A dataframe with detections of a candidate. :type candidate: :py:class:`pd.DataFrame` :return: Wrapper for correction for magnitude, sigma and sigma_ext :rtype: tuple Example:: (m_corr, s_corr, s_corr_ext) = correction(a, b, c, d, e) """ isdiffpos = 1 if (candidate["isdiffpos"] in ["t", "1"]) else -1 magnr = candidate["magnr"] magpsf = candidate['magpsf'] sigmagnr = candidate['sigmagnr'] sigmapsf = candidate['sigmapsf'] magpsf_corr, sigmapsf_corr, sigmapsf_corr_ext = correction(magnr, magpsf, sigmagnr, sigmapsf, isdiffpos) return magpsf_corr, sigmapsf_corr, sigmapsf_corr_ext def near_stellar(first_distnr, first_distpsnr1, first_sgscore1, first_chinr, first_sharpnr): """ Get if object is near stellar :param first_distnr: Distance to nearest source in reference image PSF-catalog within 30 arcsec [pixels] :type first_distnr: :py:class:`float` :param first_distpsnr1: Distance of closest source from PS1 catalog; if exists within 30 arcsec [arcsec] :type first_distpsnr1: :py:class:`float` :param first_sgscore1: Star/Galaxy score of closest source from PS1 catalog 0 <= sgscore <= 1 where closer to 1 implies higher likelihood of being a star :type first_sgscore1: :py:class:`float` :param first_chinr: DAOPhot chi parameter of nearest source in reference image PSF-catalog within 30 arcsec :type first_chinr: :py:class:`float` :param first_sharpnr: DAOPhot sharp parameter of nearest source in reference image PSF-catalog within 30 arcsec :type first_sharpnr: :py:class:`float` :return: if the object is near stellar :rtype: tuple """ nearZTF = 0 <= first_distnr < DISTANCE_THRESHOLD nearPS1 = 0 <= first_distpsnr1 < DISTANCE_THRESHOLD stellarPS1 = first_sgscore1 > SCORE_THRESHOLD stellarZTF = first_chinr < CHINR_THRESHOLD and SHARPNR_MIN < first_sharpnr < SHARPNR_MAX return nearZTF, nearPS1, stellarPS1, stellarZTF def is_stellar(nearZTF, nearPS1, stellarPS1, stellarZTF): """ Get if object is stellar :param nearZTF: :type nearZTF: bool :param nearPS1: :type nearPS1: bool :param stellarPS1: :type stellarPS1: bool :param stellarZTF: :type stellarZTF: bool :return: if the object is stellar :rtype: bool """ return (nearZTF & nearPS1 & stellarPS1) | (nearZTF & ~nearPS1 & stellarZTF) def is_dubious(corrected, isdiffpos, corr_magstats): """Get if object is dubious :param corrected: :type corrected: bool :param isdiffpos: :type isdiffpos: bool :param corr_magstats: :type corr_magstats: bool :return: if the object is dubious :rtype: bool """ return (~corrected & (isdiffpos == -1)) | (corr_magstats & ~corrected) | (~corr_magstats & corrected) def dmdt(magpsf_first, sigmapsf_first, nd_diffmaglim, mjd_first, nd_mjd): """ Calculate dm/dt :param magpsf_first: :type magpsf_first: float :param sigmapsf_first: :type sigmapsf_first: float :param nd_diffmaglim: :type nd_diffmaglim: float :param mjd_first: :type mjd_first: float :param nd_mjd: :type nd_mjd: float :return: dm_sigma, dt, dmsigdt :rtype: tuple Example:: dm_sigma, dt, dmsigdt = dmdt(magpsf_first, sigmapsf_first, nd.diffmaglim, mjd_first, nd.mjd) """ dm_sigma = magpsf_first + sigmapsf_first - nd_diffmaglim dt = mjd_first - nd_mjd dmsigdt = (dm_sigma / dt) frame = { "dm_sigma": dm_sigma, "dt": dt, "dmsigdt": dmsigdt } df =
pd.DataFrame(frame)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import sys from sklearn.metrics import mean_squared_error from math import sqrt from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt # 1. 抽取2012年8月至2013年12月的数据,总共14个月 # Index 11856 marks the end of year 2013 df = pd.read_csv("./jetrail_train.csv", nrows=11856) print("===== df.head():\n", df.head()) print("===== df.tail():\n", df.tail()) # 2. 构建模型的训练数据和测试数据,前12个月(2012年8月到2013年10月)作为训练数据,后两个月的数据作为预测数据(2013-11 2013-12) #Index 10392 marks the end of October 2013 train=df[0:10392] #train data : 2012-08 ~ 2013-10 test=df[10392:] #test data : 2013-11 2013-12 print("===== train data:", train) print("===== test data:", test) # 3. 聚合数据到天级别 # 抽取的14个月的数据按天进行聚合(取平均) # D - day, 可选参数: 表示重采样频率,例如‘M’、‘5min’,Second(15) # mean() : 聚合函数 - 取平均 # df.Datetime : 01-11-2013 01:00 df['Timestamp'] = pd.to_datetime(df.Datetime,format='%d-%m-%Y %H:%M') print("===== df.Timestamp:\n", df['Timestamp']) df.index = df.Timestamp print("===== df.index:\n", df.index) df = df.resample('D').mean() print("===== df:", df) #output: 2012-08-25 11.5 3.166667 # 训练数据按天进行聚合 train['Timestamp'] =
pd.to_datetime(train.Datetime,format='%d-%m-%Y %H:%M')
pandas.to_datetime
from collections import OrderedDict import pydoc import warnings import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Series, TimedeltaIndex, date_range, period_range, timedelta_range, ) from pandas.core.arrays import PeriodArray from pandas.core.indexes.datetimes import Timestamp import pandas.util.testing as tm import pandas.io.formats.printing as printing class TestSeriesMisc: def test_scalarop_preserve_name(self, datetime_series): result = datetime_series * 2 assert result.name == datetime_series.name def test_copy_name(self, datetime_series): result = datetime_series.copy() assert result.name == datetime_series.name def test_copy_index_name_checking(self, datetime_series): # don't want to be able to modify the index stored elsewhere after # making a copy datetime_series.index.name = None assert datetime_series.index.name is None assert datetime_series is datetime_series cp = datetime_series.copy() cp.index.name = "foo" printing.pprint_thing(datetime_series.index.name) assert datetime_series.index.name is None def test_append_preserve_name(self, datetime_series): result = datetime_series[:5].append(datetime_series[5:]) assert result.name == datetime_series.name def test_binop_maybe_preserve_name(self, datetime_series): # names match, preserve result = datetime_series * datetime_series assert result.name == datetime_series.name result = datetime_series.mul(datetime_series) assert result.name == datetime_series.name result = datetime_series * datetime_series[:-2] assert result.name == datetime_series.name # names don't match, don't preserve cp = datetime_series.copy() cp.name = "something else" result = datetime_series + cp assert result.name is None result = datetime_series.add(cp) assert result.name is None ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"] ops = ops + ["r" + op for op in ops] for op in ops: # names match, preserve s = datetime_series.copy() result = getattr(s, op)(s) assert result.name == datetime_series.name # names don't match, don't preserve cp = datetime_series.copy() cp.name = "changed" result = getattr(s, op)(cp) assert result.name is None def test_combine_first_name(self, datetime_series): result = datetime_series.combine_first(datetime_series[:5]) assert result.name == datetime_series.name def test_getitem_preserve_name(self, datetime_series): result = datetime_series[datetime_series > 0] assert result.name == datetime_series.name result = datetime_series[[0, 2, 4]] assert result.name == datetime_series.name result = datetime_series[5:10] assert result.name == datetime_series.name def test_pickle_datetimes(self, datetime_series): unp_ts = self._pickle_roundtrip(datetime_series) tm.assert_series_equal(unp_ts, datetime_series) def test_pickle_strings(self, string_series): unp_series = self._pickle_roundtrip(string_series) tm.assert_series_equal(unp_series, string_series) def _pickle_roundtrip(self, obj): with tm.ensure_clean() as path: obj.to_pickle(path) unpickled = pd.read_pickle(path) return unpickled def test_argsort_preserve_name(self, datetime_series): result = datetime_series.argsort() assert result.name == datetime_series.name def test_sort_index_name(self, datetime_series): result = datetime_series.sort_index(ascending=False) assert result.name == datetime_series.name def test_constructor_dict(self): d = {"a": 0.0, "b": 1.0, "c": 2.0} result = Series(d) expected = Series(d, index=sorted(d.keys())) tm.assert_series_equal(result, expected) result = Series(d, index=["b", "c", "d", "a"]) expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"]) tm.assert_series_equal(result, expected) def test_constructor_subclass_dict(self): data = tm.TestSubDict((x, 10.0 * x) for x in range(10)) series = Series(data) expected = Series(dict(data.items())) tm.assert_series_equal(series, expected) def test_constructor_ordereddict(self): # GH3283 data = OrderedDict( ("col{i}".format(i=i), np.random.random()) for i in range(12) ) series = Series(data) expected = Series(list(data.values()), list(data.keys())) tm.assert_series_equal(series, expected) # Test with subclass class A(OrderedDict): pass series = Series(A(data)) tm.assert_series_equal(series, expected) def test_constructor_dict_multiindex(self): d = {("a", "a"): 0.0, ("b", "a"): 1.0, ("b", "c"): 2.0} _d = sorted(d.items()) result = Series(d) expected = Series( [x[1] for x in _d], index=pd.MultiIndex.from_tuples([x[0] for x in _d]) ) tm.assert_series_equal(result, expected) d["z"] = 111.0 _d.insert(0, ("z", d["z"])) result = Series(d) expected = Series( [x[1] for x in _d], index=pd.Index([x[0] for x in _d], tupleize_cols=False) ) result = result.reindex(index=expected.index) tm.assert_series_equal(result, expected) def test_constructor_dict_timedelta_index(self): # GH #12169 : Resample category data with timedelta index # construct Series from dict as data and TimedeltaIndex as index # will result NaN in result Series data expected = Series( data=["A", "B", "C"], index=pd.to_timedelta([0, 10, 20], unit="s") ) result = Series( data={ pd.to_timedelta(0, unit="s"): "A", pd.to_timedelta(10, unit="s"): "B", pd.to_timedelta(20, unit="s"): "C", }, index=pd.to_timedelta([0, 10, 20], unit="s"), ) tm.assert_series_equal(result, expected) def test_sparse_accessor_updates_on_inplace(self): s = pd.Series([1, 1, 2, 3], dtype="Sparse[int]") s.drop([0, 1], inplace=True) assert s.sparse.density == 1.0 def test_tab_completion(self): # GH 9910 s = Series(list("abcd")) # Series of str values should have .str but not .dt/.cat in __dir__ assert "str" in dir(s) assert "dt" not in dir(s) assert "cat" not in dir(s) # similarly for .dt s = Series(date_range("1/1/2015", periods=5)) assert "dt" in dir(s) assert "str" not in dir(s) assert "cat" not in dir(s) # Similarly for .cat, but with the twist that str and dt should be # there if the categories are of that type first cat and str. s = Series(list("abbcd"), dtype="category") assert "cat" in dir(s) assert "str" in dir(s) # as it is a string categorical assert "dt" not in dir(s) # similar to cat and str s = Series(date_range("1/1/2015", periods=5)).astype("category") assert "cat" in dir(s) assert "str" not in dir(s) assert "dt" in dir(s) # as it is a datetime categorical def test_tab_completion_with_categorical(self): # test the tab completion display ok_for_cat = [ "categories", "codes", "ordered", "set_categories", "add_categories", "remove_categories", "rename_categories", "reorder_categories", "remove_unused_categories", "as_ordered", "as_unordered", ] def get_dir(s): results = [r for r in s.cat.__dir__() if not r.startswith("_")] return sorted(set(results)) s = Series(list("aabbcde")).astype("category") results = get_dir(s) tm.assert_almost_equal(results, sorted(set(ok_for_cat))) @pytest.mark.parametrize( "index", [ tm.makeUnicodeIndex(10), tm.makeStringIndex(10), tm.makeCategoricalIndex(10), Index(["foo", "bar", "baz"] * 2), tm.makeDateIndex(10), tm.makePeriodIndex(10), tm.makeTimedeltaIndex(10), tm.makeIntIndex(10), tm.makeUIntIndex(10),
tm.makeIntIndex(10)
pandas.util.testing.makeIntIndex
""" This file originated from the online analysis project at: https://github.com/OlafHaag/UCM-WebApp """ import itertools import pandas as pd import pingouin as pg import numpy as np from scipy.stats import wilcoxon from sklearn.decomposition import PCA from sklearn.covariance import EllipticEnvelope def preprocess_data(users, blocks, trials): """ Clean data. :param users: Data from users table :type users: pandas.DataFrame :param blocks: Data from circletask_blocks table. :type blocks: pandas.DataFrame :param trials: Data from circletask_trials table. :type trials: pandas.DataFrame :returns: Joined and recoded DataFrame. Number of erroneous blocks. Number of sessions removed as a consequence. Number of removed trials. :rtype: tuple[pandas.DataFrame, int, int, int] """ blocks, n_errors, invalid_sessions = remove_erroneous_blocks(blocks) # Merge to 1 table. df = join_data(users, blocks, trials) # Remove invalid trials. cleaned, n_trials_removed = get_valid_trials(df) return cleaned, n_errors, len(invalid_sessions), n_trials_removed def remove_erroneous_blocks(blocks, delta_time=2.0, n_blocks=3): """ Remove sessions with erroneous data due to a NeuroPsy Research App malfunction. The error causes block data to be duplicated and the values for df1 & df2 multiplied again by 100. The duplicated blocks are identified by comparing their time stamps to the previous block (less than 2 seconds difference). If the error caused the session to end early, the whole session is removed. NeuroPsyResearchApp issue #1. :param pandas.DataFrame blocks: Data about blocks. :param float delta_time: Threshold in seconds for which a consecutive block in a session is considered invalid if it was completed within this period after the previous. Default is 2.0 seconds. :param int n_blocks: Required number of blocks per session. If a session doesn't have this many blocks, it gets removed. :returns: Cleaned block data. Number of errors found. List of sessions that were removed as a consequence. :rtype: tuple[pandas.DataFrame, int, list] """ # Identify duplicated blocks. Consecutive time stamps are usually less than 2 seconds apart. mask = blocks.groupby(['session_uid'])['time'].diff() < delta_time try: n_errors = mask.value_counts()[True] except KeyError: n_errors = 0 blocks = blocks.loc[~mask, :] # Now, after removal of erroneous data a session might not have all 3 blocks we expect. Exclude whole session. invalid_sessions = blocks['session_uid'].value_counts() != n_blocks invalid_sessions = invalid_sessions.loc[invalid_sessions].index.to_list() blocks = blocks.loc[~blocks['session_uid'].isin(invalid_sessions), :] return blocks, n_errors, invalid_sessions def join_data(users, blocks, trials): """ Take data from different database tables and join them to a single DataFrame. Some variables are renamed and recoded in the process, some are dropped. :param users: Data from users table :type users: pandas.DataFrame :param blocks: Data from circletask_blocks table. :type blocks: pandas.DataFrame :param trials: Data from circletask_trials table. :type trials: pandas.DataFrame :return: Joined and recoded DataFrame. :rtype: pandas.DataFrame """ # Use users' index instead of id for obfuscation and shorter display. users_inv_map = pd.Series(users.index, index=users.id) # Remove trials that don't belong to any block. Those have been excluded. trials = trials.loc[trials['block_id'].isin(blocks.index), :] # Start a new table for trials and augment with data from other tables. df = pd.DataFrame(index=trials.index) df['user'] = trials.user_id.map(users_inv_map).astype('category') df['session'] = trials['block_id'].map(blocks['nth_session']).astype('category') # Map whole sessions to the constraint in the treatment block as a condition for easier grouping during analysis. df['condition'] = trials['block_id'].map(blocks[['session_uid', 'treatment']].replace( {'treatment': {'': np.nan}}).groupby('session_uid')['treatment'].ffill().bfill()).astype('category') df['block'] = trials['block_id'].map(blocks['nth_block']).astype('category') # Add pre and post labels to trials for each block. Name it task instead of treatment. # Theoretically, one could have changed number of blocks and order of treatment, but we assume default order here. df['task'] = trials['block_id'].map(blocks['treatment'].replace('', np.nan).where(~blocks['treatment'].isna(), blocks['nth_block'].map( {1: 'pre', 3: 'post' }) ) ).astype('category') #df['task'] = trials['block_id'].map(blocks['treatment'].replace(to_replace={r'\w+': 1, r'^\s*$': 0}, regex=True) # ).astype('category') df = pd.concat((df, trials), axis='columns') # Add columns for easier filtering. df['grab_diff'] = (df['df2_grab'] - df['df1_grab']).abs() df['duration_diff'] = (df['df2_duration'] - df['df1_duration']).abs() # Exclude columns. df.drop(columns=['user_id'], inplace=True) return df def get_valid_trials(dataframe): """ Remove trials where sliders where not grabbed concurrently or grabbed at all. :param dataframe: Trial data. :type dataframe: pandas.DataFrame :returns: Filtered trials. Number of removed trials. :rtype: tuple[pandas.DataFrame, int] """ # Remove trials with missing values. This means at least one slider wasn't grabbed. df = dataframe.dropna(axis='index', how='any') # Remove trials where sliders where not grabbed concurrently. mask = ~((df['df1_release'] <= df['df2_grab']) | (df['df2_release'] <= df['df1_grab'])) df = df.loc[mask, :] n_removed = len(dataframe) - len(df) return df, n_removed def get_outlyingness(data, contamination=0.1): """ Outlier detection from covariance estimation in a Gaussian distributed dataset. :param data: Data in which to detect outliers. Take care that n_samples > n_features ** 2 . :type data: pandas.DataFrame :param contamination: The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Range is (0, 0.5). :type contamination: float :returns: Decision on each row if it's an outlier. And contour array for drawing ellipse in graph. :rtype: tuple[numpy.ndarray, numpy.ndarray] """ robust_cov = EllipticEnvelope(support_fraction=1., contamination=contamination) outlyingness = robust_cov.fit_predict(data) decision = (outlyingness-1).astype(bool) # Visualisation. xx, yy = np.meshgrid(np.linspace(0, 100, 101), np.linspace(0, 100, 101)) z = robust_cov.predict(np.c_[xx.ravel(), yy.ravel()]) z = z.reshape(xx.shape) return decision, z #ToDo: remove blocks/sessions with sum mean way off. #ToDo: remove sessions with less than 10 trials in any block. def get_performance_data(dataframe): """[summary] :param dataframe: [description] :type dataframe: [type] """ dataframe.groupby(['user', 'block', 'task'])[['df1', 'df2']].mean().dropna().sort_index(level=['user','block']) def get_pca_data(dataframe): """ Conduct Principal Component Analysis on 2D dataset. :param dataframe: Data holding 'df1' and 'df2' values as columns. :type dataframe: pandas.DataFrame :return: Explained variance, components and means. :rtype: pandas.DataFrame """ # We don't reduce dimensionality, but overlay the 2 principal components in 2D. pca = PCA(n_components=2) x = dataframe[['df1', 'df2']].values try: # df1 and df2 have the same scale. No need to standardize. Standardizing might actually distort PCA here. pca.fit(x) except ValueError: # Return empty. df = pd.DataFrame(columns=['var_expl', 'var_expl_ratio', 'x', 'y', 'meanx', 'meany']) else: df = pd.DataFrame({'var_expl': pca.explained_variance_.T, 'var_expl_ratio': pca.explained_variance_ratio_.T * 100, # In percent 'x': pca.components_[:, 0], 'y': pca.components_[:, 1], 'meanx': pca.mean_[0], 'meany': pca.mean_[1], }, index=[1, 2] # For designating principal components. ) df.index.rename('PC', inplace=True) return df def get_pca_vectors(dataframe): """ Get principal components as vectors. Vectors can then be used to annotate graphs. :param dataframe: Tabular PCA data. :type dataframe: pandas.DataFrame :return: Principal components as vector pairs in input space with mean as origin first and offset second. :rtype: list """ # Use the "components" to define the direction of the vectors, # and the "explained variance" to define the squared-length of the vectors. directions = dataframe[['x', 'y']] * np.sqrt(dataframe[['var_expl']].values) * 3 # Move the directions by the mean, so we get vectors pointing to the start and vectors pointing to the destination. vector2 = directions + dataframe[['meanx', 'meany']].values vectors = list(zip(dataframe[['meanx', 'meany']].values, vector2.values)) return vectors def get_pca_vectors_by(dataframe, by=None): """ Get principal components for each group as vectors. Vectors can then be used to annotate graphs. :param dataframe: Data holding 'df1' and 'df2' values as columns. :type dataframe: pandas.DataFrame :param by: Column to group data by and return 2 vectors for each group. :type by: str|list :return: list of principal components as vector pairs in input space with mean as origin first and offset second. :rtype: list """ vector_pairs = list() if by is None: pca_df = get_pca_data(dataframe) v = get_pca_vectors(pca_df) vector_pairs.append(v) else: grouped = dataframe.groupby(by, observed=True) # With categorical groupers we want only non-empty groups. for group, data in grouped: pca_df = get_pca_data(data) v = get_pca_vectors(pca_df) vector_pairs.append(v) # ToDo: Augment by groupby criteria. return vector_pairs def get_interior_angle(vec0, vec1): """ Get the smaller angle between vec0 and vec1 in degrees. :param vec0: Vector 0 :type vec0: numpy.ndarray :param vec1: Vector 1 :type vec1: numpy.ndarray :return: Interior angle between vector0 and vector1 in degrees. :rtype: float """ angle = np.math.atan2(np.linalg.det([vec0, vec1]), np.dot(vec0, vec1)) degrees = abs(np.degrees(angle)) # Min and max should be between 0° an 90°. degrees = min(degrees, 180.0 - degrees) return degrees def get_ucm_vec(p0=None, p1=None): """ Returns 2D unit vector in direction of uncontrolled manifold. """ if p0 is None: p0 = np.array([25, 100]) if p1 is None: p1 = np.array([100, 25]) parallel = p1 - p0 parallel = parallel / np.linalg.norm(parallel) # Normalize. return parallel def get_orthogonal_vec2d(vec): """ Get a vector that is orthogonal to vec and has same length. :param vec: 2D Vector :return: 2D Vector orthogonal to vec. :rtype: numpy.ndarray """ ortho = np.array([-vec[1], vec[0]]) return ortho def get_pc_ucm_angles(dataframe, vec_ucm): """ Computes the interior angles between pca vectors and ucm parallel/orthogonal vectors. :param dataframe: PCA data. :type dataframe: pandas.DataFrame :param vec_ucm: Vector parallel to UCM. :type vec_ucm: numpy.ndarray :return: Each angle between principal components and UCM parallel and orthogonal vector. :rtype: pandas.DataFrame """ df_angles = dataframe[['x', 'y']].transform(lambda x: (a:=get_interior_angle(vec_ucm, x), 90.0 - a), axis='columns').rename(columns={'x': 'parallel', 'y': 'orthogonal'}) df_angles = pd.concat((dataframe[['task', 'PC']], df_angles), axis='columns') return df_angles def get_projections(points, vec_ucm): """ Returns coefficients a and b in x = a*vec_ucm + b*vec_ortho with x being the difference of a data point and the mean. Projection is computed using a transformation matrix with ucm parallel and orthogonal vectors as basis. :param points: Data of 2D points. :type points: pandas.Dataframe :param vec_ucm: Unit vector parallel to uncontrolled manifold. :type vec_ucm: numpy.ndarray :return: Array with projected lengths onto vector parallel to UCM as 'a', onto vector orthogonal to UCM as 'b'. :rtype: pandas.Dataframe """ # Get the vector orthogonal to the UCM. vec_ortho = get_orthogonal_vec2d(vec_ucm) # Build a transformation matrix with vec_ucm and vec_ortho as new basis vectors. A = np.vstack((vec_ucm, vec_ortho)).T # A is not an orthogonal projection matrix (A=A.T), but this works. # Centralize the data. Analogous to calculating across trials deviation from average for each time step. diffs = points - points.mean() # For computational efficiency we shortcut the projection calculation with matrix multiplication. # The actual math behind it: # coeffs = vec_ucm.T@diff/np.sqrt(vec_ucm.T@vec_ucm), vec_ortho.T@diff/np.sqrt(vec_ortho.T@vec_ortho) # Biased variance (normalized by (n-1)) of projection onto UCM vector: # var_ucm = [email protected](diffs, bias=True, rowvar=False)@vec_ucm/(vec_ucm.T@vec_ucm) # Rayleigh fraction. coeffs = diffs@A coeffs.columns = ['parallel', 'orthogonal'] return coeffs def get_synergy_indices(variances, n=2, d=1): """ n: Number of degrees of freedom. In our case 2. d: Dimensionality of performance variable. In our case a scalar (1). Vucm = 1/N * 1/(n - d) * sum(ProjUCM**2) Vort = 1/N * 1/(d) * sum(ProjORT**2) Vtotal = 1/n * (d * Vort + (n-d) * Vucm) # Anull the weights on Vucm and Vort for the sum. dV = (Vucm - Vort) / Vtotal dV = n*(Vucm - Vort) / ((n - d)*Vucm + d*Vort) Zhang (2008) without weighting Vucm, Vort and Vtotal first: dV = n * (Vucm/(n - d) - Vort/d) / (Vucm + Vort) dVz = 0.5*ln((n / d + dV) / (n / ((n - d) - dV)) dVz = 0.5*ln((2 + dV) / (2 - dV)) Reference: https://www.frontiersin.org/articles/10.3389/fnagi.2019.00032/full#supplementary-material :param variances: Unweighted variances of parallel and orthogonal projections to the UCM. :type variances: pandas.DataFrame :param n: Number of degrees of freedom. Defaults to 2. :type: int :param d: Dimensionality of performance variable. Defaults to 1. :type d: int :returns: Synergy index, Fisher's z-transformed synergy index. :rtype: pandas.DataFrame """ try: dV = n * (variances['parallel']/(n-d) - variances['orthogonal']/d) \ / variances[['parallel', 'orthogonal']].sum(axis='columns') except KeyError: synergy_indices = pd.DataFrame(columns=["dV", "dVz"]) else: dVz = 0.5 * np.log((n/d + dV)/(n/(n-d) - dV)) synergy_indices = pd.DataFrame({"dV": dV, "dVz": dVz}) return synergy_indices def get_synergy_idx_bounds(n=2, d=1): """ Get lower and upper bounds of the synergy index. dV = n * (Vucm/(n - d) - Vort/d) / (Vucm + Vort) If all variance lies within the UCM, then Vort=0 and it follows for the upper bound: dV = n/(n-d) If all variance lies within Vort, then Vucm=0 and it follows for the lower bound: dV = -n/d :param n: Number of degrees of freedom. :type: int :param d: Dimensionality of performance variable. :type d: int :returns: Lower and upper bounds of synergy index. :rtype: tuple """ dV_lower = -n/d dV_upper = n/(n-d) return dV_lower, dV_upper def get_mean(dataframe, column, by=None): """ Return mean values of column x (optionally grouped) :param dataframe: Data :type dataframe: pandas.Dataframe :param column: Column name :type column: str :param by: Column names by which to group. :type by: str|list :return: mean value, optionally for each group. :rtype: numpy.float64|pandas.Series """ if by is None: means = dataframe[column].mean() else: means = dataframe.groupby(by, observed=True)[column].mean() return means def get_descriptive_stats(data, by=None): """ Return mean and variance statistics for data. :param data: numerical data. :type data: pandas.Dataframe :param by: groupby column name(s) :type by: str|List :return: Dataframe with columns mean, var, count and column names of data as rows. :rtype: pandas.Dataframe """ # There's a bug in pandas 1.0.4 where you can't use custom numpy functions in agg anymore (ValueError). # Note that the variance of projections is usually divided by (n-d) for Vucm and d for Vort. Both are 1 in our case. # Pandas default var returns unbiased population variance /(n-1). Doesn't make a difference for synergy indices. f_var = lambda series: series.var(ddof=0) f_var.__name__ = 'variance' # Column name gets function name. # When there're no data, return empty DataFrame with columns. if data.empty: if by: data.set_index(by, drop=True, inplace=True) col_idx = pd.MultiIndex.from_product([data.columns, ['mean', f_var.__name__]]) stats = pd.DataFrame(None, index=data.index, columns=col_idx) stats['count'] = None return stats if not by: stats = data.agg(['mean', f_var, 'count']).T stats['count'] = stats['count'].astype(int) else: grouped = data.groupby(by, observed=True) stats = grouped.agg(['mean', f_var]) stats['count'] = grouped.size() stats.dropna(inplace=True) return stats def get_statistics(dataframe): """ Calculate descriptive statistics including synergy indices for key values of the anaylsis. :param dataframe: Data from joined table on trials with projections. :type dataframe: pandas.DataFrame :return: Descriptive statistics and synergy indices. :rtype: pandas.DataFrame """ groupers = ['user', 'session', 'condition', 'block_id', 'block', 'task'] try: dataframe[groupers] = dataframe[groupers].astype('category') except (KeyError, ValueError): df_stats = get_descriptive_stats(pd.DataFrame(columns=dataframe.columns)) cov = pd.DataFrame(columns=[('df1,df2 covariance', '')]) else: df_stats = get_descriptive_stats(dataframe[groupers + ['df1', 'df2', 'sum', 'parallel', 'orthogonal']], by=groupers).drop(columns=[('parallel', 'mean'), # Always equal 0. ('orthogonal', 'mean')]) # Get statistic characteristics of absolute lengths of projections. length = dataframe.groupby(groupers, observed=True)[['parallel', 'orthogonal']].agg(lambda x: x.abs().mean()) length.columns = pd.MultiIndex.from_product([length.columns, ['absolute average']]) # Get covariance between degrees of freedom. cov = dataframe.groupby(groupers, observed=True)[['df1', 'df2']].apply(lambda x: np.cov(x.T, ddof=0)[0, 1]) try: cov = cov.to_frame(('df1,df2 covariance', '')) # MultiIndex. except AttributeError: # In case cov is an empty Dataframe. cov = pd.DataFrame(columns=pd.MultiIndex.from_tuples([('df1,df2 covariance', '')])) # Get synergy indices based on projection variances we just calculated. df_synergies = get_synergy_indices(df_stats[['parallel', 'orthogonal']].xs('variance', level=1, axis='columns')) # Before we merge dataframes, give this one a Multiindex, too. df_synergies.columns = pd.MultiIndex.from_product([df_synergies.columns, ['']]) # Join the 3 statistics to be displayed in a single table. df =
pd.concat((df_stats, cov, length, df_synergies), axis='columns')
pandas.concat
from datetime import datetime, timedelta import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs.ccalendar import DAYS, MONTHS from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.compat import lrange, range, zip import pandas as pd from pandas import DataFrame, Series, Timestamp from pandas.core.indexes.base import InvalidIndexError from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, PeriodIndex, period_range from pandas.core.resample import _get_period_range_edges import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) import pandas.tseries.offsets as offsets @pytest.fixture() def _index_factory(): return period_range @pytest.fixture def _series_name(): return 'pi' class TestPeriodIndex(object): @pytest.mark.parametrize('freq', ['2D', '1H', '2H']) @pytest.mark.parametrize('kind', ['period', None, 'timestamp']) def test_asfreq(self, series_and_frame, freq, kind): # GH 12884, 15944 # make sure .asfreq() returns PeriodIndex (except kind='timestamp') obj = series_and_frame if kind == 'timestamp': expected = obj.to_timestamp().resample(freq).asfreq() else: start = obj.index[0].to_timestamp(how='start') end = (obj.index[-1] + obj.index.freq).to_timestamp(how='start') new_index = date_range(start=start, end=end, freq=freq, closed='left') expected = obj.to_timestamp().reindex(new_index).to_period(freq) result = obj.resample(freq, kind=kind).asfreq() assert_almost_equal(result, expected) def test_asfreq_fill_value(self, series): # test for fill value during resampling, issue 3715 s = series new_index = date_range(s.index[0].to_timestamp(how='start'), (s.index[-1]).to_timestamp(how='start'), freq='1H') expected = s.to_timestamp().reindex(new_index, fill_value=4.0) result = s.resample('1H', kind='timestamp').asfreq(fill_value=4.0) assert_series_equal(result, expected) frame = s.to_frame('value') new_index = date_range(frame.index[0].to_timestamp(how='start'), (frame.index[-1]).to_timestamp(how='start'), freq='1H') expected = frame.to_timestamp().reindex(new_index, fill_value=3.0) result = frame.resample('1H', kind='timestamp').asfreq(fill_value=3.0) assert_frame_equal(result, expected) @pytest.mark.parametrize('freq', ['H', '12H', '2D', 'W']) @pytest.mark.parametrize('kind', [None, 'period', 'timestamp']) @pytest.mark.parametrize('kwargs', [dict(on='date'), dict(level='d')]) def test_selection(self, index, freq, kind, kwargs): # This is a bug, these should be implemented # GH 14008 rng = np.arange(len(index), dtype=np.int64) df = DataFrame({'date': index, 'a': rng}, index=pd.MultiIndex.from_arrays([rng, index], names=['v', 'd'])) msg = ("Resampling from level= or on= selection with a PeriodIndex is" r" not currently supported, use \.set_index\(\.\.\.\) to" " explicitly set index") with pytest.raises(NotImplementedError, match=msg): df.resample(freq, kind=kind, **kwargs) @pytest.mark.parametrize('month', MONTHS) @pytest.mark.parametrize('meth', ['ffill', 'bfill']) @pytest.mark.parametrize('conv', ['start', 'end']) @pytest.mark.parametrize('targ', ['D', 'B', 'M']) def test_annual_upsample_cases(self, targ, conv, meth, month, simple_period_range_series): ts = simple_period_range_series( '1/1/1990', '12/31/1991', freq='A-%s' % month) result = getattr(ts.resample(targ, convention=conv), meth)() expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, meth).to_period() assert_series_equal(result, expected) def test_basic_downsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() expected = ts.groupby(ts.index.year).mean() expected.index = period_range('1/1/1990', '6/30/1995', freq='a-dec') assert_series_equal(result, expected) # this is ok assert_series_equal(ts.resample('a-dec').mean(), result) assert_series_equal(ts.resample('a').mean(), result) @pytest.mark.parametrize('rule,expected_error_msg', [ ('a-dec', '<YearEnd: month=12>'), ('q-mar', '<QuarterEnd: startingMonth=3>'), ('M', '<MonthEnd>'), ('w-thu', '<Week: weekday=3>') ]) def test_not_subperiod( self, simple_period_range_series, rule, expected_error_msg): # These are incompatible period rules for resampling ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='w-wed') msg = ("Frequency <Week: weekday=2> cannot be resampled to {}, as they" " are not sub or super periods").format(expected_error_msg) with pytest.raises(IncompatibleFrequency, match=msg): ts.resample(rule).mean() @pytest.mark.parametrize('freq', ['D', '2D']) def test_basic_upsample(self, freq, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() resampled = result.resample(freq, convention='end').ffill() expected = result.to_timestamp(freq, how='end') expected = expected.asfreq(freq, 'ffill').to_period(freq) assert_series_equal(resampled, expected) def test_upsample_with_limit(self): rng = period_range('1/1/2000', periods=5, freq='A') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('M', convention='end').ffill(limit=2) expected = ts.asfreq('M').reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_annual_upsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='A-DEC') df = DataFrame({'a': ts}) rdf = df.resample('D').ffill() exp = df['a'].resample('D').ffill() assert_series_equal(rdf['a'], exp) rng = period_range('2000', '2003', freq='A-DEC') ts = Series([1, 2, 3, 4], index=rng) result = ts.resample('M').ffill() ex_index = period_range('2000-01', '2003-12', freq='M') expected = ts.asfreq('M', how='start').reindex(ex_index, method='ffill') assert_series_equal(result, expected) @pytest.mark.parametrize('month', MONTHS) @pytest.mark.parametrize('target', ['D', 'B', 'M']) @pytest.mark.parametrize('convention', ['start', 'end']) def test_quarterly_upsample(self, month, target, convention, simple_period_range_series): freq = 'Q-{month}'.format(month=month) ts = simple_period_range_series('1/1/1990', '12/31/1995', freq=freq) result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, 'ffill').to_period() assert_series_equal(result, expected) @pytest.mark.parametrize('target', ['D', 'B']) @pytest.mark.parametrize('convention', ['start', 'end']) def test_monthly_upsample(self, target, convention, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='M') result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, 'ffill').to_period() assert_series_equal(result, expected) def test_resample_basic(self): # GH3609 s = Series(range(100), index=date_range( '20130101', freq='s', periods=100, name='idx'), dtype='float') s[10:30] = np.nan index = PeriodIndex([ Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')], name='idx') expected = Series([34.5, 79.5], index=index) result = s.to_period().resample('T', kind='period').mean() assert_series_equal(result, expected) result2 = s.resample('T', kind='period').mean() assert_series_equal(result2, expected) @pytest.mark.parametrize('freq,expected_vals', [('M', [31, 29, 31, 9]), ('2M', [31 + 29, 31 + 9])]) def test_resample_count(self, freq, expected_vals): # GH12774 series = Series(1, index=pd.period_range(start='2000', periods=100)) result = series.resample(freq).count() expected_index = pd.period_range(start='2000', freq=freq, periods=len(expected_vals)) expected = Series(expected_vals, index=expected_index) assert_series_equal(result, expected) def test_resample_same_freq(self, resample_method): # GH12770 series = Series(range(3), index=pd.period_range( start='2000', periods=3, freq='M')) expected = series result = getattr(series.resample('M'), resample_method)() assert_series_equal(result, expected) def test_resample_incompat_freq(self): msg = ("Frequency <MonthEnd> cannot be resampled to <Week: weekday=6>," " as they are not sub or super periods") with pytest.raises(IncompatibleFrequency, match=msg): Series(range(3), index=pd.period_range( start='2000', periods=3, freq='M')).resample('W').mean() def test_with_local_timezone_pytz(self): # see gh-5430 local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period').mean() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = (pd.period_range(start=start, end=end, freq='D') - offsets.Day()) expected =
Series(1, index=expected_index)
pandas.Series
########################################################################### # Librairies import pandas as pd import os import unicodedata ########################################################################### # Fonctions def remove_accents(input_str): nfkd_form = unicodedata.normalize('NFKD', input_str) only_ascii = nfkd_form.encode('ASCII', 'ignore') only_ascii= only_ascii.decode('utf-8') return only_ascii ########################################################################### # Afficher tous les fichiers du repertoire Mauritania FSMS data # dans df_run from os import walk monRepertoire=r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch" df_run = pd.DataFrame(columns=['Repertoire','Fichier','Total','Extension'], dtype = str) i=0 for (repertoire, sousRepertoires, fichiers) in walk(monRepertoire): for name in fichiers: df_run.loc[i,"Repertoire"]=str(repertoire) df_run.loc[i,"Fichier"]=str(name) df_run.loc[i,"Total"]=os.path.join(str(repertoire),name) filename, file_extension = os.path.splitext(os.path.join(str(repertoire),str(sousRepertoires),name)) df_run.loc[i,"Extension"]=file_extension i=i+1 # nettoyage del monRepertoire , fichiers , i , filename , file_extension , name , repertoire , sousRepertoires ############################################################################ # Exploration des fichiers du repertoire Mauritania FSMS data # Affichage de tous les types de fichiers df_run.Extension.value_counts() # division des fichiers par extension df_run_sav=df_run.loc[df_run.Extension==".sav"] # df_run_sps=df_run.loc[df_run.Extension==".sps"] # df_run_xls=df_run.loc[df_run.Extension==".xls"] # df_run_xlsx=df_run.loc[df_run.Extension==".xlsx"] # df_run_xml=df_run.loc[df_run.Extension==".xml"] # df_run_csv=df_run.loc[df_run.Extension==".csv"] ############################################################################ # Lecture des fichiers sav import pyreadstat #df1, meta1 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2011\Decembre11\Données_FSMS_nov11_26_12.sav") #df2, meta2 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2011\Janvier11\Données\FSMS_2011_4-2-11_URBAN.sav") #df3, meta3 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2011\Janvier11\Données\FSMS_2011_RURAL_FINAL.sav") df4, meta4 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\Mauritania FSMS data\2011\Juin11") #df5, meta5 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2012\Analyse croise SA_NUT\RIM_FSMS_SMART_juil2012.sav") #df6, meta6 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2012\Decembre\Donnes_FSMSdec12_HH_commun.sav") df7, meta7 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2012\Juin\Données_FSMS_juil_12.sav") #df8, meta8 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2013\Decembre\Données FSMS 13Dec_20_01_14.sav") df9, meta9 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2013\Juin\FSMS_HH_juil13b_1.sav") #df10, meta10 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2014\Decembre\Données_FSMS_24_06_15.sav") df11, meta11 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2014\Juin\Données_FSMS_juin_2014.sav") #df12, meta12 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2015\Decembre\Données FSMS Jan16_18_02.sav") df13, meta13 = pyreadstat.read_sav(r"C:\Users\simon\Documents\Simon\Data4Good\9_GeoWatch\2015\Juin\Données_FSMS_juin_15.sav") # Ajout de la date df4["FICHIER"]="June-11" df7["FICHIER"]="June-12" df9["FICHIER"]="June-13" df11["FICHIER"]="June-14" df13["FICHIER"]="June-15" # Ajout num questionnaire df4["QUEST"]="Q4" df7["QUEST"]="Q7" df9["QUEST"]="Q9" df11["QUEST"]="Q11" df13["QUEST"]="Q13" ############################################################################ # Modification des noms des colonnes des df: # Majuscules sans accent de toutes les tables df # Noms de colonnes dans listes Lst_NomCol_df4=[c for c in df4] Lst_NomCol_df7=[c for c in df7] Lst_NomCol_df9=[c for c in df9] Lst_NomCol_df11=[c for c in df11] Lst_NomCol_df13=[c for c in df13] # Suppression accents + mise en majuscule Lst_NomCol_df4=[remove_accents(string) for string in Lst_NomCol_df4] Lst_NomCol_df4=[string.upper() for string in Lst_NomCol_df4] Lst_NomCol_df7=[remove_accents(string) for string in Lst_NomCol_df7] Lst_NomCol_df7=[string.upper() for string in Lst_NomCol_df7] Lst_NomCol_df9=[remove_accents(string) for string in Lst_NomCol_df9] Lst_NomCol_df9=[string.upper() for string in Lst_NomCol_df9] Lst_NomCol_df11=[remove_accents(string) for string in Lst_NomCol_df11] Lst_NomCol_df11=[string.upper() for string in Lst_NomCol_df11] Lst_NomCol_df13=[remove_accents(string) for string in Lst_NomCol_df13] Lst_NomCol_df13=[string.upper() for string in Lst_NomCol_df13] # Remplacement des noms de colonne df4.columns = [Lst_NomCol_df4] df7.columns = [Lst_NomCol_df7] df9.columns = [Lst_NomCol_df9] df11.columns = [Lst_NomCol_df11] df13.columns = [Lst_NomCol_df13] df4.columns = ['/'.join(x) for x in df4.columns.values] df7.columns = ['/'.join(x) for x in df7.columns.values] df9.columns = ['/'.join(x) for x in df9.columns.values] df11.columns = ['/'.join(x) for x in df11.columns.values] df13.columns = ['/'.join(x) for x in df13.columns.values] # nettoyage del Lst_NomCol_df4,Lst_NomCol_df7,Lst_NomCol_df9,Lst_NomCol_df11,Lst_NomCol_df13 ############################################################################ # Analyse des colonnes des df # Noms de colonnes dans listes Lst_NomCol_df4=[c for c in df4] Lst_NomCol_df7=[c for c in df7] Lst_NomCol_df9=[c for c in df9] Lst_NomCol_df11=[c for c in df11] Lst_NomCol_df13=[c for c in df13] # Noms de colonnes dans une dataframe Df_Lst_NomCol_df4=pd.DataFrame(Lst_NomCol_df4) Df_Lst_NomCol_df4["QUEST"]="df4" Df_Lst_NomCol_df7=pd.DataFrame(Lst_NomCol_df7) Df_Lst_NomCol_df7["QUEST"]="df7" Df_Lst_NomCol_df9=pd.DataFrame(Lst_NomCol_df9) Df_Lst_NomCol_df9["QUEST"]="df9" Df_Lst_NomCol_df11=pd.DataFrame(Lst_NomCol_df11) Df_Lst_NomCol_df11["QUEST"]="df11" Df_Lst_NomCol_df13=pd.DataFrame(Lst_NomCol_df13) Df_Lst_NomCol_df13["QUEST"]="df13" # Rassemblement des noms de colonne List_col_df = pd.concat([Df_Lst_NomCol_df4,Df_Lst_NomCol_df7,Df_Lst_NomCol_df9,Df_Lst_NomCol_df11,Df_Lst_NomCol_df13]) # Tableau avec noms de colonnes et présence dans les differents questionnaires Tab_col=pd.crosstab([List_col_df[0]], List_col_df["QUEST"], margins=True) # nettoyage del Df_Lst_NomCol_df4,Df_Lst_NomCol_df7,Df_Lst_NomCol_df9,Df_Lst_NomCol_df11,Df_Lst_NomCol_df13,Lst_NomCol_df4,Lst_NomCol_df7,Lst_NomCol_df9,Lst_NomCol_df11,Lst_NomCol_df13 ############################################################################ # Reconstitution des questionnaires à partir des meta données # Objectif : Comprendre les colonnes à partir des questionnaires # Retait des accents et minuscules dans les noms de colonne # Commentaire : on pourrait mettre le code qui suit dans une boucle mais je ne # sais pas comment créer des noms de table avec l'indice utilisé dans la boucle # Q4 col_names=meta4.column_names col_names=[remove_accents(string) for string in col_names] col_names=[string.upper() for string in col_names] col_lab=meta4.column_labels df_col_names=pd.DataFrame(col_names,columns=["col_names"]) df_col_lab=pd.DataFrame(col_lab,columns=["col_lab4"]) col=pd.concat([df_col_names,df_col_lab],axis=1) var_lab=meta4.variable_value_labels df_var_lab=pd.DataFrame(list(var_lab.items()),columns=["col_names","var_lab4"]) quest4=col.merge(df_var_lab,how='left',on='col_names') quest4["ID4"]="Q4" # Q7 col_names=meta7.column_names col_names=[remove_accents(string) for string in col_names] col_names=[string.upper() for string in col_names] col_lab=meta7.column_labels df_col_names=pd.DataFrame(col_names,columns=["col_names"]) df_col_lab=
pd.DataFrame(col_lab,columns=["col_lab7"])
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem cop = s.copy() cop[omask] = 5 s[mask] = 5 assert_series_equal(cop, s) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, offset=datetools.bday) > ts.median() self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assert_((s[:4] == 0).all()) self.assert_(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) def test_getitem_box_float64(self): value = self.ts[5] self.assert_(isinstance(value, np.float64)) def test_getitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_setitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__setitem__, 1, 5) self.assertRaises(KeyError, s.ix.__setitem__, 1, 5) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assert_(self.series.index[9] not in numSlice.index) self.assert_(self.objSeries.index[9] not in objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assert_(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assert_((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1,2,17]] = np.NaN self.ts[6] = np.NaN self.assert_(np.isnan(self.ts[6])) self.assert_(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assert_(not np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assert_((series[::2] == 0).all()) # set item that's not contained self.assertRaises(Exception, self.series.__setitem__, 'foobar', 1) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assert_(res is self.ts) self.assertEqual(self.ts[idx], 0) res = self.series.set_value('foobar', 0) self.assert_(res is not self.series) self.assert_(res.index[-1] == 'foobar') self.assertEqual(res['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertEqual(len(sl.index.indexMap), len(sl.index)) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] self.assertRaises(Exception, self.ts.__getitem__, (slice(None, None), 2)) self.assertRaises(Exception, self.ts.__setitem__, (slice(None, None), 2), 2) # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) def test_ix_getitem(self): inds = self.series.index[[3,4,7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEquals(self.ts.ix[d1], self.ts[d1]) self.assertEquals(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][::-1] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assert_((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assert_((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s[::-1] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_ix_setitem(self): inds = self.series.index[[3,4,7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3,4,7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEquals(self.series[d1], 4) self.assertEquals(self.series[d2], 6) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.order() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(tm.randn(1000), index=np.arange(1000))) str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1))) # empty str(self.empty) # with NaNs self.series[5:7] = np.NaN str(self.series) # tuple name, e.g. from hierarchical index self.series.name = ('foo', 'bar', 'baz') repr(self.series) biggie = Series(tm.randn(1000), index=np.arange(1000), name=('foo', 'bar', 'baz')) repr(biggie) def test_to_string(self): from cStringIO import StringIO buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) self.assert_(retval is None) self.assertEqual(buf.getvalue().strip(), s) # pass float_format format = '%.4f'.__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split('\n')] expected = [format(x) for x in self.ts] self.assertEqual(result, expected) # empty string result = self.ts[:0].to_string() self.assertEqual(result, '') result = self.ts[:0].to_string(length=0) self.assertEqual(result, '') # name and length cp = self.ts.copy() cp.name = 'foo' result = cp.to_string(length=True, name=True) last_line = result.split('\n')[-1].strip() self.assertEqual(last_line, "Name: foo, Length: %d" % len(cp)) def test_to_string_mixed(self): s = Series(['foo', np.nan, -1.23, 4.56]) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 -1.23\n' '3 4.56') self.assertEqual(result, expected) # but don't count NAs as floats s = Series(['foo', np.nan, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) s = Series(['foo', 5, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 5\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) def test_to_string_float_na_spacing(self): s = Series([0., 1.5678, 2., -3., 4.]) s[::2] = np.nan result = s.to_string() expected = ('0 NaN\n' '1 1.568\n' '2 NaN\n' '3 -3.000\n' '4 NaN') self.assertEqual(result, expected) def test_iter(self): for i, val in enumerate(self.series): self.assertEqual(val, self.series[i]) for i, val in enumerate(self.ts): self.assertEqual(val, self.ts[i]) def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys self.assert_(getkeys() is self.ts.index) def test_values(self): self.assert_(np.array_equal(self.ts, self.ts.values)) def test_iteritems(self): for idx, val in self.series.iteritems(): self.assertEqual(val, self.series[idx]) for idx, val in self.ts.iteritems(): self.assertEqual(val, self.ts[idx]) def test_sum(self): self._check_stat_op('sum', np.sum) def test_sum_inf(self): s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan assert_almost_equal(s.sum(), s2.sum()) import pandas.core.nanops as nanops arr = np.random.randn(100, 100).astype('f4') arr[:, 2] = np.inf res = nanops.nansum(arr, axis=1) expected = nanops._nansum(arr, axis=1) assert_almost_equal(res, expected) def test_mean(self): self._check_stat_op('mean', np.mean) def test_median(self): self._check_stat_op('median', np.median) # test with integers, test failure int_ts = TimeSeries(np.ones(10, dtype=int), index=range(10)) self.assertAlmostEqual(np.median(int_ts), int_ts.median()) def test_prod(self): self._check_stat_op('prod', np.prod) def test_min(self): self._check_stat_op('min', np.min, check_objects=True) def test_max(self): self._check_stat_op('max', np.max, check_objects=True) def test_std(self): alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt) def test_var(self): alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt) def test_skew(self): from scipy.stats import skew alt =lambda x: skew(x, bias=False) self._check_stat_op('skew', alt) def test_argsort(self): self._check_accum_op('argsort') argsorted = self.ts.argsort() self.assert_(issubclass(argsorted.dtype.type, np.integer)) def test_cumsum(self): self._check_accum_op('cumsum') def test_cumprod(self): self._check_accum_op('cumprod') def _check_stat_op(self, name, alternate, check_objects=False): from pandas import DateRange import pandas.core.nanops as nanops def testit(): f = getattr(Series, name) # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assert_(notnull(f(self.series))) self.assert_(isnull(f(self.series, skipna=False))) # check the result is correct nona = self.series.dropna() assert_almost_equal(f(nona), alternate(nona)) allna = self.series * nan self.assert_(np.isnan(f(allna))) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # check DateRange if check_objects: s = Series(DateRange('1/1/2000', periods=10)) res = f(s) exp = alternate(s) self.assertEqual(res, exp) testit() try: import bottleneck as bn nanops._USE_BOTTLENECK = False testit() nanops._USE_BOTTLENECK = True except ImportError: pass def _check_accum_op(self, name): func = getattr(np, name) self.assert_(np.array_equal(func(self.ts), func(np.array(self.ts)))) # with missing values ts = self.ts.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.valid())) self.assert_(np.array_equal(result, expected)) def test_round(self): # numpy.round doesn't preserve metadata, probably a numpy bug, # re: GH #314 result = np.round(self.ts, 2) expected = Series(np.round(self.ts.values, 2), index=self.ts.index) assert_series_equal(result, expected) self.assertEqual(result.name, self.ts.name) def test_prod_numpy16_bug(self): s = Series([1., 1., 1.] , index=range(3)) result = s.prod() self.assert_(not isinstance(result, Series)) def test_quantile(self): from scipy.stats import scoreatpercentile q = self.ts.quantile(0.1) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 10)) q = self.ts.quantile(0.9) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 90)) def test_describe(self): _ = self.series.describe() _ = self.ts.describe() def test_describe_objects(self): s = Series(['a', 'b', 'b', np.nan, np.nan, np.nan, 'c', 'd', 'a', 'a']) result = s.describe() expected = Series({'count' : 7, 'unique' : 4, 'top' : 'a', 'freq' : 3}, index=result.index) assert_series_equal(result, expected) def test_append(self): appendedSeries = self.series.append(self.ts) for idx, value in appendedSeries.iteritems(): if idx in self.series.index: self.assertEqual(value, self.series[idx]) elif idx in self.ts.index: self.assertEqual(value, self.ts[idx]) else: self.fail("orphaned index!") self.assertRaises(Exception, self.ts.append, self.ts) def test_append_many(self): pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]] result = pieces[0].append(pieces[1:]) assert_series_equal(result, self.ts) def test_all_any(self): np.random.seed(12345) ts = tm.makeTimeSeries() bool_series = ts > 0 self.assert_(not bool_series.all()) self.assert_(bool_series.any()) def test_operators(self): series = self.ts other = self.ts[::2] def _check_op(other, op, pos_only=False): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_almost_equal(cython_or_numpy, python) def check(other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'gt', 'ge', 'lt', 'le'] for opname in simple_ops: _check_op(other, getattr(operator, opname)) _check_op(other, operator.pow, pos_only=True) _check_op(other, lambda x, y: operator.add(y, x)) _check_op(other, lambda x, y: operator.sub(y, x)) _check_op(other, lambda x, y: operator.truediv(y, x)) _check_op(other, lambda x, y: operator.floordiv(y, x)) _check_op(other, lambda x, y: operator.mul(y, x)) _check_op(other, lambda x, y: operator.pow(y, x), pos_only=True) check(self.ts * 2) check(self.ts * 0) check(self.ts[::2]) check(5) def check_comparators(other): _check_op(other, operator.gt) _check_op(other, operator.ge) _check_op(other, operator.eq) _check_op(other, operator.lt) _check_op(other, operator.le) check_comparators(5) check_comparators(self.ts + 1) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x' : 0.}) # it works! _ = s1 * s2 # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assert_(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmin())) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assert_(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmax())) def test_operators_date(self): result = self.objSeries + timedelta(1) result = self.objSeries - timedelta(1) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assert_(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assert_(len(result) == 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = self.ts.values[:-5] + int_ts.values self.assert_(np.array_equal(added[:-5], expected)) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_series_frame_radd_bug(self): from pandas.util.testing import rands import operator # GH 353 vals = Series([rands(5) for _ in xrange(10)]) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals' : vals}) result = 'foo_' + frame expected = DataFrame({'vals' : vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time self.assertRaises(TypeError, operator.add, datetime.now(), self.ts) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A' : self.ts}) tm.assert_almost_equal(self.ts + self.ts, (self.ts + df)['A']) tm.assert_almost_equal(self.ts ** self.ts, (self.ts ** df)['A']) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) ops = [Series.add, Series.sub, Series.mul, Series.div] equivs = [operator.add, operator.sub, operator.mul] if py3compat.PY3: equivs.append(operator.truediv) else: equivs.append(operator.div) fillvals = [0, 0, 1, 1] for op, equiv_op, fv in zip(ops, equivs, fillvals): result = op(a, b) exp = equiv_op(a, b) assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) def test_combine_first(self): values = tm.makeIntIndex(20).values.astype(float) series = Series(values, index=tm.makeIntIndex(20)) series_copy = series * 2 series_copy[::2] = np.NaN # nothing used from the input combined = series.combine_first(series_copy) self.assert_(np.array_equal(combined, series)) # Holes filled from input combined = series_copy.combine_first(series) self.assert_(np.isfinite(combined).all()) self.assert_(np.array_equal(combined[::2], series[::2])) self.assert_(np.array_equal(combined[1::2], series_copy[1::2])) # mixed types index = tm.makeStringIndex(20) floats = Series(tm.randn(20), index=index) strings = Series(tm.makeStringIndex(10), index=index[::2]) combined = strings.combine_first(floats) tm.assert_dict_equal(strings, combined, compare_keys=False) tm.assert_dict_equal(floats[1::2], combined, compare_keys=False) # corner case s = Series([1., 2, 3], index=[0, 1, 2]) result = s.combine_first(Series([], index=[])) assert_series_equal(s, result) def test_corr(self): import scipy.stats as stats # full overlap self.assertAlmostEqual(self.ts.corr(self.ts), 1) # partial overlap self.assertAlmostEqual(self.ts[:15].corr(self.ts[5:]), 1) # No overlap self.assert_(np.isnan(self.ts[::2].corr(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.corr(cp))) A = tm.makeTimeSeries() B = tm.makeTimeSeries() result = A.corr(B) expected, _ = stats.pearsonr(A, B) self.assertAlmostEqual(result, expected) def test_corr_rank(self): import scipy import scipy.stats as stats # kendall and spearman A = tm.makeTimeSeries() B = tm.makeTimeSeries() A[-5:] = A[:5] result = A.corr(B, method='kendall') expected = stats.kendalltau(A, B)[0] self.assertAlmostEqual(result, expected) result = A.corr(B, method='spearman') expected = stats.spearmanr(A, B)[0] self.assertAlmostEqual(result, expected) # these methods got rewritten in 0.8 if int(scipy.__version__.split('.')[1]) < 9: raise nose.SkipTest # results from R A = Series([-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606]) B = Series([-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292, 1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375]) kexp = 0.4319297 sexp = 0.5853767 self.assertAlmostEqual(A.corr(B, method='kendall'), kexp) self.assertAlmostEqual(A.corr(B, method='spearman'), sexp) def test_cov(self): # full overlap self.assertAlmostEqual(self.ts.cov(self.ts), self.ts.std()**2) # partial overlap self.assertAlmostEqual(self.ts[:15].cov(self.ts[5:]), self.ts[5:15].std()**2) # No overlap self.assert_(np.isnan(self.ts[::2].cov(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.cov(cp))) def test_copy(self): ts = self.ts.copy() ts[::2] = np.NaN # Did not modify original Series self.assertFalse(np.isnan(self.ts[0])) def test_count(self): self.assertEqual(self.ts.count(), len(self.ts)) self.ts[::2] = np.NaN self.assertEqual(self.ts.count(), np.isfinite(self.ts).sum()) def test_value_counts_nunique(self): s = Series(['a', 'b', 'b', 'b', 'b', 'a', 'c', 'd', 'd', 'a']) hist = s.value_counts() expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c']) assert_series_equal(hist, expected) self.assertEquals(s.nunique(), 4) # handle NA's properly s[5:7] = np.nan hist = s.value_counts() expected = s.dropna().value_counts() assert_series_equal(hist, expected) s = Series({}) hist = s.value_counts() expected = Series([]) assert_series_equal(hist, expected) def test_sort(self): ts = self.ts.copy() ts.sort() self.assert_(np.array_equal(ts, self.ts.order())) self.assert_(np.array_equal(ts.index, self.ts.order().index)) def test_sort_index(self): import random rindex = list(self.ts.index) random.shuffle(rindex) random_order = self.ts.reindex(rindex) sorted_series = random_order.sort_index() assert_series_equal(sorted_series, self.ts) # descending sorted_series = random_order.sort_index(ascending=False) assert_series_equal(sorted_series, self.ts.reindex(self.ts.index[::-1])) def test_order(self): ts = self.ts.copy() ts[:5] = np.NaN vals = ts.values result = ts.order() self.assert_(np.isnan(result[-5:]).all()) self.assert_(np.array_equal(result[:-5], np.sort(vals[5:]))) result = ts.order(na_last=False) self.assert_(np.isnan(result[:5]).all()) self.assert_(np.array_equal(result[5:], np.sort(vals[5:]))) # something object-type ser = Series(['A', 'B'], [1, 2]) # no failure ser.order() # ascending=False ordered = ts.order(ascending=False) expected = np.sort(ts.valid().values)[::-1] assert_almost_equal(expected, ordered.valid().values) ordered = ts.order(ascending=False, na_last=False) assert_almost_equal(expected, ordered.valid().values) def test_rank(self): from scipy.stats import rankdata self.ts[::2] = np.nan self.ts[:10][::3] = 4. ranks = self.ts.rank() oranks = self.ts.astype('O').rank() assert_series_equal(ranks, oranks) mask = np.isnan(self.ts) filled = self.ts.fillna(np.inf) exp = rankdata(filled) exp[mask] = np.nan assert_almost_equal(ranks, exp) def test_from_csv(self): self.ts.to_csv('_foo') ts = Series.from_csv('_foo') assert_series_equal(self.ts, ts) self.series.to_csv('_foo') series = Series.from_csv('_foo') assert_series_equal(self.series, series) outfile = open('_foo', 'w') outfile.write('1998-01-01|1.0\n1999-01-01|2.0') outfile.close() series = Series.from_csv('_foo',sep='|') checkseries = Series({datetime(1998,1,1): 1.0, datetime(1999,1,1): 2.0}) assert_series_equal(checkseries, series) series = Series.from_csv('_foo',sep='|',parse_dates=False) checkseries = Series({'1998-01-01': 1.0, '1999-01-01': 2.0}) assert_series_equal(checkseries, series) os.remove('_foo') def test_to_csv(self): self.ts.to_csv('_foo') lines = open('_foo', 'U').readlines() assert(lines[1] != '\n') os.remove('_foo') def test_to_dict(self): self.assert_(np.array_equal(Series(self.ts.to_dict()), self.ts)) def test_clip(self): val = self.ts.median() self.assertEqual(self.ts.clip_lower(val).min(), val) self.assertEqual(self.ts.clip_upper(val).max(), val) self.assertEqual(self.ts.clip(lower=val).min(), val) self.assertEqual(self.ts.clip(upper=val).max(), val) result = self.ts.clip(-0.5, 0.5) expected = np.clip(self.ts, -0.5, 0.5) assert_series_equal(result, expected) self.assert_(isinstance(expected, Series)) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_dict_equal(result, ts, compare_keys=False) def test_isnull(self): ser = Series([0,5.4,3,nan,-0.001]) assert_series_equal(ser.isnull(), Series([False,False,False,True,False])) ser = Series(["hi","",nan]) assert_series_equal(ser.isnull(), Series([False,False,True])) def test_notnull(self): ser = Series([0,5.4,3,nan,-0.001]) assert_series_equal(ser.notnull(), Series([True,True,True,False,True])) ser = Series(["hi","",nan]) assert_series_equal(ser.notnull(), Series([True,True,False])) def test_shift(self): shifted = self.ts.shift(1) unshifted = shifted.shift(-1) tm.assert_dict_equal(unshifted.valid(), self.ts, compare_keys=False) offset = datetools.bday shifted = self.ts.shift(1, offset=offset) unshifted = shifted.shift(-1, offset=offset) assert_series_equal(unshifted, self.ts) unshifted = self.ts.shift(0, offset=offset) assert_series_equal(unshifted, self.ts) shifted = self.ts.shift(1, timeRule='WEEKDAY') unshifted = shifted.shift(-1, timeRule='WEEKDAY') assert_series_equal(unshifted, self.ts) # corner case unshifted = self.ts.shift(0) assert_series_equal(unshifted, self.ts) def test_shift_int(self): ts = self.ts.astype(int) shifted = ts.shift(1) expected = ts.astype(float).shift(1) assert_series_equal(shifted, expected) def test_truncate(self): offset = datetools.bday ts = self.ts[::3] start, end = self.ts.index[3], self.ts.index[6] start_missing, end_missing = self.ts.index[2], self.ts.index[7] # neither specified truncated = ts.truncate() assert_series_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) assert_series_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) assert_series_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) assert_series_equal(truncated, expected) truncated = ts.truncate(before=start_missing) assert_series_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) assert_series_equal(truncated, expected) truncated = ts.truncate(after=end_missing) assert_series_equal(truncated, expected) # corner case, empty series returned truncated = ts.truncate(after=self.ts.index[0] - offset) assert(len(truncated) == 0) truncated = ts.truncate(before=self.ts.index[-1] + offset) assert(len(truncated) == 0) self.assertRaises(Exception, ts.truncate, before=self.ts.index[-1] + offset, after=self.ts.index[0] - offset) def test_asof(self): self.ts[5:10] = np.NaN self.ts[15:20] = np.NaN val1 = self.ts.asof(self.ts.index[7]) val2 = self.ts.asof(self.ts.index[19]) self.assertEqual(val1, self.ts[4]) self.assertEqual(val2, self.ts[14]) # accepts strings val1 = self.ts.asof(str(self.ts.index[7])) self.assertEqual(val1, self.ts[4]) # in there self.assertEqual(self.ts.asof(self.ts.index[3]), self.ts[3]) # no as of value d = self.ts.index[0] - datetools.bday self.assert_(np.isnan(self.ts.asof(d))) def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in merged.iteritems(): self.assertEqual(v, source[target[k]]) # input could be a dict merged = target.map(source.to_dict()) for k, v in merged.iteritems(): self.assertEqual(v, source[target[k]]) # function result = self.ts.map(lambda x: x * 2) self.assert_(np.array_equal(result, self.ts * 2)) def test_map_int(self): left = Series({'a' : 1., 'b' : 2., 'c' : 3., 'd' : 4}) right = Series({1 : 11, 2 : 22, 3 : 33}) self.assert_(left.dtype == np.float_) self.assert_(issubclass(right.dtype.type, np.integer)) merged = left.map(right) self.assert_(merged.dtype == np.float_) self.assert_(isnull(merged['d'])) self.assert_(not isnull(merged['c'])) def test_map_decimal(self): from decimal import Decimal result = self.series.map(lambda x: Decimal(str(x))) self.assert_(result.dtype == np.object_) self.assert_(isinstance(result[0], Decimal)) def test_apply(self): assert_series_equal(self.ts.apply(np.sqrt), np.sqrt(self.ts)) # elementwise-apply import math assert_series_equal(self.ts.apply(math.exp), np.exp(self.ts)) # does not return Series result = self.ts.apply(lambda x: x.values * 2) assert_series_equal(result, self.ts * 2) def test_align(self): def _check_align(a, b, how='left'): aa, ab = a.align(b, join=how) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index)
assert_series_equal(aa, ea)
pandas.util.testing.assert_series_equal
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er])
tm.assert_frame_equal(result, exp)
pandas.util.testing.assert_frame_equal
#definition of add_dataset that creates the meta-dataset import pandas as pd from pandas.core.dtypes.common import is_numeric_dtype from scipy.stats import pearsonr from sklearn.model_selection import train_test_split from supervised.automl import AutoML import os import pandas as pd from sklearn.preprocessing import LabelEncoder import numpy as np rootdir = os.path.dirname(__file__) results_dir = rootdir + '/results/' dataset_dir = rootdir + '/datasets_list_final/' datasets_to_add_dir = rootdir + '/datasets_list_toadd/' algorithm_list = ['Linear', 'Random Forest', 'Decision Tree', 'Neural Network'] def encode_y(y): le = LabelEncoder() le.fit(y) y_enc = le.transform(y) return y_enc def compute_max_corr(df): y = encode_y(df[df.columns[-1]]) y = pd.Series(y) corr = df[df.columns[:-1]].corrwith(y) return np.max(np.absolute(corr)) def compute_max_corr_between_X_and_y(X, y): y = encode_y(y) y = pd.Series(y) X = X.apply(pd.to_numeric, errors='ignore') return np.max(np.absolute(X.apply(lambda x: x.corr(y) if
is_numeric_dtype(x)
pandas.core.dtypes.common.is_numeric_dtype
import gzip import os import sys import logging from collections import defaultdict import pandas as pd from dae.utils.regions import Region logger = logging.getLogger(__name__) # # Exon # class Exon: def __init__( self, start=None, stop=None, frame=None, number=None, cds_start=None, cds_stop=None, ): self.start = start self.stop = stop self.frame = frame # related to cds # for GTF self.number = number # exon number self.cds_start = cds_start # self.cds_stop = cds_stop def __repr__(self): return ( f"Exon(start={self.start}; stop={self.stop}; " f"number={self.number})" ) class TranscriptModel: def __init__( self, gene=None, tr_id=None, tr_name=None, chrom=None, strand=None, tx=None, cds=None, exons=None, start_codon=None, stop_codon=None, is_coding=False, attributes={}, ): self.gene = gene self.tr_id = tr_id self.tr_name = tr_name self.chrom = chrom self.strand = strand self.tx = tx self.cds = cds self.exons = exons if exons is not None else [] # for GTF self.utrs = [] self.start_codon = start_codon self.stop_codon = stop_codon self._is_coding = ( is_coding # it can be derivable from cds' start and end ) self.attributes = attributes def is_coding(self): if self.cds[0] >= self.cds[1]: return False return True def CDS_regions(self, ss=0): if self.cds[0] >= self.cds[1]: return [] cds_regions = [] k = 0 while self.exons[k].stop < self.cds[0]: k += 1 if self.cds[1] <= self.exons[k].stop: cds_regions.append( Region(chrom=self.chrom, start=self.cds[0], stop=self.cds[1]) ) return cds_regions cds_regions.append( Region( chrom=self.chrom, start=self.cds[0], stop=self.exons[k].stop + ss, ) ) k += 1 while k < len(self.exons) and self.exons[k].stop <= self.cds[1]: if self.exons[k].stop < self.cds[1]: cds_regions.append( Region( chrom=self.chrom, start=self.exons[k].start - ss, stop=self.exons[k].stop + ss, ) ) k += 1 else: cds_regions.append( Region( chrom=self.chrom, start=self.exons[k].start - ss, stop=self.exons[k].stop, ) ) return cds_regions if k < len(self.exons) and self.exons[k].start <= self.cds[1]: cds_regions.append( Region( chrom=self.chrom, start=self.exons[k].start - ss, stop=self.cds[1], ) ) return cds_regions def UTR5_regions(self): if self.cds[0] >= self.cds[1]: return [] utr5_regions = [] k = 0 if self.strand == "+": while self.exons[k].stop < self.cds[0]: utr5_regions.append( Region( chrom=self.chrom, start=self.exons[k].start, stop=self.exons[k].stop, ) ) k += 1 if self.exons[k].start < self.cds[0]: utr5_regions.append( Region( chrom=self.chrom, start=self.exons[k].start, stop=self.cds[0] - 1, ) ) else: while self.exons[k].stop < self.cds[1]: k += 1 if self.exons[k].stop == self.cds[1]: k += 1 else: utr5_regions.append( Region( chrom=self.chrom, start=self.cds[1] + 1, stop=self.exons[k].stop, ) ) k += 1 for e in self.exons[k:]: utr5_regions.append( Region(chrom=self.chrom, start=e.start, stop=e.stop) ) return utr5_regions def UTR3_regions(self): if self.cds[0] >= self.cds[1]: return [] utr3_regions = [] k = 0 if self.strand == "-": while self.exons[k].stop < self.cds[0]: utr3_regions.append( Region( chrom=self.chrom, start=self.exons[k].start, stop=self.exons[k].stop, ) ) k += 1 if self.exons[k].start < self.cds[0]: utr3_regions.append( Region( chrom=self.chrom, start=self.exons[k].start, stop=self.cds[0] - 1, ) ) else: while self.exons[k].stop < self.cds[1]: k += 1 if self.exons[k].stop == self.cds[1]: k += 1 else: utr3_regions.append( Region( chrom=self.chrom, start=self.cds[1] + 1, stop=self.exons[k].stop, ) ) k += 1 for e in self.exons[k:]: utr3_regions.append( Region(chrom=self.chrom, start=e.start, stop=e.stop) ) return utr3_regions def all_regions(self, ss=0, prom=0): all_regions = [] if ss == 0: for e in self.exons: all_regions.append( Region(chrom=self.chrom, start=e.start, stop=e.stop) ) else: for e in self.exons: if e.stop <= self.cds[0]: all_regions.append( Region(chrom=self.chrom, start=e.start, stop=e.stop) ) elif e.start <= self.cds[0]: if e.stop >= self.cds[1]: all_regions.append( Region( chrom=self.chrom, start=e.start, stop=e.stop ) ) else: all_regions.append( Region( chrom=self.chrom, start=e.start, stop=e.stop + ss, ) ) elif e.start > self.cds[1]: all_regions.append( Region(chrom=self.chrom, start=e.start, stop=e.stop) ) else: if e.stop >= self.cds[1]: all_regions.append( Region( chrom=self.chrom, start=e.start - ss, stop=e.stop, ) ) else: all_regions.append( Region( chrom=self.chrom, start=e.start - ss, stop=e.stop + ss, ) ) if prom != 0: if self.strand == "+": all_regions[0] = Region( chrom=all_regions[0].chrom, start=all_regions[0].start - prom, stop=all_regions[0].stop, ) else: all_regions[-1] = Region( chrom=all_regions[-1].chrom, start=all_regions[-1].start, stop=all_regions[-1].stop + prom, ) return all_regions def total_len(self): length = 0 for reg in self.exons: length += reg.stop - reg.start + 1 return length def CDS_len(self): cds_region = self.CDS_regions() length = 0 for reg in cds_region: length += reg.stop - reg.start + 1 return length def UTR3_len(self): utr3 = self.UTR3_regions() length = 0 for reg in utr3: length += reg.stop - reg.start + 1 return length def UTR5_len(self): utr5 = self.UTR5_regions() length = 0 for reg in utr5: length += reg.stop - reg.start + 1 return length def calc_frames(self): length = len(self.exons) fms = [] if self.cds[0] > self.cds[1]: fms = [-1] * length elif self.strand == "+": k = 0 while self.exons[k].stop < self.cds[0]: fms.append(-1) k += 1 fms.append(0) if self.exons[k].stop < self.cds[1]: fms.append((self.exons[k].stop - self.cds[0] + 1) % 3) k += 1 while self.exons[k].stop < self.cds[1] and k < length: fms.append( (fms[k] + self.exons[k].stop - self.exons[k].start + 1) % 3 ) k += 1 fms += [-1] * (length - len(fms)) else: k = length - 1 while self.exons[k].start > self.cds[1]: fms.append(-1) k -= 1 fms.append(0) if self.cds[0] < self.exons[k].start: fms.append((self.cds[1] - self.exons[k].start + 1) % 3) k -= 1 while self.cds[0] < self.exons[k].start and k > -1: fms.append( (fms[-1] + self.exons[k].stop - self.exons[k].start + 1) % 3 ) k -= 1 fms += [-1] * (length - len(fms)) fms = fms[::-1] assert len(self.exons) == len(fms) return fms def update_frames(self): fms = self.calc_frames() for e, f in zip(self.exons, fms): e.frame = f def test_frames(self, update=False): fms = self.calc_frames() for e, f in zip(self.exons, fms): if e.frame != f: return False return True # # GeneModel's # class GeneModels: def __init__(self, name=None, location=None): self.name = name self.location = location self._shift = None self._alternative_names = None self.utr_models = defaultdict(lambda: defaultdict(list)) self.transcript_models = {} self.gene_models = defaultdict(list) def _add_transcript_model(self, tm): assert tm.tr_id not in self.transcript_models self.transcript_models[tm.tr_id] = tm self.gene_models[tm.gene].append(tm) self.utr_models[tm.chrom][tm.tx].append(tm) def _update_indexes(self): self.gene_models = defaultdict(list) self.utr_models = defaultdict(lambda: defaultdict(list)) for tm in self.transcript_models.values(): self.gene_models[tm.gene].append(tm) self.utr_models[tm.chrom][tm.tx].append(tm) def gene_names(self): if self.gene_models is None: print( "Gene Models haven't been created/uploaded yet! " "Use either loadGeneModels function or " "self.createGeneModelDict function" ) return None return list(self.gene_models.keys()) def gene_models_by_gene_name(self, name): return self.gene_models.get(name, None) # def gene_models_by_location(self, chrom, pos1, pos2=None): # result = [] # if pos2 is None: # for key in self.utr_models[chrom]: # if pos1 >= key[0] and pos1 <= key[1]: # result.extend(self.utr_models[chrom][key]) # else: # if pos2 < pos1: # pos1, pos2 = pos2, pos1 # for key in self.utr_models[chrom]: # if (pos1 <= key[0] and pos2 >= key[0]) or ( # pos1 >= key[0] and pos1 <= key[1] # ): # result.extend(self.utr_models[chrom][key]) # return result def relabel_chromosomes(self, relabel=None, map_file=None): assert relabel or map_file if not relabel: with open(map_file) as f: relabel = dict([line.strip("\n\r").split()[:2] for line in f]) self.utr_models = { relabel[chrom]: v for chrom, v in self.utr_models.items() if chrom in relabel } self.transcript_models = { tid: tm for tid, tm in self.transcript_models.items() if tm.chrom in relabel } for tm in self.transcript_models.values(): tm.chrom = relabel[tm.chrom] def _save_gene_models(self, outfile): outfile.write( "\t".join( [ "chr", "trID", "trOrigId", "gene", "strand", "tsBeg", "txEnd", "cdsStart", "cdsEnd", "exonStarts", "exonEnds", "exonFrames", "atts", ] ) ) outfile.write("\n") for tm in self.transcript_models.values(): exon_starts = ",".join([str(e.start) for e in tm.exons]) exon_ends = ",".join([str(e.stop) for e in tm.exons]) exon_frames = ",".join([str(e.frame) for e in tm.exons]) add_atts = ";".join( [ k + ":" + str(v).replace(":", "_") for k, v in list(tm.attributes.items()) ] ) cs = [ tm.chrom, tm.tr_id, tm.tr_name, tm.gene, tm.strand, tm.tx[0], tm.tx[1], tm.cds[0], tm.cds[1], exon_starts, exon_ends, exon_frames, add_atts, ] outfile.write("\t".join([str(x) if x else "" for x in cs])) outfile.write("\n") def save(self, output_filename, gzipped=True): if gzipped: if not output_filename.endswith(".gz"): output_filename = f"{output_filename}.gz" with gzip.open(output_filename, "wt") as outfile: self._save_gene_models(outfile) else: with open(output_filename, "wt") as outfile: self._save_gene_models(outfile) def load_default_gene_models_format( filename, gene_mapping_file=None, nrows=None ): df = pd.read_csv( filename, sep="\t", nrows=nrows, dtype={ "chr": str, "trID": str, "trOrigId": str, "gene": str, "strand": str, "atts": str, }, ) expected_columns = [ "chr", "trID", "gene", "strand", "tsBeg", "txEnd", "cdsStart", "cdsEnd", "exonStarts", "exonEnds", "exonFrames", "atts", ] assert set(expected_columns) <= set(df.columns) if not set(expected_columns) <= set(df.columns): return None if "trOrigId" not in df.columns: tr_names = pd.Series(data=df["trID"].values) df["trOrigId"] = tr_names gm = GeneModels(location=filename) records = df.to_dict(orient="records") for line in records: exon_starts = list(map(int, line["exonStarts"].split(","))) exon_ends = list(map(int, line["exonEnds"].split(","))) exon_frames = list(map(int, line["exonFrames"].split(","))) assert len(exon_starts) == len(exon_ends) == len(exon_frames) exons = [] for start, end, frame in zip(exon_starts, exon_ends, exon_frames): exons.append(Exon(start=start, stop=end, frame=frame)) attributes = {} atts = line.get("atts") if atts and isinstance(atts, str): attributes = dict( [a.split(":") for a in line.get("atts").split(";")] ) tm = TranscriptModel( gene=line["gene"], tr_id=line["trID"], tr_name=line["trOrigId"], chrom=line["chr"], strand=line["strand"], tx=(line["tsBeg"], line["txEnd"]), cds=(line["cdsStart"], line["cdsEnd"]), exons=exons, attributes=attributes, ) gm.transcript_models[tm.tr_id] = tm gm._update_indexes() if nrows is not None: return True return gm def load_ref_flat_gene_models_format( filename, gene_mapping_file=None, nrows=None ): expected_columns = [ "#geneName", "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds", ] df = parse_raw(filename, expected_columns, nrows=nrows) if df is None: return None gm = GeneModels(location=filename) records = df.to_dict(orient="records") transcript_ids_counter = defaultdict(int) for rec in records: gene = rec["#geneName"] tr_name = rec["name"] chrom = rec["chrom"] strand = rec["strand"] tx = (int(rec["txStart"]) + 1, int(rec["txEnd"])) cds = (int(rec["cdsStart"]) + 1, int(rec["cdsEnd"])) exon_starts = list(map(int, rec["exonStarts"].strip(",").split(","))) exon_ends = list(map(int, rec["exonEnds"].strip(",").split(","))) assert len(exon_starts) == len(exon_ends) exons = [ Exon(start + 1, end) for start, end in zip(exon_starts, exon_ends) ] transcript_ids_counter[tr_name] += 1 tr_id = f"{tr_name}_{transcript_ids_counter[tr_name]}" tm = TranscriptModel( gene=gene, tr_id=tr_id, tr_name=tr_name, chrom=chrom, strand=strand, tx=tx, cds=cds, exons=exons, ) tm.update_frames() gm._add_transcript_model(tm) return gm def load_ref_seq_gene_models_format( filename, gene_mapping_file=None, nrows=None ): expected_columns = [ "#bin", "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds", "score", "name2", "cdsStartStat", "cdsEndStat", "exonFrames", ] df = parse_raw(filename, expected_columns, nrows=nrows) if df is None: return None gm = GeneModels(location=filename) records = df.to_dict(orient="records") transcript_ids_counter = defaultdict(int) for rec in records: gene = rec["name2"] tr_name = rec["name"] chrom = rec["chrom"] strand = rec["strand"] tx = (int(rec["txStart"]) + 1, int(rec["txEnd"])) cds = (int(rec["cdsStart"]) + 1, int(rec["cdsEnd"])) exon_starts = list(map(int, rec["exonStarts"].strip(",").split(","))) exon_ends = list(map(int, rec["exonEnds"].strip(",").split(","))) assert len(exon_starts) == len(exon_ends) exons = [ Exon(start + 1, end) for start, end in zip(exon_starts, exon_ends) ] transcript_ids_counter[tr_name] += 1 tr_id = f"{tr_name}_{transcript_ids_counter[tr_name]}" attributes = { k: rec[k] for k in [ "#bin", "score", "exonCount", "cdsStartStat", "cdsEndStat", "exonFrames", ] } tm = TranscriptModel( gene=gene, tr_id=tr_id, tr_name=tr_name, chrom=chrom, strand=strand, tx=tx, cds=cds, exons=exons, attributes=attributes, ) tm.update_frames() gm._add_transcript_model(tm) return gm def probe_header(filename, expected_columns, comment=None): df = pd.read_csv(filename, sep="\t", nrows=1, header=None, comment=comment) return list(df.iloc[0, :]) == expected_columns def probe_columns(filename, expected_columns, comment=None): df = pd.read_csv(filename, sep="\t", nrows=1, header=None, comment=comment) return list(df.columns) == list(range(0, len(expected_columns))) def parse_raw(filename, expected_columns, nrows=None, comment=None): if probe_header(filename, expected_columns, comment=comment): df = pd.read_csv(filename, sep="\t", nrows=nrows, comment=comment) assert list(df.columns) == expected_columns return df elif probe_columns(filename, expected_columns, comment=comment): df = pd.read_csv( filename, sep="\t", nrows=nrows, header=None, names=expected_columns, comment=comment, ) assert list(df.columns) == expected_columns return df def load_ccds_gene_models_format(filename, gene_mapping_file=None, nrows=None): expected_columns = [ # CCDS is identical with RefSeq "#bin", "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds", "score", "name2", "cdsStartStat", "cdsEndStat", "exonFrames", ] df = parse_raw(filename, expected_columns, nrows=nrows) if df is None: return None gm = GeneModels(location=filename) records = df.to_dict(orient="records") transcript_ids_counter = defaultdict(int) gm._alternative_names = {} if gene_mapping_file is not None: gm._alternative_names = gene_mapping(gene_mapping_file) for rec in records: gene = rec["name"] gene = gm._alternative_names.get(gene, gene) tr_name = rec["name"] chrom = rec["chrom"] strand = rec["strand"] tx = (int(rec["txStart"]) + 1, int(rec["txEnd"])) cds = (int(rec["cdsStart"]) + 1, int(rec["cdsEnd"])) exon_starts = list(map(int, rec["exonStarts"].strip(",").split(","))) exon_ends = list(map(int, rec["exonEnds"].strip(",").split(","))) assert len(exon_starts) == len(exon_ends) exons = [ Exon(start + 1, end) for start, end in zip(exon_starts, exon_ends) ] transcript_ids_counter[tr_name] += 1 tr_id = f"{tr_name}_{transcript_ids_counter[tr_name]}" attributes = { k: rec[k] for k in [ "#bin", "score", "exonCount", "cdsStartStat", "cdsEndStat", "exonFrames", ] } tm = TranscriptModel( gene=gene, tr_id=tr_id, tr_name=tr_name, chrom=chrom, strand=strand, tx=tx, cds=cds, exons=exons, attributes=attributes, ) tm.update_frames() gm._add_transcript_model(tm) return gm def load_known_gene_models_format( filename, gene_mapping_file=None, nrows=None): expected_columns = [ "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds", "proteinID", "alignID", ] df = parse_raw(filename, expected_columns, nrows=nrows) if df is None: return None gm = GeneModels(location=filename) records = df.to_dict(orient="records") transcript_ids_counter = defaultdict(int) gm._alternative_names = {} if gene_mapping_file is not None: gm._alternative_names = gene_mapping(gene_mapping_file) for rec in records: gene = rec["name"] gene = gm._alternative_names.get(gene, gene) tr_name = rec["name"] chrom = rec["chrom"] strand = rec["strand"] tx = (int(rec["txStart"]) + 1, int(rec["txEnd"])) cds = (int(rec["cdsStart"]) + 1, int(rec["cdsEnd"])) exon_starts = list(map(int, rec["exonStarts"].strip(",").split(","))) exon_ends = list(map(int, rec["exonEnds"].strip(",").split(","))) assert len(exon_starts) == len(exon_ends) exons = [ Exon(start + 1, end) for start, end in zip(exon_starts, exon_ends) ] transcript_ids_counter[tr_name] += 1 tr_id = f"{tr_name}_{transcript_ids_counter[tr_name]}" attributes = {k: rec[k] for k in ["proteinID", "alignID"]} tm = TranscriptModel( gene=gene, tr_id=tr_id, tr_name=tr_name, chrom=chrom, strand=strand, tx=tx, cds=cds, exons=exons, attributes=attributes, ) tm.update_frames() gm._add_transcript_model(tm) return gm def load_ucscgenepred_models_format( filename, gene_mapping_file=None, nrows=None): """ table genePred "A gene prediction." ( string name; "Name of gene" string chrom; "Chromosome name" char[1] strand; "+ or - for strand" uint txStart; "Transcription start position" uint txEnd; "Transcription end position" uint cdsStart; "Coding region start" uint cdsEnd; "Coding region end" uint exonCount; "Number of exons" uint[exonCount] exonStarts; "Exon start positions" uint[exonCount] exonEnds; "Exon end positions" ) table genePredExt "A gene prediction with some additional info." ( string name; "Name of gene (usually transcript_id from GTF)" string chrom; "Chromosome name" char[1] strand; "+ or - for strand" uint txStart; "Transcription start position" uint txEnd; "Transcription end position" uint cdsStart; "Coding region start" uint cdsEnd; "Coding region end" uint exonCount; "Number of exons" uint[exonCount] exonStarts; "Exon start positions" uint[exonCount] exonEnds; "Exon end positions" int score; "Score" string name2; "Alternate name (e.g. gene_id from GTF)" string cdsStartStat; "Status of CDS start annotation (none, unknown, incomplete, or complete)" string cdsEndStat; "Status of CDS end annotation (none, unknown, incomplete, or complete)" lstring exonFrames; "Exon frame offsets {0,1,2}" ) """ expected_columns = [ "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds", "score", "name2", "cdsStartStat", "cdsEndStat", "exonFrames", ] df = parse_raw(filename, expected_columns[:10], nrows=nrows) if df is None: df = parse_raw(filename, expected_columns, nrows=nrows) if df is None: return None gm = GeneModels(location=filename) records = df.to_dict(orient="records") transcript_ids_counter = defaultdict(int) gm._alternative_names = {} if gene_mapping_file is not None: gm._alternative_names = gene_mapping(gene_mapping_file) for rec in records: gene = rec.get("name2") if not gene: gene = rec["name"] gene = gm._alternative_names.get(gene, gene) tr_name = rec["name"] chrom = rec["chrom"] strand = rec["strand"] tx = (int(rec["txStart"]) + 1, int(rec["txEnd"])) cds = (int(rec["cdsStart"]) + 1, int(rec["cdsEnd"])) exon_starts = list(map(int, rec["exonStarts"].strip(",").split(","))) exon_ends = list(map(int, rec["exonEnds"].strip(",").split(","))) assert len(exon_starts) == len(exon_ends) exons = [ Exon(start + 1, end) for start, end in zip(exon_starts, exon_ends) ] transcript_ids_counter[tr_name] += 1 tr_id = f"{tr_name}_{transcript_ids_counter[tr_name]}" attributes = {} for attr in expected_columns[10:]: if attr in rec: attributes[attr] = rec.get(attr) tm = TranscriptModel( gene=gene, tr_id=tr_id, tr_name=tr_name, chrom=chrom, strand=strand, tx=tx, cds=cds, exons=exons, attributes=attributes, ) tm.update_frames() gm._add_transcript_model(tm) return gm def load_gtf_gene_models_format(filename, gene_mapping_file=None, nrows=None): expected_columns = [ "seqname", "source", "feature", "start", "end", "score", "strand", "phase", "attributes", # "comments", ] df = parse_raw(filename, expected_columns, nrows=nrows, comment="#",) if df is None: expected_columns.append("comment") df = parse_raw(filename, expected_columns, nrows=nrows, comment="#") if df is None: return None def parse_gtf_attributes(attributes): attributes = list( filter(lambda x: x, [a.strip() for a in attributes.split(";")]) ) result = {} for attr in attributes: key, value = attr.split(" ") result[key.strip()] = value.strip('"').strip() return result gm = GeneModels(location=filename) records = df.to_dict(orient="records") for rec in records: feature = rec["feature"] if feature == "gene": continue attributes = parse_gtf_attributes(rec["attributes"]) tr_id = attributes["transcript_id"] if feature in set(["transcript", "Selenocysteine"]): if feature == "Selenocysteine" and tr_id in gm.transcript_models: continue if tr_id in gm.transcript_models: raise ValueError( f"{tr_id} of {feature} already in transcript models" ) tm = TranscriptModel( gene=attributes["gene_name"], tr_id=tr_id, tr_name=tr_id, chrom=rec["seqname"], strand=rec["strand"], tx=(rec["start"], rec["end"]), cds=(rec["end"], rec["start"]), attributes=attributes, ) gm._add_transcript_model(tm) continue if feature in {"CDS", "exon"}: if tr_id not in gm.transcript_models: raise ValueError( f"exon or CDS transcript {tr_id} not found " f"in transctipt models" ) exon_number = int(attributes["exon_number"]) tm = gm.transcript_models[tr_id] if len(tm.exons) < exon_number: tm.exons.append(Exon()) assert len(tm.exons) >= exon_number exon = tm.exons[exon_number - 1] if feature == "exon": exon.start = rec["start"] exon.stop = rec["end"] exon.frame = -1 exon.number = exon_number continue if feature == "CDS": exon.cds_start = rec["start"] exon.cds_stop = rec["end"] exon.frame = rec["phase"] tm._is_coding = True continue if feature in {"UTR", "5UTR", "3UTR", "start_codon", "stop_codon"}: exon_number = int(attributes["exon_number"]) tm = gm.transcript_models[tr_id] if feature in {"UTR", "5UTR", "3UTR"}: tm.utrs.append((rec["start"], rec["end"], exon_number)) continue if feature == "start_codon": tm.start_codon = (rec["start"], rec["end"], exon_number) if feature == "stop_codon": tm.stop_codon = (rec["start"], rec["end"], exon_number) cds = tm.cds tm.cds = (min(cds[0], rec["start"]), max(cds[1], rec["end"])) continue raise ValueError(f"unknown feature {feature} found in {filename}") for tm in gm.transcript_models.values(): tm.exons = sorted(tm.exons, key=lambda x: x.start) tm.utrs = sorted(tm.utrs, key=lambda x: x[0]) tm.update_frames() return gm def gene_mapping(filename): """ alternative names for genes assume that its first line has two column names """ df =
pd.read_csv(filename, sep="\t")
pandas.read_csv
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Quantify the variability of behavioral metrics within and between labs of mouse behavior. This script doesn't perform any analysis but plots summary statistics over labs. <NAME> 16 Jan 2020 """ import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy import stats from os.path import join import seaborn as sns from paper_behavior_functions import (query_sessions_around_criterion, seaborn_style, institution_map, group_colors, figpath) from dj_tools import dj2pandas, fit_psychfunc from ibl_pipeline import behavior, subject, reference import scikit_posthocs as sp # Settings fig_path = figpath() # Query sessions sessions = query_sessions_around_criterion(criterion='trained', days_from_criterion=[2, 0])[0] sessions = sessions * subject.Subject * subject.SubjectLab * reference.Lab # Create dataframe with behavioral metrics of all mice learned = pd.DataFrame(columns=['mouse', 'lab', 'perf_easy', 'n_trials', 'threshold', 'bias', 'reaction_time', 'lapse_low', 'lapse_high']) for i, nickname in enumerate(np.unique(sessions.fetch('subject_nickname'))): if np.mod(i+1, 10) == 0: print('Loading data of subject %d of %d' % (i+1, len( np.unique(sessions.fetch('subject_nickname'))))) # Get the trials of the sessions around criterion trials = (sessions * behavior.TrialSet.Trial & 'subject_nickname = "%s"' % nickname).fetch(format='frame') trials = trials.reset_index() # Add n-trials per day ntrials_perday = trials.groupby('session_uuid').count()['trial_id'].mean() # Fit a psychometric function to these trials and get fit results fit_df = dj2pandas(trials) fit_result = fit_psychfunc(fit_df) # Get RT, performance and number of trials reaction_time = trials['rt'].median()*1000 perf_easy = trials['correct_easy'].mean()*100 ntrials_perday = trials.groupby('session_uuid').count()['trial_id'].mean() # Add results to dataframe learned.loc[i, 'mouse'] = nickname learned.loc[i, 'lab'] = (sessions & 'subject_nickname = "%s"' % nickname).fetch( 'institution_short')[0] learned.loc[i, 'perf_easy'] = perf_easy learned.loc[i, 'n_trials'] = ntrials_perday learned.loc[i, 'reaction_time'] = reaction_time learned.loc[i, 'threshold'] = fit_result.loc[0, 'threshold'] learned.loc[i, 'bias'] = fit_result.loc[0, 'bias'] learned.loc[i, 'lapse_low'] = fit_result.loc[0, 'lapselow'] learned.loc[i, 'lapse_high'] = fit_result.loc[0, 'lapsehigh'] # Drop mice with faulty RT learned = learned[learned['reaction_time'].notnull()] # Change lab name into lab number learned['lab_number'] = learned.lab.map(institution_map()[0]) learned = learned.sort_values('lab_number') # Convert to float learned[['perf_easy', 'reaction_time', 'threshold', 'n_trials', 'bias', 'lapse_low', 'lapse_high']] = learned[['perf_easy', 'reaction_time', 'threshold', 'n_trials', 'bias', 'lapse_low', 'lapse_high']].astype(float) # Add all mice to dataframe seperately for plotting learned_2 = learned.copy() learned_2['lab'] = 'All' learned_2['lab_number'] = 'All' learned_2 = learned.append(learned_2) # Stats stats_tests = pd.DataFrame(columns=['variable', 'test_type', 'p_value']) posthoc_tests = {} test_df = learned_2.loc[learned_2['lab_number'].isin(['Lab 1', 'Lab 2', 'Lab 3', 'Lab 4', 'Lab 5', 'Lab 6', 'Lab 7'])] for i, var in enumerate(['perf_easy', 'reaction_time', 'n_trials', 'threshold', 'bias']): _, normal = stats.normaltest(test_df[var]) if normal < 0.05: test_type = 'kruskal' test = stats.kruskal(*[group[var].values for name, group in test_df.groupby('lab_number')]) if test[1] < 0.05: # Proceed to posthocs posthoc = sp.posthoc_dunn(test_df, val_col=var, group_col='lab_number') else: posthoc = np.nan else: test_type = 'anova' test = stats.f_oneway(*[group[var].values for name, group in test_df.groupby('lab_number')]) if test[1] < 0.05: posthoc = sp.posthoc_tukey(test_df, val_col=var, group_col='lab_number') else: posthoc = np.nan posthoc_tests['posthoc_'+str(var)] = posthoc stats_tests.loc[i, 'variable'] = var stats_tests.loc[i, 'test_type'] = test_type stats_tests.loc[i, 'p_value'] = test[1] # Z-score data learned_zs =
pd.DataFrame()
pandas.DataFrame
import itertools from typing import List, Optional, Union import numpy as np import pandas._libs.algos as libalgos import pandas._libs.reshape as libreshape from pandas._libs.sparse import IntIndex from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.common import ( ensure_platform_int, is_bool_dtype, is_extension_array_dtype, is_integer, is_integer_dtype, is_list_like, is_object_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import notna import pandas.core.algorithms as algos from pandas.core.arrays import SparseArray from pandas.core.arrays.categorical import factorize_from_iterable from pandas.core.construction import extract_array from pandas.core.frame import DataFrame from pandas.core.indexes.api import Index, MultiIndex from pandas.core.series import Series from pandas.core.sorting import ( compress_group_index, decons_obs_group_ids, get_compressed_ids, get_group_index, ) class _Unstacker: """ Helper class to unstack data / pivot with multi-level index Parameters ---------- index : object Pandas ``Index`` level : int or str, default last level Level to "unstack". Accepts a name for the level. fill_value : scalar, optional Default value to fill in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN. constructor : object Pandas ``DataFrame`` or subclass used to create unstacked response. If None, DataFrame will be used. Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1, 5, dtype=np.int64), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 Returns ------- unstacked : DataFrame """ def __init__( self, index, level=-1, constructor=None, ): if constructor is None: constructor = DataFrame self.constructor = constructor self.index = index.remove_unused_levels() self.level = self.index._get_level_number(level) # when index includes `nan`, need to lift levels/strides by 1 self.lift = 1 if -1 in self.index.codes[self.level] else 0 # Note: the "pop" below alters these in-place. self.new_index_levels = list(self.index.levels) self.new_index_names = list(self.index.names) self.removed_name = self.new_index_names.pop(self.level) self.removed_level = self.new_index_levels.pop(self.level) self.removed_level_full = index.levels[self.level] # Bug fix GH 20601 # If the data frame is too big, the number of unique index combination # will cause int32 overflow on windows environments. # We want to check and raise an error before this happens num_rows = np.max([index_level.size for index_level in self.new_index_levels]) num_columns = self.removed_level.size # GH20601: This forces an overflow if the number of cells is too high. num_cells = np.multiply(num_rows, num_columns, dtype=np.int32) if num_rows > 0 and num_columns > 0 and num_cells <= 0: raise ValueError("Unstacked DataFrame is too big, causing int32 overflow") self._make_selectors() @cache_readonly def _indexer_and_to_sort(self): v = self.level codes = list(self.index.codes) levs = list(self.index.levels) to_sort = codes[:v] + codes[v + 1 :] + [codes[v]] sizes = [len(x) for x in levs[:v] + levs[v + 1 :] + [levs[v]]] comp_index, obs_ids = get_compressed_ids(to_sort, sizes) ngroups = len(obs_ids) indexer = libalgos.groupsort_indexer(comp_index, ngroups)[0] indexer = ensure_platform_int(indexer) return indexer, to_sort @cache_readonly def sorted_labels(self): indexer, to_sort = self._indexer_and_to_sort return [l.take(indexer) for l in to_sort] def _make_sorted_values(self, values): indexer, _ = self._indexer_and_to_sort sorted_values = algos.take_nd(values, indexer, axis=0) return sorted_values def _make_selectors(self): new_levels = self.new_index_levels # make the mask remaining_labels = self.sorted_labels[:-1] level_sizes = [len(x) for x in new_levels] comp_index, obs_ids = get_compressed_ids(remaining_labels, level_sizes) ngroups = len(obs_ids) comp_index = ensure_platform_int(comp_index) stride = self.index.levshape[self.level] + self.lift self.full_shape = ngroups, stride selector = self.sorted_labels[-1] + stride * comp_index + self.lift mask = np.zeros(np.prod(self.full_shape), dtype=bool) mask.put(selector, True) if mask.sum() < len(self.index): raise ValueError("Index contains duplicate entries, cannot reshape") self.group_index = comp_index self.mask = mask self.unique_groups = obs_ids self.compressor = comp_index.searchsorted(np.arange(ngroups)) def get_result(self, values, value_columns, fill_value): if values.ndim == 1: values = values[:, np.newaxis] if value_columns is None and values.shape[1] != 1: # pragma: no cover raise ValueError("must pass column labels for multi-column data") values, _ = self.get_new_values(values, fill_value) columns = self.get_new_columns(value_columns) index = self.new_index return self.constructor(values, index=index, columns=columns) def get_new_values(self, values, fill_value=None): if values.ndim == 1: values = values[:, np.newaxis] sorted_values = self._make_sorted_values(values) # place the values length, width = self.full_shape stride = values.shape[1] result_width = width * stride result_shape = (length, result_width) mask = self.mask mask_all = mask.all() # we can simply reshape if we don't have a mask if mask_all and len(values): new_values = ( sorted_values.reshape(length, width, stride) .swapaxes(1, 2) .reshape(result_shape) ) new_mask = np.ones(result_shape, dtype=bool) return new_values, new_mask # if our mask is all True, then we can use our existing dtype if mask_all: dtype = values.dtype new_values = np.empty(result_shape, dtype=dtype) else: dtype, fill_value = maybe_promote(values.dtype, fill_value) new_values = np.empty(result_shape, dtype=dtype) new_values.fill(fill_value) new_mask = np.zeros(result_shape, dtype=bool) name = np.dtype(dtype).name # we need to convert to a basic dtype # and possibly coerce an input to our output dtype # e.g. ints -> floats if needs_i8_conversion(values): sorted_values = sorted_values.view("i8") new_values = new_values.view("i8") elif is_bool_dtype(values): sorted_values = sorted_values.astype("object") new_values = new_values.astype("object") else: sorted_values = sorted_values.astype(name, copy=False) # fill in our values & mask libreshape.unstack( sorted_values, mask.view("u1"), stride, length, width, new_values, new_mask.view("u1"), ) # reconstruct dtype if needed if needs_i8_conversion(values): new_values = new_values.view(values.dtype) return new_values, new_mask def get_new_columns(self, value_columns): if value_columns is None: if self.lift == 0: return self.removed_level._shallow_copy(name=self.removed_name) lev = self.removed_level.insert(0, item=self.removed_level._na_value) return lev.rename(self.removed_name) stride = len(self.removed_level) + self.lift width = len(value_columns) propagator = np.repeat(np.arange(width), stride) if isinstance(value_columns, MultiIndex): new_levels = value_columns.levels + (self.removed_level_full,) new_names = value_columns.names + (self.removed_name,) new_codes = [lab.take(propagator) for lab in value_columns.codes] else: new_levels = [value_columns, self.removed_level_full] new_names = [value_columns.name, self.removed_name] new_codes = [propagator] # The two indices differ only if the unstacked level had unused items: if len(self.removed_level_full) != len(self.removed_level): # In this case, we remap the new codes to the original level: repeater = self.removed_level_full.get_indexer(self.removed_level) if self.lift: repeater = np.insert(repeater, 0, -1) else: # Otherwise, we just use each level item exactly once: repeater = np.arange(stride) - self.lift # The entire level is then just a repetition of the single chunk: new_codes.append(np.tile(repeater, width)) return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) @cache_readonly def new_index(self): # Does not depend on values or value_columns result_codes = [lab.take(self.compressor) for lab in self.sorted_labels[:-1]] # construct the new index if len(self.new_index_levels) == 1: level, level_codes = self.new_index_levels[0], result_codes[0] if (level_codes == -1).any(): level = level.insert(len(level), level._na_value) return level.take(level_codes).rename(self.new_index_names[0]) return MultiIndex( levels=self.new_index_levels, codes=result_codes, names=self.new_index_names, verify_integrity=False, ) def _unstack_multiple(data, clocs, fill_value=None): if len(clocs) == 0: return data # NOTE: This doesn't deal with hierarchical columns yet index = data.index # GH 19966 Make sure if MultiIndexed index has tuple name, they will be # recognised as a whole if clocs in index.names: clocs = [clocs] clocs = [index._get_level_number(i) for i in clocs] rlocs = [i for i in range(index.nlevels) if i not in clocs] clevels = [index.levels[i] for i in clocs] ccodes = [index.codes[i] for i in clocs] cnames = [index.names[i] for i in clocs] rlevels = [index.levels[i] for i in rlocs] rcodes = [index.codes[i] for i in rlocs] rnames = [index.names[i] for i in rlocs] shape = [len(x) for x in clevels] group_index = get_group_index(ccodes, shape, sort=False, xnull=False) comp_ids, obs_ids = compress_group_index(group_index, sort=False) recons_codes = decons_obs_group_ids(comp_ids, obs_ids, shape, ccodes, xnull=False) if not rlocs: # Everything is in clocs, so the dummy df has a regular index dummy_index = Index(obs_ids, name="__placeholder__") else: dummy_index = MultiIndex( levels=rlevels + [obs_ids], codes=rcodes + [comp_ids], names=rnames + ["__placeholder__"], verify_integrity=False, ) if isinstance(data, Series): dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack("__placeholder__", fill_value=fill_value) new_levels = clevels new_names = cnames new_codes = recons_codes else: if isinstance(data.columns, MultiIndex): result = data for i in range(len(clocs)): val = clocs[i] result = result.unstack(val, fill_value=fill_value) clocs = [v if v < val else v - 1 for v in clocs] return result dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack("__placeholder__", fill_value=fill_value) if isinstance(unstacked, Series): unstcols = unstacked.index else: unstcols = unstacked.columns assert isinstance(unstcols, MultiIndex) # for mypy new_levels = [unstcols.levels[0]] + clevels new_names = [data.columns.name] + cnames new_codes = [unstcols.codes[0]] for rec in recons_codes: new_codes.append(rec.take(unstcols.codes[-1])) new_columns = MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) if isinstance(unstacked, Series): unstacked.index = new_columns else: unstacked.columns = new_columns return unstacked def unstack(obj, level, fill_value=None): if isinstance(level, (tuple, list)): if len(level) != 1: # _unstack_multiple only handles MultiIndexes, # and isn't needed for a single level return _unstack_multiple(obj, level, fill_value=fill_value) else: level = level[0] # Prioritize integer interpretation (GH #21677): if not is_integer(level) and not level == "__placeholder__": level = obj.index._get_level_number(level) if isinstance(obj, DataFrame): if isinstance(obj.index, MultiIndex): return _unstack_frame(obj, level, fill_value=fill_value) else: return obj.T.stack(dropna=False) else: if is_extension_array_dtype(obj.dtype): return _unstack_extension_series(obj, level, fill_value) unstacker = _Unstacker( obj.index, level=level, constructor=obj._constructor_expanddim, ) return unstacker.get_result( obj.values, value_columns=None, fill_value=fill_value ) def _unstack_frame(obj, level, fill_value=None): if obj._is_mixed_type: unstacker = _Unstacker(obj.index, level=level) blocks = obj._mgr.unstack(unstacker, fill_value=fill_value) return obj._constructor(blocks) else: return _Unstacker( obj.index, level=level, constructor=obj._constructor, ).get_result(obj.values, value_columns=obj.columns, fill_value=fill_value) def _unstack_extension_series(series, level, fill_value): """ Unstack an ExtensionArray-backed Series. The ExtensionDtype is preserved. Parameters ---------- series : Series A Series with an ExtensionArray for values level : Any The level name or number. fill_value : Any The user-level (not physical storage) fill value to use for missing values introduced by the reshape. Passed to ``series.values.take``. Returns ------- DataFrame Each column of the DataFrame will have the same dtype as the input Series. """ # Implementation note: the basic idea is to # 1. Do a regular unstack on a dummy array of integers # 2. Followup with a columnwise take. # We use the dummy take to discover newly-created missing values # introduced by the reshape. from pandas.core.reshape.concat import concat dummy_arr = np.arange(len(series)) # fill_value=-1, since we will do a series.values.take later result = _Unstacker(series.index, level=level).get_result( dummy_arr, value_columns=None, fill_value=-1 ) out = [] values = extract_array(series, extract_numpy=False) for col, indices in result.items(): out.append( Series( values.take(indices.values, allow_fill=True, fill_value=fill_value), name=col, index=result.index, ) ) return concat(out, axis="columns", copy=False, keys=result.columns) def stack(frame, level=-1, dropna=True): """ Convert DataFrame to Series with multi-level Index. Columns become the second level of the resulting hierarchical index Returns ------- stacked : Series """ def factorize(index): if index.is_unique: return index, np.arange(len(index)) codes, categories = factorize_from_iterable(index) return categories, codes N, K = frame.shape # Will also convert negative level numbers and check if out of bounds. level_num = frame.columns._get_level_number(level) if isinstance(frame.columns, MultiIndex): return _stack_multi_columns(frame, level_num=level_num, dropna=dropna) elif isinstance(frame.index, MultiIndex): new_levels = list(frame.index.levels) new_codes = [lab.repeat(K) for lab in frame.index.codes] clev, clab = factorize(frame.columns) new_levels.append(clev) new_codes.append(np.tile(clab, N).ravel()) new_names = list(frame.index.names) new_names.append(frame.columns.name) new_index = MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) else: levels, (ilab, clab) = zip(*map(factorize, (frame.index, frame.columns))) codes = ilab.repeat(K), np.tile(clab, N).ravel() new_index = MultiIndex( levels=levels, codes=codes, names=[frame.index.name, frame.columns.name], verify_integrity=False, ) if frame._is_homogeneous_type: # For homogeneous EAs, frame._values will coerce to object. So # we concatenate instead. dtypes = list(frame.dtypes._values) dtype = dtypes[0] if is_extension_array_dtype(dtype): arr = dtype.construct_array_type() new_values = arr._concat_same_type( [col._values for _, col in frame.items()] ) new_values = _reorder_for_extension_array_stack(new_values, N, K) else: # homogeneous, non-EA new_values = frame._values.ravel() else: # non-homogeneous new_values = frame._values.ravel() if dropna: mask = notna(new_values) new_values = new_values[mask] new_index = new_index[mask] return frame._constructor_sliced(new_values, index=new_index) def stack_multiple(frame, level, dropna=True): # If all passed levels match up to column names, no # ambiguity about what to do if all(lev in frame.columns.names for lev in level): result = frame for lev in level: result = stack(result, lev, dropna=dropna) # Otherwise, level numbers may change as each successive level is stacked elif all(isinstance(lev, int) for lev in level): # As each stack is done, the level numbers decrease, so we need # to account for that when level is a sequence of ints result = frame # _get_level_number() checks level numbers are in range and converts # negative numbers to positive level = [frame.columns._get_level_number(lev) for lev in level] # Can't iterate directly through level as we might need to change # values as we go for index in range(len(level)): lev = level[index] result = stack(result, lev, dropna=dropna) # Decrement all level numbers greater than current, as these # have now shifted down by one updated_level = [] for other in level: if other > lev: updated_level.append(other - 1) else: updated_level.append(other) level = updated_level else: raise ValueError( "level should contain all level names or all level " "numbers, not a mixture of the two." ) return result def _stack_multi_columns(frame, level_num=-1, dropna=True): def _convert_level_number(level_num, columns): """ Logic for converting the level number to something we can safely pass to swaplevel: We generally want to convert the level number into a level name, except when columns do not have names, in which case we must leave as a level number """ if level_num in columns.names: return columns.names[level_num] else: if columns.names[level_num] is None: return level_num else: return columns.names[level_num] this = frame.copy() # this makes life much simpler if level_num != frame.columns.nlevels - 1: # roll levels to put selected level at end roll_columns = this.columns for i in range(level_num, frame.columns.nlevels - 1): # Need to check if the ints conflict with level names lev1 = _convert_level_number(i, roll_columns) lev2 = _convert_level_number(i + 1, roll_columns) roll_columns = roll_columns.swaplevel(lev1, lev2) this.columns = roll_columns if not this.columns.is_lexsorted(): # Workaround the edge case where 0 is one of the column names, # which interferes with trying to sort based on the first # level level_to_sort = _convert_level_number(0, this.columns) this = this.sort_index(level=level_to_sort, axis=1) # tuple list excluding level for grouping columns if len(frame.columns.levels) > 2: tuples = list( zip( *[ lev.take(level_codes) for lev, level_codes in zip( this.columns.levels[:-1], this.columns.codes[:-1] ) ] ) ) unique_groups = [key for key, _ in itertools.groupby(tuples)] new_names = this.columns.names[:-1] new_columns = MultiIndex.from_tuples(unique_groups, names=new_names) else: new_columns = this.columns.levels[0]._shallow_copy(name=this.columns.names[0]) unique_groups = new_columns # time to ravel the values new_data = {} level_vals = this.columns.levels[-1] level_codes = sorted(set(this.columns.codes[-1])) level_vals_used = level_vals[level_codes] levsize = len(level_codes) drop_cols = [] for key in unique_groups: try: loc = this.columns.get_loc(key) except KeyError: drop_cols.append(key) continue # can make more efficient? # we almost always return a slice # but if unsorted can get a boolean # indexer if not isinstance(loc, slice): slice_len = len(loc) else: slice_len = loc.stop - loc.start if slice_len != levsize: chunk = this.loc[:, this.columns[loc]] chunk.columns = level_vals.take(chunk.columns.codes[-1]) value_slice = chunk.reindex(columns=level_vals_used).values else: if frame._is_homogeneous_type and is_extension_array_dtype( frame.dtypes.iloc[0] ): dtype = this[this.columns[loc]].dtypes.iloc[0] subset = this[this.columns[loc]] value_slice = dtype.construct_array_type()._concat_same_type( [x._values for _, x in subset.items()] ) N, K = this.shape idx = np.arange(N * K).reshape(K, N).T.ravel() value_slice = value_slice.take(idx) elif frame._is_mixed_type: value_slice = this[this.columns[loc]].values else: value_slice = this.values[:, loc] if value_slice.ndim > 1: # i.e. not extension value_slice = value_slice.ravel() new_data[key] = value_slice if len(drop_cols) > 0: new_columns = new_columns.difference(drop_cols) N = len(this) if isinstance(this.index, MultiIndex): new_levels = list(this.index.levels) new_names = list(this.index.names) new_codes = [lab.repeat(levsize) for lab in this.index.codes] else: old_codes, old_levels = factorize_from_iterable(this.index) new_levels = [old_levels] new_codes = [old_codes.repeat(levsize)] new_names = [this.index.name] # something better? new_levels.append(level_vals) new_codes.append(np.tile(level_codes, N)) new_names.append(frame.columns.names[level_num]) new_index = MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) result = frame._constructor(new_data, index=new_index, columns=new_columns) # more efficient way to go about this? can do the whole masking biz but # will only save a small amount of time... if dropna: result = result.dropna(axis=0, how="all") return result def get_dummies( data, prefix=None, prefix_sep="_", dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None, ) -> "DataFrame": """ Convert categorical variable into dummy/indicator variables. Parameters ---------- data : array-like, Series, or DataFrame Data of which to get dummy indicators. prefix : str, list of str, or dict of str, default None String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : str, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix`. dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted. sparse : bool, default False Whether the dummy-encoded columns should be backed by a :class:`SparseArray` (True) or a regular NumPy array (False). drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. dtype : dtype, default np.uint8 Data type for new columns. Only a single dtype is allowed. .. versionadded:: 0.23.0 Returns ------- DataFrame Dummy-coded data. See Also -------- Series.str.get_dummies : Convert Series to dummy codes. Examples -------- >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 >>> pd.get_dummies(pd.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 """ from pandas.core.reshape.concat import concat dtypes_to_encode = ["object", "category"] if isinstance(data, DataFrame): # determine columns being encoded if columns is None: data_to_encode = data.select_dtypes(include=dtypes_to_encode) elif not is_list_like(columns): raise TypeError("Input must be a list-like for parameter `columns`") else: data_to_encode = data[columns] # validate prefixes and separator to avoid silently dropping cols def check_len(item, name): if is_list_like(item): if not len(item) == data_to_encode.shape[1]: len_msg = ( f"Length of '{name}' ({len(item)}) did not match the " "length of the columns being encoded " f"({data_to_encode.shape[1]})." ) raise ValueError(len_msg) check_len(prefix, "prefix") check_len(prefix_sep, "prefix_sep") if isinstance(prefix, str): prefix = itertools.cycle([prefix]) if isinstance(prefix, dict): prefix = [prefix[col] for col in data_to_encode.columns] if prefix is None: prefix = data_to_encode.columns # validate separators if isinstance(prefix_sep, str): prefix_sep = itertools.cycle([prefix_sep]) elif isinstance(prefix_sep, dict): prefix_sep = [prefix_sep[col] for col in data_to_encode.columns] with_dummies: List[DataFrame] if data_to_encode.shape == data.shape: # Encoding the entire df, do not prepend any dropped columns with_dummies = [] elif columns is not None: # Encoding only cols specified in columns. Get all cols not in # columns to prepend to result. with_dummies = [data.drop(columns, axis=1)] else: # Encoding only object and category dtype columns. Get remaining # columns to prepend to result. with_dummies = [data.select_dtypes(exclude=dtypes_to_encode)] for (col, pre, sep) in zip(data_to_encode.items(), prefix, prefix_sep): # col is (column_name, column), use just column data here dummy = _get_dummies_1d( col[1], prefix=pre, prefix_sep=sep, dummy_na=dummy_na, sparse=sparse, drop_first=drop_first, dtype=dtype, ) with_dummies.append(dummy) result = concat(with_dummies, axis=1) else: result = _get_dummies_1d( data, prefix, prefix_sep, dummy_na, sparse=sparse, drop_first=drop_first, dtype=dtype, ) return result def _get_dummies_1d( data, prefix, prefix_sep="_", dummy_na=False, sparse=False, drop_first=False, dtype=None, ): from pandas.core.reshape.concat import concat # Series avoids inconsistent NaN handling codes, levels = factorize_from_iterable(Series(data)) if dtype is None: dtype = np.uint8 dtype = np.dtype(dtype) if
is_object_dtype(dtype)
pandas.core.dtypes.common.is_object_dtype
### Old import csv import pandas as pd import numpy as np import zipfile import os from datetime import datetime, timedelta import pickle import gzip import time import timeit def find_between( s, first, last ): try: start = s.index( first ) + len( first ) end = s.index( last, start ) return s[start:end] except ValueError: return "" def find_between_r( s, first, last ): try: start = s.rindex( first ) + len( first ) end = s.rindex( last, start ) return s[start:end] except ValueError: return "" def reputation_calc_p1(new_subset,first_occurance): ### This can be optimized; no need for sorted merge. new_subset = new_subset.sort_values(['To'], ascending=[True]) new_subset = new_subset.reset_index() del(new_subset['level_0']) new_array = new_subset[['From','To','Amount']].values dates_array = np.array(new_subset['Timestamp']) ### Now we will just store the first occurance of each account in a dictionary (first_occurance) ### The easiest (and in pandas probably the fastest) way would be to create sorted dataframe and then iterate ### and check if we already have certain record. If no, create, if yes, it was created before, so pass. ### When it is created we also store date of creation. sorted_merge = new_subset.sort_values(['Timestamp'], ascending=[True]) sorted_merge = sorted_merge.reset_index() ### Time to do some refinements. Let's get rid of Pandas dataframe and save it to something else. ### Let us sort the dataset alphabetically by "To". This can fasten up the algo later on... new_array = new_subset[['From','To','Amount']].values dates_array = np.array(sorted_merge['Timestamp']) to_array = np.array(new_subset['To'].values) #del(new_subset) i = 0 while i<len(sorted_merge): ### if it is alredy there, pass, otherwise create new key. if new_array[i][0] in first_occurance: first_occurance[new_array[i][0]] += 1 else: first_occurance[new_array[i][0]] = 0 ### So, we store date from "From" column, but we should do the same from "To" column. This means that we are really just ### looking for first occurance. if new_array[i][1] in first_occurance: first_occurance[new_array[i][0]] += 1 else: first_occurance[new_array[i][1]] = 0 ### Just in case, we post the progress, so we have an idea when we will finish. i+=1 del(sorted_merge) return(new_array,dates_array,to_array,first_occurance) ### Here we update add new records to our dictionary if new reputation is detected. We assume that we start with value of 0.1, ### but this could be adjusted. def update_reputation(reputation,new_array): i = 0 while i<len(new_array): if new_array[i][0] in reputation: pass else: reputation[new_array[i][0]] = 0.1 if new_array[i][1] in reputation: pass else: reputation[new_array[i][1]] = 0.1 i+=1 return(reputation) def calculate_new_reputation(new_array,to_array,reputation): ### This is needed; we calculate reputations in our timeframe in this specific function. mys = {} i = 0 while i<len(new_array): if new_array[i][1] in mys: pass else: mys[new_array[i][1]] = 0 i+=1 ### We use formula where we make sure the growth of reputation won't be too high. unique_ids = np.unique(to_array) k=0 i = 0 while i<len(unique_ids): amounts = [] while unique_ids[i]==to_array[k]: amounts.append(np.log10(1+new_array[k][2])* reputation[new_array[k][0]]) if k==len(to_array)-1: break k+=1 mys[unique_ids[i]] = sum(amounts) i+=1 ### nr 5. in paper on how to calculate the reputation. for k in mys.keys(): if mys[k]<0: mys[k] = -np.log10(1 - mys[k]) else: mys[k] = np.log10(1 + mys[k]) ### Nr 6; max_value = max(mys.values()) for k in mys.keys(): mys[k] = mys[k] /max_value return(mys) ### Below we have 3 different proposals on how to update reputations. They mainly differ in the speed of decay. Only ### one is generally used when calculating the updates. def update_reputation_approach_a(reputation,mys,since,date_zero,our_date): ### Define times. since_datezero = since - date_zero date_since = our_date - since since_datezero = since_datezero.days date_since = date_since.days date_datezero = our_date - date_zero date_datezero = date_datezero.days ### 1st approach or a); for k in reputation.keys(): if k in mys.keys(): reputation[k] = reputation[k] * since_datezero + mys[k] * date_since reputation[k] = reputation[k]/date_datezero else: reputation[k] = (reputation[k] * since_datezero)/date_datezero return(reputation) def update_reputation_approach_b(reputation,mys): ### 2nd approach or b) for k in reputation.keys(): if k in mys.keys(): reputation[k] = reputation[k] + mys[k] reputation[k] = reputation[k]/2 else: reputation[k] = reputation[k]/2 return(reputation) def update_reputation_approach_c(first_occurance,reputation,mys,since,our_date): ### 3rd approach or c) date_since = (our_date - since).days print("Here we are") j = 0 all_keys = set(mys.keys()) for k in reputation.keys(): since_datebirth = first_occurance[k] date_datebirth = since_datebirth + date_since if date_datebirth==0: date_datebirth = 1 if k in all_keys: reputation[k] = reputation[k] * since_datebirth + mys[k] * date_since reputation[k] = reputation[k]/date_datebirth else: reputation[k] = (reputation[k] * since_datebirth)/date_datebirth j+=1 return(reputation) ### Save zipped file def save_zipped_pickle(obj, filename, protocol=-1): with gzip.open(filename, 'wb') as f: pickle.dump(obj, f, protocol) ### Load zipped file. def load_zipped_pickle(filename): with gzip.open(filename, 'rb') as f: loaded_object = pickle.load(f) return loaded_object ### Main script. def run_script(): ### First we just define the dictionaries. first_occurance = dict() reputation = dict() previous_reputation = dict() ### Start of our period date_zero = datetime(2015, 7, 30, 0, 0) folder="data" start = timeit.timeit() ### Get each filename (sort them first) and read it. for filename in np.sort(os.listdir(folder)): filepath = os.path.join(folder, filename) print(filename) daily_data = [] mydate = find_between_r(filename,"ethereum_",".tsv") ### Get dates. Since means what was day before because we update ranking every day. our_date = datetime.strptime(mydate, '%Y-%m-%d') since = our_date - timedelta(days=1) with open(filepath) as f: lines = [x for x in f.readlines()] for line in lines: line = line.replace("\t",",") daily_data.append(line) i=0 while i < len(daily_data): daily_data[i] = daily_data[i].split(',') i+=1 ### All data is now in daily_data. We add columns to the file. daily_data =
pd.DataFrame(daily_data)
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright (c) 2015-2020, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 from unittest import TestCase import h5py import numpy as np import pandas as pd from exatomic import Universe from exatomic.base import resource from exatomic.molcas.output import Output, Orb, HDF # TODO : change df.shape[0] == num to len(df.index) == num everywhere class TestOutput(TestCase): """Test the Molcas output file editor.""" def setUp(self): self.cdz = Output(resource('mol-carbon-dz.out')) self.uo2sp = Output(resource('mol-uo2-anomb.out')) self.mamcart = Output(resource('mol-ch3nh2-631g.out')) self.mamsphr = Output(resource('mol-ch3nh2-anovdzp.out')) self.c2h6 = Output(resource('mol-c2h6-basis.out')) def test_add_orb(self): """Test adding orbital file functionality.""" self.mamcart.add_orb(resource('mol-ch3nh2-631g.scforb')) self.assertTrue(hasattr(self.mamcart, 'momatrix')) self.assertTrue(hasattr(self.mamcart, 'orbital')) with self.assertRaises(ValueError): self.mamcart.add_orb(resource('mol-ch3nh2-631g.scforb')) self.mamcart.add_orb(resource('mol-ch3nh2-631g.scforb'), mocoefs='same') self.assertTrue('same' in self.mamcart.momatrix.columns) self.assertTrue('same' in self.mamcart.orbital.columns) self.mamcart.add_orb(resource('mol-ch3nh2-631g.scforb'), mocoefs='diff', orbocc='diffocc') self.assertTrue('diff' in self.mamcart.momatrix.columns) self.assertTrue('diffocc' in self.mamcart.orbital.columns) uni = self.mamcart.to_universe() self.assertTrue(hasattr(uni, 'momatrix')) self.assertTrue(hasattr(uni, 'orbital')) def test_add_overlap(self): """Test adding an overlap matrix.""" self.cdz.add_overlap(resource('mol-carbon-dz.overlap')) self.assertTrue(hasattr(self.cdz, 'overlap')) uni = self.cdz.to_universe() self.assertTrue(hasattr(uni, 'overlap')) def test_parse_atom(self): """Test the atom table parser.""" self.uo2sp.parse_atom() self.assertEqual(self.uo2sp.atom.shape[0], 3) self.assertTrue(np.all(pd.notnull(
pd.DataFrame(self.uo2sp.atom)
pandas.DataFrame
""" Module: libfmp.b.b_annotation Author: <NAME>, <NAME> License: The MIT license, https://opensource.org/licenses/MIT This file is part of the FMP Notebooks (https://www.audiolabs-erlangen.de/FMP) """ import numpy as np import pandas as pd import librosa import libfmp.b def read_csv(fn, header=True, add_label=False): """Read a CSV file in table format and creates a pd.DataFrame from it, with observations in the rows and variables in the columns. Args: fn (str): Filename header (bool): Boolean (Default value = True) add_label (bool): Add column with constant value of `add_label` (Default value = False) Returns: df (pd.DataFrame): Pandas DataFrame """ df = pd.read_csv(fn, sep=';', keep_default_na=False, header=0 if header else None) if add_label: assert 'label' not in df.columns, 'Label column must not exist if `add_label` is True' df = df.assign(label=[add_label] * len(df.index)) return df def write_csv(df, fn, header=True): """Write a pd.DataFrame to a CSV file, with observations in the rows and variables in the columns. Args: df (pd.DataFrame): Pandas DataFrame fn (str): Filename header (bool): Boolean (Default value = True) """ df.to_csv(fn, sep=';', index=False, quoting=2, header=header) def cut_audio(fn_in, fn_out, start_sec, end_sec, normalize=True, write=True, Fs=22050): """Cut an audio file using specificed start and end time positions and writes the result to a new audio file. Args: fn_in (str): Filename and path for input audio file fn_out (str): Filename and path for input audio file start_sec (float): Start time position (in seconds) of cut end_sec (float): End time position (in seconds) of cut normalize (bool): If True, then normalize audio (with max norm) (Default value = True) write (bool): If True, then write audio (Default value = True) Fs (scalar): Sampling rate of audio (Default value = 22050) Returns: x_cut (np.ndarray): Cut audio """ x_cut, Fs = librosa.load(fn_in, sr=Fs, offset=start_sec, duration=end_sec-start_sec) if normalize is True: x_cut = x_cut / np.max(np.abs(x_cut)) if write is True: libfmp.b.write_audio(fn_out, x_cut, Fs) return x_cut def cut_csv_file(fn_in, fn_out, start_sec, end_sec, write=True): """Cut a annotation CSV file (where each row corresponds to the four variables ``start``, ``end``, ``pitch``, and ``label``) using specificed start and end time positions and writes the result to a new CSV file. Args: fn_in (str): Filename and path for input audio file fn_out (str): Filename and path for input audio file start_sec (float): Start time position (in seconds) of cut end_sec (float): End time position (in seconds) of cut write (bool): If True, then write csv file (Default value = True) Returns: ann_cut (list): Cut annotation file """ df =
pd.read_csv(fn_in, sep=',', keep_default_na=False, header=None)
pandas.read_csv
import datetime as dt import matplotlib.pyplot as plt import lifetimes import numpy as np import os import pandas as pd import seaborn as sns def numcard(x): return x.nunique(), len(x) def todateclean(x): return
pd.to_datetime(x, errors='coerce')
pandas.to_datetime
""" PL Modeling Program -> Python file 1/3: InteractivePLFittingGUI.py (implements the GUI) Python file 2/3: PLModeling.py (implements the PL emission models) Python file 3/3: InterferenceFunction.py (implements the interference function models) Author: <NAME> Date: March 2021 """ import matplotlib matplotlib.use('TkAgg') import numpy as np import pandas as pd from scipy.optimize import curve_fit from scipy import signal import scipy.constants as const from InterferenceFunction import IF from PLModeling import PLModel from pathlib import Path from itertools import compress from os import path import sys import configparser import json from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure import tkinter as tk from tkinter import ttk import tkinter.font as tkFont from tkinter.filedialog import askopenfilename, asksaveasfilename from PIL import Image, ImageTk # Define constant h_eV = const.value('Planck constant in eV/Hz') # Set proper path for files when executable is run path_to_file = getattr(sys, '_MEIPASS', path.abspath(path.dirname(__file__))) class Parameter: """Class that defines a model parameter.""" def __init__(self, value, bounds, s_label, s_unit, s_scale, s_prec): self.value = value self.bounds = bounds self.s_label = s_label self.s_unit = s_unit self.s_scale = s_scale self.s_prec = s_prec class Model: """Class that defines a model.""" def __init__(self, model_class, parameters, x_var, label, active_model): self.model_class = model_class self.parameters = parameters self.xunit = x_var self.label = label self.active_model = active_model class Slider(ttk.Scale): """ ttk.Scale sublass that limits the precision of values. Taken from: 'https://stackoverflow.com/questions/54186639/tkinter-control-ttk-scales- increment-as-with-tk-scale-and-a-tk-doublevar' """ def __init__(self, *args, **kwargs): self.precision = kwargs.pop('precision') # Remove non-std kwarg. self.chain = kwargs.pop('command', lambda *a: None) # Save if present. super(Slider, self).__init__(*args, command=self._value_changed, **kwargs) def _value_changed(self, newvalue): if self.precision == 0: newvalue = int(round(float(newvalue), 0)) else: newvalue = round(float(newvalue), self.precision) self.winfo_toplevel().globalsetvar(self.cget('variable'), (newvalue)) self.chain(newvalue) # Call user specified function. class NotebookTabs: """Class that manages the tabs in the PL modeling program.""" ebox_width = 5 def __init__(self, window): self.window = window self.font_title = tkFont.Font(weight='bold', size=18) self.font_subtitle = tkFont.Font(weight='bold', size=16) self.font_legend = tkFont.Font(weight='bold', size=11) self.font_label = tkFont.Font(size=11) # Config file self.opt_data = None self.config = configparser.ConfigParser() self.config.optionxform = str self.config.read(path.join(path_to_file, 'files', 'config_default.ini')) self.c_data = self.fetchConfigData() # Create tabs self.tab_control = ttk.Notebook(self.window) # Main tab self.models = self.createIFPLModels(np.array(1e-6), np.array(1)) self.objects_main = {'IF': {}, 'PL': {}} self.tree = {'frame': None, 'tree': None} self.main = self.createMainTab() self.tabs = {'main': self.main['frame'], 'data': {}} # Update IF tab when selected self.tab_control.bind("<<NotebookTabChanged>>", self.updateSummary) # Choose model self.updateModel('IF') self.updateModel('PL') # Place tabs self.tab_control.add(self.main['frame'], text='Main') self.tab_control.pack(expand=1, fill='both') def updateSummary(self, event): sel_tab = event.widget.select() tab_name = event.widget.tab(sel_tab, "text") if tab_name == 'IF analysis': self.tabs['summary']['GUI'].updateGraph() def createMainTab(self): # Create tab tab_main = ttk.Frame(self.tab_control) tab_main.rowconfigure(2, weight=1) tab_main.columnconfigure(1, weight=1) # Title frm_title = ttk.Frame(tab_main) (tk.Label(master=frm_title, text='PL Modeling Program', font=self.font_title) .grid(row=0, column=1, columnspan=4, sticky='news', pady=5)) # Logo image = Image.open(path.join(path_to_file, 'files', "logo.ico")).resize((80, 80)) photo = ImageTk.PhotoImage(image) lbl = tk.Label(master=frm_title, image=photo) lbl.image = photo lbl.grid(row=0, column=0, rowspan=3, padx=10, pady=10, sticky='w') # Open file button btn_open = tk.Button(master=frm_title, text='Open data', font=self.font_label, command=self.openFile) btn_open.grid(row=1, column=1, columnspan=1, pady=5, padx=5, sticky='w') # Unit frm_import_unit = ttk.Frame(frm_title) (tk.Label(master=frm_import_unit, text='Unit:', font=self.font_legend) .grid(row=0, column=0, sticky='w')) c_box_import = ttk.Combobox(frm_import_unit, values=['nm', 'μm', 'eV'], state='readonly', width=5) c_box_import.current(0) c_box_import.grid(row=0, column=1, sticky='w') frm_import_unit.grid(row=2, column=1, sticky='w', pady=5, padx=5) # Close all tabs btn_close_all = tk.Button(master=frm_title, text='Close tabs', font=self.font_label, command=self.closeTabs) btn_close_all.grid(row=1, column=2, sticky='w', pady=2, padx=5) # Exit program btn_exit = tk.Button(master=frm_title, text='Exit program', font=self.font_label, command=self.exitProgram) btn_exit.grid(row=2, column=2, sticky='w', pady=2, padx=5) # Extra space frm_title.columnconfigure(1, minsize=150) frm_title.columnconfigure(2, minsize=150) frm_title.columnconfigure(3, minsize=150) # Config file frm_config = ttk.Frame(frm_title) btn_config = tk.Button(master=frm_config, text='Load config file', font=self.font_label, command=self.loadConfig) btn_config.grid(row=0, column=0, pady=5) # Labels (tk.Label(master=frm_config, text='File:', font=self.font_legend) .grid(row=0, column=1, sticky='w')) file_var = tk.StringVar() file_var.set('default') (tk.Label(master=frm_config, textvariable=file_var, font=self.font_label) .grid(row=0, column=2, sticky='w')) frm_config.grid(row=1, column=3, sticky='w', padx=5, pady=5) # Open IF tab btn_IFtab = tk.Button(master=frm_title, text='Open IF analysis tab', font=self.font_label, command=self.openIFTab) btn_IFtab.grid(row=2, column=3, sticky='w', pady=2, padx=5) # Fit all frm_fit_params = ttk.Frame(tab_main) frm_lbl_fit = ttk.Frame(frm_fit_params) (tk.Label(master=frm_lbl_fit, text='Fit all data', font=self.font_subtitle) .grid(row=0, column=0, padx=5)) image = Image.open(path.join(path_to_file, 'files', "help.png")).resize((20,20)) help_image = ImageTk.PhotoImage(image) btn_info = tk.Button(master=frm_lbl_fit, image=help_image, font=self.font_label, command=self.showInfo) btn_info.image = help_image btn_info.grid(row=0, column=1, pady=5, padx=5) # Fit unit frm_fit_unit = ttk.Frame(frm_fit_params) (tk.Label(master=frm_fit_unit, text='x-axis variable:', font=self.font_legend) .grid(row=0, column=0, sticky='w')) c_box_fit = ttk.Combobox(frm_fit_unit, values=['wavelength', 'energy'], state='readonly', width=12) c_box_fit.bind('<<ComboboxSelected>>', lambda x:self.createTree()) c_box_fit.current(0) c_box_fit.grid(row=0, column=1, sticky='w') frm_fit_unit.grid(row=1, column=0, columnspan=2, sticky='ns', pady=5, padx=5) frm_lbl_fit.grid(row=0, column=0, columnspan=2, sticky='w') # Buttons btn_fitPL_all = tk.Button(master=frm_fit_params, text='Fit PL', font=self.font_label, command=self.fitPL_All) btn_fitPL_all.grid(row=2, column=0, sticky='news', pady=5, padx=5) btn_fitIFPL_all = tk.Button(master=frm_fit_params, text='Fit IF & PL', font=self.font_label, command=self.fitIF_PL_All) btn_fitIFPL_all.grid(row=2, column=1, sticky='news', pady=5, padx=5) # Comboboxes tk.Label(master=frm_fit_params, text='Fit parameters', font=self.font_legend).grid(row=3, column=0, columnspan=1, sticky='news') var_select_all = tk.BooleanVar() ttk.Checkbutton(master=frm_fit_params, variable=var_select_all, command=self.selectAllFit, text='Select all').grid(row=3, column=1) self.objects_main['var_sel_all'] = var_select_all self.objects_main['IF']['cbox'] = self.createCombobox(frm_fit_params, 'IF', initial='off') self.objects_main['PL']['cbox'] = self.createCombobox(frm_fit_params, 'PL', initial='BGF') tk.Label(master=frm_fit_params, text='IF model', font=self.font_label).grid(row=4, column=0, sticky='news') tk.Label(master=frm_fit_params, text='PL model', font=self.font_label).grid(row=4, column=1, sticky='news') self.objects_main['IF']['cbox'].grid(row=5, column=0, sticky='w', padx=5) self.objects_main['PL']['cbox'].grid(row=5, column=1, sticky='w', padx=5) # Fixed param frm_fixed_IF = ttk.Frame(frm_fit_params) frm_fixed_PL = ttk.Frame(frm_fit_params) self.createFitFixed(frm_fixed_IF, 'IF') self.createFitFixed(frm_fixed_PL, 'PL') frm_fixed_IF.grid(row=6, column=0, sticky='n') frm_fixed_PL.grid(row=6, column=1, sticky='n') # Tree with fit details self.tree['frame'] = ttk.Frame(tab_main) self.tree['frame'].columnconfigure(0, minsize=150, weight=1) self.tree['frame'].columnconfigure(1, minsize=150) self.tree['frame'].rowconfigure(1, weight=1) (tk.Label(master=self.tree['frame'], text='Fit results', font=self.font_subtitle) .grid(row=0, column=0, columnspan=2, sticky='w')) self.createTree() # Save fit results button btn_save = tk.Button(master=self.tree['frame'], text='Save fit results', font=self.font_label, command=self.saveFitsData) btn_save.grid(row=2, column=0, sticky='w', pady=5) btn_export_plots = tk.Button(master=self.tree['frame'], text='Export all plot data', font=self.font_label, command=self.exportPlotsData) btn_export_plots.grid(row=2, column=1, sticky='w', pady=5) # Place frames frm_title.grid(row=0, column=0, columnspan=2, sticky='ns') ttk.Separator(master=tab_main, orient=tk.HORIZONTAL).grid(row=1, column=0, columnspan=2, pady=10, sticky='news') frm_fit_params.grid(row=2, column=0, sticky='n') self.tree['frame'].grid(row=2, column=1, sticky='news') return {'frame': tab_main, 'btn_open': btn_open, 'file_var': file_var, 'btn_config': btn_config, 'btn_fitPL': btn_fitPL_all, 'btn_fitIF_PL': btn_fitIFPL_all, 'c_box_import': c_box_import, 'c_box_fit': c_box_fit} def showInfo(self): message = ('Model info:\n' 'IF model: Interference Function model [1].\n' 'PL model: Photoluminescence model.\n' ' BGF: band gap fluctuations [2].\n' ' EF: electrostatic fluctuations [3].\n' ' UPF: unified potential fluctuations (BGF + EF) [4].\n\n' 'References:\n[1] {}\n[2] {}\n[3] {}\n[4] {}').format('Journal of Applied Physics 118, 035307 (2015); doi: 10.1063/1.4926857', 'Journal of Applied Physics 101, 113519 (2007); doi: 10.1063/1.2721768', 'Journal of Applied Physics 116, 173504 (2014); doi: 10.1063/1.4898346', 'Check repository README.') tk.messagebox.showinfo('About', message) def exportPlotsData(self): filepath = asksaveasfilename(defaultextension='csv', filetypes=[("CSV", "*.csv"), ("All Files", "*.*")]) if not filepath: return graph_data = {} for idx, tab in enumerate(self.tabs['data']): x_var = self.main['c_box_fit'].get() if x_var == 'wavelength': self.tabs['data'][tab]['GUI'].objects['options']['r_btn_wave'].invoke() elif x_var == 'energy': self.tabs['data'][tab]['GUI'].objects['options']['r_btn_energy'].invoke() if idx == 0: graph_data = {**graph_data, **{self.tabs['data'][tab]['GUI'].axes[1].get_xlabel(): self.tabs['data'][tab]['GUI'].graphs[0].get_xdata()}} graph_data = {**graph_data, **self.tabs['data'][tab]['GUI'].getPlotData()} graph_data = pd.DataFrame(graph_data) try: graph_data.to_csv(filepath, index=False, encoding="utf-8-sig") message = 'Plot data saved to {}.'.format(filepath) tk.messagebox.showinfo('Plot data saved successfully', message) except: message = 'Not able to save data to {}. The file might be open.'.format(filepath) tk.messagebox.showerror('Save error', message) def loadConfig(self): filepath = askopenfilename() if not filepath: return filename = path.basename(filepath) config_sec = {'IF': ['nk_dir', 'thickness', 'wave_laser', 'R_rms', 'k', 'delta', 'mu', 'sigma'], 'BGF': ['E_g', 'beta', 'sigma_g', 'T'], 'EF': ['E_g', 'theta', 'gamma', 'delta_mu', 'T', 'a_0d'], 'UPF': ['E_g', 'beta', 'sigma_g', 'theta', 'gamma', 'T', 'a_0d']} # Update config file try: self.config = configparser.ConfigParser() self.config.optionxform = str self.config.read(filepath) if not all([self.config.has_option(sec, key) for sec in config_sec for key in config_sec[sec]]): raise KeyError() self.c_data = self.fetchConfigData() self.main['file_var'].set(filename) except KeyError: message = 'Error in configuration file. Please check that the required sections and values are present.' tk.messagebox.showerror('File format error', message) except ValueError: message = 'Error in configuration file. Please check that parameter values are within bounds and try again.' tk.messagebox.showerror('Value error', message) except: message = 'Error in configuration file. Please check file format and try again.' tk.messagebox.showerror('File format error', message) def fetchConfigData(self): config = {} for sec in self.config.items(): params = {} for it in self.config.items(sec[0]): if it[0] == 'nk_dir': if it[1] == 'default': pass else: nk_dir = Path(it[1]) nk_air = pd.read_csv(path.join(nk_dir, 'files', "nk_air.csv")) nk_CIGS = pd.read_csv(path.join(nk_dir, 'files', "nk_CIGS.csv")) nk_Mo = pd.read_csv(path.join(nk_dir, 'files', "nk_Mo.csv")) self.opt_data = {'air': nk_air, 'CIGS': nk_CIGS, 'Mo': nk_Mo} else: data = json.loads(it[1]) if type(data) is list: if not(data[0] <= data[1] and data[1] <= data[2]): raise ValueError params[it[0]] = json.loads(it[1]) config[sec[0]] = params return config def closeTabs(self): # close tabs for tab in range(1, self.tab_control.index('end')): self.tab_control.forget(1) # delete data try: self.tabs['data'] = {} del self.tabs['summary'] except: pass self.window.title('PL Modeling Program') self.createTree() self.main['btn_open'].config(state='normal') self.main['btn_config'].config(state='normal') def exitProgram(self): message = 'Are you sure you want to exit the program?' answer = tk.messagebox.askyesnocancel('Exit program', message) if answer is True: self.window.destroy() else: return def openIFTab(self): if 'summary' in self.tabs: self.tab_control.add(self.tabs['summary']['frame'], text='IF analysis') self.tab_control.pack(expand=1, fill='both') def saveFitsData(self): output_dict = {} for idx, col in enumerate([self.tree['tree'].heading('#0')['text']]+list(self.tree['tree']['columns'])): output_list = [] for child in self.tree['tree'].get_children(): if idx == 0: output_list.append(self.tree['tree'].item(child, option='text')) else: output_list.append(self.tree['tree'].item(child, option='values')[idx-1]) output_dict[col] = output_list output =
pd.DataFrame(output_dict)
pandas.DataFrame
#!/usr/bin python3 import pandas as pd import numpy as np import datetime as datetime def changeDate(): base_CSV =
pd.read_csv('../dataset/lpv_d.csv')
pandas.read_csv
import os import glob import datetime as dt import pandas as pd from forest import geo import bokeh.models class View(object): def __init__(self, loader): self.loader = loader self.source = bokeh.models.ColumnDataSource({ "x": [], "y": [], "date": [], "longitude": [], "latitude": [], "flash_type": [] }) def render(self, valid_date): frame = self.loader.load_date(valid_date) x, y = geo.web_mercator( frame.longitude, frame.latitude) self.source.data = { "x": x, "y": y, "date": frame.date, "longitude": frame.longitude, "latitude": frame.latitude, "flash_type": frame.flash_type, } def add_figure(self, figure): renderer = figure.circle( x="x", y="y", size=10, source=self.source) tool = bokeh.models.HoverTool( tooltips=[ ('Time', '@date{%F}'), ('Lon', '@longitude'), ('Lat', '@latitude'), ('Flash type', '@flash_type')], formatters={ 'date': 'datetime' }, renderers=[renderer]) figure.add_tools(tool) return renderer class Loader(object): def __init__(self, paths): self.paths = paths if len(self.paths) > 0: self.frame = self.read(paths) @classmethod def pattern(cls, text): return cls(list(sorted(glob.glob(os.path.expanduser(text))))) def load_date(self, date): frame = self.frame.set_index('date') start = date end = start + dt.timedelta(minutes=15) s = "{:%Y-%m-%dT%H:%M}".format(start) e = "{:%Y-%m-%dT%H:%M}".format(end) small_frame = frame[s:e].copy() return small_frame.reset_index() @staticmethod def read(csv_files): if isinstance(csv_files, str): csv_files = [csv_files] frames = [] for csv_file in csv_files: frame = pd.read_csv( csv_file, parse_dates=[1], converters={0: Loader.flash_type}, usecols=[0, 1, 2, 3], names=["flash_type", "date", "latitude", "longitude"], header=None) frames.append(frame) if len(frames) == 0: return None else: return
pd.concat(frames, ignore_index=True)
pandas.concat
import pandas as pd from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import SGDClassifier import argparse rate = "0.5" # 默认为6:4的正负样本比例,若要改为1:1则取rate=“0.5” class SGD: def __init__(self, trainfile, validfile, testfile): super(SGD, self).__init__() train: pd.DataFrame =
pd.read_csv(trainfile)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]])
tm.assert_frame_equal(result, exp)
pandas.util.testing.assert_frame_equal
import pandas as pd import os import seaborn as sns import numpy as np import matplotlib.pyplot as plt import warnings warnings.simplefilter(action='ignore', category=FutureWarning) cwd = os.getcwd() print(cwd) df =
pd.read_csv(cwd + '/' + 'HFI2021.csv')
pandas.read_csv
"""Functions for plotting system resource use.""" import logging from datetime import datetime, timedelta from pathlib import Path from typing import Optional, Union import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib import gridspec async def _read_resource_files(data_location: Path, start_time: datetime, end_time: Optional[datetime] = None, processes_to_treat_as_root: Optional[Union[tuple, list]] = None): """Function for automatically checking the data location and reading in requisite files.""" if end_time is not None: if end_time <= start_time: raise ValueError("end time may not be equal to or sooner than the start time!") all_files = np.sort(list(data_location.glob("*_server_usage.csv"))) if len(all_files) == 0: raise FileNotFoundError("no valid files to read were found!") # Convert the times in the filenames into datetime objects time_strings = [x.stem.rsplit("_")[0] for x in all_files] time_objects = np.asarray([datetime.strptime(x, "%Y-%m-%d") for x in time_strings]) # Get midnight on the start time (+ end time) and see which files are valid start_time_midnight = datetime(start_time.year, start_time.month, start_time.day) valid_files = time_objects >= start_time_midnight if end_time is not None: end_time_midnight = datetime(end_time.year, end_time.month, end_time.day) + timedelta(days=1) valid_files = np.logical_and(valid_files, time_objects <= end_time_midnight) # Read in all valid files dataframe = [] for a_file in np.asarray(all_files)[valid_files]: a_dataframe = pd.read_csv(a_file) dataframe.append(a_dataframe) dataframe = pd.concat(dataframe, ignore_index=True) dataframe['time'] = pd.to_datetime(dataframe['time']) # Restrict measurements to just being the ones absolutely within the time range valid_measurements = dataframe['time'] >= start_time if end_time is not None: valid_measurements = np.logical_and(dataframe['time'] <= end_time, valid_measurements) dataframe = dataframe.loc[valid_measurements].reset_index(drop=True) # Fold some processes as being root processes if necessary if processes_to_treat_as_root is not None: to_replace = np.isin(dataframe['username'], processes_to_treat_as_root) dataframe['username'] = np.where(to_replace, "root", dataframe['username']) # Re-combine all of the root processes that are with the same username & time dataframe = (dataframe .groupby(["username", "time"]) .agg({"cpu_percent": "sum", "memory": "sum", "threads": sum}) .reset_index()) return dataframe async def plot_resource_use(data_location: Path, output_location: Path, start_time: Union[datetime, timedelta], end_time: Optional[datetime] = None, aggregation_level: Optional[str] = None, default_tick_format_string: str = "%Y.%m.%d %H:%M", tick_format_string_overwrite: Optional[str] = None, dpi=300, processes_to_treat_as_root: Optional[Union[tuple, list]] = None, minimum_resources_to_plot: Union[tuple, list] = (0.0, 0.0), memory_aggregation_mode="mean", cpu_aggregation_mode="mean"): """Function for plotting resource usage in a certain timeframe and dumping this information to a file.""" # Process start_time if it's a timedelta if isinstance(start_time, timedelta): start_time = datetime.now() - start_time logging.debug(f" plot is within range\n start time: {start_time}\n end time: {end_time}") # Read in the data logging.debug("fetching files") dataframe = await _read_resource_files(data_location, start_time, end_time=end_time, processes_to_treat_as_root=processes_to_treat_as_root) # Firstly, contemplate dropping users if they never cross the minimum resource usage threshold if minimum_resources_to_plot[0] > 0 and minimum_resources_to_plot[1] > 0: # Aggregate all datapoints by user & maximum dataframe_by_user = dataframe.groupby("username").agg({"cpu_percent": "max", "memory": "max"}).reset_index() # Remove users whose max datapoint isn't above the minimum allowed value good_users = np.logical_or(dataframe_by_user['cpu_percent'] > minimum_resources_to_plot[0], dataframe_by_user['memory'] > minimum_resources_to_plot[1]) users_to_keep = dataframe_by_user.loc[good_users, 'username'].to_numpy() dataframe = dataframe.loc[np.isin(dataframe['username'], users_to_keep)].reset_index(drop=True) # Make a dataframe grouped by time - this is the total usage at every sampled step logging.debug("manipulating dataframe and plotting") dataframe_by_time = (dataframe .groupby("time") .agg({"cpu_percent": "sum", "memory": "sum", "threads": "sum"}) .reset_index()) # Also do some other bits of setup unique_users = np.unique(dataframe["username"]) unique_times = dataframe_by_time["time"].copy() # Add implied missing values and make a per-user dataframe for each user_dataframes = {} total_usage = {} for a_user in unique_users: # Make the user dataframe user_dataframes[a_user] = dataframe.loc[dataframe["username"] == a_user].reset_index(drop=True) # Add missing times onto the user dataframe by concatenating with a dataframe with an empty value for every # missing time time_is_missing = np.isin(unique_times, user_dataframes[a_user]["time"], invert=True) missing_times_df = pd.DataFrame( {"username": a_user, "cpu_percent": 0.0, "memory": 0.0, "threads": 0, "time": unique_times[time_is_missing]}) user_dataframes[a_user] = (
pd.concat([user_dataframes[a_user], missing_times_df], ignore_index=True)
pandas.concat
import pandas as pd import math import numpy as np def matchCheck(colNo, weightl, impactl): # print(colNo) # print(weightl) # print(impactl) if colNo != weightl or colNo != impactl or impactl != weightl: raise Exception("Number of weights, number of impacts and number of columns (from 2nd to last columns) must be same") def checkNumeric(df): columns = list(df)[1:] for col in columns: if not pd.api.types.is_integer_dtype(df[col].dtypes) and not pd.api.types.is_float_dtype(df[col].dtypes) : # print() raise Exception("From 2nd to last columns must contain numeric values only.") return True def validateWeight(weights): for wt in weights: r_wt = wt.replace(".","",1) if wt.isnumeric() == False: raise Exception("weights must be separated by ','") def validateImpact(impacts): # print(impacts) for imp in impacts: # print(imp) if imp!='-' and imp!='+': raise Exception("Impacts must be either +ve or -ve") def euclidean(series,value): return math.sqrt(sum((series-value)**2)) def topsis(df,weights,impacts): columns = list(df)[1:] df_norm =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_series_repr(self): s = pd.Series(pd.Categorical([1, 2, 3])) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10))) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_ordered(self): s = pd.Series(pd.Categorical([1, 2, 3], ordered=True)) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10), ordered=True)) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(
pd.Categorical(idx)
pandas.Categorical
"""Covid Model""" __docformat__ = "numpy" import warnings import pandas as pd import numpy as np global_cases_time_series = ( "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_" "covid_19_time_series/time_series_covid19_confirmed_global.csv" ) global_deaths_time_series = ( "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_" "covid_19_time_series/time_series_covid19_deaths_global.csv" ) def get_global_cases(country: str) -> pd.DataFrame: """Get historical cases for given country Parameters ---------- country: str Country to search for Returns ------- pd.DataFrame Dataframe of historical cases """ cases =
pd.read_csv(global_cases_time_series)
pandas.read_csv
from bs4 import BeautifulSoup import requests import pandas as pd import re def ensure_string_columns(df): newcols = [] for col in df.columns: strcol = str(col) if strcol[0]=="(": #if it's a tuple, instead of a string a = strcol b = a[a.find("("):a.find(",")] c = b[1:] d = c.replace("'","") strcol = d newcols.append(strcol) df.columns = newcols return df # Takes in a pd.df, and returns a clean version of it. ''' Clean means: //- There's no nulls where there needs to be a thing. - There's nothing where the first two attributes are equal (because in that case, they're all probably equal, and this whole row probably isn't mean to be interpreted by the human reader as a thing. - column names are simple. ''' def clean(df): print(df) df = ensure_string_columns(df) #might be inefficient (setting df.columns= multiple times via different function calls), but not a primary concern for now columns = df.columns #Remove all the citation brackets from the Wikipedia: for col in columns: df[col] = [re.sub(r'[\(\[].*?[\)\]]','', str(x)) for x in df[col]] #Remove all the ones where the label is the same throughout the row: indexes = [] for index, row in df.iterrows(): if row[columns[0]]==row[columns[1]]: indexes.append(index) for i in indexes: df.drop(i, inplace=True) return df # Returns a pd.df of the Wiki table, in its original state def get_original_df(url, tablename): response = requests.get(url) text = response.text soup = BeautifulSoup(response.text, "html.parser") table = soup.find('table', {'class':'wikitable'}) print(table) listy = pd.read_html(str(table)) print(listy) df = pd.DataFrame(listy[0]) df = df #idk the exact mechanics of why this is necessary, but it's part of the process. print(df) df = ensure_string_columns(df) df = clean(df) return df # Returns the Wiki table, but in an Artifact-friendly format. Also, the return type is a DataFrame. def wiki2artifactsOld(url, tablename="", topic=None): df = get_original_df(url, tablename) cols = df.columns print("_________") print(cols) indices = [i for i, s in enumerate(cols) if (('date' in s) or ('Date' in s))] dateindex = indices[0] # Get range of indices that don't include 0 or dateindex: indices = [] for i in range(len(cols)): indices.append(i) indices.remove(indices[dateindex]) indices.remove(indices[0]) #Make new df that's good for html a = pd.DataFrame() a['title'] = df[cols[0]] a['date'] = df[cols[dateindex]] a['description'] = "" for i in indices: a['description'] += cols[i]+": "+df[cols[i]]+' ' a['url'] = url a['atopic'] = topic #idk if i'll assign topics into SQLAlchemy this way, but it's worth coding this in it seems. return a #---------------------------------------------------------------- # This is all that's necessary: def wiki2artifacts(url, tableindex, topicid, datecolumnname): tables = pd.read_html(url) table = tables[tableindex] df =
pd.DataFrame(table)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jan 30 01:01:33 2017 @author: Flamingo """ #%% from bs4 import BeautifulSoup import urllib import pandas as pd import numpy as np CITY_NAME = pd.read_csv('CITY_NAME2.csv') PORT_NAME = CITY_NAME[['AIRPORT_CODE','PORT']].groupby('AIRPORT_CODE',as_index=False).count() for ind,value in PORT_NAME[13:14].iterrows(): print(value['AIRPORT_CODE']) #%% Port = [] Date =[] Time = [] Temp = [] Bodytemp = [] Dew = [] Humidity =[] Pressure = [] Visibility =[] Wind_dir = [] Wind_speed = [] Gust_speed =[] Event =[] Condition = [] for vYear in range(2015, 2017): if vYear == 2015: Monthrange = np.arange(5, 13) else: Monthrange = np.arange(1, 13) for vMonth in Monthrange: for vDay in range(1, 32): if vYear % 4 == 0: if vMonth == 2 and vDay > 29: break else: if vMonth == 2 and vDay > 28: break if vMonth in [4, 6, 9, 11] and vDay > 30: break #%% theDate = str(vYear) + "/" + str(vMonth) + "/" + str(vDay) theDate2 = str(vYear) + "-" + str(vMonth).zfill(2) + "-" + str(vDay).zfill(2) print(theDate2) theport = value['AIRPORT_CODE'] theurl = "http://www.wunderground.com/history/airport/"+ theport +"/" + theDate + "/DailyHistory.html?MR=1" thepage = urllib.urlopen(theurl) soup = BeautifulSoup(thepage, "html.parser") soup_detail = soup.find_all('tr') Row_Num = len(soup_detail) print(Row_Num) col_count = [] for ind in soup_detail: col_count.append( len(ind.find_all('td') ) ) col_count = np.asarray(col_count ) # print(col_count[-1]) if col_count[-1].tolist() in [12,13]: first_row = np.amin(np.where(col_count == col_count[-1])) last_row = np.amax(np.where(col_count ==col_count[-1])) Col_Num = col_count[-1] for row_ind in np.arange(first_row,last_row+1): soup_detail_line = soup_detail[row_ind].find_all('td') if Col_Num == 13: Col_indadd = 1 Bodytemp.append(soup_detail_line[2].text.split()[0]) else: Col_indadd = 0 Bodytemp.append('-') Port.append(theport) Date.append(theDate2) Time.append( soup_detail_line[0].text) Temp.append( soup_detail_line[1].text.split()[0] ) Dew.append( soup_detail_line[2 + Col_indadd].text.split()[0]) Humidity.append(soup_detail_line[3 + Col_indadd].text.split()[0]) Pressure.append(soup_detail_line[4 + Col_indadd].text.split()[0]) Visibility.append(soup_detail_line[5+ Col_indadd].text.split()[0]) Wind_dir.append(soup_detail_line[6+ Col_indadd].text) Wind_speed.append(soup_detail_line[7+ Col_indadd].text.split()[0]) Gust_speed.append(soup_detail_line[8+ Col_indadd].text.split()[0]) Event.append(soup_detail_line[10+ Col_indadd].text.strip() ) Condition.append(soup_detail_line[11+ Col_indadd].text) #%% Port =
pd.DataFrame(Port, columns=['Port'])
pandas.DataFrame
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import pandas as pd from argparse import ArgumentParser def save_new_labels(df_labels: pd.DataFrame, filename="labels_concatenated.csv"): df_labels.to_csv(filename, index_label="img_name") def main(args): first_labels_path = args.first_labels_path second_labels_path = args.second_labels_path df_first_labels =
pd.read_csv(first_labels_path, index_col="img_name")
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go from plotly.offline import plot,iplot from scipy.stats import norm, kurtosis import os from scipy.signal import butter, lfilter, freqz from scipy import signal from sklearn.model_selection import train_test_split from collections import Counter import warnings warnings.filterwarnings(action='once') plt.rcParams["figure.figsize"] = 16,12 def create_labels(): labels = pd.read_csv('../data/RawData/labels.txt', sep=" ", header=None) labels.columns = ['experiment','person','activity','start','end'] return labels def read_data(): """Read all data to a dataframe""" list_df = [] #a list to collect the dataframes for i in range(1,62): if i < 10: i = '0' + str(i) else: i = str(i) for j in os.listdir('../data/RawData/'): if "acc_exp" + i in j: acc_path = "../data/RawData/" + j elif "gyro_exp" + i in j: gyro_path = "../data/RawData/" + j acc_df = pd.read_csv(acc_path, sep = " ", names=['acc_x','acc_y','acc_z']) gyro_df = pd.read_csv(gyro_path, sep = " ", names=['gyro_x','gyro_y','gyro_z']) exp_df =
pd.concat([acc_df,gyro_df],1)
pandas.concat
""" Copyright (c) 2021, Electric Power Research Institute All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of DER-VET nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ """ DemandChargeReduction.py This Python class contains methods and attributes specific for service analysis within StorageVet. """ from storagevet.ValueStreams.ValueStream import ValueStream import numpy as np import cvxpy as cvx import pandas as pd import sys from storagevet.Finances import Financial from storagevet.ErrorHandling import * import copy import time SATURDAY = 5 class DemandChargeReduction(ValueStream): """ Retail demand charge reduction. A behind the meter service. """ def __init__(self, params): """ Generates the objective function, finds and creates constraints. Args: params (Dict): input parameters """ ValueStream.__init__(self, 'DCM', params) # self.demand_rate = params['rate'] self.tariff = params['tariff'] self.billing_period = params['billing_period'] self.growth = params['growth']/100 self.billing_period_bill = pd.DataFrame() self.monthly_bill = pd.DataFrame() def grow_drop_data(self, years, frequency, load_growth): """ Adds data by growing the given data OR drops any extra data that might have slipped in. Update variable that hold timeseries data after adding growth data. These method should be called after add_growth_data and before the optimization is run. Args: years (List): list of years for which analysis will occur on frequency (str): period frequency of the timeseries data load_growth (float): percent/ decimal value of the growth rate of loads in this simulation This function adds billing periods to the tariff that match the given year's structure, but the values have a growth rate applied to them. Then it lists them within self.billing_period. """ data_year = self.billing_period.index.year.unique() no_data_year = {pd.Period(year) for year in years} - {pd.Period(year) for year in data_year} # which years do we not have data for if len(no_data_year) > 0: for yr in no_data_year: source_year = pd.Period(max(data_year)) years = yr.year - source_year.year first_day = '1/1/' + str(yr.year) last_day = '1/1/' + str(yr.year + 1) new_index = pd.date_range(start=first_day, end=last_day, freq=frequency, closed='left') size = new_index.size # make new tariff with charges that have increase with user-defined growth rate add_tariff = self.tariff.reset_index() add_tariff.loc[:, 'Value'] = self.tariff['Value'].values*(1+self.growth)**years add_tariff.loc[:, 'Billing Period'] = self.tariff.index + self.tariff.index.max() add_tariff = add_tariff.set_index('Billing Period', drop=True) # Build Energy Price Vector based on the new year temp =
pd.DataFrame(index=new_index)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_index(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF']) result = s.str.index('EF') _check(result, klass([4, 3, 1, 0])) expected = np.array([v.index('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF') _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('EF', 3) _check(result, klass([4, 3, 7, 4])) expected = np.array([v.index('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF', 3) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('E', 4, 8) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.index('E', 4, 8) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('E', 0, 5) _check(result, klass([4, 3, 1, 4])) expected = np.array([v.rindex('E', 0, 5) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(ValueError, "substring not found"): result = s.str.index('DE') with tm.assert_raises_regex(TypeError, "expected a string " "object, not int"): result = s.str.index(0) # test with nan s = Series(['abcb', 'ab', 'bcbe', np.nan]) result = s.str.index('b') tm.assert_series_equal(result, Series([1, 1, 0, np.nan])) result = s.str.rindex('b') tm.assert_series_equal(result, Series([3, 1, 2, np.nan])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.pad(5, fillchar=5) def test_pad_width(self): # GH 13598 s = Series(['1', '22', 'a', 'bb']) for f in ['center', 'ljust', 'rjust', 'zfill', 'pad']: with tm.assert_raises_regex(TypeError, "width must be of " "integer type, not*"): getattr(s.str, f)('f') def test_translate(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['abcdefg', 'abcc', 'cdddfg', 'cdefggg']) if not compat.PY3: import string table = string.maketrans('abc', 'cde') else: table = str.maketrans('abc', 'cde') result = s.str.translate(table) expected = klass(['cdedefg', 'cdee', 'edddfg', 'edefggg']) _check(result, expected) # use of deletechars is python 2 only if not compat.PY3: result = s.str.translate(table, deletechars='fg') expected = klass(['cdede', 'cdee', 'eddd', 'ede']) _check(result, expected) result = s.str.translate(None, deletechars='fg') expected = klass(['abcde', 'abcc', 'cddd', 'cde']) _check(result, expected) else: with tm.assert_raises_regex( ValueError, "deletechars is not a valid argument"): result = s.str.translate(table, deletechars='fg') # Series with non-string values s = Series(['a', 'b', 'c', 1.2]) expected = Series(['c', 'd', 'e', np.nan]) result = s.str.translate(table) tm.assert_series_equal(result, expected) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rjust(5, fillchar='X') expected = Series(['XXXXa', 'XXXbb', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.rjust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) # If fillchar is not a charatter, normal str raises TypeError # 'aaa'.ljust(5, 'XY') # TypeError: must be char, not str with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.center(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.ljust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.rjust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.center(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.ljust(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.rjust(5, fillchar=1) def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected) def test_split(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.split('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.split('__') tm.assert_series_equal(result, exp) result = values.str.split('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.split('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.split('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.split('_', expand=False) tm.assert_series_equal(result, exp) # regex split values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.split('[,_]') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) def test_rsplit(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.rsplit('__') tm.assert_series_equal(result, exp) result = values.str.rsplit('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.rsplit('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.rsplit('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.rsplit('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.rsplit('_', expand=False) tm.assert_series_equal(result, exp) # regex split is not supported by rsplit values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.rsplit('[,_]') exp = Series([[u('a,b_c')], [u('c_d,e')], NA, [u('f,g,h')]]) tm.assert_series_equal(result, exp) # setting max number of splits, make sure it's from reverse values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_', n=1) exp = Series([['a_b', 'c'], ['c_d', 'e'], NA, ['f_g', 'h']]) tm.assert_series_equal(result, exp) def test_split_noargs(self): # #1859 s = Series(['<NAME>', '<NAME>']) result = s.str.split() expected = ['Travis', 'Oliphant'] assert result[1] == expected result = s.str.rsplit() assert result[1] == expected def test_split_maxsplit(self): # re.split 0, str.split -1 s = Series(['bd asdf jfg', 'kjasdflqw asdfnfk']) result = s.str.split(n=-1) xp = s.str.split() tm.assert_series_equal(result, xp) result = s.str.split(n=0) tm.assert_series_equal(result, xp) xp = s.str.split('asdf') result = s.str.split('asdf', n=0) tm.assert_series_equal(result, xp) result = s.str.split('asdf', n=-1) tm.assert_series_equal(result, xp) def test_split_no_pat_with_nonzero_n(self): s = Series(['split once', 'split once too!']) result = s.str.split(n=1) expected = Series({0: ['split', 'once'], 1: ['split', 'once too!']}) tm.assert_series_equal(expected, result, check_index_type=False) def test_split_to_dataframe(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.split('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_unequal_splits', 'one_of_these_things_is_not']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'one'], 1: ['unequal', 'of'], 2: ['splits', 'these'], 3: [NA, 'things'], 4: [NA, 'is'], 5: [NA, 'not']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) with tm.assert_raises_regex(ValueError, "expand must be"): s.str.split('_', expand="not_a_boolean") def test_split_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.split('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_unequal_splits', 'one_of_these_things_is_not']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'unequal', 'splits', NA, NA, NA ), ('one', 'of', 'these', 'things', 'is', 'not')]) tm.assert_index_equal(result, exp) assert result.nlevels == 6 with tm.assert_raises_regex(ValueError, "expand must be"): idx.str.split('_', expand="not_a_boolean") def test_rsplit_to_dataframe_expand(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=2) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=1) exp = DataFrame({0: ['some_equal', 'with_no'], 1: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) def test_rsplit_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.rsplit('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True, n=1) exp = MultiIndex.from_tuples([('some_equal', 'splits'), ('with_no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 2 def test_split_nan_expand(self): # gh-18450 s = Series(["foo,bar,baz", NA]) result = s.str.split(",", expand=True) exp = DataFrame([["foo", "bar", "baz"], [NA, NA, NA]]) tm.assert_frame_equal(result, exp) # check that these are actually np.nan and not None # TODO see GH 18463 # tm.assert_frame_equal does not differentiate assert all(np.isnan(x) for x in result.iloc[1]) def test_split_with_name(self): # GH 12617 # should preserve name s = Series(['a,b', 'c,d'], name='xxx') res = s.str.split(',') exp = Series([['a', 'b'], ['c', 'd']], name='xxx') tm.assert_series_equal(res, exp) res = s.str.split(',', expand=True) exp = DataFrame([['a', 'b'], ['c', 'd']]) tm.assert_frame_equal(res, exp) idx = Index(['a,b', 'c,d'], name='xxx') res = idx.str.split(',') exp = Index([['a', 'b'], ['c', 'd']], name='xxx') assert res.nlevels == 1 tm.assert_index_equal(res, exp) res = idx.str.split(',', expand=True) exp = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')]) assert res.nlevels == 2 tm.assert_index_equal(res, exp) def test_partition_series(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([('a', '_', 'b_c'), ('c', '_', 'd_e'), NA, ('f', '_', 'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('a_b', '_', 'c'), ('c_d', '_', 'e'), NA, ('f_g', '_', 'h')]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.partition('__', expand=False) exp = Series([('a', '__', 'b__c'), ('c', '__', 'd__e'), NA, ('f', '__', 'g__h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('__', expand=False) exp = Series([('a__b', '__', 'c'), ('c__d', '__', 'e'), NA, ('f__g', '__', 'h')]) tm.assert_series_equal(result, exp) # None values = Series(['a b c', 'c d e', NA, 'f g h']) result = values.str.partition(expand=False) exp = Series([('a', ' ', 'b c'), ('c', ' ', 'd e'), NA, ('f', ' ', 'g h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition(expand=False) exp = Series([('a b', ' ', 'c'), ('c d', ' ', 'e'), NA, ('f g', ' ', 'h')]) tm.assert_series_equal(result, exp) # Not splited values = Series(['abc', 'cde', NA, 'fgh']) result = values.str.partition('_', expand=False) exp = Series([('abc', '', ''), ('cde', '', ''), NA, ('fgh', '', '')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('', '', 'abc'), ('', '', 'cde'), NA, ('', '', 'fgh')]) tm.assert_series_equal(result, exp) # unicode values = Series([u'a_b_c', u'c_d_e', NA, u'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([(u'a', u'_', u'b_c'), (u'c', u'_', u'd_e'), NA, (u'f', u'_', u'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([(u'a_b', u'_', u'c'), (u'c_d', u'_', u'e'), NA, (u'f_g', u'_', u'h')]) tm.assert_series_equal(result, exp) # compare to standard lib values = Series(['A_B_C', 'B_C_D', 'E_F_G', 'EFGHEF']) result = values.str.partition('_', expand=False).tolist() assert result == [v.partition('_') for v in values] result = values.str.rpartition('_', expand=False).tolist() assert result == [v.rpartition('_') for v in values] def test_partition_index(self): values = Index(['a_b_c', 'c_d_e', 'f_g_h']) result = values.str.partition('_', expand=False) exp = Index(np.array([('a', '_', 'b_c'), ('c', '_', 'd_e'), ('f', '_', 'g_h')])) tm.assert_index_equal(result, exp) assert result.nlevels == 1 result = values.str.rpartition('_', expand=False) exp = Index(np.array([('a_b', '_', 'c'), ('c_d', '_', 'e'), ( 'f_g', '_', 'h')])) tm.assert_index_equal(result, exp) assert result.nlevels == 1 result = values.str.partition('_') exp = Index([('a', '_', 'b_c'), ('c', '_', 'd_e'), ('f', '_', 'g_h')]) tm.assert_index_equal(result, exp) assert isinstance(result, MultiIndex) assert result.nlevels == 3 result = values.str.rpartition('_') exp = Index([('a_b', '_', 'c'), ('c_d', '_', 'e'), ('f_g', '_', 'h')]) tm.assert_index_equal(result, exp) assert isinstance(result, MultiIndex) assert result.nlevels == 3 def test_partition_to_dataframe(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_') exp = DataFrame({0: ['a', 'c', np.nan, 'f'], 1: ['_', '_', np.nan, '_'], 2: ['b_c', 'd_e', np.nan, 'g_h']}) tm.assert_frame_equal(result, exp) result = values.str.rpartition('_') exp = DataFrame({0: ['a_b', 'c_d', np.nan, 'f_g'], 1: ['_', '_', np.nan, '_'], 2: ['c', 'e', np.nan, 'h']}) tm.assert_frame_equal(result, exp) values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_', expand=True) exp = DataFrame({0: ['a', 'c', np.nan, 'f'], 1: ['_', '_', np.nan, '_'], 2: ['b_c', 'd_e', np.nan, 'g_h']}) tm.assert_frame_equal(result, exp) result = values.str.rpartition('_', expand=True) exp = DataFrame({0: ['a_b', 'c_d', np.nan, 'f_g'], 1: ['_', '_', np.nan, '_'], 2: ['c', 'e', np.nan, 'h']}) tm.assert_frame_equal(result, exp) def test_partition_with_name(self): # GH 12617 s = Series(['a,b', 'c,d'], name='xxx') res = s.str.partition(',') exp = DataFrame({0: ['a', 'c'], 1: [',', ','], 2: ['b', 'd']}) tm.assert_frame_equal(res, exp) # should preserve name res = s.str.partition(',', expand=False) exp = Series([('a', ',', 'b'), ('c', ',', 'd')], name='xxx') tm.assert_series_equal(res, exp) idx = Index(['a,b', 'c,d'], name='xxx') res = idx.str.partition(',') exp = MultiIndex.from_tuples([('a', ',', 'b'), ('c', ',', 'd')]) assert res.nlevels == 3 tm.assert_index_equal(res, exp) # should preserve name res = idx.str.partition(',', expand=False) exp = Index(np.array([('a', ',', 'b'), ('c', ',', 'd')]), name='xxx') assert res.nlevels == 1 tm.assert_index_equal(res, exp) def test_pipe_failures(self): # #2119 s = Series(['A|B|C']) result = s.str.split('|') exp = Series([['A', 'B', 'C']]) tm.assert_series_equal(result, exp) result = s.str.replace('|', ' ') exp = Series(['A B C']) tm.assert_series_equal(result, exp) def test_slice(self): values = Series(['aafootwo', 'aabartwo', NA, 'aabazqux']) result = values.str.slice(2, 5) exp = Series(['foo', 'bar', NA, 'baz']) tm.assert_series_equal(result, exp) for start, stop, step in [(0, 3, -1), (None, None, -1), (3, 10, 2), (3, 0, -1)]: try: result = values.str.slice(start, stop, step) expected = Series([s[start:stop:step] if not isna(s) else NA for s in values]) tm.assert_series_equal(result, expected) except: print('failed on %s:%s:%s' % (start, stop, step)) raise # mixed mixed = Series(['aafootwo', NA, 'aabartwo', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.slice(2, 5) xp = Series(['foo', NA, 'bar', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.slice(2, 5, -1) xp = Series(['oof', NA, 'rab', NA, NA, NA, NA, NA]) # unicode values = Series([u('aafootwo'), u('aabartwo'), NA, u('aabazqux')]) result = values.str.slice(2, 5) exp = Series([u('foo'), u('bar'), NA, u('baz')]) tm.assert_series_equal(result, exp) result = values.str.slice(0, -1, 2) exp = Series([u('afow'), u('abrw'), NA, u('abzu')]) tm.assert_series_equal(result, exp) def test_slice_replace(self): values = Series(['short', 'a bit longer', 'evenlongerthanthat', '', NA ]) exp = Series(['shrt', 'a it longer', 'evnlongerthanthat', '', NA]) result = values.str.slice_replace(2, 3) tm.assert_series_equal(result, exp) exp = Series(['shzrt', 'a zit longer', 'evznlongerthanthat', 'z', NA]) result = values.str.slice_replace(2, 3, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA ]) result = values.str.slice_replace(2, 2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA ]) result = values.str.slice_replace(2, 1, 'z') tm.assert_series_equal(result, exp) exp = Series(['shorz', 'a bit longez', 'evenlongerthanthaz', 'z', NA]) result = values.str.slice_replace(-1, None, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'zer', 'zat', 'z', NA]) result = values.str.slice_replace(None, -2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shortz', 'a bit znger', 'evenlozerthanthat', 'z', NA]) result = values.str.slice_replace(6, 8, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'a zit longer', 'evenlongzerthanthat', 'z', NA]) result = values.str.slice_replace(-10, 3, 'z') tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip(self): values = Series([' aa ', ' bb \n', NA, 'cc ']) result = values.str.strip() exp = Series(['aa', 'bb', NA, 'cc']) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series(['aa ', 'bb \n', NA, 'cc ']) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([' aa', ' bb', NA, 'cc']) tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip_mixed(self): # mixed mixed = Series([' aa ', NA, ' bb \t\n', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.strip() xp = Series(['aa', NA, 'bb', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.lstrip() xp = Series(['aa ', NA, 'bb \t\n', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rstrip() xp = Series([' aa', NA, ' bb', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) def test_strip_lstrip_rstrip_unicode(self): # unicode values = Series([u(' aa '), u(' bb \n'), NA, u('cc ')]) result = values.str.strip() exp = Series([u('aa'), u('bb'), NA, u('cc')]) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series([u('aa '), u('bb \n'), NA, u('cc ')]) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([u(' aa'),
u(' bb')
pandas.compat.u
""" Usage: aggregate-makespan.py -i FOLDER [--output FOLDER] [--start-run INT] [--end-run INT] Required Options: -i FOLDER --input FOLDER where the experiments are Options: -o FOLDER --output FOLDER where the output should go [default: input] --start-run INT only include runs starting at start-run --end-run INT only include runs ending at and including end-run """ from docopt import docopt import pandas as pd import os import sys import re from datetime import datetime,timedelta def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): return [ atoi(c) for c in re.split(r'(\d+)', text) ] args=docopt(__doc__,help=True,options_first=False) path = args["--input"].rstrip("/") outPath = args["--input"] if args["--output"] == "input" else args["--output"] basePath = outPath rawOutPath = outPath.rstrip("/") + "/raw_total_makespan.csv" outPath = outPath.rstrip("/") + "/total_makespan.csv" startRun=args["--start-run"] if args["--start-run"] else 1 endRun=args["--end-run"] if args["--end-run"] else False df = pd.DataFrame() df4 =
pd.DataFrame()
pandas.DataFrame
import pandas as p#导入目前所需要的库并给与简称 data_train = '../homework/train.csv' #查看基本数据 data_train = p.read_csv(data_train)#导入训练模型 print(data_train.info())#查看数据类型 print(data_train.describe())#粗略查看基本数据 ###导入并且查看原始数据 import matplotlib.pyplot as pt import numpy as n pt.rcParams['font.sans-serif']=['Simhei'] #解决中文为方块的问题 pt.rcParams['axes.unicode_minus'] = False #解决图像是负号显示为方块的问题 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 pt.subplot2grid((2,3),(0,0)) # 在一张大图里分一些小图并设定位置 data_train.Survived.value_counts().plot(kind='bar') #以生存总数为标准 设置图标种类为柱状图 pt.title("生存 (1 Survived)") pt.ylabel("生存人数") pt.subplot2grid((2,3),(0,1)) data_train.Pclass.value_counts().plot(kind="bar") pt.ylabel("总人数") pt.title("仓位") pt.subplot2grid((2,3),(0,2)) pt.scatter(data_train.Survived, data_train.Age) pt.ylabel("年龄") pt.grid(b=True, which='major', axis='y') pt.title("年龄 (1 Survived)") pt.subplot2grid((2,3),(1,0), colspan=2) data_train.Age[data_train.Pclass == 1].plot(kind='kde') data_train.Age[data_train.Pclass == 2].plot(kind='kde') data_train.Age[data_train.Pclass == 3].plot(kind='kde') pt.xlabel("年龄") pt.ylabel("密度") pt.title("各等级的乘客年龄分布") pt.legend(('头等舱', '2等舱','3等舱'),loc='best') # 设置图例 pt.subplot2grid((2,3),(1,2)) data_train.Embarked.value_counts().plot(kind='bar') pt.title("各登船口岸上船人数") pt.ylabel("人数") pt.show() #粗略的以数据可视化的形式更直观的查看原始数据 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()#将未生存总数0存入value并与仓位对应 print(Survived_0) Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts() df=p.DataFrame({'生存':Survived_1, '未生存':Survived_0}) df.plot(kind='bar', stacked=False) pt.title("仓位与生存率是否相关") pt.xlabel("仓位") pt.ylabel("总人数") pt.show() #设立假设 仓位 也就是阶级 与生存率有关与否 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts() Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts() df=p.DataFrame({'男性':Survived_m, '女性':Survived_f}) df.plot(kind='bar', stacked=False) pt.title("性别与生存率是否相关") pt.xlabel("性别") pt.ylabel("总人数") pt.show() #设立假设 性别与生存率是否相关 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts() Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts() df=p.DataFrame({'生存':Survived_1, '未幸存':Survived_0}) df.plot(kind='bar', stacked=False) pt.title("假设登船港口与生存率是否有关") pt.xlabel("港口") pt.ylabel("总人数") pt.show() #假设登船港口与生存率是否有关 g = data_train.groupby(['SibSp','Survived']) df = p.DataFrame(g.count()['PassengerId']) print(df) g = data_train.groupby(['Parch','Survived']) df = p.DataFrame(g.count()['PassengerId']) print(df) #判断是否有兄弟姐妹在船上以及是否有父母子女在船上与生存率是否有关 ###设立假设 进行数据分析 ### 处理空值年龄 from sklearn.ensemble import RandomForestRegressor #从sklearn库中导入随机森林 ### 使用 RandomForest 填补缺失的年龄属性 def set_missing_ages(df):#定义函数 age_df = df[['Age','Fare', 'Parch', 'SibSp', 'Pclass']]#将已有并且可用特征存入age known_age = age_df[age_df.Age.notnull()].values#将年龄根据是否为空值为判断条件 分别储存为已知和未知两种值 unknown_age = age_df[age_df.Age.isnull()].values y = known_age[:, 0]#y为我们希望求得的空值年龄 x = known_age[:, 1:]#X为我们所给予的可用特征 rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1) rfr.fit(x, y)#利用fit将x,y放入随机森林中,并设定随机森林的属性 predictedAges = rfr.predict(unknown_age[:, 1::])#用随机森林中得出的结果去预测未知年龄 df.loc[ (df.Age.isnull()), 'Age' ] = predictedAges #将得出的年龄存入空值中 return df, rfr#返回函数 def set_Cabin_type(df):#定义函数以将Cabin中是否有值当成条件判断分别设置成Yes以及No df.loc[ (df.Cabin.notnull()), 'Cabin' ] = "Yes" df.loc[ (df.Cabin.isnull()), 'Cabin' ] = "No" return df#返回函数 data_train, rfr = set_missing_ages(data_train)#将预测值存入训练样本中以供使用 data_train = set_Cabin_type(data_train)#将Yes及No存入训练样本中以供使用 data_train.info()#再次查看整理过的数据 ### 处理空值港口 def set_Embarked_type(df):#以填补港口空值为出发点首先进行数据转换以便使用fillna df.loc[ (df.Embarked=='S'), 'Embarked' ] = "1" df.loc[ (df.Embarked=='C'), 'Embarked' ] = "2" df.loc[ (df.Embarked=='Q'), 'Embarked' ] = "3" return df data_train = set_Embarked_type(data_train) data_train.Embarked = data_train.Embarked.fillna(0) data_train.Embarked = list(map(int,data_train.Embarked)) print(data_train.Embarked.mean()) def set_Embarked_type(df):#再将已经填补完空值的列表赋值回训练样本# df.loc[ (df.Embarked==0), 'Embarked' ] = "S" return df data_train = set_Embarked_type(data_train) ### 使用随机森林处理票价为0的值 def set_missing_fare(df):#定义函数 fare_df = df[['Fare','Age','Parch', 'SibSp', 'Pclass']]#将已有并且可用特征存入age known_fare = fare_df.loc[fare_df.Fare != 0].values#将年龄根据是否为0为判断条件 分别储存为已知和未知两种值 unknown_fare = fare_df.loc[fare_df.Fare == 0].values y1 = known_fare[:, 0]#y为我们希望求得的0票价 x1 = known_fare[:, 1:]#X为我们所给予的可用特征 rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1) rfr.fit(x1, y1)#利用fit将x,y放入随机森林中,并设定随机森林的属性 predictedAges = rfr.predict(unknown_fare[:, 1::])#用随机森林中得出的结果去预测未知年龄 df.loc[ df.Fare == 0, 'Fare' ] = predictedAges #将得出的年龄存入空值中 return df, rfr#返回函数 data_train, rfr = set_missing_fare(data_train) print(data_train.Fare.describe()) ###数据处理 ### 使用算法开始建模 这里使用逻辑回归 data_train.Pclass = data_train.Pclass.astype('object') cate =p.get_dummies(data_train[['Cabin','Sex','Embarked','Pclass']]) data_new = data_train[['Survived','Age','SibSp','Parch','Fare']].join(cate) #数据的转储以及整理 from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(data_new.iloc[:,1:], data_new.Survived, test_size = 0.2, random_state=34) lr = LogisticRegression() lr.fit(x_train,y_train)#用数据X,y来训练模型 pred = lr.predict(x_test) from sklearn.metrics import classification_report, accuracy_score print(classification_report(y_test,pred))#预测准确率 print(accuracy_score(y_test,pred))#分类准确率分数 #尝试使用不同算法 这里使用决策树 from sklearn.tree import * dt = DecisionTreeClassifier(random_state=99,splitter='best', presort=True) dt.fit(x_train,y_train) pred = dt.predict(x_test) from sklearn.metrics import classification_report, accuracy_score print(classification_report(y_test,pred)) print(accuracy_score(y_test,pred)) ####模型构建 data_test = p.read_csv('../homework/test.csv')#导入测试样本 def set_missing_ages(df,rfr): age_df = df[['Age','Fare', 'Parch', 'SibSp', 'Pclass']] known_age = age_df[age_df.Age.notnull()].values unknown_age = age_df[age_df.Age.isnull()].values y3 = known_age[:, 0]#目标年龄 X3 = known_age[:, 1:]#特征属性值 predictedAges = rfr.predict(unknown_age[:, 1::]) # 用得到的模型进行未知年龄结果预测 df.loc[ (df.Age.isnull()), 'Age' ] = predictedAges # 用得到的预测结果填补原缺失数据 return df data_test = set_missing_ages(data_test, rfr) data_test = set_Cabin_type(data_test) data_test.Pclass = data_test.Pclass.astype('object') cate_test =
p.get_dummies(data_test[['Cabin','Sex','Embarked','Pclass']])
pandas.get_dummies
"""Miscellaneous internal PyJanitor helper functions.""" import fnmatch import functools import os import re import socket import sys import warnings from collections.abc import Callable as dispatch_callable from itertools import chain, combinations from typing import ( Callable, Dict, Iterable, List, NamedTuple, Optional, Pattern, Tuple, Union, ) import numpy as np import pandas as pd from pandas.api.types import ( CategoricalDtype, is_extension_array_dtype, is_list_like, is_scalar, ) from pandas.core.common import apply_if_callable from .errors import JanitorError def check(varname: str, value, expected_types: list): """ One-liner syntactic sugar for checking types. It can also check callables. Should be used like this:: check('x', x, [int, float]) :param varname: The name of the variable (for diagnostic error message). :param value: The value of the varname. :param expected_types: The types we expect the item to be. :raises TypeError: if data is not the expected type. """ is_expected_type: bool = False for t in expected_types: if t is callable: is_expected_type = t(value) else: is_expected_type = isinstance(value, t) if is_expected_type: break if not is_expected_type: raise TypeError( "{varname} should be one of {expected_types}".format( varname=varname, expected_types=expected_types ) ) def _clean_accounting_column(x: str) -> float: """ Perform the logic for the `cleaning_style == "accounting"` attribute. This is a private function, not intended to be used outside of ``currency_column_to_numeric``. It is intended to be used in a pandas `apply` method. :returns: An object with a cleaned column. """ y = x.strip() y = y.replace(",", "") y = y.replace(")", "") y = y.replace("(", "-") if y == "-": return 0.00 return float(y) def _currency_column_to_numeric(x, cast_non_numeric=None) -> str: """ Perform logic for changing cell values. This is a private function intended to be used only in ``currency_column_to_numeric``. It is intended to be used in a pandas `apply` method, after being passed through `partial`. """ acceptable_currency_characters = { "-", ".", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", } if len(x) == 0: return "ORIGINAL_NA" if cast_non_numeric: if x in cast_non_numeric.keys(): check( "{%r: %r}" % (x, str(cast_non_numeric[x])), cast_non_numeric[x], [int, float], ) return cast_non_numeric[x] return "".join(i for i in x if i in acceptable_currency_characters) return "".join(i for i in x if i in acceptable_currency_characters) def _replace_empty_string_with_none(column_series): column_series.loc[column_series == ""] = None return column_series def _replace_original_empty_string_with_none(column_series): column_series.loc[column_series == "ORIGINAL_NA"] = None return column_series def _strip_underscores( df: pd.DataFrame, strip_underscores: Union[str, bool] = None ) -> pd.DataFrame: """ Strip underscores from DataFrames column names. Underscores can be stripped from the beginning, end or both. .. code-block:: python df = _strip_underscores(df, strip_underscores='left') :param df: The pandas DataFrame object. :param strip_underscores: (optional) Removes the outer underscores from all column names. Default None keeps outer underscores. Values can be either 'left', 'right' or 'both' or the respective shorthand 'l', 'r' and True. :returns: A pandas DataFrame with underscores removed. """ df = df.rename( columns=lambda x: _strip_underscores_func(x, strip_underscores) ) return df def _strip_underscores_func( col: str, strip_underscores: Union[str, bool] = None ) -> pd.DataFrame: """Strip underscores from a string.""" underscore_options = [None, "left", "right", "both", "l", "r", True] if strip_underscores not in underscore_options: raise JanitorError( f"strip_underscores must be one of: {underscore_options}" ) if strip_underscores in ["left", "l"]: col = col.lstrip("_") elif strip_underscores in ["right", "r"]: col = col.rstrip("_") elif strip_underscores == "both" or strip_underscores is True: col = col.strip("_") return col def import_message( submodule: str, package: str, conda_channel: str = None, pip_install: bool = False, ): """ Return warning if package is not found. Generic message for indicating to the user when a function relies on an optional module / package that is not currently installed. Includes installation instructions. Used in `chemistry.py` and `biology.py`. :param submodule: pyjanitor submodule that needs an external dependency. :param package: External package this submodule relies on. :param conda_channel: Conda channel package can be installed from, if at all. :param pip_install: Whether package can be installed via pip. """ is_conda = os.path.exists(os.path.join(sys.prefix, "conda-meta")) installable = True if is_conda: if conda_channel is None: installable = False installation = f"{package} cannot be installed via conda" else: installation = f"conda install -c {conda_channel} {package}" else: if pip_install: installation = f"pip install {package}" else: installable = False installation = f"{package} cannot be installed via pip" print( f"To use the janitor submodule {submodule}, you need to install " f"{package}." ) print() if installable: print("To do so, use the following command:") print() print(f" {installation}") else: print(f"{installation}") def idempotent(func: Callable, df: pd.DataFrame, *args, **kwargs): """ Raises error if a function operating on a `DataFrame` is not idempotent, that is, `func(func(df)) = func(df)` is not true for all `df`. :param func: A python method. :param df: A pandas `DataFrame`. :param args: Positional arguments supplied to the method. :param kwargs: Keyword arguments supplied to the method. :raises ValueError: If `func` is found to not be idempotent for the given `DataFrame` `df`. """ if not func(df, *args, **kwargs) == func( func(df, *args, **kwargs), *args, **kwargs ): raise ValueError( "Supplied function is not idempotent for the given " "DataFrame." ) def deprecated_alias(**aliases) -> Callable: """ Used as a decorator when deprecating old function argument names, while keeping backwards compatibility. Implementation is inspired from `StackOverflow`_. .. _StackOverflow: https://stackoverflow.com/questions/49802412/how-to-implement-deprecation-in-python-with-argument-alias Functional usage example: .. code-block:: python @deprecated_alias(a='alpha', b='beta') def simple_sum(alpha, beta): return alpha + beta :param aliases: Dictionary of aliases for a function's arguments. :return: Your original function wrapped with the kwarg redirection function. """ # noqa: E501 def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): rename_kwargs(func.__name__, kwargs, aliases) return func(*args, **kwargs) return wrapper return decorator def refactored_function(message: str) -> Callable: """Used as a decorator when refactoring functions Implementation is inspired from `Hacker Noon`_. .. Hacker Noon: https://hackernoon.com/why-refactoring-how-to-restructure-python-package-51b89aa91987 Functional usage example: .. code-block:: python @refactored_function( message="simple_sum() has been refactored. Use hard_sum() instead." ) def simple_sum(alpha, beta): return alpha + beta :param message: Message to use in warning user about refactoring. :return: Your original function wrapped with the kwarg redirection function. """ # noqa: E501 def decorator(func): def emit_warning(*args, **kwargs): warnings.warn(message, FutureWarning) return func(*args, **kwargs) return emit_warning return decorator def rename_kwargs(func_name: str, kwargs: Dict, aliases: Dict): """ Used to update deprecated argument names with new names. Throws a TypeError if both arguments are provided, and warns if old alias is used. Nothing is returned as the passed ``kwargs`` are modified directly. Implementation is inspired from `StackOverflow`_. .. _StackOverflow: https://stackoverflow.com/questions/49802412/how-to-implement-deprecation-in-python-with-argument-alias :param func_name: name of decorated function. :param kwargs: Arguments supplied to the method. :param aliases: Dictionary of aliases for a function's arguments. :raises TypeError: if both arguments are provided. """ # noqa: E501 for old_alias, new_alias in aliases.items(): if old_alias in kwargs: if new_alias in kwargs: raise TypeError( f"{func_name} received both {old_alias} and {new_alias}" ) warnings.warn( f"{old_alias} is deprecated; use {new_alias}", DeprecationWarning, ) kwargs[new_alias] = kwargs.pop(old_alias) def check_column( df: pd.DataFrame, column_names: Union[Iterable, str], present: bool = True ): """ One-liner syntactic sugar for checking the presence or absence of columns. Should be used like this:: check(df, ['a', 'b'], present=True) This will check whether columns "a" and "b" are present in df's columns. One can also guarantee that "a" and "b" are not present by switching to ``present = False``. :param df: The name of the variable. :param column_names: A list of column names we want to check to see if present (or absent) in df. :param present: If True (default), checks to see if all of column_names are in df.columns. If False, checks that none of column_names are in df.columns. :raises ValueError: if data is not the expected type. """ if isinstance(column_names, str) or not isinstance(column_names, Iterable): column_names = [column_names] for column_name in column_names: if present and column_name not in df.columns: # skipcq: PYL-R1720 raise ValueError( f"{column_name} not present in dataframe columns!" ) elif not present and column_name in df.columns: raise ValueError( f"{column_name} already present in dataframe columns!" ) def skipna(f: Callable) -> Callable: """ Decorator for escaping np.nan and None in a function Should be used like this:: df[column].apply(skipna(transform)) or:: @skipna def transform(x): pass :param f: the function to be wrapped :returns: _wrapped, the wrapped function """ def _wrapped(x, *args, **kwargs): if (type(x) is float and np.isnan(x)) or x is None: return np.nan return f(x, *args, **kwargs) return _wrapped def skiperror( f: Callable, return_x: bool = False, return_val=np.nan ) -> Callable: """ Decorator for escaping any error in a function. Should be used like this:: df[column].apply( skiperror(transform, return_val=3, return_x=False)) or:: @skiperror(return_val=3, return_x=False) def transform(x): pass :param f: the function to be wrapped :param return_x: whether or not the original value that caused error should be returned :param return_val: the value to be returned when an error hits. Ignored if return_x is True :returns: _wrapped, the wrapped function """ def _wrapped(x, *args, **kwargs): try: return f(x, *args, **kwargs) except Exception: # skipcq: PYL-W0703 if return_x: return x return return_val return _wrapped def _computations_expand_grid(others: dict) -> pd.DataFrame: """ Creates a cartesian product of all the inputs in `others`. Combines Numpy's `mgrid`, with the `take` method in numpy/Pandas, to expand each input to the length of the cumulative product of all inputs in `others`. There is a performance penalty for small entries (length less than 10) in using this method, instead of `itertools.product`; however, there is significant performance benefits as the size of the data increases. Another benefit of this approach, in addition to the significant performance gains, is the preservation of data types. This is particularly relevant for Pandas' extension arrays dtypes (categoricals, nullable integers, ...). A dataframe of all possible combinations is returned. """ for key, _ in others.items(): check("key", key, [str]) grid = {} for key, value in others.items(): if is_scalar(value): grid[key] = pd.Series([value]) elif is_extension_array_dtype(value) and not ( isinstance(value, pd.Series) ): grid[key] = pd.Series(value) elif is_list_like(value): if not isinstance( value, (pd.DataFrame, pd.Series, np.ndarray, list, pd.Index) ): grid[key] = list(value) else: grid[key] = value others = None mgrid_values = [slice(len(value)) for _, value in grid.items()] mgrid_values = np.mgrid[mgrid_values] mgrid_values = map(np.ravel, mgrid_values) grid = zip([*grid.items()], mgrid_values) grid = ((*left, right) for left, right in grid) grid = ( _expand_grid(value, key, mgrid_values) for key, value, mgrid_values in grid ) grid = pd.concat(grid, axis="columns", sort=False) return grid @functools.singledispatch def _expand_grid(value, key, mgrid_values, mode="expand_grid"): """ Base function for dispatch of `_expand_grid`. `mode` parameter is added, to make the function reusable in the `_computations_complete` function. Also, allowing `key` as None enables reuse in the `_computations_complete` function. """ raise TypeError( f"{type(value).__name__} data type is not supported in `expand_grid`." ) @_expand_grid.register(list) # noqa: F811 def _sub_expand_grid(value, key, mgrid_values): # noqa: F811 """ Expands the list object based on `mgrid_values`. Converts to an array and passes it to the `_expand_grid` function for arrays. `mode` parameter is added, to make the function reusable in the `_computations_complete` function. Also, allowing `key` as None enables reuse in the `_computations_complete` function. Returns Series with name if 1-Dimensional array or DataFrame if 2-Dimensional array with column names. """ if not value: raise ValueError("""list object cannot be empty.""") value = np.array(value) return _expand_grid(value, key, mgrid_values) @_expand_grid.register(np.ndarray) def _sub_expand_grid( # noqa: F811 value, key, mgrid_values, mode="expand_grid" ): """ Expands the numpy array based on `mgrid_values`. Ensures array dimension is either 1 or 2. `mode` parameter is added, to make the function reusable in the `_computations_complete` function. Also, allowing `key` as None enables reuse in the `_computations_complete` function. Returns Series with name if 1-Dimensional array or DataFrame if 2-Dimensional array with column names. The names are derived from the `key` parameter. """ if not (value.size > 0): raise ValueError("""array cannot be empty.""") if value.ndim > 2: raise ValueError("""expand_grid works only on 1D and 2D structures.""") value = value.take(mgrid_values, axis=0) if value.ndim == 1: value = pd.Series(value) # a tiny bit faster than chaining with `rename` value.name = key else: value = pd.DataFrame(value) # a tiny bit faster than using `add_prefix` value.columns = value.columns.map(lambda column: f"{key}_{column}") return value @_expand_grid.register(pd.Series) def _sub_expand_grid( # noqa: F811 value, key, mgrid_values, mode="expand_grid" ): """ Expands the Series based on `mgrid_values`. `mode` parameter is added, to make the function reusable in the `_computations_complete` function. Also, allowing `key` as None enables reuse in the `_computations_complete` function. Checks for empty Series and returns modified keys. Returns Series with new Series name. """ if value.empty: raise ValueError("""Series cannot be empty.""") value = value.take(mgrid_values) value.index = np.arange(len(value)) if mode != "expand_grid": return value if value.name: value.name = f"{key}_{value.name}" else: value.name = key return value @_expand_grid.register(pd.DataFrame) def _sub_expand_grid( # noqa: F811 value, key, mgrid_values, mode="expand_grid" ): """ Expands the DataFrame based on `mgrid_values`. `mode` parameter is added, to make the function reusable in the `_computations_complete` function. Also, allowing `key` as None enables reuse in the `_computations_complete` function. Checks for empty dataframe and returns modified keys. Returns a DataFrame with new column names. """ if value.empty: raise ValueError("""DataFrame cannot be empty.""") value = value.take(mgrid_values) value.index = np.arange(len(value)) if mode != "expand_grid": return value if isinstance(value.columns, pd.MultiIndex): value.columns = [f"{key}_{num}" for num, _ in enumerate(value.columns)] else: value.columns = value.columns.map(lambda column: f"{key}_{column}") return value @_expand_grid.register(pd.Index) def _sub_expand_grid( # noqa: F811 value, key, mgrid_values, mode="expand_grid" ): """ Expands the Index based on `mgrid_values`. `mode` parameter is added, to make the function reusable in the `_computations_complete` function. Also, allowing `key` as None enables reuse in the `_computations_complete` function. Checks for empty Index and returns modified keys. Returns a DataFrame (if MultiIndex) with new column names, or a Series with a new name. """ if value.empty: raise ValueError("""Index cannot be empty.""") value = value.take(mgrid_values) if mode != "expand_grid": return value if isinstance(value, pd.MultiIndex): value = value.to_frame(index=False) value.columns = value.columns.map(lambda column: f"{key}_{column}") else: value = value.to_series(index=np.arange(len(value))) if value.name: value.name = f"{key}_{value.name}" else: value.name = key return value def _data_checks_complete( df: pd.DataFrame, columns: List[Union[List, Tuple, Dict, str]], by: Optional[Union[list, str]] = None, ): """ Function to check parameters in the `complete` function. Checks the type of the `columns` parameter, as well as the types within the `columns` parameter. Check is conducted to ensure that column names are not repeated. Also checks that the names in `columns` actually exist in `df`. Returns `df`, `columns`, `column_checker`, and `by` if all checks pass. """ # TODO: get `complete` to work on MultiIndex columns, # if there is sufficient interest with use cases if isinstance(df.columns, pd.MultiIndex): raise ValueError( """ `complete` does not support MultiIndex columns. """ ) check("columns", columns, [list]) columns = [ list(grouping) if isinstance(grouping, tuple) else grouping for grouping in columns ] column_checker = [] for grouping in columns: check("grouping", grouping, [list, dict, str]) if not grouping: raise ValueError("grouping cannot be empty") if isinstance(grouping, str): column_checker.append(grouping) else: column_checker.extend(grouping) # columns should not be duplicated across groups column_checker_no_duplicates = set() for column in column_checker: if column in column_checker_no_duplicates: raise ValueError( f"""{column} column should be in only one group.""" ) column_checker_no_duplicates.add(column) # noqa: PD005 check_column(df, column_checker) column_checker_no_duplicates = None if by is not None: if isinstance(by, str): by = [by] check("by", by, [list]) return df, columns, column_checker, by def _computations_complete( df: pd.DataFrame, columns: List[Union[List, Tuple, Dict, str]], by: Optional[Union[list, str]] = None, ) -> pd.DataFrame: """ This function computes the final output for the `complete` function. If `by` is present, then groupby apply is used. For some cases, the `stack/unstack` combination is preferred; it is more efficient than `reindex`, as the size of the data grows. It is only applicable if all the entries in `columns` are strings, there are no nulls(stacking implicitly removes nulls in columns), the length of `columns` is greater than 1, and the index has no duplicates. If there is a dictionary in `columns`, it is possible that all the values of a key, or keys, may not be in the existing column with the same key(s); as such, a union of the current index and the generated index is executed, to ensure that all combinations are in the final dataframe. A dataframe, with rows of missing values, if any, is returned. """ df, columns, column_checker, by = _data_checks_complete(df, columns, by) dict_present = any((isinstance(entry, dict) for entry in columns)) all_strings = all(isinstance(column, str) for column in columns) df = df.set_index(column_checker) df_index = df.index df_names = df_index.names any_nulls = any( df_index.get_level_values(name).hasnans for name in df_names ) if not by: df = _base_complete(df, columns, all_strings, any_nulls, dict_present) # a better (and faster) way would be to create a dataframe # from the groupby ... # solution here got me thinking # https://stackoverflow.com/a/66667034/7175713 # still thinking on how to improve speed of groupby apply else: df = df.groupby(by).apply( _base_complete, columns, all_strings, any_nulls, dict_present, ) df = df.drop(columns=by) df = df.reset_index() return df def _base_complete( df: pd.DataFrame, columns: List[Union[List, Tuple, Dict, str]], all_strings: bool, any_nulls: bool, dict_present: bool, ) -> pd.DataFrame: df_empty = df.empty df_index = df.index unique_index = df_index.is_unique columns_to_stack = None if all_strings and (not any_nulls) and (len(columns) > 1) and unique_index: if df_empty: df["dummy"] = 1 columns_to_stack = columns[1:] df = df.unstack(columns_to_stack) # noqa: PD010 df = df.stack(columns_to_stack, dropna=False) # noqa: PD013 if df_empty: df = df.drop(columns="dummy") columns_to_stack = None return df indexer = _create_indexer_for_complete(df_index, columns) if unique_index: if dict_present: indexer = df_index.union(indexer, sort=None) df = df.reindex(indexer) else: df = df.join(pd.DataFrame([], index=indexer), how="outer") return df def _create_indexer_for_complete( df_index: pd.Index, columns: List[Union[List, Dict, str]], ) -> pd.DataFrame: """ This creates the index that will be used to expand the dataframe in the `complete` function. A pandas Index is returned. """ complete_columns = ( _complete_column(column, df_index) for column in columns ) complete_columns = ( (entry,) if not isinstance(entry, list) else entry for entry in complete_columns ) complete_columns = chain.from_iterable(complete_columns) indexer = [*complete_columns] if len(indexer) > 1: indexer = _complete_indexer_expand_grid(indexer) else: indexer = indexer[0] return indexer def _complete_indexer_expand_grid(indexer): """ Generate indices to expose explicitly missing values, using the `expand_grid` function. Returns a pandas Index. """ indexers = [] mgrid_values = [slice(len(value)) for value in indexer] mgrid_values = np.mgrid[mgrid_values] mgrid_values = map(np.ravel, mgrid_values) indexer = zip(indexer, mgrid_values) indexer = ( _expand_grid(value, None, mgrid_values, mode=None) for value, mgrid_values in indexer ) for entry in indexer: if isinstance(entry, pd.MultiIndex): names = entry.names val = (entry.get_level_values(name) for name in names) indexers.extend(val) else: indexers.append(entry) indexer = pd.MultiIndex.from_arrays(indexers) indexers = None return indexer @functools.singledispatch def _complete_column(column, index): """ This function processes the `columns` argument, to create a pandas Index or a list. Args: column : str/list/dict index: pandas Index A unique pandas Index or a list of unique pandas Indices is returned. """ raise TypeError( """This type is not supported in the `complete` function.""" ) @_complete_column.register(str) # noqa: F811 def _sub_complete_column(column, index): # noqa: F811 """ This function processes the `columns` argument, to create a pandas Index. Args: column : str index: pandas Index Returns: pd.Index: A pandas Index with a single level """ arr = index.get_level_values(column) if not arr.is_unique: arr = arr.drop_duplicates() return arr @_complete_column.register(list) # noqa: F811 def _sub_complete_column(column, index): # noqa: F811 """ This function processes the `columns` argument, to create a pandas Index. Args: column : list index: pandas Index Returns: pd.MultiIndex """ level_to_drop = [name for name in index.names if name not in column] arr = index.droplevel(level_to_drop) if not arr.is_unique: return arr.drop_duplicates() return arr @_complete_column.register(dict) # noqa: F811 def _sub_complete_column(column, index): # noqa: F811 """ This function processes the `columns` argument, to create a pandas Index or a list. Args: column : dict index: pandas Index Returns: list: A list of unique pandas Indices. """ collection = [] for key, value in column.items(): arr = apply_if_callable(value, index.get_level_values(key)) if not is_list_like(arr): raise ValueError( """ Input in the supplied dictionary must be list-like. """ ) if ( not isinstance( arr, (pd.DataFrame, pd.Series, np.ndarray, pd.Index) ) ) and (not is_extension_array_dtype(arr)): arr = pd.Index([*arr], name=key) if arr.ndim != 1: raise ValueError( """ It seems the supplied pair in the supplied dictionary cannot be converted to a 1-dimensional Pandas object. Kindly provide data that can be converted to a 1-dimensional Pandas object. """ ) if isinstance(arr, pd.MultiIndex): raise ValueError( """ MultiIndex object not acceptable in the supplied dictionary. """ ) if not isinstance(arr, pd.Index): arr = pd.Index(arr, name=key) if arr.empty: raise ValueError( """ Input in the supplied dictionary cannot be empty. """ ) if not arr.is_unique: arr = arr.drop_duplicates() if arr.name is None: arr.name = key collection.append(arr) return collection def _data_checks_pivot_longer( df, index, column_names, names_to, values_to, column_level, names_sep, names_pattern, sort_by_appearance, ignore_index, ): """ This function raises errors if the arguments have the wrong python type, or if an unneeded argument is provided. It also raises errors for some other scenarios(e.g if there are no matches returned for the regular expression in `names_pattern`, or if the dataframe has MultiIndex columns and `names_sep` or `names_pattern` is provided). This function is executed before proceeding to the computation phase. Type annotations are not provided because this function is where type checking happens. """ if column_level is not None: check("column_level", column_level, [int, str]) df.columns = df.columns.get_level_values(column_level) if index is not None: if is_list_like(index) and (not isinstance(index, tuple)): index = list(index) index = _select_columns(index, df) if column_names is not None: if is_list_like(column_names) and ( not isinstance(column_names, tuple) ): column_names = list(column_names) column_names = _select_columns(column_names, df) if isinstance(names_to, str): names_to = [names_to] elif isinstance(names_to, tuple): names_to = list(names_to) check("names_to", names_to, [list]) if not all((isinstance(word, str) for word in names_to)): raise TypeError("All entries in `names_to` argument must be strings.") if len(names_to) > 1: if all((names_pattern, names_sep)): raise ValueError( """ Only one of `names_pattern` or `names_sep` should be provided. """ ) if (".value" in names_to) and (names_to.count(".value") > 1): raise ValueError("There can be only one `.value` in `names_to`.") # names_sep creates more than one column # whereas regex with names_pattern can be limited to one column if (len(names_to) == 1) and (names_sep is not None): raise ValueError( """ For a single `names_to` value, `names_sep` is not required. """ ) if names_pattern is not None: check("names_pattern", names_pattern, [str, Pattern, List, Tuple]) if isinstance(names_pattern, (list, tuple)): if not all( isinstance(word, (str, Pattern)) for word in names_pattern ): raise TypeError( """ All entries in the ``names_pattern`` argument must be regular expressions. """ ) if len(names_pattern) != len(names_to): raise ValueError( """ Length of ``names_to`` does not match number of patterns. """ ) if ".value" in names_to: raise ValueError( """ ``.value`` is not accepted if ``names_pattern`` is a list/tuple. """ ) if names_sep is not None: check("names_sep", names_sep, [str, Pattern]) check("values_to", values_to, [str]) if (values_to in df.columns) and not any( ( ".value" in names_to, isinstance(names_pattern, (list, tuple)), ) ): # copied from pandas' melt source code # with a minor tweak raise ValueError( """ This dataframe has a column name that matches the 'values_to' column name of the resulting Dataframe. Kindly set the 'values_to' parameter to a unique name. """ ) if any((names_sep, names_pattern)) and ( isinstance(df.columns, pd.MultiIndex) ): raise ValueError( """ Unpivoting a MultiIndex column dataframe when `names_sep` or `names_pattern` is supplied is not supported. """ ) if all((names_sep is None, names_pattern is None)): # adapted from pandas' melt source code if ( (index is not None) and isinstance(df.columns, pd.MultiIndex) and (not isinstance(index, list)) ): raise ValueError( """ index must be a list of tuples when columns are a MultiIndex. """ ) if ( (column_names is not None) and isinstance(df.columns, pd.MultiIndex) and (not isinstance(column_names, list)) ): raise ValueError( """ column_names must be a list of tuples when columns are a MultiIndex. """ ) check("sort_by_appearance", sort_by_appearance, [bool]) check("ignore_index", ignore_index, [bool]) return ( df, index, column_names, names_to, values_to, column_level, names_sep, names_pattern, sort_by_appearance, ignore_index, ) def _sort_by_appearance_for_melt( df: pd.DataFrame, ignore_index: bool, len_index: int ) -> pd.DataFrame: """ This function sorts the resulting dataframe by appearance, via the `sort_by_appearance` parameter in `computations_pivot_longer`. An example for `sort_by_appearance`: Say data looks like this : id, a1, a2, a3, A1, A2, A3 1, a, b, c, A, B, C when unpivoted into long form, it will look like this : id instance a A 0 1 1 a A 1 1 2 b B 2 1 3 c C where the column `a` comes before `A`, as it was in the source data, and in column `a`, `a > b > c`, also as it was in the source data. A dataframe that is sorted by appearance is returned. """ index_sorter = None # if the height of the new dataframe # is the same as the height of the original dataframe, # then there is no need to sort by appearance length_check = any((len_index == 1, len_index == len(df))) if not length_check: index_sorter = np.reshape(np.arange(len(df)), (-1, len_index)).ravel( order="F" ) df = df.take(index_sorter) if ignore_index: df.index = np.arange(len(df)) return df def _pivot_longer_extractions( df: pd.DataFrame, index: Optional[Union[List, Tuple]] = None, column_names: Optional[Union[List, Tuple]] = None, names_to: Optional[List] = None, names_sep: Optional[Union[str, Pattern]] = None, names_pattern: Optional[ Union[ List[Union[str, Pattern]], Tuple[Union[str, Pattern]], str, Pattern ] ] = None, ) -> Tuple: """ This is where the labels within the column names are separated into new columns, and is executed if `names_sep` or `names_pattern` is not None. A dataframe is returned. """ if any((names_sep, names_pattern)): if index: df = df.set_index(index, append=True) if column_names: df = df.loc[:, column_names] mapping = None if names_sep: mapping = df.columns.str.split(names_sep, expand=True) if len(mapping.names) != len(names_to): raise ValueError( """ The length of ``names_to`` does not match the number of columns extracted. """ ) mapping.names = names_to elif isinstance(names_pattern, str): mapping = df.columns.str.extract(names_pattern, expand=True) if mapping.isna().all(axis=None): raise ValueError( """ No labels in the columns matched the regular expression in ``names_pattern``. Kindly provide a regular expression that matches all labels in the columns. """ ) if mapping.isna().any(axis=None): raise ValueError( """ Not all labels in the columns matched the regular expression in ``names_pattern``. Kindly provide a regular expression that matches all labels in the columns. """ ) if len(names_to) != len(mapping.columns): raise ValueError( """ The length of ``names_to`` does not match the number of columns extracted. """ ) if len(mapping.columns) == 1: mapping = pd.Index(mapping.iloc[:, 0], name=names_to[0]) else: mapping = pd.MultiIndex.from_frame(mapping, names=names_to) elif isinstance(names_pattern, (list, tuple)): mapping = [ df.columns.str.contains(regex, na=False) for regex in names_pattern ] if not np.any(mapping): raise ValueError( """ Not all labels in the columns matched the regular expression in ``names_pattern``. Kindly provide a regular expression that matches all labels in the columns. """ ) mapping = np.select(mapping, names_to, None) mapping = pd.Index(mapping, name=".value") if np.any(mapping.isna()): raise ValueError( """ The regular expressions in ``names_pattern`` did not return all matches. Kindly provide a regular expression that captures all patterns. """ ) outcome = None single_index_mapping = not isinstance(mapping, pd.MultiIndex) if single_index_mapping: outcome = pd.Series(mapping) outcome = outcome.groupby(outcome).cumcount() mapping =
pd.MultiIndex.from_arrays([mapping, outcome])
pandas.MultiIndex.from_arrays
""" Module parse to/from Excel """ # --------------------------------------------------------------------- # ExcelFile class import abc from datetime import date, datetime, time, timedelta from distutils.version import LooseVersion from io import UnsupportedOperation import os from textwrap import fill import warnings import numpy as np import pandas._libs.json as json import pandas.compat as compat from pandas.compat import ( OrderedDict, add_metaclass, lrange, map, range, string_types, u, zip) from pandas.errors import EmptyDataError from pandas.util._decorators import Appender, deprecate_kwarg from pandas.core.dtypes.common import ( is_bool, is_float, is_integer, is_list_like) from pandas.core import config from pandas.core.frame import DataFrame from pandas.io.common import ( _NA_VALUES, _is_url, _stringify_path, _urlopen, _validate_header_arg, get_filepath_or_buffer) from pandas.io.formats.printing import pprint_thing from pandas.io.parsers import TextParser __all__ = ["read_excel", "ExcelWriter", "ExcelFile"] _writer_extensions = ["xlsx", "xls", "xlsm"] _writers = {} _read_excel_doc = """ Read an Excel table into a pandas DataFrame Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame * 1 -> 2nd sheet as a DataFrame * "Sheet1" -> 1st sheet as a DataFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames * None -> All sheets as a dictionary of DataFrames sheetname : string, int, mixed list of strings/ints, or None, default 0 .. deprecated:: 0.21.0 Use `sheet_name` instead header : int, list of ints, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None index_col : int, list of ints, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. parse_cols : int or list, default None .. deprecated:: 0.21.0 Pass in `usecols` instead. usecols : int, str, list-like, or callable default None * If None, then parse all columns, * If int, then indicates last column to be parsed .. deprecated:: 0.24.0 Pass in a list of ints instead from 0 to `usecols` inclusive. * If string, then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. * If list of ints, then indicates list of column numbers to be parsed. * If list of strings, then indicates list of column names to be parsed. .. versionadded:: 0.24.0 * If callable, then evaluate each column name against it and parse the column if the callable returns ``True``. .. versionadded:: 0.24.0 squeeze : boolean, default False If the parsed data only contains one column then return a Series dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 0.20.0 engine : string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None Values to consider as False .. versionadded:: 0.19.0 skiprows : list-like Rows to skip at the beginning (0-indexed) nrows : int, default None Number of rows to parse .. versionadded:: 0.23.0 na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. verbose : boolean, default False Indicate number of NA values placed in non-numeric columns thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skip_footer : int, default 0 .. deprecated:: 0.23.0 Pass in `skipfooter` instead. skipfooter : int, default 0 Rows at the end to skip (0-indexed) convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally mangle_dupe_cols : boolean, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. Returns ------- parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a dict of DataFrames is returned. Examples -------- An example DataFrame written to a local file >>> df_out = pd.DataFrame([('string1', 1), ... ('string2', 2), ... ('string3', 3)], ... columns=['Name', 'Value']) >>> df_out Name Value 0 string1 1 1 string2 2 2 string3 3 >>> df_out.to_excel('tmp.xlsx') The file can be read using the file name as string or an open file object: >>> pd.read_excel('tmp.xlsx') Name Value 0 string1 1 1 string2 2 2 string3 3 >>> pd.read_excel(open('tmp.xlsx','rb')) Name Value 0 string1 1 1 string2 2 2 string3 3 Index and header can be specified via the `index_col` and `header` arguments >>> pd.read_excel('tmp.xlsx', index_col=None, header=None) 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 string3 3 Column types are inferred but can be explicitly specified >>> pd.read_excel('tmp.xlsx', dtype={'Name':str, 'Value':float}) Name Value 0 string1 1.0 1 string2 2.0 2 string3 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> pd.read_excel('tmp.xlsx', ... na_values=['string1', 'string2']) Name Value 0 NaN 1 1 NaN 2 2 string3 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> df = pd.DataFrame({'a': ['1', '#2'], 'b': ['2', '3']}) >>> df.to_excel('tmp.xlsx', index=False) >>> pd.read_excel('tmp.xlsx') a b 0 1 2 1 #2 3 >>> pd.read_excel('tmp.xlsx', comment='#') a b 0 1 2 """ def register_writer(klass): """Adds engine to the excel writer registry. You must use this method to integrate with ``to_excel``. Also adds config options for any new ``supported_extensions`` defined on the writer.""" if not compat.callable(klass): raise ValueError("Can only register callables as engines") engine_name = klass.engine _writers[engine_name] = klass for ext in klass.supported_extensions: if ext.startswith('.'): ext = ext[1:] if ext not in _writer_extensions: config.register_option("io.excel.{ext}.writer".format(ext=ext), engine_name, validator=str) _writer_extensions.append(ext) def _get_default_writer(ext): _default_writers = {'xlsx': 'openpyxl', 'xlsm': 'openpyxl', 'xls': 'xlwt'} try: import xlsxwriter # noqa _default_writers['xlsx'] = 'xlsxwriter' except ImportError: pass return _default_writers[ext] def get_writer(engine_name): try: return _writers[engine_name] except KeyError: raise ValueError("No Excel writer '{engine}'" .format(engine=engine_name)) @Appender(_read_excel_doc) @deprecate_kwarg("parse_cols", "usecols") @deprecate_kwarg("skip_footer", "skipfooter") def read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds): # Can't use _deprecate_kwarg since sheetname=None has a special meaning if is_integer(sheet_name) and sheet_name == 0 and 'sheetname' in kwds: warnings.warn("The `sheetname` keyword is deprecated, use " "`sheet_name` instead", FutureWarning, stacklevel=2) sheet_name = kwds.pop("sheetname") if 'sheet' in kwds: raise TypeError("read_excel() got an unexpected keyword argument " "`sheet`") if not isinstance(io, ExcelFile): io = ExcelFile(io, engine=engine) return io.parse( sheet_name=sheet_name, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, dtype=dtype, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, **kwds) class ExcelFile(object): """ Class for parsing tabular excel sheets into DataFrame objects. Uses xlrd. See read_excel for more documentation Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object or xlrd workbook If a string or path object, expected to be a path to xls or xlsx file engine : string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd """ def __init__(self, io, **kwds): err_msg = "Install xlrd >= 1.0.0 for Excel support" try: import xlrd except ImportError: raise ImportError(err_msg) else: if xlrd.__VERSION__ < LooseVersion("1.0.0"): raise ImportError(err_msg + ". Current version " + xlrd.__VERSION__) # could be a str, ExcelFile, Book, etc. self.io = io # Always a string self._io = _stringify_path(io) engine = kwds.pop('engine', None) if engine is not None and engine != 'xlrd': raise ValueError("Unknown engine: {engine}".format(engine=engine)) # If io is a url, want to keep the data as bytes so can't pass # to get_filepath_or_buffer() if _is_url(self._io): io = _urlopen(self._io) elif not isinstance(self.io, (ExcelFile, xlrd.Book)): io, _, _, _ = get_filepath_or_buffer(self._io) if engine == 'xlrd' and isinstance(io, xlrd.Book): self.book = io elif not isinstance(io, xlrd.Book) and hasattr(io, "read"): # N.B. xlrd.Book has a read attribute too if hasattr(io, 'seek'): try: # GH 19779 io.seek(0) except UnsupportedOperation: # HTTPResponse does not support seek() # GH 20434 pass data = io.read() self.book = xlrd.open_workbook(file_contents=data) elif isinstance(self._io, compat.string_types): self.book = xlrd.open_workbook(self._io) else: raise ValueError('Must explicitly set engine if not passing in' ' buffer or path for io.') def __fspath__(self): return self._io def parse(self, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds): """ Parse specified sheet(s) into a DataFrame Equivalent to read_excel(ExcelFile, ...) See the read_excel docstring for more info on accepted parameters """ # Can't use _deprecate_kwarg since sheetname=None has a special meaning if
is_integer(sheet_name)
pandas.core.dtypes.common.is_integer
import time import os import shutil import sys from sys import argv import pickle import csv from collections import defaultdict import cProfile import pstats import pandas as pd import numpy as np from sklearn.metrics import roc_auc_score from sklearn.pipeline import FeatureUnion, Pipeline from sklearn.preprocessing import StandardScaler from hyperopt import Trials, STATUS_OK, tpe, fmin, hp import hyperopt from hyperopt.pyll.base import scope from hyperopt.pyll.stochastic import sample from DatasetManager import DatasetManager import EncoderFactory import ClassifierFactory def create_and_evaluate_model(args): global trial_nr, all_results trial_nr += 1 print("Trial %s out of %s" % (trial_nr, n_iter)) start = time.time() score = 0 args['n_estimators'] = 500 for cv_iter in range(n_splits): # read encoded data dt_train = pd.read_csv(os.path.join(folds_dir, "fold%s_train.csv" % cv_iter), sep=";") dt_test = pd.read_csv(os.path.join(folds_dir, "fold%s_test.csv" % cv_iter), sep=";") with open(os.path.join(folds_dir, "fold%s_train_y.csv" % cv_iter), "rb") as fin: train_y = np.array(pickle.load(fin)) with open(os.path.join(folds_dir, "fold%s_test_y.csv" % cv_iter), "rb") as fin: test_y = np.array(pickle.load(fin)) # fit classifier and predict cls = ClassifierFactory.get_classifier(cls_method, args, random_state, min_cases_for_training, class_ratios[cv_iter]) cls.fit(dt_train, train_y) preds = cls.predict_proba(dt_test) if len(set(test_y)) >= 2: score += roc_auc_score(test_y, preds) # save current trial results for k, v in args.items(): all_results.append((trial_nr, k, v, -1, score / n_splits)) return {'loss': -score / n_splits, 'status': STATUS_OK, 'model': cls} dataset_ref = argv[1] method_name = argv[2] cls_method = argv[3] n_iter = int(argv[4]) train_ratio = 0.8 n_splits = 3 random_state = 22 min_cases_for_training = 1 if n_splits == 1: PARAMS_DIR = "val_results_unstructured" else: PARAMS_DIR = "cv_results_revision" # create directory if not os.path.exists(os.path.join(PARAMS_DIR)): os.makedirs(os.path.join(PARAMS_DIR)) if "prefix_index" in method_name: bucket_method, cls_encoding, nr_events = method_name.split("_") nr_events = int(nr_events) else: bucket_method, cls_encoding = method_name.split("_") nr_events = None dataset_ref_to_datasets = { "bpic2011": ["bpic2011_f%s"%formula for formula in range(1,5)], "bpic2015": ["bpic2015_%s_f2"%(municipality) for municipality in range(1,6)], "insurance": ["insurance_activity", "insurance_followup"], "sepsis_cases": ["sepsis_cases_1", "sepsis_cases_2", "sepsis_cases_4"] } encoding_dict = { "laststate": ["static", "last"], "agg": ["static", "agg"], "index": ["static", "index"], "combined": ["static", "last", "agg"] } datasets = [dataset_ref] if dataset_ref not in dataset_ref_to_datasets else dataset_ref_to_datasets[dataset_ref] methods = encoding_dict[cls_encoding] for dataset_name in datasets: folds_dir = "folds_%s_%s_%s" % (dataset_name, cls_method, method_name) if not os.path.exists(os.path.join(folds_dir)): os.makedirs(os.path.join(folds_dir)) # read the data dataset_manager = DatasetManager(dataset_name) data = dataset_manager.read_dataset() cls_encoder_args = {'case_id_col': dataset_manager.case_id_col, 'static_cat_cols': dataset_manager.static_cat_cols, 'static_num_cols': dataset_manager.static_num_cols, 'dynamic_cat_cols': dataset_manager.dynamic_cat_cols, 'dynamic_num_cols': dataset_manager.dynamic_num_cols, 'fillna': True} # determine min and max (truncated) prefix lengths min_prefix_length = 1 if "traffic_fines" in dataset_name: max_prefix_length = 10 elif "bpic2017" in dataset_name: max_prefix_length = min(20, dataset_manager.get_pos_case_length_quantile(data, 0.90)) else: max_prefix_length = min(40, dataset_manager.get_pos_case_length_quantile(data, 0.90)) # split into training and test train, _ = dataset_manager.split_data_strict(data, train_ratio, split="temporal") del data # prepare chunks for CV class_ratios = [] cv_iter = 0 if n_splits == 1: if dataset_ref in ["github"]: train, _ = dataset_manager.split_data(train, train_ratio=0.15/train_ratio, split="random", seed=22) # train will be 0.1 of original data and val 0.05 train_chunk, test_chunk = dataset_manager.split_val(train, val_ratio=0.33, split="random", seed=22) else: train_chunk, test_chunk = dataset_manager.split_val(train, 0.2, split="random", seed=22) class_ratios.append(dataset_manager.get_class_ratio(train_chunk)) # generate prefixes if nr_events is not None: dt_train_prefixes = dataset_manager.generate_prefix_data(train_chunk, nr_events, nr_events) dt_test_prefixes = dataset_manager.generate_prefix_data(test_chunk, nr_events, nr_events) else: dt_train_prefixes = dataset_manager.generate_prefix_data(train_chunk, min_prefix_length, max_prefix_length) dt_test_prefixes = dataset_manager.generate_prefix_data(test_chunk, min_prefix_length, max_prefix_length) # encode data for classifier feature_combiner = FeatureUnion([(method, EncoderFactory.get_encoder(method, **cls_encoder_args)) for method in methods]) if cls_method == "svm" or cls_method == "logit": feature_combiner = Pipeline([('encoder', feature_combiner), ('scaler', StandardScaler())]) dt_train_encoded = feature_combiner.fit_transform(dt_train_prefixes) pd.DataFrame(dt_train_encoded).to_csv(os.path.join(folds_dir, "fold%s_train.csv" % cv_iter), sep=";", index=False) del dt_train_encoded dt_test_encoded = feature_combiner.transform(dt_test_prefixes) pd.DataFrame(dt_test_encoded).to_csv(os.path.join(folds_dir, "fold%s_test.csv" % cv_iter), sep=";", index=False) del dt_test_encoded # labels train_y = dataset_manager.get_label_numeric(dt_train_prefixes) with open(os.path.join(folds_dir, "fold%s_train_y.csv" % cv_iter), "wb") as fout: pickle.dump(train_y, fout) test_y = dataset_manager.get_label_numeric(dt_test_prefixes) with open(os.path.join(folds_dir, "fold%s_test_y.csv" % cv_iter), "wb") as fout: pickle.dump(test_y, fout) else: for train_chunk, test_chunk in dataset_manager.get_stratified_split_generator(train, n_splits=n_splits): class_ratios.append(dataset_manager.get_class_ratio(train_chunk)) # generate prefixes if nr_events is not None: dt_train_prefixes = dataset_manager.generate_prefix_data(train_chunk, nr_events, nr_events) dt_test_prefixes = dataset_manager.generate_prefix_data(test_chunk, nr_events, nr_events) else: dt_train_prefixes = dataset_manager.generate_prefix_data(train_chunk, min_prefix_length, max_prefix_length) dt_test_prefixes = dataset_manager.generate_prefix_data(test_chunk, min_prefix_length, max_prefix_length) # encode data for classifier feature_combiner = FeatureUnion([(method, EncoderFactory.get_encoder(method, **cls_encoder_args)) for method in methods]) if cls_method == "svm" or cls_method == "logit": feature_combiner = Pipeline([('encoder', feature_combiner), ('scaler', StandardScaler())]) dt_train_encoded = feature_combiner.fit_transform(dt_train_prefixes)
pd.DataFrame(dt_train_encoded)
pandas.DataFrame
import timeit import pandas as pd import numpy as np from typing import Dict,List loops=1000 inputfile:List[List[int]] = [[1,2,3,4,5,6] for x in range(0,1000)] # input arrives as a list of row lists # need to make columns ####################### # zip # 60us def i1() -> List[int]: return list(map(list, zip(*inputfile))) # type:ignore t = timeit.timeit(i1,number=loops) print(f'i1 transpose zip {1e6*t/loops} us') ####################### # list # 64us def i2() -> List[List[int]]: return [list(i) for i in zip(*inputfile)] t = timeit.timeit(i2,number=loops) print(f'i2 transpose list {1e6*t/loops} us') ####################### # append # 64us def i3() -> List[List[int]]: x = [] for i in zip(*inputfile): x.append((list(i))) return x t = timeit.timeit(i3,number=loops) print(f'i3 transpose append {1e6*t/loops} us') ####################### # list to col dict # 50us (winner!), 318 with np.array def i4() -> Dict[int, int]: return {x[0]:np.array(x[1]) for x in enumerate(zip(*inputfile))} #type:ignore t = timeit.timeit(i4,number=loops) print(f'i4 transpose list to dict {1e6*t/loops} us') ####################### # list to dict to df # should be 50+375 but is 1370. 743 if i do the np.array above # this involves type conversion from series to ndarray def g1() -> pd.DataFrame: return pd.DataFrame(i4()) #type:ignore t = timeit.timeit(g1,number=loops) print(f'g1 list to col dict to df {1e6*t/loops} us') ####################### # dictionary of column lists x1 = list(range(0,1000)) # skipping the np array step is cheating y1 = {'a':x1,'b':x1,'c':x1,'d':x1,'e':x1,'f':x1} # 375 us, 650 if i include np array def f1() -> pd.DataFrame: y2 = {k:np.array(v) for (k,v) in y1.items()} return
pd.DataFrame(y2)
pandas.DataFrame
import logging import math import os import sys import geopandas as gpd import numpy as np import pandas as pd from _helpers import _sets_path_to_root from _helpers import _to_csv_nafix from _helpers import configure_logging # from shapely.geometry import LineString, Point, Polygon # from osm_data_config import AFRICA_CC logger = logging.getLogger(__name__) # Requirement to set path to filepath for execution # os.chdir(os.path.dirname(os.path.abspath(__file__))) def prepare_substation_df(df_all_substations): """ Prepare raw substations dataframe to the structure compatible with PyPSA-Eur Parameters ---------- df_all_substations : dataframe Raw substations dataframe as downloaded from OpenStreetMap """ # Modify the naming of the DataFrame columns to adapt to the PyPSA-Eur-like format df_all_substations = df_all_substations.rename( columns={ "id": "bus_id", "tags.voltage": "voltage", # "dc", will be added below "tags.power": "symbol", # "under_construction", will be added below "tags.substation": "tag_substation", "Country": "country", # new/different to PyPSA-Eur "Area": "tag_area", "lonlat": "geometry", }) # Add longitute (lon) and latitude (lat) coordinates in the dataset df_all_substations["lon"] = df_all_substations["geometry"].x df_all_substations["lat"] = df_all_substations["geometry"].y # Add NaN as default df_all_substations["station_id"] = np.nan df_all_substations["dc"] = np.nan df_all_substations["under_construction"] = np.nan # Rearrange columns clist = [ "bus_id", "station_id", "voltage", "dc", "symbol", "under_construction", "tag_substation", "tag_area", "lon", "lat", "geometry", "country", ] df_all_substations = df_all_substations[clist] # add the under_construction and dc df_all_substations["under_construction"] = False df_all_substations["dc"] = False return df_all_substations def add_line_endings_tosubstations(substations, lines): # extract columns from substation df bus_s = gpd.GeoDataFrame(columns=substations.columns) bus_e = gpd.GeoDataFrame(columns=substations.columns) # Read information from line.csv bus_s[["voltage", "country"]] = lines[["voltage", "country"]].astype(str) bus_s["geometry"] = lines.geometry.boundary.map( lambda p: p.geoms[0] if len(p.geoms) >= 2 else None) bus_s["lon"] = bus_s["geometry"].map(lambda p: p.x if p != None else None) bus_s["lat"] = bus_s["geometry"].map(lambda p: p.y if p != None else None) bus_s["bus_id"] = ( (substations["bus_id"].max() if "bus_id" in substations else 0) + 1 + bus_s.index) bus_e[["voltage", "country"]] = lines[["voltage", "country"]].astype(str) bus_e["geometry"] = lines.geometry.boundary.map( lambda p: p.geoms[1] if len(p.geoms) >= 2 else None) bus_e["lon"] = bus_e["geometry"].map(lambda p: p.x if p != None else None) bus_e["lat"] = bus_e["geometry"].map(lambda p: p.y if p != None else None) bus_e["bus_id"] = bus_s["bus_id"].max() + 1 + bus_e.index bus_all = bus_s.append(bus_e).reset_index(drop=True) # Add NaN as default bus_all["station_id"] = np.nan bus_all["dc"] = False # np.nan # Assuming substations completed for installed lines bus_all["under_construction"] = False bus_all["tag_area"] = 0.0 # np.nan bus_all["symbol"] = "substation" # TODO: this tag may be improved, maybe depending on voltage levels bus_all["tag_substation"] = "transmission" buses = substations.append(bus_all).reset_index(drop=True) # Assign index to bus_id buses.loc[:, "bus_id"] = buses.index return buses # # tol=0.01, around 700m at latitude 44. # def set_substations_ids(buses, tol=0.02): # """ # Function to set substations ids to buses, accounting for location tolerance # The algorithm is as follows: # 1. initialize all substation ids to -1 # 2. if the current substation has been already visited [substation_id < 0], then skip the calculation # 3. otherwise: # 1. identify the substations within the specified tolerance (tol) # 2. when all the substations in tolerance have substation_id < 0, then specify a new substation_id # 3. otherwise, if one of the substation in tolerance has a substation_id >= 0, then set that substation_id to all the others; # in case of multiple substations with substation_ids >= 0, the first value is picked for all # """ # buses["station_id"] = -1 # station_id = 0 # for i, row in buses.iterrows(): # if buses.loc[i, "station_id"] >= 0: # continue # # get substations within tolerance # close_nodes = np.where( # buses.apply( # lambda x: math.dist([row["lat"], row["lon"]], # [x["lat"], x["lon"]]) <= tol, # axis=1, # ))[0] # if len(close_nodes) == 1: # # if only one substation is in tolerance, then the substation is the current one iì # # Note that the node cannot be with substation_id >= 0, given the preliminary check # # at the beginning of the for loop # buses.loc[buses.index[i], "station_id"] = station_id # # update station id # station_id += 1 # else: # # several substations in tolerance # # get their ids # subset_substation_ids = buses.loc[buses.index[close_nodes], # "station_id"] # # check if all substation_ids are negative (<0) # all_neg = subset_substation_ids.max() < 0 # # check if at least a substation_id is negative (<0) # some_neg = subset_substation_ids.min() < 0 # if all_neg: # # when all substation_ids are negative, then this is a new substation id # # set the current station_id and increment the counter # buses.loc[buses.index[close_nodes], "station_id"] = station_id # station_id += 1 # elif some_neg: # # otherwise, when at least a substation_id is non-negative, then pick the first value # # and set it to all the other substations within tolerance # sub_id = -1 # for substation_id in subset_substation_ids: # if substation_id >= 0: # sub_id = substation_id # break # buses.loc[buses.index[close_nodes], "station_id"] = sub_id def set_unique_id(df, col): """ Create unique id's, where id is specified by the column "col" The steps below create unique bus id's without loosing the original OSM bus_id Unique bus_id are created by simply adding -1,-2,-3 to the original bus_id Every unique id gets a -1 If a bus_id exist i.e. three times it it will the counted by cumcount -1,-2,-3 making the id unique Parameters ---------- df : dataframe Dataframe considered for the analysis col : str Column name for the analyses; examples: "bus_id" for substations or "line_id" for lines """ # operate only if id is not already unique (nunique counts unique values) if df[col].count() != df[col].nunique(): # create cumcount column. Cumcount counts 0,1,2,3 the number of duplicates df["cumcount"] = df.groupby([col]).cumcount() # avoid 0 value for better understanding df["cumcount"] = df["cumcount"] + 1 # add cumcount to id to make id unique df[col] = df[col].astype(str) + "-" + df["cumcount"].values.astype(str) # remove cumcount column df.drop(columns="cumcount", inplace=True) return df def split_cells(df, lst_col="voltage"): """ Split semicolon separated cells i.e. [66000;220000] and create new identical rows Parameters ---------- df : dataframe Dataframe under analysis lst_col : str Target column over which to perform the analysis """ x = df.assign(**{lst_col: df[lst_col].str.split(";")}) x = pd.DataFrame({ col: np.repeat(x[col].values, x[lst_col].str.len()) for col in x.columns.difference([lst_col]) }).assign( **{lst_col: np.concatenate(x[lst_col].values)})[x.columns.tolist()] return x def filter_voltage(df, threshold_voltage=35000): # Drop any row with N/A voltage df = df.dropna(subset=["voltage"]) # Split semicolon separated cells i.e. [66000;220000] and create new identical rows df = split_cells(df) # Convert voltage to float, if impossible, discard row df["voltage"] = (df["voltage"].apply( lambda x: pd.to_numeric(x, errors="coerce")).astype(float)) df = df.dropna(subset=["voltage"]) # Drop any row with Voltage = N/A # convert voltage to int df.loc[:, "voltage"] = df["voltage"].astype(int) # keep only lines with a voltage no lower than than threshold_voltage df = df[df.voltage >= threshold_voltage] return df def finalize_substation_types(df_all_substations): """ Specify bus_id and voltage columns as integer """ # make float to integer df_all_substations["bus_id"] = df_all_substations["bus_id"].astype(int) df_all_substations.loc[:, "voltage"] = df_all_substations["voltage"].astype( int) return df_all_substations def prepare_lines_df(df_lines): """ This function prepares the dataframe for lines and cables Parameters ---------- df_lines : dataframe Raw lines or cables dataframe as downloaded from OpenStreetMap """ # Modification - create final dataframe layout df_lines = df_lines.rename( columns={ "id": "line_id", "tags.voltage": "voltage", "tags.circuits": "circuits", "tags.cables": "cables", "tags.frequency": "tag_frequency", "tags.power": "tag_type", "lonlat": "geometry", "Country": "country", # new/different to PyPSA-Eur "Length": "length", }) # Add NaN as default df_lines["bus0"] = np.nan df_lines["bus1"] = np.nan df_lines["underground"] = np.nan df_lines["under_construction"] = np.nan # Rearrange columns clist = [ "line_id", "bus0", "bus1", "voltage", "circuits", "length", "underground", "under_construction", "tag_type", "tag_frequency", "cables", "geometry", "country", ] # Check. If column is not in df create an empty one. for c in clist: if c not in df_lines: df_lines[c] = np.nan df_lines = df_lines[clist] return df_lines def finalize_lines_type(df_lines): """ This function is aimed at finalizing the type of the columns of the dataframe """ df_lines["line_id"] = df_lines["line_id"].astype(int) return df_lines def integrate_lines_df(df_all_lines): """ Function to add underground, under_construction, frequency and circuits """ # Add under construction info # Default = False. No more information available atm df_all_lines["under_construction"] = False # Add underground flag to check whether the line (cable) is underground # Simplified. If tag_type cable then underground is True df_all_lines["underground"] = df_all_lines["tag_type"] == "cable" # More information extractable for "underground" by looking at "tag_location". if "tag_location" in df_all_lines: # drop column if exist df_all_lines.drop(columns="tag_location", inplace=True) # Add frequency column df_all_lines["tag_frequency"] = 50 # Add circuits information # if not int make int if df_all_lines["cables"].dtype != int: # HERE. "0" if cables "None", "nan" or "1" df_all_lines.loc[(df_all_lines["cables"] < "3") | df_all_lines["cables"].isna(), "cables"] = "0" df_all_lines["cables"] = df_all_lines["cables"].astype("int") # downgrade 4 and 5 cables to 3... if 4 or 5 in df_all_lines["cables"].values: # Reason: 4 cables have 1 lighting protection cables, 5 cables has 2 LP cables - not transferring energy; # see https://hackaday.com/2019/06/11/a-field-guide-to-transmission-lines/ # where circuits are "0" make "1" df_all_lines.loc[(df_all_lines["cables"] == 4) | (df_all_lines["cables"] == 5), "cables"] = 3 # one circuit contains 3 cable df_all_lines.loc[df_all_lines["circuits"].isna(), "circuits"] = ( df_all_lines.loc[df_all_lines["circuits"].isna(), "cables"] / 3) df_all_lines["circuits"] = df_all_lines["circuits"].astype(int) # where circuits are "0" make "1" df_all_lines.loc[(df_all_lines["circuits"] == "0") | (df_all_lines["circuits"] == 0), "circuits"] = 1 # drop column if exist if "cables" in df_all_lines: df_all_lines.drop(columns="cables", inplace=True) return df_all_lines def prepare_generators_df(df_all_generators): """ Prepare the dataframe for generators """ # reset index df_all_generators = df_all_generators.reset_index(drop=True) # rename columns df_all_generators = df_all_generators.rename( columns={"tags.generator:output:electricity": "power_output_MW"}) # convert electricity column from string to float value df_all_generators = df_all_generators[ df_all_generators["power_output_MW"].astype(str).str.contains("MW")] df_all_generators["power_output_MW"] = ( df_all_generators["power_output_MW"].str.extract("(\\d+)").astype( float)) return df_all_generators def find_first_overlap(geom, country_geoms, default_name): """Return the first country whose shape intersects the geometry""" for c_name, c_geom in country_geoms.items(): if not geom.disjoint(c_geom): return c_name return default_name def set_countryname_by_shape(df, ext_country_shapes, names_by_shapes=True, exclude_external=True): "Set the country name by the name shape" if names_by_shapes: df["country"] = [ find_first_overlap( row["geometry"], ext_country_shapes, None if exclude_external else row["country"], ) for id, row in df.iterrows() ] df.dropna(subset=["country"], inplace=True) return df def create_extended_country_shapes(country_shapes, offshore_shapes): """Obtain the extended country shape by merging on- and off-shore shapes""" merged_shapes = (gpd.GeoDataFrame({ "name": list(country_shapes.index), "geometry": [ c_geom.unary_union(offshore_shapes[c_code]) if c_code in offshore_shapes else c_geom for c_code, c_geom in country_shapes.items() ], }).set_index("name")["geometry"].set_crs(4326)) return merged_shapes def clean_data( input_files, output_files, ext_country_shapes=None, names_by_shapes=True, tag_substation="transmission", threshold_voltage=35000, add_line_endings=True, ): # ----------- LINES AND CABLES ----------- # Load raw data lines df_lines = gpd.read_file(input_files["lines"]).set_crs(epsg=4326, inplace=True) # prepare lines dataframe and data types df_lines = prepare_lines_df(df_lines) df_lines = finalize_lines_type(df_lines) # Load raw data lines df_cables = gpd.read_file(input_files["cables"]).set_crs(epsg=4326, inplace=True) # prepare cables dataframe and data types df_cables = prepare_lines_df(df_cables) df_cables = finalize_lines_type(df_cables) # concatenate lines and cables in a single dataframe df_all_lines =
pd.concat([df_lines, df_cables])
pandas.concat
#!/usr/bin/env python3 # # Copyright, <NAME> 2020 # # MIT License # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import argparse import glob from multiprocessing import Pool from pathlib import Path import cv2 import numpy as np import pandas as pd from per_class_iou import per_class_iou from utils import path_join parser = argparse.ArgumentParser( description='This script evaluates the per-class iou ' 'for given predictions and ground truths.') parser.add_argument('predictions_dir', help='Directory containing png files ' 'representing segmentation predictions') parser.add_argument('true_labels_dir', help='Directory containing the corresponding true labels ' 'of the images for which the predictions in ' '\'predictions_dir\' were made.') parser.add_argument('log_output', help='Location of CSV file which will be written to contain' ' per-class IOU for each image.') parser.add_argument('-t', '--threads', default=1, type=int, help='Number of parallel threads to use') parser.add_argument('-c', '--n_classes', default=3, type=int, help='Number of classes in the data') def mean_per_class_iou(pred_dir, truth_dir, n_classes): pred_paths = sorted(glob.glob(path_join(pred_dir, '*.png')) + glob.glob( path_join(pred_dir, '*.jpg'))) truth_paths = sorted(glob.glob(path_join(truth_dir, '*.png')) + glob.glob( path_join(truth_dir, '*.jpg'))) assert len(pred_paths) == len(truth_paths), \ 'Different number of images in prediction and truth directories' pd_paths = list(zip(pred_paths, truth_paths)) assert np.all( [Path(x_p).stem == Path(y_p).stem for (x_p, y_p) in pd_paths]), \ 'Not all prediction and truth images are named correspondingly' iou_class_names = [f'iou_class_{i}' for i in range(args.n_classes)] iou_df = pd.DataFrame(columns=['truth_path', 'pred_path'] + iou_class_names) for pred_path, truth_path in pd_paths: pred_img = cv2.imread(pred_path, cv2.IMREAD_GRAYSCALE) truth_img = cv2.imread(truth_path, cv2.IMREAD_GRAYSCALE) resized_dim = (truth_img.shape[1], truth_img.shape[0]) pred_img = cv2.resize(pred_img, resized_dim, interpolation=cv2.INTER_NEAREST) pc_iou = per_class_iou(pred_img, truth_img, n_classes) iou_df = iou_df.append(
pd.Series([truth_path, pred_path] + pc_iou, index=iou_df.columns)
pandas.Series
''' Author: <NAME> Utilities to summarize the outputs produced by the model i.e. the results.txt files spitted out by the evaluation scripts. ''' import os from sys import path import re import pandas as pd import numpy as np from scipy.stats import ttest_rel # res will need to be passed to the last function, as an example: #output_path = '/scratch/geeticka/relation-extraction/output/semeval2010/CrossValidation' #def res(path): return os.path.join(output_path, path) ## Below are the methods to gather necessary information from the results file def read_confusion_matrix_per_line(cur_line): if re.search(r'.*\|.*', cur_line): # only get those lines which have a pipe operator splitted_line = cur_line.strip().split() pipe_seen = 0 # the correct numbers are between two pipes confusion_matrix_line = [] for val in splitted_line: if val.startswith('|'): pipe_seen += 1 if pipe_seen == 1 and val.strip() != '|': # keep collecting the values as you are val = [x for x in val if x != '|'] # to handle some special cases when the pipe operator # is stuck to the number (happens when the number is too long) val = ''.join(val) confusion_matrix_line.append(float(val)) return confusion_matrix_line return None def read_accuracy_per_line(cur_line): if cur_line.startswith('Accuracy (calculated'): accuracy = re.match(r'.*= (.*)%', cur_line).groups()[0] accuracy = float(accuracy) return accuracy return None def read_precision_recall_f1(cur_line): # assume that the mode is once we have read 'Results for the individual' match = re.match(r'.*= (.*)%.*= (.*)%.*= (.*)%$', cur_line) if match: precision, recall, f1 = match.groups() return float(precision), float(recall), float(f1) else: return None #if not cur_line.startswith('Micro-averaged result'): # you want to read only up to the point when the relations # will need to double check above # confusion matrix portion refers to which part of the file to read # for eg, this will be <<< (9+1)-WAY EVALUATION TAKING DIRECTIONALITY INTO ACCOUNT -- OFFICIAL >>> for semeval def get_file_metrics(num_relations, result_file, confusion_matrix_portion): official_portion_file = False individual_relations_f1_portion = False micro_f1_portion = False macro_f1_portion = False confusion_matrix_official = [] # stores the official confusion matrix read from the file accuracy = None metrics_indiv_relations = [] # precision, recall and f1 for each relation metrics_micro = [] # excluding the other relation metrics_macro = [] # excluding the other relation with open(result_file, 'r') as result_file: for cur_line in result_file: cur_line = cur_line.strip() #if cur_line.startswith('<<< (9+1)-WAY EVALUATION TAKING DIRECTIONALITY INTO ACCOUNT -- OFFICIAL >>>'): if official_portion_file is True and cur_line.startswith('<<<'): break if cur_line.startswith(confusion_matrix_portion): official_portion_file = True if official_portion_file is False: continue confusion_matrix_line = read_confusion_matrix_per_line(cur_line) if confusion_matrix_line is not None: confusion_matrix_official.append(confusion_matrix_line) acc = read_accuracy_per_line(cur_line) if acc is not None: accuracy = acc # figure out which sub portion of the official portion we are in if cur_line.startswith('Results for the individual relations:'): individual_relations_f1_portion = True elif cur_line.startswith('Micro-averaged result'): micro_f1_portion = True elif cur_line.startswith('MACRO-averaged result'): macro_f1_portion = True # populate the precision, recall and f1 for the correct respective lists if individual_relations_f1_portion is True and micro_f1_portion is False: vals = read_precision_recall_f1(cur_line) if vals is not None: metrics_indiv_relations.append([vals[0], vals[1], vals[2]]) elif micro_f1_portion is True and macro_f1_portion is False: vals = read_precision_recall_f1(cur_line) if vals is not None: metrics_micro.append([vals[0], vals[1], vals[2]]) elif macro_f1_portion is True: vals = read_precision_recall_f1(cur_line) if vals is not None: metrics_macro.append([vals[0], vals[1], vals[2]]) return confusion_matrix_official, accuracy, metrics_indiv_relations, metrics_micro, metrics_macro # Generate confusion matrix as a pandas dataframe def get_confusion_matrix_as_df(confusion_matrix_official, relations_as_short_list): index = pd.Index(relations_as_short_list, name='gold labels') columns = pd.Index(relations_as_short_list, name='predicted') confusion_matrix_df = pd.DataFrame(data=confusion_matrix_official, columns=columns,index=index) return confusion_matrix_df # Give the confusions acorss each relation, with a special interest on other def generate_confused_with_string(idx, row, relation_full_form_dictionary, full_form=False): # index is the current relation that we are considering and row is all the predicted examples confused_with_string = "" num_of_columns = len(row.index) for i in range(0, num_of_columns): column_name = row.index[i] column_value = int(row.loc[column_name]) if column_value > 0 and column_name != idx: if full_form is True: column_name = relation_full_form_dictionary[column_name] confused_with_string += " " + column_name + "(" + str(column_value) + ")" return confused_with_string.strip() #print(row.data[0]) #for val in row: # print(val) def generate_pretty_summary_confusion_matrix(confusion_matrix_df, relation_full_form_dictionary, full_form=False): data = [] # index will be 0,1,2 and so on, but columns will be # Actual label, confused with as a string, correct predictions as a number for index, row in confusion_matrix_df.iterrows(): actual_label = relation_full_form_dictionary[index] confused_with = generate_confused_with_string(index, row, relation_full_form_dictionary, full_form) # short form is the default correct_predictions = row[index] # eg: gives the column value for C-E for an index C-E #if index != '_O': confused_with_other = row['_O'] # this is specific to semeval and will need to be changed #else: confused_with_other = None data.append([actual_label, confused_with, correct_predictions]) columns = pd.Index(['Gold Relation', 'Confused With(num_examples)', 'Correct Predictions'], name='summary') pretty_summary_confusion_matrix_df = pd.DataFrame(data=data, columns=columns) return pretty_summary_confusion_matrix_df # Give the individual relation metrics as a dataframe def create_metrics_indiv_relations_df(metrics_indiv_relations, relation_full_form_dictionary, relation_as_short_list): index_list = relation_as_short_list index_list_verbose = [relation_full_form_dictionary[x] for x in index_list] index =
pd.Index(index_list_verbose, name='labels')
pandas.Index
from functools import lru_cache from pyiso import client_factory from datetime import datetime, timedelta from funcy import compose, identity, retry from itertools import repeat from urllib.error import HTTPError import pandas as pd import numpy as np from app.model import RENEWABLES, NON_RENEWABLES from app.util import full_hour_series @retry(5, errors=HTTPError) @lru_cache() def raw_generation(ba_name, control_area, start, end): entso = client_factory(ba_name) data = entso.get_generation( latest=True, control_area=control_area, start_at=start, end_at=end ) return pd.DataFrame(data) def deduplicate(raw): """Sum generation readings that have the same fuel_name""" by_fuel = raw.groupby(["fuel_name", "timestamp", "freq"]) return by_fuel.agg({"gen_MW": np.sum}).reset_index() def add_missing_megawatts(raw): """Add 0 generation reading for missing timestamps""" by_fuel = raw.groupby(["fuel_name"]) return pd.concat( [_group_without_missing_data(g) for _, g in by_fuel], ignore_index=True ) def _group_without_missing_data(group): source = group.iloc[0] source_zero_mw = pd.DataFrame([source]) source_zero_mw.at[source_zero_mw.index[0], "gen_MW"] = 0 # in case first 15 minutes are missing: make sure series starts at 15 minutes past start = source["timestamp"].replace(minute=15) end = group.iloc[-1].timestamp series = full_hour_series(start, end, "15min") def filler(t): filler = source_zero_mw.copy() filler.at[filler.index[0], "timestamp"] = t return filler def df_for_timestamp(t): df = group[group["timestamp"] == t] return df if len(df) > 0 else filler(t) return pd.concat([df_for_timestamp(t) for t in series], ignore_index=True) def downsample(raw): """Downsample to 1 hour (original reports use 15m interval).""" assert raw[raw["freq"] != "15m"].empty # The last generation report of the day has a timestamp that is # day+1 at 00:00 (each report contains data of the previous 15 minutes). # Adjust timestamp a little to get all generation reports within the # boundary of one day. raw["timestamp_adjusted"] = raw["timestamp"] -
pd.Timedelta("1s")
pandas.Timedelta
''' File: HAPT_Dataset.py Author: <NAME> Date: 03/10/2019 Version: 1.0 Description: utility functions to load the Human Activities and Postural Transitions (HAPT) dataset ''' import numpy as np import pandas as pd from os.path import expanduser from keras.utils import to_categorical from multiprocessing import Pool as ThreadPool import math import scipy.signal home = expanduser("~") ''' Dataset Info - Labels: 1 WALKING 2 W_UPSTAIRS 3 W_DOWNSTAIRS 4 SITTING 5 STANDING 6 LAYING 7 STAND_TO_SIT 8 SIT_TO_STAND 9 SIT_TO_LIE 10 LIE_TO_SIT 11 STAND_TO_LIE 12 LIE_TO_STAND ''' #Modify this line with the right path. #Dataset available at: http://archive.ics.uci.edu/ml/machine-learning-databases/00341/ ucihapt_datapath = home+"/HAPT_Dataset/" def get_test_uuids(): test_uuids = pd.read_csv(ucihapt_datapath+"Test/subject_id_test.txt",names=["UUID"]) all_test_uuids = np.unique(test_uuids.values) return all_test_uuids def get_train_uuids(): train_uuids = pd.read_csv(ucihapt_datapath+"Train/subject_id_train.txt",names=["UUID"]) all_train_uuids = np.unique(train_uuids.values) return all_train_uuids #Get Data no resampling def get_all_data_multi_thread_noresampling_3D(uuids, n_threads): print("Loading data") print("Initiating pool") print("resampling 50 -> 40 Hz disabled. Doing 3D ") uuids_list = [ [x] for x in uuids ] pool = ThreadPool(n_threads) print("Pool map") test_points = pool.map( get_all_data_noresampling_3D,uuids_list) print("Pool map") pool.close() print("Pool join") pool.join() #Merging data from treads print("Merging threads' data") X_list = [] y_list = [] for res in test_points: #dataset_size += len(res[1]) X_list.extend(res[0]) y_list.extend(res[1]) X_es = np.zeros((len(y_list),128,8)) X_es[:,:] = [x for x in X_list ] y_es = np.zeros(len(y_list)) y_es[:] = [y for y in y_list] y_scaled = to_categorical(y_es, num_classes=7) return (X_es, y_scaled) def get_all_data_noresampling_3D(uuids): gt_df = pd.read_csv(ucihapt_datapath+"RawData/labels.txt",sep="\s",names=['EXP_ID','USER_ID','LABEL','START','END'],engine='python') #exclude other uuids #print( gt_df.head() ) filtered_df = pd.DataFrame(columns=['EXP_ID','USER_ID','LABEL','START','END']) for uuid in uuids: data_uuid = gt_df[ gt_df['USER_ID'] == uuid ] filtered_df =
pd.concat([filtered_df,data_uuid], ignore_index=True)
pandas.concat
import os import pandas import numpy from ... import normalize from ... import convert def hellinger(aves, stds): """ Computes pairwise Hellinger distances between Gaussian distributions from lists of the means and standard deviations. Args: aves (numpy array): list of means (length n) stds (numpy array): list of standard deviations (length n) Returns: pairise hellinger distance (numpy array ~ (n, n)) """ epsilon = 1e-6 variances = (epsilon + stds) ** 2 std_probs = numpy.multiply.outer(epsilon + stds, epsilon + stds) var_sums = numpy.add.outer(variances, variances) mean_diffs = numpy.subtract.outer(aves, aves) return 1 - numpy.exp(-mean_diffs ** 2 / (4 * var_sums)) * \ numpy.sqrt(2 * std_probs / var_sums) def max_hellinger(aves, stds): """ Computes maximum Hellinger distance from pairwise comparisions of Gaussian distributions from lists of the means and standard deviations. Args: aves (numpy array): list of means (length n) stds (numpy array): list of standard deviations (length n) Returns: maximum pairise hellinger distance (float) """ return numpy.max(hellinger(aves, stds)) def create_tissue_stats(): """ Uses data from the GTEx project to estimate statistics of gene expression across tissues. Expression is measured in Transcripts per Million (TPM). Statistics are saved in csv format in the __file__ directory. Args: None Returns: None """ filepath = os.path.dirname(os.path.abspath(__file__)) samples = pandas.read_csv(os.path.join(filepath, 'SRP012682.tsv'), sep='\t') expression = pandas.read_csv(os.path.join(filepath, 'expression_data.csv'), sep='\t') mean = pandas.DataFrame() median = pandas.DataFrame() std =
pandas.DataFrame()
pandas.DataFrame
"""Tradingview model""" __docformat__ = "numpy" import requests from tradingview_ta import TA_Handler import pandas as pd from gamestonk_terminal import config_terminal as cfg INTERVALS = { "1m": "1 min", "5m": "5 min", "15m": "15 min", "1h": "1 hour", "4h": "4 hours", "1d": "1 day", "1W": "1 week", "1M": "1 month", } SCREENERS = ["crypto", "forex", "cfd"] def get_tradingview_recommendation( ticker: str, screener: str, exchange: str, interval: str ) -> pd.DataFrame: """Get tradingview recommendation based on technical indicators Parameters ---------- ticker : str Ticker to get the recommendation from tradingview based on technical indicators screener : str Screener based on tradingview docs https://python-tradingview-ta.readthedocs.io/en/latest/usage.html exchange: str Exchange based on tradingview docs https://python-tradingview-ta.readthedocs.io/en/latest/usage.html interval: str Interval time to check technical indicators and correspondent recommendation Returns ------- df_recommendation: pd.DataFrame Dataframe of tradingview recommendations based on technical indicators """ if not exchange: s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" result = requests.get(s_req, stream=True) exchange = result.json()["Exchange"] if not interval: df_recommendation =
pd.DataFrame()
pandas.DataFrame
import datetime import logging import json import requests from pandas import json_normalize import pandas as pd from google.cloud import storage from anyway.parsers.waze.waze_db_functions import ( insert_waze_alerts, insert_waze_traffic_jams, enrich_waze_alerts_ended_at_timestamp, enrich_waze_traffic_jams_ended_at_timestamp, ) from anyway.models import WazeAlert, WazeTrafficJams ISRAEL_POLYGON = [ ("33.717000", "32.547000"), ("34.722000", "33.004000"), ("35.793000", "33.331000"), ("35.914000", "32.953000"), ("35.750000", "32.723000"), ("35.395000", "31.084000"), ("34.931000", "29.473000"), ("33.717000", "32.547000"), ("33.717000", "32.547000"), ] WAZE_ALERTS_API_PARAMS = { "format": "JSON", "tk": "ccp_partner", "ccp_partner_name": "The Public Knowledge Workshop", "types": "traffic,alerts,irregularities", "polygon": ";".join([",".join(point) for point in ISRAEL_POLYGON]), } WAZE_ALERTS_API_URL = "https://il-georss.waze.com/rtserver/web/TGeoRSS" logger = logging.getLogger("waze_data") def list_blobs(bucket_name): """ Lists all the blobs in the bucket. """ storage_client = storage.Client() blobs = storage_client.list_blobs(bucket_name) return blobs def parse_waze_alerts_data(waze_alerts, back_filled=False): """ parse waze alert json into a Dataframe. param waze_alerts: waze raw alert json data return: parsed Dataframe """ waze_df = json_normalize(waze_alerts) waze_df["created_at"] = pd.to_datetime(waze_df["pubMillis"], unit="ms") waze_df.rename( { "location.x": "longitude", "location.y": "latitude", "nThumbsUp": "number_thumbs_up", "reportRating": "report_rating", "reportDescription": "report_description", "reportByMunicipalityUser": "report_by_municipality_user", "jamUuid": "jam_uuid", "type": "alert_type", "subtype": "alert_subtype", "roadType": "road_type", }, axis=1, inplace=True, ) waze_df["geom"] = waze_df.apply( lambda row: "POINT({} {})".format(row["longitude"], row["latitude"]), axis=1 ) waze_df["road_type"] = int(waze_df["road_type"].fillna(-1)[0]) waze_df["number_thumbs_up"] = int(waze_df.get("number_thumbs_up").fillna(0)[0]) waze_df["report_by_municipality_user"] = _convert_to_bool( waze_df.get("report_by_municipality_user", False) ) waze_df["back_filled"] = back_filled waze_df.drop(["country", "pubMillis"], axis=1, inplace=True, errors="ignore") for key in waze_df.keys(): if waze_df[key] is None or key not in [field.name for field in WazeAlert.__table__.columns]: waze_df.drop([key], axis=1, inplace=True) return waze_df.to_dict("records") def parse_waze_traffic_jams_data(waze_jams, back_filled=False): """ parse waze traffic jams json into a Dataframe. param waze_jams: waze raw traffic jams json data return: parsed Dataframe """ waze_df =
json_normalize(waze_jams)
pandas.json_normalize
from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt import streamlit as st import pandas as pd import seaborn as sns import random from sklearn.model_selection import RepeatedKFold, train_test_split, cross_val_score, StratifiedKFold, RepeatedStratifiedKFold, GridSearchCV from sklearn import svm, preprocessing from models import PCA, autoencoder, model_prep from sklearn.preprocessing import StandardScaler, MinMaxScaler from models.model_prep import Model from utils import reporter from sklearn.pipeline import make_pipeline from sklearn.metrics import precision_recall_curve, roc_curve, auc, f1_score def svmachine(method, df_data, df_demog, regress, tracts, group, hemi, metric, reps): #1 Select features X = model_prep.select_features(method, df_data, tracts, hemi) dis = df_demog.apply(lambda x: True if x['Group'] == group else False , axis=1) hcs = df_demog.apply(lambda x: True if x['Group'] == 0 else False , axis=1) # Count number of True in series and find ratio of HC/PAT for splitting numOfdis = len(dis[dis == True].index) numOfhcs = len(hcs[hcs == True].index) ratio = numOfdis/(numOfhcs+numOfdis) st.write("Ratio subjects/controls:", np.round(ratio,2)) X = X[(X['Group'] == 0) | (X['Group'] == group)] y = X[['Group']] X = X.drop(['Group', 'ID'], axis=1) #scaler = MinMaxScaler(feature_range=(0, 1)) #X[X.columns] = scaler.fit_transform(X[X.columns]) param_grid = [{'kernel': ['rbf'], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] grid_search = GridSearchCV(svm.SVC(class_weight={0:ratio, group:1-ratio}), param_grid, scoring = "roc_auc") scores = [] #best_svc = svm.SVC(kernel='linear', C=1, class_weight={0:ratio, group:1-ratio}) cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=reps, random_state=42) for train_index, test_index in cv.split(X,y): X_train, X_test, y_train, y_test = X.iloc[train_index], X.iloc[test_index], y.iloc[train_index], y.iloc[test_index] if(regress): if'sex' in df_demog and 'age' in df_demog: X_train, X_test = model_prep.regress_confound(X_train, X_test, df_demog) else: st.error("No age or sex information found. Skipping regression step.") scaler, X_train, X_test = model_prep.normalize_features(X_train, X_test,method) #best_svc.fit(X_train, y_train.values.ravel()) grid_search.fit(X_train, y_train.values.ravel()) y_pred = grid_search.predict(X_test) fpr, tpr, thresholds = roc_curve(y_test, y_pred,group) auc_score = auc(fpr, tpr) #st.write(auc_score) scores.append(auc_score) st.success("Mean AUC: %0.2f (+/- %0.2f)" % (np.round(np.mean(scores), 2), np.round(np.std(scores),2))) return scores def run(method, df_data, df_demog, regress, tracts, group, hemi, metric, reps): st.warning("Computing permutations ... estimated time: " + str(np.round(len(df_demog)*2/60,2)) + " minutes.") if 'sex' not in df_demog and 'age' not in df_demog: st.error("No age or sex information found. Skipping regression step.") #1 Select features X = model_prep.select_features(method, df_data, tracts, hemi) # Get a bool series representing which row satisfies the condition i.e. True for # row in which value of group == 0 #st.write(X) dis = df_demog.apply(lambda x: True if x['Group'] == group else False , axis=1) hcs = df_demog.apply(lambda x: True if x['Group'] == 0 else False , axis=1) # Count number of True in series and find ratio of HC/PAT for splitting numOfdis = len(dis[dis == True].index) numOfhcs = len(hcs[hcs == True].index) ratio = numOfdis/numOfhcs #To accumulate error Distances DISTS = np.zeros(len(X)) countInserts = np.zeros(len(X)) count=0 #Separate HC from PATIENTS HC = X[X['Group'] == 0] y_HC = HC[['Group', 'ID']] PATIENTS = X[X['Group'] == group] y_PAT = PATIENTS[['Group', 'ID']] ##2 HERE, basically split the data into train and Val (split_size*repeats times) into equal size of HC/PAT. #split_size = int(np.ceil((float(numOfhcs)/numOfdis))) split_size = 5 #st.write (split_size, numOfhcs, numOfdis) repeats = reps #random_state = 12883823 #random_state=42 #rkf = RepeatedKFold(n_splits=split_size, n_repeats=repeats, random_state=random_state) AUC = np.zeros(repeats) tpr = [] fpr = [] #for train_idx, test_idx in rkf.split(HC,y_HC): for r in range(repeats): st.write("Iteration", r+1 , "of", repeats) X_train_split, X_test_split, y_train_split, y_test_split = train_test_split(HC, y_HC, test_size=min(0.2,ratio)) #X_train_split, X_test_split = HC.iloc[train_idx], HC.iloc[test_idx] #y_train_split, y_test_split = y_HC.iloc[train_idx], y_HC.iloc[test_idx] #Select subset of patients patients_subset_ids = np.array(random.sample(list(PATIENTS.index), min(len(X_test_split), len(PATIENTS)))) #Cating the HC test with the PATIENTS X_test_split = pd.concat([X_test_split,PATIENTS.loc[patients_subset_ids]]) y_test_split = pd.concat([y_test_split, y_PAT.loc[patients_subset_ids]]) X_train_split = X_train_split.drop(['Group', 'ID'], axis=1) X_test_split = X_test_split.drop(['Group', 'ID'], axis=1) #3 Linear regression of confound if(regress): if'sex' in df_demog and 'age' in df_demog: X_train_split, X_test_split = model_prep.regress_confound(X_train_split, X_test_split, df_demog) #4 Normalize features if method != "Z-score": scaler, X_train, X_test = model_prep.normalize_features(X_train_split, X_test_split, method) else: X_train, X_test = X_train_split, X_test_split #5 Anomaly detection method if method == "Z-score": model = Model(X_train, X_test, "Z-score") elif method == "PCA": model = Model(X_train, X_test, "PCA") else: model = Model(X_train, X_test, "Autoencoder") #6 Run d_train, d_test = model.run() DISTS[d_test.index] = DISTS[d_test.index] + d_test.values countInserts[d_test.index] += 1 #7 Evaluate result = model_prep.evaluate(d_train, d_test, y_HC, y_PAT, method) AUC[count], f, t = reporter.report_steps("ROC", result, method, group, metric, False) tpr.append(t) fpr.append(f) count = count + 1 #Assemble results / Aggregate and plot mean/median distributions DISTS /= countInserts WW =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python """ coding=utf-8 Code Template """ from emblaze import app import logging import os import pandas import textract from emblaze.ResumeParser.bin import lib from emblaze.ResumeParser.bin import field_extraction import spacy def main(): """ Main function documentation template :return: None :rtype: None """ logging.getLogger().setLevel(logging.INFO) # Extract data from upstream. observations = extract() # Spacy: Spacy NLP # nlp = spacy.load('en_core_web_sm') nlp = spacy.load('en') # Transform data to have appropriate fields observations, nlp = transform(observations, nlp) # Load data for downstream consumption load(observations, nlp) pass def text_extract_utf8(f): try: return str(textract.process(f), "utf-8") except UnicodeDecodeError as e: return '' def extract(): logging.info('Begin extract') # Reference variables candidate_file_agg = list() # # Create list of candidate files # for root, subdirs, files in os.walk(lib.get_conf('resume_directory')): # folder_files = [app.open_resource(os.path.join(root, x)).name for x in files] # candidate_file_agg.extend(folder_files) folder_files = [app.open_resource(os.path.join(lib.get_conf('resume_directory'), "resume.pdf")).name] candidate_file_agg.extend(folder_files) # print("folder_files:",folder_files) logging.info("candidate_file_agg:{0}".format(candidate_file_agg)) # Convert list to a pandas DataFrame observations =
pandas.DataFrame(data=candidate_file_agg, columns=['file_path'])
pandas.DataFrame
import scipy.signal import pandas as pd import numpy as np import peakutils from lmfit import models import chachifuncs as ccf import os import glob ################################ # OVERALL Wrapper Function ################################ def ML_generate(import_filepath): """Generates a dataframe containing charge and discharge descriptors/error parameters. Also writes descriptors to an excel spreadsheet 'describe.xlsx' import_filepath = filepath containing cleaned separated cycles""" # checks that the file exists assert os.path.exists(import_filepath), 'The file does not exist' # check that the whatever is passed to ML_generate is a string assert isinstance(import_filepath, str), 'The input should be a string' # creates dataframe of descriptors for the charge/discharge # cycles of all batteries df_ch = process.df_generate(import_filepath, 'c') df_dc = process.df_generate(import_filepath, 'd') # concats charge and discharge cycles df_final = pd.concat([df_ch, df_dc], axis=1) # drops any duplicate rows df_final = df_final.T.drop_duplicates().T # saves data to an excel file writer = pd.ExcelWriter('describe.xlsx') df_final.to_excel(writer, 'Sheet1') writer.save() return df_final ############################ # Sub - Wrapper Functions ############################ # data processing that calls from fitting class class process: # first function called by ML_generate def df_generate(import_filepath, cd): """Creates a pandas dataframe for each battery's charge/ discharge cycle in the import_filepath folder. import_filepath = filepath containing cleaned separated cycles cd = 'c' for charge and 'd' for discharge Output: df_ch = pandas dataframe for all cycles of all batteries in a col_ch = list of numbers of columns for each battery""" # generates a list of datafiles to analyze rootdir = import_filepath file_list = [f for f in glob.glob(os.path.join(rootdir, '*.xlsx'))] # iterate through dir to get excel file # generates a list of unique batteries list_bats = [] for file in file_list: # splits file paths to get battery names name = os.path.split(file)[1].split('.')[0] batname = name.split('-')[0] # adds unique battery names to the list of batteries if batname not in list_bats: list_bats.append(batname) else: None # notifies user of successful import notice = 'Successfully extracted all battery names for ' + cd print(notice) # generates a blank dataframe of charge/discharge descriptors df_ch = process.pd_create(cd) # begins generating dataframe of descriptors name_ch = [] for bat in list_bats: # notifies user which battery is being fit notice = 'Fitting battery: ' + bat + ' ' + cd print(notice) # generates dataframe of descriptor fits for each battery df = process.imp_all(import_filepath, bat, cd) # generates an iterative list of names for the 'name' # column of the final dataframe name_ch = name_ch + [bat] * len(df.index) # concats dataframe from current battery with previous # batteries df_ch = pd.concat([df_ch, df]) # adds name column to the dataframe df_ch['names'] = name_ch return df_ch def imp_all(source, battery, cd): """Generates a Pandas dataframe of descriptors for a single battery source = string containing directory with the excel sheets for individual cycle data battery = string containing excel spreadsheet of file name cd = either 'c' for charge or 'd' for discharge Output: charge_descript = pandas dataframe of charge descriptors""" # check that the battery label is a string # check that the whatever is passed to ML_generate is a string # check that 'c' or 'd' is passed assert isinstance(source, str), 'The input should be a string' assert isinstance(battery, str), 'The input should be a string' # generates list of battery files for import file_pref = battery + '*.xlsx' file_list = [f for f in glob.glob(os.path.join(source, file_pref))] # sorts by cycle cycle = [] # extracts cycle number from file name using known pattern for file in file_list: cyc1 = os.path.split(file)[1].split('Clean')[0] cyc = os.path.split(cyc1)[1].split('-Cycle')[1] cycle.append(int(cyc)) # sorts cycle numbers cyc_sort = sorted(cycle) # determines order of indexes that will properly sort the data cyc_index = [] for cyc in cyc_sort: cyc_index.append(cycle.index(cyc)) # reindexes file list using the lists of indices from above file_sort = [] for indices in cyc_index: file_sort.append(file_list[indices]) # this is the end of the shit that sorts by cycle charge_descript = process.pd_create(cd) # iterates over the file list and the cycle number for file_val, cyc_loop in zip(file_sort, cyc_sort): # determines dictionary of descriptors from file data c = process.imp_one_cycle(file_val, cd, cyc_loop, battery) if c != 'throw': # generates list of dictionaries while rejecting any that # return the 'throw' error charge_descript = process.pd_update(charge_descript, c) return charge_descript def pd_create(cd): """Creates a blank dataframe containing either charge or discharge descriptors/error parameters cd = either 'c' for charge or 'd' for discharge Output: blank pandas dataframe with descriptor columns and cycle number rows""" # number of descriptors it generates n_desc = 19 # determines prefix string based on need for a charge or # discharge dataframe if cd == 'c': prefix = 'ch_' else: prefix = 'dc_' # generates list of names for the top of the descriptors dataframe names = [] for ch in np.arange(n_desc): names.append(prefix + str(int(ch))) # adds names of error parameters to the end of the descriptor list names = names + [prefix+'AIC', prefix+'BIC', prefix+'red_chi_squared'] # creates pandas dataframe with necessary heading # print(names) desc = pd.DataFrame(columns=names) return desc def pd_update(desc, charge_descript): """adds a list of charge descriptors to a pandas dataframe desc = dataframe from pd_create charge_descript = descriptor dictionaries Output: pandas dataframe with a row of descriptors appended on""" # check if the inputs have the right Type assert isinstance( desc, pd.core.frame.DataFrame), "This input must be a pandas dataframe" assert isinstance( charge_descript, dict), "Stop right there, only dictionaries are allowed in these parts" # converts the dictionary of descriptors into a list of descriptors desc_ls = process.dict_2_list(charge_descript) # adds zeros to the end of each descriptor list to create # a list with 22 entries # also appends error parameters to the end of the descriptor list desc_app = desc_ls + \ np.zeros(19-len(desc_ls)).tolist() + charge_descript['errorParams'] # generates a dataframe of descriptors desc_df = pd.DataFrame([desc_app], columns=desc.columns) # combines row of a dataframe with previous dataframe desc =
pd.concat([desc, desc_df], ignore_index=True)
pandas.concat
import json from datetime import datetime import pandas as pd def get_forecast(): first_row = True nrow = 0 with open('data/tmp/forecast_weather.json') as f: for line in f: print(nrow) nrow += 1 res = json.loads(line) timezone_offset = res['city']['timezone'] first_line = True for forecast in res['list']: if first_line: forecast_time = forecast['dt'] + timezone_offset first_line = False dt = forecast['dt'] + timezone_offset if first_row: data = pd.DataFrame(forecast['main'], index=[datetime.utcfromtimestamp(forecast_time).strftime('%Y-%m-%d %H:%M:%S')]) data['dt'] = datetime.utcfromtimestamp(dt).strftime('%Y-%m-%d %H:%M:%S') df =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
# Input arguments flag import sys sys.path.append('..') _, *flag = sys.argv # Parse arguments import argparse parser = argparse.ArgumentParser(prog='hs_check', description='Check phase synchronization for selected BPMs and plane.') parser.add_argument('-p', '--plane', choices=('x', 'y'), help='data plane', default='x') parser.add_argument('-l', '--length', type=int, help='number of turns to use', default=256) select = parser.add_mutually_exclusive_group() select.add_argument('--skip', metavar='BPM', nargs='+', help='space separated list of valid BPM names to skip') select.add_argument('--only', metavar='BPM', nargs='+', help='space separated list of valid BPM names to use') parser.add_argument('-o', '--offset', type=int, help='rise offset for all BPMs', default=0) parser.add_argument('-r', '--rise', action='store_true', help='flag to use rise data (drop first turns)') transform = parser.add_mutually_exclusive_group() transform.add_argument('--mean', action='store_true', help='flag to remove mean') transform.add_argument('--median', action='store_true', help='flag to remove median') transform.add_argument('--normalize', action='store_true', help='flag to normalize data') parser.add_argument('-f', '--filter', choices=('none', 'svd', 'hankel'), help='filter type', default='none') parser.add_argument('--rank', type=int, help='rank to use for svd & hankel filter', default=8) parser.add_argument('--type', choices=('full', 'randomized'), help='svd computation type for hankel filter', default='randomized') parser.add_argument('--buffer', type=int, help='buffer size to use for randomized hankel filter', default=16) parser.add_argument('--count', type=int, help='number of iterations to use for randomized hankel filter', default=16) parser.add_argument('-w', '--window', type=float, help='window order', default=0.0) parser.add_argument('--factor', type=float, help='threshold factor', default=5.0) parser.add_argument('--plot', action='store_true', help='flag to plot data') parser.add_argument('-H', '--harmonica', action='store_true', help='flag to use harmonica PV names for input') parser.add_argument('--device', choices=('cpu', 'cuda'), help='data device', default='cpu') parser.add_argument('--dtype', choices=('float32', 'float64'), help='data type', default='float64') args = parser.parse_args(args=None if flag else ['--help']) # Import import epics import pandas import torch from datetime import datetime from harmonica.util import LIMIT, pv_make from harmonica.window import Window from harmonica.data import Data from harmonica.filter import Filter from harmonica.decomposition import Decomposition # Time TIME = datetime.now().strftime('%Y_%m_%d_%H_%M_%S') # Check and set device & data type dtype = {'float32': torch.float32, 'float64': torch.float64}[args.dtype] device = args.device if device == 'cuda' and not torch.cuda.is_available(): exit(f'error: CUDA is not avalible') # Set data plane plane = args.plane.upper() # Load monitor data name = epics.caget('H:MONITOR:LIST')[:epics.caget('H:MONITOR:COUNT')] flag = epics.caget_many([f'H:{name}:FLAG' for name in name]) rise = epics.caget_many([f'H:{name}:RISE' for name in name]) # Set BPM data bpm = {name: rise for name, flag, rise in zip(name, flag, rise) if flag == 1} # Check & remove skipped if args.skip: for name in (name.upper() for name in args.skip): if not name in bpm: exit(f'error: {name} is not a valid BPM to skip') bpm.pop(name) # Check & keep selected if args.only: for name in (name.upper() for name in args.only): if not name in bpm: exit(f'error: {name} is not a valid BPM to read') for name in bpm.copy(): if not name in (name.upper() for name in args.only): bpm.pop(name) # Check BPM list if not bpm: exit(f'error: BPM list is empty') # Set model phase PHASE = torch.tensor(epics.caget_many([f'H:{name}:MODEL:F{plane}' for name in bpm]), dtype=dtype) # Set tunes q = epics.caget(f'H:FREQUENCY:VALUE:{plane}') Q = epics.caget(f'H:FREQUENCY:MODEL:{plane}') # Generate PV names pv_list = [pv_make(name, args.plane, args.harmonica) for name in bpm] pv_rise = [*bpm.values()] # Check length length = args.length if length < 0 or length > LIMIT: exit(f'error: {length=}, expected a positive value less than {LIMIT=}') # Check offset offset = args.offset if offset < 0: exit(f'error: {offset=}, expected a positive value') if length + offset > LIMIT: exit(f'error: sum of {length=} and {offset=}, expected to be less than {LIMIT=}') # Check rise if args.rise: rise = min(pv_rise) if rise < 0: exit(f'error: rise values are expected to be positive') rise = max(pv_rise) if length + offset + rise > LIMIT: exit(f'error: sum of {length=}, {offset=} and max {rise=}, expected to be less than {LIMIT=}') else: rise = 0 # Check window order if args.window < 0.0: exit(f'error: window order {args.window} should be greater or equal to zero') # Load TbT data size = len(bpm) count = length + offset + rise win = Window(length, 'cosine_window', args.window, dtype=dtype, device=device) tbt = Data.from_epics(win, pv_list, pv_rise if args.rise else None, shift=offset, count=count) # Remove mean if args.mean: tbt.window_remove_mean() # Remove median if args.median: tbt.work.sub_(tbt.median()) # Normalize if args.normalize: tbt.normalize() # Filter (svd) if args.filter == 'svd': flt = Filter(tbt) flt.filter_svd(rank=args.rank) # Filter (hankel) if args.filter == 'hankel': flt = Filter(tbt) flt.filter_svd(rank=args.rank) flt.filter_hankel(rank=args.rank, random=args.type == 'randomized', buffer=args.buffer, count=args.count) # Estimate phase dec = Decomposition(tbt) phase, _, _ = dec.harmonic_phase(q, length=args.length, order=args.window, factor=args.factor) # Check check, table= Decomposition.phase_check(q, Q, phase, PHASE, factor=args.factor) # Print result for marked in check: index, value = check[marked] if index != 0: print(marked, [*bpm][marked], check[marked]) # Plot if args.plot: from plotly.express import scatter flag = [-1 if key not in check else check[key][0]/2 - 1 for key in range(len(bpm))] df =
pandas.DataFrame()
pandas.DataFrame
"""Utilities for parsing corpus tsv files into pandas DataFrames.""" import logging from glob import glob from pathlib import Path from typing import Dict, Iterable, Union import pandas as pd from tqdm import tqdm import harmonic_inference.utils.corpus_utils as cu from harmonic_inference.data.corpus_constants import ( CHORD_ONSET_BEAT, CONVERTERS, DTYPES, MEASURE_OFFSET, NOTE_ONSET_BEAT, ) def read_dump( file: str, index_col: Union[int, Iterable] = (0, 1), converters: Dict = None, dtypes: Dict = None, **kwargs, ) -> pd.DataFrame: """ Read a corpus tsv file into a pandas DataFrame. Parameters ---------- file : string The tsv file to parse. index_col : int or list(int) The index (or indices) of column(s) to use as the index. For files.tsv, use 0. converters : dict Converters which will be passed to the pandas read_csv function. These will overwrite/be added to the default list of CONVERTERS. dtypes : dict Dtypes which will be passed to the pandas read_csv function. These will overwrite/be added to the default list of DTYPES. Returns ------- df : pd.DataFrame The pandas DataFrame, parsed from the given tsv file. """ conv = CONVERTERS.copy() types = DTYPES.copy() if dtypes is not None: types.update(dtypes) if converters is not None: conv.update(converters) return pd.read_csv(file, sep="\t", index_col=index_col, dtype=types, converters=conv, **kwargs) def load_clean_corpus_dfs(dir_path: Union[str, Path], count: int = None): """ Return cleaned DataFrames from the corpus data in the given directory. The DataFrames will be read from files: 'files.tsv', 'measures.tsv', 'chords.tsv', and 'notes.df'. They will undergo the following cleaning procedure: 1. Remove repeats from measures. 2. Drop note and chords corresponding to removed measures. 3. Drop chords with numeral '@none' or pd.NAN. 4. Add offsets to notes. 5. Merge tied notes. 6. Add offsets to chords. Parameters ---------- dir_path : str or Path The path to a directory containing the files: 'files.tsv', 'measures.tsv', 'chords.tsv', and 'notes.df'. count : int If given, the number of pieces to read in. Else, read all of them. Returns ------- files_df : pd.DataFrame The files data frame. measures_df : pd.DataFrame The measures data frame with repeats removed. chords_df : pd.DataFrame The chords data frame, cleaned as described. notes_df : pd.DataFrame The notes data frame, cleaned as described. """ files_df = read_dump(Path(dir_path, "files.tsv"), index_col=0) measures_df = read_dump(Path(dir_path, "measures.tsv")) notes_df = read_dump(Path(dir_path, "notes.tsv")) try: chords_df = read_dump(Path(dir_path, "chords.tsv"), low_memory=False) except Exception: # Enable loading with no annotations chords_df = None if count is not None: files_df = files_df.iloc[:count] measures_df = measures_df.loc[files_df.index] notes_df = notes_df.loc[files_df.index] if chords_df is not None: chords_df = chords_df.loc[files_df.index] # Bugfix for Couperin piece "next" error files_df = files_df.loc[~(files_df["file_name"] == "c11n08_Rondeau.tsv")] measures_df = measures_df.loc[files_df.index] notes_df = notes_df.loc[files_df.index] if chords_df is not None: chords_df = chords_df.loc[chords_df.index.get_level_values(0).isin(files_df.index)] # End bugfix # Incomplete column renaming if "offset" in measures_df.columns: measures_df[MEASURE_OFFSET].fillna(measures_df["offset"], inplace=True) measures_df = measures_df.drop("offset", axis=1) if chords_df is not None: if "onset" in chords_df.columns: chords_df[CHORD_ONSET_BEAT].fillna(chords_df["onset"], inplace=True) chords_df = chords_df.drop("onset", axis=1) if "onset" in notes_df.columns: notes_df[NOTE_ONSET_BEAT].fillna(notes_df["onset"], inplace=True) notes_df = notes_df.drop("onset", axis=1) # Remove measure repeats if isinstance(measures_df.iloc[0].next, tuple): measures_df = cu.remove_repeats(measures_df) # Remove unmatched notes_df = cu.remove_unmatched(notes_df, measures_df) if chords_df is not None: chords_df = cu.remove_unmatched(chords_df, measures_df) chords_df = chords_df.drop( chords_df.loc[(chords_df.numeral == "@none") | chords_df.numeral.isnull()].index ) # Remove notes with invalid onset times note_measures = pd.merge( notes_df.reset_index(), measures_df.reset_index(), how="left", on=["file_id", "mc"], ) valid_onsets = (note_measures[MEASURE_OFFSET] <= note_measures[NOTE_ONSET_BEAT]) & ( note_measures[NOTE_ONSET_BEAT] < note_measures["act_dur"] + note_measures[MEASURE_OFFSET] ) if not valid_onsets.all(): with pd.option_context("display.max_rows", None, "display.max_columns", None): invalid_string = note_measures.loc[ ~valid_onsets, ["file_id", "note_id", "mc", NOTE_ONSET_BEAT, MEASURE_OFFSET, "act_dur"], ] logging.debug( f"{(~valid_onsets).sum()} notes have invalid onset times:\n{invalid_string}" ) notes_df = notes_df.loc[valid_onsets.values] # Remove chords with invalid onset times if chords_df is not None: chord_measures = pd.merge( chords_df.reset_index(), measures_df.reset_index(), how="left", on=["file_id", "mc"], ) valid_onsets = (chord_measures[MEASURE_OFFSET] <= chord_measures[CHORD_ONSET_BEAT]) & ( chord_measures[CHORD_ONSET_BEAT] < chord_measures["act_dur"] + chord_measures[MEASURE_OFFSET] ) if not valid_onsets.all(): with pd.option_context("display.max_rows", None, "display.max_columns", None): invalid_string = chord_measures.loc[ ~valid_onsets, ["file_id", "chord_id", "mc", CHORD_ONSET_BEAT, MEASURE_OFFSET, "act_dur"], ] logging.debug( f"{(~valid_onsets).sum()} chords have invalid onset times:\n{invalid_string}" ) chords_df = chords_df.loc[valid_onsets.values] # Add offsets if not all([column in notes_df.columns for column in ["offset_beat", "offset_mc"]]): notes_df = cu.add_note_offsets(notes_df, measures_df) # Merge ties notes_df = cu.merge_ties(notes_df) # Add chord metrical info if chords_df is not None: chords_df = cu.add_chord_metrical_data(chords_df, measures_df) # Remove chords with dur 0 if chords_df is not None: invalid_dur = chords_df["duration"] <= 0 if invalid_dur.any(): with pd.option_context("display.max_rows", None, "display.max_columns", None): invalid_string = chords_df.loc[ invalid_dur, ["mc", CHORD_ONSET_BEAT, "mc_next", f"{CHORD_ONSET_BEAT}_next", "duration"], ] logging.debug( f"{(invalid_dur).sum()} chords have invalid durations:\n{invalid_string}" ) chords_df = chords_df.loc[~invalid_dur].copy() return files_df, measures_df, chords_df, notes_df def aggregate_annotation_dfs( annotations_path: Union[Path, str], out_dir: Union[Path, str], notes_only: bool = False, ): """ Aggregate all annotations from a corpus directory into 4 combined tsvs in an out directory. The resulting tsv will be: files.tsv, chords.tsv, notes.tsv, and measures.tsv. Parameters ---------- annotations_path : Union[Path, str] The path of the corpus annotations. Annotations should lie in directories: annotations_path/*/{harmonies/notes/measures}/*.tsv out_dir : Union[Path, str] The directory to write the output tsvs into. notes_only : bool If True, the resulting aggregation will include pieces without annotations, but which have a notes tsv entry. If False, only those with annotations (a harmonies directory) will be included. """ if isinstance(annotations_path, str): annotations_path = Path(annotations_path) if isinstance(out_dir, str): out_dir = Path(out_dir) files_dict = {"corpus_name": [], "file_name": []} chord_df_list = [] note_df_list = [] measure_df_list = [] chord_indexes = [] note_indexes = [] measure_indexes = [] dir_name = "notes" if notes_only else "harmonies" for file_string in tqdm( glob(str(Path(annotations_path, f"**/{dir_name}/*.tsv")), recursive=True) ): file_path = Path(file_string) base_path = file_path.parent.parent corpus_name = base_path.name file_name = file_path.name try: chord_df = pd.read_csv(Path(base_path, "harmonies", file_name), dtype=str, sep="\t") chord_indexes.append(len(files_dict["file_name"])) except Exception: logging.info("Error parsing harmonies for file %s", file_name) chord_df = None try: note_df = pd.read_csv(Path(base_path, "notes", file_name), dtype=str, sep="\t") note_indexes.append(len(files_dict["file_name"])) except Exception: logging.info("Error parsing notes for file %s", file_name) note_df = None try: measure_df = pd.read_csv(Path(base_path, "measures", file_name), dtype=str, sep="\t") measure_indexes.append(len(files_dict["file_name"])) except Exception: logging.info("Error parsing measures for file %s", file_name) measure_df = None files_dict["corpus_name"].append(corpus_name) files_dict["file_name"].append(file_name) if chord_df is not None: chord_df_list.append(chord_df) if note_df is not None: note_df_list.append(note_df) if measure_df is not None: measure_df_list.append(measure_df) if not files_dict["file_name"]: logging.warning("No files found to aggregate.") return # Write out aggregated tsvs if not out_dir.exists(): out_dir.mkdir(parents=True, exist_ok=True) files_df =
pd.DataFrame(files_dict)
pandas.DataFrame
import pysam import pandas as pd import numpy as np import re import os import sys import collections import scipy from scipy import stats import statsmodels from statsmodels.stats.multitest import fdrcorrection try: from . import global_para except ImportError: import global_para try: from .consensus_seq import * except ImportError: from consensus_seq import * try: from .math_stat import * except ImportError: from math_stat import * def f_0cdna(): # if 0 cdna detected, report messages to users global_para.logger.info("Program finished successfully") global_para.logger.info("No cDNA detected. Exiting.") exit(0) def f_if_0cdna(obj): if len(obj) == 0: f_0cdna() def f_warning_merge_region(df_region): # df_region = df_region_stat_bed_merge.copy() df_region['diff'] =abs( df_region.start - df_region.end) df_region_diff = df_region[df_region['diff']>10000] del df_region_diff['diff'] if len(df_region_diff)>0: global_para.logger.warning("%d extreme long regions are detected (>10 kb), please check results carefully"%len(df_region_diff)) global_para.logger.info(df_region_diff) def read_gene_model(gtf_gene_unique_file): # load gene model into a dataframe print('Loading gene model table') dict_type = { "seqname":"str", "start":"int64", "end":"int64", "gene_id":"str", "gene_name":"str", "transcript_id":"str", "exon_flank_start20":"str", "exon_flank_end20":"str", "is_exon_boundary_start":"str", "is_exon_boundary_end":"str", "exon_boundary_start_nearseq20":"str", "exon_boundary_end_nearseq20":"str"} df_gene_exon_unique = pd.read_csv(gtf_gene_unique_file, sep = '\t',header = 0) df_gene_exon_unique = df_gene_exon_unique.astype(dict_type) # convert all sequences to uppercase df_gene_exon_unique['exon_flank_start20'] = df_gene_exon_unique['exon_flank_start20'].str.upper() df_gene_exon_unique['exon_flank_end20'] = df_gene_exon_unique['exon_flank_end20'].str.upper() df_gene_exon_unique['exon_boundary_start_nearseq20'] = df_gene_exon_unique['exon_boundary_start_nearseq20'].str.upper() df_gene_exon_unique['exon_boundary_end_nearseq20'] = df_gene_exon_unique['exon_boundary_end_nearseq20'].str.upper() df_gene_exon_unique = df_gene_exon_unique.fillna('') print('Loaded %d exons\n'%(len(df_gene_exon_unique))) return(df_gene_exon_unique) def check_bam_index(genome_bam_file): ## check index of bam file; if no, generate one. print('Checking index of input bam file') if os.path.exists(genome_bam_file + '.bai') or os.path.exists(re.sub('bam$','bai',genome_bam_file)): print('Index file exists') else: print('file is not indexed, now generating index') pysam.index(genome_bam_file) print('Index file created\n') return def f_overlap_reference(genome_bam_file,df_gene_exon): # overlap reference for input bam and gene model bam_genome = pysam.AlignmentFile(genome_bam_file,'rb') reference_bam = bam_genome.references bam_genome.close() reference_exon = df_gene_exon.seqname.unique().tolist() overlap_reference = [x for x in reference_bam if x in reference_exon] if len(overlap_reference)==0: global_para.logger.error('chromosome names are not matched between gene model and bam file'); exit(1) df_gene_exon = df_gene_exon.query('seqname in @overlap_reference') return df_gene_exon def f_close_exon_merge(df_transcript_exon): df_transcript_exon = df_transcript_exon.sort_values(['transcript_id','start']) df_transcript_exon = df_transcript_exon.reset_index(drop = True) df_transcript_exon['start_next'] = df_transcript_exon.groupby(['transcript_id'])['start'].shift(-1) df_transcript_exon['dis_exon'] = abs(df_transcript_exon['end'] - df_transcript_exon['start_next']) df_transcript_exon_close = df_transcript_exon.query('dis_exon<@global_para.exon_distance') list_transcript = df_transcript_exon_close.transcript_id.unique().tolist() if len(list_transcript) >0: list_df_transcript_merge = [] for transcript_id in list_transcript: sub_df = df_transcript_exon.query('transcript_id==@transcript_id') sub_df_new = f_df_1transcript_merge(sub_df) list_df_transcript_merge.append(sub_df_new) df_transcript_exon_close_new =
pd.concat(list_df_transcript_merge)
pandas.concat