prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import re from datetime import datetime import discord from secret import TOKEN import plotly.express as px import pandas as pd client = discord.Client() @client.event async def on_ready(): # await count_tower() await count_counting() async def count_counting(): channel = client.get_channel(586777485023379467) counts = list() last = 0 async for message in channel.history(limit=1000000): number_part = re.search(r"^-?\d+", message.content.strip()) if number_part is None: print(message.content.strip()) else: number = int(number_part[0]) if (not (1 >= number-last >= -1)) and (1 >= -number-last >= -1): number *= -1 user = message.author.name timestamp = message.created_at counts.append((timestamp, user, number)) last = number data = pd.DataFrame(counts, columns=["time", "user", "number"]) fig = px.line(data, x="time", y="number", title="#counting") # fig.add_vline(x=datetime(year=2019, month=12, day=12).timestamp(), line_dash="dash", annotation_text="Ryu calls for a crusade to +100", annotation_position="top left") # fig.add_vline(x=datetime(year=2020, month=2, day=12).timestamp(), line_dash="dash", annotation_text="Cryusade reaches +100", annotation_position="top left") # fig.add_vline(x=datetime(year=2021, month=7, day=26).timestamp(), line_dash="dash", annotation_text="Blue issues counting challenge", annotation_position="top left") fig.add_hline(y=42, line_dash="dash", annotation_text="+42", annotation_position="top left") fig.add_hline(y=69, line_dash="dash", annotation_text="+69", annotation_position="top left") # fig.add_vrect(x0="2019-12-12", x1="2020-02-12", # annotation_text="Cryusade", annotation_position="top left", # fillcolor="green", opacity=0.25, line_width=0) fig.show() async def count_tower(): channel = client.get_channel(401200182525558785) counts = list() async for message in channel.history(limit=1000000): number_part = re.search(r"(?:^\W*[a-zA-z]*\W*|.*floor )(\d+)\**(?:[:;].*|\s*[a-zA-z])", message.content.strip().lower()) if number_part is None: if message.content.strip().lower().startswith("floor"): number = None else: print(message.content.strip()) continue else: number = int(number_part[1]) user = message.author.name timestamp = message.created_at counts.append((timestamp, user, number)) data =
pd.DataFrame(counts, columns=["time", "user", "number"])
pandas.DataFrame
import numpy as np import pandas as pd import pytest import ray from ray.ml.preprocessor import PreprocessorNotFittedException from ray.ml.preprocessors import ( StandardScaler, MinMaxScaler, OrdinalEncoder, OneHotEncoder, LabelEncoder, SimpleImputer, Chain, ) def test_standard_scaler(): """Tests basic StandardScaler functionality.""" col_a = [-1, 0, 1, 2] col_b = [1, 1, 5, 5] col_c = [1, 1, 1, None] in_df = pd.DataFrame.from_dict({"A": col_a, "B": col_b, "C": col_c}) ds = ray.data.from_pandas(in_df) scaler = StandardScaler(["B", "C"]) # Transform with unfitted preprocessor. with pytest.raises(PreprocessorNotFittedException): scaler.transform(ds) # Fit data. scaler.fit(ds) assert scaler.stats_ == { "mean(B)": 3.0, "mean(C)": 1.0, "std(B)": 2.0, "std(C)": 0.0, } # Transform data. transformed = scaler.transform(ds) out_df = transformed.to_pandas() processed_col_a = col_a processed_col_b = [-1.0, -1.0, 1.0, 1.0] processed_col_c = [0.0, 0.0, 0.0, None] expected_df = pd.DataFrame.from_dict( {"A": processed_col_a, "B": processed_col_b, "C": processed_col_c} ) assert out_df.equals(expected_df) # Transform batch. pred_col_a = [1, 2, 3] pred_col_b = [3, 5, 7] pred_col_c = [0, 1, 2] pred_in_df = pd.DataFrame.from_dict( {"A": pred_col_a, "B": pred_col_b, "C": pred_col_c} ) pred_out_df = scaler.transform_batch(pred_in_df) pred_processed_col_a = pred_col_a pred_processed_col_b = [0.0, 1.0, 2.0] pred_processed_col_c = [-1.0, 0.0, 1.0] pred_expected_df = pd.DataFrame.from_dict( { "A": pred_processed_col_a, "B": pred_processed_col_b, "C": pred_processed_col_c, } ) assert pred_out_df.equals(pred_expected_df) def test_min_max_scaler(): """Tests basic MinMaxScaler functionality.""" col_a = [-1, 0, 1] col_b = [1, 3, 5] col_c = [1, 1, None] in_df = pd.DataFrame.from_dict({"A": col_a, "B": col_b, "C": col_c}) ds = ray.data.from_pandas(in_df) scaler = MinMaxScaler(["B", "C"]) # Transform with unfitted preprocessor. with pytest.raises(PreprocessorNotFittedException): scaler.transform(ds) # Fit data. scaler.fit(ds) assert scaler.stats_ == {"min(B)": 1, "max(B)": 5, "min(C)": 1, "max(C)": 1} transformed = scaler.transform(ds) out_df = transformed.to_pandas() processed_col_a = col_a processed_col_b = [0.0, 0.5, 1.0] processed_col_c = [0.0, 0.0, None] expected_df = pd.DataFrame.from_dict( {"A": processed_col_a, "B": processed_col_b, "C": processed_col_c} ) assert out_df.equals(expected_df) # Transform batch. pred_col_a = [1, 2, 3] pred_col_b = [3, 5, 7] pred_col_c = [0, 1, 2] pred_in_df = pd.DataFrame.from_dict( {"A": pred_col_a, "B": pred_col_b, "C": pred_col_c} ) pred_out_df = scaler.transform_batch(pred_in_df) pred_processed_col_a = pred_col_a pred_processed_col_b = [0.5, 1.0, 1.5] pred_processed_col_c = [-1.0, 0.0, 1.0] pred_expected_df = pd.DataFrame.from_dict( { "A": pred_processed_col_a, "B": pred_processed_col_b, "C": pred_processed_col_c, } ) assert pred_out_df.equals(pred_expected_df) def test_ordinal_encoder(): """Tests basic OrdinalEncoder functionality.""" col_a = ["red", "green", "blue", "red"] col_b = ["warm", "cold", "hot", "cold"] col_c = [1, 10, 5, 10] in_df = pd.DataFrame.from_dict({"A": col_a, "B": col_b, "C": col_c}) ds = ray.data.from_pandas(in_df) encoder = OrdinalEncoder(["B", "C"]) # Transform with unfitted preprocessor. with pytest.raises(PreprocessorNotFittedException): encoder.transform(ds) # Fit data. encoder.fit(ds) assert encoder.stats_ == { "unique_values(B)": {"cold": 0, "hot": 1, "warm": 2}, "unique_values(C)": {1: 0, 5: 1, 10: 2}, } # Transform data. transformed = encoder.transform(ds) out_df = transformed.to_pandas() processed_col_a = col_a processed_col_b = [2, 0, 1, 0] processed_col_c = [0, 2, 1, 2] expected_df = pd.DataFrame.from_dict( {"A": processed_col_a, "B": processed_col_b, "C": processed_col_c} ) assert out_df.equals(expected_df) # Transform batch. pred_col_a = ["blue", "yellow", None] pred_col_b = ["cold", "warm", "other"] pred_col_c = [10, 1, 20] pred_in_df = pd.DataFrame.from_dict( {"A": pred_col_a, "B": pred_col_b, "C": pred_col_c} ) pred_out_df = encoder.transform_batch(pred_in_df) pred_processed_col_a = pred_col_a pred_processed_col_b = [0, 2, None] pred_processed_col_c = [2, 0, None] pred_expected_df = pd.DataFrame.from_dict( { "A": pred_processed_col_a, "B": pred_processed_col_b, "C": pred_processed_col_c, } ) assert pred_out_df.equals(pred_expected_df) # Test null behavior. null_col = [1, None] nonnull_col = [1, 1] null_df = pd.DataFrame.from_dict({"A": null_col}) null_ds = ray.data.from_pandas(null_df) nonnull_df = pd.DataFrame.from_dict({"A": nonnull_col}) nonnull_ds = ray.data.from_pandas(nonnull_df) null_encoder = OrdinalEncoder(["A"]) # Verify fit fails for null values. with pytest.raises(ValueError): null_encoder.fit(null_ds) null_encoder.fit(nonnull_ds) # Verify transform fails for null values. with pytest.raises(ValueError): null_encoder.transform(null_ds) null_encoder.transform(nonnull_ds) # Verify transform_batch fails for null values. with pytest.raises(ValueError): null_encoder.transform_batch(null_df) null_encoder.transform_batch(nonnull_df) def test_one_hot_encoder(): """Tests basic OneHotEncoder functionality.""" col_a = ["red", "green", "blue", "red"] col_b = ["warm", "cold", "hot", "cold"] col_c = [1, 10, 5, 10] in_df = pd.DataFrame.from_dict({"A": col_a, "B": col_b, "C": col_c}) ds = ray.data.from_pandas(in_df) encoder = OneHotEncoder(["B", "C"]) # Transform with unfitted preprocessor. with pytest.raises(PreprocessorNotFittedException): encoder.transform(ds) # Fit data. encoder.fit(ds) assert encoder.stats_ == { "unique_values(B)": {"cold": 0, "hot": 1, "warm": 2}, "unique_values(C)": {1: 0, 5: 1, 10: 2}, } # Transform data. transformed = encoder.transform(ds) out_df = transformed.to_pandas() processed_col_a = col_a processed_col_b_cold = [0, 1, 0, 1] processed_col_b_hot = [0, 0, 1, 0] processed_col_b_warm = [1, 0, 0, 0] processed_col_c_1 = [1, 0, 0, 0] processed_col_c_5 = [0, 0, 1, 0] processed_col_c_10 = [0, 1, 0, 1] expected_df = pd.DataFrame.from_dict( { "A": processed_col_a, "B_cold": processed_col_b_cold, "B_hot": processed_col_b_hot, "B_warm": processed_col_b_warm, "C_1": processed_col_c_1, "C_5": processed_col_c_5, "C_10": processed_col_c_10, } ) assert out_df.equals(expected_df) # Transform batch. pred_col_a = ["blue", "yellow", None] pred_col_b = ["cold", "warm", "other"] pred_col_c = [10, 1, 20] pred_in_df = pd.DataFrame.from_dict( {"A": pred_col_a, "B": pred_col_b, "C": pred_col_c} ) pred_out_df = encoder.transform_batch(pred_in_df) pred_processed_col_a = ["blue", "yellow", None] pred_processed_col_b_cold = [1, 0, 0] pred_processed_col_b_hot = [0, 0, 0] pred_processed_col_b_warm = [0, 1, 0] pred_processed_col_c_1 = [0, 1, 0] pred_processed_col_c_5 = [0, 0, 0] pred_processed_col_c_10 = [1, 0, 0] pred_expected_df = pd.DataFrame.from_dict( { "A": pred_processed_col_a, "B_cold": pred_processed_col_b_cold, "B_hot": pred_processed_col_b_hot, "B_warm": pred_processed_col_b_warm, "C_1": pred_processed_col_c_1, "C_5": pred_processed_col_c_5, "C_10": pred_processed_col_c_10, } ) assert pred_out_df.equals(pred_expected_df) # Test null behavior. null_col = [1, None] nonnull_col = [1, 1] null_df = pd.DataFrame.from_dict({"A": null_col}) null_ds = ray.data.from_pandas(null_df) nonnull_df = pd.DataFrame.from_dict({"A": nonnull_col}) nonnull_ds = ray.data.from_pandas(nonnull_df) null_encoder = OneHotEncoder(["A"]) # Verify fit fails for null values. with pytest.raises(ValueError): null_encoder.fit(null_ds) null_encoder.fit(nonnull_ds) # Verify transform fails for null values. with pytest.raises(ValueError): null_encoder.transform(null_ds) null_encoder.transform(nonnull_ds) # Verify transform_batch fails for null values. with pytest.raises(ValueError): null_encoder.transform_batch(null_df) null_encoder.transform_batch(nonnull_df) def test_label_encoder(): """Tests basic LabelEncoder functionality.""" col_a = ["red", "green", "blue", "red"] col_b = ["warm", "cold", "cold", "hot"] col_c = [1, 2, 3, 4] in_df = pd.DataFrame.from_dict({"A": col_a, "B": col_b, "C": col_c}) ds = ray.data.from_pandas(in_df) encoder = LabelEncoder("A") # Transform with unfitted preprocessor. with pytest.raises(PreprocessorNotFittedException): encoder.transform(ds) # Fit data. encoder.fit(ds) assert encoder.stats_ == {"unique_values(A)": {"blue": 0, "green": 1, "red": 2}} # Transform data. transformed = encoder.transform(ds) out_df = transformed.to_pandas() processed_col_a = [2, 1, 0, 2] processed_col_b = col_b processed_col_c = col_c expected_df = pd.DataFrame.from_dict( {"A": processed_col_a, "B": processed_col_b, "C": processed_col_c} ) assert out_df.equals(expected_df) # Transform batch. pred_col_a = ["blue", "red", "yellow"] pred_col_b = ["cold", "unknown", None] pred_col_c = [10, 20, None] pred_in_df = pd.DataFrame.from_dict( {"A": pred_col_a, "B": pred_col_b, "C": pred_col_c} ) pred_out_df = encoder.transform_batch(pred_in_df) pred_processed_col_a = [0, 2, None] pred_processed_col_b = pred_col_b pred_processed_col_c = pred_col_c pred_expected_df = pd.DataFrame.from_dict( { "A": pred_processed_col_a, "B": pred_processed_col_b, "C": pred_processed_col_c, } ) assert pred_out_df.equals(pred_expected_df) # Test null behavior. null_col = [1, None] nonnull_col = [1, 1] null_df = pd.DataFrame.from_dict({"A": null_col}) null_ds = ray.data.from_pandas(null_df) nonnull_df = pd.DataFrame.from_dict({"A": nonnull_col}) nonnull_ds = ray.data.from_pandas(nonnull_df) null_encoder = LabelEncoder("A") # Verify fit fails for null values. with pytest.raises(ValueError): null_encoder.fit(null_ds) null_encoder.fit(nonnull_ds) # Verify transform fails for null values. with pytest.raises(ValueError): null_encoder.transform(null_ds) null_encoder.transform(nonnull_ds) # Verify transform_batch fails for null values. with pytest.raises(ValueError): null_encoder.transform_batch(null_df) null_encoder.transform_batch(nonnull_df) def test_simple_imputer(): col_a = [1, 1, 1, np.nan] col_b = [1, 3, None, np.nan] col_c = [1, 1, 1, 1] in_df = pd.DataFrame.from_dict({"A": col_a, "B": col_b, "C": col_c}) ds = ray.data.from_pandas(in_df) imputer = SimpleImputer(["B", "C"]) # Transform with unfitted preprocessor. with pytest.raises(PreprocessorNotFittedException): imputer.transform(ds) # Fit data. imputer.fit(ds) assert imputer.stats_ == {"mean(B)": 2.0, "mean(C)": 1.0} # Transform data. transformed = imputer.transform(ds) out_df = transformed.to_pandas() processed_col_a = col_a processed_col_b = [1.0, 3.0, 2.0, 2.0] processed_col_c = [1, 1, 1, 1] expected_df = pd.DataFrame.from_dict( {"A": processed_col_a, "B": processed_col_b, "C": processed_col_c} ) assert out_df.equals(expected_df) # Transform batch. pred_col_a = [1, 2, np.nan] pred_col_b = [1, 2, np.nan] pred_col_c = [None, None, None] pred_in_df = pd.DataFrame.from_dict( {"A": pred_col_a, "B": pred_col_b, "C": pred_col_c} ) pred_out_df = imputer.transform_batch(pred_in_df) pred_processed_col_a = pred_col_a pred_processed_col_b = [1.0, 2.0, 2.0] pred_processed_col_c = [1.0, 1.0, 1.0] pred_expected_df = pd.DataFrame.from_dict( { "A": pred_processed_col_a, "B": pred_processed_col_b, "C": pred_processed_col_c, } ) assert pred_out_df.equals(pred_expected_df) # Test "most_frequent" strategy. most_frequent_col_a = [1, 2, 2, None, None, None] most_frequent_col_b = [None, "c", "c", "b", "b", "a"] most_frequent_df = pd.DataFrame.from_dict( {"A": most_frequent_col_a, "B": most_frequent_col_b} ) most_frequent_ds = ray.data.from_pandas(most_frequent_df) most_frequent_imputer = SimpleImputer(["A", "B"], strategy="most_frequent") most_frequent_imputer.fit(most_frequent_ds) assert most_frequent_imputer.stats_ == { "most_frequent(A)": 2.0, "most_frequent(B)": "b", } most_frequent_transformed = most_frequent_imputer.transform(most_frequent_ds) most_frequent_out_df = most_frequent_transformed.to_pandas() most_frequent_processed_col_a = [1.0, 2.0, 2.0, 2.0, 2.0, 2.0] most_frequent_processed_col_b = ["b", "c", "c", "b", "b", "a"] most_frequent_expected_df = pd.DataFrame.from_dict( {"A": most_frequent_processed_col_a, "B": most_frequent_processed_col_b} ) assert most_frequent_out_df.equals(most_frequent_expected_df) # Test "constant" strategy. constant_col_a = ["apple", None] constant_df = pd.DataFrame.from_dict({"A": constant_col_a}) constant_ds = ray.data.from_pandas(constant_df) with pytest.raises(ValueError): SimpleImputer(["A"], strategy="constant") constant_imputer = SimpleImputer( ["A", "B"], strategy="constant", fill_value="missing" ) constant_transformed = constant_imputer.transform(constant_ds) constant_out_df = constant_transformed.to_pandas() constant_processed_col_a = ["apple", "missing"] constant_expected_df =
pd.DataFrame.from_dict({"A": constant_processed_col_a})
pandas.DataFrame.from_dict
""" Tests for DatetimeIndex timezone-related methods """ from datetime import date, datetime, time, timedelta, tzinfo import dateutil from dateutil.tz import gettz, tzlocal import numpy as np import pytest import pytz from pandas._libs.tslibs import conversion, timezones import pandas.util._test_decorators as td import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, bdate_range, date_range, isna, to_datetime, ) import pandas._testing as tm class FixedOffset(tzinfo): """Fixed offset in minutes east from UTC.""" def __init__(self, offset, name): self.__offset = timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return timedelta(0) fixed_off = FixedOffset(-420, "-07:00") fixed_off_no_name = FixedOffset(-330, None) class TestDatetimeIndexTimezones: # ------------------------------------------------------------- # DatetimeIndex.tz_convert def test_tz_convert_nat(self): # GH#5546 dates = [pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Eastern")) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="UTC")) dates = ["2010-12-01 00:00", "2010-12-02 00:00", pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 03:00", "2010-12-02 03:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx + pd.offsets.Hour(5) expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx.tz_convert("US/Pacific") expected = ["2010-12-01 05:00", "2010-12-02 05:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx + np.timedelta64(3, "h") expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 11:00", "2010-12-02 11:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_tz_convert_compat_timestamp(self, prefix): strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] idx = DatetimeIndex(strdates, tz=prefix + "US/Eastern") conv = idx[0].tz_convert(prefix + "US/Pacific") expected = idx.tz_convert(prefix + "US/Pacific")[0] assert conv == expected def test_dti_tz_convert_hour_overflow_dst(self): # Regression test for: # https://github.com/pandas-dev/pandas/issues/13306 # sorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2009-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2009-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2008-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2008-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_convert_hour_overflow_dst_timestamps(self, tz): # Regression test for GH#13306 # sorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2009-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2009-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2008-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2008-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("freq, n", [("H", 1), ("T", 60), ("S", 3600)]) def test_dti_tz_convert_trans_pos_plus_1__bug(self, freq, n): # Regression test for tslib.tz_convert(vals, tz1, tz2). # See https://github.com/pandas-dev/pandas/issues/4496 for details. idx = date_range(datetime(2011, 3, 26, 23), datetime(2011, 3, 27, 1), freq=freq) idx = idx.tz_localize("UTC") idx = idx.tz_convert("Europe/Moscow") expected = np.repeat(np.array([3, 4, 5]), np.array([n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) def test_dti_tz_convert_dst(self): for freq, n in [("H", 1), ("T", 60), ("S", 3600)]: # Start DST idx = date_range( "2014-03-08 23:00", "2014-03-09 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([18, 19, 20, 21, 22, 23, 0, 1, 3, 4, 5]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range( "2014-03-08 18:00", "2014-03-09 05:00", freq=freq, tz="US/Eastern" ) idx = idx.tz_convert("UTC") expected = np.repeat( np.array([23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) # End DST idx = date_range( "2014-11-01 23:00", "2014-11-02 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([19, 20, 21, 22, 23, 0, 1, 1, 2, 3, 4]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range( "2014-11-01 18:00", "2014-11-02 05:00", freq=freq, tz="US/Eastern" ) idx = idx.tz_convert("UTC") expected = np.repeat( np.array([22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), np.array([n, n, n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) # daily # Start DST idx = date_range("2014-03-08 00:00", "2014-03-09 00:00", freq="D", tz="UTC") idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx.hour, Index([19, 19])) idx = date_range( "2014-03-08 00:00", "2014-03-09 00:00", freq="D", tz="US/Eastern" ) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx.hour, Index([5, 5])) # End DST idx = date_range("2014-11-01 00:00", "2014-11-02 00:00", freq="D", tz="UTC") idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx.hour, Index([20, 20])) idx = date_range( "2014-11-01 00:00", "2014-11-02 000:00", freq="D", tz="US/Eastern" ) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx.hour, Index([4, 4])) def test_tz_convert_roundtrip(self, tz_aware_fixture): tz = tz_aware_fixture idx1 = date_range(start="2014-01-01", end="2014-12-31", freq="M", tz="UTC") exp1 = date_range(start="2014-01-01", end="2014-12-31", freq="M") idx2 = date_range(start="2014-01-01", end="2014-12-31", freq="D", tz="UTC") exp2 = date_range(start="2014-01-01", end="2014-12-31", freq="D") idx3 = date_range(start="2014-01-01", end="2014-03-01", freq="H", tz="UTC") exp3 = date_range(start="2014-01-01", end="2014-03-01", freq="H") idx4 = date_range(start="2014-08-01", end="2014-10-31", freq="T", tz="UTC") exp4 = date_range(start="2014-08-01", end="2014-10-31", freq="T") for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3), (idx4, exp4)]: converted = idx.tz_convert(tz) reset = converted.tz_convert(None) tm.assert_index_equal(reset, expected) assert reset.tzinfo is None expected = converted.tz_convert("UTC").tz_localize(None) expected = expected._with_freq("infer") tm.assert_index_equal(reset, expected) def test_dti_tz_convert_tzlocal(self): # GH#13583 # tz_convert doesn't affect to internal dti = date_range(start="2001-01-01", end="2001-03-01", tz="UTC") dti2 = dti.tz_convert(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) dti = date_range(start="2001-01-01", end="2001-03-01", tz=dateutil.tz.tzlocal()) dti2 = dti.tz_convert(None) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) @pytest.mark.parametrize( "tz", [ "US/Eastern", "dateutil/US/Eastern", pytz.timezone("US/Eastern"), gettz("US/Eastern"), ], ) def test_dti_tz_convert_utc_to_local_no_modify(self, tz): rng = date_range("3/11/2012", "3/12/2012", freq="H", tz="utc") rng_eastern = rng.tz_convert(tz) # Values are unmodified tm.assert_numpy_array_equal(rng.asi8, rng_eastern.asi8) assert timezones.tz_compare(rng_eastern.tz, timezones.maybe_get_tz(tz)) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_tz_convert_unsorted(self, tzstr): dr = date_range("2012-03-09", freq="H", periods=100, tz="utc") dr = dr.tz_convert(tzstr) result = dr[::-1].hour exp = dr.hour[::-1] tm.assert_almost_equal(result, exp) # ------------------------------------------------------------- # DatetimeIndex.tz_localize def test_dti_tz_localize_nonexistent_raise_coerce(self): # GH#13057 times = ["2015-03-08 01:00", "2015-03-08 02:00", "2015-03-08 03:00"] index = DatetimeIndex(times) tz = "US/Eastern" with pytest.raises(pytz.NonExistentTimeError, match="|".join(times)): index.tz_localize(tz=tz) with pytest.raises(pytz.NonExistentTimeError, match="|".join(times)): index.tz_localize(tz=tz, nonexistent="raise") result = index.tz_localize(tz=tz, nonexistent="NaT") test_times = ["2015-03-08 01:00-05:00", "NaT", "2015-03-08 03:00-04:00"] dti = to_datetime(test_times, utc=True) expected = dti.tz_convert("US/Eastern") tm.assert_index_equal(result, expected) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_infer(self, tz): # November 6, 2011, fall back, repeat 2 AM hour # With no repeated hours, we cannot infer the transition dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour()) with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dr.tz_localize(tz) # With repeated hours, we can infer the transition dr = date_range( datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour(), tz=tz ) times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous="infer") expected = dr._with_freq(None) tm.assert_index_equal(expected, localized) tm.assert_index_equal(expected, DatetimeIndex(times, tz=tz, ambiguous="infer")) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=pd.offsets.Hour()) localized = dr.tz_localize(tz) localized_infer = dr.tz_localize(tz, ambiguous="infer") tm.assert_index_equal(localized, localized_infer) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_times(self, tz): # March 13, 2011, spring forward, skip from 2 AM to 3 AM dr = date_range(datetime(2011, 3, 13, 1, 30), periods=3, freq=pd.offsets.Hour()) with pytest.raises(pytz.NonExistentTimeError, match="2011-03-13 02:30:00"): dr.tz_localize(tz) # after dst transition, it works dr = date_range( datetime(2011, 3, 13, 3, 30), periods=3, freq=pd.offsets.Hour(), tz=tz ) # November 6, 2011, fall back, repeat 2 AM hour dr = date_range(datetime(2011, 11, 6, 1, 30), periods=3, freq=pd.offsets.Hour()) with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dr.tz_localize(tz) # UTC is OK dr = date_range( datetime(2011, 3, 13), periods=48, freq=pd.offsets.Minute(30), tz=pytz.utc ) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_localize_pass_dates_to_utc(self, tzstr): strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] idx = DatetimeIndex(strdates) conv = idx.tz_localize(tzstr) fromdates = DatetimeIndex(strdates, tz=tzstr) assert conv.tz == fromdates.tz tm.assert_numpy_array_equal(conv.values, fromdates.values) @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_tz_localize(self, prefix): tzstr = prefix + "US/Eastern" dti = pd.date_range(start="1/1/2005", end="1/1/2005 0:00:30.256", freq="L") dti2 = dti.tz_localize(tzstr) dti_utc = pd.date_range( start="1/1/2005 05:00", end="1/1/2005 5:00:30.256", freq="L", tz="utc" ) tm.assert_numpy_array_equal(dti2.values, dti_utc.values) dti3 = dti2.tz_convert(prefix + "US/Pacific") tm.assert_numpy_array_equal(dti3.values, dti_utc.values) dti = pd.date_range(start="11/6/2011 1:59", end="11/6/2011 2:00", freq="L") with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dti.tz_localize(tzstr) dti = pd.date_range(start="3/13/2011 1:59", end="3/13/2011 2:00", freq="L") with pytest.raises(pytz.NonExistentTimeError, match="2011-03-13 02:00:00"): dti.tz_localize(tzstr) @pytest.mark.parametrize( "tz", [ "US/Eastern", "dateutil/US/Eastern", pytz.timezone("US/Eastern"), gettz("US/Eastern"), ], ) def test_dti_tz_localize_utc_conversion(self, tz): # Localizing to time zone should: # 1) check for DST ambiguities # 2) convert to UTC rng = date_range("3/10/2012", "3/11/2012", freq="30T") converted = rng.tz_localize(tz) expected_naive = rng + pd.offsets.Hour(5) tm.assert_numpy_array_equal(converted.asi8, expected_naive.asi8) # DST ambiguity, this should fail rng = date_range("3/11/2012", "3/12/2012", freq="30T") # Is this really how it should fail?? with pytest.raises(pytz.NonExistentTimeError, match="2012-03-11 02:00:00"): rng.tz_localize(tz) def test_dti_tz_localize_roundtrip(self, tz_aware_fixture): # note: this tz tests that a tz-naive index can be localized # and de-localized successfully, when there are no DST transitions # in the range. idx = date_range(start="2014-06-01", end="2014-08-30", freq="15T") tz = tz_aware_fixture localized = idx.tz_localize(tz) # cant localize a tz-aware object with pytest.raises( TypeError, match="Already tz-aware, use tz_convert to convert" ): localized.tz_localize(tz) reset = localized.tz_localize(None) assert reset.tzinfo is None expected = idx._with_freq(None) tm.assert_index_equal(reset, expected) def test_dti_tz_localize_naive(self): rng = date_range("1/1/2011", periods=100, freq="H") conv = rng.tz_localize("US/Pacific") exp = date_range("1/1/2011", periods=100, freq="H", tz="US/Pacific") tm.assert_index_equal(conv, exp._with_freq(None)) def test_dti_tz_localize_tzlocal(self): # GH#13583 offset = dateutil.tz.tzlocal().utcoffset(datetime(2011, 1, 1)) offset = int(offset.total_seconds() * 1000000000) dti = date_range(start="2001-01-01", end="2001-03-01") dti2 = dti.tz_localize(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8 + offset, dti.asi8) dti = date_range(start="2001-01-01", end="2001-03-01", tz=dateutil.tz.tzlocal()) dti2 = dti.tz_localize(None) tm.assert_numpy_array_equal(dti2.asi8 - offset, dti.asi8) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_nat(self, tz): times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous="NaT") times = [ "11/06/2011 00:00", np.NaN, np.NaN, "11/06/2011 02:00", "11/06/2011 03:00", ] di_test = DatetimeIndex(times, tz="US/Eastern") # left dtype is datetime64[ns, US/Eastern] # right is datetime64[ns, tzfile('/usr/share/zoneinfo/US/Eastern')] tm.assert_numpy_array_equal(di_test.values, localized.values) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_flags(self, tz): # November 6, 2011, fall back, repeat 2 AM hour # Pass in flags to determine right dst transition dr = date_range( datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour(), tz=tz ) times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] # Test tz_localize di = DatetimeIndex(times) is_dst = [1, 1, 0, 0, 0] localized = di.tz_localize(tz, ambiguous=is_dst) expected = dr._with_freq(None) tm.assert_index_equal(expected, localized) tm.assert_index_equal(expected, DatetimeIndex(times, tz=tz, ambiguous=is_dst)) localized = di.tz_localize(tz, ambiguous=np.array(is_dst)) tm.assert_index_equal(dr, localized) localized = di.tz_localize(tz, ambiguous=np.array(is_dst).astype("bool")) tm.assert_index_equal(dr, localized) # Test constructor localized = DatetimeIndex(times, tz=tz, ambiguous=is_dst) tm.assert_index_equal(dr, localized) # Test duplicate times where inferring the dst fails times += times di = DatetimeIndex(times) # When the sizes are incompatible, make sure error is raised msg = "Length of ambiguous bool-array must be the same size as vals" with pytest.raises(Exception, match=msg): di.tz_localize(tz, ambiguous=is_dst) # When sizes are compatible and there are repeats ('infer' won't work) is_dst = np.hstack((is_dst, is_dst)) localized = di.tz_localize(tz, ambiguous=is_dst) dr = dr.append(dr) tm.assert_index_equal(dr, localized) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=pd.offsets.Hour()) is_dst = np.array([1] * 10) localized = dr.tz_localize(tz) localized_is_dst = dr.tz_localize(tz, ambiguous=is_dst) tm.assert_index_equal(localized, localized_is_dst) # TODO: belongs outside tz_localize tests? @pytest.mark.parametrize("tz", ["Europe/London", "dateutil/Europe/London"]) def test_dti_construction_ambiguous_endpoint(self, tz): # construction with an ambiguous end-point # GH#11626 with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): date_range( "2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H" ) times = date_range( "2013-10-26 23:00", "2013-10-27 01:00", freq="H", tz=tz, ambiguous="infer" ) assert times[0] == Timestamp("2013-10-26 23:00", tz=tz, freq="H") assert times[-1] == Timestamp("2013-10-27 01:00:00+0000", tz=tz, freq="H") @pytest.mark.parametrize( "tz, option, expected", [ ["US/Pacific", "shift_forward", "2019-03-10 03:00"], ["dateutil/US/Pacific", "shift_forward", "2019-03-10 03:00"], ["US/Pacific", "shift_backward", "2019-03-10 01:00"], ["dateutil/US/Pacific", "shift_backward", "2019-03-10 01:00"], ["US/Pacific", timedelta(hours=1), "2019-03-10 03:00"], ], ) def test_dti_construction_nonexistent_endpoint(self, tz, option, expected): # construction with an nonexistent end-point with pytest.raises(pytz.NonExistentTimeError, match="2019-03-10 02:00:00"): date_range( "2019-03-10 00:00", "2019-03-10 02:00", tz="US/Pacific", freq="H" ) times = date_range( "2019-03-10 00:00", "2019-03-10 02:00", freq="H", tz=tz, nonexistent=option ) assert times[-1] == Timestamp(expected, tz=tz, freq="H") def test_dti_tz_localize_bdate_range(self): dr = pd.bdate_range("1/1/2009", "1/1/2010") dr_utc = pd.bdate_range("1/1/2009", "1/1/2010", tz=pytz.utc) localized = dr.tz_localize(pytz.utc) tm.assert_index_equal(dr_utc, localized) @pytest.mark.parametrize("tz", ["Europe/Warsaw", "dateutil/Europe/Warsaw"]) @pytest.mark.parametrize( "method, exp", [["NaT", pd.NaT], ["raise", None], ["foo", "invalid"]] ) def test_dti_tz_localize_nonexistent(self, tz, method, exp): # GH 8917 n = 60 dti = date_range(start="2015-03-29 02:00:00", periods=n, freq="min") if method == "raise": with pytest.raises(pytz.NonExistentTimeError, match="2015-03-29 02:00:00"): dti.tz_localize(tz, nonexistent=method) elif exp == "invalid": msg = ( "The nonexistent argument must be one of " "'raise', 'NaT', 'shift_forward', 'shift_backward' " "or a timedelta object" ) with pytest.raises(ValueError, match=msg): dti.tz_localize(tz, nonexistent=method) else: result = dti.tz_localize(tz, nonexistent=method) expected = DatetimeIndex([exp] * n, tz=tz) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "start_ts, tz, end_ts, shift", [ ["2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 03:00:00", "forward"], [ "2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 01:59:59.999999999", "backward", ], [ "2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 03:20:00", timedelta(hours=1), ], [ "2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 01:20:00", timedelta(hours=-1), ], ["2018-03-11 02:33:00", "US/Pacific", "2018-03-11 03:00:00", "forward"], [ "2018-03-11 02:33:00", "US/Pacific", "2018-03-11 01:59:59.999999999", "backward", ], [ "2018-03-11 02:33:00", "US/Pacific", "2018-03-11 03:33:00", timedelta(hours=1), ], [ "2018-03-11 02:33:00", "US/Pacific", "2018-03-11 01:33:00", timedelta(hours=-1), ], ], ) @pytest.mark.parametrize("tz_type", ["", "dateutil/"]) def test_dti_tz_localize_nonexistent_shift( self, start_ts, tz, end_ts, shift, tz_type ): # GH 8917 tz = tz_type + tz if isinstance(shift, str): shift = "shift_" + shift dti = DatetimeIndex([Timestamp(start_ts)]) result = dti.tz_localize(tz, nonexistent=shift) expected = DatetimeIndex([Timestamp(end_ts)]).tz_localize(tz) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("offset", [-1, 1]) @pytest.mark.parametrize("tz_type", ["", "dateutil/"]) def test_dti_tz_localize_nonexistent_shift_invalid(self, offset, tz_type): # GH 8917 tz = tz_type + "Europe/Warsaw" dti = DatetimeIndex([Timestamp("2015-03-29 02:20:00")]) msg = "The provided timedelta will relocalize on a nonexistent time" with pytest.raises(ValueError, match=msg): dti.tz_localize(tz, nonexistent=timedelta(seconds=offset)) # ------------------------------------------------------------- # DatetimeIndex.normalize def test_normalize_tz(self): rng = date_range("1/1/2000 9:30", periods=10, freq="D", tz="US/Eastern") result = rng.normalize() # does not preserve freq expected = date_range("1/1/2000", periods=10, freq="D", tz="US/Eastern") tm.assert_index_equal(result, expected._with_freq(None)) assert result.is_normalized assert not rng.is_normalized rng =
date_range("1/1/2000 9:30", periods=10, freq="D", tz="UTC")
pandas.date_range
from uff.ic.mell.sentimentembedding.modelos.modelo import Modelo from uff.ic.mell.sentimentembedding.vocabularios.vocabulario import Vocabulario import importlib twokenize = importlib.import_module("uff.ic.mell.sentimentembedding.utils.ark-twokenize-py.twokenize") import pandas as pd import torch from enum import Enum import numpy as np class ModeloEstatico(Modelo): # utiliza a biblioteca , # separa a sentenca em espacos - SPACE TOKENIZADOR = Enum("TOKENIZADOR", "TWOKENIZER SPACE") def __init__(self, name:str, vocabulario:Vocabulario, defaultToken:str, tokenizador:TOKENIZADOR): super().__init__(name) self.vocabulario = vocabulario self.defaultToken = defaultToken self.tokenizador = tokenizador def embTexts(self, dataSeries:pd.Series, **kwagars) -> pd.DataFrame: retorno = [] for i, sentence in enumerate(dataSeries): embed = self.getWordsEmbeddings(sentence, self.defaultToken) #print(embed) avg_emb = self.avgEmbeddings(embed) retorno.append(avg_emb) return
pd.DataFrame(retorno)
pandas.DataFrame
""" Tests for CBMonthEnd CBMonthBegin, SemiMonthEnd, and SemiMonthBegin in offsets """ from datetime import ( date, datetime, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas._libs.tslibs.offsets import ( CBMonthBegin, CBMonthEnd, CDay, SemiMonthBegin, SemiMonthEnd, ) from pandas import ( DatetimeIndex, Series, _testing as tm, date_range, ) from pandas.tests.tseries.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from pandas.tests.tseries.offsets.test_offsets import _ApplyCases from pandas.tseries import offsets as offsets from pandas.tseries.holiday import USFederalHolidayCalendar class CustomBusinessMonthBase: def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self._offset()) _check_roundtrip(self._offset(2)) _check_roundtrip(self._offset() * 2) def test_copy(self): # GH 17452 off = self._offset(weekmask="Mon Wed Fri") assert off == off.copy() class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _offset = CBMonthEnd def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthEnd>" assert repr(self.offset2) == "<2 * CustomBusinessMonthEnds>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 2, 29) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert CBMonthEnd(10).rollback(self.d) == datetime(2007, 12, 31) def testRollforward1(self): assert CBMonthEnd(10).rollforward(self.d) == datetime(2008, 1, 31) def test_roll_date_object(self): offset = CBMonthEnd() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 8, 31) result = offset.rollforward(dt) assert result == datetime(2012, 9, 28) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [ (CBMonthEnd(), datetime(2008, 1, 31), True), (CBMonthEnd(), datetime(2008, 1, 1), False), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, d, expected = case assert_is_on_offset(offset, d, expected) apply_cases: _ApplyCases = [ ( CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29), }, ), ( 2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 2, 7): datetime(2008, 3, 31), }, ), ( -CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 2, 8): datetime(2008, 1, 31), }, ), ( -2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 11, 30), datetime(2008, 2, 9): datetime(2007, 12, 31), }, ), ( CBMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29), }, ), ] @pytest.mark.parametrize("case", apply_cases) def test_apply(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthEnd(10) assert result == datetime(2013, 7, 31) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthEnd() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 29) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 5, 31) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ["2012-01-31", datetime(2012, 2, 28), np.datetime64("2012-02-29")] bm_offset = CBMonthEnd(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 30) assert dt + 2 * bm_offset == datetime(2012, 2, 27) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): from pandas.tseries.holiday import USFederalHolidayCalendar hcal = USFederalHolidayCalendar() freq = CBMonthEnd(calendar=hcal) assert date_range(start="20120101", end="20130101", freq=freq).tolist()[ 0 ] == datetime(2012, 1, 31) class TestCustomBusinessMonthBegin(CustomBusinessMonthBase, Base): _offset = CBMonthBegin def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthBegin>" assert repr(self.offset2) == "<2 * CustomBusinessMonthBegins>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 3, 3) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert CBMonthBegin(10).rollback(self.d) == datetime(2008, 1, 1) def testRollforward1(self): assert CBMonthBegin(10).rollforward(self.d) == datetime(2008, 1, 1) def test_roll_date_object(self): offset = CBMonthBegin() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 9, 3) result = offset.rollforward(dt) assert result == datetime(2012, 10, 1) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [ (CBMonthBegin(), datetime(2008, 1, 1), True), (CBMonthBegin(), datetime(2008, 1, 31), False), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, dt, expected = case assert_is_on_offset(offset, dt, expected) apply_cases: _ApplyCases = [ ( CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 2, 7): datetime(2008, 3, 3), }, ), ( 2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 3, 3), datetime(2008, 2, 7): datetime(2008, 4, 1), }, ), ( -CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 12, 3), datetime(2008, 2, 8): datetime(2008, 2, 1), }, ), ( -2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 11, 1), datetime(2008, 2, 9): datetime(2008, 1, 1), }, ), ( CBMonthBegin(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 7): datetime(2008, 2, 1), }, ), ] @pytest.mark.parametrize("case", apply_cases) def test_apply(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthBegin(10) assert result == datetime(2013, 8, 1) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthBegin() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 1) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 6, 1) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ["2012-02-01", datetime(2012, 2, 2), np.datetime64("2012-03-01")] bm_offset = CBMonthBegin(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 2) assert dt + 2 * bm_offset == datetime(2012, 2, 3) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): hcal = USFederalHolidayCalendar() cbmb = CBMonthBegin(calendar=hcal) assert date_range(start="20120101", end="20130101", freq=cbmb).tolist()[ 0 ] == datetime(2012, 1, 3) class TestSemiMonthEnd(Base): _offset = SemiMonthEnd offset1 = _offset() offset2 = _offset(2) def test_offset_whole_year(self): dates = ( datetime(2007, 12, 31), datetime(2008, 1, 15), datetime(2008, 1, 31), datetime(2008, 2, 15), datetime(2008, 2, 29), datetime(2008, 3, 15), datetime(2008, 3, 31), datetime(2008, 4, 15), datetime(2008, 4, 30), datetime(2008, 5, 15), datetime(2008, 5, 31), datetime(2008, 6, 15), datetime(2008, 6, 30), datetime(2008, 7, 15), datetime(2008, 7, 31), datetime(2008, 8, 15), datetime(2008, 8, 31), datetime(2008, 9, 15), datetime(2008, 9, 30), datetime(2008, 10, 15), datetime(2008, 10, 31), datetime(2008, 11, 15), datetime(2008, 11, 30), datetime(2008, 12, 15), datetime(2008, 12, 31), ) for base, exp_date in zip(dates[:-1], dates[1:]): assert_offset_equal(SemiMonthEnd(), base, exp_date) # ensure .apply_index works as expected s = DatetimeIndex(dates[:-1]) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = SemiMonthEnd() + s exp = DatetimeIndex(dates[1:]) tm.assert_index_equal(result, exp) # ensure generating a range with DatetimeIndex gives same result result = date_range(start=dates[0], end=dates[-1], freq="SM") exp = DatetimeIndex(dates, freq="SM") tm.assert_index_equal(result, exp) offset_cases = [] offset_cases.append( ( SemiMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 15): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 15), datetime(2006, 12, 14): datetime(2006, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 15), datetime(2007, 1, 1): datetime(2007, 1, 15), datetime(2006, 12, 1): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(day_of_month=20), { datetime(2008, 1, 1): datetime(2008, 1, 20), datetime(2008, 1, 15): datetime(2008, 1, 20), datetime(2008, 1, 21): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 20), datetime(2006, 12, 14): datetime(2006, 12, 20), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 20), datetime(2007, 1, 1): datetime(2007, 1, 20), datetime(2006, 12, 1): datetime(2006, 12, 20), datetime(2006, 12, 15): datetime(2006, 12, 20), }, ) ) offset_cases.append( ( SemiMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 16): datetime(2008, 1, 31), datetime(2008, 1, 15): datetime(2008, 1, 15), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 15), }, ) ) offset_cases.append( ( SemiMonthEnd(0, day_of_month=16), { datetime(2008, 1, 1): datetime(2008, 1, 16), datetime(2008, 1, 16): datetime(2008, 1, 16), datetime(2008, 1, 15): datetime(2008, 1, 16), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 16), }, ) ) offset_cases.append( ( SemiMonthEnd(2), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 15), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2007, 1, 16): datetime(2007, 2, 15), datetime(2006, 11, 1): datetime(2006, 11, 30), }, ) ) offset_cases.append( ( SemiMonthEnd(-1), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 15), datetime(2008, 12, 31): datetime(2008, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 15), datetime(2006, 12, 30): datetime(2006, 12, 15), datetime(2007, 1, 1): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(-1, day_of_month=4), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2007, 1, 4): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 4), datetime(2008, 12, 31): datetime(2008, 12, 4), datetime(2006, 12, 5): datetime(2006, 12, 4), datetime(2006, 12, 30): datetime(2006, 12, 4), datetime(2007, 1, 1): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(-2), { datetime(2007, 1, 1): datetime(2006, 12, 15), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 3, 15): datetime(2008, 2, 15), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 14): datetime(2006, 11, 15), datetime(2007, 1, 1): datetime(2006, 12, 15), }, ) ) @pytest.mark.parametrize("case", offset_cases) def test_offset(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) @pytest.mark.parametrize("case", offset_cases) def test_apply_index(self, case): # https://github.com/pandas-dev/pandas/issues/34580 offset, cases = case s = DatetimeIndex(cases.keys()) exp = DatetimeIndex(cases.values()) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = offset + s tm.assert_index_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = offset.apply_index(s) tm.assert_index_equal(result, exp) on_offset_cases = [ (datetime(2007, 12, 31), True), (datetime(2007, 12, 15), True), (datetime(2007, 12, 14), False), (datetime(2007, 12, 1), False), (datetime(2008, 2, 29), True), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): dt, expected = case assert_is_on_offset(SemiMonthEnd(), dt, expected) @pytest.mark.parametrize("klass", [Series, DatetimeIndex]) def test_vectorized_offset_addition(self, klass): s = klass( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = s + SemiMonthEnd() result2 = SemiMonthEnd() + s exp = klass( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = klass( [ Timestamp("2000-01-01 00:15:00", tz="US/Central"), Timestamp("2000-02-01", tz="US/Central"), ], name="a", ) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = s + SemiMonthEnd() result2 = SemiMonthEnd() + s exp = klass( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) class TestSemiMonthBegin(Base): _offset = SemiMonthBegin offset1 = _offset() offset2 = _offset(2) def test_offset_whole_year(self): dates = ( datetime(2007, 12, 15), datetime(2008, 1, 1), datetime(2008, 1, 15), datetime(2008, 2, 1), datetime(2008, 2, 15), datetime(2008, 3, 1), datetime(2008, 3, 15), datetime(2008, 4, 1), datetime(2008, 4, 15), datetime(2008, 5, 1), datetime(2008, 5, 15), datetime(2008, 6, 1), datetime(2008, 6, 15), datetime(2008, 7, 1), datetime(2008, 7, 15), datetime(2008, 8, 1), datetime(2008, 8, 15), datetime(2008, 9, 1), datetime(2008, 9, 15), datetime(2008, 10, 1), datetime(2008, 10, 15), datetime(2008, 11, 1), datetime(2008, 11, 15), datetime(2008, 12, 1), datetime(2008, 12, 15), ) for base, exp_date in zip(dates[:-1], dates[1:]): assert_offset_equal(SemiMonthBegin(), base, exp_date) # ensure .apply_index works as expected s = DatetimeIndex(dates[:-1]) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = SemiMonthBegin() + s exp = DatetimeIndex(dates[1:]) tm.assert_index_equal(result, exp) # ensure generating a range with DatetimeIndex gives same result result = date_range(start=dates[0], end=dates[-1], freq="SMS") exp = DatetimeIndex(dates, freq="SMS") tm.assert_index_equal(result, exp) offset_cases = [ ( SemiMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 15): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 14): datetime(2006, 12, 15), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 1): datetime(2007, 1, 15), datetime(2006, 12, 1): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2007, 1, 1), }, ), ( SemiMonthBegin(day_of_month=20), { datetime(2008, 1, 1): datetime(2008, 1, 20), datetime(2008, 1, 15): datetime(2008, 1, 20), datetime(2008, 1, 21): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 14): datetime(2006, 12, 20), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 1): datetime(2007, 1, 20), datetime(2006, 12, 1): datetime(2006, 12, 20), datetime(2006, 12, 15): datetime(2006, 12, 20), }, ), ( SemiMonthBegin(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 16): datetime(2008, 2, 1), datetime(2008, 1, 15): datetime(2008, 1, 15), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 2): datetime(2006, 12, 15), datetime(2007, 1, 1): datetime(2007, 1, 1), }, ), ( SemiMonthBegin(0, day_of_month=16), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 16): datetime(2008, 1, 16), datetime(2008, 1, 15): datetime(2008, 1, 16), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 5): datetime(2007, 1, 16), datetime(2007, 1, 1): datetime(2007, 1, 1), }, ), ( SemiMonthBegin(2), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 15), datetime(2006, 12, 1): datetime(2007, 1, 1), datetime(2006, 12, 29): datetime(2007, 1, 15), datetime(2006, 12, 15): datetime(2007, 1, 15), datetime(2007, 1, 1): datetime(2007, 2, 1), datetime(2007, 1, 16): datetime(2007, 2, 15), datetime(2006, 11, 1): datetime(2006, 12, 1), }, ), ( SemiMonthBegin(-1), { datetime(2007, 1, 1): datetime(2006, 12, 15), datetime(2008, 6, 30): datetime(2008, 6, 15), datetime(2008, 6, 14): datetime(2008, 6, 1), datetime(2008, 12, 31): datetime(2008, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2006, 12, 1), datetime(2007, 1, 1): datetime(2006, 12, 15), }, ), ( SemiMonthBegin(-1, day_of_month=4), { datetime(2007, 1, 1): datetime(2006, 12, 4), datetime(2007, 1, 4): datetime(2007, 1, 1), datetime(2008, 6, 30): datetime(2008, 6, 4), datetime(2008, 12, 31): datetime(2008, 12, 4), datetime(2006, 12, 5): datetime(2006, 12, 4), datetime(2006, 12, 30): datetime(2006, 12, 4), datetime(2006, 12, 2): datetime(2006, 12, 1), datetime(2007, 1, 1): datetime(2006, 12, 4), }, ), ( SemiMonthBegin(-2), { datetime(2007, 1, 1): datetime(2006, 12, 1), datetime(2008, 6, 30): datetime(2008, 6, 1), datetime(2008, 6, 14): datetime(2008, 5, 15), datetime(2008, 12, 31): datetime(2008, 12, 1), datetime(2006, 12, 29): datetime(2006, 12, 1), datetime(2006, 12, 15): datetime(2006, 11, 15), datetime(2007, 1, 1): datetime(2006, 12, 1), }, ), ] @pytest.mark.parametrize("case", offset_cases) def test_offset(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) @pytest.mark.parametrize("case", offset_cases) def test_apply_index(self, case): offset, cases = case s = DatetimeIndex(cases.keys()) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = offset + s exp = DatetimeIndex(cases.values()) tm.assert_index_equal(result, exp) on_offset_cases = [ (datetime(2007, 12, 1), True), (datetime(2007, 12, 15), True), (datetime(2007, 12, 14), False), (datetime(2007, 12, 31), False), (datetime(2008, 2, 15), True), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): dt, expected = case assert_is_on_offset(SemiMonthBegin(), dt, expected) @pytest.mark.parametrize("klass", [Series, DatetimeIndex]) def test_vectorized_offset_addition(self, klass): s = klass( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = s + SemiMonthBegin() result2 = SemiMonthBegin() + s exp = klass( [ Timestamp("2000-02-01 00:15:00", tz="US/Central"), Timestamp("2000-03-01", tz="US/Central"), ], name="a", ) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = klass( [ Timestamp("2000-01-01 00:15:00", tz="US/Central"), Timestamp("2000-02-01", tz="US/Central"), ], name="a", ) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = s + SemiMonthBegin() result2 =
SemiMonthBegin()
pandas._libs.tslibs.offsets.SemiMonthBegin
import numpy as np import scipy as sc import scipy.linalg as spl import scipy.stats as ss import pandas as pd import sys, os, csv import grad_utils as model import cv_utils import opt_utils import ks_utils as ks def max_change(beta): ''' get the maximal change in rank in neighboring timepoint based on beta ''' T,N = beta.shape arg = np.array([ss.rankdata(-beta[ii]) for ii in range(T)]) return np.max(abs(arg[1:] - arg[:-1])) def plot_nfl_round(beta, team_id,season): T, N = beta.shape year = range(1,17) f = plt.figure(1, figsize = (6,4)) for i in range(N): plt.plot(year,beta[:,i], label=team_id['name'][i], color = np.random.rand(3,)) plt.xlabel("round") plt.ylabel("latent parameter") plt.legend(loc='upper left', bbox_to_anchor=(1, 1, 1, 0),prop={'size': 5}) plt.ticklabel_format(style='plain',axis='x',useOffset=False) f.savefig("nfl_round_"+str(season)+".pdf", bbox_inches='tight') def get_elo_rank_season(elo_all, season): elo_season = elo_all.iloc[np.where(elo_all['season'] == season)] elo_season = elo_season[pd.isnull(elo_season['playoff'])] a = elo_season[['team1','elo1_post']] a.columns = ['team','elo'] a = a.reset_index() b = elo_season[['team2','elo2_post']] b.columns = ['team','elo'] b = b.reset_index() c =
pd.concat([a,b])
pandas.concat
import numpy as np import pandas as pd import shapely.wkt from sklearn.metrics import pairwise_distances from sklearn.metrics import mean_squared_error import init import constants as cn from coordinate import Coordinate def proximity_ratio(df_destinations): """ Calculate proximity ratio and summarize by blockgroups input: df_destination - data frame with distance, trip-level data output: df_blockgroup - data frame with origin blockgroup and proximity ratio """ lower_bound = cn.BASKET_EVAL_PROX_MIN # 2 miles upper_bound = cn.BASKET_EVAL_PROX_MAX # 10 miles # Ratio of trips under 2 miles to trips between 2 and 10 miles df_destinations['dist_under_2'] = np.where(df_destinations[cn.DISTANCE] < lower_bound, 1, 0) df_destinations['dist_2_to_10'] = np.where((df_destinations[cn.DISTANCE] >= lower_bound) & (df_destinations[cn.DISTANCE] < upper_bound), 1, 0) df_blockgroup = df_destinations.groupby([cn.ORIGIN], as_index=False).agg({'dist_under_2':sum,'dist_2_to_10':sum}) # Remove rows with zero denominators df_blockgroup = df_blockgroup[df_blockgroup['dist_2_to_10'] != 0] # Make new column with the data df_blockgroup[cn.PROX_RATIO] = df_blockgroup['dist_under_2'] / df_blockgroup['dist_2_to_10'] return df_blockgroup[[cn.ORIGIN, cn.PROX_RATIO]] def vert_hori_ratio(df_destinations, df_blockgroup): """ Calculate the ratio between vertical distance and horizontal distance, for each blockgroup input: df_destination - data frame with distance, trip-level data output: df_blockgroup - data frame with origin blockgroup and proximity ratio """ df_destinations[cn.VERT_HORI_RATIO] = pd.DataFrame(np.abs( (df_destinations['dest_lat'] - df_destinations['orig_lat']) / (df_destinations['dest_lon'] - df_destinations['orig_lon']) )) df_blockgroup2 = df_destinations.groupby([cn.ORIGIN], as_index=False)[cn.VERT_HORI_RATIO].mean() result_merged = pd.merge(left=df_blockgroup, right=df_blockgroup2, how='inner', left_on=cn.ORIGIN, right_on=cn.ORIGIN) return result_merged def average_distance(df_destinations, df_blockgroup): """ Calculate average travel distance of each blockgroup input: df_destination - data frame with distance, trip-level data output: df_blockgroup - data frame with origin blockgroup and proximity ratio """ df_blockgroup2 = df_destinations.groupby([cn.ORIGIN], as_index=False)[cn.DISTANCE].mean() result_merged = pd.merge(left=df_blockgroup, right=df_blockgroup2, how='inner', left_on=cn.ORIGIN, right_on=cn.ORIGIN) result_merged.rename(columns = {cn.DISTANCE: cn.AVG_DIST}, inplace=True) return result_merged def dist_from_cc(df): """ Helper function to create a new column in a DataFrame with dist to city center """ coordinate = Coordinate(df['dest_lat'], df['dest_lon']) city_center = Coordinate(cn.CITY_CENTER[0], cn.CITY_CENTER[1]) return city_center.haversine_distance(coordinate) def distance_from_citycenter(df_destinations, df_blockgroup): """ Calculate Euclidean distance of destination from the city center input: df_destination - data frame with distance, trip-level data output: df_blockgroup - data frame with origin blockgroup and proximity ratio """ df_destinations['distance_from_citycenter_val'] = df_destinations.apply(dist_from_cc, axis=1) df_blockgroup2 = df_destinations.groupby([cn.ORIGIN], as_index=False)['distance_from_citycenter_val'].mean() result_merged = pd.merge(left=df_blockgroup, right=df_blockgroup2, how='inner', left_on=cn.ORIGIN, right_on=cn.ORIGIN) result_merged.rename(columns = {'distance_from_citycenter_val': 'distance_from_citycenter_test'}, inplace=True) return result_merged def prepare_psrc(psrc_raw): """ This code calculates four features and adds them to the original PSRC data. It just needs to be run once, as we are using it without filtering. input: PSRC data (even though we call it raw, its column names are changed and latitude and longitudes are added) output: PSRC data with proximity ratio, vert_hori_ratio, average distance, and distance from city center """ psrc_blockgroup = proximity_ratio(psrc_raw) with_vert_hori_ratio = vert_hori_ratio(psrc_raw, psrc_blockgroup) with_average_distance = average_distance(psrc_raw, with_vert_hori_ratio) with_distance_from_citycenter = distance_from_citycenter(psrc_raw, with_average_distance) result_merged = with_distance_from_citycenter result_merged.sort_values(by=[cn.ORIGIN]) return result_merged def calculate_features(google_input, basket_combination): """ This calculates three features using google API data; need to run separately for each basket combination It just needs to be run for every basket combination, as we are filtering it every time. input: Google API data, backet combination output: Google API data with proximity ratio, vert_hori_ratio, average distance, and distance from city center """ # Filter to match basket parameters based on rank (distance from destination) filtered_data = google_input for i in range(len(cn.BASKET_CATEGORIES)): filtered_data = filtered_data[(filtered_data['class'] != cn.BASKET_CATEGORIES[i]) | (filtered_data['rank'] <= basket_combination[i])] # FEATURES: PROXIMITY RATIO, VERTICAL/HORIZONTAL TRAVEL DISTANCES, AVERAGE DISTANCE TO DESTINATION # Creating google results with_proximity_ratio = proximity_ratio(filtered_data.copy()) with_vert_hori_ratio = vert_hori_ratio(filtered_data.copy(), with_proximity_ratio) with_average_distance = average_distance(filtered_data.copy(), with_vert_hori_ratio) with_distance_from_citycenter = distance_from_citycenter(filtered_data.copy(), with_average_distance) final_result = with_distance_from_citycenter.sort_values(by = [cn.ORIGIN]) return final_result def calculate_mse(psrc_output, google_input): """ This calculates three features for each basket combination, saves MSE to compare Google API with PSRC input: PSRC wth features, Google API data without features output: Basket combinations, MSEs for each basket """ score = [] combinations = [] for x in cn.BASKET_COMBOS: if sum(x) == cn.BASKET_SIZE: # To do a faster test run, comment out the above and use the following: # if sum(x) == 40: combinations.append(x) df_google = calculate_features(google_input, list(x)) googled_psrc = psrc_output.loc[psrc_output[cn.ORIGIN].isin(df_google[cn.ORIGIN])] proximity_ratio_mse = mean_squared_error(df_google[cn.PROX_RATIO], googled_psrc[cn.PROX_RATIO]) vert_hori_ratio_mse = mean_squared_error(df_google[cn.VERT_HORI_RATIO], googled_psrc[cn.VERT_HORI_RATIO]) average_distance_mse = mean_squared_error(df_google[cn.AVG_DIST], googled_psrc[cn.AVG_DIST]) distance_from_citycenter_mse = mean_squared_error(df_google['distance_from_citycenter_test'], googled_psrc['distance_from_citycenter_test']) mses = (proximity_ratio_mse, vert_hori_ratio_mse, average_distance_mse, distance_from_citycenter_mse) score.append(mses) if (len(combinations) % 5000 == 0): print("Still Processing..") print("Idx+1 of combination is: ", len(combinations)) print("Total number of combinations: " + str(len(combinations))) print() final_mses = pd.DataFrame(score, columns = ['from_proximity_ratio', 'from_vert_hori_ratio', 'from_average_distance', 'from_distance_citycenter']) final_mses['rank_from_proximity_ratio'] = final_mses['from_proximity_ratio'].rank(ascending=1) final_mses['rank_from_vert_hori_ratio'] = final_mses['from_vert_hori_ratio'].rank(ascending=1) final_mses['rank_from_average_distance'] = final_mses['from_average_distance'].rank(ascending=1) final_mses['rank_from_distance_citycenter'] = final_mses['from_distance_citycenter'].rank(ascending=1) final_combinations = pd.DataFrame(combinations, columns = cn.BASKET_CATEGORIES) best_loc = final_mses['rank_from_average_distance'].idxmin() print("Choose the following combination: \n") print("The index of the best basket is: ", best_loc) print(final_combinations.loc[best_loc]) return final_combinations, final_mses # Load PSRC data and pre-process psrc_rawdat = pd.read_csv(cn.PSRC_FP, dtype={cn.ORIGIN: str, cn.DESTINATION: str}) psrc_rawdat[cn.DISTANCE] = pd.to_numeric(psrc_rawdat[cn.DISTANCE], errors='coerce') # Load Google API data input_destinations = pd.read_csv(cn.RAW_DIR + 'GoogleMatrix_Places_Dist.csv', dtype={cn.ORIGIN: str}) input_destinations.rename(columns = {'lat': 'dest_lat', 'lng': 'dest_lon', 'orig_lng': 'orig_lon'}, inplace=True) # Load blockgroup data with latitude and longitudes; will be merged with Google API blockgroup_mapping = pd.read_csv(cn.PROCESSED_DIR + 'SeattleCensusBlockGroups.csv', dtype={'tract_blkgrp': str}) print("blockgroup_mapping is loaded!") blockgroup_mapping['tract_blkgrp'] = '530330' + blockgroup_mapping['tract_blkgrp'] orig_pts = blockgroup_mapping.centroid.apply(shapely.wkt.loads) blockgroup_mapping['orig_lon'] = pd.DataFrame([kk.x for kk in orig_pts]) blockgroup_mapping['orig_lat'] =
pd.DataFrame([kk.y for kk in orig_pts])
pandas.DataFrame
#!/usr/local/bin/env python3.7 # -*- coding: utf-8; py-indent-offset:4 -*- ############################################################################### # # The MIT License (MIT) # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. ############################################################################### """Helper module to manipulate csv and pandas Dataframe""" import csv import pandas as pd import datetime as dt from functools import wraps from statsmodels.tsa.stattools import adfuller import os.path import numpy as np def ordinal_date(function): """Wrapper to add an ordinal date""" @wraps(function) def wrapper(cls,date_name,date_debut,date_fin, name_,directory,asset, ordinal_name,is_fx,dup_col): series_ = function(cls,date_name,date_debut,date_fin, name_,directory,asset, ordinal_name,is_fx,dup_col) series_.Date = pd.to_datetime(series_.Date) series_[ordinal_name] = pd.to_datetime(series_[date_name]).map(dt.datetime.toordinal) return series_ return wrapper class ManipData(): """Class to manipulate data""" @classmethod def __init__(cls,dir_,file_name,extension =""): cls.dir_ = dir_ #directory cls.filename = file_name cls.extension_ = extension #if there is an extension added to the filename @classmethod def write_csv_(cls, dir_output, name_out, add_doc = "", is_walkfoward = False, **kwargs): """ Write data to a csv Parameters ---------- dir_output : str directory where we want our data to be written name_out : str name of the file name is_walkfoward : bool says if we are doing a walkfoward analyis. If `True`, we have to create a separate training and test file **kwargs : keyword param dictionary with keys and items to be written in the file """ if is_walkfoward: write_type = 'a' func = 'writer.writerow' else : write_type = 'w' func = 'str' with open(dir_output + name_out + add_doc + ".csv" , write_type, newline='') as f: writer = csv.writer(f) eval(func)('') for key, item in kwargs.items(): writer.writerow([key,item]) @classmethod def erase_content(cls): """Method to erase contents of a csv file""" filename = cls.dir_ + cls.filename + cls.extension_ + ".csv" if os.path.isfile(filename): with open(filename,"w+") as f: f.close() @classmethod @ordinal_date def csv_to_pandas(cls, date_name,date_debut,date_fin, name_,directory,asset, ordinal_name = '',is_fx = False, dup_col = None): """Return the csv to a pandas Dataframe The function remove nan value with `series_.dropna()` and remove the data when the market is closed with `series_.drop_duplicates()` """ if is_fx: dateparse = lambda x: dt.datetime.strptime(x, '%d.%m.%Y %H:%M:%S') else : dateparse = None series_ =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # Best viewed locally in a Jupyter notebook or online in <a href="https://nbviewer.jupyter.org/github/codykingham/noun_semantics/blob/master/analysis.ipynb">Jupyter Notebook Viewer</a> # # # Analysis of Noun Semantics in the Hebrew Bible # ## <NAME> # # In this notebook, I compare the syntactic contexts of the top 200 most frequent nouns in the Hebrew Bible. This notebook essentially walks through my process and includes limited commentary throughout. Full descriptions borrowed from the paper will soon be transferred to here as well. # In[1]: get_ipython().system(' echo "last updated:"; date') # In[3]: # ETCBC's BHSA data from tf.fabric import Fabric from tf.app import use # stats & data-containers import collections, math, re, random, csv import pandas as pd import numpy as np import scipy.stats as stats from sklearn.decomposition import PCA from sklearn.metrics.pairwise import pairwise_distances from kneed import KneeLocator # https://github.com/arvkevi/kneed # data visualizations import seaborn as sns import matplotlib.pyplot as plt from matplotlib import rcParams rcParams['font.serif'] = ['Times New Roman'] from IPython.display import HTML, display, Image from adjustText import adjust_text # fixes overlapping scatterplot annotations # custom modules #from pyscripts.contextcount import ContextCounter, ContextTester from pyscripts.contextparameters import deliver_params from pyscripts.deliver_data import deliver_data # prep the Hebrew syntax data name = 'noun_semantics' hebrew_data = ['~/github/etcbc/{}/tf/c'.format(direc) for direc in ('bhsa','lingo/heads', 'heads', 'phono')] # data dirs load_features = ''' typ phono lex_utf8 lex voc_lex_utf8 voc_lex gloss freq_lex pdp sp ls language rela number function vs vt code label head obj_prep sem_set nhead heads noun_heads ''' # TF load statements TF = Fabric(locations=hebrew_data) api = TF.load(load_features) B = use('bhsa', api=api, hoist=globals(), silent=True) # Bhsa functions for search and visualizing text # In[4]: def reverse_hb(heb_text): ''' Reverses order of left-to-right text for good matplotlib formatting. ''' return ''.join(reversed(heb_text)) def show_word_list(word_nodes, joiner='&nbsp;&nbsp;|', title=''): ''' Displays Hebrew for a pipe-separated list of word nodes Good for seeing lexemes without taking up screen space. ''' formatted = joiner.join(T.text(node) for node in word_nodes) display(HTML(formatted)) def show_subphrases(phrase, direction=L.d): ''' A simple function to print subphrases and their relations to each other. ''' for sp in direction(phrase, 'subphrase'): mother = E.mother.f(sp)[0] if E.mother.f(sp) else '' mother_text = T.text(mother) print('-'*7 + str(sp) + '-'*16) print() print(f'{T.text(sp)} -{F.rela.v(sp)}-> {mother_text}') print(f'nodes: {sp} -{F.rela.v(sp)}-> {mother}') print(f'slots: {L.d(sp, "word")} -{F.rela.v(sp)}-> {L.d(mother or 0, "word")}') print('-'*30) # ## Corpus Size # # Below is the number of words included in the corpus of BHSA. # In[5]: len(list(F.otype.s('word'))) # ## Demonstrating the Collocational Principle # # Here is a query for all nouns that serve as the object to the verb אכל "to eat". This query demonstrates how the collocation patterns of syntactic context can be informative for semantic meaning. This is the driving principle behind this project. # In[6]: eat_obj = ''' clause phrase function=Pred word pdp=verb lex=>KL[ phrase function=Objc <head- w1:word pdp=subs lex w2:word w1 = w2 ''' eat_obj = B.search(eat_obj) eaten_lexs = collections.Counter(T.text(r[5]) for r in eat_obj) for word, count in eaten_lexs.most_common(10): print(f'{count}\t{word}') # ## Define a Target Noun Set # # *Insert discussion about the semantic relationship between iconicity and frequency with regards to the most frequent noun lexemes in the HB.* # In[7]: raw_search = ''' lex language=Hebrew sp=subs ''' raw_nouns = B.search(raw_search) # Now we order the results on the basis of lexeme frequency. # In[8]: raw_terms_ordered = sorted(((F.freq_lex.v(res[0]), res[0]) for res in raw_nouns), reverse=True) # Below we have a look at the top 50 terms from the selected set. Pay attention to the feature `ls`, i.e. "lexical set." This feature gives us some rudimentary semantic information about the nouns and their usual functions, and it suggests that some additional restrictions are necessary for the noun selection procedure. Note especially that several of these nouns are used in adjectival or prepositional roles (e.g. כל ,אחד, אין, תחת). # In[9]: raw_nnodes = [res[1] for res in raw_terms_ordered] # isolate the word nodes of the sample B.displaySetup(extraFeatures={'ls', 'freq_lex'}) # config B to display ls and freq_lex # display lexeme data # for i, node in enumerate(raw_nnodes[:50]): # B.prettyTuple((node,), seq=i) # Based on the nouns that are present, we should make some key exclusions. Many substantives have more functional or adjectival roles. Undesirable categories include copulative nouns (`nmcp`, e.g. אין), cardinal numbers (`card`), potential prepositions (`ppre`, e.g. תחת). The `ls` category of potential adverb (`padv`) contains desirable nouns like יום, but also more functionally adverbial-nouns like עוד. Thus we can see that there is a range of adverbial tendencies found in this category. Due to the potentially interesting possibility of seeing these tendencies play out in the data, we can decide to keep these instances. # # To be sure, the very phenomenon of "functional" versus "nominal" is worthy of further, quantitative investigation. The `ls` feature is an experimental and incomplete feature in the ETCBC, and this is precisely the kind of shortcoming this present work seeks to address. Nouns and adverbs likely sit along a sliding scale of adverbial tendencies, with adverbs nearly always functioning in such a role, and nouns exhibiting various statistical tendencies. But due to the scope of this investigation, we limit ourselves to mainly nominal words with a small inclusion of some adverbial-like substantives. # # We can eliminate more functional nouns by restricting the possible lexical set (`ls`) values. Below we apply those restrictions to the search template. In the case of certain quantifiers such as כל there is an `ls` feature of distributive noun (`nmdi`), yet this feature is likewise applied to nouns such as אח ("brother"). So it is undesirable to exclude all of these cases. Thus we depend, instead, on an additional filter list that excludes quantifiers. # # A few terms such as דרך and עבר are eliminated because the ETCBC labels it as a potential preposition. This is a speculative classification. So we define a seperate parameter in the template that saves this instance. # In[10]: exclude = '|'.join(('KL/', 'M<V/', 'JTR/', 'M<FR/', 'XYJ/')) # exclude quantifiers include = '|'.join(('padv', 'nmdi')) # ok ls features keep = '|'.join(('DRK/', '<BR/')) ''' Below is a TF search query for three cases: One is a lexeme with included ls features. The second is a lexeme with a null ls feature. The third is lexemes we want to prevent from being excluded. For all cases we exclude excluded lexemes. ''' select_noun_search = f''' lex language=Hebrew /with/ sp=subs ls={include} lex#{exclude} /or/ sp=subs ls# lex#{exclude} /or/ sp=subs lex={keep} /-/ ''' select_nouns = B.search(select_noun_search) noun_dat_ordered = sorted(((F.freq_lex.v(res[0]), res[0]) for res in select_nouns), reverse=True) nnodes_ordered = list(noun_dat[1] for noun_dat in noun_dat_ordered) filtered_lexs = list(node for node in raw_nnodes if node not in nnodes_ordered) print(f'\t{len(raw_nouns) - len(select_nouns)} results filtered out of raw noun list...') print('\tfiltered lexemes shown below:') show_word_list(filtered_lexs) # ### Plot the Nouns in Order of Frequency # # Now that we have obtained a filtered noun-set, we must decide a cut-off point at which to limit the present analysis. Below we plot the attested nouns and their respective frequencies. # In[14]: # plot data y_freqs = [lex_data[0] for lex_data in noun_dat_ordered] x_rank = [i+1 for i in range(0, len(y_freqs))] title = 'Noun Frequencies in the Hebrew Bible' xlabel = 'Noun Rank' ylabel = 'Noun Frequency' # first plot plt.figure(figsize=(8, 4)) plt.plot(x_rank, y_freqs, color='black', linewidth=1) plt.title(title + f' (ranks 1-{len(x_rank)})', size=10) plt.xlabel(xlabel, size=10) plt.ylabel(ylabel, size=10) plt.plot() plt.show() # We zoom in closer to view ranks 1-1000... # # *Consider using a subplot here with 4 different zooms* # In[16]: # second plot plt.figure(figsize=(8, 4)) plt.plot(x_rank[:1000], y_freqs[:1000], color='black', linewidth=1) plt.xlabel(xlabel, size=10) plt.ylabel(ylabel, size=10) plt.axvline(200, color='red', linewidth=0.8, linestyle='--') plt.savefig('results/plots/noun_frequencies1-1000.svg', format='svg', bbox_inches='tight') # save the plot (without title) plt.title(title + f' (ranks 1-1000)', size=10) plt.show() # This curve is typical of Zipf's law: # # > Zipf's law states that given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table ([wikipedia](https://en.wikipedia.org/wiki/Zipf%27s_law)) # # The curve sharply "elbows" at around rank 15. Between ranks 50-100 there is still an appreciable drop-off. The curve starts to significantly flatten after 200. We thus decide an arbitrary cut-off point at rank 200, based on the fact that the curve does not show any significant leveling after this point. # In[17]: target_nouns = nnodes_ordered[:200] tnoun_instances = set(word for lex in target_nouns for word in L.d(lex, 'word')) show_word_list(target_nouns) # temporary comment out while bug is fixed print(f'\n{len(tnoun_instances)} nouns ready for searches') # In[18]: nouns_text_freqs = sorted( ((F.voc_lex_utf8.v(L.d(noun,'word')[0]), F.freq_lex.v(noun)) for noun in target_nouns), key=lambda k: k[-1], reverse=True ) # In[19]: ', '.join(f'{noun}' for noun, freq in nouns_text_freqs) # ## Strategy for Context Selection # # See [pyscripts/contextparameters.py](pyscripts/contextparameters.py) for the full delineation of these patterns and to see how they've been selected and tokenized. # In[20]: contexts = deliver_params(tnoun_instances, tf=api) # In[21]: data = deliver_data(contexts, tf=TF) # Let's have a look at the first example... # In[22]: data[0] # Now we put the data into a dataframe. We also export the dataframe for reference. # In[23]: data_df = pd.DataFrame(data) data_df.set_index('clause', inplace=True) data_df.to_csv('dataset.csv') # export dataset data_df.head() # #### Random Samples of the Data # In[15]: # randomized = [r for r in counts.search2result['T.const→ lex (with article separation)']] # random.shuffle(randomized) # In[16]: # B.show(randomized, end=50, condenseType='phrase', withNodes=True, extraFeatures={'sem_set'}) # <hr> # # ### Excursus: Checking Context Tags and Gathering Examples # # In this section I will inspect the tokens that are generated and counted, as well as pull out some examples and their counts for the presentation. # In[17]: # patterns = {'funct.-> st.verb.lex': '\D*\.-> \D*\.\D*\[', # 'funct.prep-> st.verb.lex': '\D*\.\D+\-> \D*\.\D*\['} # token_examps = collections.defaultdict(list) # for token in counts.data.index: # for query, pattern in patterns.items(): # if re.match(pattern, token): # token_examps[query].append(token) # for query in token_examps: # random.shuffle(token_examps[query]) # examples = token_examps[query][:10] # targets = list() # # get example target nouns # for ex in examples: # ex_target = counts.data.loc[ex].sort_values(ascending=False).index[0] # targets.append(ex_target) # show_random = [f'target: {target} \t {ex}' for target, ex in zip(targets, examples)] # print('QUERY: ', query) # print('-'*5) # print('\n'.join(show_random)) # print('-'*20, '\n') # Now some more specific counts... # In[18]: counts.data['לב.n1']['T.Objc→ זכה.v1.piel'].sum() # In[19]: counts.data['פתח.n1']['T.Cmpl→ עמד.v1.qal'].sum() # In[20]: counts.data['אישׁ.n1']['T.Subj→ פקד.v1.hit'].sum() # In[21]: counts.data['שׁער.n1']['T.Loca→ שׁית.v1.qal'].sum() # In[22]: counts.data['גוי.n1']['T.ב.Adju→ אמר.v1.qal'].sum() # In[23]: counts.data['יד.n1']['T.מן.Cmpl→ ישׁע.v1.hif'].sum() # In[24]: counts.data['עת.n1']['T.ב.Time→ נתן.v1.nif'].sum() # In[25]: counts.data['דרך.n1']['T.ל.Cmpl→ פנה.v1.qal'].sum() # <hr> # #### Examining the Dataset # # Below we look at the number of dimensions in the data: # In[26]: counts.data.shape # And a sample of the data is below, sorted on the results of אלהים in order to bring up interesting examples. # In[27]: counts.data.sort_values(ascending=False, by='אלהים.n1').head(10) # Next we look at a few example counts: # In[28]: pd.DataFrame(counts.data['אלהים.n1'][counts.data['אלהים.n1'] > 0].sort_values(ascending=False)).head(15) # This gives a good idea of the content of the co-occurrence counts. # #### Various Tag Searches Below # # Below I isolate a few tags of interest to serve as examples in the paper. # # **TODO:** Extract and display all the exact examples. # In[29]: prec = [tag for tag in counts.data.index if 'PreC' in tag and 'אישׁ.n1' in tag] prec # In[30]: target = 'עלה.n1' target_counts = counts.data[target][counts.data[target]>0].sort_values(ascending=False) prec_contexts = target_counts[target_counts.index.str.contains('ל.PreC')] prec_contexts # ## Adjusting the Counts # # We will apply two primary adjustments: # # 1. We drop co-occurrences that are unique to a noun. The dropped observations will thus be considered outliers. While these items are useful for describing the uniqueness of a given lexeme, they are unhelpful for drawing comparisons between our sets. # 2. We convert the counts into a measure of statistical significance. For this we use Fisher's exact test, which is ideal for datasets that have counts that are less than 5. Our matrix is likely to have many such counts. The resulting p-values, of which <0.05 represents a statistically significant colexeme, will be log-transformed. Values that fall below expected frequencies will be negatively transformed. # ### Remove Co-occurrence Outliers # # We will remove colexemes/bases that occur with only one target noun. This is done by subtracting the row total from each item in the row. Any 0 value in a row means that that row has a unique colexeme that only occurs with one target noun (we will call that a `hapax_colex` here). We will remove these rows further down. # In[31]: colex_counts = counts.data.sum(1) remaining_counts = counts.data.sub(colex_counts, axis=0) # subtract colex_counts hapax_colex = remaining_counts[(remaining_counts == 0).any(1)] # select rows that have a 0 value anywhere # Below is an example just to make sure we've selected the right indices. The value has been manually chosen from `hapax_colex`. # In[32]: counts.data.loc['T.Adju→ אכל.v1.pual'].sort_values(ascending=False).head() # Indeed this context tag is only attested with חרב, thus it is not useful for drawing meaningful comparisons to this noun. Below we see that there are `8191` other such basis elements. We remove these data points in the next cell and name the new dataset `data`. # In[33]: hapax_colex.shape # In[34]: data = counts.data.drop(labels=hapax_colex.index, axis=0) print(f'New data dimensions: {data.shape}') print(f'New total observations: {data.sum().sum()}') print(f'Observations removed: {counts.data.sum().sum() - data.sum().sum()}') # Random example to make sure there are no unique colexemes in the new dataset: # In[35]: data.loc['T.Adju→ בוא.v1.hif'].sort_values(ascending=False).head(5) # #### Check for Orphaned Target Nouns # # I want to see if any target nouns in the dataset now have 0 basis observations (i.e. "orphaned") as a result of our data pruning. The test below shows that there is no columns in the table with a sum of 0. # In[36]: data.loc[:, (data == 0).all(0)].shape # ### How many zero counts are there? # # The raw count matrix has a lot of sparsity. Here's how many zeros there are. We also count other values. # In[37]: unique_values, value_counts = np.unique(data.values, return_counts=True) unique_counts = pd.DataFrame.from_dict(dict(zip(unique_values, value_counts)), orient='index', columns=['count']) display(HTML('<h5>Top 10 Unique Values and Their Counts in Dataset</h5>')) unique_counts.head(10) # In[38]: zero = unique_counts.loc[0.0][0] non_zero = unique_counts[unique_counts.index > 0].sum()[0] non_zero_ratio, zero_ratio = non_zero / (non_zero+zero), zero / (non_zero+zero) print(f'Number of zero count variables: {zero} ({round(zero_ratio, 2)})') print(f'Number of non-zero count variables: {non_zero} ({round(non_zero_ratio, 2)})') # Below the number of observed counts is given: # In[39]: data.sum().sum() # ### Apply Fisher's Exact Test # # Now we apply the Fisher's exact test to the data set. This involves supplying values to a 2x2 contingency table that is fed to `scipy.stats.fisher_exact` # #### Number of Datapoints To Iterate Over # # The Fisher's exact test takes some time to run. That is because it must iterate over a lot of pairs. The number is printed below. # In[40]: print(data.shape[0]*data.shape[1]) # #### Apply the Tests # # The whole run takes 5.5-6.0 minutes on a 2017 Macbook pro. # In[41]: # data for contingency tables target_obs = data.apply(lambda col: col.sum(), axis=0, result_type='broadcast') # total target lexeme observations colex_obs = data.apply(lambda col: col.sum(), axis=1, result_type='broadcast') # total colexeme/basis observations total_obs = data.sum().sum() # total observations # preprocess parts of contingency formula; # NB: a_matrix = data b_matrix = target_obs.sub(data) c_matrix = colex_obs.sub(data) d_matrix = pd.DataFrame.copy(data, deep=True) d_matrix[:] = total_obs d_matrix = d_matrix.sub(data+b_matrix+c_matrix) fisher_transformed = collections.defaultdict(lambda: collections.defaultdict()) i = 0 # counter for messages indent(reset=True) # TF utility for timed messages info('applying Fisher\'s test to dataset...') indent(level=1, reset=True) for lex in data.columns: for colex in data.index: a = data[lex][colex] b = b_matrix[lex][colex] c = c_matrix[lex][colex] d = d_matrix[lex][colex] contingency = np.matrix([[a, b], [c, d]]) oddsratio, pvalue = stats.fisher_exact(contingency) fisher_transformed[lex][colex] = pvalue i += 1 if i % 100000 == 0: # update message every 100,000 iterations info(f'finished iteration {i}...') indent(level=0) info(f'DONE at iteration {i}!') fisherdata = pd.DataFrame(fisher_transformed) # In[42]: fisherdata.head(10) # ### log10 transformation # In[43]: expectedfreqs = (data+b_matrix) * (data+c_matrix) / (data+b_matrix+c_matrix+d_matrix) fishertransf = collections.defaultdict(lambda: collections.defaultdict()) indent(reset=True) info('applying log10 transformation to Fisher\'s data...') for lex in data.columns: for colex in data.index: observed_freq = data[lex][colex] exp_freq = expectedfreqs[lex][colex] pvalue = fisherdata[lex][colex] if observed_freq < exp_freq: logv = np.log10(pvalue) fishertransf[lex][colex] = logv else: logv = -np.log10(pvalue) fishertransf[lex][colex] = logv info('finished transformations!') fishertransf = pd.DataFrame(fishertransf) # The Fisher's test has produced zero values, indicating a very high degree of attraction between lexemes and a colexemes. A log-transformed zero equals `infinity`. Below those values are isolated. # In[44]: display(HTML('<h5>contexts x nouns with a p-value of 0 :</h5>')) inf_nouns = fishertransf.columns[(fishertransf == np.inf).any()] inf_data = [] # inf data contains column/index information needed to assign the new values for inf_noun in inf_nouns: inf_noun2context = pd.DataFrame(fishertransf[inf_noun][fishertransf[inf_noun] == np.inf]) inf_data.append(inf_noun2context) display(inf_noun2context) # In this case the Fisher's has returned a zero value. A p-value of 0 means that the likelihood אלהים and יהוה are *not* dependent variables is essentially null. We can thus reject the null hypothesis that the two values are not related. There is, rather, a maximum level of confidence that these two values *are* interrelated. The `np.inf` value that resulted from `log10(0)` is not viable for calculating vector distances. Thus, we need to substitute an arbitrary, but appropriate value. Below we access the lowest non-zero p-values in the dataset. # In[45]: minimum_pvalues = fisherdata.min()[fisherdata.min() > 0].sort_values() minmin_noun = minimum_pvalues.index[0] minmin_context = fisherdata[minimum_pvalues.index[0]].sort_values().index[0] minimum_pvalues.head(10) # The minimum noun x context score is shown below. # In[46]: minmin_noun # In[47]: minmin_context # The small pvalue listed above is used to substitute the infinitive values below. # In[48]: # make the substitutions for inf_dat in inf_data: for noun in inf_dat.columns: for context in inf_dat.index: print(f'adjusting infinite score for {noun}') new_pvalue, new_transf = fisherdata[minmin_noun][minmin_context], fishertransf[minmin_noun][minmin_context] fisherdata[noun][context] = new_pvalue print(f'\tpvalue updated to {new_pvalue}') fishertransf[noun][context] = new_transf print(f'\ttransformed pvalue updated to {new_transf}') # Below we double to check to ensure that all infinitive values have been removed. The test should read `False`. # In[49]: # infinites in dataset? bool(len(fishertransf[(fishertransf == np.inf).any(1)].index)) # ### Comparing Raw and Adjusted Counts # # What kinds of counts are "upvoted" and "downvoted" in the adjusted numbers? This information is helpful for gaining insight into the adjustment process and the efficacy of its results. # # Below I isolate and compare counts for a set of key lexemes: מלך "king", עיר "city", and חכמה "wisdom". The counts are analyzed by comparing context tag rankings and looking for those contexts which are most affected (i.e. have the most absolute differences) by the changes. # In[50]: examine_nouns = ['מלך.n1', 'עיר.n1', 'חכמה.n1'] context_rankings = {} # gather context rankings into dataframes for noun in examine_nouns: # make raw context DF, sorted, with columns count and rank rawcounts = pd.DataFrame(data[noun].values, columns=['count'], index=data.index).sort_values(ascending=False, by='count') rawcounts['rank'] = np.arange(len(rawcounts))+1 # add column "rank" # make adjusted context DF, sorted, with columns count and rank adjcounts = pd.DataFrame(fishertransf[noun].values, columns=['count'], index=fishertransf.index).sort_values(ascending=False, by='count') adjcounts['rank'] = np.arange(len(adjcounts))+1 # put both DFs into dict mapped to noun context_rankings[noun]={'raw':rawcounts, 'adj':adjcounts} # print for each noun a report on top up/downgrades for noun, rankset in context_rankings.items(): raw, adj = rankset['raw'], rankset['adj'] upgrades = pd.DataFrame((raw['rank']-adj['rank']).sort_values(ascending=False)) downgrades = pd.DataFrame((raw['rank']-adj['rank']).sort_values()) upgrades.columns, downgrades.columns = [['difference']]*2 upgrades['previous rank'], downgrades['previous rank'] = [raw['rank']]*2 upgrades['new rank'], downgrades['new rank'] = [adj['rank']]*2 display(HTML(f'<h3>{noun}</h3>')) print('top 10 raw counts:') display(raw.head(10)) print('top 10 adjusted counts:') display(adj.head(10)) print('top 10 rank upgrades') display(upgrades.head(10)) print('top 10 rank downgrades') display(downgrades.head(10)) print('-'*40) print() # #### Export Data for מלך for Paper # In[51]: context_rankings['מלך.n1']['raw'].head(10).to_csv('spreadsheets/king_top10_raw.csv') round(context_rankings['מלך.n1']['adj'].head(10), 2).to_csv('spreadsheets/king_top10_adj.csv') # #### Extracting Specific Examples for the Paper (on מלך) to Illustrate Count Adjustments # # Below the four separate parts of the contingency table are extracted for מלך "king". These were previously calculated above # In[52]: data['מלך.n1']['T.Objc→ נתן.v1.qal'] # A # In[53]: b_matrix['מלך.n1']['T.Objc→ נתן.v1.qal'] # B # In[54]: c_matrix['מלך.n1']['T.Objc→ נתן.v1.qal'] # C # In[55]: d_matrix['מלך.n1']['T.Objc→ נתן.v1.qal'] # D # Where do the 10 cases happen? # In[56]: passages = [] for res in counts.target2basis2result['מלך.n1']['T.Objc→ נתן.v1.qal']: passages.append('{} {}:{}'.format(*T.sectionFromNode(res[0]))) print('; '.join(passages)) # What is the result of the Fisher's test? # In[57]: round(fisherdata['מלך.n1']['T.Objc→ נתן.v1.qal'], 4) # What is the value of the expected count? # In[58]: round(expectedfreqs['מלך.n1']['T.Objc→ נתן.v1.qal'], 2) # In[59]: round(fishertransf['מלך.n1']['T.Objc→ נתן.v1.qal'], 2) # How has the rank changed? # In[60]: context_rankings['מלך.n1']['raw'].loc['T.Objc→ נתן.v1.qal'] # In[61]: context_rankings['מלך.n1']['adj'].loc['T.Objc→ נתן.v1.qal'] # <hr> # # #### Excursus: A Random Sample Examined # # We saw that the model seems to be succeeding at isolating intuitive associations with קול. Let's look at another example at random, in this case the noun ארץ ("land"). Below are the transformed p-values for that noun. # In[62]: fishertransf['ארץ.n1'].sort_values(ascending=False).head(10) # The most associated variables include cases where ארץ is an object to the verb ירשׁ, where ארץ serves as the complement from which something is brought (hifil of יצא and hifil of עלה), frequently in construct to עם "people"), the participle of ישב "inhabitant(s)"), and ממלכה, "kingdom", as well as other satisfying and expected occasions of use. These examples show that the model is working well. # <hr> # ## Comparing the Nouns # # The nouns are now ready to be compared. I will do so in two ways. # # 1. Principle Component Analysis — We have a semantic space with 4,218 dimensions. That is a lot of potential angles from which to compare the vectors. One method that is commonly used in semantic space analysis is principle component analysis or **PCA**. PCA is a dimensionality reduction method that reduce a multi-dimensional vector to the two points in an imagined space that show the most distance between the nouns. We can visualize said space by plotting the two points on an X and Y axis. # 2. Cosine Similarity — This measure allows us to compare the vectors on the basis of their trajectories. This method is particularly well-suited for semantic spaces because it ignores differences in frequency and compares, rather, the closeness of relationship between two sets of frequencies. # ### PCA Analysis # # We want to apply PCA in order to plot nouns in an imaginary space. The goal is to use the visualization to identify patterns and groups amongst the 199 target nouns. Nouns that are more similar should fall within the same general areas relative to the origin (0, 0). PCA seeks to identify the maximum variance amongst the vector spaces. # In[63]: pca = PCA(10) # PCA with 3 principal components noun_fit = pca.fit(fishertransf.T.values) # get coordinates pca_nouns = noun_fit.transform(fishertransf.T.values) plt.figure(figsize=(8, 6)) sns.barplot(x=np.arange(10)+1, y=noun_fit.explained_variance_ratio_[:10]) plt.xlabel('Principle Component', size=20) plt.ylabel('Raio of Explained Variance', size=20) plt.title('Ratio of Explained Variance for Principle Components 1-10 (Scree Plot)', size=20) plt.show() # Variance accounted for by PC1 and PC2: # In[64]: noun_fit.explained_variance_ratio_[0]+noun_fit.explained_variance_ratio_[1] # The plot above, also called a scree plot, tells us that the first two principle components only account for 12% of the total variance in the dataset. Thus the PCA noun space is rather noisy. This may be explained by the fact that we are combining many different kinds of syntactic contexts into one dataset. And it may also be due to the rather spread out nature of lexical data. # # Below we extract the top 25 features which are most influential for the first two principal components. # In[65]: loadings = noun_fit.components_.T * np.sqrt(noun_fit.explained_variance_) loadings = pd.DataFrame(loadings.T, index=np.arange(10)+1, columns=data.index) # In[66]: pc1_loadings = pd.DataFrame(loadings.loc[1].sort_values(ascending=False)) pc2_loadings = pd.DataFrame(loadings.loc[2].sort_values(ascending=False)) pc1_loadings_above0 = pc1_loadings[pc1_loadings[1] > 0.1] # isolate loadings > 0 # automatically detect elbow in graph: elbow = KneeLocator(x=np.arange(pc1_loadings_above0.shape[0]), y=pc1_loadings_above0[1].values, curve='convex', direction='decreasing').knee # plot it all plt.figure(figsize=(8, 6)) plt.plot(pc1_loadings_above0.values) plt.title('Loading Scores >0 by Rank for Principle Component 1', size=20) plt.ylabel('Loading Score', size=20) plt.xlabel('Rank', size=20) plt.xticks(np.arange(pc1_loadings_above0.shape[0], step=20), size=20) plt.yticks(size=20) plt.axvline(elbow, color='red') # plot elbow with red line plt.show() # #### Top PCX Loadings and Scores (for data exploration) # In[67]: # pcx_loadings = pd.DataFrame(loadings.loc[4].sort_values(ascending=False)) # for experiments # pcx_loadings.head(25) # #### Top 25 PC1 Loadings and Scores # In[68]: pc1_loadings.round(2).head(25).to_csv('spreadsheets/PC1_loadings.csv') pc1_loadings.head(25) # #### PC1 Verb Contexts and Loadings # In[69]: pc1_loadings[pc1_loadings.index.str.contains('v1')].round(2).head(15).to_csv('spreadsheets/top15_animate_verbs.csv') top_pc1_loadings = pc1_loadings[pc1_loadings[1] >= 0.30] pc1_loadings[pc1_loadings.index.str.contains('v1')].head(15) # #### Looking at T.ל.Cmpl→ לקח.v1.qal # # This is an interesting top verbal context. Is it related to marriage situations? # In[70]: take_contexts = [r for r in counts.basis2result['T.ל.Cmpl→ לקח.v1.qal']] random.seed(213214) # shuffle random, preserve state random.shuffle(take_contexts) B.show(take_contexts, condenseType='clause', withNodes=True, end=5) display(HTML(f'<h4>...{len(take_contexts)-5} other results cutoff...')) # In[71]: '; '.join(['{} {}:{}'.format(*T.sectionFromNode(r[0])) for r in sorted(take_contexts)]) # In[72]: len(take_contexts) # #### PC2 Loadings, top 25 # In[73]: pc2_loadings.head(25) # In[74]: def plot_PCA(pca_nouns, zoom=tuple(), noun_xy_dict=False, save='', annotate=True, title='', components=(pca_nouns[:,0], pca_nouns[:,1])): ''' Plots a PCA noun space. Function is useful for presenting various zooms on the data. ''' x, y = components # plot coordinates plt.figure(figsize=(12, 10)) plt.scatter(x, y) if zoom: xmin, xmax, ymin, ymax = zoom plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) if title: plt.title(title, size=18) plt.xlabel('PC1', size=18) plt.ylabel('PC2', size=18) plt.axhline(color='red', linestyle=':') plt.axvline(color='red', linestyle=':') # annotate points if annotate: noun_xy = {} # for noun_dict noun_lexs = [f'{reverse_hb(F.voc_lex_utf8.v(counts.target2lex[n]))}' for n in fishertransf.columns] for i, noun in enumerate(noun_lexs): noun_x, noun_y = x[i], y[i] noun_xy[fishertransf.columns[i]] = (noun_x, noun_y) if zoom: # to avoid annotating outside of field of view (makes plot small) if any([noun_x < xmin, noun_x > xmax, noun_y < ymin, noun_y > ymax]): continue # skip noun plt.annotate(noun, xy=(noun_x, noun_y), size='18') if save: plt.savefig(save, dpi=300, bbox_inches='tight') plt.show() if noun_xy_dict: return noun_xy test_components = (pca_nouns[:,0], pca_nouns[:,1]) # #### Whole PCA Space # In[75]: pca_nouns_xy = plot_PCA(pca_nouns, noun_xy_dict=True, save='plots/PCA_whole.png', components=test_components) # We can already see some interesting tendencies in the data. קול and דבר are grouped in the same quadrant. In the upper right quadrant we see בן and בת. The lower left quadrant presents a particularly interesting match: יד "hand" and אלהים "God". # # We zoom in closer below to have a better look at the tendencies. # #### Main Cluster of PCA space # In[76]: plot_PCA(pca_nouns, zoom=((-3, 3, -2.5, 1)), save='plots/PCA_main.png') # ### ~Animate Nouns # Note that nouns in the lower right quadrant tend to be people, while on the lower left there are primarily things. # # The plot below shows person nouns. # In[77]: plot_PCA(pca_nouns, zoom=((-0.1, 5, -2.5, 0.1)), save='plots/PCA_~animates') # Let's see what nouns to the right of the y axis have most in common. This could corroborate the intuition that the nouns on the right are personal. # # First we isolate the nouns with a x-axis value > 0. Those are shown below, they are obviously personal nouns. # In[78]: nouns_xy = pd.DataFrame.from_dict(pca_nouns_xy, orient='index', columns=['x', 'y']) possibly_animate = pd.DataFrame(nouns_xy[nouns_xy.x > 0]) possibly_animate['gloss'] = [F.gloss.v(counts.target2lex[targ]) for targ in possibly_animate.index] possibly_animate = possibly_animate.reindex(['gloss', 'x', 'y'], axis=1) # In[79]: x_animate = pd.DataFrame(possibly_animate.drop('y', axis=1).sort_values(ascending=False, by='x')) round(x_animate,2).to_csv('spreadsheets/animate_x.csv') print(f'total number of ~animate nouns {x_animate.shape[0]}') x_animate # #### Why בגד? # # Why has בגד "garment" made it into the set? We compare the top loading scores against the top scores for בגד. # In[80]: def cf_PC_Noun(pc_loadings, noun_counts, noun, pc_name='PC1', ascending=False): ''' Compares PC loadings and noun counts. Returns a DF containing the top common counts sorted on the PC. ''' top_cts = noun_counts[noun][noun_counts[noun]>0] # isolate non-zero counts pc_word = pc_loadings.copy() # make copy of PC loadings for modifications pc_word.columns = [pc_name] # rename col to PCX pc_word[noun] = top_cts[[i for i in top_cts.index if i in pc_word.index]] # add new column for noun pc_word = pc_word[pc_word[noun] > 0].sort_values(by='PC1', ascending=ascending) # remove zero counts completely, sort return pc_word bgd_pc1 = cf_PC_Noun(pc1_loadings, fishertransf, 'בגד.n1') bgd_pc1[bgd_pc1.PC1 >= 0.3].round(2).to_csv('spreadsheets/BGD_pc1.csv') bgd_pc1[bgd_pc1.PC1 >= 0.3] # Show passages for coord relations for paper: # In[81]: etcbc2sbl = { 'Genesis': 'Gen', 'Exodus': 'Exod', 'Leviticus': 'Lev', 'Numbers': 'Num', 'Deuteronomy': 'Deut', 'Joshua': 'Josh', 'Judges': 'Judg', '1_Samuel': '1 Sam', '2_Samuel': '2 Sam', '1_Kings': '1 Kgs', '2_Kings': '2 Kgs', 'Isaiah': 'Isa', 'Jeremiah': 'Jer', 'Ezekiel': 'Ezek', 'Hosea': 'Hos', 'Joel': 'Joel', 'Amos': 'Amos', 'Obadiah': 'Obad', 'Jonah': 'Jonah', 'Micah': 'Mic', 'Nahum': 'Nah', 'Habakkuk': 'Hab', 'Zephaniah': 'Zeph', 'Haggai': 'Hag', 'Zechariah': 'Zech', 'Malachi': 'Mal', 'Psalms': 'Ps', 'Job': 'Job', 'Proverbs': 'Prov', 'Ruth': 'Ruth', 'Song_of_songs': 'Song', 'Ecclesiastes': 'Eccl', 'Lamentations': 'Lam', 'Esther': 'Esth', 'Daniel': 'Dan', 'Ezra': 'Ezra', 'Nehemiah': 'Neh', '1_Chronicles': '1 Chr', '2_Chronicles': '2 Chr'} def formatPassages(resultslist): ''' Formats biblical passages with SBL style for a list of results. ''' book2ch2vs = collections.defaultdict(lambda: collections.defaultdict(set)) for result in resultslist: book, chapter, verse = T.sectionFromNode(result[0]) book = etcbc2sbl[book] book2ch2vs[book][chapter].add(str(verse)) # assemble in to readable passages list passages = [] for book, chapters in book2ch2vs.items(): ch_verses = [] for chapter, verses in chapters.items(): verses = ', '.join(f'{chapter}:{verse}' for verse in sorted(verses)) ch_verses.append(verses) passage = f'{book} {", ".join(ch_verses)}' passages.append(passage) return '; '.join(passages) def collectPassages(contextslist, targetnoun): ''' Collects and returns neatly formatted passages for use in the paper. ''' # map the passages with dicts to avoid repeats results = sorted(res for context in contextslist for res in counts.target2basis2result[targetnoun][context]) return formatPassages(results) bgd_mixContexts = [''] collectPassages(bgd_pc1.head(4).index[bgd_pc1.head(4).index.str.contains('coord')], 'בגד.n1') # In[82]: # B.show(counts.target2basis2result['בגד.n1']['T.coord→ אהרן.n1'], condenseType='phrase', withNodes=True) # Now we find the context tags that are highest in the set. We pull the fourth quartile (75th percentile) of the context tags to see which ones are most shared accross these nouns. # In[83]: animate_context = fishertransf[possibly_animate.index].quantile(0.75, axis=1).sort_values(ascending=False) pd.DataFrame(animate_context.head(15)) # #### PCA Space: Focus on Bordering ~Animate Nouns # In[84]: plot_PCA(pca_nouns, zoom=((-0.5, 0.5, -1.5, -1)), save='plots/PCA_~animate_border') # In[85]: nouns_xy[(nouns_xy.x < 0) & (nouns_xy.x > -0.4)].sort_values(ascending=False, by='x') # Verbs are the greatest distinguishing factor here, with אמר, בוא,נתן, לקח and others serving a big role. מות "die" also plays a role. These are definitely contexts we could expect with animate nouns. # ### ~Inanimate Nouns # # The nouns to the left of the y axis appear to be mostly inanimate. # In[86]: plot_PCA(pca_nouns, zoom=((-2, 0, -2.5, 0)), title='PCA Space: ~Inanimate Noun Cluster') # Below we pull the tendencies for the nouns with a PC1 < 0. These nouns appear to be impersonal in nature. # In[87]: possibly_inanimate = pd.DataFrame(nouns_xy[(nouns_xy.x < 0) & (nouns_xy.y < 0)]) possibly_inanimate['gloss'] = [F.gloss.v(counts.target2lex[targ]) for targ in possibly_inanimate.index] possibly_inanimate = possibly_inanimate.reindex(['gloss', 'x', 'y'], axis=1) x_inanimate = pd.DataFrame(possibly_inanimate.drop('y', axis=1).sort_values(by='x')) round(x_inanimate,2).head(x_animate.shape[0]).to_csv('spreadsheets/inanimate_x.csv') print(f'Number of total ~inanimates: {x_inanimate.shape[0]}') print(f'Top ~inanimates: ') x_inanimate.head(x_animate.shape[0]) # ### Top Influencing ~inanimate Contexts # In[88]: pc1_loadings.tail(25).sort_values(by=1).round(2).to_csv('spreadsheets//PC1_loadings_negative.csv') pc1_loadings.tail(25).sort_values(by=1) # #### What about מלאך? # # Why is מלאך rated in this list of mostly "inanimates"? # In[89]: pc_mlak = cf_PC_Noun(pc1_loadings, fishertransf, 'מלאך.n1', ascending=True) pc_mlak[pc_mlak.PC1 <= -0.2].round(2).to_csv('spreadsheets/MLAK_pc1.csv') pc_mlak.head(10) # Note that several of the top 4 contexts are related to אלהים. We pull a few examples with אלהים out for use in the paper. # In[90]: collectPassages(['T.אחר.n1.Cmpl→ הלך.v1.qal'], 'אלהים.n1') # In[91]: collectPassages(['T.אחר.n1.Cmpl→ הלך.v1.qal'], 'מלאך.n1') # In[92]: collectPassages(['אחר.n2.atr→ T'], 'מלאך.n1') # In[93]: collectPassages(['T.appo→ אלהים.n1'], 'מלאך.n1') # The next plot shows nouns to the left of the y-origin. Note especially the terms between y(-0.5) and y(0.0.). These are more conceptual nouns. This same trajectory extends up into the far parts of the upper left quadrant through דבר and קול. # Here is a closer look at the larger cluster near the left side of the y-origin. # In[94]: plot_PCA(pca_nouns, zoom=((-0.5, -0.1, -1.5, -1))) # Moving over one more notch: # In[95]: plot_PCA(pca_nouns, zoom=((-1, -0.5, -2, -0.5))) # ### ~Perception Nouns? # # The first quandrant contains a number of interesting terms that appear to be mostly abstract. These nouns appear to be related in some sense to perceptions: # In[96]: plot_PCA(pca_nouns, zoom=((-2, 0.05, -0.05, 1)), save='plots/PCA_~perception_nouns') # Below are the most common contexts for these nouns. # In[97]: perceptions = nouns_xy[(nouns_xy.x < 0) & (nouns_xy.y > 0)] perception_contexts = fishertransf[perceptions.index].quantile(0.75, axis=1).sort_values(ascending=False).head(15) pd.DataFrame(perception_contexts) # Many perceptional related contexts can be seen here, namely when the noun is a direct object to verbs such as שׁמע "hear", ידע "know", ראה "see", מצא "find", and שׁכח "forget". # ## Experiment in Metaphor Detection # # If the contexts of the animate nouns are queried against the inanimate nouns, is it possible to detect cases of metaphorical extension in the dataset? # In[98]: # get top 25 animate verbal contexts with Subj roles: animate_verbal_contexts = pc1_loadings[pc1_loadings.index.str.contains('v') & pc1_loadings.index.str.contains('Subj')].head(25) print(f'number of verbal contexts searched: {animate_verbal_contexts.shape[0]}') metaphors = [] # metaphor data here for i, ia_noun in enumerate(x_inanimate[1:].head(40).index): # go through top 40 # skip these nouns: if ia_noun in {'אלהים.n1', 'מלאך.n1'}: continue # find attested, common contexts contexts = cf_PC_Noun(animate_verbal_contexts, fishertransf, ia_noun) if contexts.shape[0]: # a match is found # gather row data with columns of [noun, context, hits, passages, example] for context in contexts.index: results = counts.target2basis2result[ia_noun][context] # get results from searches hits = len(results) passages = formatPassages(results) example = T.text(results[0][0]) metaphors.append([ia_noun, context, hits, passages, example, f'({formatPassages([(results[0][0],)])})']) metaphors = pd.DataFrame(metaphors, columns=['noun', 'context', 'hits', 'passages', 'example', ' ']) metaphors.to_csv('spreadsheets/metaphors.csv') display(HTML('<h4>Detected Metaphors</h4>')) metaphors # ## Cosine Similarity Analysis # In[99]: distances_raw = pairwise_distances(fishertransf.T.values, metric='cosine') distances = pd.DataFrame(distances_raw, columns=fishertransf.columns, index=fishertransf.columns) similarities = distances.apply(lambda n: 1-n) # convert distance matrix to similarities. # ### Export Spreadsheet Similarity Data # In[100]: for i, term in enumerate(data.sum().sort_values(ascending=False).index): these_sims = pd.DataFrame(similarities[term].sort_values(ascending=False)[1:]) # export to simple data these_sims.to_csv(f'../easydata/similarities/{i+1}Rank_{term}.csv') # #### Export Big Table for Paper (top 20 terms) # In[101]: sim_rows = [] three_nouns = [] for i, term in enumerate(data.sum().sort_values(ascending=False).head(20).index): if len(three_nouns) < 3: three_nouns.append(term) elif len(three_nouns) == 3 or i == 20: # 3 per row # prep header with extra columns header = [x for tup in zip(['']*3, three_nouns) for x in tup] sim_rows.append(header) noun_scores = [] for noun in three_nouns: top_sims = similarities[noun].sort_values(ascending=False)[1:].head(5) noun_scores.append(list(zip(top_sims.index, top_sims.values))) score_rows = [] for simdat1, simdat2, simdat3 in zip(*noun_scores): score_rows.append([simdat1[0], simdat1[1], simdat2[0], simdat2[1], simdat3[0], simdat3[1]]) sim_rows.extend(score_rows) sim_rows.append(['']) three_nouns = [] with open('spreadsheets/top20_sims.csv', 'w') as outfile: writer = csv.writer(outfile) writer.writerows(sim_rows) # ### Plot Top 5 Similarity for all Terms # # Below we visualize the top 5 similarity scores for all of the nouns. # In[102]: plt.figure(figsize=(22, 210)) for i, noun in enumerate(similarities.columns): sims = similarities[noun].sort_values(ascending=False).head(6)[1:] sim_values = sims.values lexemes = [reverse_hb(F.voc_lex_utf8.v(counts.target2lex[noun])) for noun in sims.index] glosses = [counts.target2gloss[noun] for noun in sims.index] lex_glosses = [f'{lex} \'{gloss}\'' for lex, gloss in zip(lexemes, glosses)] sims_new = pd.DataFrame(sim_values, index=lex_glosses) # make plots x = np.arange(sims.shape[0]) plt.subplot(50,4,i+1) plt.plot(sims_new.values) plt.scatter(x=x, y=sims_new.values, color='red') plt.title(f'Top 5 Similar to {reverse_hb(F.voc_lex_utf8.v(counts.target2lex[noun]))}', size=30) plt.xticks(x, lexemes, size=26) plt.yticks(size=14) plt.ylim(0, 1) plt.tight_layout() # ### Distribution Principle Example for Paper: מים and יין # In[145]: pos_water = data['מים.n1'][data['מים.n1'] > 0] # get non-zero counts pos_wine = data['יין.n1'][data['יין.n1'] > 0] winewater_common = set(pos_water.index) & set(pos_wine.index) # retrieve data using non-zero indicies in common winewater = data.loc[winewater_common][['מים.n1', 'יין.n1']] winewater = winewater.sort_values(by=winewater.sum().sort_values(ascending=False).index[0], ascending=False) # sort on largest sum column winewater # Where is "washed WITH wine"? # In[148]: B.show(counts.target2basis2result['יין.n1']['T.ב.Cmpl→ כבס.v1.piel'], condenseType='clause') # In[153]: T.text(L.u(counts.target2basis2result['יין.n1']['T.ב.Cmpl→ כבס.v1.piel'][0][0], 'verse')[0]) # But מים is much more frequent with the "washing" frame, using a different context: # In[155]: data['מים.n1'].sort_values(ascending=False).head(10) # ### Build Toy Example to Illustrate Similarity Algorithms # # Select three words, two of which strongly related, a third which is only sort of related. I have manually selected לחם "bread", בשׂר "flesh", and זהב "gold", along with two contexts involving object use with אכל and נתן. # In[103]: ex_targets = ['לחם.n1', 'בשׂר.n1', 'זהב.n1'] ex_contexts = ['T.Objc→ אכל.v1.qal', 'T.Objc→ נתן.v1.qal'] sim_example = data[ex_targets].loc[ex_contexts] sim_example.to_csv('spreadsheets/sim_example.csv') sim_example # #### Make Overly Simple Distance Matrix # In[104]: sim_dist = collections.defaultdict(lambda: collections.defaultdict(int)) for noun in sim_example: for conoun in sim_example: sim_dist[noun][conoun] = abs(sim_example[noun] - sim_example[conoun]).sum() sim_dist = pd.DataFrame(sim_dist, columns=sim_example.columns, index=sim_example.columns) sim_dist.to_csv('spreadsheets/sim_ex_dist.csv') sim_dist # #### Example Sorted Distances # In[105]: pd.DataFrame(sim_dist['לחם.n1'].sort_values()).to_csv('spreadsheets/sim_ex_lxm.csv') pd.DataFrame(sim_dist['בשׂר.n1'].sort_values()).to_csv('spreadsheets/sim_ex_bfr.csv') # #### Compare Attestations # In[106]: data['לחם.n1'].sum() # In[107]: data['בשׂר.n1'].sum() # #### Build Cosine Similarity Example for Paper # In[108]: plt.figure(figsize=(8, 6)) x = sim_example.values[0] y = sim_example.values[1] labels = sim_example.columns plt.scatter(x, y) for xn, yn in zip(x, y): plt.plot([0, xn], [0, yn], 'ro-', color='blue') for xn, yn, labeln in zip(x, y, labels): plt.annotate(reverse_hb(labeln.split('.')[0])+'.n1', (xn, yn), size=22) #plt.xlabel(sim_example.index[0], size=22) # commented out because the Hebrew gets messed up #plt.ylabel(sim_example.index[1], size=22) plt.xticks(np.arange(90, step=10)) plt.yticks(np.arange(24, step=2)) plt.savefig('plots/sim_example.png', dpi=300, bbox_inches='tight') plt.show() # #### Angles # # Get angles to draw. Will do it manually to save time. # In[109]: # src: https://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python def dotproduct(v1, v2): return sum((a*b) for a, b in zip(v1, v2)) def length(v): return math.sqrt(dotproduct(v, v)) def angle(v1, v2): return math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))) # In[110]: for target in sim_example.columns: for cotarget in sim_example.columns: if target == cotarget: continue else: print(f'{target} -> {cotarget}') rad = angle(sim_example[target].values, sim_example[cotarget].values) print(rad * 180 / math.pi) print() # Cosine Measure applied below. # In[111]: simex_dist = pairwise_distances(sim_example.T.values, metric='cosine') simex_dist = pd.DataFrame(simex_dist, columns=sim_example.columns, index=sim_example.columns) simex_dist.to_csv('spreadsheets/sim_ex_dist.csv') simex_dist # In[112]: simex_sim = 1 - simex_dist simex_sim.to_csv('spreadsheets/sim_ex_sim.csv') simex_sim # Export an example for the presentation, נחשׁת "copper", the result of which is improved in the semantic network experiment further below. # In[113]: save_figs = ['נחשׁת.n1', 'זהב.n1'] for noun in save_figs: sims = similarities[noun].sort_values(ascending=False).head(6)[1:] sim_values = sims.values lexemes = [reverse_hb(F.voc_lex_utf8.v(counts.target2lex[noun])) for noun in sims.index] glosses = [counts.target2gloss[noun] for noun in sims.index] lex_glosses = [f'{lex} \'{gloss}\'' for lex, gloss in zip(lexemes, glosses)] noun_text = F.voc_lex_utf8.v(counts.target2lex[noun]) # make plots x = np.arange(sims.shape[0]) plt.plot(sim_values) plt.scatter(x=x, y=sim_values, color='red') plt.title(f'Top 5 Similarities for {reverse_hb(noun_text)}', size=30) plt.xticks(x, lexemes, size=20) plt.ylabel('% Similar', size=20) plt.ylim(0, 1) plt.savefig(f'plots/similarity_{noun_text}', dpi=300, bbox_inches='tight') plt.show() # Look at the commonalities between bronze and holiness, skin, and work. # In[114]: surprising_bronze = fishertransf[['נחשׁת.n1', 'קדשׁ.n1', 'עור.n2', 'עץ.n1']] surprising_bronze.quantile(0.75, axis=1).sort_values(ascending=False).head(15) # In[115]: expected_bronze = fishertransf[['נחשׁת.n1', 'כסף.n1', 'זהב.n1']] expected_bronze.quantile(0.75, axis=1).sort_values(ascending=False).head(15) # ## Gephi Network Visualization # # The plots above are helpful for looking at individual words and their top similar terms, but they do not really give a sense of the bigger picture, nor of the connections between terms. For instance, רחב and ארך both share a connection as each others' top most common noun. But this relationship between the terms, and their mutual relationship to other terms, cannot be clearly seen. # # We can better visualize word relationships by graphing them as nodes connected by edges in a semantic network. The similarity scores can be used to give weight to the edges. A visual plotting studio like [Gephi](www.gephi.org) can then be used to plot the nodes and edges into a visual space. # # There are a couple of challenges to overcome before the nodes and edges can be exported for Gephi. The most important issue is how to decide which edges are exported? It is not ideal to plot 199x199 edges, and at any rate not all noun x noun comparisons have positive similarities (indeed many have negative values). This simplifies, at least, one aspect of the edge selection: we weed out all relationships that have negative similarity scores. Below, the number of positive similarity ratings per noun are shown. # In[116]: for lex in similarities.columns: positives = similarities[lex][similarities[lex] > 0] print(lex, positives.shape[0]) # The best cut-off point for edge values is the point of maximum curvature, known as the "knee" or in this case, an "elbow". `kneed` is an algorithm that automatically detects this point ([here](https://github.com/arvkevi/kneed)). The detector is demonstrated below, where the red lines are the detected elbows. These points will be used as the cut-off point for edge exports. # In[117]: plt.figure(figsize=(22, 210)) for i, noun in enumerate(similarities.columns): sims = similarities[noun][similarities[noun] > 0].sort_values(ascending=False)[1:] x = np.arange(sims.shape[0]) y = sims.values # detect elbow elbow = KneeLocator(x, y, curve='convex', direction='decreasing').knee # make plots plt.subplot(50,4,i+1) plt.plot(x, y) plt.title(f'{reverse_hb(F.voc_lex_utf8.v(counts.target2lex[noun]))}', size=30) plt.ylim(0, 0.8) plt.axvline(elbow, color='red') plt.tight_layout() # ### Export Elbow Edges # # Use `kneed` to detect the ideal edge cut-off point. # In[118]: node_maps = {} nodes = [] edges = [] # make nodes ID = 0 for noun in similarities: label = F.voc_lex_utf8.v(counts.target2lex[noun]) nodes.append([ID, label]) node_maps[noun] = ID ID += 1 # make edges for noun in similarities.columns: positive_sims = similarities[noun][similarities[noun] > 0].sort_values(ascending=False)[1:] # detect elbow x = np.arange(positive_sims.shape[0]) y = positive_sims.values elbow = KneeLocator(x, y, curve='convex', direction='decreasing').knee edge_sims = positive_sims.head(elbow) for conoun in edge_sims.index: source = node_maps[noun] target = node_maps[conoun] weight = similarities[noun][conoun] edges.append([source, target, weight]) # export csv's with open('gephidata/sim_nodes_elbows.csv', 'w') as outfile: writer = csv.writer(outfile) writer.writerow(['ID', 'Label']) writer.writerows(nodes) with open('gephidata/sim_edges_elbows.csv', 'w') as outfile: writer = csv.writer(outfile) writer.writerow(['Source', 'Target', 'Weight']) writer.writerows(edges) # # TODO: Re-run Gephi with corrected data and import new images # # The results presented below will change slightly since I have found some mistakes in the context parameters. To be fixed soon. -C, 29 Dec 2018 # ## Gephi Results # # Below the results of the gephi graph are displayed. Force-Atlas was used to arrange the nodes. The results show discernible neighborhoods of similar nouns. # # <img src="gephidata/graphs/full_graph.png"> # ## Examining Semantic Networks # # Below we look closer at the neighborhoods found in the semantic network. Specifically, we want to see what features give rise to the similarities that are registered. # ### Group 1 # # <img src="gephidata/graphs/group1.png"> # In[119]: group1_targets = ['חק.n1', 'שׁבת.n1', 'תורה.n1', 'מצוה.n1', 'חקה.n1', 'עדות.n1', 'משׁפט.n1'] group1_tendencies = fishertransf[group1_targets].quantile(0.75, axis=1).sort_values(ascending=False).head(15)
pd.DataFrame(group1_tendencies)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Apr 2 09:20:37 2021 Compiles CSAS data into SQLite DB @author: buriona,tclarkin """ import sys import os from pathlib import Path import pandas as pd import numpy as np import sqlite3 import sqlalchemy as sql import zipfile from zipfile import ZipFile from requests import get as r_get from io import StringIO # Load directories and defaults this_dir = Path(__file__).absolute().resolve().parent #this_dir = Path('C:/Programs/shread_dash/database/CSAS') ZIP_IT = False ZIP_FRMT = zipfile.ZIP_LZMA DEFAULT_DATE_FIELD = 'date' DEFAULT_ARCH_DIR = Path(this_dir,'csas_archive') DEFAULT_CSV_DIR = Path(this_dir,'data') DEFAULT_DB_DIR = this_dir COL_TYPES = { 'date': str,'site':str,'type':str,'albedo':float,'snwd':float,'temp':float,'flow':float } # Define functions def compose_date(years, months=1, days=1, weeks=None, hours=None, minutes=None, seconds=None, milliseconds=None, microseconds=None, nanoseconds=None): """ for composing dates from arrays of specified quantities (years, months, etc) output: datetime array """ years = np.asarray(years) - 1970 months = np.asarray(months) - 1 days = np.asarray(days) - 1 types = ('<M8[Y]', '<m8[M]', '<m8[D]', '<m8[W]', '<m8[h]', '<m8[m]', '<m8[s]', '<m8[ms]', '<m8[us]', '<m8[ns]') vals = (years, months, days, weeks, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) return sum(np.asarray(v, dtype=t) for t, v in zip(types, vals) if v is not None) def process_csas_archive(data_dir=DEFAULT_CSV_DIR,csas_archive=DEFAULT_ARCH_DIR,verbose=False): """ process csas archive data (.csv in DEFAULT_ARCH_DIR) from https://snowstudies.org/archived-data/ output: none in consul, formatted .csv files to DEFAULT_CSV_DIR """ # Check for output directory: if os.path.isdir(data_dir) is False: os.mkdir(data_dir) print('Preparing processed csas .csv files for database creation...') # Check for input data if os.path.isdir(csas_archive) is False: print("No archive data provided...") return if csas_archive.glob("*.csv") is []: print("No archive data provided...") return for archive_file in csas_archive.glob("*.csv"): if "dust" in str(archive_file): continue else: file = str(archive_file).replace(str(csas_archive),"").replace("\\","") site = file.split("_")[0] if verbose: print(f'Processing {archive_file.name}...') df_in = pd.read_csv(archive_file) # Create output df df_out = pd.DataFrame(index=df_in.index) df_out["site"] = site # Check dates if "24hr" in str(archive_file): dtype = "dv" dates = compose_date(years=df_in.Year, days=df_in.DOY) if "1hr" in str(archive_file): dtype = "iv" dates = compose_date(years=df_in.Year, days=df_in.DOY, hours=df_in.Hour / 100) df_out["type"] = dtype # Check for albedo if ("PyDwn_Unfilt_W" in str(df_in.columns)) and ("PyUp_Unfilt_W" in str(df_in.columns)): df_out["albedo"] = df_in["PyDwn_Unfilt_W"] / df_in["PyUp_Unfilt_W"] df_out.loc[df_out["albedo"] > 1, "albedo"] = 1 df_out.loc[df_out["albedo"] < 0, "albedo"] = 0 else: df_out["albedo"] = np.nan # Check for snow depth if ("Sno_Height_M" in str(df_in.columns)): df_out["snwd"] = df_in["Sno_Height_M"]*3.281*12 # Convert to inches else: df_out["snwd"] = np.nan # Check for temperature if dtype=="dv": if ("UpAir_Avg_C" in str(df_in.columns)): df_out["temp"] = df_in["UpAir_Avg_C"]*9/5+32 # Convert to F elif ("Air_Max_C" in str(df_in.columns)) & ("Air_Min_C" in str(df_in.columns)): df_out["temp"] =(df_in["Air_Max_C"]/2+df_in["Air_Min_C"]/2)*9/5+32 # Convert to F else: df_out["temp"] = np.nan elif dtype=="iv": if ("UpAir_Max_C" in str(df_in.columns)): df_out["temp"] = df_in["UpAir_Max_C"]*9/5+32 # Convert to F elif ("Air_Max_C" in str(df_in.columns)): df_out["temp"] = df_in["Air_Max_C"]*9/5+32 # Convert to F else: df_out["temp"] = np.nan # Check for flow if ("Discharge" in str(df_in.columns)): df_out["flow"] = df_in["Discharge_CFS"] else: df_out["flow"] = np.nan df_out.index = dates df_out.to_csv(Path(data_dir,file),index_label="date") def process_csas_live(data_dir=DEFAULT_CSV_DIR,verbose=False): """ process csas live data from https://snowstudies.org/current-conditions/ output: none in consul, formatted .csv files to DEFAULT_CSV_DIR """ # Check for output directory: if os.path.isdir(data_dir) is False: os.mkdir(data_dir) csas_sites = ["SBSP","SASP","PTSP","SBSG"] csas_dtypes = ["iv","dv"] # Set filepath extension for dtype for dtype in csas_dtypes: if verbose: print(f'Processing {dtype} data...') if dtype == "iv": ext = "Hourly.php" if dtype == "dv": ext = "Daily.php" for site in csas_sites: if verbose: print(f'for {site}...') # Construct url site_url = "https://www.snowstudies.info/NRTData/" + site + "Full" + ext print(site_url) # Import failed = True tries = 0 while failed: try: csv_str = r_get(site_url,timeout=None,verify=False).text failed = False except TimeoutError: raise Exception("Timeout; Data unavailable?") tries += 1 print(tries) if tries > 15: return csv_io = StringIO(csv_str) try: f = pd.read_html(csv_io) except ValueError: return df_in = f[1] if df_in.empty: if verbose: print("Data not available") return if df_in is None: if verbose: print("Data not available") return if dtype == "dv": dates = compose_date(years=df_in.Year,days=df_in.Day) if dtype == "iv": dates = compose_date(years=df_in.Year, days=df_in.Day,hours=df_in.Hour/100) df_out = pd.DataFrame(index=df_in.index, columns=["site","type","albedo","snwd","temp","flow"]) df_out["site"] = site df_out["type"] = dtype for col in df_in.columns: # Check for albedo and solar radiation if "Albedo" in col: df_out["albedo"] = df_in[col] if "Solar Radiation-Up" in col: df_out["radup"] = df_in[col] if "Solar Radiation-Down" in col: df_out["raddn"] = df_in[col] # Check for snow depth if "Snow Depth" in col: df_out["snwd"] = df_in[col]*3.281*12 df_out.loc[df_out["snwd"] > 109, 'snwd'] = np.nan # 109 is common error value df_out["snwd"] = df_out["snwd"].interpolate(limit=3) # Check for temp if ("Air Temperature" in col) & ("(C" in col): df_out["temp"] = df_in[col]*9/5+32 # Check for flow if "Discharge" in col: df_out["flow"] = df_in[col] # Fix albedo if (all(pd.isna(df_out["albedo"]))==True) and ("radup" in df_out.columns) and ("raddn" in df_out.columns): df_out["albedo"] = df_out["raddn"] / df_out["radup"] df_out.loc[df_out["albedo"]>1,'albedo'] = 1 df_out.loc[df_out["albedo"]<0,"albedo"] = 0 if ("radup" in df_out.columns): df_out = df_out.drop(labels=["radup"],axis=1) if ("raddn" in df_out.columns): df_out = df_out.drop(labels=["raddn"], axis=1) # Add date index df_out.index=dates file = f"{site}_{dtype}_live.csv" df_out.to_csv(Path(data_dir,file),index_label="date") def get_dfs(data_dir=DEFAULT_CSV_DIR,verbose=False): """ Get and merge dataframes imported using functions """ csas_iv_df_list = [] csas_dv_df_list = [] print('Preparing .csv files for database creation...') for data_file in data_dir.glob('*.csv'): if verbose: print(f'Adding {data_file.name} to dataframe...') df = pd.read_csv( data_file, usecols=COL_TYPES.keys(), parse_dates=['date'], dtype=COL_TYPES ) if not df.empty: csas_iv_df_list.append( df[df['type'] == 'iv'].drop(columns='type').copy() ) csas_dv_df_list.append( df[df['type'] == 'dv'].drop(columns='type').copy() ) df_csas_iv = pd.concat(csas_iv_df_list) df_csas_iv.name = 'csas_iv' df_csas_dv = pd.concat(csas_dv_df_list) df_csas_dv.name = 'csas_dv' print(' Success!!!\n') return {'csas_iv':df_csas_iv,'csas_dv':df_csas_dv} def get_unique_dates(tbl_name, db_path, date_field=DEFAULT_DATE_FIELD): """ Get unique dates from shread data, to ensure no duplicates """ if not db_path.is_file(): return pd.DataFrame(columns=[DEFAULT_DATE_FIELD]) db_con_str = f'sqlite:///{db_path.as_posix()}' eng = sql.create_engine(db_con_str) with eng.connect() as con: try: unique_dates = pd.read_sql( f'select distinct {date_field} from {tbl_name}', con ).dropna() except Exception: return pd.DataFrame(columns=[DEFAULT_DATE_FIELD]) return pd.to_datetime(unique_dates[date_field]) def write_db(df, db_path=DEFAULT_DB_DIR, if_exists='replace', check_dups=False, zip_db=ZIP_IT, zip_frmt=ZIP_FRMT, verbose=False): """ Write dataframe to database """ sensor = df.name print(f'Creating sqlite db for {df.name}...\n') print(' Getting unique site names...') site_list =
pd.unique(df['site'])
pandas.unique
import sys import unique_count from math import sqrt from math import atanh from math import erf from matplotlib import pyplot as plt from scipy.stats import spearmanr from pathlib import Path from excel_processing import read_mutation_files from excel_processing import parse_endometrium_mutations import pandas as pd from decimal import * getcontext().prec = 100 def recursive_table_dump_header(table): result = [] if isinstance(table, dict): for key in table.keys(): if not isinstance(table[key], dict): result += [str(key)] result += recursive_table_dump_header(table[key]) return result def recursive_table_dump_lines(table, lines): line = [] if isinstance(table, dict): for key in table.keys(): line += recursive_table_dump_lines(table[key], lines) else: line += [str(table)] lines.append(line) return line def recursive_table_dump(table, output): with open(output, "w") as csv_file: lines = [] header = ";".join(recursive_table_dump_header(table)) recursive_table_dump_lines(table, lines) csv_file.write(header + "\n") for line in lines: csv_file.write(";".join(line) + "\n") def count_by_hla_by_mutation(data, hlas, mutations, min_distance=0): """ Reads a pandas dataframe of epitopes, counting distinct epitopes by HLA. """ result = {} for mutation in mutations: result[mutation] = {} dictionaries, _ = unique_count.filter_same(data, min_distance=min_distance, by_hla=mutation, length_total=200) for hla in hlas: result[mutation][hla] = 0 for candidate_dict in dictionaries: result[mutation][candidate_dict["HLA"]] += 1 return result def m1m2count(data): """ Reads the counts of epitopes for -1 and -2 mutations by HLA in a dataset. """ hlas = list(data["HLA"].sort_values().unique()) mutations = list(data["ID"].sort_values().unique()) m_1 = [mut for mut in mutations if mut.endswith("_m1")] m_2 = [mut for mut in mutations if mut.endswith("_m2")] m_1_counts = count_by_hla_by_mutation(data, hlas, m_1) m_2_counts = count_by_hla_by_mutation(data, hlas, m_2) return m_1_counts, m_2_counts, hlas, m_1, m_2 def m1m2count_merge(data): """ Reads the total counts of epitopes for -1 and -2 mutations a dataset. """ m_1_counts, m_2_counts, hlas, m_1, m_2 = m1m2count(data) m_1_total = {} m_2_total = {} for mutation in m_1: m_1_total[mutation] = 0 for mutation in m_2: m_2_total[mutation] = 0 for mutation in m_1: for hla in hlas: m_1_total[mutation] += m_1_counts[mutation][hla] for mutation in m_2: for hla in hlas: m_2_total[mutation] += m_2_counts[mutation][hla] return m_1_total, m_2_total, hlas, m_1, m_2 def std_normal_cdf(x): return 0.5 + 0.5 * erf(x / sqrt(2)) def fisher_transform(x): return atanh(x) def fisher_Z(x, x0, N): return (fisher_transform(x) - fisher_transform(x0)) * sqrt(N - 3) def pcc_test(pcc_val, N, two_sided=False): Z = fisher_Z(pcc_val, 0, N) cdf = std_normal_cdf(-abs(Z)) if two_sided: return 2 * cdf else: return cdf def pcc(x, y, indexes): """Pearson's correlation coefficient.""" mean_x = sum([x[idx] for idx in indexes if x[idx] > 0.0]) / len(indexes) mean_y = sum([y[idx] for idx in indexes if y[idx] > 0.0]) / len(indexes) sum_sq_x = sum(map(lambda idx: (x[idx] - mean_x) ** 2 if x[idx] > 0.0 else 0.0, indexes)) sum_sq_y = sum(map(lambda idx: (y[idx] - mean_y) ** 2 if y[idx] > 0.0 else 0.0, indexes)) prod_sum = sum(map(lambda idx: (x[idx] - mean_x) * (y[idx] - mean_y) if y[idx] > 0.0 and x[idx] > 0.0 else 0.0, indexes)) return (prod_sum + 1e-6) / sqrt(sum_sq_x * sum_sq_y + 1e-6) def m1m2p1p2_correlate(data, probabilities): """ Correlates the mutation probability with the number of epitopes for that mutation. """ m_1_total, m_2_total, hlas, m_1, m_2 = m1m2count_merge(data) p_m = probabilities indexes_m_1 = [hla for key in p_m.keys() if key.endswith("_m1") and key in m_1] indexes_m_2 = [key for key in p_m.keys() if key.endswith("_m2") and key in m_2] for index in indexes_m_1: renamed = index[:-3] + "_m2" if renamed in m_2_total: continue m_2_total[renamed] = 0 for index in indexes_m_2: renamed = index[:-3] + "_m1" if renamed in m_1_total: continue m_1_total[renamed] = 0 indexes = [key[:-3] for key in indexes_m_1] indexes += [key[:-3] for key in indexes_m_2] indexes = list(sorted(set(indexes))) mq = [m_2_total[idx + "_m2"] / m_1_total[idx + "_m1"] for idx in indexes if p_m[idx + "_m1"] != 0 and m_1_total[idx + "_m1"] != 0] pq = [p_m[idx + "_m2"] / p_m[idx + "_m1"] for idx in indexes if p_m[idx + "_m1"] != 0 and m_1_total[idx + "_m1"] != 0] pcc_1 = pcc(m_1_total, p_m, indexes_m_1) pcc_2 = pcc(m_2_total, p_m, indexes_m_2) pcc_q = pcc(mq, pq, list(range(len(pq)))) pval_1 = pcc_test(pcc_1, len(indexes_m_1), True) pval_2 = pcc_test(pcc_2, len(indexes_m_2), True) pval_q = pcc_test(pcc_q, len(pq), True) return pcc_1, pcc_2, pcc_q, pval_1, pval_2, pval_q def dump_full(table, output): cohorts = [ "European Caucasian", "USA African American", "USA Hispanic", "Japan", "Germany" ] strengths = ["strong", "weak", "garbage"] mms = [1, 2] result = [] for cohort in cohorts: object_cohort = table[cohort] for strength in strengths: object_strength = object_cohort[strength] for mm in mms: object_mm = object_strength[mm] for candidate in object_mm.keys(): if candidate == "mm": continue object_candidate = object_mm[candidate] for hla in object_candidate.keys(): if not (hla in ["GEDS", "IRS", "candidate"]): object_hla = object_candidate[hla] object_eds = object_hla["EDS"] object_epds = object_hla["EPDS"] data = [cohort, strength, mm, candidate, hla] for idx in range(0, 100, 10): data.append(object_eds[idx * 0.01]) for idx in range(0, 100, 10): data.append(object_epds[idx * 0.01]) for idx in range(0, 100, 10): data.append(object_candidate["GEDS"][idx * 0.01]) for idx in range(0, 100, 10): data.append(object_candidate["IRS"][idx * 0.01]) result.append(data) header = ["cohort", "strength", "mm", "candidate", "hla"] for idx in range(0, 100, 10): header.append(f"EDS: {idx} %") for idx in range(0, 100, 10): header.append(f"EPDS: {idx} %") for idx in range(0, 100, 10): header.append(f"GEDS: {idx} %") for idx in range(0, 100, 10): header.append(f"IRS: {idx} %") with open(output, "w") as csv_file: csv_file.write(";".join(header) + "\n") for line in result: csv_file.write(";".join(list(map(lambda x: str(x), line))) + "\n") def doGEDS(p, hlas, freqs, nepitopes): prod_A = Decimal(1.0) prod_B = Decimal(1.0) prob = Decimal(p) for raw_hla, freq in zip(list(freqs["Allele"]), list(freqs["Allele Frequency"])): hla = f"HLA-{raw_hla}".replace("*", "") frequency = Decimal(freq) if hla in hlas: nh = nepitopes[hla] if hla in nepitopes.keys() else 0 nh = Decimal(nh) pih = Decimal(1) - (Decimal(1) - prob) ** (nh) Fh = Decimal(1) - (Decimal(1) - frequency) ** 2 term = Decimal(1) - Fh * pih if hla.startswith("HLA-A"): prod_A *= term else: prod_B *= term result = (Decimal(1) - prod_A) + (Decimal(1) - prod_B) - (Decimal(1) - prod_A) * (Decimal(1) - prod_B) return float(result) if __name__ == "__main__": assert len(sys.argv) == 4 DO_SORT = int(sys.argv[1]) DO_POSTPROC = int(sys.argv[2]) DO_ANALYSIS = int(sys.argv[3]) # Eval: if DO_SORT: data_full = unique_count.read_data(Path("table_dump_colon.csv"), delimiter=";") data_full = data_full.sort_values(["GEDS: 50 %"], ascending=False) data_wanted = data_full[data_full["strength"] == "weak"] data_wanted.to_csv("table_sorted_strong_GEDS.csv") # Get some numbers: if DO_POSTPROC: # Load datasets: data_strong = unique_count.read_data(Path("./NetMHCPanOutput/cMNR_peptides.csv.strong.csv"), delimiter=",") data_weak = unique_count.read_data(Path("./NetMHCPanOutput/cMNR_peptides.csv.weak.csv"), delimiter=",") data_garbage = unique_count.read_data(Path("./NetMHCPanOutput/cMNR_peptides.csv.garbage.csv"), delimiter=",") data_weak = pd.concat([data_strong, data_weak]) data_garbage =
pd.concat([data_weak, data_garbage])
pandas.concat
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# """ BLIS - Balancing Load of Intermittent Solar: A characteristic-based transient power plant model Copyright (C) 2020. University of Virginia Licensing & Ventures Group (UVA LVG). All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# import pandas as pd import time import numpy as np from joblib import Parallel, delayed, parallel_backend from blis import Solar, Grid, Battery, SBGS, monteCarloInputs import os # ===================== # Function to enable parameter sweep # ===================== def parameterSweep(inputs): # Record time to solve t0 = time.time() # Load_Data - Expected Columns (units): DatetimeUTC (UTC format), t (min), dt (min), demand (MW), solar (MW) data = pd.read_csv('data063.csv') # Scale data to match provided pvSize data.solar = data.solar * inputs.pvSize / 32.3 # Solar Plant - All inputs are optional (default values shown below) solar = Solar(plantType='PV', capacity=inputs.pvSize, cost_install=2004., cost_OM_fix=22.02) # Battery Storage - All inputs are optional (default values shown below) batt = Battery(capacity=inputs.capacity, rateMax=inputs.rate, roundTripEff=inputs.eff, cost_install=inputs.costInstall, cost_OM_fix=inputs.costOM, initCharge=0.0) # Grid Electricity Supply - All inputs are optional (default values shown below) grid = Grid(capacity=1000.0, maxEmissions=0.5, emissionCurve_hr=np.linspace(1, 24, 24), emissionCurve_pct=np.linspace(100, 100, 24), cost_OM_var=100.0) # Create SBGS (controller is built-in), data is only required inputs, all other components will revert to default if not specified hres = SBGS(data, solar=solar, batt=batt, grid=grid, i=0.02, n=20) # Run Simulation results = hres.run() # Display Elapsed Time t1 = time.time() print "Time Elapsed: " + str(round(t1 - t0, 2)) + " s" # Combine inputs and results into output and then return output = pd.concat([inputs, results], axis=0) return output # ===================== # Main Program # ===================== if __name__ == '__main__': # ============== # User Inputs # ============== studyName = "results_sizing" # Monte Carlo Case Inputs (uses excel, each sheet is a separate study) xls_filename = "inputs_sizing.xlsx" # sheetnames = ["CAES", "BATT", "UTES", "Flywheel"] sheetnames = ["CAES"] # Specify number of iterations per case iterations = 500 # To test # iterations = 100 # Used in article # Number of cores to use num_cores = multiprocessing.cpu_count() - 1 # Consider saving one for other processes # ============== # Run Simulations # ============== all_outputs = [] count = 0 # Iterate each Monte Carlo case for sheetname in sheetnames: inputs = monteCarloInputs(xls_filename, sheetname, iterations) # Perform Simulations (Run all plant variations in parallel) with parallel_backend('multiprocessing', n_jobs=num_cores): output = Parallel(verbose=10)( delayed(parameterSweep)(inputs.loc[index]) for index in range(iterations)) # Add output to all_outputs all_outputs = all_outputs + output # Move output to dataframe and save (if iterations greater than 10) if iterations > 10: df = pd.DataFrame(output) df.to_csv(studyName + '_pt' + str(count) + '.csv') count = count + 1 # Combine outputs into single dataframe and save df =
pd.DataFrame(all_outputs)
pandas.DataFrame
# -*- coding: utf-8 -*- from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options import time,datetime from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait import pymysql from pandas import DataFrame from imageio import imread import matplotlib.pyplot as plt import jieba from wordcloud import WordCloud,ImageColorGenerator class wyy(): #从网易云音乐获取评论并制作词云 def __init__(self): self.url = 'https://music.163.com/' self.chrome_options = Options() self.chrome_options.add_argument('--headless') self.chrome_options.add_argument('--disable-gpu') self.people = {'names':[], 'comments':[], 'dates':[], 'votes':[], 'replied_names':[], 'replied_comments':[]} self.isCN = 1 #默认启用中文分词 self.back_coloring_path = r'D:\ciyun\background_image\mouse.jpg' #设置背景图片路径#图片不同导致生成的image1能否有形状 self.text_path = r'D:\ciyun\use.txt' #设置要分析的文本路径 self.font_path = r'D:\ciyun\youyuan.ttf' #设置中文字体路径 self.stopwords_path = r'D:\ciyun\stopwords.txt' #停用词词表 self.imagename1 = r'D:\ciyun\defaultcolor.png' #保存的图片名字1 self.imagename2 = r'D:\ciyun\colorbyimage.png' #保存的图片名字2 self.my_word_list = [] #在jieba的词库中添加新词,这里未添加任何新词,根据时间自行添加 def search(self,name): '根据歌名歌手来搜索歌曲' #self.driver = webdriver.Chrome() #打开浏览器进行操作 driver = webdriver.Chrome(chrome_options = self.chrome_options) #无头模式的Chrome driver.get(self.url) time.sleep(0.5) driver.set_window_size(1280,800) #在无头模式下把window_size放大以便能找到下面的‘srch’元素 put = driver.find_element_by_id("srch") put.send_keys(name) time.sleep(0.5) put.send_keys(Keys.ENTER) time.sleep(2) wait = WebDriverWait(driver,10) wait.until(EC.presence_of_element_located((By.ID,'g_iframe'))) driver.switch_to_frame('g_iframe') #网页使用了iframe,需要进行读取 time.sleep(1) put = driver.find_element_by_class_name('fst') #选中单曲列表 put.click() wait = WebDriverWait(driver,10) wait.until(EC.presence_of_element_located((By.CLASS_NAME,'w0'))) music = driver.find_element_by_class_name('w0') music = music.find_element_by_class_name('text') music_lyrics = driver.find_element_by_class_name('w1').text music_name = driver.find_element_by_class_name('w0').text print('您搜索到的音乐是 '+music_name+' '+music_lyrics) #因为歌名后可能有其他元素,使用下面的try语句 try: music = music.find_element_by_class_name('s-fc7') except: pass music.click() time.sleep(1) return driver def lyrics_download(self,name): #歌词下载 try: driver = self.search(name) content = driver.page_source content = content.replace('<br />','\n') #使输出结果更友好 html = BeautifulSoup(content,'lxml') lyrics = html.find(id = 'lyric-content').text lyrics = '\n'.join(lyrics.split('\n')[:-1]) #把最后的‘展开’两个字取消 finally: driver.close() return lyrics def download_next_page(self,driver): '获取下一页的html代码' time.sleep(0.5) next_page = driver.find_element_by_class_name('znxt') time.sleep(0.5) driver.execute_script("window.scrollTo(0,document.body.scrollHeight)") #把进度条来到翻页按钮处模仿用户操作 next_page.click() wait = WebDriverWait(driver,10) wait.until(EC.presence_of_element_located((By.CLASS_NAME,'itm'))) #确保页面加载完成 content = driver.page_source content = content.replace('<br />','\n') html = BeautifulSoup(content,'lxml') return html def download_previous_page(self,driver): '获取上一页的HTML代码' time.sleep(1) previous_page = driver.find_element_by_class_name('zprv') previous_page.click() wait = WebDriverWait(driver,10) wait.until(EC.presence_of_element_located((By.CLASS_NAME,'itm'))) content = driver.page_source content = content.replace('<br />','\n') html = BeautifulSoup(content,'lxml') return html def change_time(self,time): '把时间格式统一为%Y-%m-%d %H:%M,但是时间过早的评论只显示了日期' now = datetime.datetime.now() day = now.strftime('%Y-%m-%d') year = now.strftime('%Y') '把时间转换为统一格式' if '昨天' in time: time = time.replace('昨天',day+' ') elif '前' in time: minut = int(time[:time.index('分')]) time = (now + datetime.timedelta(minutes=-minut)).strftime('%Y-%m-%d %H:%M') elif len(time) == 5: time = day + ' ' + time elif time.index('月') == 1: time = time.replace('月','-').replace('日','') time = year+ '-' + time elif '年' in time: time = time.replace('年','-').replace('月','-').replace('日','') else: print('不明时间格式') return None return time def change_vote(self,vote): '确保评论的点赞数格式统一为int' try: change = vote[vote.index('(')+1:vote.index(')')] if '万' in change: change = int(float(change[:change.index('万')])*10000) else: change = int(change) except: change = 0 return change def one_page_comments_download(self,html): '收集用户评论的姓名,内容,时间,得赞数,针对谁的回复(姓名和内容)' persons = html.find_all(class_ = 'itm') for person in persons: comment = person.find(class_ = 'cnt').text name = comment[:comment.index(':')] comment = comment[comment.index(':')+1:] date = person.find(class_ = 'time') date = self.change_time(date.text) vote = person.find(class_ = 'rp') try: vote = vote.text[vote.text.index('(')+1:vote.text.index(')')] vote = int(vote) except ValueError: vote = 0 try: replied_comment = person.find(class_ = 'que').text if '删除' in replied_comment: #遇到’该评论已被删除‘ replied_comment = replied_comment replied_name = None else: replied_name = replied_comment[:replied_comment.index(':')] replied_comment = replied_comment[replied_comment.index(':')+1:] except AttributeError as e: replied_comment = None replied_name = None self.people['names'].append(name) self.people['comments'].append(comment) self.people['dates'].append(date) self.people['votes'].append(vote) self.people['replied_names'].append(replied_name) self.people['replied_comments'].append(replied_comment) def great_comments(self,name = '等你下课 周杰伦'): #只获取点赞数最多的不超过15条评论 '获得在第一个页面上的精彩评论(至多15条)' try: browser = self.search(name) wait = WebDriverWait(browser,10) wait.until(EC.presence_of_element_located((By.CLASS_NAME,'itm'))) content = browser.page_source content = content.replace('<br />','\n') html = BeautifulSoup(content,'lxml') great = {'names':[], 'comments':[], 'dates':[], 'votes':[], 'replied_names':[], 'replied_comments':[]} persons = html.find_all(class_ = 'itm') for person in persons[0:15]: comment = person.find(class_ = 'cnt').text name = comment[:comment.index(':')] comment = comment[comment.index(':')+1:] date = person.find(class_ = 'time') date = self.change_time(date.text) vote = person.find(class_ = 'rp') vote = self.change_vote(vote.text) if vote < 10: #可能一首歌并没有15条点赞数最多的评论 break try: replied_comment = person.find(class_ = 'que').text replied_name = replied_comment[:replied_comment.index(':')] replied_comment = replied_comment[replied_comment.index(':')+1:] except AttributeError as e: replied_comment = None replied_name = None #print(e) great['names'].append(name) great['comments'].append(comment) great['dates'].append(date) great['votes'].append(vote) great['replied_names'].append(replied_name) great['replied_comments'].append(replied_comment) print('获取了点赞数最多的评论') finally: browser.close() return great def save_mysql(self,people): '把获取的数据存入数据库' db = pymysql.connect(host = 'localhost', port = 3306 ,user = 'root', passwd = '<PASSWORD>', db = 'your db', charset='utf8mb4') #使用utf8mb4来显示一些表情符号等等 cursor = db.cursor() sql1 = 'USE text' sql2 = 'INSERT INTO wyycomments (name, own_comment, vote, date, replied_name, replied_comment) VALUES (%s,%s,%s,%s,%s,%s)' for i in range(len(people['names'])): try: cursor.execute(sql1) cursor.execute(sql2,(people['names'][i],people['comments'][i],people['votes'][i],people['dates'][i],people['replied_names'][i],people['replied_comments'][i])) cursor.connection.commit() except Exception as e: print(e) db.rollback() continue cursor.close() db.close() def save_csv(self,people): '把获取的数据存入csv文件中' people =
DataFrame(people)
pandas.DataFrame
''' calculate intrinsic economic value of a property based on buy or rent decision indifference (arbitrage) Rent = Price*mortgage_rate + DEPRECIATION_RATE*min(Building, Price) - growth * Land + Price*tax - (Price - 24k) * tax_braket + Price * mortgage_insurance ''' ### PATHES to change HOST = "/home/invisement/PROJECTS/inVisement2/apps-workshop/" INPUT_PATH = HOST + "data/" OUTPUT_PATH = HOST + "data/" def main(): ''' read all input files, prepare housing table, calculate intrinsic value, add return columns, and save output ''' housing_table = read_and_join_input_files() housing_table = prepare_housing_valuation_table(housing_table) housing_table['intrinsic house value'] = calculate_intrinsic_value (housing_table).round() housing_table["total return"] = (housing_table['intrinsic house value'] - housing_table['house price'])/housing_table['house price'] housing_table['net annual return'] = housing_table['total return'] * (housing_table['mortgage rate']+PMI_RATE) housing_table['annual return'] = housing_table['net annual return'] + housing_table['mortgage rate'] + PMI_RATE return prune_and_save (housing_table) ### LIBRARIES import datetime, pandas as pd, numpy as np ### CONSTANTS PMI_RATE = 0.01 # private mortgage insurance rate FEDERAL_INCOME_TAX_RATE = 0.30 # federal tax bracket rate DEPRECIATION_RATE = 0.03 # home annual depreciation rate for a base home (building) STANDARD_TAX_DEDUCTION = 24000 MAX_MORTGAGE_CREDIT = 1000000 # maximum allowance for tax deduction on mortgage BASE_QUANTILE = 0.3 ### INPUTS PRICE_FILE = INPUT_PATH + "house price by county.csv" RENT_FILE = INPUT_PATH + "rent by county.csv" MORTGAGE_FILE = INPUT_PATH + "mortgage rate 30 year fixed.csv" GROWTH_FILE = INPUT_PATH + "nominal gdp growth.csv" TAX_FILE = INPUT_PATH + "property tax by fips.csv" ### OUTPUTS HOUSING_FILE = OUTPUT_PATH + "housing valuation.csv" LATEST_HOUSING_FILE = OUTPUT_PATH + "latest housing valuation.csv" ### FUNCTIONS def read_and_join_input_files (base_quantile=BASE_QUANTILE): price = pd.read_csv(PRICE_FILE, dtype=str) price['house price'] = pd.to_numeric(price['house price']) price['fips'] = price['state fips'].str.zfill(2) + price['county fips'].str.zfill(3) price = price.filter(['fips', 'state', 'county', 'date', 'house price']) rent = pd.read_csv(RENT_FILE, dtype=str) rent['rent'] =
pd.to_numeric(rent['rent'])
pandas.to_numeric
''' 流调查询 ''' from settings_class import settings_obj import pandas as pd from util.logger import logger from sqlalchemy import desc from datetime import datetime,timedelta def get_forward_backward_time(current_time, minutes): # 获取向前和向后的时间 if isinstance(current_time,str): current = datetime.strptime(current_time, "%Y-%m-%d %H:%M:%S") else: current =current_time backward_time = current + timedelta(minutes=minutes) forward_time = current - timedelta(minutes=minutes) return forward_time, backward_time def get_forward_contact(forward_time, current_time, location_condition_str, user_id, conn,table_obj,close_contact_record_num): ''' 先向前查询,逻辑为 查询在向前时间到当前时间范围内,在该校区和该地点内的,并以时间倒序排序查询的限制close_contact_record_num :return: ''' # 查(在限制的时间范围内)close_contact_record_num 条记录 s = f"conn.session.query({settings_obj.result_filed_names_str}).filter(table_obj.c[settings_obj.user_id_field_name]!=user_id, table_obj.c[settings_obj.time_field_name]>=forward_time, table_obj.c[settings_obj.time_field_name]<=current_time, {location_condition_str}).order_by(desc(table_obj.c[settings_obj.time_field_name])).limit(close_contact_record_num).all()" records = eval(s) forward_results = [list(result) for result in records] return forward_results def get_backward_contact(backward_time,current_time,location_condition_str,user_id,conn,table_obj,close_contact_record_num): ''' 再向后查询,逻辑为 查询在当前时间到向后时间范围内,在该校区和该地点内的,并以时间正序排序查询的限制close_contact_record_num 条消费记录 :param close_contact_record_num: :param backward_time: :param current_time: :param location_condition_str: :param user_id: :param conn: :return: ''' # 先查(在限制的时间范围内))close_contact_record_num 条记录 s =f"conn.session.query({settings_obj.result_filed_names_str}).filter(table_obj.c[settings_obj.user_id_field_name]!=user_id, table_obj.c[settings_obj.time_field_name]>=current_time, table_obj.c[settings_obj.time_field_name]<=backward_time, {location_condition_str}).order_by(table_obj.c[settings_obj.time_field_name]).limit(close_contact_record_num).all()" records = eval(s) backward_results = [list(result) for result in records] return backward_results def get_backward_contacts(backward_time, current_time, location_condition_str, user_id, conn,table_obj, close_contact_record_num=settings_obj.close_contact_people_num, backward_result_df=None): if backward_result_df is None: backward_result_df = pd.DataFrame(columns=settings_obj.result_filed_names) backward_results = get_backward_contact(backward_time, current_time, location_condition_str, user_id, conn,table_obj, close_contact_record_num) if len(backward_results)>0: tem_df = pd.DataFrame(backward_results,columns=backward_result_df.columns) backward_result_df = pd.concat([backward_result_df, tem_df], ignore_index=True) backward_result_df.sort_values(by=settings_obj.time_field_name, inplace=True, ascending=True) # 升序 if len(backward_results)>=close_contact_record_num: close_contact_record_num = settings_obj.close_contact_people_num - backward_result_df[settings_obj.user_id_field_name].nunique() if close_contact_record_num>0 and len(backward_result_df)>0: current_time = backward_result_df.loc[len(backward_result_df)-1,settings_obj.time_field_name] user_id = backward_result_df.loc[len(backward_result_df)-1,settings_obj.user_id_field_name] backward_result_df = get_backward_contacts(backward_time,current_time, location_condition_str, user_id, conn,table_obj,close_contact_record_num=close_contact_record_num,backward_result_df=backward_result_df) return backward_result_df def get_forward_contacts(forward_time, current_time, location_condition_str, user_id, conn, table_obj, close_contact_record_num=settings_obj.close_contact_people_num, forward_result_df=None): ''' 递归查询 :param table_obj: :param forward_time: :param current_time: :param location_condition_str: :param user_id: :param conn: :param close_contact_record_num: :param forward_result_df: :return: 返回dataframe格式 ''' if forward_result_df is None: forward_result_df = pd.DataFrame(columns=settings_obj.result_filed_names) forward_results = get_forward_contact(forward_time, current_time, location_condition_str, user_id, conn,table_obj,close_contact_record_num) if len(forward_results)>0: tem_df = pd.DataFrame(forward_results, columns=forward_result_df.columns) forward_result_df = pd.concat([forward_result_df, tem_df], ignore_index=True) forward_result_df.sort_values(by=settings_obj.time_field_name, inplace=True, ascending=True) # 升序 if len(forward_results)>=close_contact_record_num: # 这时候在forward_time, current_time时间范围内所有记录都已经被查询出 close_contact_record_num = settings_obj.close_contact_people_num - forward_result_df[settings_obj.user_id_field_name].nunique() if close_contact_record_num>0 and len(forward_result_df)>0: current_time = forward_result_df.loc[0,settings_obj.time_field_name] user_id = forward_result_df.loc[0,settings_obj.user_id_field_name] forward_result_df = get_forward_contacts(forward_time,current_time, location_condition_str, user_id, conn, table_obj,close_contact_record_num=close_contact_record_num,forward_result_df=forward_result_df) return forward_result_df def change_time_type(time,table_obj): ''' 转换str_time的类型 :param time: 字符串或者datetime两种类型 :param table_obj: :return: ''' if isinstance(time,datetime) or isinstance(time,str): if table_obj.c[settings_obj.time_field_name].type.python_type==datetime: if isinstance(time,str): return datetime.strptime(time,'%Y-%m-%d %H:%M:%S') else: if isinstance(time,datetime): return str(time) return time def change_userid_type(user_id,table_obj): if table_obj.c[settings_obj.user_id_field_name].type.python_type==int: return int(user_id) return str(user_id) def get_contact(user_id, conn, table_obj): # 针对user_id进行密接查询 # 首先查询user_id在flow_tone_start_time和flow_tone_end_time时间内的消费记录 # 因为user_id对应的消费记录也需要输出,所以查询时要查出包括location_filed_names、time_field_name、result_filed_names中的所有字段 flow_tone_start_time = change_time_type(settings_obj.flow_tone_start_time, table_obj) flow_tone_end_time = change_time_type(settings_obj.flow_tone_end_time, table_obj) user_id = change_userid_type(user_id,table_obj) s = f"conn.session.query({settings_obj.filed_names_str}).filter(table_obj.c[settings_obj.user_id_field_name]== user_id, table_obj.c[settings_obj.time_field_name]>=flow_tone_start_time, table_obj.c[settings_obj.time_field_name]<=flow_tone_end_time).order_by(table_obj.c[settings_obj.time_field_name]).all()" records = eval(s) result_df = pd.DataFrame(columns=settings_obj.result_filed_names) for record in records: # 针对每一条消费记录,分别查询在该时间前后close_contact_time分钟内在该地点消费的相关记录,不超过多少人 current_time = record[settings_obj.time_field_name] forward_time, backward_time = get_forward_backward_time(current_time, settings_obj.close_contact_time) forward_time = change_time_type(forward_time, table_obj) backward_time = change_time_type(backward_time, table_obj) current_time = change_time_type(current_time, table_obj) location_condition_list = [] for location_filed_name in settings_obj.location_filed_names: location_condition = f"table_obj.c['{location_filed_name}']=='{record[location_filed_name]}'" location_condition_list.append(location_condition) location_condition_str = ", ".join(location_condition_list) # 先向前查询 forward_results = get_forward_contacts(forward_time,current_time,location_condition_str,user_id,conn,table_obj) forward_results.drop_duplicates(subset=[settings_obj.user_id_field_name], keep ='last', inplace = True) # 去重 # 先向后查询 backward_results = get_backward_contacts(backward_time,current_time,location_condition_str,user_id,conn,table_obj) backward_results.drop_duplicates(subset=[settings_obj.user_id_field_name], keep ='first', inplace = True) # 放在一起 result_df =
pd.concat([result_df, forward_results], ignore_index=True)
pandas.concat
from context import dero import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy class DataFrameTest: df = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_duplicate_row = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/3/2000', 1.03), #this is a duplicated row (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_weight = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), (10516, 'a', '1/4/2000', 1.04, 0), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 1), (10516, 'b', '1/4/2000', 1.08, 1), (10517, 'a', '1/1/2000', 1.09, 0), (10517, 'a', '1/2/2000', 1.1, 0), (10517, 'a', '1/3/2000', 1.11, 0), (10517, 'a', '1/4/2000', 1.12, 1), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight']) df_nan_byvar = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', 3), ('b', 4), ], columns = ['byvar', 'val']) df_nan_byvar_and_val = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', nan), ('b', 4), ], columns = ['byvar', 'val']) single_ticker_df = pd.DataFrame(data = [ ('a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['byvar', 'Date', 'TICKER']) df_datetime = df.copy() df_datetime['Date'] = pd.to_datetime(df_datetime['Date']) df_datetime_no_ret = df_datetime.copy() df_datetime_no_ret.drop('RET', axis=1, inplace=True) df_gvkey_str = pd.DataFrame([ ('001076','3/1/1995'), ('001076','4/1/1995'), ('001722','1/1/2012'), ('001722','7/1/2012'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str['Date'] = pd.to_datetime(df_gvkey_str['Date']) df_gvkey_num = df_gvkey_str.copy() df_gvkey_num['GVKEY'] = df_gvkey_num['GVKEY'].astype('float64') df_gvkey_str2 = pd.DataFrame([ ('001076','2/1/1995'), ('001076','3/2/1995'), ('001722','11/1/2011'), ('001722','10/1/2011'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str2['Date'] = pd.to_datetime(df_gvkey_str2['Date']) df_fill_data = pd.DataFrame( data=[ (4, 'c', nan, 'a'), (1, 'd', 3, 'a'), (10, 'e', 100, 'a'), (2, nan, 6, 'b'), (5, 'f', 8, 'b'), (11, 'g', 150, 'b'), ], columns=['y', 'x1', 'x2', 'group'] ) class TestCumulate(DataFrameTest): expect_between_1_3 = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.1, 1.1), (10517, 'a', '1/3/2000', 1.11, 1.2210000000000003), (10517, 'a', '1/4/2000', 1.12, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'cum_RET']) expect_first = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.092624), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.224936), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.10, 1.10), (10517, 'a', '1/3/2000', 1.11, 1.221), (10517, 'a', '1/4/2000', 1.12, 1.36752), ], columns = ['PERMNO','byvar','Date', 'RET', 'cum_RET']) def test_method_between_1_3(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[1,3]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_between_m2_0(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) #Actually same result as [1,3]
assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False)
pandas.util.testing.assert_frame_equal
from classes.handlers.ParamsHandler import ParamsHandler from classes.handlers.PIDExtractor import PIDExtractor from typing import List import pandas as pd import os class DataHandler: def __init__(self, mode: str, output_folder: str, extraction_method: str): self.mode = mode self.output_folder = output_folder self.extraction_method = extraction_method self.pid_file_paths = None self.dataset_name = ParamsHandler.load_parameters('settings')['dataset'] def load_data(self, tasks: List) -> dict: tasks_data = {task: None for task in tasks} self.pid_file_paths = {task: os.path.join('assets', self.dataset_name, 'PIDs', self.mode + '_' + self.extraction_method + '_' + task + '_pids.csv') for task in tasks} # extract PIDs PIDExtractor(mode=self.mode, extraction_method=self.extraction_method, output_folder=self.output_folder, pid_file_paths=self.pid_file_paths, dataset_name=self.dataset_name).get_list_of_pids(tasks=tasks) for task in tasks: print(task) task_path = os.path.join(self.dataset_name, task) params = ParamsHandler.load_parameters(task_path) modalities = params['modalities'] feature_set = params['feature_sets'] modality_data = {modality: None for modality in modalities} for modality in modalities: modality_data[modality] = self.get_data(task, modality, feature_set, self.pid_file_paths[task]) tasks_data[task] = modality_data return tasks_data @staticmethod def get_data(task: str, modality: str, feature_set: dict, pid_file_path: str) -> dict: dataset_name = ParamsHandler.load_parameters('settings')['dataset'] feature_path = os.path.join(dataset_name, 'feature_sets') feature_subsets_path = os.path.join(feature_path, 'feature_subsets') data_path = os.path.join('datasets', dataset_name) # get pids from a saved file, which was created by get_list_of_pids based on the conditions given to it pids = pd.read_csv(pid_file_path) # initializing the dataset as the list of PIDs dataset = pids final_features = [] features = list(feature_set.values()) # unpacking all features from their feature sets into final_features for feat in features: features_subset = ParamsHandler.load_parameters(os.path.join(feature_path, feat)) final_features.extend(features_subset) if modality == 'eye': for feat in final_features: to_select = ['interview'] if feat.startswith('eye'): print("--", feat) to_select.extend(ParamsHandler.load_parameters(os.path.join(feature_subsets_path, feat))) eye_data = pd.read_csv(os.path.join(data_path, feat + '.csv')) eye_dataset = eye_data.loc[eye_data['task'] == task] eye_dataset = eye_dataset[to_select] dataset = pd.merge(dataset, eye_dataset, on='interview') elif modality == 'speech': # NLP data files merging. No need to put it in the loop as that adds time text_data = pd.read_csv(os.path.join(data_path, 'text.csv')) acoustic_data = pd.read_csv(os.path.join(data_path, 'acoustic.csv')) if dataset_name == 'canary': task_mod_dict = {'CookieTheft': 1, 'Reading': 2, 'Memory': 3} task_mod = task_mod_dict[task] lang_merged = pd.merge(text_data, acoustic_data, on=['interview', 'task']) elif dataset_name == 'dementia_bank': discourse_data = pd.read_csv(os.path.join(data_path, 'discourse.csv')) demographic_data = pd.read_csv(os.path.join(data_path, 'demographic.csv')) lang_merged = pd.merge(text_data, acoustic_data, on=['interview']) lang_merged = pd.merge(lang_merged, discourse_data, on=['interview']) lang_merged =
pd.merge(lang_merged, demographic_data, on=['interview'])
pandas.merge
from datetime import datetime, timedelta import pandas as pd from pytz import timezone, utc def create_dataset() -> pd.DataFrame: now = datetime.utcnow() ts =
pd.Timestamp(now)
pandas.Timestamp
""" test fancy indexing & misc """ from datetime import datetime import re import weakref import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import ( is_float_dtype, is_integer_dtype, ) import pandas as pd from pandas import ( DataFrame, Index, NaT, Series, date_range, offsets, timedelta_range, ) import pandas._testing as tm from pandas.core.api import Float64Index from pandas.tests.indexing.common import _mklbl from pandas.tests.indexing.test_floats import gen_obj # ------------------------------------------------------------------------ # Indexing test cases class TestFancy: """pure get/set item & fancy indexing""" def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) # invalid msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) # valid df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], "bar"] expected = Series( [2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar" ) tm.assert_series_equal(result, expected) def test_setitem_ndarray_1d_2(self): # GH5508 # dtype getting changed? df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df[2:5] = np.arange(1, 4) * 1j def test_getitem_ndarray_3d( self, index, frame_or_series, indexer_sli, using_array_manager ): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) msgs = [] if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]: msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]") if using_array_manager: msgs.append("Passed array should be 1-dimensional") if frame_or_series is Series or indexer_sli is tm.iloc: msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)") if using_array_manager: msgs.append("indexer should be 1-dimensional") if indexer_sli is tm.loc or ( frame_or_series is Series and indexer_sli is tm.setitem ): msgs.append("Cannot index with multidimensional key") if frame_or_series is DataFrame and indexer_sli is tm.setitem: msgs.append("Index data must be 1-dimensional") if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc: msgs.append("Index data must be 1-dimensional") if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)): msgs.append("Data must be 1-dimensional") if len(index) == 0 or isinstance(index, pd.MultiIndex): msgs.append("positional indexers are out-of-bounds") msg = "|".join(msgs) potential_errors = (IndexError, ValueError, NotImplementedError) with pytest.raises(potential_errors, match=msg): idxr[nd3] def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) if indexer_sli is tm.iloc: err = ValueError msg = f"Cannot set values with ndim > {obj.ndim}" else: err = ValueError msg = "|".join( [ r"Buffer has wrong number of dimensions \(expected 1, got 3\)", "Cannot set values with ndim > 1", "Index data must be 1-dimensional", "Data must be 1-dimensional", "Array conditional must be same shape as self", ] ) with pytest.raises(err, match=msg): idxr[nd3] = 0 def test_getitem_ndarray_0d(self): # GH#24924 key = np.array(0) # dataframe __getitem__ df = DataFrame([[1, 2], [3, 4]]) result = df[key] expected = Series([1, 3], name=0) tm.assert_series_equal(result, expected) # series __getitem__ ser = Series([1, 2]) result = ser[key] assert result == 1 def test_inf_upcast(self): # GH 16957 # We should be able to use np.inf as a key # np.inf should cause an index to convert to float # Test with np.inf in rows df = DataFrame(columns=[0]) df.loc[1] = 1 df.loc[2] = 2 df.loc[np.inf] = 3 # make sure we can look up the value assert df.loc[np.inf, 0] == 3 result = df.index expected = Float64Index([1, 2, np.inf]) tm.assert_index_equal(result, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df["c"] = np.nan assert df["c"].dtype == np.float64 df.loc[0, "c"] = "foo" expected = DataFrame( [{"a": 1, "b": np.nan, "c": "foo"}, {"a": 3, "b": 2, "c": np.nan}] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("val", [3.14, "wxyz"]) def test_setitem_dtype_upcast2(self, val): # GH10280 df = DataFrame( np.arange(6, dtype="int64").reshape(2, 3), index=list("ab"), columns=["foo", "bar", "baz"], ) left = df.copy() left.loc["a", "bar"] = val right = DataFrame( [[0, val, 2], [3, 4, 5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_integer_dtype(left["foo"]) assert is_integer_dtype(left["baz"]) def test_setitem_dtype_upcast3(self): left = DataFrame( np.arange(6, dtype="int64").reshape(2, 3) / 10.0, index=list("ab"), columns=["foo", "bar", "baz"], ) left.loc["a", "bar"] = "wxyz" right = DataFrame( [[0, "wxyz", 0.2], [0.3, 0.4, 0.5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_float_dtype(left["foo"]) assert is_float_dtype(left["baz"]) def test_dups_fancy_indexing(self): # GH 3455 df = tm.makeCustomDataframe(10, 3) df.columns = ["a", "a", "b"] result = df[["b", "a"]].columns expected = Index(["b", "a", "a"]) tm.assert_index_equal(result, expected) def test_dups_fancy_indexing_across_dtypes(self): # across dtypes df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa")) df.head() str(df) result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]]) result.columns = list("aaaaaaa") # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) def test_dups_fancy_indexing_not_in_order(self): # GH 3561, dups not in selected order df = DataFrame( {"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")}, index=["A", "A", "B", "C"], ) rows = ["C", "B"] expected = DataFrame( {"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows ) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ["C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] # see GH5553, make sure we use the right indexer rows = ["F", "G", "H", "C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] def test_dups_fancy_indexing_only_missing_label(self): # List containing only missing label dfnu = DataFrame(np.random.randn(5, 3), index=list("AABCD")) with pytest.raises( KeyError, match=re.escape( "\"None of [Index(['E'], dtype='object')] are in the [index]\"" ), ): dfnu.loc[["E"]] # ToDo: check_index_type can be True after GH 11497 @pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")]) def test_dups_fancy_indexing_missing_label(self, vals): # GH 4619; duplicate indexer with missing label df = DataFrame({"A": vals}) with pytest.raises(KeyError, match="not in index"): df.loc[[0, 8, 0]] def test_dups_fancy_indexing_non_unique(self): # non unique with non unique selector df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"]) with pytest.raises(KeyError, match="not in index"): df.loc[["A", "A", "E"]] def test_dups_fancy_indexing2(self): # GH 5835 # dups on index and missing values df = DataFrame(np.random.randn(5, 5), columns=["A", "B", "B", "B", "A"]) with pytest.raises(KeyError, match="not in index"): df.loc[:, ["A", "B", "C"]] def test_dups_fancy_indexing3(self): # GH 6504, multi-axis indexing df = DataFrame( np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=["a", "b"] ) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ["a", "b"]] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ["a", "b"]] tm.assert_frame_equal(result, expected) def test_duplicate_int_indexing(self, indexer_sl): # GH 17347 ser = Series(range(3), index=[1, 1, 3]) expected = Series(range(2), index=[1, 1]) result = indexer_sl(ser)[[1]] tm.assert_series_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame( {"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}} ) # this works, new column is created correctly df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x) # this does not work, ie column test is not changed idx = df["test"] == "_" temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x) df.loc[idx, "test"] = temp assert df.iloc[0, 2] == "-----" def test_multitype_list_index_access(self): # GH 10610 df = DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")): df[[22, 26, -8]] assert df[21].shape[0] == df.shape[0] def test_set_index_nan(self): # GH 3586 df = DataFrame( { "PRuid": { 17: "nonQC", 18: "nonQC", 19: "nonQC", 20: "10", 21: "11", 22: "12", 23: "13", 24: "24", 25: "35", 26: "46", 27: "47", 28: "48", 29: "59", 30: "10", }, "QC": { 17: 0.0, 18: 0.0, 19: 0.0, 20: np.nan, 21: np.nan, 22: np.nan, 23: np.nan, 24: 1.0, 25: np.nan, 26: np.nan, 27: np.nan, 28: np.nan, 29: np.nan, 30: np.nan, }, "data": { 17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006, }, "year": { 17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986, }, } ).reset_index() result = ( df.set_index(["year", "PRuid", "QC"]) .reset_index() .reindex(columns=df.columns) ) tm.assert_frame_equal(result, df) def test_multi_assign(self): # GH 3626, an assignment of a sub-df to a df df = DataFrame( { "FC": ["a", "b", "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": list(range(6)), "col2": list(range(6, 12)), } ) df.iloc[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isna() cols = ["col1", "col2"] dft = df2 * 2 dft.iloc[3, 3] = np.nan expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": Series([0, 1, 4, 6, 8, 10]), "col2": [12, 7, 16, np.nan, 20, 22], } ) # frame on rhs df2.loc[mask, cols] = dft.loc[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs # coerces to float64 because values has float64 dtype # GH 14001 expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": [0.0, 1.0, 4.0, 6.0, 8.0, 10.0], "col2": [12, 7, 16, np.nan, 20, 22], } ) df2 = df.copy() df2.loc[mask, cols] = dft.loc[mask, cols].values tm.assert_frame_equal(df2, expected) def test_multi_assign_broadcasting_rhs(self): # broadcasting on the rhs is required df = DataFrame( { "A": [1, 2, 0, 0, 0], "B": [0, 0, 0, 10, 11], "C": [0, 0, 0, 10, 11], "D": [3, 4, 5, 6, 7], } ) expected = df.copy() mask = expected["A"] == 0 for col in ["A", "B"]: expected.loc[mask, col] = df["D"] df.loc[df["A"] == 0, ["A", "B"]] = df["D"] tm.assert_frame_equal(df, expected) # TODO(ArrayManager) setting single item with an iterable doesn't work yet # in the "split" path @td.skip_array_manager_not_yet_implemented def test_setitem_list(self): # GH 6043 # iloc with a list df = DataFrame(index=[0, 1], columns=[0]) df.iloc[1, 0] = [1, 2, 3] df.iloc[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.iloc[1, 0] = [1, 2] tm.assert_frame_equal(result, df) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = DataFrame([1], Index([pd.Timestamp("2011-01-01")], dtype=object)) assert df.index._is_all_dates with pytest.raises(KeyError, match="'2011'"): df["2011"] with pytest.raises(KeyError, match="'2011'"): df.loc["2011", 0] def test_string_slice_empty(self): # GH 14424 df = DataFrame() assert not df.index._is_all_dates with pytest.raises(KeyError, match="'2011'"): df["2011"] with pytest.raises(KeyError, match="^0$"): df.loc["2011", 0] def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame( [["1", "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame( [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame( [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, "A"] = df.loc[:, "A"].astype(np.int64) expected = DataFrame( [[1, "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ["B", "C"]] = df.loc[:, ["B", "C"]].astype(np.int64) expected = DataFrame( [["1", 2, 3, ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) def test_astype_assignment_full_replacements(self): # full replacements / no nans df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]}) df.iloc[:, 0] = df["A"].astype(np.int64) expected = DataFrame({"A": [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]}) df.loc[:, "A"] = df["A"].astype(np.int64) expected = DataFrame({"A": [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("indexer", [tm.getitem, tm.loc]) def test_index_type_coercion(self, indexer): # GH 11836 # if we have an index type and set it with something that looks # to numpy like the same, but is actually, not # (e.g. setting with a float or string '0') # then we need to coerce to object # integer indexes for s in [Series(range(5)), Series(range(5), index=range(1, 6))]: assert s.index.is_integer() s2 = s.copy() indexer(s2)[0.1] = 0 assert s2.index.is_floating() assert indexer(s2)[0.1] == 0 s2 = s.copy() indexer(s2)[0.0] = 0 exp = s.index if 0 not in s: exp = Index(s.index.tolist() + [0]) tm.assert_index_equal(s2.index, exp) s2 = s.copy() indexer(s2)["0"] = 0 assert s2.index.is_object() for s in [Series(range(5), index=np.arange(5.0))]: assert s.index.is_floating() s2 = s.copy() indexer(s2)[0.1] = 0 assert s2.index.is_floating() assert indexer(s2)[0.1] == 0 s2 = s.copy() indexer(s2)[0.0] = 0 tm.assert_index_equal(s2.index, s.index) s2 = s.copy() indexer(s2)["0"] = 0 assert s2.index.is_object() class TestMisc: def test_float_index_to_mixed(self): df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)}) df["a"] = 10 expected = DataFrame({0.0: df[0.0], 1.0: df[1.0], "a": [10] * 10}) tm.assert_frame_equal(expected, df) def test_float_index_non_scalar_assignment(self): df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0]) df.loc[df.index[:2]] = 1 expected = DataFrame({"a": [1, 1, 3], "b": [1, 1, 5]}, index=df.index) tm.assert_frame_equal(expected, df) def test_loc_setitem_fullindex_views(self): df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0]) df2 = df.copy() df.loc[df.index] = df.loc[df.index] tm.assert_frame_equal(df, df2) def test_rhs_alignment(self): # GH8258, tests that both rows & columns are aligned to what is # assigned to. covers both uniform data-type & multi-type cases def run_tests(df, rhs, right_loc, right_iloc): # label, index, slice lbl_one, idx_one, slice_one = list("bcd"), [1, 2, 3], slice(1, 4) lbl_two, idx_two, slice_two = ["joe", "jolie"], [1, 2], slice(1, 3) left = df.copy() left.loc[lbl_one, lbl_two] = rhs tm.assert_frame_equal(left, right_loc) left = df.copy() left.iloc[idx_one, idx_two] = rhs tm.assert_frame_equal(left, right_iloc) left = df.copy() left.iloc[slice_one, slice_two] = rhs
tm.assert_frame_equal(left, right_iloc)
pandas._testing.assert_frame_equal
# %% import pandas as pd from zhconv import convert from scipy import stats from fuzzywuzzy import fuzz from time import perf_counter import searchconsole from datetime import datetime from datetime import timedelta # --------------DATA RETRIVING--------------- # no credentials saved, do not save credentials #account = searchconsole.authenticate(client_config='client_secrets.json') # no credentials saved, want to save credentials #account = searchconsole.authenticate(client_config='client_secrets.json', serialize = 'credentials.json') # credentials saved as credentials.json account = searchconsole.authenticate(client_config='client_secrets.json', credentials='credentials.json') # webproperty must match what's shown on Google Search Console webproperty = account['******'] # website url start = datetime.strptime("******", "%Y-%m-%d") # modify start date end = datetime.strptime("******", "%Y-%m-%d") # modify end date df = pd.DataFrame() while start != end: start_datetime = datetime.strftime( start, "%Y-%m-%d") # interval = 1 day shifted_datetime = datetime.strftime(start + timedelta(days=1), "%Y-%m-%d") report = webproperty.query.range( start_datetime, shifted_datetime).dimension("query").get() df1 = pd.DataFrame(report.rows) df1['date'] = datetime.strftime(start, "%Y-%m-%d") df = pd.concat([df, df1]) print(f"Trend of {start} retrived") start = start + timedelta(days=1) print("=========================") print("ALL DATA RETRIVED") print("=========================") df # df.to_csv('trend.csv', index=False) # --------------DATA RETRIVING FINISHED--------------- # %% # --------------DATA PREPARATION--------------- # unify characters, merge similar keywords # Merge split words and convert Tranditional Chinese to Simplified Chinese -> 'modified_query' df['modified_query'] = df['query'].apply(lambda x: convert(x, 'zh-cn')) df['modified_query'] = df['modified_query'].apply(lambda x: x.replace(" ", "")) # Identify similar keywords # option 1: fuzzy match words # TODO: use process in stead of iteration: # https://towardsdatascience.com/fuzzywuzzy-find-similar-strings-within-one-column-in-a-pandas-data-frame-99f6c2a0c212 # http://jonathansoma.com/lede/algorithms-2017/classes/fuzziness-matplotlib/fuzzing-matching-in-pandas-with-fuzzywuzzy/ similar = df[['modified_query', 'query'] ].drop_duplicates(subset='modified_query') similar1 = similar # record time timer1 = perf_counter() for index, row in similar1.iterrows(): # for each row in second df for index1, row1 in similar1.iterrows(): # loop through the whole second df r = fuzz.token_sort_ratio(row['modified_query'], row1['modified_query']) if r > 80: # 80 is for conservitive result # if match, add it into main df similar.loc[index1, 'aggregated_query'] = row['modified_query'] # and drop the row in second df similar1 = similar1.drop(index1, axis=0) print(f"{len(similar1)} rows remain") print("=========================") print( f"{len(similar['aggregated_query'].unique())} unique keywords identified") print("=========================") timer2 = perf_counter() print(f"Identifying Keywords: {timer2 - timer1} Seconds") # put identified keywords back to df df = pd.merge(df, similar, how='left', on='modified_query') # record time timer3 = perf_counter() print(f"Total running time: {timer3 - timer1} Seconds") df.to_csv('prepared.csv') df # option 2: count words frequency # --------------DATA PREPARATION FINISHED--------------- # %% # --------------LEFT PATH--------------- # sum clicks and impressions for each keywords, to find the top keywords that worth analyzing # extract columns and sum total_count = df[['aggregated_query', 'clicks', 'impressions']] total_count = total_count.groupby('aggregated_query').sum().reset_index() # pick fixed number of rows # TODO: switch to dynamic picking top_clicks = total_count.nlargest( int(round(len(total_count) * 0.2)), ['clicks']) top_impressions = total_count.nlargest( int(round(len(total_count) * 0.2)), ['impressions']) # test df #hc_hi = pd.merge(top_clicks, top_impressions, how='inner', on=['modified_query'])[['modified_query', 'clicks_x', 'impressions_x']].rename(columns={'clicks_x': 'clicks', 'impressions_x': 'impressions'}) # categorization hc_hi = top_clicks['aggregated_query'][top_clicks['aggregated_query'].isin( top_impressions['aggregated_query'])] # rows in both top results hc_li = top_clicks['aggregated_query'][~top_clicks['aggregated_query'].isin( top_impressions['aggregated_query'])] # rows in clicks top results but not impressions top results lc_hi = top_impressions['aggregated_query'][~top_impressions['aggregated_query'].isin( top_clicks['aggregated_query'])] # rows in impressions top results but not clicks top results total_count.loc[total_count['aggregated_query'].isin( hc_hi), 'category'] = 'hc_hi' total_count.loc[total_count['aggregated_query'].isin( hc_li), 'category'] = 'hc_li' total_count.loc[total_count['aggregated_query'].isin( lc_hi), 'category'] = 'lc_hi' category_df = total_count.dropna(subset=['category']) category_df #%% #TODO: # split keywords, drop duplicated, and get Google Trends # --------------LEFT PATH END--------------- # %% # --------------MIDDLE PATH--------------- # Aggregate modified query on the same day merged_df = df[['aggregated_query', 'clicks', 'impressions', 'date']] # identify keywords repeated in the same day and sum them duplicated = merged_df[merged_df.duplicated( ['aggregated_query', 'date'], keep=False)] duplicated = duplicated.groupby(['aggregated_query', 'date']).sum()[ ['clicks', 'impressions']].reset_index() # concat with non-repeat keywords not_duplicated = merged_df.drop_duplicates( ['aggregated_query', 'date'], keep=False) merged_df = pd.concat([duplicated, not_duplicated]) # recalculate CTR merged_df['CTR'] = merged_df['clicks'] / merged_df['impressions'] merged_df # %% # Filter merged_df by category list filtered_df = pd.merge(merged_df, category_df, how='inner', on=['aggregated_query'])[ ['aggregated_query', 'date', 'clicks_x', 'impressions_x', 'CTR', 'category']].rename(columns={'clicks_x': 'clicks', 'impressions_x': 'impressions'}) # %% # simple linear regression # test not to group slope_df = filtered_df slope_df['date'] = pd.to_datetime( slope_df['date']).map(datetime.toordinal) # clicks and impressions both uptrend = uptrend # mixed = sideways # both downtrend = downtrend # clicks linear regression clicks = pd.DataFrame( columns=['aggregated_query', 'slope', 'intercept', 'r_value', 'p_value', 'std_err']) for query in slope_df['aggregated_query'].unique(): df_query = slope_df[slope_df['aggregated_query'] == query] slope, intercept, r_value, p_value, std_err = stats.linregress( df_query['date'], df_query['clicks']) clicks = clicks.append({"aggregated_query": query, "slope": slope, "intercept": intercept, "r_value": r_value, "p_value": p_value, "std_err": std_err}, ignore_index=True) clicks = clicks[clicks['p_value'] < 0.1] clicks.sort_values( 'slope', ascending=False, inplace=True) # impressions linear regression impressions = pd.DataFrame( columns=['aggregated_query', 'slope', 'intercept', 'r_value', 'p_value', 'std_err']) for query in slope_df['aggregated_query'].unique(): df_query = slope_df[slope_df['aggregated_query'] == query] slope, intercept, r_value, p_value, std_err = stats.linregress( df_query['date'], df_query['impressions']) impressions = impressions.append({"aggregated_query": query, "slope": slope, "intercept": intercept, "r_value": r_value, "p_value": p_value, "std_err": std_err}, ignore_index=True) impressions = impressions[impressions['p_value'] < 0.1] impressions.sort_values( 'slope', ascending=False, inplace=True) # merge and identify trend slope = pd.merge(clicks, impressions, how='outer', on='aggregated_query') for index, row in slope.iterrows(): if row['slope_x'] > 0 and row['slope_y'] > 0: slope.loc[index, 'trend'] = 'uptrend' elif row['slope_x'] < 0 and row['slope_y'] < 0: slope.loc[index, 'trend'] = 'downtrend' else: slope.loc[index, 'trend'] = 'sideways trend' # including clicks or impressions p value > required value slope """ CTR version instead of clicks # CTR and impressions both uptrend = uptrend # mixed = sideways # both downtrend = downtrend # CTR linear regression ctr = pd.DataFrame( columns=['aggregated_query', 'slope', 'intercept', 'r_value', 'p_value', 'std_err']) for query in slope_df['aggregated_query'].unique(): df_query = slope_df[slope_df['aggregated_query'] == query] slope, intercept, r_value, p_value, std_err = stats.linregress( df_query['date'], df_query['CTR']) ctr = ctr.append({"aggregated_query": query, "slope": slope, "intercept": intercept, "r_value": r_value, "p_value": p_value, "std_err": std_err}, ignore_index=True) ctr = ctr[ctr['p_value'] < 0.1] ctr.sort_values( 'slope', ascending=False, inplace=True) # impressions linear regression impressions = pd.DataFrame( columns=['aggregated_query', 'slope', 'intercept', 'r_value', 'p_value', 'std_err']) for query in slope_df['aggregated_query'].unique(): df_query = slope_df[slope_df['aggregated_query'] == query] slope, intercept, r_value, p_value, std_err = stats.linregress( df_query['date'], df_query['impressions']) impressions = impressions.append({"aggregated_query": query, "slope": slope, "intercept": intercept, "r_value": r_value, "p_value": p_value, "std_err": std_err}, ignore_index=True) impressions = impressions[impressions['p_value'] < 0.1] impressions.sort_values( 'slope', ascending=False, inplace=True) # merge and identify trend slope = pd.merge(ctr, impressions, how='outer', on='aggregated_query') for index, row in slope.iterrows(): if row['slope_x'] > 0 and row['slope_y'] > 0: slope.loc[index, 'trend'] = 'uptrend' elif row['slope_x'] < 0 and row['slope_y'] < 0: slope.loc[index, 'trend'] = 'downtrend' else: slope.loc[index, 'trend'] = 'sideways trend' # including clicks or impressions p value > required value slope """ #%% # TODO: Google Trends cross-reference # FINAL OUTPUT 1: slope # --------------MIDDLE PATH--------------- # %% # --------------RIGHT PATH--------------- # create a lookup table for qoriginal and modified queries query_lockup = df[['aggregated_query', 'modified_query', 'query_x']].drop_duplicates( ['aggregated_query', 'modified_query', 'query_x']).sort_values(['aggregated_query', 'modified_query']).reset_index(drop=True) # # pivot # query_lockup['count'] = None # for index, row in query_lockup.iterrows(): # if index == 0: # row['count'] = 1 # elif row['aggregated_query'] != query_lockup.loc[index - 1, 'aggregated_query']: # row['count'] = 1 # elif row['aggregated_query'] == query_lockup.loc[index - 1, 'aggregated_query']: # row['count'] = query_lockup.loc[index - 1, 'count'] + 1 # query_lockup['count'].astype(int) # query_df = query_lockup.pivot( # index='aggregated_query', columns='count', values='query_x').reset_index() # query_df.columns.name = None query_lockup.columns = ['aggregated_query', 'modified_query', 'original_query'] # filter keywords with identified trends trend =
pd.merge(query_lockup, slope, how='left', on='aggregated_query')
pandas.merge
# JACSNET Evaluation # Author: <NAME> 04.11.19 # get libraries import sys import numpy as np import pandas as pd import scipy import csv import matplotlib.pyplot as plt import tensorflow as tf import itertools import librosa import librosa.display import keras from keras.models import Model from keras.layers import * from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau from keras import optimizers import keras.backend as K import museval import musdb import norbert from sklearn.metrics import confusion_matrix, multilabel_confusion_matrix, roc_auc_score, accuracy_score, roc_curve, precision_recall_curve, f1_score, auc, average_precision_score from scipy.optimize import brentq from scipy.interpolate import interp1d from model import UNETmodule, RECOVmodule from utils import checkNoise def custom_loss_wrapper_a(mask): def custom_loss_a(y_true, y_pred): mae = K.mean(K.abs(np.multiply(mask, y_pred) - y_true), axis=-1) y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(np.multiply(mask, y_pred), K.epsilon(), 1) KL = K.sum(y_true * K.log(y_true / y_pred), axis=-1) return mae + (0.5*KL) return custom_loss_a def binary_focal_loss(gamma=2., alpha=.25): """ Binary form of focal loss. FL(p_t) = -alpha * (1 - p_t)**gamma * log(p_t) where p = sigmoid(x), p_t = p or 1 - p depending on if the label is 1 or 0, respectively. References: https://arxiv.org/pdf/1708.02002.pdf Usage: model.compile(loss=[binary_focal_loss(alpha=.25, gamma=2)], metrics=["accuracy"], optimizer=adam) """ def binary_focal_loss_fixed(y_true, y_pred): """ :param y_true: A tensor of the same shape as `y_pred` :param y_pred: A tensor resulting from a sigmoid :return: Output tensor. """ pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred)) pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred)) epsilon = K.epsilon() # clip to prevent NaN's and Inf's pt_1 = K.clip(pt_1, epsilon, 1. - epsilon) pt_0 = K.clip(pt_0, epsilon, 1. - epsilon) return -K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) \ -K.sum((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0)) return binary_focal_loss_fixed def mulphase(inp, phase): voc_spec = np.abs(inp) voc_spec = np.multiply(voc_spec, phase) return voc_spec def roc_auc_score_FIXED(y_true, y_pred): if len(np.unique(y_true)) == 1: # bug in roc_auc_score return accuracy_score(y_true, np.rint(y_pred)) return roc_auc_score(y_true, y_pred) def eval_metrics(y_true, y_pred): fpr, tpr, threshold = roc_curve(y_true, y_pred, pos_label=1) eer = brentq(lambda x : 1. - x - interp1d(fpr, tpr)(x), 0., 1.) auc_res = roc_auc_score_FIXED(y_true, y_pred) return auc_res, eer def plot_confusion_matrix(cm, classes, title, ax): ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): ax.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > cm.max() / 2. else "black") tick_marks = np.arange(len(classes)) ax.set_xticks(tick_marks), ax.xaxis.set_ticklabels(classes) ax.set_yticks(tick_marks), ax.yaxis.set_ticklabels(classes) ax.set_xlabel('Predicted') ax.set_ylabel('Truth') ax.set_title(title) ax.grid(False) def plot_multiclass_confusion_matrix(y_true, y_pred, label_to_class, save_plot=False): fig, axes = plt.subplots(int(np.ceil(len(label_to_class) / 2)), 2, figsize=(5, 5)) axes = axes.flatten() for i, conf_matrix in enumerate(multilabel_confusion_matrix(y_true, y_pred)): tn, fp, fn, tp = conf_matrix.ravel() f1 = 2 * tp / (2 * tp + fp + fn + sys.float_info.epsilon) recall = tp / (tp + fn + sys.float_info.epsilon) precision = tp / (tp + fp + sys.float_info.epsilon) plot_confusion_matrix( np.array([[tp, fn], [fp, tn]]), classes=['+', '-'], title=f'Label: {label_to_class[i]}\nf1={f1:.5f}\nrecall={recall:.5f}\nprecision={precision:.5f}', ax=axes[i] ) plt.tight_layout() plt.show() if save_plot: plt.savefig('confusion_matrices.png', dpi=50) def main(args): # Parameters seed = 3 num_classes = 4 num_epochs = 100 drop_prob = 0 learning_rate = 1e-4 window_size = 2048 hop_size = 512 window = np.blackman(window_size) # Model Architecture inputs = Input(shape=[1025, 94, 1]) UNETout1 = UNETmodule(inputs, num_classes, drop_prob) sep_sources = Activation('softmax', name='sep_sources')(UNETout1) UNETout2 = UNETmodule(sep_sources, 1, drop_prob) recov_input = Activation('sigmoid', name='recov_input')(UNETout2) sourceclass = GlobalAveragePooling2D()(sep_sources) sourceclass = Dense(128, activation='relu')(sourceclass) sourceclass = Dense(128, activation='relu')(sourceclass) sourceclass = Dense(128, activation='relu')(sourceclass) sourceclass = Dense(num_classes)(sourceclass) sourceclass = Activation('sigmoid', name='sourceclass')(sourceclass) # Train Model Architecture loss_funcs = { "sep_sources": custom_loss_wrapper_a(mask = inputs), "sourceclass": binary_focal_loss(), "recov_input": custom_loss_wrapper_a(mask = inputs) } lossWeights = {"sep_sources": 10, "sourceclass": 0.01, "recov_input": 10} optimizer = optimizers.Adam(lr=learning_rate) reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=5) model = Model(inputs=inputs, outputs=[sep_sources, sourceclass, recov_input]) model.compile(loss=loss_funcs, optimizer=optimizer, loss_weights=lossWeights) # Load Model model.load_weights("model_weightsv2.hdf5") # initiate musdb mus = musdb.DB(root_dir="D:/Data/Musdb18") # load the testing tracks tracks = mus.load_mus_tracks(subsets=['test']) SDR_results = [] SIR_results = [] ISR_results = [] SAR_results = [] classresults = [] classresults_hat = [] labelresults = [] duration = 3 for track in tracks: print(track.name) audio, sr = librosa.load(str('D:/Data/Musdb18/mixturev2/test/' + track.name + '.wav')) # audio = librosa.util.normalize(audio, norm=np.inf, axis=None) dur = librosa.get_duration(y=audio, sr=sr) for i in range(0, int(dur - duration), duration): labelclass = [0, 0, 0, 0] # STFT Mixture mixture, sr = librosa.load(str('D:/Data/Musdb18/mixturev2/test/' + track.name + '.wav'), offset=i, duration=duration, mono=True, sr=16000) orig = librosa.core.stft(mixture, hop_length=hop_size, n_fft=window_size, window=window) magnitude, phase = librosa.magphase(orig) orig_norm = 2 * magnitude / np.sum(window) X = np.reshape(orig_norm, (1, 1025, 94, 1)) X = X.astype('float32') (sources, sourceclass, inp) = model.predict(X, batch_size=1) classresults.append(sourceclass) sourceclass_hat = np.around(sourceclass, decimals = 1) sourceclass_hat[sourceclass_hat <= 0.5] = 0 sourceclass_hat[sourceclass_hat > 0.5] = 1 classresults_hat.append(sourceclass_hat) sources_reshape = np.reshape(sources, (1025, 94, 1, 4)) orig_reshape = np.reshape(orig, (1025, 94, 1)) source_spec = norbert.wiener(sources_reshape, orig_reshape, use_softmask=True) inp_reshape = np.reshape(inp, (1025, 94, 1, 1)) inp = norbert.wiener(inp_reshape, orig_reshape, use_softmask=False) inp_spec = np.reshape(inp, (1025, 94)) #inp_spec = mulphase(target_pred_mag_inp, phase) voc_spec = np.reshape(source_spec[:,:,:,0], (1025, 94)) bas_spec = np.reshape(source_spec[:,:,:,1], (1025, 94)) dru_spec = np.reshape(source_spec[:,:,:,2], (1025, 94)) oth_spec = np.reshape(source_spec[:,:,:,3], (1025, 94)) # Get ground truth gt_voc, sr = librosa.load(str('D:/Data/Musdb18/groundtruth/test/' + track.name + '/vocals.wav'), offset=i, duration=3, mono=True, sr=16000) if ((checkNoise(gt_voc) > 0.05)): labelclass[0] = 1 # gt_voc_down = scipy.signal.decimate(gt_voc, 2) gt_voc_final = np.reshape(gt_voc, (1, gt_voc.shape[0], 1)) gt_bas, sr = librosa.load(str('D:/Data/Musdb18/groundtruth/test/' + track.name + '/bass.wav'), offset=i, duration=3, mono=True, sr=16000) if ((checkNoise(gt_bas) > 0.05)): labelclass[1] = 1 # gt_bas_down = scipy.signal.decimate(gt_bas, 2) gt_bas_final = np.reshape(gt_bas, (1, gt_bas.shape[0], 1)) gt_dru, sr = librosa.load(str('D:/Data/Musdb18/groundtruth/test/' + track.name + '/drums.wav'), offset=i, duration=3, mono=True, sr=16000) if ((checkNoise(gt_dru) > 0.05)): labelclass[2] = 1 # gt_dru_down = scipy.signal.decimate(gt_dru, 2) gt_dru_final = np.reshape(gt_dru, (1, gt_dru.shape[0], 1)) gt_others, sr = librosa.load(str('D:/Data/Musdb18/groundtruth/test/' + track.name + '/other.wav'), offset=i, duration=3, mono=True, sr=16000) if ((checkNoise(gt_others) > 0.05)): labelclass[3] = 1 # gt_others_down = scipy.signal.decimate(gt_others, 2) gt_others_final = np.reshape(gt_others, (1, gt_others.shape[0], 1)) gt_inp_final = np.reshape(mixture, (1, mixture.shape[0], 1)) labelresults.append(labelclass) # Get predictions vocals = librosa.core.istft(voc_spec, hop_length=hop_size, length=gt_voc_final.shape[1], window=window, win_length=window_size) # vocals = scipy.signal.wiener(vocals) vocals = np.reshape(vocals, (1, vocals.shape[0], 1)) bass = librosa.core.istft(bas_spec, hop_length=hop_size, length=gt_bas_final.shape[1], window=window, win_length=window_size) # bass = scipy.signal.wiener(bass) bass = np.reshape(bass, (1, bass.shape[0], 1)) drums = librosa.core.istft(dru_spec, hop_length=hop_size, length=gt_dru_final.shape[1], window=window, win_length=window_size) # drums = scipy.signal.wiener(drums) drums = np.reshape(drums, (1, drums.shape[0], 1)) others = librosa.core.istft(oth_spec, hop_length=hop_size, length=gt_others_final.shape[1], window=window, win_length=window_size) # others = scipy.signal.wiener(others) others = np.reshape(others, (1, others.shape[0], 1)) # if(sourceclass[0][0] <= 0.5): # vocals = np.zeros((gt_voc_final.shape[1], 1)) # # vocals.fill(0.04) # vocals = np.reshape(vocals, (1, vocals.shape[0], 1)) # else: # vocals = librosa.core.istft(voc_spec, hop_length=hop_size, length=gt_voc_final.shape[1], window=window) # # vocals = scipy.signal.wiener(vocals) # vocals = np.reshape(vocals, (1, vocals.shape[0], 1)) # # if(sourceclass[0][1] <= 0.5): # bass = np.zeros((gt_bas_final.shape[1], 1)) # # bass.fill(0.04) # bass = np.reshape(bass, (1, bass.shape[0], 1)) # else: # bass = librosa.core.istft(bas_spec, hop_length=hop_size, length=gt_bas_final.shape[1], window=window) # # bass = scipy.signal.wiener(bass) # bass = np.reshape(bass, (1, bass.shape[0], 1)) # # if(sourceclass[0][2] <= 0.5): # drums = np.zeros((gt_dru_final.shape[1], 1)) # # drums.fill(0.04) # drums = np.reshape(drums, (1, drums.shape[0], 1)) # else: # drums = librosa.core.istft(dru_spec, hop_length=hop_size, length=gt_dru_final.shape[1], window=window) # # drums = scipy.signal.wiener(drums) # drums = np.reshape(drums, (1, drums.shape[0], 1)) # # if(sourceclass[0][3] <= 0.5): # others = np.zeros((gt_others_final.shape[1], 1)) # # others.fill(0.04) # others = np.reshape(others, (1, others.shape[0], 1)) # else: # others = librosa.core.istft(oth_spec, hop_length=hop_size, length=gt_others_final.shape[1], window=window) # # others = scipy.signal.wiener(others) # others = np.reshape(others, (1, others.shape[0], 1)) recov = librosa.core.istft(inp_spec, hop_length=hop_size, length=gt_inp_final.shape[1], window=window, win_length=window_size) # recov = scipy.signal.wiener(recov) recov = np.reshape(recov, (1, recov.shape[0], 1)) all_zeros = np.all(gt_voc<=0) or np.all(gt_bas<=0) or np.all(gt_dru<=0) or np.all(gt_others<=0) or np.all(vocals<=0) or np.all(bass<=0) or np.all(drums<=0) or np.all(others<=0) # print(all_zeros) if all_zeros == False: # noise_thresh = checkNoise(gt_voc) # # if noise_thresh > 0.05: # noise_thresh = checkNoise(gt_bas) # # if noise_thresh > 0.05: # noise_thresh = checkNoise(gt_dru) # # if noise_thresh > 0.05: # Evaluate REF = np.concatenate((gt_voc_final, gt_bas_final, gt_dru_final, gt_others_final, gt_inp_final), axis=0) EST = np.concatenate((vocals, bass, drums, others, recov), axis=0) [SDR, ISR, SIR, SAR] = museval.evaluate(REF, EST, win=52565, hop=52565) SDR_results.append(SDR) ISR_results.append(ISR) SIR_results.append(SIR) SAR_results.append(SAR) y_true = np.array(labelresults, dtype=float) y_pred = np.array(classresults, dtype=float) y_pred = np.reshape(y_pred, (y_pred.shape[0], y_pred.shape[2])) y_pred_hat = np.array(classresults_hat, dtype=float) y_pred_hat = np.reshape(y_pred_hat, (y_pred_hat.shape[0], y_pred_hat.shape[2])) auc_voc, eer_voc = eval_metrics(y_true[:,0], y_pred[:,0]) auc_bas, eer_bas = eval_metrics(y_true[:,1], y_pred[:,1]) auc_dru, eer_dru = eval_metrics(y_true[:,2], y_pred[:,2]) auc_oth, eer_oth = eval_metrics(y_true[:,3], y_pred[:,3]) target_names = ['Vocals', 'Bass', 'Drums', 'Others'] plot_multiclass_confusion_matrix(y_true, y_pred_hat, target_names, save_plot=False) SDR_array = np.array(SDR_results) SDR_array = np.reshape(SDR_array, (SDR_array.shape[0], SDR_array.shape[1])) SDR_df = pd.DataFrame(SDR_array) SDR_df.to_csv('SDR_revise1.csv') ISR_array = np.array(ISR_results) ISR_array = np.reshape(ISR_array, (ISR_array.shape[0], ISR_array.shape[1])) ISR_df = pd.DataFrame(ISR_array) ISR_df.to_csv('ISR_revise1.csv') SIR_array = np.array(SIR_results) SIR_array = np.reshape(SIR_array, (SIR_array.shape[0], SIR_array.shape[1])) SIR_df =
pd.DataFrame(SIR_array)
pandas.DataFrame
import pandas as pd import numpy as np from itertools import chain,repeat f = open("test3_preds.txt",errors='ignore') f2 = open("test3.txt",errors='ignore') l2 = f2.readlines() l2 = [x.strip() for x in l2] l = f.readlines() l = [x.strip() for x in l] f2 = open("test3.txt") cols = ["Seed Text",'<Comedy>', '<Action>', '<Adventure>', '<Crime>', '<Drama>', '<Fantasy>', '<Horror>', '<Music>', '<Romance>', '<Sci-Fi>', '<Thriller>'] df = {} df["Seed Text"] = l2 l3 = np.array(l).reshape(20,11).T for i in range(1,len(cols)): c = cols[i] l4 = [x.replace(c,'') for x in l3[i-1]] df[c] = l4 df = pd.DataFrame(df) df2 = [] for i in range(len(df)): for c in cols[1:]: df2.append((c,df.loc[i,"Seed Text"],df.loc[i,c])) df2 =
pd.DataFrame(df2,columns=["Genre","Seed Text","Generated"])
pandas.DataFrame
import glob import numpy as np import scipy import os from sklearn.cluster import KMeans from sklearn.metrics import adjusted_rand_score from joblib import dump import pandas as pd from multiprocessing.pool import ThreadPool from pyhydra.utils import check_symmetric, launch_svc __author__ = "<NAME>" __copyright__ = "Copyright 2019-2020 The CBICA & SBIA Lab" __credits__ = ["<NAME>, <NAME>"] __license__ = "See LICENSE file" __version__ = "0.1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" def consensus_clustering(clustering_results, k): """ This function performs consensus clustering on a co-occurence matrix :param clustering_results: an array containing all the clustering results across different iterations, in order to perform :param k: :return: """ num_pt = clustering_results.shape[0] cooccurence_matrix = np.zeros((num_pt, num_pt)) for i in range(num_pt - 1): for j in range(i + 1, num_pt): cooccurence_matrix[i, j] = sum(clustering_results[i, :] == clustering_results[j, :]) cooccurence_matrix = np.add(cooccurence_matrix, cooccurence_matrix.transpose()) ## here is to compute the Laplacian matrix Laplacian = np.subtract(np.diag(np.sum(cooccurence_matrix, axis=1)), cooccurence_matrix) Laplacian_norm = np.subtract(np.eye(num_pt), np.matmul(np.matmul(np.diag(1 / np.sqrt(np.sum(cooccurence_matrix, axis=1))), cooccurence_matrix), np.diag(1 / np.sqrt(np.sum(cooccurence_matrix, axis=1))))) ## replace the nan with 0 Laplacian_norm = np.nan_to_num(Laplacian_norm) ## check if the Laplacian norm is symmetric or not, because matlab eig function will automatically check this, but not in numpy or scipy if check_symmetric(Laplacian_norm): ## extract the eigen value and vector ## matlab eig equivalence is eigh, not eig from numpy or scipy, see this post: https://stackoverflow.com/questions/8765310/scipy-linalg-eig-return-complex-eigenvalues-for-covariance-matrix ## Note, the eigenvector is not unique, thus the matlab and python eigenvector may be different, but this will not affect the results. evalue, evector = scipy.linalg.eigh(Laplacian_norm) else: # evalue, evector = np.linalg.eig(Laplacian_norm) raise Exception("The Laplacian matrix should be symmetric here...") ## check if the eigen vector is complex if np.any(np.iscomplex(evector)): evalue, evector = scipy.linalg.eigh(Laplacian) ## create the kmean algorithm with sklearn kmeans = KMeans(n_clusters=k, n_init=20).fit(evector.real[:, 0: k]) final_predict = kmeans.labels_ return final_predict def cv_cluster_stability(result, k): """ To compute the adjusted rand index across different pair of 2 folds cross CV :param result: :return: """ num_pair = 0 aris = [] if k == 1: adjusted_rand_index = 0 ## note, here, we manually set it to be 0, because it does not make sense when k==1. TODO, need to clarify if there is really heterogeneity in the data, i.e., k == 1 or k>1 else: for i in range(result.shape[1] - 1): for j in range(i+1, result.shape[1]): num_pair += 1 non_zero_index = np.all(result[:, [i, j]], axis=1) pair_result = result[:, [i, j]][non_zero_index] ari = adjusted_rand_score(pair_result[:, 0], pair_result[:, 1]) aris.append(ari) adjusted_rand_index = np.mean(np.asarray(aris)) return adjusted_rand_index def hydra_solver_svm_tl(num_component, num_component_former, num_repetition, X, y, k, output_dir, num_iteration, tol, balanced, predefined_c, n_threads, num_run): """ This is the main function of HYDRA, which find the convex polytope using a supervised classification fashion. :param num_repetition: the number of iteration of CV currently. This is helpful to reconstruct the model and also moniter the processing :param X: corrected training data feature :param y: traing data label :param k: hyperparameter for desired number of clusters in patients :param options: commandline parameters :return: the optimal model """ index_pt = np.where(y == 1)[0] # index for PTs index_cn = np.where(y == -1)[0] # index for CNs ### initialize the final weight for the polytope from the former C weight_file = os.path.join(output_dir, 'clustering_run' + str(num_run-1), 'component_' + str(num_component_former), str(k) + '_clusters', 'tsv', 'weight_sample_cv_' + str(num_repetition) + '.tsv') weight_sample = pd.read_csv(weight_file, sep='\t').to_numpy() ## cluster assignment is based on this svm scores across different SVM/hyperplanes svm_scores = np.zeros((weight_sample.shape[0], weight_sample.shape[1])) update_weights_pool = ThreadPool(n_threads) for j in range(num_iteration): for m in range(k): sample_weight = np.ascontiguousarray(weight_sample[:, m]) if np.count_nonzero(sample_weight[index_pt]) == 0: print("Cluster dropped, meaning that all PT has been assigned to one single hyperplane in iteration: %d" % (j-1)) svm_scores[:, m] = np.asarray([np.NINF] * (y.shape[0])) else: results = update_weights_pool.apply_async(launch_svc, args=(X, y, predefined_c, sample_weight, balanced)) weight_coef = results.get()[0] intesept = results.get()[1] ## Apply the data again the trained model to get the final SVM scores svm_scores[:, m] = (np.matmul(weight_coef, X.transpose()) + intesept).transpose().squeeze() final_predict = np.argmax(svm_scores[index_pt], axis=1) ## decide the converge of the polytope based on the toleration weight_sample_hold = weight_sample.copy() # after each iteration, first set the weight of patient rows to be 0 weight_sample[index_pt, :] = 0 # then set the pt's weight to be 1 for the assigned hyperplane for n in range(len(index_pt)): weight_sample[index_pt[n], final_predict[n]] = 1 ## check the loss comparted to the tolorence for stopping criteria loss = np.linalg.norm(np.subtract(weight_sample, weight_sample_hold), ord='fro') print("The loss is: %f" % loss) if loss < tol: print("The polytope has been converged for iteration %d in finding %d clusters" % (j, k)) break update_weights_pool.close() update_weights_pool.join() ## after deciding the final convex polytope, we refit the training data once to save the best model weight_sample_final = np.zeros((y.shape[0], k)) ## change the weight of PTs to be 1, CNs to be 1/k # then set the pt's weight to be 1 for the assigned hyperplane for n in range(len(index_pt)): weight_sample_final[index_pt[n], final_predict[n]] = 1 weight_sample_final[index_cn] = 1 / k update_weights_pool_final = ThreadPool(n_threads) for o in range(k): sample_weight = np.ascontiguousarray(weight_sample_final[:, o]) if np.count_nonzero(sample_weight[index_pt]) == 0: print("Cluster dropped, meaning that the %d th hyperplane is useless!" % (o)) else: results = update_weights_pool_final.apply_async(launch_svc, args=(X, y, predefined_c, sample_weight, balanced)) ## save the final model for the k SVMs/hyperplanes if not os.path.exists( os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'models')): os.makedirs(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'models')) dump(results.get()[2], os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'models', 'svm-' + str(o) + '_last_repetition.joblib')) update_weights_pool_final.close() update_weights_pool_final.join() y[index_pt] = final_predict + 1 if not os.path.exists(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv')): os.makedirs(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv')) ## save the assigned weight for each subject across k-fold columns = ['hyperplane' + str(i) for i in range(k)] weight_sample_df = pd.DataFrame(weight_sample_final, columns=columns) weight_sample_df.to_csv(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv', 'weight_sample_cv_' + str(num_repetition) + '.tsv'), index=False, sep='\t', encoding='utf-8') ## save the final_predict_all columns = ['y_hat'] y_hat_df = pd.DataFrame(y, columns=columns) y_hat_df.to_csv(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv', 'y_hat_cv_' + str(num_repetition) + '.tsv'), index=False, sep='\t', encoding='utf-8') ## save the pt index columns = ['pt_index'] pt_df = pd.DataFrame(index_pt, columns=columns) pt_df.to_csv(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv', 'pt_index_cv_' + str(num_repetition) + '.tsv'), index=False, sep='\t', encoding='utf-8') return y def cluster_stability_across_resolution(c, c_former, output_dir, k_continuing, num_run, stop_tol=0.98): """ To evaluate the stability of clustering across two different C for stopping criterion. Args: c: c_former: output_dir: k_continuing: num_run: stop_tol: max_num_iter: Returns: """ ## read the output of current C and former Cs cluster_ass1 = os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(c), 'clustering_assignment.tsv') ass1_df = pd.read_csv(cluster_ass1, sep='\t') ass1_df = ass1_df.loc[ass1_df['diagnosis'] == 1] cluster_ass2 = os.path.join(output_dir, 'clustering_run' + str(num_run-1), 'component_' + str(c_former), 'clustering_assignment.tsv') ass2_df = pd.read_csv(cluster_ass2, sep='\t') ass2_df = ass2_df.loc[ass2_df['diagnosis'] == 1] df_final = pd.DataFrame(columns=['C', 'K', 'num_run']) k_continuing_update = [] k_converged = [] for i in k_continuing: ari = adjusted_rand_score(ass1_df['assignment_' + str(i)], ass2_df['assignment_' + str(i)]) print("For k == %d, run %d got ARI == %f compared to former run" % (i, num_run, ari)) if ari < stop_tol and num_run: k_continuing_update.append(i) else: print("Model has been converged or stop at the max iteration: C == %d, K == %d and run == %d" % (c, i, num_run)) k_converged.append(i) df_row = pd.DataFrame(columns=['C', 'K', 'num_run']) df_row.loc[len(['C', 'K', 'num_run'])] = [c, i, num_run] df_final = df_final.append(df_row) if len(k_converged) != 0: df_final.to_csv(os.path.join(output_dir, 'results_convergence_run' + str(num_run) + '.tsv'), index=False, sep='\t', encoding='utf-8') return k_continuing_update, k_converged def summary_clustering_result_multiscale(output_dir, k_min, k_max): """ This is a function to summarize the clustering results :param num_components_min: :param num_components_max: :param num_components_step: :param output_dir: :return: """ clu_col_list = ['assignment_' + str(e) for e in range(k_min, k_max)] df_clusters = pd.DataFrame(columns=clu_col_list) ## read the convergence tsv convergence_tsvs = [f for f in glob.glob(output_dir + "/results_convergence_*.tsv", recursive=True)] for tsv in convergence_tsvs: df_convergence = pd.read_csv(tsv, sep='\t') ## sorf by K df_convergence = df_convergence.sort_values(by=['K']) for i in range(df_convergence.shape[0]): k = df_convergence['K'].tolist()[i] num_run = df_convergence['num_run'].tolist()[i] C = df_convergence['C'].tolist()[i] cluster_file = os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(C), 'clustering_assignment.tsv') df_cluster = pd.read_csv(cluster_file, sep='\t') if i == 0: df_header = df_cluster.iloc[:, 0:3] assign = df_cluster['assignment_' + str(k)] df_clusters['assignment_' + str(k)] = assign ## concatenqte the header df_assignment = pd.concat((df_header, df_clusters), axis=1) ## save the result df_assignment.to_csv(os.path.join(output_dir, 'results_cluster_assignment_final.tsv'), index=False, sep='\t', encoding='utf-8') def shift_list(c_list, index): """ This is a function to reorder a list to have all posibility by putting each element in the first place Args: c_list: list to shift index: the index of which element to shift Returns: """ new_list = c_list[index:] + c_list[:index] return new_list def consensus_clustering_across_c(output_dir, c_list, k_min, k_max): """ This is for consensus learning at the end across different Cs Args: output_dir: c_list: Returns: """ k_list = list(range(k_min, k_max+1)) for k in k_list: for i in c_list: clu_col_list = ['c_' + str(i) + '_assignment_' + str(e) for e in k_list] df_clusters = pd.DataFrame(columns=clu_col_list) tsv = os.path.join(output_dir, 'initialization_c_' + str(i), 'results_cluster_assignment_final.tsv') df = pd.read_csv(tsv, sep='\t') if i == c_list[0]: df_header = df.iloc[:, 0:3] df_clusters['c_' + str(i) + '_assignment_' + str(k)] = df['assignment_' + str(k)] if i == c_list[0]: df_final = df_clusters else: df_final =
pd.concat([df_final, df_clusters], axis=1)
pandas.concat
import numpy as np import pandas as pd def calc_humidity_ratio(rh_percent, dry_bulb_C, patm_mbar): """ convert relative humidity to moisture content Based on https://www.vaisala.com/sites/default/files/documents/Humidity_Conversion_Formulas_B210973EN.pdf """ patm_hPa = patm_mbar A, m, Tn = get_phycometric_constants(dry_bulb_C) T_dry = dry_bulb_C p_ws_hPa = A * 10 ** ((m * T_dry) / (T_dry + Tn)) p_w_hPa = p_ws_hPa * rh_percent / 100 B_kgperkg = 0.6219907 x_kgperkg = B_kgperkg * p_w_hPa / (patm_hPa - p_w_hPa) return x_kgperkg def calc_h_sen(dry_bulb_C): """ Calc specific temperature of moist air (sensible) """ CPA_kJ_kgC = 1.006 h_kJ_kg = dry_bulb_C * CPA_kJ_kgC return h_kJ_kg def calc_h_lat(dry_bulb_C, humidity_ratio_out_kgperkg): """ Calc specific temperature of moist air (latent) :param temperatures_out_C: :param CPA: :return: """ CPW_kJ_kgC = 1.84 h_we_kJ_kg = 2501 h_kJ_kg = humidity_ratio_out_kgperkg * (dry_bulb_C * CPW_kJ_kgC + h_we_kJ_kg) return h_kJ_kg def get_phycometric_constants(T_C): if -20 <= T_C <= 50: m = 7.591386 Tn = 240.7263 A = 6.116441 elif -70 <= T_C <= 0: m = 9.778707 Tn = 273.1466 A = 6.114742 return A, m, Tn def calc_enthalpy_gradient_sensible(dry_bulb_C, dry_bulb_C_base_cooling): H_sen_outdoor_kjperkg = calc_h_sen(dry_bulb_C) # Cooling case AH_sensible_kJperKg = H_sen_outdoor_kjperkg - calc_h_sen(dry_bulb_C_base_cooling) if AH_sensible_kJperKg > 0.0: return abs(AH_sensible_kJperKg) else: return 0.0 def calc_enthalpy_gradient_latent(dry_bulb_C, x_kgperkg, dry_bulb_C_base_cooling, x_kgperkg_base_cooling): H_latent_outdoor_kjperkg = calc_h_lat(dry_bulb_C, x_kgperkg) # Cooling case AH_latent_kJperKg = H_latent_outdoor_kjperkg - calc_h_lat(dry_bulb_C_base_cooling, x_kgperkg_base_cooling) if AH_latent_kJperKg > 0.0: return abs(AH_latent_kJperKg) else: return 0.0 def daily_enthalpy_gradients_daily_data(dry_bulb_C: np.array, rh_percent: np.array): # Enhtalpy gradients dry_bulb_C_base_heating = 18.3 dry_bulb_C_base_cooling = 21.3 rh_percent_base_heating = 40 rh_percent_base_cooling = 70 patm_mbar = 1013.25 patm_mbar_base = 1013.25 # FEATURE 3 and 4: Enthalpy Sensible heat for heating and cooling seasons kg/kJ: DEG_C_kJperKg, \ DEG_H_kJperKg = np.vectorize(calc_enthalpy_gradient_sensible, otypes=[np.float32, np.float32])(dry_bulb_C, dry_bulb_C_base_heating, dry_bulb_C_base_cooling) # FEATURE 5 and 6: Enthalpy Sensible heat for heating and cooling seasons kg/kJ: x_kgperkg_base_heating = calc_humidity_ratio(rh_percent_base_heating, dry_bulb_C_base_heating, patm_mbar_base) x_kgperkg_base_cooling = calc_humidity_ratio(rh_percent_base_cooling, dry_bulb_C_base_cooling, patm_mbar_base) x_kgperkg = np.vectorize(calc_humidity_ratio, otypes=[np.float32])(rh_percent, dry_bulb_C, patm_mbar) DEG_DEHUM_kJperKg, \ DEG_HUM_kJperKg = np.vectorize(calc_enthalpy_gradient_latent, otypes=[np.float32, np.float32])(dry_bulb_C, x_kgperkg, dry_bulb_C_base_heating, dry_bulb_C_base_cooling, x_kgperkg_base_heating, x_kgperkg_base_cooling) return DEG_C_kJperKg, DEG_H_kJperKg, DEG_DEHUM_kJperKg, DEG_HUM_kJperKg def daily_enthalpy_gradients_hourly_data(timestamp, dry_bulb_C, rh_percent): # Enhtalpy gradients dry_bulb_C_base_cooling = 21 rh_percent_base_cooling = 50 patm_mbar = 1013.25 patm_mbar_base = 1013.25 # FEATURE 3 and 4: Enthalpy Sensible heat for cooling seasons kg/kJ: DEG_C_kJperKg = np.vectorize(calc_enthalpy_gradient_sensible)(dry_bulb_C, dry_bulb_C_base_cooling) # FEATURE 5 and 6: Enthalpy Sensible heat for heating and cooling seasons kg/kJ: x_kgperkg_base_cooling = calc_humidity_ratio(rh_percent_base_cooling, dry_bulb_C_base_cooling, patm_mbar_base) x_kgperkg = np.vectorize(calc_humidity_ratio)(rh_percent, dry_bulb_C, patm_mbar) DEG_DEHUM_kJperKg = np.vectorize(calc_enthalpy_gradient_latent)(dry_bulb_C, x_kgperkg, dry_bulb_C_base_cooling, x_kgperkg_base_cooling) result =
pd.DataFrame({'DEG_C_kJperKg': DEG_C_kJperKg, 'DEG_DEHUM_kJperKg': DEG_DEHUM_kJperKg}, index=timestamp)
pandas.DataFrame
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index =
IntervalIndex.from_arrays([0, 1], [1, 2])
pandas.IntervalIndex.from_arrays
# -*- coding: utf-8 -*- """ Created on Sat Apr 25 10:28:58 2020 @author: <NAME> """ import pandas as pd import os import time import re def get_path(path): """返回文件夹下所有文件地址:file_path列表""" g = os.walk(path) file_path = [] for path, dir_list, file_list in g: for file_name in file_list: if (re.search('xlsx$', file_name) != None) and (re.search('~\$', file_name) == None): # 只读xlsx文件地址,且不读取打开Excel时的临时文件 file_path.append(os.path.join(path, file_name)) return file_path def read_excel(path): """每个Excel表存储为一个excel变量(以sheet名为键的字典)""" p = get_path(path) num_file = len(p) excel = [[] for _ in range(num_file)] for i,p0 in zip(range(num_file),p): excel[i] = pd.read_excel(p0, header=None, sheet_name=None) return excel def sheets_name(excel): """返回所有sheet的名字""" return list(excel[0].keys()) def concat_one_sheet(excel,sheetname): """合并一张sheet""" sheet = [] for i in range(len(excel)): sheet.append(excel[i][sheetname]) return
pd.concat(sheet)
pandas.concat
from django.shortcuts import render, redirect from django.http import HttpResponse from django.contrib import messages import tweepy from textblob import TextBlob import pandas as pd import numpy as np import urllib.request import re import os # Home and Intro page def homepage(request): return render(request, "main/home.html", {}) # Returns the authenticated Tweepy api def get_tweepy(): try: consumer_key = os.environ.get('C_K') consumer_secret = os.environ.get('C_S') access_token = os.environ.get('A_T') access_token_secret = os.environ.get('A_T_S') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth, wait_on_rate_limit = True) return api except Exception as e: print(e) # returns the cleaned tweet text def cleanTxt(text): #removes @mentions text = re.sub(r'@[A-Za-z0-9]+', '', text) #removes hashtags text = re.sub(r'#', '', text) #removes RT text = re.sub(r'RT[\s]+', '', text) #removes hyper link text = re.sub(r'https?:\/\/\S+', '', text) return text # Returns polarity of the sentiments def getPolarity(text): return TextBlob(text).sentiment.polarity # Analyzes the polarity of the sentiments def getAnalysis(score): if score < 0: return 'Negative' elif score == 0: return "Neutral" else: return 'Positive' # result page shows the analyzation of the data def result(request): if request.method == "POST": try: # Gets the text from the input bar text = request.POST.get('text') api = get_tweepy() # Searches for 500 tweets that contain the text cursor = api.search(text, count=1200, lang="en") # Adds Tweets found to a set to remove duplicate ones Tweets = set() for t in cursor: Tweets.add(t.text) # Creates a dataframe with a column for the tweets found df = pd.DataFrame(data=[tweet for tweet in Tweets], columns=['Tweets'])
pd.set_option('display.max_colwidth', None)
pandas.set_option
__author__ = 'John' import numpy as np; import random import math import scipy.sparse.bsr from sklearn.cross_validation import train_test_split, KFold from numpy.linalg import inv from sklearn.decomposition import ProjectedGradientNMF from itertools import groupby import itertools import similarity import cf; import nmf_analysis import content import wlas import evaluate import pop_rec import pandas as pd from sklearn import cross_validation class one_class: def __init__(self, filename = None, learner =None, X=None): self.learner = learner; #X is the matrix that we are dealing with. The rows are items and columns are users. #training_data #binary mat determining which is enteries are in the training set #testing_data #binary mat determining which is enteries are in the testing set self.writing_string ="" self.filename = filename #partitions data into training and testing data by percentage def cv(self, k): #output: gives you a list of indices X = self.learner.X #find indices of ones and put them into training/testing sets ones_x, ones_y = np.nonzero(X[: ,:] == 1) one_coord =np.array([ones_x, ones_y]); one_coord = one_coord.T np.random.shuffle(one_coord) kf_ones = cross_validation.KFold(one_coord.shape[0], n_folds=k) #find indices of ones and put them into training/testing sets zero_x, zero_y = np.nonzero(X[: ,:] == 0) zero_coord = np.array([zero_x, zero_y]); zero_coord = zero_coord.T np.random.shuffle(zero_coord) kf_zeros = cross_validation.KFold(zero_coord.shape[0], n_folds=k) training = list() testing = list() for ones, zeros in zip(kf_ones, kf_zeros): training.append(np.concatenate((one_coord[ones[0]], zero_coord[zeros[0]]),axis=0)) testing.append(np.concatenate((one_coord[ones[1]], zero_coord[zeros[1]]),axis=0)) #This makes the training set #create a numpy array return (training, testing) def split_training(self, k, training): #output: returns to you a kfold validation split in the training set np.random.shuffle(training) kf_indices = cross_validation.KFold(training.shape[0], n_folds=k) #X = self.learner.X training_set = list() validation_set = list() for training_ind, validation_ind in kf_indices: training_set.append(training[training_ind]) validation_set.append(training[validation_ind]) return (training_set, validation_set) def cv_parameter_tuning(self, k, learner_dict=None, fun_list = None, filename = None): #next time add testing indices as variable #put results into a dictionary training_ind, testing_ind=self.cv(k) self.results = dict() self.iteration = 0 #save everything to a csv file for test in testing_ind: self.recursive_parameter_tuning(self.learner, test, learner_dict =learner_dict, fun_list=fun_list) self.iteration = self.iteration +1 writeup =
pd.DataFrame(self.results)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Mar 5 16:37:53 2019 @author: sdenaro """ import pandas as pd import numpy as np def setup(year,operating_horizon,perfect_foresight): #read generator parameters into DataFrame df_gen = pd.read_csv('PNW_data_file/generators.csv',header=0) zone = ['PNW'] ##time series of load for each zone df_load = pd.read_csv('../Stochastic_engine/Synthetic_demand_pathflows/Sim_hourly_load.csv',header=0) df_load = df_load[zone] df_load = df_load.loc[year*8760:year*8760+8759,:] df_load = df_load.reset_index(drop=True) ##time series of operational reserves for each zone rv= df_load.values reserves = np.zeros((len(rv),1)) for i in range(0,len(rv)): reserves[i] = np.sum(rv[i,:])*.04 df_reserves = pd.DataFrame(reserves) df_reserves.columns = ['reserves'] ##daily hydropower availability df_hydro = pd.read_csv('Hydro_setup/PNW_dispatchable_hydro.csv',header=0) ##time series of wind generation for each zone df_wind = pd.read_csv('../Stochastic_engine/Synthetic_wind_power/wind_power_sim.csv',header=0) df_wind = df_wind.loc[:,'PNW'] df_wind = df_wind.loc[year*8760:year*8760+8759] df_wind = df_wind.reset_index() ##time series solar for each TAC df_solar = pd.read_csv('PNW_data_file/solar.csv',header=0) ##daily time series of dispatchable imports by path df_imports = pd.read_csv('Path_setup/PNW_dispatchable_imports.csv',header=0) ##hourly time series of exports by zone df_exports = pd.read_csv('Path_setup/PNW_exports.csv',header=0) ##daily time series of dispatchable imports by path forecast_days = ['fd1','fd2','fd3','fd4','fd5','fd6','fd7'] #must run resources (LFG,ag_waste,nuclear) df_must = pd.read_csv('PNW_data_file/must_run.csv',header=0) #natural gas prices df_ng = pd.read_excel('../Stochastic_engine/Gas_prices/NG.xlsx', header=0) df_ng = df_ng[zone] df_ng = df_ng.loc[year*365:year*365+364,:] df_ng = df_ng.reset_index() #california imports hourly minimum flows df_PNW_import_mins = pd.read_csv('Path_setup/PNW_path_mins.csv', header=0) #california hydro hourly minimum flows df_PNW_hydro_mins =
pd.read_csv('Hydro_setup/PNW_hydro_mins.csv', header=0)
pandas.read_csv
import requests import json import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from pprint import pprint from datetime import timedelta import datetime as dt from pandas.io.json import json_normalize import warnings warnings.filterwarnings('ignore') class PR: def __init__(self, repos): self.repos = repos token = 'token' self.headers = {'Authorization': f'token {token}'} self.configure_pandas() self.df = self.init_df() def init_df(self): try: dfs = [] for repo in self.repos: url = f'https://api.github.com/repos/filetrust/{repo}/pulls' res = requests.get(url, headers=self.headers, params={'state': 'all'}).json() data = json_normalize(res, max_level=1) temp_df = pd.DataFrame(data) temp_df['repo'] = repo dfs.append(temp_df) df =
pd.concat(dfs, ignore_index=True)
pandas.concat
from argparse import ArgumentParser import os import pandas as pd import csv import zipfile import re # command line arguments parser parser = ArgumentParser() parser.add_argument(dest='type', type=str, default='all', help="Which data type to convert? [all|tweets|chess|music|shakespeare|javascript|typescript|json|html]") parser.add_argument('--data-dir', '-d', dest='data_dir', type=str, default='../datasets/', help="Path to the directory containing the raw data.") parser.add_argument('--output-dir', '-o', dest='output_dir', type=str, default='./data/', help="Path to the output directory.") parser.add_argument('--short-filename', '-s', dest='short_filename', type=str, default='false', help="Does not include parameter info in filename.") parser.add_argument('--postfix', '-p', dest='postfix', type=str, default='', help="Postfix is appended to the filename stem before the suffix and parameter info (if applicable).") parser.add_argument('--num-samples', '-n', dest='num_samples', type=int, default=1000, help="Max number of samples to be exported.") parser.add_argument('--max-length', dest='max_length', type=int, default=2000, help="Max length of a sample.") parser.add_argument('--min-length', dest='min_length', type=int, default=10, help="Min length of a sample.") parser.add_argument('--preserve-lines', dest='preserve_lines', type=str, default='false', help="Preserve line breaks in data and don't collapse the whole sample into a single line (except html).") parser.add_argument('--preserve-form', dest='preserve_form', type=str, default='false', help="Preserve original form including linebreaks and comments (javascript and typescript only), and urls (tweets only)") args = parser.parse_args() # form requires newlines to be preserved if args.preserve_form == 'true': args.preserve_lines = 'true' # collapsing sample into one line requires form not to be preserved if args.preserve_lines == 'false': args.preserve_form = 'false' # set postfix for output files if short-filename is false if args.postfix != '': args.postfix = '_' + args.postfix if args.short_filename == 'false': args.postfix += f'_n{args.num_samples}_min{args.min_length}_max{args.max_length}' if args.preserve_lines == 'false': args.postfix += '_nolines' else: args.postfix += '_lines' if args.preserve_form == 'false': args.postfix += '_noform' else: args.postfix += '_form' # print arguments to show values in use print(args) # helper to use code samples in zip file def process_zip(name, regs, args): with open(os.path.join(args.output_dir, name + args.postfix + '.txt'), 'w+') as fh: with zipfile.ZipFile(os.path.join(args.data_dir, name + '.zip'), 'r') as z: cnt = 0 for entry in z.namelist(): text = z.read(entry).decode('utf-8') for reg, sub in regs.items(): text = re.sub(reg, sub, text, flags=re.DOTALL) if len(text) > args.min_length and len(text) <= args.max_length: sample = text.strip() + "\n" if args.preserve_form == 'true': sample += "\n\n" fh.write(sample) cnt += 1 if cnt >= args.num_samples: break # dataset from: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FKJEBIL if args.type in ['all','tweets']: # parse trump tweets print('prepare tweet data set...') df1 = pd.read_json(os.path.join(args.data_dir, 'realdonaldtrump-1.ndjson'), lines=True) df2 = pd.read_json(os.path.join(args.data_dir, 'realdonaldtrump-2.ndjson'), lines=True) df =
pd.concat([df1, df2], sort=True)
pandas.concat
#### # # The MIT License (MIT) # # Copyright 2021, 2022 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # #### import os import re import pandas as pd import glob from typing import Dict, Optional, Tuple from pandas.api.types import is_float, is_bool, is_integer # ---------------------------------------------------------------------------------------------------------------------- # Helper scripts to load the result of our experiments # ---------------------------------------------------------------------------------------------------------------------- def dict2fn(d: Dict, sep: str = "__", pref: Optional[str] = None, ext: Optional[str] = None) -> str: """ :param d: dictionary, input (key, value)-pairs :param sep: string, used to separate the key=value pairs in the filename :param pref: string, added as prefix to the filename. The prefix and rest of the filename is separated by the string specified in the 'sep' parameter :param ext: string, added as extension to the filename. The extension is separated by the systems file-extension separator, e.g. '.'. :return: string, compiled filename """ out = [] for k, v in sorted(d.items()): if v is None: out.append("{}".format(k)) else: out.append("{}={}".format(k, v)) out = sep.join(out) if pref is not None: out = sep.join([pref, out]) if ext is not None: out = os.extsep.join([out, ext]) return out def fn2dict(params: str) -> Tuple[Dict, bool, Optional[str], Optional[str]]: """ Roughly the inverse function of "dict2fn". :param params: string, filename to split up :return: """ param_name_pattern = re.compile(r'(?:[a-zA-Z0-9]+_?)+=') # Debugging outputs do have an additional prefix which we need to remove if params.startswith("debug__"): params = params.removeprefix("debug__") is_debug = True pref = "debug" else: # FIXME: we only support "debug" as prefix, here is_debug = False pref = None # Get the file extension (assume that there is no "." in the filename that does NOT separate the extension) _ext_idx = params.find(os.extsep) if _ext_idx >= 0: ext = params[(_ext_idx + 1):] else: ext = None # Split the filename and extract the (key, value)-pairs ks = [m.removesuffix("=") for m in param_name_pattern.findall(params)] vs = [v.removesuffix("__") for v in param_name_pattern.split(params) if len(v) > 0] assert len(ks) == len(vs) # Construct the output dictionary out = {} for k, v in zip(ks, vs): if is_bool(v): out[k] = bool(v) elif is_integer(v): out[k] = int(v) elif is_float(v): out[k] = int(v) else: assert isinstance(v, str) out[k] = v return out, is_debug, pref, ext def load_topk__publication( setting: Dict, agg_setting: Dict, basedir: str = ".", top_k_method: str = "csi", load_max_model_number: bool = False ) -> pd.DataFrame: """ Load the Top-k accuracies in the "publications" folder. These are the results for the SSVM (exp_ver >= 3) :param setting: dictionary, specifying the parameters of the experiments for which the results should be loaded. :param agg_setting: dictionary, specifying the parameter of the margin score aggregation, that means how are the molecular candidates identified when choosing the margin score. :param basedir: string, directory containing the results :param top_k_method: string, specifies which top-k accuracy calculation method should be used. We always use the one used in the original SIRIUS publication [1]. :param load_max_model_number: boolean, indicating whether only the results of the averaged marginals for the maximum number of available SSVM models should be loaded. :return: dataframe, containing all results (row-wise concatenation) that match the "setting" and "agg_setting" :references: [1] Dührkop, Kai / Shen, Huibin / Meusel, Marvin / Rousu, Juho / Böcker, Sebastian Searching molecular structure databases with tandem mass spectra using CSI:FingerID 2015 """ assert top_k_method == "csi", "We always use the top-k accuracy calculated as in the original SIRIUS publication." # Collect result data-frames. There might be several, e.g. if the "setting" dictionary contains wildcards (*) for # some parameters, such as the dataset. df = [] # Prefix of the result file depending on whether only the results for the maximum number of SSVM models should be # loaded. _top_k_fn = "top_k__max_models" if load_max_model_number else "top_k" # Iterate over all result files matching the parameters for ifn in sorted(glob.glob( os.path.join( basedir, dict2fn(setting), dict2fn(agg_setting, pref="combined"), os.extsep.join([_top_k_fn, "tsv"]) ) )): # Parse the actual parameters from the basename (the setting might contain wildcards) params, _, _, _ = fn2dict(ifn.split(os.sep)[-3]) # /path/to/PARAMS/not/file.tsv --> PARAMS # Read the top-k performance results _df = pd.read_csv(ifn, sep="\t", dtype={"scoring_method": str, "top_k_method": str}) # Restrict the results to the one with the specified top-k accuracy method _df = _df[_df["top_k_method"] == top_k_method] assert _df["top_k_method"].nunique() == 1, "There should be only two different top-k accuracy method." # Add the parameters to the dataframe for k, v in params.items(): if k not in _df.columns: _df[k] = v df.append(_df) # All loaded results are concatenated into a single dataframe df = pd.concat(df, ignore_index=True) return df def load_topk__comparison(setting: Dict, agg_setting: Dict, basedir: str = ".", top_k_method: str = "csi") \ -> pd.DataFrame: """ Load the Top-k accuracies in the "comparison" folder. These are the results for the comparison methods, i.e. RT filtering, LogP scoring and RO score integration approaches. :param setting: dictionary, specifying the parameters of the experiments for which the results should be loaded. :param agg_setting: dictionary, specifying the parameter of the margin score aggregation, that means how are the molecular candidates identified when choosing the margin score. :param basedir: string, directory containing the results :param top_k_method: string, specifies which top-k accuracy calculation method should be used. We always use the one used in the original SIRIUS publication [1]. :return: dataframe, containing all results (row-wise concatenation) that match the "setting" and "agg_setting" :references: [1] <NAME> / <NAME> / Meusel, Marvin / <NAME> / Böcker, Sebastian Searching molecular structure databases with tandem mass spectra using CSI:FingerID 2015 """ spl_pattern = re.compile(r"spl=([0-9]+)") assert top_k_method == "csi", "We always use the top-k accuracy calculated as in the original SIRIUS publication." # Collect result data-frames. There might be several, e.g. if the "setting" dictionary contains wildcards (*) for # some parameters, such as the dataset. df = [] # Input directory idir = os.path.join(basedir, dict2fn(setting)) for ifn in sorted(glob.glob( os.path.join(idir, dict2fn({"spl": "*", "cand_agg_id": agg_setting["cand_agg_id"]}, pref="top_k", ext="tsv")) )): # Parse the actual parameters from the basename (the setting might contain wildcards) params, _, _, _ = fn2dict(ifn.split(os.sep)[-2]) # /path/to/PARAMS/file.tsv --> PARAMS # Read the top-k performance results _df = pd.read_csv(ifn, sep="\t", converters={"scoring_method": str}) # Restrict the specified top-k method _df = _df[_df["top_k_method"] == top_k_method] assert _df["top_k_method"].nunique() == 1 # Add the parameters to the dataframe for k, v in params.items(): if k not in _df.columns: _df[k] = v # The scoring method label should include the "score_int_app" which distinguishes the different filtering # approaches using the predicted retention times _df.loc[_df["scoring_method"] == "MS + RT", "scoring_method"] = "MS + RT (%s)" % params["score_int_app"] # Add the evaluation split index eval_indx = spl_pattern.findall(os.path.basename(ifn).removesuffix(os.extsep + "tsv")) assert len(eval_indx) == 1 _df["eval_indx"] = int(eval_indx[0]) df.append(_df) if len(df) > 0: df = pd.concat(df, ignore_index=True).rename({"ds": "dataset"}, axis=1) # Compute the accuracy and add it as column df["top_k_acc"] = (df["correct_leq_k"] / df["seq_length"]) * 100 else: # Empty dataframe df = pd.DataFrame(df) return df def load_topk__cand_set_info(setting: Dict, basedir: str = ".") -> pd.DataFrame: """ Load the Top-k accuracies in the "comparison" folder. These are the results for the comparison methods, i.e. RT filtering, LogP scoring and RO score integration approaches. """ df = [] for ifn in sorted(glob.glob( os.path.join(basedir, dict2fn(setting), dict2fn({"spl": "*"}, pref="cand_set_info", ext="tsv")) )): # Parse the actual parameters from the basename (the setting might contain wildcards) params, _, _, _ = fn2dict(ifn.split(os.sep)[-2]) # /path/to/PARAMS/file.tsv --> PARAMS # Read the top-k performance results _df =
pd.read_csv(ifn, sep="\t")
pandas.read_csv
# Machine Learning Project 1 - House Price Prediction import pandas as pd df1 = pd.read_csv('bengaluru_house_prices.csv') df1.head() df1.info() df1.shape df2 = df1.drop(['area_type', 'society', 'balcony'], axis=1) df2.head() df2.isnull().sum() df3 = df2.dropna() df3.isnull().sum() df3.head() df3['availability'].unique() df3.groupby("availability")["availability"].count() df3['availability'] = df3['availability'].apply(lambda x: x if x in ('Ready To Move') else 'Future Possession') df3.groupby("availability")["availability"].count() df3['location'].unique() df3.groupby("location")["location"].count().sort_values(ascending=False) locations = df3.groupby('location')['location'].count().sort_values() locations locations_20cnt = locations[locations <= 20] locations_20cnt df3['location'] = df3['location'].apply(lambda x: 'Others' if x in locations_20cnt else x) df3.groupby("location")["location"].count().sort_values(ascending=False) df3.head() df3['size'].unique() import re df3['bhks'] = df3['size'].apply(lambda x: int(re.findall('\d+', x)[0].strip())) df3.head() df3['total_sqft'].unique() def get_mean(x): if re.findall('-', x): ss = x.strip().split('-') return ((float(ss[0]) + float(ss[0])) / 2) try: return float(x.strip()) except: return None df3['total_sqft_new'] = df3['total_sqft'].apply(get_mean) df3.head() df3.isnull().sum() df4 = df3.dropna() df4.isnull().sum() df4['bath'].unique() df4.groupby('bath')['bath'].count().sort_values() df5 = df4[df4['bath'] <= 10] df5.head() df6 = df5.drop(['size', 'total_sqft'], axis=1) df6.head() df6[df6['total_sqft_new'] / df6['bhks'] < 400] df7 = df6[df6['total_sqft_new'] / df6['bhks'] > 400] df7.head() df7['price_per_sqft'] = df7['price'] * 100000 / df7['total_sqft_new'] df7 df7['price_per_sqft'].describe() def rmv_price_outlier(df): df_new = pd.DataFrame() for key, sdf in df.groupby('location'): m = sdf['price_per_sqft'].mean() s = sdf['price_per_sqft'].std() # print (sdf['location']) rdf = sdf[(sdf['price_per_sqft'] <= m + s) & (sdf['price_per_sqft'] > m - s)] # print(rdf) df_new = pd.concat([df_new, rdf], ignore_index=True) return df_new df8 = rmv_price_outlier(df7) df8.head() df8.shape availability_dummy = pd.get_dummies(df8['availability'], drop_first=True) availability_dummy location_dummy = pd.get_dummies(df8['location'], drop_first=True) df9 =
pd.concat([df8, availability_dummy, location_dummy], axis=1)
pandas.concat
from __future__ import division from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from pandas._libs import testing as _testing import pandas.compat as compat from pandas.compat import ( PY2, PY3, Counter, StringIO, callable, filter, httplib, lmap, lrange, lzip, map, raise_with_traceback, range, string_types, u, unichr, zip) from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Series, bdate_range) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import pandas.core.common as com from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option('^display.', silent=True) def round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : pandas object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- round_trip_pickled_object : pandas object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10))) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) def round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .format(path)) else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) try: yield f finally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.Series): return assert_series_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.DataFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (isinstance(left, np.ndarray) or isinstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(left))) if not isinstance(right, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_isinstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.append(str( x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if com._all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) # ----------------------------------------------------------------------------- # Stdout / stderr decorators @contextmanager def set_defaultencoding(encoding): """ Set default encoding (as given by sys.getdefaultencoding()) to the given encoding; restore on exit. Parameters ---------- encoding : str """ if not PY2: raise ValueError("set_defaultencoding context is only available " "in Python 2.") orig = sys.getdefaultencoding() reload(sys) # noqa:F821 sys.setdefaultencoding(encoding) try: yield finally: sys.setdefaultencoding(orig) def capture_stdout(f): r""" Decorator to capture stdout in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stdout. Returns ------- f : callable The decorated test ``f``, which captures stdout. Examples -------- >>> from pandas.util.testing import capture_stdout >>> import sys >>> >>> @capture_stdout ... def test_print_pass(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "foo\n" >>> >>> @capture_stdout ... def test_print_fail(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stdout = StringIO() f(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return wrapper def capture_stderr(f): r""" Decorator to capture stderr in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stderr. Returns ------- f : callable The decorated test ``f``, which captures stderr. Examples -------- >>> from pandas.util.testing import capture_stderr >>> import sys >>> >>> @capture_stderr ... def test_stderr_pass(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "foo\n" >>> >>> @capture_stderr ... def test_stderr_fail(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stderr = StringIO() f(*args, **kwargs) finally: sys.stderr = sys.__stderr__ return wrapper # ----------------------------------------------------------------------------- # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except Exception: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import pytest pytest.skip('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception: print("Couldn't close file descriptor: {fdesc} (file: {fname})" .format(fdesc=fd, fname=filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: {error}".format(error=e)) @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix='') try: yield directory_name finally: try: rmtree(directory_name) except Exception: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True def _check_types(l, r, obj='Index'): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assert r.inferred_type in ('string', 'unicode') else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.codes[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = '{obj} levels are different'.format(obj=obj) msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left) msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right) raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = '{obj} length are different'.format(obj=obj) msg2 = '{length}, {left}'.format(length=len(left), left=left) msg3 = '{length}, {right}'.format(length=len(right), right=right) raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{level}]'.format(level=level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values) .astype(int)) * 100.0 / len(left) msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal('freq', left, right, obj=obj) if (isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex)): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) def assert_class_equal(left, right, exact=True, obj='Input'): """checks classes are equal.""" __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return x.__class__.__name__ except AttributeError: return repr(type(x)) if exact == 'equiv': if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {'Int64Index', 'RangeIndex'}): msg = '{obj} classes are not equivalent'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = '{obj} classes are different'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = 'Attribute "{attr}" are different'.format(attr=attr) raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ("one of 'objs' is not a matplotlib Axes instance, type " "encountered {name!r}").format(name=el.__class__.__name__) assert isinstance(el, (plt.Axes, dict)), msg else: assert isinstance(objs, (plt.Artist, tuple, dict)), ( 'objs is neither an ndarray of Artist instances nor a ' 'single Artist instance, tuple, or dict, "objs" is a {name!r}' .format(name=objs.__class__.__name__)) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions return assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal(left, right, check_dtype=True, check_category_order=True, obj='Categorical'): """Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj='{obj}.categories'.format(obj=obj)) assert_numpy_array_equal(left.codes, right.codes, check_dtype=check_dtype, obj='{obj}.codes'.format(obj=obj)) else: assert_index_equal(left.categories.sort_values(), right.categories.sort_values(), obj='{obj}.categories'.format(obj=obj)) assert_index_equal(left.categories.take(left.codes), right.categories.take(right.codes), obj='{obj}.values'.format(obj=obj)) assert_attr_equal('ordered', left, right, obj=obj) def assert_interval_array_equal(left, right, exact='equiv', obj='IntervalArray'): """Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_index_equal(left.right, right.right, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_attr_equal('closed', left, right, obj=obj) def assert_period_array_equal(left, right, obj='PeriodArray'): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}.values'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def assert_datetime_array_equal(left, right, obj='DatetimeArray'): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) assert_attr_equal('tz', left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj='TimedeltaArray'): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left =
pprint_thing(left)
pandas.io.formats.printing.pprint_thing
import pandas as pd import umap import umap.plot import numpy as np import matplotlib.pyplot as plt import os from matplotlib.patches import Patch seed = 42 # random seed x = 'meredig_fingerprints_42349.csv' # X encodings of QMOF-42362 csd_14482 = os.path.join( '..', 'opt-bandgaps.csv') # .csv of QMOF-14482 data #--------------------------------------- # Encoding X =
pd.read_csv(x, delimiter=',', header=0, index_col=0)
pandas.read_csv
# Created by <NAME> on 11/18/2019, 2:03 PM # Made for easy addition of more algorithms, just follow commented directions at HERE comments # Prerequisite: Install pyod from __future__ import division from __future__ import print_function from time import time import sys import os # temporary solution for relative imports in case pyod is not installed # if pyod is installed, no need to use the following line sys.path.append( os.path.abspath(os.path.join(os.path.dirname("__file__"), '..'))) # supress warnings for clean output import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from scipy.io import loadmat # HERE: Import the other models you want to test from pyod.models.iforest import IForest from pyod.utils.utility import standardizer from pyod.utils.utility import precision_n_scores from sklearn.metrics import roc_auc_score # Define data file and read X and y mat_file_list = ['arrhythmia.mat', 'cardio.mat', 'glass.mat', 'ionosphere.mat', 'letter.mat', 'lympho.mat', 'mnist.mat', 'musk.mat', 'optdigits.mat', 'pendigits.mat', 'pima.mat', 'satellite.mat', 'satimage-2.mat', 'shuttle.mat', 'vertebral.mat', 'vowels.mat', 'wbc.mat'] # define the number of iterations # HERE: Change n_classifiers to the number of classifiers you want to benchmark n_ite = 10 n_classifiers = 1 # HERE: Add additional classifiers as parameters in df_columns df_columns = ['Data', '#Samples', '#Dimensions', 'Outlier Perc', 'IForest'] # initialize the container for saving the results roc_df = pd.DataFrame(columns=df_columns) prn_df =
pd.DataFrame(columns=df_columns)
pandas.DataFrame
""" Contains the Ligand class of the pipeline. """ from enum import Enum # for creating enumeration classes from pathlib import Path import pandas as pd # for creating dataframes and handling data from rdkit.Chem import PandasTools # for displaying structures inside Pandas DataFrame from .helpers import pubchem, rdkit class Ligand: """ Ligand object with properties as attributes and methods to visualize and work with ligands. Take a ligand identifier type and corresponding value, and create a Ligand object, while assigning some properties as attributes. Attributes ---------- dataframe : Pandas DataFrame Dataframe containing the most important data available for the ligand. Each time a process is performed on the ligand (e.g. docking), the important results are added to the dataframe. rdkit_obj : rdkit.Chem.rdchem.Mol RDKit molecule object for the ligand with its own set of attributes. TODO see `Consts` class. More attributes? """ class Consts: """ Available properties that are assigned as instance attributes upon instantiation. """ class IdentifierTypes(Enum): NAME = "name" IUPAC_NAME = "iupac_name" SMILES = "smiles" CID = "cid" INCHI = "inchi" INCHIKEY = "inchikey" def __init__(self, identifier_type, identifier_value, ligand_output_path): """ Parameters ---------- identifier_type : enum 'InputTypes' from the 'Consts.Ligand' class Type of the ligand identifier, e.g. InputTypes.SMILES. indentifier_value : str Value of the ligand identifier, e.g. its SMILES. ligand_output_path : str or pathlib.Path Output path of the project for ligand data. """ self.dataframe = pd.DataFrame(columns=["Value"]) self.dataframe.index.name = "Property" setattr(self, identifier_type.name.lower(), identifier_value) for identifier in self.Consts.IdentifierTypes: new_id = pubchem.convert_compound_identifier( identifier_type.value, identifier_value, identifier.value ) setattr(self, identifier.value, new_id) self.dataframe.loc[identifier.value] = new_id self.rdkit_obj = rdkit.create_molecule_object("smiles", self.smiles) dict_of_properties = rdkit.calculate_druglikeness(self.rdkit_obj) for property_ in dict_of_properties: setattr(self, property_, dict_of_properties[property_]) self.dataframe.loc[property_] = dict_of_properties[property_] ligand_output_path = Path(ligand_output_path) self.save_as_image(ligand_output_path / f"CID_{self.cid}") self.dataframe.to_csv(ligand_output_path / f"CID_{self.cid}.csv") def __repr__(self): return f"<Ligand CID: {self.cid}>" def __call__(self): df = pd.DataFrame(columns=["smiles"]) df.loc[1] = self.smiles PandasTools.AddMoleculeColumnToFrame(df, smilesCol="smiles") romol = df.loc[1, "ROMol"] return
pd.concat({romol: self.dataframe}, names=["Structure"])
pandas.concat
import pandas as pd import numpy as np from sklearn.pipeline import make_pipeline from sklearn.metrics import (confusion_matrix,f1_score,classification_report) from sklearn.model_selection import (train_test_split, GridSearchCV) from joblib import dump from sklearn.neighbors import (NeighborhoodComponentsAnalysis, KNeighborsClassifier) from sklearn.preprocessing import StandardScaler from tempfile import mkdtemp from shutil import rmtree from joblib import Memory ################################################################################ ################################################################################ def KNN(df, *args, **kwargs): unique_test_name = 'StandardScaler KNN GridSearchCV Optimised with SMOTE ENN' # Create a temporary folder to store the transformers of the pipeline cachedir = mkdtemp() memory = Memory(location=cachedir, verbose=10) y = df['QuoteConversion_Flag'].values IDs = df.Quote_ID X = df.drop(['QuoteConversion_Flag', 'Quote_ID'], axis=1).values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) param_grid = { 'knn__n_neighbours': np.arange(3, 12), 'knn__algorithm': ['ball_tree','kd_tree', 'brute'], 'knn__leaf_size': np.arange(20, 30), 'knn__p': [1, 2, 3, 4, 5], 'nca__n_components': np.arange(2,12), 'nca__max_iter': np.arange(1000, 2000), 'nca__tol': 10.0 ** -np.arange(1, 8), } # model classes nca = NeighborhoodComponentsAnalysis(random_state=42, warm_start=False) knn = KNeighborsClassifier(n_jobs=-1) model = [make_pipeline(StandardScaler(), nca, knn, memory=memory)] grid = GridSearchCV(model, param_grid, cv=1000, iid=False, n_jobs=-1) grid.fit(X_train, y_train) print("-----------------Best Param Overview--------------------") print("Best score: %0.4f" % grid.best_score_) print("Using the following parameters:") print(grid.best_params_) results = pd.DataFrame(grid.cv_results_) results.to_csv(unique_test_name+'_cv_results.csv', index=False) prediction = grid.predict(X_test) print("-----------------Scoring Model--------------------") print(classification_report(prediction, y_test)) print(confusion_matrix(prediction, y_test), "\n") prediction = pd.DataFrame(data=prediction, columns=['QuoteConversion_Flag']) results =
pd.concat([IDs, prediction], axis=1)
pandas.concat
#1 DR Number 11 Victim Age 22 Crime Description #2 Date Reported 12 Victim Sex 23 Crime Code 1 #3 Date Occurred 13 Victim Descent 24 Crime Code 2 #4 Time Occurred 14 Premise Code 25 Crime Code 3 #5 Area ID 15 Premise Description 26 Crime Code 4 #6 Area Name 16 Weapon Used Code 27 Address #7 Reporting District 17 Weapon Description 28 Cross Street #8 Crime Code 18 Status Code 29 Location #9 Crime Description 20 Status Description #10 MO Codes 21 Crime Code import pandas as pd from app.settings import setting source = pd.read_csv(setting['file'],skiprows=1,header=None,nrows=setting['limit']); def field(x, y): src = source[x] data = src.rename(columns = setting['vars']) data = data.groupby(y).size().to_frame(name = 'count').reset_index() items = [] for i in range(len(data)): obj = {} for name in y: obj.update({name:data[name][i]}) items.append(obj) return items def db(): src = source[setting['source']] src['lat'] = pd.DataFrame(src[25].str.replace('(','').str.replace(')','').str.split(', ').str[0]) src['lng'] = pd.DataFrame(src[25].str.replace('(','').str.replace(')','').str.split(', ').str[1]) data = src.rename(columns = setting['vars']) data[['lat','lng']] = data[['lat','lng']].apply(pd.to_numeric) data['date_occured'] = pd.to_datetime(source[2]) data['date_reported'] =
pd.to_datetime(source[1])
pandas.to_datetime
import os import pandas as pd import numpy as np import random from human_ISH_config import * import h5py import time from shutil import copyfile import operator import matplotlib.pyplot as plt import math import json random.seed(1) def get_stats(images_info_df): """ Uses the images_info_df and calculates some stats. :param images_info_df: pandas dataframe that has the information of all image :return: a dictionary containing stats. """ stats_dict = {'image_count':None, 'donor_count':None, 'female_donor_count':None, 'male_donor_count':None, 'unique_genes_count': None, 'unique_entrez_id_count' : None} image_id_list = images_info_df['image_id'] gene_symbol_list = images_info_df['gene_symbol'] entrez_id_list = images_info_df['entrez_id'] experiment_id_list = images_info_df['experiment_id'] specimen_id_list = images_info_df['specimen_id'] donor_id_list = images_info_df['donor_id'] donor_sex_list = images_info_df['donor_sex'] female_donors = images_info_df[images_info_df['donor_sex'] == 'F'] male_donors = images_info_df[images_info_df['donor_sex'] == 'M'] # ----------- # How many donors does this study have? How many are female and how many are male? donors_count = len(set(images_info_df['donor_id'])) print ("Total number of donors: {}".format(donors_count)) female_donors_count = len(set(female_donors['donor_id'])) print("Number of female donors: {}".format(female_donors_count)) male_donors_count = len(set(male_donors['donor_id'])) print("Number of male donors: {}".format(male_donors_count)) if female_donors_count + male_donors_count != donors_count: print ("something is not right about the number of female and male donors ...") # ----------- # How many unique genes does this study include? gene_count = len(set(gene_symbol_list)) print ("Number of unique genes: {}".format(gene_count)) entrez_id_count = len(set(entrez_id_list)) print("Number of unique entrez IDs: {}".format(entrez_id_count)) if entrez_id_count != gene_count: print ("something is not right. The number of unique genes should be equal to the number of unique entrez IDs") # ----------- # How many genes have been tested from each donor. # How many images do we have from each donor. group_by_donor = images_info_df.groupby('donor_id') unique_gene_count_per_donor_list = [] unique_image_count_per_donor_list = [] for key, item in group_by_donor: this_group_genes = group_by_donor.get_group(key)['gene_symbol'] this_group_images = group_by_donor.get_group(key)['image_id'] unique_gene_count_per_donor_list.append(len(set(this_group_genes))) unique_image_count_per_donor_list.append(len(set(this_group_images))) print("Minimum number of unique genes from a donor: {}".format(min(unique_gene_count_per_donor_list))) print("Maximum number of unique genes from a donor: {}".format(max(unique_gene_count_per_donor_list))) print("Average number of unique genes from a donor: {}".format(np.mean(unique_gene_count_per_donor_list))) print("Minimum number of images from a donor: {}".format(min(unique_image_count_per_donor_list))) print("Maximum number of images from a donor: {}".format(max(unique_image_count_per_donor_list))) print("Average number of images from a donor: {}".format(np.mean(unique_image_count_per_donor_list))) # ----------- # How many images do we have from each gene. # How many donors do we have from each gene. group_by_gene = images_info_df.groupby('gene_symbol') unique_donor_count_per_gene_list = [] unique_image_count_per_gene_list = [] for key, item in group_by_gene: this_group_donors = group_by_gene.get_group(key)['donor_id'] this_group_images = group_by_gene.get_group(key)['image_id'] unique_donor_count_per_gene_list.append(len(set(this_group_donors))) unique_image_count_per_gene_list.append(len(set(this_group_images))) print("Minimum number of unique donors from a gene: {}".format(min(unique_donor_count_per_gene_list))) print("Maximum number of unique donors from a gene: {}".format(max(unique_donor_count_per_gene_list))) print("Average number of unique donors from a gene: {}".format(np.mean(unique_donor_count_per_gene_list))) print("Minimum number of images from a gene: {}".format(min(unique_image_count_per_gene_list))) print("Maximum number of images from a gene: {}".format(max(unique_image_count_per_gene_list))) print("Average number of images from a gene: {}".format(np.mean(unique_image_count_per_gene_list))) gene_on_all_donors_count = 0 gene_on_only_one_donor_count = 0 for item in unique_donor_count_per_gene_list: if item == donors_count: gene_on_all_donors_count +=1 if item == 1: gene_on_only_one_donor_count += 1 print ("There are {} genes that have been sampled from all the {} donors.".format(gene_on_all_donors_count, donors_count)) print ("There are {} genes that have been sampled from only 1 donor.".format(gene_on_only_one_donor_count)) # ----------- stats_dict['image_count'] = len(image_id_list) stats_dict['donor_count'] = donors_count stats_dict['female_donor_count'] = female_donors_count stats_dict['male_donor_count'] = male_donors_count stats_dict['unique_genes_count'] = gene_count stats_dict['unique_entrez_id_count'] = entrez_id_count # ------------------- # I want to group by donor, in each donor, see on average, how many images there are per gene # and then average over all the donors group_by_donor = images_info_df.groupby('donor_id') avg_num_of_imaes_per_gene_list = [] for key, item in group_by_donor: # for each donor this_group_genes = list(group_by_donor.get_group(key)['gene_symbol']) # get a list of its genes (has duplicates) # for each unique genes, see how many times it appears in the list (== how many images we have of it in this donor) this_group_genes_count_list = [[x,this_group_genes.count(x)] for x in set(this_group_genes)] sum = 0 for item in this_group_genes_count_list: sum += item[1] # in this donor, on average, we have 'avg' number of images per each gene. avg = sum / len(this_group_genes_count_list) # append it to the list avg_num_of_imaes_per_gene_list.append(avg) avg_num_of_images_per_gene_in_each_donor_over_all = np.mean(avg_num_of_imaes_per_gene_list) print ("Average number of images per each gene in each donor, Over all donors: ",avg_num_of_images_per_gene_in_each_donor_over_all) return stats_dict def define_sets_with_no_shared_genes(images_info_df): """ We want to create training, validation, and test set. The condition is that the sets should not have any genes in common. If INCLUDE_SZ_DATA flag is set to false, we want to make sure there are no schizophrenia genes in the training set. if TRAIN_ON_ALL flag is set to True, then all the genes will be considered as training. We won't have a validation or test. :param images_info_df: pandas dataframe that has the information of all image :return: 3 pandas dataframes: training, validation, test """ unique_genes = list(np.unique(images_info_df['gene_symbol'])) total_unique_gene_count = len(unique_genes) print(total_unique_gene_count) if TRAIN_ON_ALL == False: test_genes_count = int((TEST_SPLIT / 100.0) * total_unique_gene_count) validation_gene_count = int((VALIDATION_SPLIT / 100.0) * total_unique_gene_count) test_genes = random.sample(unique_genes, test_genes_count) remaining_genes = [x for x in unique_genes if x not in test_genes] validation_genes = random.sample(remaining_genes, validation_gene_count) training_genes = [x for x in remaining_genes if x not in validation_genes] # ------- filter SZ genes if necessary ------- if INCLUDE_SZ_DATA == False: path_to_SZ_info = os.path.join(DATA_DIR, "schizophrenia", "human_ISH_info.csv") sz_info_df = pd.read_csv(path_to_SZ_info) sz_unique_genes = list(set(list(sz_info_df['gene_symbol']))) print( "There are {} genes in the training set. {} schizophrenia-associated genes will be removed" .format(len(training_genes), len(sz_unique_genes))) training_genes = [x for x in training_genes if x not in sz_unique_genes] print ("Number of remaining genes: {}".format(len(training_genes))) # -------------------------------------------- training_df = images_info_df[images_info_df['gene_symbol'].isin(training_genes)] validation_df = images_info_df[images_info_df['gene_symbol'].isin(validation_genes)] test_df = images_info_df[images_info_df['gene_symbol'].isin(test_genes)] training_df = training_df.sort_values(by=['image_id']) validation_df = validation_df.sort_values(by=['image_id']) test_df = test_df.sort_values(by=['image_id']) train_val_df = pd.concat([training_df, validation_df], ignore_index=True) train_val_df = train_val_df.sort_values(by=['image_id']) sets_path = os.path.join(DATA_DIR, STUDY, "sets_"+str(PATCH_COUNT_PER_IMAGE)+"_patches_"+str(SEGMENTATION_TRAINING_SAMPLES)+"_seg") if (not os.path.exists(sets_path)): os.mkdir(sets_path) if INCLUDE_SZ_DATA == True: training_df.to_csv(os.path.join(sets_path, "training.csv"), index=None) train_val_df.to_csv(os.path.join(sets_path, "training_validation.csv"), index=None) else: training_df.to_csv(os.path.join(sets_path, "no_sz_training.csv"), index=None) train_val_df.to_csv(os.path.join(sets_path, "no_sz_training_validation.csv"), index=None) validation_df.to_csv(os.path.join(sets_path, "validation.csv"), index=None) test_df.to_csv(os.path.join(sets_path, "test.csv"), index=None) else: print ("-" * 50) print ('TRAINING ON ALL') print("-" * 50) training_genes = [x for x in unique_genes] # ------- filter SZ genes if necessary ------- if INCLUDE_SZ_DATA == False: path_to_SZ_info = os.path.join(DATA_DIR, "schizophrenia", "human_ISH_info.csv") sz_info_df =
pd.read_csv(path_to_SZ_info)
pandas.read_csv
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec = pd.Series([], dtype="float", name="cbt_mamm_sensory_noec") self.cbt_mamm_sensory_loec = pd.Series([], dtype="float", name="cbt_mamm_sensory_loec") self.cbt_mamm_sub_indirect = pd.Series([], dtype="float", name="cbt_mamm_sub_indirect") # concentration-based toxicity (cbt) : birds (mg-pest/kg-diet food) self.cbt_bird_1inmill_mort = pd.Series([], dtype="float", name="cbt_bird_1inmill_mort") self.cbt_bird_1inten_mort = pd.Series([], dtype="float", name="cbt_bird_1inten_mort") self.cbt_bird_low_lc50 = pd.Series([], dtype="float", name="cbt_bird_low_lc50") self.cbt_bird_sub_direct = pd.Series([], dtype="float", name="cbt_bird_sub_direct") self.cbt_bird_grow_noec = pd.Series([], dtype="float", name="cbt_bird_grow_noec") self.cbt_bird_grow_loec = pd.Series([], dtype="float", name="cbt_bird_grow_loec") self.cbt_bird_repro_noec = pd.Series([], dtype="float", name="cbt_bird_repro_noec") self.cbt_bird_repro_loec = pd.Series([], dtype="float", name="cbt_bird_repro_loec") self.cbt_bird_behav_noec = pd.Series([], dtype="float", name="cbt_bird_behav_noec") self.cbt_bird_behav_loec = pd.Series([], dtype="float", name="cbt_bird_behav_loec") self.cbt_bird_sensory_noec = pd.Series([], dtype="float", name="cbt_bird_sensory_noec") self.cbt_bird_sensory_loec = pd.Series([], dtype="float", name="cbt_bird_sensory_loec") self.cbt_bird_sub_indirect = pd.Series([], dtype="float", name="cbt_bird_sub_indirect") # concentration-based toxicity (cbt) : reptiles, terrestrial-phase amphibians (mg-pest/kg-diet food) self.cbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="cbt_reptile_1inmill_mort") self.cbt_reptile_1inten_mort = pd.Series([], dtype="float", name="cbt_reptile_1inten_mort") self.cbt_reptile_low_lc50 = pd.Series([], dtype="float", name="cbt_reptile_low_lc50") self.cbt_reptile_sub_direct = pd.Series([], dtype="float", name="cbt_reptile_sub_direct") self.cbt_reptile_grow_noec = pd.Series([], dtype="float", name="cbt_reptile_grow_noec") self.cbt_reptile_grow_loec = pd.Series([], dtype="float", name="cbt_reptile_grow_loec") self.cbt_reptile_repro_noec = pd.Series([], dtype="float", name="cbt_reptile_repro_noec") self.cbt_reptile_repro_loec = pd.Series([], dtype="float", name="cbt_reptile_repro_loec") self.cbt_reptile_behav_noec = pd.Series([], dtype="float", name="cbt_reptile_behav_noec") self.cbt_reptile_behav_loec = pd.Series([], dtype="float", name="cbt_reptile_behav_loec") self.cbt_reptile_sensory_noec = pd.Series([], dtype="float", name="cbt_reptile_sensory_noec") self.cbt_reptile_sensory_loec = pd.Series([], dtype="float", name="cbt_reptile_sensory_loec") self.cbt_reptile_sub_indirect = pd.Series([], dtype="float", name="cbt_reptile_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body weight (mg-pest/kg-bw(ww)) self.cbt_inv_bw_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inmill_mort") self.cbt_inv_bw_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inten_mort") self.cbt_inv_bw_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_bw_low_lc50") self.cbt_inv_bw_sub_direct = pd.Series([], dtype="float", name="cbt_inv_bw_sub_direct") self.cbt_inv_bw_grow_noec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_noec") self.cbt_inv_bw_grow_loec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_loec") self.cbt_inv_bw_repro_noec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_noec") self.cbt_inv_bw_repro_loec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_loec") self.cbt_inv_bw_behav_noec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_noec") self.cbt_inv_bw_behav_loec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_loec") self.cbt_inv_bw_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_noec") self.cbt_inv_bw_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_loec") self.cbt_inv_bw_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_bw_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body diet (mg-pest/kg-food(ww)) self.cbt_inv_food_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inmill_mort") self.cbt_inv_food_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inten_mort") self.cbt_inv_food_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_food_low_lc50") self.cbt_inv_food_sub_direct = pd.Series([], dtype="float", name="cbt_inv_food_sub_direct") self.cbt_inv_food_grow_noec = pd.Series([], dtype="float", name="cbt_inv_food_grow_noec") self.cbt_inv_food_grow_loec = pd.Series([], dtype="float", name="cbt_inv_food_grow_loec") self.cbt_inv_food_repro_noec = pd.Series([], dtype="float", name="cbt_inv_food_repro_noec") self.cbt_inv_food_repro_loec = pd.Series([], dtype="float", name="cbt_inv_food_repro_loec") self.cbt_inv_food_behav_noec = pd.Series([], dtype="float", name="cbt_inv_food_behav_noec") self.cbt_inv_food_behav_loec = pd.Series([], dtype="float", name="cbt_inv_food_behav_loec") self.cbt_inv_food_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_noec") self.cbt_inv_food_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_loec") self.cbt_inv_food_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_food_sub_indirect") # concentration-based toxicity (cbt) : invertebrates soil (mg-pest/kg-soil(dw)) self.cbt_inv_soil_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_soil_1inmill_mort") self.cbt_inv_soil_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_soil_1inten_mort") self.cbt_inv_soil_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_soil_low_lc50") self.cbt_inv_soil_sub_direct = pd.Series([], dtype="float", name="cbt_inv_soil_sub_direct") self.cbt_inv_soil_grow_noec = pd.Series([], dtype="float", name="cbt_inv_soil_grow_noec") self.cbt_inv_soil_grow_loec = pd.Series([], dtype="float", name="cbt_inv_soil_grow_loec") self.cbt_inv_soil_repro_noec = pd.Series([], dtype="float", name="cbt_inv_soil_repro_noec") self.cbt_inv_soil_repro_loec = pd.Series([], dtype="float", name="cbt_inv_soil_repro_loec") self.cbt_inv_soil_behav_noec = pd.Series([], dtype="float", name="cbt_inv_soil_behav_noec") self.cbt_inv_soil_behav_loec = pd.Series([], dtype="float", name="cbt_inv_soil_behav_loec") self.cbt_inv_soil_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_soil_sensory_noec") self.cbt_inv_soil_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_soil_sensory_loec") self.cbt_inv_soil_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_soil_sub_indirect") # application rate-based toxicity (arbt) : mammals (lbs active ingredient/Acre) self.arbt_mamm_mort = pd.Series([], dtype="float", name="arbt_mamm_mort") self.arbt_mamm_growth = pd.Series([], dtype="float", name="arbt_mamm_growth") self.arbt_mamm_repro = pd.Series([], dtype="float", name="arbt_mamm_repro") self.arbt_mamm_behav =
pd.Series([], dtype="float", name="arbt_mamm_behav")
pandas.Series
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Dropout, MaxPool2D, Flatten, GlobalAveragePooling2D, add, average, \ maximum import tensorflow_addons as tfa from tensorflow_docs import modeling import tensorflow_datasets as tfds import tensorflow_hub as hub import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import pathlib import shutil tfds.disable_progress_bar() # disable tqdm progress bar print("TensorFlow Version: ", tf.__version__) print("Number of GPU available: ", len(tf.config.experimental.list_physical_devices("GPU"))) def read_and_label(file_path): img = tf.io.read_file(file_path) img = decode_img(img) label = get_label(file_path) return img, label def decode_img(img): img = tf.image.decode_jpeg(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) return tf.image.resize(img, [IMG_WIDTH, IMG_HEIGHT]) def get_label(file_path): parts = tf.strings.split(file_path, os.path.sep) return tf.reshape(tf.where(parts[-4] == CLASS_NAMES), []) def augment(image, label): image = tf.image.random_hue(image, max_delta=0.05, seed=5) image = tf.image.random_contrast(image, 0.95, 1.05, seed=5) # tissue quality image = tf.image.random_saturation(image, 0.95, 1.05, seed=5) # stain quality image = tf.image.random_brightness(image, max_delta=0.05) # tissue thickness, glass transparency (clean) image = tf.image.random_flip_left_right(image, seed=5) # cell orientation image = tf.image.random_flip_up_down(image, seed=5) # cell orientation image = tf.image.rot90(image, tf.random.uniform(shape=[], minval=0, maxval=4, dtype=tf.int32)) # cell orientation return image, label IMG_HEIGHT = 100 IMG_WIDTH = 100 BATCH_SIZE = 32 val_fraction = 10 # list location of all training images data_dir = r'C:\Users\kuki\Desktop\Research\Skin\RCNN data\train' data_dir = pathlib.Path(data_dir) train_image_count = len(list(data_dir.glob('*\*\image\*.jpg'))) CLASS_NAMES = np.array( [item.name for item in data_dir.glob('*') if item.name != "LICENSE.txt" and item.name != ".DS_store"]) list_ds = tf.data.Dataset.list_files(str(data_dir / '*/*/image/*')) AUTOTUNE = tf.data.experimental.AUTOTUNE labeled_ds = list_ds.map(read_and_label, num_parallel_calls=AUTOTUNE) # plt.figure(figsize=(10,10)) # for idx,elem in enumerate(labeled_ds.take(25)): # img = elem[0] # label = elem[1] # ax = plt.subplot(5,5,idx+1) # plt.imshow(img) # plt.title(CLASS_NAMES[label].title()) # plt.axis('off') test_data_dir = r'C:\Users\kuki\Desktop\Research\Skin\RCNN data\test' test_data_dir = pathlib.Path(test_data_dir) test_image_count = len(list(test_data_dir.glob('*\*\image\*.jpg'))) test_list_ds = tf.data.Dataset.list_files(str(test_data_dir / '*\*\image\*')) test_labeled_ds = test_list_ds.map(read_and_label, num_parallel_calls=AUTOTUNE) val_image_count = test_image_count // 100 * val_fraction # // : floor division ex) 15/2 = 7.5 -> 7 STEPS_PER_EPOCH = train_image_count // BATCH_SIZE TEST_STEPS = test_image_count // BATCH_SIZE VALIDATION_STEPS = val_image_count // BATCH_SIZE shuffle_buffer_size = 3000 # take first 100 from dataset and shuffle and pick one. train_ds = (labeled_ds # .skip(val_image_count) .cache("./cache/fibro_train.tfcache") .shuffle(buffer_size=shuffle_buffer_size) .repeat() .batch(BATCH_SIZE) .map(augment, num_parallel_calls=AUTOTUNE) # always batch before mapping .prefetch(buffer_size=AUTOTUNE) ) # no shuffle, augment for validation and test dataset val_ds = (test_labeled_ds .shuffle(buffer_size=shuffle_buffer_size) .take(val_image_count) .cache("./cache/fibro_val.tfcache") .repeat() .batch(BATCH_SIZE) .prefetch(buffer_size=AUTOTUNE)) test_ds = (test_labeled_ds .cache("./cache/fibro_test.tfcache") .repeat() .batch(BATCH_SIZE) .prefetch(buffer_size=AUTOTUNE) # time it takes to produce next element ) checkpoint_dir = "training_1" shutil.rmtree(checkpoint_dir, ignore_errors=True) def get_callbacks(name): return [ modeling.EpochDots(), tf.keras.callbacks.EarlyStopping(monitor='val_sparse_categorical_crossentropy', patience=100, restore_best_weights=True), # tf.keras.callbacks.TensorBoard(log_dir/name, histogram_freq=1), tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_dir + "/{}/cp.ckpt".format(name), verbose=0, monitor='val_sparse_categorical_crossentropy', save_weights_only=True, save_best_only=True), tf.keras.callbacks.ReduceLROnPlateau(monitor='val_sparse_categorical_crossentropy', factor=0.1, patience=50, verbose=0, mode='auto', min_delta=0.0001, cooldown=0, min_lr=0), ] lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay( 1e-3, decay_steps=STEPS_PER_EPOCH * 100, decay_rate=1, staircase=False) def compilefit(model, name, lr, max_epochs=1000): optimizer = tfa.optimizers.AdamW(lr) model.compile(optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 'accuracy']) model_history = model.fit(train_ds, steps_per_epoch=STEPS_PER_EPOCH, epochs=max_epochs, verbose=0, validation_data=val_ds, callbacks=get_callbacks(name), validation_steps=VALIDATION_STEPS, use_multiprocessing=True ) namename = os.path.dirname(name) if not os.path.isdir(os.path.abspath(namename)): os.mkdir(os.path.abspath(namename)) if not os.path.isdir(os.path.abspath(name)): os.mkdir(os.path.abspath(name)) model.save(pathlib.Path(name) / 'full_model.h5') return model_history def plotdf(dfobj, condition, lr=None): dfobj.pop('loss') dfobj.pop('val_loss') dfobj1 = dfobj.copy() dfobj2 = dfobj.copy() dfobj.pop('lr') dfobj.pop('sparse_categorical_crossentropy') dfobj.pop('val_sparse_categorical_crossentropy') pd.DataFrame(dfobj).plot(title=condition) dfobj1.pop('lr') dfobj1.pop('accuracy') dfobj1.pop('val_accuracy') pd.DataFrame(dfobj1).plot(title=condition) if lr is not 'decay': dfobj2.pop('sparse_categorical_crossentropy') dfobj2.pop('val_sparse_categorical_crossentropy') dfobj2.pop('accuracy') dfobj2.pop('val_accuracy')
pd.DataFrame(dfobj2)
pandas.DataFrame
import pandas data=pandas.read_csv("Day25/Squirrel_census_DA/2018_Central_Park_Squirrel_Census_Data.csv") # print(data.head(5)) GraySquirel_count=len(data[data["Primary Fur Color"]=="Gray"]) CinnamonSquirel_count=len(data[data["Primary Fur Color"]=="Cinnamon"]) BlackSquirel_count=len(data[data["Primary Fur Color"]=="Black"]) print(GraySquirel_count) print(CinnamonSquirel_count) print(BlackSquirel_count) #data frame data_dict={ "Fur Color":["Gray","Cinnamon","Black"], "Count":[GraySquirel_count,CinnamonSquirel_count,BlackSquirel_count] } # print(data_dict) df=
pandas.DataFrame(data_dict)
pandas.DataFrame
from datetime import datetime, timedelta import numpy as np import pytest from pandas._libs.tslibs import period as libperiod import pandas as pd from pandas import DatetimeIndex, Period, PeriodIndex, Series, notna, period_range import pandas._testing as tm class TestGetItem: def test_ellipsis(self): # GH#21282 idx = period_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx[...] assert result.equals(idx) assert result is not idx def test_getitem(self): idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") for idx in [idx1]: result = idx[0] assert result == pd.Period("2011-01-01", freq="D") result = idx[-1] assert result == pd.Period("2011-01-31", freq="D") result = idx[0:5] expected = pd.period_range("2011-01-01", "2011-01-05", freq="D", name="idx") tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[0:10:2] expected = pd.PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-07", "2011-01-09"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[-20:-5:3] expected = pd.PeriodIndex( ["2011-01-12", "2011-01-15", "2011-01-18", "2011-01-21", "2011-01-24"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[4::-1] expected = PeriodIndex( ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" def test_getitem_index(self): idx = period_range("2007-01", periods=10, freq="M", name="x") result = idx[[1, 3, 5]] exp = pd.PeriodIndex(["2007-02", "2007-04", "2007-06"], freq="M", name="x") tm.assert_index_equal(result, exp) result = idx[[True, True, False, False, False, True, True, False, False, False]] exp = pd.PeriodIndex( ["2007-01", "2007-02", "2007-06", "2007-07"], freq="M", name="x" ) tm.assert_index_equal(result, exp) def test_getitem_partial(self): rng = period_range("2007-01", periods=50, freq="M") ts = Series(np.random.randn(len(rng)), rng) with pytest.raises(KeyError, match=r"^'2006'$"): ts["2006"] result = ts["2008"] assert (result.index.year == 2008).all() result = ts["2008":"2009"] assert len(result) == 24 result = ts["2008-1":"2009-12"] assert len(result) == 24 result = ts["2008Q1":"2009Q4"] assert len(result) == 24 result = ts[:"2009"] assert len(result) == 36 result = ts["2009":] assert len(result) == 50 - 24 exp = result result = ts[24:] tm.assert_series_equal(exp, result) ts = ts[10:].append(ts[10:]) msg = "left slice bound for non-unique label: '2008'" with pytest.raises(KeyError, match=msg): ts[slice("2008", "2009")] def test_getitem_datetime(self): rng = period_range(start="2012-01-01", periods=10, freq="W-MON") ts = Series(range(len(rng)), index=rng) dt1 = datetime(2011, 10, 2) dt4 = datetime(2012, 4, 20) rs = ts[dt1:dt4] tm.assert_series_equal(rs, ts) def test_getitem_nat(self): idx = pd.PeriodIndex(["2011-01", "NaT", "2011-02"], freq="M") assert idx[0] == pd.Period("2011-01", freq="M") assert idx[1] is pd.NaT s = pd.Series([0, 1, 2], index=idx) assert s[pd.NaT] == 1 s = pd.Series(idx, index=idx) assert s[pd.Period("2011-01", freq="M")] == pd.Period("2011-01", freq="M") assert s[pd.NaT] is pd.NaT def test_getitem_list_periods(self): # GH 7710 rng = period_range(start="2012-01-01", periods=10, freq="D") ts = Series(range(len(rng)), index=rng) exp = ts.iloc[[1]] tm.assert_series_equal(ts[[Period("2012-01-02", freq="D")]], exp) def test_getitem_seconds(self): # GH#6716 didx = pd.date_range(start="2013/01/01 09:00:00", freq="S", periods=4000) pidx = period_range(start="2013/01/01 09:00:00", freq="S", periods=4000) for idx in [didx, pidx]: # getitem against index should raise ValueError values = [ "2014", "2013/02", "2013/01/02", "2013/02/01 9H", "2013/02/01 09:00", ] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s["2013/01/01 10:00"], s[3600:3660]) tm.assert_series_equal(s["2013/01/01 9H"], s[:3600]) for d in ["2013/01/01", "2013/01", "2013"]: tm.assert_series_equal(s[d], s) def test_getitem_day(self): # GH#6716 # Confirm DatetimeIndex and PeriodIndex works identically didx = pd.date_range(start="2013/01/01", freq="D", periods=400) pidx = period_range(start="2013/01/01", freq="D", periods=400) for idx in [didx, pidx]: # getitem against index should raise ValueError values = [ "2014", "2013/02", "2013/01/02", "2013/02/01 9H", "2013/02/01 09:00", ] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s["2013/01"], s[0:31]) tm.assert_series_equal(s["2013/02"], s[31:59]) tm.assert_series_equal(s["2014"], s[365:]) invalid = ["2013/02/01 9H", "2013/02/01 09:00"] for v in invalid: with pytest.raises(KeyError, match=v): s[v] class TestWhere: @pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) def test_where(self, klass): i = period_range("20130101", periods=5, freq="D") cond = [True] * len(i) expected = i result = i.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * (len(i) - 1) expected = PeriodIndex([pd.NaT] + i[1:].tolist(), freq="D") result = i.where(klass(cond)) tm.assert_index_equal(result, expected) def test_where_other(self): i = period_range("20130101", periods=5, freq="D") for arr in [np.nan, pd.NaT]: result = i.where(notna(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D") result = i.where(notna(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D") result = i.where(notna(i2), i2.values) tm.assert_index_equal(result, i2) def test_where_invalid_dtypes(self): pi = period_range("20130101", periods=5, freq="D") i2 = pi.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + pi[2:].tolist(), freq="D") with pytest.raises(TypeError, match="Where requires matching dtype"): pi.where(notna(i2), i2.asi8) with pytest.raises(TypeError, match="Where requires matching dtype"): pi.where(notna(i2), i2.asi8.view("timedelta64[ns]")) with pytest.raises(TypeError, match="Where requires matching dtype"): pi.where(notna(i2), i2.to_timestamp("S")) class TestTake: def test_take(self): # GH#10295 idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") for idx in [idx1]: result = idx.take([0]) assert result == pd.Period("2011-01-01", freq="D") result = idx.take([5]) assert result == pd.Period("2011-01-06", freq="D") result = idx.take([0, 1, 2]) expected = pd.period_range("2011-01-01", "2011-01-03", freq="D", name="idx") tm.assert_index_equal(result, expected) assert result.freq == "D" assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = pd.PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx.take([7, 4, 1]) expected = pd.PeriodIndex( ["2011-01-08", "2011-01-05", "2011-01-02"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx.take([3, 2, 5]) expected = PeriodIndex( ["2011-01-04", "2011-01-03", "2011-01-06"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx.take([-3, 2, 5]) expected = PeriodIndex( ["2011-01-29", "2011-01-03", "2011-01-06"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" def test_take_misc(self): index = period_range(start="1/1/10", end="12/31/12", freq="D", name="idx") expected = PeriodIndex( [ datetime(2010, 1, 6), datetime(2010, 1, 7), datetime(2010, 1, 9), datetime(2010, 1, 13), ], freq="D", name="idx", ) taken1 = index.take([5, 6, 8, 12]) taken2 = index[[5, 6, 8, 12]] for taken in [taken1, taken2]: tm.assert_index_equal(taken, expected) assert isinstance(taken, PeriodIndex) assert taken.freq == index.freq assert taken.name == expected.name def test_take_fill_value(self): # GH#12631 idx = pd.PeriodIndex( ["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx", freq="D" ) result = idx.take(np.array([1, 0, -1])) expected = pd.PeriodIndex( ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", freq="D" ) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.PeriodIndex( ["2011-02-01", "2011-01-01", "NaT"], name="xxx", freq="D" ) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.PeriodIndex( ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", freq="D" ) tm.assert_index_equal(result, expected) msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -5]), fill_value=True) msg = "index -5 is out of bounds for( axis 0 with)? size 3" with pytest.raises(IndexError, match=msg): idx.take(np.array([1, -5])) class TestIndexing: def test_get_loc_msg(self): idx = period_range("2000-1-1", freq="A", periods=10) bad_period = Period("2012", "A") with pytest.raises(KeyError, match=r"^Period\('2012', 'A-DEC'\)$"): idx.get_loc(bad_period) try: idx.get_loc(bad_period) except KeyError as inst: assert inst.args[0] == bad_period def test_get_loc_nat(self): didx = DatetimeIndex(["2011-01-01", "NaT", "2011-01-03"]) pidx = PeriodIndex(["2011-01-01", "NaT", "2011-01-03"], freq="M") # check DatetimeIndex compat for idx in [didx, pidx]: assert idx.get_loc(pd.NaT) == 1 assert idx.get_loc(None) == 1 assert idx.get_loc(float("nan")) == 1 assert idx.get_loc(np.nan) == 1 def test_get_loc(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") # get the location of p1/p2 from # monotonic increasing PeriodIndex with non-duplicate idx0 = pd.PeriodIndex([p0, p1, p2]) expected_idx1_p1 = 1 expected_idx1_p2 = 2 assert idx0.get_loc(p1) == expected_idx1_p1 assert idx0.get_loc(str(p1)) == expected_idx1_p1 assert idx0.get_loc(p2) == expected_idx1_p2 assert idx0.get_loc(str(p2)) == expected_idx1_p2 msg = "Cannot interpret 'foo' as period" with pytest.raises(KeyError, match=msg): idx0.get_loc("foo") with pytest.raises(KeyError, match=r"^1\.1$"): idx0.get_loc(1.1) msg = ( r"'PeriodIndex\(\['2017-09-01', '2017-09-02', '2017-09-03'\]," r" dtype='period\[D\]', freq='D'\)' is an invalid key" ) with pytest.raises(TypeError, match=msg): idx0.get_loc(idx0) # get the location of p1/p2 from # monotonic increasing PeriodIndex with duplicate idx1 = pd.PeriodIndex([p1, p1, p2]) expected_idx1_p1 = slice(0, 2) expected_idx1_p2 = 2 assert idx1.get_loc(p1) == expected_idx1_p1 assert idx1.get_loc(str(p1)) == expected_idx1_p1 assert idx1.get_loc(p2) == expected_idx1_p2 assert idx1.get_loc(str(p2)) == expected_idx1_p2 msg = "Cannot interpret 'foo' as period" with pytest.raises(KeyError, match=msg): idx1.get_loc("foo") with pytest.raises(KeyError, match=r"^1\.1$"): idx1.get_loc(1.1) msg = ( r"'PeriodIndex\(\['2017-09-02', '2017-09-02', '2017-09-03'\]," r" dtype='period\[D\]', freq='D'\)' is an invalid key" ) with pytest.raises(TypeError, match=msg): idx1.get_loc(idx1) # get the location of p1/p2 from # non-monotonic increasing/decreasing PeriodIndex with duplicate idx2 = pd.PeriodIndex([p2, p1, p2]) expected_idx2_p1 = 1 expected_idx2_p2 = np.array([True, False, True]) assert idx2.get_loc(p1) == expected_idx2_p1 assert idx2.get_loc(str(p1)) == expected_idx2_p1 tm.assert_numpy_array_equal(idx2.get_loc(p2), expected_idx2_p2) tm.assert_numpy_array_equal(idx2.get_loc(str(p2)), expected_idx2_p2) def test_is_monotonic_increasing(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") idx_inc0 = pd.PeriodIndex([p0, p1, p2]) idx_inc1 = pd.PeriodIndex([p0, p1, p1]) idx_dec0 = pd.PeriodIndex([p2, p1, p0]) idx_dec1 = pd.PeriodIndex([p2, p1, p1]) idx = pd.PeriodIndex([p1, p2, p0]) assert idx_inc0.is_monotonic_increasing is True assert idx_inc1.is_monotonic_increasing is True assert idx_dec0.is_monotonic_increasing is False assert idx_dec1.is_monotonic_increasing is False assert idx.is_monotonic_increasing is False def test_is_monotonic_decreasing(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") idx_inc0 = pd.PeriodIndex([p0, p1, p2]) idx_inc1 = pd.PeriodIndex([p0, p1, p1]) idx_dec0 = pd.PeriodIndex([p2, p1, p0]) idx_dec1 = pd.PeriodIndex([p2, p1, p1]) idx = pd.PeriodIndex([p1, p2, p0]) assert idx_inc0.is_monotonic_decreasing is False assert idx_inc1.is_monotonic_decreasing is False assert idx_dec0.is_monotonic_decreasing is True assert idx_dec1.is_monotonic_decreasing is True assert idx.is_monotonic_decreasing is False def test_contains(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") p3 = pd.Period("2017-09-04") ps0 = [p0, p1, p2] idx0 = pd.PeriodIndex(ps0) for p in ps0: assert p in idx0 assert str(p) in idx0 assert "2017-09-01 00:00:01" in idx0 assert "2017-09" in idx0 assert p3 not in idx0 def test_get_value(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") idx0 = pd.PeriodIndex([p0, p1, p2]) input0 = np.array([1, 2, 3]) expected0 = 2 result0 = idx0.get_value(input0, p1) assert result0 == expected0 idx1 = pd.PeriodIndex([p1, p1, p2]) input1 = np.array([1, 2, 3]) expected1 = np.array([1, 2]) result1 = idx1.get_value(input1, p1) tm.assert_numpy_array_equal(result1, expected1) idx2 = pd.PeriodIndex([p1, p2, p1]) input2 = np.array([1, 2, 3]) expected2 = np.array([1, 3]) result2 = idx2.get_value(input2, p1) tm.assert_numpy_array_equal(result2, expected2) def test_get_indexer(self): # GH 17717 p1 = pd.Period("2017-09-01") p2 = pd.Period("2017-09-04") p3 = pd.Period("2017-09-07") tp0 = pd.Period("2017-08-31") tp1 = pd.Period("2017-09-02") tp2 = pd.Period("2017-09-05") tp3 = pd.Period("2017-09-09") idx = pd.PeriodIndex([p1, p2, p3]) tm.assert_numpy_array_equal( idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp) ) target = pd.PeriodIndex([tp0, tp1, tp2, tp3]) tm.assert_numpy_array_equal( idx.get_indexer(target, "pad"), np.array([-1, 0, 1, 2], dtype=np.intp) ) tm.assert_numpy_array_equal( idx.get_indexer(target, "backfill"), np.array([0, 1, 2, -1], dtype=np.intp) ) tm.assert_numpy_array_equal( idx.get_indexer(target, "nearest"), np.array([0, 0, 1, 2], dtype=np.intp) ) res = idx.get_indexer(target, "nearest", tolerance=pd.Timedelta("1 day")) tm.assert_numpy_array_equal(res, np.array([0, 0, 1, -1], dtype=np.intp)) def test_get_indexer_mismatched_dtype(self): # Check that we return all -1s and do not raise or cast incorrectly dti = pd.date_range("2016-01-01", periods=3) pi = dti.to_period("D") pi2 = dti.to_period("W") expected = np.array([-1, -1, -1], dtype=np.intp) result = pi.get_indexer(dti) tm.assert_numpy_array_equal(result, expected) # This should work in both directions result = dti.get_indexer(pi) tm.assert_numpy_array_equal(result, expected) result = pi.get_indexer(pi2) tm.assert_numpy_array_equal(result, expected) # We expect the same from get_indexer_non_unique result = pi.get_indexer_non_unique(dti)[0] tm.assert_numpy_array_equal(result, expected) result = dti.get_indexer_non_unique(pi)[0] tm.assert_numpy_array_equal(result, expected) result = pi.get_indexer_non_unique(pi2)[0] tm.assert_numpy_array_equal(result, expected) def test_get_indexer_non_unique(self): # GH 17717 p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") p3 = pd.Period("2017-09-04") p4 = pd.Period("2017-09-05") idx1 = pd.PeriodIndex([p1, p2, p1]) idx2 = pd.PeriodIndex([p2, p1, p3, p4]) result = idx1.get_indexer_non_unique(idx2) expected_indexer = np.array([1, 0, 2, -1, -1], dtype=np.intp) expected_missing = np.array([2, 3], dtype=np.int64)
tm.assert_numpy_array_equal(result[0], expected_indexer)
pandas._testing.assert_numpy_array_equal
import unittest import dolphindb as ddb import pandas as pd import numpy as np from numpy.testing import assert_array_equal from pandas.testing import assert_frame_equal, assert_series_equal from setup import HOST, PORT, WORK_DIR, DATA_DIR from datetime import datetime class TestUploadObject(unittest.TestCase): @classmethod def setUp(cls): cls.s = ddb.session() cls.s.connect(HOST, PORT, "admin", "123456") @classmethod def tearDownClass(cls): pass def test_upload_int_scalar(self): a = 1 self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, 1)"), True) re = self.s.run("a") self.assertEqual(re, 1) def test_upload_bool_scalar(self): a = True self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, true)"), True) re = self.s.run("a") self.assertEqual(re, True) def test_upload_float_scalar(self): a = 5.5 self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, 5.5, 1)"), True) re = self.s.run("a") self.assertEqual(re, 5.5) def test_upload_complex_scalar(self): pass def test_upload_string_scalar(self): a = 'Runoob' self.s.upload({'a': a}) self.assertEqual(self.s.run("eqObj(a, 'Runoob')"), True) re = self.s.run("a") self.assertEqual(re, 'Runoob') def test_upload_mix_list(self): list = ['abcd', 786, 2.23, 'runoob', 70.2] self.s.upload({'list': list}) self.assertEqual(self.s.run("eqObj(list, ['abcd', 786, 2.23, 'runoob', 70.2])"), True) re = self.s.run("list") self.assertEqual(re == list, True) def test_upload_int_list(self): a = [4, 5, 7, -3] self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [4, 5, 7, -3])"), True) re = self.s.run("a") self.assertEqual((re == a).all(), True) def test_upload_string_list(self): a = ['aaa', 'bbb', 'ccc'] self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, ['aaa', 'bbb', 'ccc'])"), True) re = self.s.run("a") self.assertEqual((re == a).all(), True) def test_upload_bool_list(self): a = [True, False, False, True] self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [true, false, false, true])"), True) re = self.s.run("a") self.assertEqual((re == a).all(), True) def test_upload_list_list(self): a = [[1, 2, 3], [4, 5, 6]] self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a[0], [1, 2, 3])"), True) self.assertEqual(self.s.run("eqObj(a[1], [4, 5, 6])"), True) re = self.s.run("a") assert_array_equal(re[0], np.array([1, 2, 3])) assert_array_equal(re[1], np.array([4, 5, 6])) def test_upload_list_list(self): a = [[1, 2, 3], [4, 5, 6]] self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a[0], [1, 2, 3])"), True) self.assertEqual(self.s.run("eqObj(a[1], [4, 5, 6])"), True) re = self.s.run("a") assert_array_equal(re, [[1, 2, 3], [4, 5, 6]]) def test_upload_tuple(self): tuple = ('abcd', 786 , 2.23, 'runoob', 70.2) self.s.upload({"tuple": tuple}) self.assertEqual(self.s.run("eqObj(tuple, ['abcd', 786, 2.23, 'runoob', 70.2])"), True) re = self.s.run("tuple") self.assertEqual(re, ['abcd', 786, 2.23, 'runoob', 70.2]) def test_upload_set(self): a = set('abracadabra') self.s.upload({'a': a}) self.assertEqual(self.s.run("eqObj(sort(a.keys()), `a`b`c`d`r)"), True) re = self.s.run("a") self.assertSetEqual(re, a) def test_upload_pandas_series_without_index(self): a = pd.Series([4, 7, -5, 3]) self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [4,7,-5,3])"), True) re = self.s.run("a") assert_array_equal(re, [4, 7, -5, 3]) def test_upload_pandas_series_dtype_object(self): a = pd.Series(['a', 'b', 'c', 'd'], dtype = "object") self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, `a`b`c`d)"), True) re = self.s.run("a") assert_array_equal(re, ['a', 'b', 'c', 'd']) def test_upload_pandas_series_dtype_int32(self): a = pd.Series([1, 2, 3], dtype="int32") self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [1, 2, 3])"), True) re = self.s.run("a") assert_array_equal(re, [1, 2, 3]) def test_upload_pandas_series_dtype_int64(self): a = pd.Series([1, 2, 3], dtype="int64") self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [1, 2, 3])"), True) re = self.s.run("a") assert_array_equal(re, [1, 2, 3]) def test_upload_pandas_series_dtype_float32(self): a = pd.Series([1, 2, np.nan], dtype="float32") self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [1.0, 2.0, NULL])"), True) re = self.s.run("a") assert_array_equal(re, [1, 2, np.nan]) def test_upload_pandas_series_dtype_float64(self): a = pd.Series([1, 2, np.nan], dtype="float64") self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [1.0, 2.0, NULL])"), True) re = self.s.run("a") assert_array_equal(re, [1, 2, np.nan]) def test_upload_pandas_series_dtype_datetime64(self): a = pd.Series(['2018-07-01', '2019-07-01', '2019-10-01'], dtype="datetime64[ns]") self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [2018.07.01T00:00:00.000000000, 2019.07.01T00:00:00.000000000, 2019.10.01T00:00:00.000000000])"), True) re = self.s.run("a") assert_array_equal(re, np.array(['2018-07-01T00:00:00.000000000','2019-07-01T00:00:00.000000000','2019-10-01T00:00:00.000000000'], dtype="datetime64[ns]")) def test_upload_pandas_series_with_index(self): a = pd.Series([4, 7, -5, 3], index=['a', 'b', 'c', 'd']) self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [4,7,-5,3])"), True) re = self.s.run("a") assert_array_equal(re, [4, 7, -5, 3]) # index aborted def test_upload_nan(self): a = np.nan self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, int())"), True) re = self.s.run("a") self.assertEqual(pd.isnull(re), True) def test_upload_array_with_nan(self): a = [np.nan, 1, 2, 3] self.s.upload({'a': a}) self.assertEqual(self.s.run("eqObj(a, [,1,2,3])"), True) re = self.s.run("a") assert_array_equal(re, [np.nan, 1, 2, 3]) def test_upload_dataframe(self): data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} df = pd.DataFrame(data) self.s.upload({"t1": df}) self.assertEqual(self.s.run("all(each(eqObj,t1.values()," "table(['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'] as state, " "[2000, 2001, 2002, 2001, 2002] as year, " "[1.5, 1.7, 3.6, 2.4, 2.9] as pop).values()))"), True) re = self.s.run("t1") assert_frame_equal(re, df) def test_upload_dict(self): data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [5, 7, 6, 4, 9]} self.s.upload({"d": data}) self.assertEqual(self.s.run("eqObj(d[`state].sort(), `Nevada`Nevada`Ohio`Ohio`Ohio)"), True) self.assertEqual(self.s.run("eqObj(d[`year].sort(), [2000, 2001, 2001, 2002, 2002])"), True) self.assertEqual(self.s.run("eqObj(d[`pop].sort(), [4, 5, 6, 7, 9])"), True) re = self.s.run("d") self.assertEqual((data['state'] == re['state']).all(), True) self.assertEqual((data['year'] == re['year']).all(), True) self.assertEqual((data['pop'] == re['pop']).all(), True) def test_upload_numpy_one_dimension_array(self): a = np.array(range(10)) self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, 0..9)"), True) re =self.s.run("a") assert_array_equal(re, [0,1,2,3,4,5,6,7,8,9]) def test_upload_numpy_two_dimension_array(self): a = np.array([[1, 2, 3], [4, 5, 6]]) self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, 1 4 2 5 3 6$2:3)"), True) re = self.s.run("a") # TODO:BUG # assert_array_equal(re, a) assert_array_equal(re[0], a) def test_upload_matrix(self): a = self.s.run("cross(+, 1..5, 1..5)") b = self.s.run("1..25$5:5") self.s.upload({'a': a[0], 'b': b[0]}) self.assertEqual(self.s.run("eqObj(a, cross(+, 1..5, 1..5))"), True) self.assertEqual(self.s.run("eqObj(b, 1..25$5:5)"), True) re = self.s.run('a+b') self.assertEqual((re[0][0] == [3, 9, 15, 21, 27]).all(), True) self.assertEqual((re[0][1] == [5, 11, 17, 23, 29]).all(), True) self.assertEqual((re[0][2] == [7, 13, 19, 25, 31]).all(), True) self.assertEqual((re[0][3] == [9, 15, 21, 27, 33]).all(), True) self.assertEqual((re[0][4] == [11, 17, 23, 29, 35]).all(), True) def test_upload_numpy_eye_matrix(self): a = np.eye(4) self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]*1.0$4:4)"), True) re = self.s.run("a") assert_array_equal(re[0], [[1., 0., 0., 0.],[0., 1., 0., 0.],[0., 0., 1., 0.],[0., 0., 0., 1.]]) def test_upload_numpy_matrix(self): a = np.matrix('1 2; 3 4') self.s.upload({"a": a}) self.assertEqual(self.s.run("eqObj(a, [1,3,2,4]$2:2)"), True) re = self.s.run("a") assert_array_equal(re[0], [[1, 2],[3, 4]]) def test_upload_float32_dataframe(self): pdf = pd.DataFrame({'tfloat': np.arange(1, 10, 1, dtype='float32')}) pdf.loc[1,:]=np.nan self.s.upload({'t':pdf}) re=self.s.run("t") assert_frame_equal(pdf, re, check_dtype=False) def test_upload_numpy_scalar_dtype_datetime64_day(self): a = np.datetime64('2012-06-08', 'D') self.s.upload({'a': a}) self.assertTrue(self.s.run("eqObj(a, 2012.06.08)")) re = self.s.run('a') self.assertEqual(a, re) # TODO: # a = np.datetime64('NaT', 'D') # self.s.upload({'a': a}) # self.assertTrue(self.s.run("eqObj(a, date())")) # re = self.s.run('a') # self.assertEqual(a, re) def test_upload_numpy_scalar_dtype_datetime64_month(self): a = np.datetime64('2012-06', 'M') self.s.upload({'a': a}) self.assertTrue(self.s.run("eqObj(a, 2012.06M)")) re = self.s.run('a') self.assertEqual(a, re) # TODO: # a = np.datetime64('NaT', 'M') # self.s.upload({'a': a}) # self.assertTrue(self.s.run("eqObj(a, month())")) # re = self.s.run('a') # self.assertEqual(a, re) def test_upload_numpy_scalar_dtype_year(self): pass # a = np.datetime64('2012', 'Y') # self.s.upload({'a': a}) def test_upload_numpy_scalar_dtype_datetime64_minute(self): a = np.datetime64('2005-02-25T03:30', 'm') self.s.upload({'a': a}) re = self.s.run('a') self.assertEqual(a, re) # TODO: # a = np.datetime64('NaT', 'm') # self.s.upload({'a': a}) # re = self.s.run('a') # self.assertEqual(a, re) def test_upload_numpy_scalar_dtype_datetime64_second(self): a = np.datetime64('2005-02-25T03:30:25', 's') self.s.upload({'a': a}) self.assertTrue(self.s.run("eqObj(a, 2005.02.25T03:30:25)")) re = self.s.run('a') self.assertEqual(a, re) # TODO: # a = np.datetime64('NaT', 's') # self.s.upload({'a': a}) # re = self.s.run('a') # self.assertEqual(a, re) def test_upload_numpy_scalar_dtype_datetime64_millisecond(self): a = np.datetime64('2005-02-25T03:30:25.008', 'ms') self.s.upload({'a': a}) # self.assertTrue(self.s.run("eqObj(a, 2005.02.05T03:30:25.008)")) re = self.s.run('a') self.assertEqual(re, a) # TODO: # a = np.datetime64('NaT', 'ms') # self.s.upload({'a': a}) # self.assertTrue(self.s.run("eqObj(a, timestamp())")) # re = self.s.run('a') # self.assertEqual(a, re) def test_upload_numpy_scalar_dtype_datetime64_nanosecond(self): a = np.datetime64('2005-02-25T03:30:25.008007006', 'ns') self.s.upload({'a': a}) self.assertTrue(self.s.run("eqObj(a, 2005.02.25T03:30:25.008007006)")) re = self.s.run('a') self.assertEqual(re, a) # TODO: # a = np.datetime64('NaT', 'ns') # self.s.upload({'a': a}) # self.assertTrue(self.s.run("eqObj(a, nanotimestamp())")) # re = self.s.run('a') # self.assertEqual(a, re) def test_upload_numpy_array_dtype_datetime64_D(self): a = np.array(['2012-06-12', '1968-12-05', '2003-09-28'], dtype='datetime64[D]') self.s.upload({'aa': a}) self.assertTrue(self.s.run("eqObj(aa, [2012.06.12, 1968.12.05, 2003.09.28])")) re = self.s.run("aa") assert_array_equal(a, re) def test_upload_dataframe_np_datetime64(self): df = pd.DataFrame({'col1': np.array(['2012-06', '2012-07', '', '2024-12'], dtype = 'datetime64[M]'), 'col2': np.array(['2012-06-01', '', '2012-07-05', '2013-09-08'], dtype = 'datetime64[D]'), 'col3': np.array(['2012-06-01T12:30:00', '2012-06-01T12:30:01', '', ''], dtype = 'datetime64'), 'col4': np.array(['2012-06-08T12:30:00.000','','','2012-06-08T12:30:00.001'], dtype='datetime64'), 'col5': np.array(['2012-06-08T12:30:00.000001', '', '2012-06-08T12:30:00.000002', ''], dtype = 'datetime64')}) self.s.upload({'t': df}) script = ''' expected = table(nanotimestamp([2012.06.01, 2012.07.01, NULL, 2024.12.01]) as col1, nanotimestamp([2012.06.01, NULL, 2012.07.05, 2013.09.08]) as col2, nanotimestamp([2012.06.01T12:30:00, 2012.06.01T12:30:01, NULL, NULL]) as col3, nanotimestamp([2012.06.08T12:30:00.000, NULL, NULL, 2012.06.08T12:30:00.001]) as col4, [2012.06.08T12:30:00.000001000, NULL, 2012.06.08T12:30:00.000002000, NULL] as col5) loop(eqObj, expected.values(), t.values()) ''' re = self.s.run(script) assert_array_equal(re, [True, True, True, True, True]) def test_upload_dataframe_chinese_column_name(self): df = pd.DataFrame({'编号':[1, 2, 3, 4, 5], '序号':['壹','贰','叁','肆','伍']}) self.s.upload({'t': df}) re = self.s.run("select * from t") assert_array_equal(re['编号'], [1, 2, 3, 4, 5]) assert_array_equal(re['序号'], ['壹','贰','叁','肆','伍']) def test_upload_dataframe_chinese_column_name(self): df = pd.DataFrame({'编号':[1, 2, 3, 4, 5], '序号':['壹','贰','叁','肆','伍']}) self.s.upload({'t': df}) re = self.s.run("select * from t") assert_array_equal(re['编号'], [1, 2, 3, 4, 5]) assert_array_equal(re['序号'], ['壹','贰','叁','肆','伍']) def test_upload_numpy_scalar_dtype_datetime64_h(self): a =np.datetime64("2020-01-01T01",'h') self.s.upload({'a': a}) self.assertTrue(self.s.run("eqObj(a, datehour(2020.01.01T01:00:00))")) re = self.s.run('a') self.assertEqual(a, re) # a = np.datetime64('NaT', 'h') # self.s.upload({'a': a}) # self.assertTrue(self.s.run("eqObj(a, datehour())")) # re = self.s.run('a') # self.assertEqual(a, re) def test_upload_numpy_array_dtype_datetime64_h(self): a = np.array(['2012-06-12T01', '1968-12-05T01', '2003-09-28T01'], dtype='datetime64[h]') self.s.upload({'a': a}) self.assertTrue(self.s.run("eqObj(a, datehour([2012.06.12T01:00:00,1968.12.05T01:00:00,2003.09.28T01:00:00]))")) re = self.s.run('a') assert_array_equal(a, re) b = np.repeat(np.datetime64("2020-01-01T01",'h'),500000) self.s.upload({'b': b}) self.assertTrue(self.s.run("eqObj(b, take(datehour(2020.01.01T01:00:00),500000))")) re = self.s.run('b') assert_array_equal(b, re) c = np.repeat(np.datetime64("Nat",'h'),500000) self.s.upload({'c': c}) self.assertTrue(self.s.run("eqObj(c, take(datehour(),500000))")) re = self.s.run('c') assert_array_equal(c,re) def test_upload_dict_twice(self): data = {'id': [1, 2, 2, 3], 'date': np.array(['2019-02-04', '2019-02-05', '2019-02-09', '2019-02-13'], dtype='datetime64[D]'), 'ticker': ['AAPL', 'AMZN', 'AMZN', 'A'], 'price': [22.2, 3.5, 21.4, 26.5]} self.s.upload({"t1": data}) self.s.upload({"t1": data}) re=self.s.run("t1") assert_array_equal(data['id'], re['id']) assert_array_equal(data['date'], re['date']) assert_array_equal(data['ticker'], re['ticker']) assert_array_equal(data['price'], re['price']) def test_upload_dict_repeatedly(self): data = {'id': [1, 2, 2, 3], 'date': np.array(['2019-02-04', '2019-02-05', '2019-02-09', '2019-02-13'], dtype='datetime64[D]'), 'ticker': ['AAPL', 'AMZN', 'AMZN', 'A'], 'price': [22.2, 3.5, 21.4, 26.5]} for i in range(1,100): { self.s.upload({"t1": data}) } re=self.s.run("t1") assert_array_equal(data['id'], re['id']) assert_array_equal(data['date'], re['date']) assert_array_equal(data['ticker'], re['ticker']) assert_array_equal(data['price'], re['price']) def test_upload_list_twice(self): data = [1,2,3] self.s.upload({"t1": data}) self.s.upload({"t1": data}) re=self.s.run("t1") assert_array_equal(data, re) def test_upload_list_repeatedly(self): data = [1,2,3] for i in range(1,100): { self.s.upload({"t1": data}) } re=self.s.run("t1") assert_array_equal(data, re) def test_upload_array_twice(self): data = np.array([1,2,3.0],dtype=np.double) self.s.upload({'arr':data}) self.s.upload({'arr':data}) re = self.s.run("arr") assert_array_equal(data, re) def test_upload_array_repeatedly(self): data = np.array([1,2,3.0],dtype=np.double) for i in range(1,100):{ self.s.upload({'arr':data}) } re = self.s.run("arr") assert_array_equal(data, re) def test_upload_DataFrame_twice(self): df = pd.DataFrame({'id': np.int32([1, 2, 3, 6, 8]), 'x': np.int32([5, 4, 3, 2, 1])}) self.s.upload({'t1': df}) self.s.upload({'t1': df}) re = self.s.run("t1.x.avg()") assert_array_equal(3.0, re) def test_upload_DataFrame_repeatedly(self): df = pd.DataFrame({'id': np.int32([1, 2, 3, 6, 8]), 'x': np.int32([5, 4, 3, 2, 1])}) for i in range(1,1000):{ self.s.upload({'t1': df}) } re = self.s.run("t1.x.avg()") assert_array_equal(3.0, re) def test_upload_paramete(self): df = pd.DataFrame({'id': np.int32([1, 2, 3, 6, 8]), 'x': np.int32([5, 4, 3, 2, 1])}) with self.assertRaises(TypeError): self.s.upload(nameObjectDict_ERROR={'t1': df}) self.s.upload(nameObjectDict={'t1': df}) def test_upload_table_and_update(self): tb=pd.DataFrame({'id': [1, 2, 2, 3], 'ticker': ['AAPL', 'AMZN', 'AMZN', 'A'], 'price': [22, 3.5, 21, 26]}) memtab="test_upload" tt = self.s.table(data=tb.to_dict(), tableAliasName=memtab) self.s.run("update " + memtab + " set wd_time=price") cols = self.s.run("test_upload.colNames()") self.assertEqual(len(cols), 4) def test_upload_DataFrame_None(self): df =
pd.DataFrame({'organization_code': [None, None,None]})
pandas.DataFrame
""" Open AI Gym LunarLander-v2 <NAME> 2021 """ import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from stable_baselines3.common.callbacks import BaseCallback from tqdm import tqdm from os import listdir from tensorflow.python.summary.summary_iterator import summary_iterator class LogStepsCallback(BaseCallback): def __init__(self, log_dir, verbose=0): self.log_dir = log_dir super(LogStepsCallback, self).__init__(verbose) def _on_training_start(self) -> None: self.results = pd.DataFrame(columns=['Reward', 'Done']) print("Τraining starts!") def _on_step(self) -> bool: if 'reward' in self.locals: keys = ['reward', 'done'] else: keys = ['rewards', 'dones'] self.results.loc[len(self.results)] = [self.locals[keys[0]][0], self.locals[keys[1]][0]] return True def _on_training_end(self) -> None: self.results.to_csv(self.log_dir + 'training_data.csv', index=False) print("Τraining ends!") class TqdmCallback(BaseCallback): def __init__(self): super().__init__() self.progress_bar = None def _on_training_start(self): self.progress_bar = tqdm(total=self.locals['total_timesteps']) def _on_step(self): self.progress_bar.update(1) return True def _on_training_end(self): self.progress_bar.close() self.progress_bar = None def save_dict_to_file(dict, path, txt_name='hyperparameter_dict'): f = open(path + '/' + txt_name + '.txt', 'w') f.write(str(dict)) f.close() def calc_episode_rewards(training_data): # Calculate the rewards for each training episode episode_rewards = [] temp_reward_sum = 0 for step in range(training_data.shape[0]): reward, done = training_data.iloc[step, :] temp_reward_sum += reward if done: episode_rewards.append(temp_reward_sum) temp_reward_sum = 0 result =
pd.DataFrame(columns=['Reward'])
pandas.DataFrame
import pandas as pd import numpy as np import math from statistics import mean from sklearn.decomposition import PCA from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error, mean_squared_log_error import os root_path = os.path.dirname(os.path.abspath('__file__')) # root_path = os.path.abspath(os.path.join(root_path,os.path.pardir)) from metrics_ import PPTS,mean_absolute_percentage_error def read_two_stage(station,decomposer,predict_pattern,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\"+predict_pattern+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+predict_pattern+"\\" predictions = pd.DataFrame() time_cost=[] for j in range(1,11): model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) if j==1: records = data['test_y'][0:120] test_pred=data['test_pred'][0:120] time_cost.append(data['time_cost'][0]) test_pred=test_pred.reset_index(drop=True) predictions = pd.concat([predictions,test_pred],axis=1) predictions = predictions.mean(axis=1) records = records.values.flatten() predictions = predictions.values.flatten() r2=r2_score(y_true=records,y_pred=predictions) nrmse=math.sqrt(mean_squared_error(y_true=records,y_pred=predictions))/(sum(records)/len(predictions)) mae=mean_absolute_error(y_true=records,y_pred=predictions) mape=mean_absolute_percentage_error(y_true=records,y_pred=predictions) ppts=PPTS(y_true=records,y_pred=predictions,gamma=5) time_cost=mean(time_cost) return records,predictions,r2,nrmse,mae,mape,ppts,time_cost def read_two_stage_traindev_test(station,decomposer,predict_pattern,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\"+predict_pattern+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+predict_pattern+"\\" test_predss = pd.DataFrame() dev_predss = pd.DataFrame() time_cost=[] for j in range(1,11): model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) if j==1: test_y = data['test_y'][0:120] dev_y = data['dev_y'][0:120] dev_pred=data['dev_pred'][0:120] test_pred=data['test_pred'][0:120] time_cost.append(data['time_cost'][0]) dev_pred=dev_pred.reset_index(drop=True) test_pred=test_pred.reset_index(drop=True) test_predss = pd.concat([test_predss,test_pred],axis=1) dev_predss = pd.concat([dev_predss,dev_pred],axis=1) test_predss = test_predss.mean(axis=1) dev_predss = dev_predss.mean(axis=1) test_y = test_y.values.flatten() dev_y = dev_y.values.flatten() test_predss = test_predss.values.flatten() dev_predss = dev_predss.values.flatten() test_nse=r2_score(y_true=test_y,y_pred=test_predss) test_nrmse=math.sqrt(mean_squared_error(y_true=test_y,y_pred=test_predss))/(sum(test_y)/len(test_predss)) test_mae=mean_absolute_error(y_true=test_y,y_pred=test_predss) test_mape=mean_absolute_percentage_error(y_true=test_y,y_pred=test_predss) test_ppts=PPTS(y_true=test_y,y_pred=test_predss,gamma=5) dev_nse=r2_score(y_true=dev_y,y_pred=dev_predss) dev_nrmse=math.sqrt(mean_squared_error(y_true=dev_y,y_pred=dev_predss))/(sum(dev_y)/len(dev_predss)) dev_mae=mean_absolute_error(y_true=dev_y,y_pred=dev_predss) dev_mape=mean_absolute_percentage_error(y_true=dev_y,y_pred=dev_predss) dev_ppts=PPTS(y_true=dev_y,y_pred=dev_predss,gamma=5) metrics_dict={ "dev_nse":dev_nse, "dev_nrmse":dev_nrmse, "dev_mae":dev_mae, "dev_mape":dev_mape, "dev_ppts":dev_ppts, "test_nse":test_nse, "test_nrmse":test_nrmse, "test_mae":test_mae, "test_mape":test_mape, "test_ppts":test_ppts, "time_cost":time_cost, } time_cost=mean(time_cost) return dev_y,dev_predss,test_y,test_predss,metrics_dict def read_two_stage_max(station,decomposer,predict_pattern,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\"+predict_pattern+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+predict_pattern+"\\" predictions = pd.DataFrame() time_cost=[] r2list=[] for j in range(1,11): model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) r2list.append(data['test_r2'][0]) print("one-month NSE LIST:{}".format(r2list)) max_id = r2list.index(max(r2list)) print("one-month max id:{}".format(max_id)) model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(max_id+1)+".csv" data = pd.read_csv(model_path+model_name) records = data['test_y'][0:120] test_pred=data['test_pred'][0:120] records = records.values.flatten() predictions = test_pred.values.flatten() r2=data['test_r2'][0] nrmse=data['test_nrmse'][0] mae=data['test_mae'][0] mape=data['test_mape'][0] ppts=data['test_ppts'][0] time_cost=data['time_cost'][0] return records,predictions,r2,nrmse,mae,mape,ppts,time_cost def read_pure_esvr(station): model_path = root_path+"\\"+station+"\\projects\\esvr\\" predictions = pd.DataFrame() time_cost=[] for j in range(1,11): model_name = station+"_esvr_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) if j==1: records = data['test_y'][0:120] test_pred=data['test_pred'][0:120] time_cost.append(data['time_cost'][0]) test_pred=test_pred.reset_index(drop=True) predictions = pd.concat([predictions,test_pred],axis=1) predictions = predictions.mean(axis=1) records = records.values.flatten() predictions = predictions.values.flatten() r2=r2_score(y_true=records,y_pred=predictions) nrmse=math.sqrt(mean_squared_error(y_true=records,y_pred=predictions))/(sum(records)/len(records)) mae=mean_absolute_error(y_true=records,y_pred=predictions) mape=mean_absolute_percentage_error(y_true=records,y_pred=predictions) ppts=PPTS(y_true=records,y_pred=predictions,gamma=5) time_cost=mean(time_cost) return records,predictions,r2,nrmse,mae,mape,ppts,time_cost def read_pca_metrics(station,decomposer,start_component,stop_component,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\data\\"+wavelet_level+"\\one_step_1_month_forecast\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\data\\one_step_1_month_forecast\\" train = pd.read_csv(model_path+"minmax_unsample_train.csv") dev = pd.read_csv(model_path+"minmax_unsample_dev.csv") test = pd.read_csv(model_path+"minmax_unsample_test.csv") norm_id=pd.read_csv(model_path+"norm_unsample_id.csv") sMax = (norm_id['series_max']).values sMin = (norm_id['series_min']).values # Conncat the training, development and testing samples samples = pd.concat([train,dev,test],axis=0) samples = samples.reset_index(drop=True) # Renormalized the entire samples samples = np.multiply(samples + 1,sMax - sMin) / 2 + sMin y = samples['Y'] X = samples.drop('Y',axis=1) pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("n_components_pca_mle:{}".format(n_components_pca_mle)) mle = X.shape[1]-n_components_pca_mle nrmse=[] r2=[] mae=[] mape=[] ppts=[] for i in range(start_component,stop_component+1): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\one_step_1_month_forecast_with_pca_"+str(i)+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\one_step_1_month_forecast_with_pca_"+str(i)+"\\" # averaging the trained svr with different seed test_pred_df = pd.DataFrame() for j in range(1,11): model_name = station+"_"+decomposer+"_esvr_one_step_1_month_forecast_with_pca_"+str(i)+"_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) test_y = data['test_y'][0:120] test_pred=data['test_pred'][0:120] test_pred_df = pd.concat([test_pred_df,test_pred],axis=1) test_pred = test_pred_df.mean(axis=1) test_y = test_y.values test_pred = test_pred.values print(type(test_y)) print(type(test_pred)) r2.append(r2_score(y_true=test_y,y_pred=test_pred)) nrmse.append(math.sqrt(mean_squared_error(y_true=test_y,y_pred=test_pred))/(sum(test_y)/len(test_y))) mae.append(mean_absolute_error(y_true=test_y,y_pred=test_pred)) mape.append(mean_absolute_percentage_error(y_true=test_y,y_pred=test_pred)) ppts.append(PPTS(y_true=test_y,y_pred=test_pred,gamma=5)) pc0_records,pc0_predictions,pc0_r2,pc0_nrmse,pc0_mae,pc0_mape,pc0_ppts,pc0_time_cost=read_two_stage(station=station,decomposer=decomposer,predict_pattern="one_step_1_month_forecast",) r2.append(pc0_r2) nrmse.append(pc0_nrmse) mae.append(pc0_mae) mape.append(pc0_mape) ppts.append(pc0_ppts) r2.reverse() nrmse.reverse() mae.reverse() mape.reverse() ppts.reverse() return mle,r2,nrmse,mae,mape,ppts def read_long_leading_time(station,decomposer,mode='new',wavelet_level="db10-2"): records=[] predictions=[] nrmse=[] r2=[] mae=[] mape=[] ppts=[] if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\" m1_records,m1_predictions,m1_r2,m1_nrmse,m1_mae,m1_mape,m1_ppts,m1_time_cost=read_two_stage(station=station,decomposer=decomposer,predict_pattern="one_step_1_month_forecast",) records.append(m1_records) predictions.append(m1_predictions) r2.append(m1_r2) nrmse.append(m1_nrmse) mae.append(m1_mae) mape.append(m1_mape) ppts.append(m1_ppts) # averaging the trained svr with different seed test_pred_df = pd.DataFrame() leading_times=[3,5,7,9] for leading_time in leading_times: print("Reading mode:{}".format(mode)) if mode==None: file_path = model_path+"one_step_"+str(leading_time)+"_month_forecast//" else: file_path = model_path+"one_step_"+str(leading_time)+"_month_forecast_"+mode+"//" for j in range(1,11): if mode == None: model_name = station+"_"+decomposer+"_esvr_one_step_"+str(leading_time)+"_month_forecast_seed"+str(j)+".csv" else: model_name = station+"_"+decomposer+"_esvr_one_step_"+str(leading_time)+"_month_forecast_"+mode+"_seed"+str(j)+".csv" data = pd.read_csv(file_path+model_name) test_y = data['test_y'][0:120] test_pred=data['test_pred'][0:120] test_pred_df = pd.concat([test_pred_df,test_pred],axis=1) test_pred = test_pred_df.mean(axis=1) test_y = test_y.values test_pred = test_pred.values print(type(test_y)) print(type(test_pred)) records.append(test_y) predictions.append(test_pred) r2.append(r2_score(y_true=test_y,y_pred=test_pred)) nrmse.append(math.sqrt(mean_squared_error(y_true=test_y,y_pred=test_pred))/(sum(test_y)/len(test_y))) mae.append(mean_absolute_error(y_true=test_y,y_pred=test_pred)) mape.append(mean_absolute_percentage_error(y_true=test_y,y_pred=test_pred)) ppts.append(PPTS(y_true=test_y,y_pred=test_pred,gamma=5)) return records,predictions,r2,nrmse,mae,mape,ppts def read_long_leading_time_max(station,decomposer,model='new',wavelet_level="db10-2"): records=[] predictions=[] nrmse=[] r2=[] mae=[] mape=[] ppts=[] if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\" m1_records,m1_predictions,m1_r2,m1_nrmse,m1_mae,m1_mape,m1_ppts,m1_time_cost=read_two_stage_max(station=station,decomposer=decomposer,predict_pattern="one_step_1_month_forecast",) records.append(m1_records) predictions.append(m1_predictions) r2.append(m1_r2) nrmse.append(m1_nrmse) mae.append(m1_mae) mape.append(m1_mape) ppts.append(m1_ppts) # averaging the trained svr with different seed test_pred_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[ ]: # standard libraries import pandas as pd # Binance wrapper libraries from binance.client import Client from binance.websockets import BinanceSocketManager # In[ ]: def web_socket_modularized(): """ Signature: web_socket() -> 'BinanceSocketManager' Docstring: Deals with real-time data. Also takes care of plotting. It makes use of Binance' API ('https://api.binance.com/api/v3/') Returns ------- BinanceSocketManager Example ------- >>> web_socket() """ # real-time data and chart # have to be global for real-time interaction global rtdata global rtchart # initialize client without API keys, as they are not needed for now client = Client("", "") # this function runs every time the socket receives new data def process_message(x): global rtdata global rtchart # get the last minute from the existing data t1 = pd.to_datetime(rtdata.tail(1).index.values[0]) # get the last minute from the new data t2 = pd.to_datetime(x['k']['t'], unit='ms') # convert the new data (kline tipe) into a dataframe new_df = pd.DataFrame([x['k']]) # change the data type for t new_df['t'] = pd.to_datetime(new_df['t'], unit='ms') # change the data type for T new_df['T'] = pd.to_datetime(new_df['T'], unit='ms') # change to index into datetime with frequency = minutes new_df.index = pd.DatetimeIndex(new_df.t, freq='min') # drop the t column as it is now the index new_df = new_df.drop('t', axis=1) # reindex the dataframe using the existing data as a reference new_df.reindex(columns=rtdata.columns) # if the timestamps are different then append new values if t1 != t2: rtdata = pd.concat([rtdata, new_df], axis=0) #if it's still the same minute then update the value #this way we can see every change even before the candle is over else: rtdata.loc[rtdata.index[-1]] = new_df.loc[new_df.index[-1]] # update the chart rtchart.data[0].x=rtdata.index rtchart.data[0].open=rtdata.o rtchart.data[0].high=rtdata.h rtchart.data[0].low=rtdata.l rtchart.data[0].close=rtdata.c # recenter the plot leaving some space for predictions rtchart.update_xaxes(range=[rtdata.index[-16],rtdata.index[-1] +
pd.Timedelta(minutes=5)
pandas.Timedelta
import matplotlib.pyplot as plt import matplotlib.lines import numpy as np import pandas as pd from sklearn.metrics import roc_auc_score, average_precision_score from oolearning.converters.TwoClassConverterBase import TwoClassConverterBase from oolearning.converters.TwoClassPrecisionRecallOptimizerConverter import \ TwoClassPrecisionRecallOptimizerConverter from oolearning.converters.TwoClassRocOptimizerConverter import TwoClassRocOptimizerConverter from oolearning.evaluators.TwoClassEvaluator import TwoClassEvaluator class TwoClassProbabilityEvaluator(TwoClassEvaluator): """ Evaluates 2-class classification problems, where "probabilities" are supplied as well as a Converter (i.e. an object that encapsulates the logic to convert the probabilities to classes. """ def __init__(self, converter: TwoClassConverterBase): super().__init__(positive_class=converter.positive_class) self._converter = converter self._actual_classes = None self._predicted_probabilities = None self._auc_roc = None self._auc_precision_recall = None self._fpr = None self._tpr = None self._ideal_threshold_roc = None self._ppv = None self._ideal_threshold_ppv_tpr = None @property def auc_roc(self): return self._auc_roc @property def auc_precision_recall(self): return self._auc_precision_recall def evaluate(self, actual_values: np.ndarray, predicted_values: pd.DataFrame): self._actual_classes = actual_values self._predicted_probabilities = predicted_values self._auc_roc = roc_auc_score(y_true=[1 if x == self._positive_class else 0 for x in actual_values], y_score=predicted_values[self._positive_class]) # according to this (), average precision is same as auc of pr curve self._auc_precision_recall = average_precision_score(y_true=[1 if x == self._positive_class else 0 for x in actual_values], y_score=predicted_values[self._positive_class]) predicted_classes = self._converter.convert(values=predicted_values) super().evaluate(actual_values=actual_values, predicted_values=predicted_classes) def plot_roc_curve(self): """ :return: an ROC curve, indicating the point (threshold) that has the minimum distance to the upper left corner (i.e. a perfect predictor). If a threshold is specified in the class constructor, then that threshold is also annotated on the graph. """ if self._fpr is None or self._tpr is None or self._ideal_threshold_roc is None: converter = TwoClassRocOptimizerConverter(actual_classes=self._actual_classes, positive_class=self._converter.positive_class) converter.convert(values=self._predicted_probabilities) self._fpr = converter.false_positive_rates self._tpr = converter.true_positive_rates self._ideal_threshold_roc = converter.ideal_threshold self._create_curve(x_coordinates=self._fpr, y_coordinates=self._tpr, threshold=0.5, ideal_threshold=self._ideal_threshold_roc, title='ROC (AUC={0})'.format(round(self.auc_roc, 3)), x_label='False Positive Rate (1 - True Negative Rate)', y_label='True Positive Rate', corner='Left') plt.tight_layout() def plot_precision_recall_curve(self): """ # TODO document """ self.plot_ppv_tpr_curve() def plot_ppv_tpr_curve(self): """ # TODO document """ if self._ppv is None or self._tpr is None or self._ideal_threshold_ppv_tpr is None: converter = TwoClassPrecisionRecallOptimizerConverter(actual_classes=self._actual_classes, positive_class=self._converter.positive_class) # noqa converter.convert(values=self._predicted_probabilities) self._ppv = converter.positive_predictive_values self._tpr = converter.true_positive_rates self._ideal_threshold_ppv_tpr = converter.ideal_threshold self._create_curve(x_coordinates=self._tpr, y_coordinates=self._ppv, threshold=0.5, ideal_threshold=self._ideal_threshold_ppv_tpr, title='Positive Predictive Value vs. True Positive Rate', x_label='True Positive Rate', y_label='Positive Predictive Value', corner='Right') plt.tight_layout() def plot_calibration(self): """ :return: calibration plot. Predicted probabilities are matched with the actual class and binned by the prediction in intervals of 0.1. i.e. all probabilities/classes that have a prediction between 0 to 0.1 are grouped together, > 0.1 <= 0.2 are grouped together, and so on. For each group, the percent of positive classes found is calculated. For example, in the group that has predicted probabilities between 0 and 0.1, we would expect the average probability to be 0.05, and therefore we would expect about 0.05 (i.e. 5%) of the group to be a positive class. The percentage of positive classes for each bin is plotted. If the points fall along a 45 degree line, the model has produced well-calibrated probabilities. """ calibration_data = pd.concat([self._predicted_probabilities[self._positive_class], self._actual_classes], axis=1) calibration_data.columns = ['probabilities', 'actual_classes'] bin_labels = ['[0, 0.1]', '(0.1, 0.2]', '(0.2, 0.3]', '(0.3, 0.4]', '(0.4, 0.5]', '(0.5, 0.6]', '(0.6, 0.7]', '(0.7, 0.8]', '(0.8, 0.9]', '(0.9, 1.0]'] # .cut maintains distribution shape bins = pd.cut(calibration_data.probabilities, bins=np.arange(0.0, 1.1, 0.1), include_lowest=True, labels=bin_labels) calibration_data['bins'] = bins # calibration_data.bins.value_counts(ascending=True) # calibration_data.head() # calibration_data.sort_values(['bins', 'actual_classes']) def calibration_grouping(x): # noinspection PyTypeChecker number_positive_events = sum(x.actual_classes == self._positive_class) total_observations = len(x.actual_classes) d = {'Positive Events Found': number_positive_events, 'Total Observations': total_observations, 'Actual Calibration': 0 if total_observations == 0 else number_positive_events / total_observations} return
pd.Series(d, index=['Positive Events Found', 'Total Observations', 'Actual Calibration'])
pandas.Series
import torch from models.mobilenetv2 import MobileNetV2 import sklearn.metrics from tqdm import tqdm import argparse import logging from utils.dataset import LoadImagesAndLabels, preprocess from utils.torch_utils import select_device import yaml import pandas as pd import os import numpy as np LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.INFO) logging.basicConfig() def evaluate(opt): if isinstance(opt.val_csv,str): opt.val_csv = [opt.val_csv] df_val = [] for df in opt.val_csv: df = pd.read_csv(df) df_val.append(df) df_val =
pd.concat(df_val, axis=0)
pandas.concat
"""genes_from_edge_table.py: This script pulls a single gene from the Coexpression edge table to identify adjacent nodes and prints the gene with neighbors to the screen.""" __author__ = "<NAME>" import pandas as pd from sys import argv, exit if len(argv) != 3: print("\npython {0} edge.table gene_symbol\n".format(argv[0])) exit(1) df =
pd.read_csv(argv[1])
pandas.read_csv
# run all tests: # pytest -sv --cov-report term-missing --cov=workflow_array_ephys -p no:warnings tests/ # run one test, debug: # pytest [above options] --pdb tests/tests_name.py -k function_name import os import sys import pytest import pandas as pd import pathlib import datajoint as dj from workflow_array_ephys.paths import get_ephys_root_data_dir from element_interface.utils import find_full_path # ------------------- SOME CONSTANTS ------------------- _tear_down = False verbose = False test_user_data_dir = pathlib.Path('./tests/user_data') test_user_data_dir.mkdir(exist_ok=True) sessions_dirs = ['subject1/session1', 'subject2/session1', 'subject2/session2', 'subject3/session1', 'subject4/experiment1', 'subject5/session1', 'subject6/session1'] # -------------------- HELPER CLASS -------------------- class QuietStdOut: """If verbose set to false, used to quiet tear_down table.delete prints""" def __enter__(self): self._original_stdout = sys.stdout sys.stdout = open(os.devnull, 'w') def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout.close() sys.stdout = self._original_stdout # ---------------------- FIXTURES ---------------------- @pytest.fixture(autouse=True) def dj_config(): """ If dj_local_config exists, load""" if pathlib.Path('./dj_local_conf.json').exists(): dj.config.load('./dj_local_conf.json') dj.config['safemode'] = False dj.config['custom'] = { 'database.prefix': (os.environ.get('DATABASE_PREFIX') or dj.config['custom']['database.prefix']), 'ephys_root_data_dir': (os.environ.get('EPHYS_ROOT_DATA_DIR').split(',') if os.environ.get('EPHYS_ROOT_DATA_DIR') else dj.config['custom']['ephys_root_data_dir']) } return @pytest.fixture(autouse=True) def test_data(dj_config): """If data does not exist or partial data is present, attempt download with DJArchive to the first listed root directory""" test_data_exists = True for p in sessions_dirs: try: find_full_path(get_ephys_root_data_dir(), p) except FileNotFoundError: test_data_exists = False # If data not found if not test_data_exists: # attempt to djArchive dowload try: dj.config['custom'].update({ 'djarchive.client.endpoint': os.environ['DJARCHIVE_CLIENT_ENDPOINT'], 'djarchive.client.bucket': os.environ['DJARCHIVE_CLIENT_BUCKET'], 'djarchive.client.access_key': os.environ['DJARCHIVE_CLIENT_ACCESSKEY'], 'djarchive.client.secret_key': os.environ['DJARCHIVE_CLIENT_SECRETKEY'] }) except KeyError as e: raise FileNotFoundError( f' Full test data not available.' f'\nAttempting to download from DJArchive,' f' but no credentials found in environment variables.' f'\nError: {str(e)}') import djarchive_client client = djarchive_client.client() test_data_dir = get_ephys_root_data_dir() if isinstance(test_data_dir, list): # if multiple root dirs, first test_data_dir = test_data_dir[0] client.download('workflow-array-ephys-benchmark', 'v2', str(test_data_dir), create_target=False) return @pytest.fixture def pipeline(): from workflow_array_ephys import pipeline yield {'subject': pipeline.subject, 'lab': pipeline.lab, 'ephys': pipeline.ephys, 'probe': pipeline.probe, 'session': pipeline.session, 'get_ephys_root_data_dir': pipeline.get_ephys_root_data_dir} if verbose and _tear_down: pipeline.subject.Subject.delete() elif not verbose and _tear_down: with QuietStdOut(): pipeline.subject.Subject.delete() @pytest.fixture def subjects_csv(): """ Create a 'subjects.csv' file""" input_subjects = pd.DataFrame(columns=['subject', 'sex', 'subject_birth_date', 'subject_description']) input_subjects.subject = ['subject1', 'subject2', 'subject3', 'subject4', 'subject5', 'subject6'] input_subjects.sex = ['F', 'M', 'M', 'M', 'F', 'F'] input_subjects.subject_birth_date = ['2020-01-01 00:00:01', '2020-01-01 00:00:01', '2020-01-01 00:00:01', '2020-01-01 00:00:01', '2020-01-01 00:00:01', '2020-01-01 00:00:01'] input_subjects.subject_description = ['dl56', 'SC035', 'SC038', 'oe_talab', 'rich', 'manuel'] input_subjects = input_subjects.set_index('subject') subjects_csv_path = pathlib.Path('./tests/user_data/subjects.csv') input_subjects.to_csv(subjects_csv_path) # write csv file yield input_subjects, subjects_csv_path subjects_csv_path.unlink() # delete csv file after use @pytest.fixture def ingest_subjects(pipeline, subjects_csv): from workflow_array_ephys.ingest import ingest_subjects _, subjects_csv_path = subjects_csv ingest_subjects(subjects_csv_path, verbose=verbose) return @pytest.fixture def sessions_csv(test_data): """ Create a 'sessions.csv' file""" input_sessions =
pd.DataFrame(columns=['subject', 'session_dir'])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler, PolynomialFeatures, OneHotEncoder from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso, LassoCV, Ridge, RidgeCV from sklearn.metrics import r2_score, mean_squared_error """ 1. get_Xy(df): Separate features and target variable 2. get_score(X_train,X_val,y_train,y_val) 3. categorical(X_train,X_val,X_test,cat_variable) """ def get_Xy(df): df = df.dropna() target = 'opening_weekend_usa' all_column = df.columns.values.tolist() all_column.remove(target) y = df[target] X = df[all_column] return X, y def get_score(X_train,X_val,y_train,y_val): # fit linear regression to training data lr_model = LinearRegression() lr_model.fit(X_train, y_train) y_pred = lr_model.predict(X_val) # score fit model on validation data train_score = lr_model.score(X_train, y_train) val_score = lr_model.score(X_val, y_val) rmse = np.sqrt(mean_squared_error(y_val, y_pred)) # report results print('\nTrain R^2 score was:', train_score) print('Validation R^2 score was:', val_score) print(f'RMSE: {rmse:.2f} \n') # print('Feature coefficient results:') # for feature, coef in zip(X.columns, lr_model.coef_): # print(feature, ':', f'{coef:.2f}') # Visualization fig, ax = plt.subplots(1, 1) plt.scatter(y_val, y_pred, alpha=0.4) ax.set_xlabel('Opening weekend revenue ($ in millions)',fontsize=20) ax.set_ylabel('Prediction ($ in millions)',fontsize=20) ax.set_title('R$^2$: %0.2f' % val_score, fontsize=20) plt.xticks(fontsize=16) plt.yticks(fontsize=16) x=np.linspace(0,0.7e2,50) # x=np.linspace(4,9,50) y=x plt.plot(x,y,color='firebrick',linewidth=3,alpha=0.6) plt.ylim(0,) plt.xlim(0,) return fig, lr_model, y_pred def categorical_multilabel(X_train,X_val,X_test,cat_variable): """ Input: X_train,X_val,X_test,categorical_variable Processing: preprocessing the three sets separately: 1. Separate continuous and categorical variable 2. Scaling + polynomial fit the conitnuous variables and get_dummies on the categorical variable 3. Combine back the continuous and categorical data Return: tranformed X_train, X_val, X_test """ scaler = StandardScaler() poly = PolynomialFeatures(degree=2,interaction_only = False) # Train set # Convert genre to dummies X_train_genre = X_train[cat_variable].str.join(sep='*').str.get_dummies(sep='*') known_columns = X_train_genre.columns # Scaling continuous variables X_train_con = X_train[con_feature] X_train_con_scaled = scaler.fit_transform(X_train_con) X_train_con_scaled_df = pd.DataFrame(X_train_con_scaled, columns=X_train_con.columns, index=X_train_con.index) X_train_poly = poly.fit_transform(X_train_con_scaled) X_train_poly_df = pd.DataFrame(X_train_poly, columns=poly.get_feature_names(X_train_con.columns), index=X_train_con.index) #Combine # X_train = pd.concat([X_train_genre,X_train_con_scaled_df],axis=1) X_train = pd.concat([X_train_genre,X_train_poly_df],axis=1) # Val set # Convert genre to dummies X_val_genre = X_val[cat_variable].str.join(sep='*').str.get_dummies(sep='*') val_columns = X_val_genre.columns X_val_genre = X_val_genre[[x for x in val_columns if x in known_columns]] fill_dict = { c : 0 for c in [x for x in known_columns if x not in val_columns] } X_val_genre = X_val_genre.assign(**fill_dict) # Scaling continuous variables X_val_con = X_val[con_feature] X_val_con_scaled = scaler.transform(X_val_con) X_val_con_scaled_df = pd.DataFrame(X_val_con_scaled, columns=X_val_con.columns, index=X_val_con.index) X_val_poly = poly.transform(X_val_con_scaled) X_val_poly_df = pd.DataFrame(X_val_poly, columns=poly.get_feature_names(X_val_con.columns), index=X_val_con.index) #Combine # X_val = pd.concat([X_val_genre,X_val_con_scaled_df],axis=1) X_val = pd.concat([X_val_genre,X_val_poly_df],axis=1) # Test set # Convert genre to dummies X_test_genre = X_test[cat_variable].str.join(sep='*').str.get_dummies(sep='*') test_columns = X_test.columns X_test_genre = X_test_genre[[x for x in test_columns if x in known_columns]] fill_dict = { c : 0 for c in [x for x in known_columns if x not in test_columns] } X_test_genre = X_test_genre.assign(**fill_dict) # Scaling continuous variables X_test_con = X_test[con_feature] X_test_con_scaled = scaler.transform(X_test_con) X_test_con_scaled_df = pd.DataFrame(X_test_con_scaled, columns=X_test_con.columns, index=X_test_con.index) X_test_poly = poly.transform(X_test_con_scaled) X_test_poly_df = pd.DataFrame(X_test_poly, columns=poly.get_feature_names(X_test_con.columns), index=X_test_con.index) #Combine # X_test = pd.concat([X_test_genre,X_test_con_scaled_df],axis=1) X_test =
pd.concat([X_test_genre,X_test_poly_df],axis=1)
pandas.concat
import datetime import numpy import pandas __all__ = ['get_arrays'] def get_timescale(t, unit): ''' Take a datetime or a numerical type, return two things: 1. A unit 2. A function that converts it to numerical form ''' def get_timedelta_converter(t_factor): return lambda td: td.total_seconds() * t_factor if not isinstance(t, datetime.timedelta) or \ not isinstance(t, pandas.Timedelta): # Assume numeric type return None, lambda x: float(x) for u, f in [('years', 365.25*24*60*60), ('days', 24*60*60), ('hours', 60*60), ('minutes', 60), ('seconds', 1)]: if u == unit or (unit is None and t >= datetime.timedelta(seconds=f)): return u, get_timedelta_converter(1./f) raise Exception('Could not find unit for %f and %s' % (t, unit)) def get_groups(data, group_min_size, max_groups): ''' Picks the top groups out of a dataset 1. Remove groups with too few data points 2. Pick the top groups 3. Sort groups lexicographically ''' group2count = {} for group in data: group2count[group] = group2count.get(group, 0) + 1 groups = [group for group, count in group2count.items() if count >= group_min_size] if max_groups >= 0: groups = sorted(groups, key=group2count.get, reverse=True)[:max_groups] return sorted(groups, key=lambda g: (g is None, g)) # Put Nones last def _sub(a, b): # Computes a - b for a bunch of different cases if isinstance(a, datetime.datetime) and a.tzinfo is not None: return a.astimezone(b.tzinfo) - b else: # Either naive timestamps or numerical type return a - b def get_arrays(data, features=None, groups=None, created=None, converted=None, now=None, unit=None, group_min_size=0, max_groups=-1): ''' Converts a dataframe to a list of numpy arrays. Generates either feature data, or group data. :param data: Pandas dataframe :param features: string (optional), refers to a column in the dataframe containing features, each being a 1d-vector or list of features. If not provided, then it it will look for a column in the dataframe named "features". This argument can also be a list of columns. :param groups: string (optional), refers to a column in the dataframe containing the groups for each row. If not provided, then it will look for a column in the dataframe named "groups". :param created: string (optional), refers to a column in the dataframe containing timestamps of when each item was "created". If not provided, then it will look for a column in the dataframe named "created". :param converted: string, refers to a column in the dataframe containing timestamps of when each item converted. If there is no column containing creation values, then the converted values should be timedeltas denoting time until conversion. If this argument is not provided, then it will look for a column in the dataframe named "created". :param now: string (optional), refers to a column in the dataframe containing the point in time up until which we have observed non-conversion. If there is no column containing creation value, then these values should be timedeltas. If this argument is not provided, the current timestamp will be used. :param unit: string (optional), time unit to use when converting to numerical values. Has to be one of "years", "days", "hours", "minutes", or "seconds". If not provided, then a choice will be made based on the largest time interval in the inputs. :param group_min_size: integer (optional), only include groups that has at least this many observations :param max_groups: integer (optional), only include the `n` largest groups :returns: tuple (unit, groups, arrays) `unit` is the unit chosen. Will be one of "years", "days", "hours", "minutes", or "seconds". If the `unit` parameter is passed, this will be the same. `groups` is a list of strings containing the groups. Will be `None` if `groups` is not set. `arrays` is a tuple of numpy arrays `(G, B, T)` or `(X, B, T)` containing the transformed input in numerical format. `G`, `B`, `T` will all be 1D numpy arrays. `X` will be a 2D numpy array. ''' res = [] # First, construct either the `X` or the `G` array if features is None and groups is None: if 'group' in data.columns: groups = 'group' elif 'features' in data.columns: features = 'features' else: raise Exception('Neither of the `features` or `group` parameters' ' was provided, and there was no `features` or' ' `groups` dataframe column') if groups is not None: groups_list = get_groups(data[groups], group_min_size, max_groups) group2j = dict((group, j) for j, group in enumerate(groups_list)) # Remove rows for rare groups data = data[data[groups].isin(group2j.keys())] G = data[groups].apply(lambda g: group2j.get(g, -1)).values res.append(G) else: groups_list = None if type(features) == tuple: features = list(features) # Otherwise sad Panda X = numpy.array([numpy.array(z) for z in data[features].values]) res.append(X) # Next, construct the `B` and `T` arrays if converted is None: if 'converted' in data.columns: converted = 'converted' else: raise Exception('The `converted` parameter was not provided' ' and there was no `converted` dataframe column') if now is None and 'now' in data.columns: now = 'now' if created is None and 'created' in data.columns: created = 'created' B = ~
pandas.isnull(data[converted])
pandas.isnull
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from code import visualize # Iteration 13 def split_3(df, test_size=0.1, oversampling_ratio=1): print('\nSplit - Train&Dev Size = ', 1-test_size, ' , Test Size = ', test_size, '.', sep='') vcs_one = df['city_id'].value_counts() vcs_one = np.array(vcs_one[vcs_one==1].index) df['city_id'][df['city_id'].isin(vcs_one)]=-1 df_train_dev, df_test = train_test_split(df, test_size=test_size, shuffle=True, stratify=df['city_id'], random_state=0) n = round(oversampling_ratio*len(df_train_dev)) df_sampled = df_train_dev.sample(n=n, replace=True, weights=1+np.log1p(df_train_dev['n_clicks']), random_state=0) df_train_dev = pd.concat([df_train_dev, df_sampled]) X_train_dev = np.array(df_train_dev.drop(columns=['n_clicks']), dtype=float) y_train_dev = np.array(df_train_dev['n_clicks'], dtype=float) X_test = np.array(df_test.drop(columns=['n_clicks']), dtype=float) y_test = np.array(df_test['n_clicks'], dtype=float) print('n_clicks summaries in train and test sets:',
pd.DataFrame(y_train_dev)
pandas.DataFrame
import builtins from io import StringIO import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna import pandas._testing as tm import pandas.core.nanops as nanops from pandas.util import _test_decorators as td @pytest.fixture( params=[np.int32, np.int64, np.float32, np.float64], ids=["np.int32", "np.int64", "np.float32", "np.float64"], ) def numpy_dtypes_for_minmax(request): """ Fixture of numpy dtypes with min and max values used for testing cummin and cummax """ dtype = request.param min_val = ( np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min ) max_val = ( np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max ) return (dtype, min_val, max_val) @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_intercept_builtin_sum(): s = Series([1.0, 2.0, np.nan, 3.0]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))" assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal( result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname)), ) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( { "group": [1, 1, 2], "int": [1, 2, 3], "float": [4.0, 5.0, 6.0], "string": list("abc"), "category_string": pd.Series(list("abc")).astype("category"), "category_int": [7, 8, 9], "datetime": pd.date_range("20130101", periods=3), "datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"), "timedelta": pd.timedelta_range("1 s", periods=3, freq="s"), }, columns=[ "group", "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ], ) expected_columns_numeric = Index(["int", "float", "category_int"]) # mean / median expected = pd.DataFrame( { "category_int": [7.5, 9], "float": [4.5, 6.0], "timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")], "int": [1.5, 3], "datetime": [ pd.Timestamp("2013-01-01 12:00:00"), pd.Timestamp("2013-01-03 00:00:00"), ], "datetimetz": [ pd.Timestamp("2013-01-01 12:00:00", tz="US/Eastern"), pd.Timestamp("2013-01-03 00:00:00", tz="US/Eastern"), ], }, index=Index([1, 2], name="group"), columns=["int", "float", "category_int", "datetime", "datetimetz", "timedelta"], ) for attr in ["mean", "median"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index( [ "int", "float", "string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["min", "max"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index( [ "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["first", "last"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "string", "category_int", "timedelta"]) result = df.groupby("group").sum() tm.assert_index_equal(result.columns, expected_columns_numeric) result = df.groupby("group").sum(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int"]) for attr in ["prod", "cumprod"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index( ["int", "float", "category_int", "datetime", "datetimetz", "timedelta"] ) for attr in ["cummin", "cummax"]: result = getattr(df.groupby("group"), attr)() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int", "timedelta"]) result = getattr(df.groupby("group"), "cumsum")() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), "cumsum")(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]], columns=["A", "B", "C"] ) g = df.groupby("A") gni = df.groupby("A", as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[1, 0.0], [3, np.nan]], columns=["A", "B"], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name="A") expected_col = pd.MultiIndex( levels=[["B"], ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]], codes=[[0] * 8, list(range(8))], ) expected = pd.DataFrame( [ [1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], ], index=expected_index, columns=expected_col, ) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat( [ df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T, ] ) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame( [[True, True], [False, True]], columns=["B", "C"], index=[1, 3] ) expected.index.name = "A" result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"]) expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"]) result = df.groupby("A").cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby("A", as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby("A").cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby("A").cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"] ) @pytest.mark.parametrize( "method,data", [ ("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("nth", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}], "args": [1]}), ("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}), ], ) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}] ) df["b"] = df.b.astype(dtype) if "args" not in data: data["args"] = [] if "out_type" in data: out_type = data["out_type"] else: out_type = dtype exp = data["df"] df_out = pd.DataFrame(exp) df_out["b"] = df_out.b.astype(out_type) df_out.set_index("a", inplace=True) grpd = df.groupby("a") t = getattr(grpd, method)(*data["args"]) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize( "i", [ ( Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448"), ), (24650000000000001, 24650000000000002), ], ) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}]) grp_exp = { "first": {"expected": i[0]}, "last": {"expected": i[1]}, "min": {"expected": i[0]}, "max": {"expected": i[1]}, "nth": {"expected": i[1], "args": [1]}, "count": {"expected": 2}, } for method, data in grp_exp.items(): if "args" not in data: data["args"] = [] grouped = df.groupby("a") res = getattr(grouped, method)(*data["args"]) assert res.iloc[0].b == data["expected"] @pytest.mark.parametrize( "func, values", [ ("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}), ("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}), ], ) def test_idxmin_idxmax_returns_int_types(func, values): # GH 25444 df = pd.DataFrame( { "name": ["A", "A", "B", "B"], "c_int": [1, 2, 3, 4], "c_float": [4.02, 3.03, 2.04, 1.05], "c_date": ["2019", "2018", "2016", "2017"], } ) df["c_date"] = pd.to_datetime(df["c_date"]) result = getattr(df.groupby("name"), func)() expected = pd.DataFrame(values, index=Index(["A", "B"], name="name")) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame( index=pd.MultiIndex.from_product( [["value1", "value2"], date_range("2014-01-01", "2014-01-06")] ), columns=Index(["1", "2"], name="id"), ) df["1"] = [ np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan, ] df["2"] = [ np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan, ] expected = df.groupby(level=0, axis=0).fillna(method="ffill") result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T tm.assert_frame_equal(result, expected) def test_groupby_cumprod(): # GH 4095 df = pd.DataFrame({"key": ["b"] * 10, "value": 2}) actual = df.groupby("key")["value"].cumprod() expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) df = pd.DataFrame({"key": ["b"] * 100, "value": 2}) actual = df.groupby("key")["value"].cumprod() # if overflows, groupby product casts to float # while numpy passes back invalid values df["value"] = df["value"].astype(float) expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) def scipy_sem(*args, **kwargs): from scipy.stats import sem return sem(*args, ddof=1, **kwargs) @pytest.mark.parametrize( "op,targop", [ ("mean", np.mean), ("median", np.median), ("std", np.std), ("var", np.var), ("sum", np.sum), ("prod", np.prod), ("min", np.min), ("max", np.max), ("first", lambda x: x.iloc[0]), ("last", lambda x: x.iloc[-1]), ("count", np.size), pytest.param("sem", scipy_sem, marks=td.skip_if_no_scipy), ], ) def test_ops_general(op, targop): df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) result = getattr(df.groupby(labels), op)().astype(float) expected = df.groupby(labels).agg(targop) tm.assert_frame_equal(result, expected) def test_max_nan_bug(): raw = """,Date,app,File -04-23,2013-04-23 00:00:00,,log080001.log -05-06,2013-05-06 00:00:00,,log.log -05-07,2013-05-07 00:00:00,OE,xlsx""" df = pd.read_csv(StringIO(raw), parse_dates=[0]) gb = df.groupby("Date") r = gb[["File"]].max() e = gb["File"].max().to_frame() tm.assert_frame_equal(r, e) assert not r["File"].isna().any() def test_nlargest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nlargest(3) e = Series( [7, 5, 3, 10, 9, 6], index=MultiIndex.from_arrays([list("aaabbb"), [3, 2, 1, 9, 5, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [3, 2, 1, 3, 3, 2], index=MultiIndex.from_arrays([list("aaabbb"), [2, 3, 1, 6, 5, 7]]), ) tm.assert_series_equal(gb.nlargest(3, keep="last"), e) def test_nlargest_mi_grouper(): # see gh-21411 npr = np.random.RandomState(123456789) dts = date_range("20180101", periods=10) iterables = [dts, ["one", "two"]] idx = MultiIndex.from_product(iterables, names=["first", "second"]) s = Series(npr.randn(20), index=idx) result = s.groupby("first").nlargest(1) exp_idx = MultiIndex.from_tuples( [ (dts[0], dts[0], "one"), (dts[1], dts[1], "one"), (dts[2], dts[2], "one"), (dts[3], dts[3], "two"), (dts[4], dts[4], "one"), (dts[5], dts[5], "one"), (dts[6], dts[6], "one"), (dts[7], dts[7], "one"), (dts[8], dts[8], "two"), (dts[9], dts[9], "one"), ], names=["first", "first", "second"], ) exp_values = [ 2.2129019979039612, 1.8417114045748335, 0.858963679564603, 1.3759151378258088, 0.9430284594687134, 0.5296914208183142, 0.8318045593815487, -0.8476703342910327, 0.3804446884133735, -0.8028845810770998, ] expected = Series(exp_values, index=exp_idx) tm.assert_series_equal(result, expected, check_exact=False, rtol=1e-3) def test_nsmallest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nsmallest(3) e = Series( [1, 2, 3, 0, 4, 6], index=MultiIndex.from_arrays([list("aaabbb"), [0, 4, 1, 6, 7, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [0, 1, 1, 0, 1, 2], index=MultiIndex.from_arrays([list("aaabbb"), [4, 1, 0, 9, 8, 7]]), ) tm.assert_series_equal(gb.nsmallest(3, keep="last"), e) @pytest.mark.parametrize("func", ["cumprod", "cumsum"]) def test_numpy_compat(func): # see gh-12811 df = pd.DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]}) g = df.groupby("A") msg = "numpy operations are not valid with groupby" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(foo=1) def test_cummin(numpy_dtypes_for_minmax): dtype = numpy_dtypes_for_minmax[0] min_val = numpy_dtypes_for_minmax[1] # GH 15048 base_df = pd.DataFrame( {"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]} ) expected_mins = [3, 3, 3, 2, 2, 2, 2, 1] df = base_df.astype(dtype) expected = pd.DataFrame({"B": expected_mins}).astype(dtype) result = df.groupby("A").cummin() tm.assert_frame_equal(result, expected) result = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test w/ min value for dtype df.loc[[2, 6], "B"] = min_val expected.loc[[2, 3, 6, 7], "B"] = min_val result = df.groupby("A").cummin() tm.assert_frame_equal(result, expected) expected = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test nan in some values base_df.loc[[0, 2, 4, 6], "B"] = np.nan expected =
pd.DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]})
pandas.DataFrame
# %% import os import pandas as pd import numpy as np import datetime # %% CARGA DATOS 217065 MB1 = pd.read_excel(r'D:\Basededatos\Origen\BBDD AUTOMÓVILES 9 MILLONES\BBDD AUTOMÓVILES MERCEDES BENZ Y B.M.W. 1.xlsx', engine='openpyxl') # 99955 MB2 =
pd.read_excel(r'D:\Basededatos\Origen\BBDD AUTOMÓVILES 9 MILLONES\BBDD AUTOMÓVILES MERCEDES BENZ Y B.M.W. 2.xlsx', engine='openpyxl')
pandas.read_excel
from nanobt.backtesting import Backtesting from nanobt.trades import TradeHistory, SideOrder import talib import pandas as pd INIT_PORTFOLIO = 1000 class EMAStrategy(Backtesting): def __init__(self, value_rapid_ema, value_slow_ema): super().__init__() self.rapid_ema = None self.slow_ema = None self.vr_ema = value_rapid_ema self.vs_ema = value_slow_ema def updateIndicators(self): self.rapid_ema = talib.SMA(self.candles['close'].values, timeperiod=self.vr_ema) self.slow_ema = talib.SMA(self.candles['close'].values, timeperiod=self.vs_ema) def next(self): self.updateIndicators() if not self.position: if self.rapid_ema[-1] > self.slow_ema[-1]: self.entry(SideOrder.BUY) elif self.rapid_ema[-1] < self.slow_ema[-1]: self.entry(SideOrder.SELL) else: if self.rapid_ema[-1] > self.slow_ema[-1]: if self.position.side == SideOrder.SELL: self.exit() elif self.rapid_ema[-1] < self.slow_ema[-1]: if self.position.side == SideOrder.BUY: self.exit() data =
pd.read_csv('./data/binance_BTCUSDT_5m.csv')
pandas.read_csv
''' ML-Based Trading Strategy ''' import cbpro import zmq import sys import json import time import os import pickle import pandas as pd import numpy as np import datetime as dt # the following libraries are to update the persisted ML model from sklearn.svm import SVC from sklearn.metrics import accuracy_score # overload the on_message behavior of cbpro.WebsocketClient class MyWebsocketClient(cbpro.WebsocketClient): def on_open(self): self.url = "wss://ws-feed.pro.coinbase.com/" self.products = symbol self.channels = ['ticker'] self.should_print = False def on_message(self, msg): self.data = msg def on_close(self): print("-- Goodbye! --") def logger_monitor(message, time=True, sep=True): # logger and monitor function with open(log_file, 'a') as f: t = str(dt.datetime.now()) msg = '' if time: msg += ',' + t + ',' if sep: msg += 3 * '=' msg += ',' + message + ',' # sends the message via the socket socket.send_string(msg) # writes the message to the log file f.write(msg) return def report_positions(pos): '''Logs and sends position data''' out = '' out += ',Going {},'.format(pos) + ',' time.sleep(0.033) # waits for the order to be executed # get orders (will possibly make multiple HTTP requests) #get_orders_gen = auth_client.get_orders() get_fills = list(fills_gen) out += ',' + str(get_fills) + ',' logger_monitor(out) return # callback function - algo trading minimal working example # https://en.wikipedia.org/wiki/Minimal_working_example def trading_mwe(symbol, amount, position, bar, min_bars, twentyfour, df_accounts, df_fills): # Welcome message print('') print('*'*50) print('*** Welcome to Tenzin II Crypto Trader ***') print('*'*50) print('') print('Trading: ', symbol) print('Amount per trade: ', amount) print('') print('Last 24 hrs:') print('') print('Open: .........', twentyfour['open']) print('Last: .........', twentyfour['last']) print('High: .........', twentyfour['high']) print('Low: .......', twentyfour['low']) print('Volume: ......', twentyfour['volume']) print('30 day Volume: ', twentyfour['volume_30day']) print('') print('Recent orders: ') print(df_fills.loc[-3:,['product_id', 'fee', 'side', 'settled', 'usd_volume']]) print('') print('Account Positions: ') print(df_accounts[['currency', 'balance']]) print('') # global variables global wsClient, df, dataframe, algorithm, log_file # intialize variables trading = 'n' # default == not trading # ask to start trading trading = input('Start trading? [Y]/[n]:') while trading == 'Y': while wsClient.data: start = time.process_time() # reference for start of trading end = start + 10.0 # when to end trading in minutes tick = wsClient.data dataframe = dataframe.append(tick, ignore_index=True) dataframe.index = pd.to_datetime(dataframe['time'], infer_datetime_format=True) # resampling of the tick data df = dataframe.resample(bar, label='right').last().ffill() if len(df) > min_bars: min_bars = len(df) logger_monitor('NUMBER OF TICKS: {} |'.format(len(dataframe))+\ 'NUMBER OF BARS: {}'.format(min_bars)) # data processing and feature preparation df['Mid'] = df[['price']].mean(axis=1) df['Returns'] = np.log(df['Mid']/df['Mid'].shift(1)) df['Direction'] = np.where(df['Returns'] > 0, 1, -1) # picks relevant points features = df['Direction'].iloc[-(lags + 1): -1] # necessary reshaping features = features.values.reshape(1, -1) # generates the signal (+1 or -1) signal = algorithm.predict(features)[0] # logs and sends major financial information logger_monitor('MOST RECENT DATA\n'+\ str(df[['Mid', 'Returns', 'Direction']].tail()),False) logger_monitor('\n' + 'features: ' + str(features) + ',' +\ 'position: ' + str(position) + ',' +\ 'signal: ' + str(signal) + ',', False) # trading logic if position in [0, -1] and signal == 1: auth_client.place_market_order(product_id = symbol, side = 'buy', \ funds = amount - position * amount) position = 1 report_positions('LONG') elif position in [0, 1] and signal == -1: auth_client.place_market_order(product_id = symbol,\ side = 'sell', funds = amount + position * amount) position = -1 report_positions('SHORT') else: # no trade logger_monitor('no trade placed') logger_monitor(',****END OF CYCLE****,', False, False) #time.sleep(15.0) if len(df) > 100: # ends the trading session # long positions are held, open orders are closed logger_monitor(',ending trading session, max # ticks received,',\ False, False) # cancel orders report_positions(',CANCEL ORDERS,') auth_client.cancel_all(product_id=symbol) logger_monitor(',***CANCELING UNFILLED ORDERS***,') # save data df.to_csv('tick_history.csv') return if time.process_time() > end: # ends the trading session based on max. time defined by end # long positions are held, open orders are closed logger_monitor(',ending trading session, time-out end reached,',\ False, False) # cancel orders report_positions(',CANCEL ORDERS,') auth_client.cancel_all(product_id=symbol) logger_monitor(',***CANCELING UNFILLED ORDERS***,') # save data df.to_csv('tick_history.csv') return # Ask to continue trading trading = input('Restart trading? [Y]/[n]:') if trading == 'n': return if __name__ == '__main__': # File path to save data to path = os.getcwd() # for .ipynb implementation #path = os.path.dirname(__file__) # for .py implementation # log file to record trading log_file = 'online_trading.log' # loads the persisted trading algorithm object algorithm = pickle.load(open('algorithm_dailyBTC.pkl', 'rb')) # sets up the socket communication via ZeroMQ (here: "publisher") context = zmq.Context() socket = context.socket(zmq.PUB) # this binds the socket communication to all IP addresses of the machine # socket.bind('tcp://0.0.0.0:5555') # socket.bind('tcp://*:5555') socket.bind('tcp://*:5555') # Authentication credentials api_key = os.environ.get('CBPRO_SANDBOX_KEY') api_secret = os.environ.get('CBPRO_SANDBOX_SECRET') passphrase = os.environ.get('CBPRO_SANDBOX_PASSPHRASE') # sandbox authenticated client auth_client = cbpro.AuthenticatedClient(api_key, api_secret, passphrase, \ api_url='https://api-public.sandbox.pro.coinbase.com') # live account authenticated client # uses a different set of API access credentials (api_key, api_secret, passphrase) # auth_client = cbpro.AuthenticatedCliet(api_key, api_secret, passphrase) # parameters for the trading algorithm # the trading algorithm runs silently for 500 ticks # use stratMonitoring.ipynb to monitor trading activity symbol = 'BTC-USD' bar = '15s' # 15s is for testing; reset to trading frequency amount = 225 # amount to be traded in $USD position = 0 # beginning, neutral, position lags = 5 # number of lags for features data # minumum number of resampled bars required for the first predicted value (& first trade) min_bars = lags + 1 # orders & fills generators to report positions: orders_gen = auth_client.get_orders() fills_gen = auth_client.get_fills(product_id=symbol) # Get stats for the last 24 hrs twentyfour = auth_client.get_product_24hr_stats(symbol) # Get filled orders all_fills = list(fills_gen) df_fills = pd.DataFrame(all_fills) #filepath = os.path.join(path, 'fills-{}.csv'.format(now)) #df_fills.to_csv(filepath) # Get account positions accounts = auth_client.get_accounts() df_accounts = pd.DataFrame(accounts) #filepath = os.path.join(path, 'accounts-{}.csv'.format(now)) #df_accounts.to_csv(filepath) # the main asynchronous loop using the callback function # Coinbase Pro web socket connection is rate-limited to 4 seconds per request per IP. wsClient = MyWebsocketClient() dataframe = pd.DataFrame() # dataframe for storing wsClient feed df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from itertools import product from matplotlib import pyplot as plt from sklearn import tree from sklearn.datasets import make_moons, make_circles, make_classification import graphviz from mlxtend.plotting import plot_decision_regions def _get_scikit_datasets(n_points=100): rng = np.random.RandomState(2) X, y = make_classification(n_samples=n_points, n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(n_samples=n_points, noise=0.3, random_state=0), make_circles(n_samples=n_points, noise=0.2, factor=0.5, random_state=1), linearly_separable ] return datasets def get_importances(model, feature_names): dict(zip(feature_names, model.feature_importances)) return
pd.Series()
pandas.Series
from unittest import TestCase, skip from unittest.mock import patch, Mock from typer.testing import CliRunner from mls.__main__ import app, _filter_and_create_rich_table from pandas import DataFrame from tests.mls_data import supporters, player, conference, txn class TestApp(TestCase): @classmethod def setUpClass(cls): cls.runner = CliRunner() def test_game(self): # TODO pass def test_filter_table(self): df = DataFrame(conference) tbl = _filter_and_create_rich_table(df, "Test title") self.assertEqual(tbl.title, "Test title") self.assertGreater(tbl.row_count, 10) @patch("mls.__main__.read_html", return_value=[DataFrame(supporters)]) def test_standings_supporters_shield(self, mock_read_html: Mock): result = self.runner.invoke(app, ["standings"]) self.assertEqual(0, result.exit_code) self.assertIn("MLS Standings", result.stdout) @patch("mls.__main__.read_html", return_value=[DataFrame(conference)]) def test_standings_eastern_conference(self, mock_read_html: Mock): east_result = self.runner.invoke(app, ["standings", "east"]) self.assertEqual(0, east_result.exit_code) self.assertIn("Eastern", east_result.stdout) @patch("mls.__main__.read_html", return_value=[
DataFrame(conference)
pandas.DataFrame
import pandas as pd error_value =-100 missing_value = -999 missing_label ='missing' class processing(): def __init__(self): pass def fetch_risk_bucket(self,df_agg,col_name): df_agg['cls'] =df_agg['Fraud']/(df_agg['Non-Fraud']+0.1) df_agg['times'] =
pd.cut(df_agg['cls'], bins=[-1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,100000], labels =['no-risk','risk<0.1','risk<0.2','risk<0.3','risk<0.4','risk<0.5','risk<0.6', 'risk<0.7','risk<0.8','risk<0.9','risk<1','high-risk'])
pandas.cut
import pandas as pd import re from nltk.tokenize import word_tokenize import nltk from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords from nltk.stem import PorterStemmer import numpy as np from sklearn.feature_extraction.text import CountVectorizer from collections import OrderedDict import datetime from datetime import datetime, timedelta # # Get Relevant Reviews from both aapl_public.tsv and aapl_amazon_csv # 1. aapl_public.txv is aws public dataset. Wireless products dataset was picked after reviewing through other relevant datasets, only wireless products dataset contains Apple Products # 2. aapl_amazon_csv is amazon reviews that was scraped using scrapy by going Amazon Apple products # 3. Main part here is to get reviews relevant to Apple Company and from 2010-2019 # 4. Apple Products Dates is a dataset of Apple Products and its Release Dates that is found online (https://en.wikipedia.org/wiki/Timeline_of_Apple_Inc._products) & (https://941am.com/) as reference # 5. This dataset will help to filter and retrieve relevant products on both aapl_public and aapl_amazon datasets df_wireless= pd.read_csv('../../Raw Data/Amazon Product AAPL/aapl_public.tsv', sep='\t', usecols=['marketplace', 'customer_id', 'review_id', 'product_id', 'product_parent', 'product_title', 'product_category', 'star_rating', 'helpful_votes', 'total_votes', 'vine', 'verified_purchase', 'review_headline', 'review_body', 'review_date']) #get only apple related products by looking at the product title #get products where the review dates are 2010 and above df_wireless['product_title'] = df_wireless['product_title'].str.lower() df_wireless= df_wireless[df_wireless['product_title'].notna()] df_wireless_apple = df_wireless[df_wireless['product_title'].str.contains("apple")] df = df_wireless_apple[df_wireless_apple['review_date']> '2010-01-01'] df = pd.read_excel('aapl_public_filtered.xlsx') #get relevant variables df = df[['product_title','review_id', 'product_id','product_category', 'star_rating', 'review_headline', 'review_body', 'review_date']] #remove numbers and special characters df["review_body"] = df['review_body'].replace("[^a-zA-Z]+", " ", regex = True) df["review_headline"] = df['review_headline'].replace("[^a-zA-Z]+", " ", regex = True) #remove white spaces df["review_body"] = df['review_body'].str.strip() df["review_headline"] = df['review_headline'].str.strip() #fill review body na with empty string df['review_body'].fillna('', inplace= True) df = df[df['review_body'].notnull()] #APPLE PRODUCTS AND ITS RELEASE DATES. Taken from https://941am.com/ #https://en.wikipedia.org/wiki/Timeline_of_Apple_Inc._products products_dates = pd.read_excel('../../Raw Data/Amazon Product AAPL/aapl_products_dates.xlsx') #Clean the product names and products where the release date is 2015 and below products_dates["new"] = products_dates["Product Name"].replace("[^a-zA-Z0-9]+", " ", regex = True) products_dates['new'] = products_dates['new'].str.lower() products_dates['new'] = products_dates['new'].str.replace('gen', 'generation') products_2015 = products_dates[products_dates['Date'] < " 2016-01-01"] #create product dates dictionary pd_dates = pd.Series(products_2015['Date'].values,index=products_2015['new']).to_dict() pd_dates = OrderedDict(sorted(pd_dates.items(), key=lambda x:x[1], reverse=True)) #creates a list of product names p_list =list(products_dates['new'].str.strip()) pattern = '|'.join(p_list) #take products only if product title contains the product names df_new = df[df.product_title.str.contains(pattern)] #a list of words that should not be included in the product titles #remove those rows where product titles contains np_list np_list = ['earphones','earphone', 'earbuds','bluetooth', 'case', 'cable','speaker', 'portable', 'headphones', 'headset', 'bluetooth', 'protector', 'samsung', 'android', 'adapter', 'usb', 'charger', 'earbud', 'cover', 'hdmi', 'stand','leather','replacement', 'mount', 'holder', 'battery', 'mounting', 'sticker', 'replaceable', 'bumper','len', 'packaging', 'package', '/', 'armband', 'frame', 'stylus', 'band', 'digitizer', 'charging','cleaner', 'display', 'skin','kit','handset', 'set', 'strap','headphone', 'accessory', 'decal', 'wallet', 'bag', 'pouch', 'mp3', 'mp3s', 'adaptor','plug', 'shell', 'cellet','cloths', 'cloth', '3102mss','selfiepod','tool', 'shield', 'shock', 'armor', 'film', 'protection', 'sim', 'plastic','tripod', 'car','cradle','tempered','design','invisibleshield', ] remove = '|'.join(np_list) df_new_wl = df_new[~df_new.product_title.str.contains(remove)] df_new_wl['product_title'] = df_new_wl['product_title'].replace("[^a-zA-Z0-9]+", " ", regex = True) def like_function(x): ''' return the release date of the product if the product_title of the dataset contains the product in pd_dates dict ''' date = "" for key in pd_dates: #key = product_title if key in x: date = pd_dates[key] break return date def u_like_function(x): ''' return the product name of the product if the product_title of the dataset contains the product in pd_dates dict ''' product = "" for key in pd_dates: if key in x: product = key break return product # Create new variables release date (of product) and unique products (that comes from Apple Product Dates) df_new_wl['release_date'] = df_new_wl.product_title.apply(like_function) df_new_wl['unique_products'] = df_new_wl.product_title.apply(u_like_function) #SCRAPED AMAZON REVIEWS amazon_scrape = pd.read_csv("../../Raw Data/Amazon Product AAPL/aapl_amazon.csv",encoding = "ISO-8859-1") amazon_scrape['product name'] = amazon_scrape['product name'].str.lower() #Keep products where product names only contain the product names in the Apple Products Dates df_am_scr = amazon_scrape[amazon_scrape['product name'].str.contains(pattern)] #a list of words that should not be included in the product titles #remove those rows where product titles contains anp_list anp_list = ['/', 'mount', 'cider', 'case', 'onion', 'delivery','cable','water', 'adapter','smart', 'earphones', 'guide', 'remote', 'protector'] remove = '|'.join(anp_list) df_am_scr = df_am_scr[~df_am_scr['product name'].str.contains(remove)] #clean the product name df_am_scr['product name'] = df_am_scr['product name'].replace("[^a-zA-Z0-9]+", " ", regex = True) df_am_scr.reset_index(inplace = True, drop=True) #Get products and dates as dictionary pd_dates_2 = pd.Series(products_dates['Date'].values,index=products_dates['new']).to_dict() pd_dates_2 = OrderedDict(sorted(pd_dates_2.items(), key=lambda x:x[1], reverse=False)) def like_function(x): ''' return the release date of the product if the product_title of the dataset contains the product in pd_dates_2 dict ''' date = "" for key in pd_dates_2: if key in x: date = pd_dates_2[key] break return date def u_like_function(x): ''' return the product name of the product if the product_title of the dataset contains the product in pd_dates_2 dict ''' product = "" for key in pd_dates_2: if key in x: product = key break return product df_am_scr['release_date'] = df_am_scr['product name'].apply(like_function) df_am_scr['unique_products'] = df_am_scr['product name'].apply(u_like_function) #remove numbers and special characters df_am_scr['comment'] = df_am_scr['comment'].replace("[^a-zA-Z]+", " ", regex = True) #df["review_headline"] = df['review_headline'].replace("[^a-zA-Z]+", " ", regex = True) #remove white spaces df_am_scr['comment'] = df_am_scr['comment'].str.strip() #df["review_headline"] = df['review_headline'].str.strip() df_am_scr['comment'].fillna('', inplace= True) df_new_wl_2 = df_new_wl[['product_title', 'star_rating', 'review_body', 'review_date', 'release_date', 'unique_products']] df_apple = pd.concat([df_new_wl_2,df_am_scr.rename(columns={'product name':'product_title', 'comment': 'review_body', 'stars' : 'star_rating', 'date': 'review_date'})], ignore_index=True) #Clean datetime format #change all datetime to the same string format for index, row in df_apple.iterrows(): date = row['review_date'] print(date) if len(date) > 10: new = datetime.strptime(date, '%B %d, %Y') df_apple.at[index,'review_date'] = str(new.year)+ '-'+ str(new.month)+ '-' + str(new.day) print(row['review_date']) df_apple.sort_values('review_date') # index 4509 date is wrong, drop that row df_apple.loc[4509] df_apple.drop([4509], inplace = True) #string date to datetime object df_apple['review_date'] = df_apple['review_date'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d')) df_apple # ## Map Products Release Dates and take Top 5 latest products based on review dates # 1. Make sure that the products mapped from the Apple Products Dates and Release dates is up to date with the products in the Amazon Reviews Dataset # 2. Keep the reviews only if the product is in the top 5 latest products based on review dates and release dates. This is to ensure that the review is not too outdated. # # For example, if the product review is iPhone 4 which is release in 2010, and the review date is 2015, it will not be accurate in telling us Apple's Sales/Performance in 2015 as the phone was released 5 years ago. So to account for that, we are only going to take the top 5 latest products based on their release dates and map to the review dates and drop other outdated reviews products_dates["new"] = products_dates["Product Name"].replace("[^a-zA-Z0-9]+", " ", regex = True) products_dates['new'] = products_dates['new'].str.lower() products_dates['new'] = products_dates['new'].str.replace('gen', 'generation') ##Get products and dates as dictionary pd_dates =
pd.Series(products_dates['Date'].values,index=products_dates['new'])
pandas.Series
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy from bt.core import FixedIncomeStrategy, HedgeSecurity, FixedIncomeSecurity from bt.core import CouponPayingSecurity, CouponPayingHedgeSecurity from bt.core import is_zero import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree1(): # Create a regular strategy c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c1 assert p['c1'] != c2 c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root # Create a new parent strategy with a child sub-strategy m = Node('m', children=[p, c1]) p = m['p'] mc1 = m['c1'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 2 assert 'p' in m.children assert 'c1' in m.children assert mc1 != c1 assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent assert m == p.root assert m == c1.root assert m == c2.root # Add a new node into the strategy c0 = Node('c0', parent=p) c0 = p['c0'] assert 'c0' in p.children assert p == c0.parent assert m == c0.root assert len(p.children) == 3 # Add a new sub-strategy into the parent strategy p2 = Node( 'p2', children = [c0, c1], parent=m ) p2 = m['p2'] c0 = p2['c0'] c1 = p2['c1'] assert 'p2' in m.children assert p2.parent == m assert len(p2.children) == 2 assert 'c0' in p2.children assert 'c1' in p2.children assert c0 != p['c0'] assert c1 != p['c1'] assert p2 == c0.parent assert p2 == c1.parent assert m == p2.root assert m == c0.root assert m == c1.root def test_node_tree2(): # Just like test_node_tree1, but using the dictionary constructor c = Node('template') p = Node('p', children={'c1':c, 'c2':c, 'c3':'', 'c4':''}) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c assert p['c1'] != c c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert c1.name == 'c1' assert c2.name == 'c2' assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root def test_node_tree3(): c1 = Node('c1') c2 = Node('c1') # Same name! raised = False try: p = Node('p', children=[c1, c2, 'c3', 'c4']) except ValueError: raised = True assert raised raised = False try: p = Node('p', children=['c1', 'c1']) except ValueError: raised = True assert raised c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) raised = False try: Node('c1', parent = p ) except ValueError: raised = True assert raised # This does not raise, as it's just providing an implementation of 'c3', # which had been declared earlier c3 = Node('c3', parent = p ) assert 'c3' in p.children def test_integer_positions(): c1 = Node('c1') c2 = Node('c2') c1.integer_positions = False p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert p.integer_positions assert c1.integer_positions assert c2.integer_positions p.use_integer_positions(False) assert not p.integer_positions assert not c1.integer_positions assert not c2.integer_positions c3 = Node('c3', parent=p) c3 = p['c3'] assert not c3.integer_positions p2 = Node( 'p2', children = [p] ) p = p2['p'] c1 = p['c1'] c2 = p['c2'] assert p2.integer_positions assert p.integer_positions assert c1.integer_positions assert c2.integer_positions def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 s.update(dts[0]) assert s.flows[ dts[0] ] == 1000 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert c2.price == 95 i = 2 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.loc[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.loc[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.loc[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert s.price == 100 s.adjust(1000) assert s.price == 100 assert s.value == 1000 assert s._value == 1000 c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.position == 5 assert c1.value == 525 assert c1.weight == 525.0 / 1025 assert s.capital == 1000 - 500 assert s.value == 1025 assert np.allclose(s.price, 102.5) def test_strategybase_universe(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 def test_strategybase_allocate(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 def test_strategybase_lazy(): # A mix of test_strategybase_universe and test_strategybase_allocate # to make sure that assets with lazy_add work correctly. c1 = SecurityBase('c1', multiplier=2, lazy_add=True, ) c2 = FixedIncomeSecurity('c2', lazy_add=True) s = StrategyBase('s', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 s.adjust(1000) s.allocate(100, 'c1') s.allocate(100, 'c2') c1 = s['c1'] c2 = s['c2'] assert c1.multiplier == 2 assert isinstance( c2, FixedIncomeSecurity) def test_strategybase_close(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 s.close('c1') assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_flatten(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] s.allocate(100, 'c2') c2 = s['c2'] assert c1.position == 1 assert c1.value == 100 assert c2.position == 1 assert c2.value == 100 assert s.value == 1000 s.flatten() assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_multiple_calls(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) c2 = s['c2'] assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1050.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1 == s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_preset_secs(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('s', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 2 assert c2.value == 1000 assert c2.weight == 1000.0 / 1050. assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_no_post_update(): s = StrategyBase('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 999 assert s.capital == 49 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 999 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1049 assert s.capital == 49 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1049.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1047 assert s.capital == 2 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1047 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1102 assert s.capital == 2 assert c1.value == 1100 assert c1.weight == 1100.0 / 1102 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1096 assert s.capital == 51 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1096 assert c2.price == 95 def test_strategybase_prices(): dts = pd.date_range('2010-01-01', periods=21) rawd = [13.555, 13.75, 14.16, 13.915, 13.655, 13.765, 14.02, 13.465, 13.32, 14.65, 14.59, 14.175, 13.865, 13.865, 13.89, 13.85, 13.565, 13.47, 13.225, 13.385, 12.89] data = pd.DataFrame(index=dts, data=rawd, columns=['a']) s = StrategyBase('s') s.set_commissions(lambda q, p: 1) s.setup(data) # buy 100 shares on day 1 - hold until end # just enough to buy 100 shares + 1$ commission s.adjust(1356.50) s.update(dts[0]) # allocate all capital to child a # a should be dynamically created and should have # 100 shares allocated. s.capital should be 0 s.allocate(s.value, 'a') assert s.capital == 0 assert s.value == 1355.50 assert len(s.children) == 1 aae(s.price, 99.92628, 5) a = s['a'] assert a.position == 100 assert a.value == 1355.50 assert a.weight == 1 assert a.price == 13.555 assert len(a.prices) == 1 # update through all dates and make sure price is ok s.update(dts[1]) aae(s.price, 101.3638, 4) s.update(dts[2]) aae(s.price, 104.3863, 4) s.update(dts[3]) aae(s.price, 102.5802, 4) # finish updates and make sure ok at end for i in range(4, 21): s.update(dts[i]) assert len(s.prices) == 21 aae(s.prices[-1], 95.02396, 5) aae(s.prices[-2], 98.67306, 5) def test_fail_if_root_value_negative(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) s.adjust(-100) # trigger update s.update(dts[0]) assert s.bankrupt # make sure only triggered if root negative c1 = StrategyBase('c1') s = StrategyBase('s', children=[c1]) c1 = s['c1'] s.setup(data) s.adjust(1000) c1.adjust(-100) s.update(dts[0]) # now make it trigger c1.adjust(-1000) # trigger update s.update(dts[0]) assert s.bankrupt def test_fail_if_0_base_in_return_calc(): dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 # must setup tree because if not negative root error pops up first c1 = StrategyBase('c1') s = StrategyBase('s', children=[c1]) c1 = s['c1'] s.setup(data) s.adjust(1000) c1.adjust(100) s.update(dts[0]) c1.adjust(-100) s.update(dts[1]) try: c1.adjust(-100) s.update(dts[1]) assert False except ZeroDivisionError as e: if 'Could not update' not in str(e): assert False def test_strategybase_tree_rebalance(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance c1 s.rebalance(0.5, 'c1', update=True) assert s.root.stale == True assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 # Check that rebalance with update=False # does not mark the node as stale s.rebalance(0.6, 'c1', update=False) assert s.root.stale == False def test_strategybase_tree_decimal_position_rebalance(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.use_integer_positions(False) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000.2) s.rebalance(0.42, 'c1') s.rebalance(0.58, 'c2') aae(c1.value, 420.084) aae(c2.value, 580.116) aae(c1.value + c2.value, 1000.2) def test_rebalance_child_not_in_tree(): s = StrategyBase('p') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) # rebalance to 0 w/ child that is not present - should ignore s.rebalance(0, 'c2') assert s.value == 1000 assert s.capital == 1000 assert len(s.children) == 0 def test_strategybase_tree_rebalance_to_0(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance c1 s.rebalance(0.5, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 # now rebalance c1 s.rebalance(0, 'c1') assert c1.position == 0 assert c1.value == 0 assert s.capital == 1000 assert s.value == 1000 assert c1.weight == 0 assert c2.weight == 0 def test_strategybase_tree_rebalance_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now rebalance child s1 - since its children are 0, no waterfall alloc m.rebalance(0.5, 's1') assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child s1.rebalance(0.4, 'c1') assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 # now rebalance child s1 again and make sure c1 also gets proportional # increase m.rebalance(0.8, 's1') assert s1.value == 800 aae(m.capital, 200, 1) assert m.value == 1000 assert s1.weight == 800 / 1000 assert s2.weight == 0 assert c1.value == 300.0 assert c1.weight == 300.0 / 800 assert c1.position == 3 # now rebalance child s1 to 0 - should close out s1 and c1 as well m.rebalance(0, 's1') assert s1.value == 0 assert m.capital == 1000 assert m.value == 1000 assert s1.weight == 0 assert s2.weight == 0 assert c1.weight == 0 def test_strategybase_tree_rebalance_base(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # check that 2 rebalances of equal weight lead to two different allocs # since value changes after first call s.rebalance(0.5, 'c1') assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 s.rebalance(0.5, 'c2') assert c2.position == 4 assert c2.value == 400 assert s.capital == 1000 - 401 - 401 assert s.value == 998 assert c2.weight == 400.0 / 998 assert c1.weight == 400.0 / 998 # close out everything s.flatten() # adjust to get back to 1000 s.adjust(4) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance but set fixed base base = s.value s.rebalance(0.5, 'c1', base=base) assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 s.rebalance(0.5, 'c2', base=base) assert c2.position == 4 assert c2.value == 400 assert s.capital == 1000 - 401 - 401 assert s.value == 998 assert c2.weight == 400.0 / 998 assert c1.weight == 400.0 / 998 def test_algo_stack(): a1 = mock.MagicMock(return_value=True) a2 = mock.MagicMock(return_value=False) a3 = mock.MagicMock(return_value=True) # no run_always for now del a1.run_always del a2.run_always del a3.run_always stack = AlgoStack(a1, a2, a3) target = mock.MagicMock() assert not stack(target) assert a1.called assert a2.called assert not a3.called # now test that run_always marked are run a1 = mock.MagicMock(return_value=True) a2 = mock.MagicMock(return_value=False) a3 = mock.MagicMock(return_value=True) # a3 will have run_always del a1.run_always del a2.run_always stack = AlgoStack(a1, a2, a3) target = mock.MagicMock() assert not stack(target) assert a1.called assert a2.called assert a3.called def test_set_commissions(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.set_commissions(lambda x, y: 1.0) s.setup(data) s.update(dts[0]) s.adjust(1000) s.allocate(500, 'c1') assert s.capital == 599 s.set_commissions(lambda x, y: 0.0) s.allocate(-400, 'c1') assert s.capital == 999 def test_strategy_tree_proper_return_calcs(): s1 = StrategyBase('s1') s2 = StrategyBase('s2') m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.loc['c1', dts[1]] = 105 data.loc['c2', dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert m.price == 100 assert s1.value == 0 assert s2.value == 0 # now allocate directly to child s1.allocate(500) assert m.capital == 500 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.weight == 0 # allocate to child2 via parent method m.allocate(500, 's2') assert m.capital == 0 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.value == 500 assert s2.weight == 500.0 / 1000 assert s2.price == 100 # now allocate and incur commission fee s1.allocate(500, 'c1') assert m.capital == 0 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.value == 500 assert s2.weight == 500.0 / 1000.0 assert s2.price == 100 def test_strategy_tree_proper_universes(): def do_nothing(x): return True child1 = Strategy('c1', [do_nothing], ['b', 'c']) parent = Strategy('m', [do_nothing], [child1, 'a']) child1 = parent['c1'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame( {'a': pd.Series(data=1, index=dts, name='a'), 'b': pd.Series(data=2, index=dts, name='b'), 'c': pd.Series(data=3, index=dts, name='c')}) parent.setup(data, test_data1 = 'test1') assert len(parent.children) == 1 assert 'c1' in parent.children assert len(parent._universe.columns) == 2 assert 'c1' in parent._universe.columns assert 'a' in parent._universe.columns assert len(child1._universe.columns) == 2 assert 'b' in child1._universe.columns assert 'c' in child1._universe.columns assert parent._has_strat_children assert len(parent._strat_children) == 1 assert parent.get_data( 'test_data1' ) == 'test1' # New child strategy with parent (and using dictionary notation} child2 = Strategy('c2', [do_nothing], {'a' : SecurityBase(''), 'b' : ''}, parent=parent) # Setup the child from the parent, but pass in some additional data child2.setup_from_parent(test_data2 = 'test2') assert 'a' in child2._universe.columns assert 'b' in child2._universe.columns assert 'c2' in parent._universe.columns # Make sure child has data from the parent and the additional data assert child2.get_data('test_data1') == 'test1' assert child2.get_data('test_data2') == 'test2' assert len(parent._strat_children) == 2 def test_strategy_tree_paper(): dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['a'], data=100.) data['a'].loc[dts[1]] = 101 data['a'].loc[dts[2]] = 102 s = Strategy('s', [bt.algos.SelectWhere(data > 100), bt.algos.WeighEqually(), bt.algos.Rebalance()]) m = Strategy('m', [], [s]) s = m['s'] m.setup(data) m.update(dts[0]) m.run() assert m.price == 100 assert s.price == 100 assert s._paper_trade assert s._paper.price == 100 s.update(dts[1]) m.run() assert m.price == 100 assert m.value == 0 assert s.value == 0 assert s.price == 100 s.update(dts[2]) m.run() assert m.price == 100 assert m.value == 0 assert s.value == 0 assert np.allclose(s.price, 100. * (102 / 101.)) def test_dynamic_strategy(): def do_nothing(x): return True # Start with an empty parent parent = Strategy('p', [do_nothing], []) dts = pd.date_range('2010-01-01', periods=4) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[2]] = 105. data['c2'][dts[2]] = 95. parent.setup( data ) # NOTE: Price of the sub-strategy won't be correct in this example because # we are not using the algo stack to impact weights, and so the paper # trading strategy does not see the same actions as we are doing. i = 0 parent.adjust( 1e6 ) parent.update( dts[i] ) assert parent.price == 100. assert parent.value == 1e6 i = 1 parent.update( dts[i] ) # On this step, we decide to put a trade on c1 vs c2 and track it as a strategy trade = Strategy('c1_vs_c2', [], children = ['c1', 'c2'], parent = parent ) trade.setup_from_parent() trade.update( parent.now ) assert trade.price == 100. assert trade.value == 0 # Allocate capital to the trade parent.allocate( 1e5, trade.name ) assert trade.value == 1e5 assert trade.price == 100. # Go long 'c1' and short 'c2' trade.rebalance( 1., 'c1') trade.rebalance( -1., 'c2') assert parent.universe[ trade.name ][ dts[i] ] == 100. assert parent.positions['c1'][ dts[i] ] == 1e3 assert parent.positions['c2'][ dts[i] ] == -1e3 i = 2 parent.update( dts[i] ) assert trade.value == 1e5 + 10 * 1e3 assert parent.value == 1e6 + 10 * 1e3 # On this step, we close the trade, and allocate capital back to the parent trade.flatten() trade.update( trade.now ) # Need to update after flattening (for now) parent.allocate( -trade.capital, trade.name ) assert trade.value == 0 assert trade.capital == 0 assert parent.value == 1e6 + 10 * 1e3 assert parent.capital == parent.value assert parent.positions['c1'][ dts[i] ] == 0. assert parent.positions['c2'][ dts[i] ] == 0. i = 3 parent.update( dts[i] ) # Just make sure we can update one step beyond closing # Note that "trade" is still a child of parent, and it also has children, # so it will keep getting updated (and paper trading will still happen). assert trade.value == 0 assert trade.capital == 0 assert trade.values[ dts[i] ] == 0. def test_dynamic_strategy2(): # Start with an empty parent parent = Strategy('p', [], []) dts = pd.date_range('2010-01-01', periods=4) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[2]] = 105. data['c2'][dts[2]] = 95. data['c1'][dts[3]] = 101. data['c2'][dts[3]] = 99. parent.setup( data ) i = 0 parent.adjust( 1e6 ) parent.update( dts[i] ) assert parent.price == 100. assert parent.value == 1e6 i = 1 parent.update( dts[i] ) # On this step, we decide to put a trade on c1 vs c2 and track it as a strategy def trade_c1_vs_c2( strategy ): if strategy.now == dts[1]: strategy.rebalance( 1., 'c1') strategy.rebalance( -1., 'c2') trade = Strategy('c1_vs_c2', [trade_c1_vs_c2], children = ['c1', 'c2'], parent = parent ) trade.setup_from_parent() trade.update( parent.now ) assert trade.price == 100. assert trade.value == 0 # Allocate capital to the trade parent.allocate( 1e5, trade.name ) assert trade.value == 1e5 assert trade.price == 100. # Run the strategy for the timestep parent.run() assert parent.universe[ trade.name ][ dts[i] ] == 100. assert np.isnan( parent.universe[ trade.name ][ dts[0] ] ) assert parent.positions['c1'][ dts[i] ] == 1e3 assert parent.positions['c2'][ dts[i] ] == -1e3 i = 2 parent.update( dts[i] ) trade = parent[ trade.name ] assert trade.value == 1e5 + 10 * 1e3 assert parent.value == 1e6 + 10 * 1e3 aae( trade.price, 110.) # Next we close the trade by flattening positions trade.flatten() trade.update( trade.now ) # Need to update after flattening (for now) aae( trade.price, 110.) # Finally we allocate capital back to the parent to be re-deployed parent.allocate( -trade.capital, trade.name ) assert trade.value == 0 assert trade.capital == 0 aae( trade.price, 110.) # Price stays the same even after capital de-allocated assert parent.value == 1e6 + 10 * 1e3 assert parent.capital == parent.value assert parent.positions['c1'][ dts[i] ] == 0. assert parent.positions['c2'][ dts[i] ] == 0. i = 3 parent.update( dts[i] ) # Just make sure we can update one step beyond closing assert parent.value == 1e6 + 10 * 1e3 # Note that "trade" is still a child of parent, and it also has children, # so it will keep getting updated (and paper trading will still happen). assert trade.value == 0 assert trade.capital == 0 assert trade.values[ dts[i] ] == 0. # Paper trading price, as asset prices have moved, paper trading price # keeps updating. Note that if the flattening of the position was part # of the definition of trade_c1_vs_c2, then the paper trading price # would be fixed after flattening, as it would apply to both real and paper. aae( trade.price, 102.) aae( parent.universe[ trade.name ][ dts[i] ], 102. ) def test_outlays(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) # allocate 1000 to strategy s.adjust(1000) # now let's see what happens when we allocate 500 to each child c1.allocate(500) c2.allocate(500) #calling outlays should automatically update the strategy, since stale assert c1.outlays[dts[0]] == (4 * 105) assert c2.outlays[dts[0]] == (5 * 95) assert c1.data['outlay'][dts[0]] == (4 * 105) assert c2.data['outlay'][dts[0]] == (5 * 95) i = 1 s.update(dts[i], data.loc[dts[i]]) c1.allocate(-400) c2.allocate(100) # out update assert c1.outlays[dts[1]] == (-4 * 100) assert c2.outlays[dts[1]] == 100 assert c1.data['outlay'][dts[1]] == (-4 * 100) assert c2.data['outlay'][dts[1]] == 100 def test_child_weight_above_1(): # check for child weights not exceeding 1 s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(np.random.randn(3, 2) + 100, index=dts, columns=['c1', 'c2']) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1e6) s.allocate(1e6, 'c1') c1 = s['c1'] assert c1.weight <= 1 def test_fixed_commissions(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) # fixed $1 commission per transaction s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) # allocate 1000 to strategy s.adjust(1000) # now let's see what happens when we allocate 500 to each child c1.allocate(500) c2.allocate(500) # out update s.update(dts[i]) assert c1.value == 400 assert c2.value == 400 assert s.capital == 198 # de-alloc 100 from c1. This should force c1 to sell 2 units to raise at # least 100 (because of commissions) c1.allocate(-100) s.update(dts[i]) assert c1.value == 200 assert s.capital == 198 + 199 # allocate 100 to c2. This should leave things unchaged, since c2 cannot # buy one unit since the commission will cause total outlay to exceed # allocation c2.allocate(100) s.update(dts[i]) assert c2.value == 400 assert s.capital == 198 + 199 # ok try again w/ 101 allocation. This time, it should work c2.allocate(101) s.update(dts[i]) assert c2.value == 500 assert s.capital == 198 + 199 - 101 # ok now let's close the whole position. Since we are closing, we expect # the allocation to go through, even though the outlay > amount c2.allocate(-500) s.update(dts[i]) assert c2.value == 0 assert s.capital == 198 + 199 - 101 + 499 # now we are going to go short c2 # we want to 'raise' 100 dollars. Since we need at a minimum 100, but we # also have commissions, we will actually short 2 units in order to raise # at least 100 c2.allocate(-100) s.update(dts[i]) assert c2.value == -200 assert s.capital == 198 + 199 - 101 + 499 + 199 def test_degenerate_shorting(): # can have situation where you short infinitely if commission/share > share # price c1 = SecurityBase('c1') s = StrategyBase('p', [c1]) # $1/share commission s.set_commissions(lambda q, p: abs(q) * 1) c1 = s['c1'] dts =
pd.date_range('2010-01-01', periods=3)
pandas.date_range
#!/usr/bin/python # coding: utf-8 import json import pickle import re import jieba import numpy as np import pandas as pd from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import QuantileTransformer def max_min_scaler(x): return (x - np.min(x)) / (np.max(x) - np.min(x)) def trans(text): text = list(jieba.cut(text)) text = " ".join([x for x in text if not x.isdigit()]) return text def get_sub_col(col): sub1_col, sub2_col = [sub for sub in col.split(" \n \n ")] return pd.Series([sub1_col, sub2_col]) def get_sub_col_raw(col): sub1_col, sub2_col = [sub for sub in col.split("\n\n")] return pd.Series([sub1_col, sub2_col]) def get_length_features(df, stopwords, name): def words_count(text, stopwords): wordlist = [word for word in str(text).split() if word not in stopwords] return len(wordlist) # Word df[f"col_len_{name}"] = df["col"].apply(lambda s: words_count(s, stopwords)) df[f"sub1_col_len_{name}"] = df["sub1_col"].apply( lambda s: words_count(s, stopwords) ) df[f"sub2_col_len_{name}"] = df["sub2_col"].apply( lambda s: words_count(s, stopwords) ) df[f"col_len_ratio_{name}"] = ( df[f"sub1_col_len_{name}"] / df[f"sub2_col_len_{name}"] ) df[f"col_len_ratio2_{name}"] = ( df[f"sub2_col_len_{name}"] / df[f"col_len_{name}"] ) df[f"col_len_c_{name}"] = df["col"].apply(len) df[f"sub1_col_len_c_{name}"] = df["sub1_col"].apply(len) df[f"sub2_col_len_c_{name}"] = df["sub2_col"].apply(len) df[f"col_len_c_ratio_{name}"] = ( df[f"sub1_col_len_c_{name}"] / df[f"sub2_col_len_c_{name}"] ) df[f"col_len_c_ratio2_{name}"] = ( df[f"sub2_col_len_c_{name}"] / df[f"col_len_c_{name}"] ) df[f"sub1_col_len_{name}"] = df[[f"sub1_col_len_{name}"]].apply( max_min_scaler ) df[f"sub2_col_len_{name}"] = df[[f"sub2_col_len_{name}"]].apply( max_min_scaler ) df[f"sub1_col_len_c_{name}"] = df[[f"sub1_col_len_c_{name}"]].apply( max_min_scaler ) df[f"sub2_col_len_c_{name}"] = df[[f"sub2_col_len_c_{name}"]].apply( max_min_scaler ) useful_cols = [ f"sub1_col_len_{name}", f"sub2_col_len_{name}", f"col_len_ratio_{name}", f"col_len_ratio2_{name}", # f"sub1_col_len_c_{name}", f"sub2_col_len_c_{name}", f"col_len_c_ratio_{name}", f"col_len_c_ratio2_{name}", ] return df[useful_cols] def get_plantiff_features(df, name): def f_plantiff_is_company(x): r = re.search(r"原告(.*?)被告", x) s = 0 if r: plantiff = r.group(1) if "法定代表人" in plantiff: return 1 return s reg = re.compile(r"原告") df[f"sub1_col_num_plantiff_{name}"] = df["sub1_col_raw"].apply( lambda s: len(reg.findall(s)) ) df[f"sub1_col_bool_plantiff_{name}"] = df["sub1_col_raw"].apply( lambda s: f_plantiff_is_company(s) ) useful_cols = [ f"sub1_col_num_plantiff_{name}", f"sub1_col_bool_plantiff_{name}", ] return df[useful_cols] def get_defendant_features(df, name): def f_defandent_noreply(text): if any( ss in text for ss in ["未答辩", "拒不到庭", "未到庭", "未做答辩", "未应诉答辩", "未作出答辩", "未出庭"] ): return 1 return 0 reg = re.compile(r"被告.*?法定代表人.*?。") df[f"sub1_col_bool_defendant_{name}"] = df["sub1_col_raw"].apply( lambda s: int(len(reg.findall(s)) > 0) ) df[f"sub2_col_bool_defendant_noreply_{name}"] = df["sub2_col_raw"].apply( lambda s: f_defandent_noreply(s) ) reg = re.compile(r"被告") df[f"sub1_col_num_defendant_{name}"] = df["sub1_col_raw"].apply( lambda s: len(reg.findall(s)) ) useful_cols = [ f"sub1_col_bool_defendant_{name}", f"sub1_col_num_defendant_{name}", ] return df[useful_cols] def get_guarantor_features(df, name): reg = re.compile(r"担保") df[f"sub2_col_bool_guarantor_{name}"] = df["sub2_col_raw"].apply( lambda s: int(len(reg.findall(s)) > 0) ) df[f"sub2_col_num_guarantor_{name}"] = df["sub2_col_raw"].apply( lambda s: len(reg.findall(s)) ) useful_cols = [ f"sub2_col_bool_guarantor_{name}", f"sub2_col_num_guarantor_{name}", ] return df[useful_cols] def get_guaranty_features(df, name): reg = re.compile(r"抵押") df[f"sub2_col_bool_guaranty_{name}"] = df["sub2_col_raw"].apply( lambda s: int(len(reg.findall(s)) > 0) ) df[f"sub2_col_num_guaranty_{name}"] = df["sub2_col_raw"].apply( lambda s: len(reg.findall(s)) ) useful_cols = [ f"sub2_col_bool_guarantor_{name}", f"sub2_col_num_guarantor_{name}", ] return df[useful_cols] def get_interest_features(df, name): def do_lixi(text): m_reg = re.compile(r"(月利息|月息|月利率|月利息率)按?(\d+(\.\d{1,2})?)(%|分)") mm = m_reg.search(text) m2_reg = re.compile(r"(月利息|月息|月利率|月利息率)按?(\d+(\.\d{1,2})?)毛") mm2 = m2_reg.search(text) m3_reg = re.compile(r"月(\d+(\.\d{1,2})?)%(利息|息|利率|利息率)") mm3 = m3_reg.search(text) y_reg = re.compile(r"(年利息|年息|年利率|年利息率)按?(\d+(\.\d{1,2})?)(%|分)") ym = y_reg.search(text) y2_reg = re.compile(r"(年利息|年息|年利率|年利息率)按?(\d+(\.\d{1,2})?)毛") ym2 = y2_reg.search(text) y3_reg = re.compile(r"年(\d+(\.\d{1,2})?)%(利息|息|利率|利息率)") ym3 = y3_reg.search(text) if mm: return round(float(mm.group(2)) * 12, 2) elif mm2: return round(float(mm2.group(2)) * 10 * 12, 2) elif mm3: return round(float(mm3.group(1)) * 12, 2) elif ym: return float(ym.group(2)) elif ym2: return round(float(ym2.group(2)) * 10, 2) elif ym3: return float(ym3.group(1)) else: return 0 def do_lixi_c(text): m_reg = re.compile(r"(月利息|月息|月利率|月利息率)按?(\d+(\.\d{1,2})?)(%|分)") mm = m_reg.search(text) m2_reg = re.compile(r"(月利息|月息|月利率|月利息率)按?(\d+(\.\d{1,2})?)毛") mm2 = m2_reg.search(text) m3_reg = re.compile(r"月(\d+(\.\d{1,2})?)%(利息|息|利率|利息率)") mm3 = m3_reg.search(text) y_reg = re.compile(r"(年利息|年息|年利率|年利息率)按?(\d+(\.\d{1,2})?)(%|分)") ym = y_reg.search(text) y2_reg = re.compile(r"(年利息|年息|年利率|年利息率)按?(\d+(\.\d{1,2})?)毛") ym2 = y2_reg.search(text) y3_reg = re.compile(r"年(\d+(\.\d{1,2})?)%(利息|息|利率|利息率)") ym3 = y3_reg.search(text) count = 0 if mm: count = round(float(mm.group(2)) * 12, 2) elif mm2: count = round(float(mm2.group(2)) * 10 * 12, 2) elif mm3: count = round(float(mm3.group(1)) * 12, 2) elif ym: count = float(ym.group(2)) elif ym2: count = round(float(ym2.group(2)) * 10, 2) elif ym3: count = float(ym3.group(1)) else: count = 0 if count == 0: return 0 elif count < 24: return 1 elif count < 36: return 2 else: return 3 reg = re.compile(r"约定利息|约定月利息|年息|月息|利息|利率") df[f"sub2_col_bool_interest_{name}"] = df["sub2_col_raw"].apply( lambda s: int(len(reg.findall(s)) > 0) ) df[f"sub2_col_num_interest_{name}"] = df["sub2_col_raw"].apply( lambda s: do_lixi(s) ) df[f"sub2_col_num_interest_c_{name}"] = df["sub2_col_raw"].apply( lambda s: do_lixi_c(s) ) useful_cols = [ f"sub2_col_bool_interest_{name}", f"sub2_col_num_interest_{name}", f"sub2_col_num_interest_c_{name}", ] return df[useful_cols] def get_couple_features(df, name): reg = re.compile(r"夫妻") df[f"sub2_col_bool_couple_{name}"] = df["sub2_col_raw"].apply( lambda s: int(len(reg.findall(s)) > 0) ) df[f"sub2_col_num_couple_{name}"] = df["sub2_col_raw"].apply( lambda s: len(reg.findall(s)) ) useful_cols = [ f"sub2_col_bool_couple_{name}", f"sub2_col_num_couple_{name}", ] return df[useful_cols] def get_death_features(df, name): reg = re.compile(r"死亡") df[f"sub2_col_bool_death_{name}"] = df["sub2_col_raw"].apply( lambda s: int(len(reg.findall(s)) > 0) ) df[f"sub2_col_num_death_{name}"] = df["sub2_col_raw"].apply( lambda s: len(reg.findall(s)) ) useful_cols = [f"sub2_col_bool_death_{name}", f"sub2_col_num_death_{name}"] return df[useful_cols] def do_basic_feature(df, stopwords, name): feature_list = [] feature = get_length_features(df, stopwords, name) feature_list.append(feature) feature = get_plantiff_features(df, name) feature_list.append(feature) feature = get_defendant_features(df, name) feature_list.append(feature) feature = get_guarantor_features(df, name) feature_list.append(feature) feature = get_guaranty_features(df, name) feature_list.append(feature) feature = get_interest_features(df, name) feature_list.append(feature) feature = get_couple_features(df, name) feature_list.append(feature) index = feature_list[0].index for feature_dataset in feature_list[1:]: pd.testing.assert_index_equal(index, feature_dataset.index) df = pd.concat(feature_list, axis=1) return df def do_tfidf_feature(df, tfidf): n_components = 30 svd = TruncatedSVD( n_components=n_components, algorithm="arpack", random_state=2019 ) col_tfidf = tfidf.transform(df["col"]) feature_names = tfidf.get_feature_names() ret_df = pd.DataFrame(col_tfidf.toarray(), columns=feature_names) return ret_df col_svd = svd.fit_transform(col_tfidf) best_fearures = [ feature_names[i] + "i" for i in svd.components_[0].argsort()[::-1] ] ret_df = pd.DataFrame(col_svd, columns=best_fearures[:n_components]) return ret_df def get_length_related_features_col2(df): df_copy = df.copy() df_copy["col2_len"] = df_copy["col2"].apply(len) df_copy["col2_len_relative"] = ( df_copy["col2_len"] / df_copy["col2_len"].max() ) df_copy["col2_title_len"] = df_copy["col2"].apply( lambda s: len(s.split("\n\n")[0]) ) df_copy["col2_title_relative"] = ( df_copy["col2_title_len"] / df_copy["col2_title_len"].max() ) df_copy["col2_content_len"] = ( df_copy["col2_len"] - df_copy["col2_title_len"] ) df_copy["col2_content_len_relative"] = ( df_copy["col2_content_len"] / df_copy["col2_content_len"].max() ) df_copy["col2_title_ratio"] = ( df_copy["col2_title_len"] / df_copy["col2_len"] ) useful_cols = [ "col2_len_relative", "col2_title_relative", "col2_content_len_relative", "col2_title_ratio", ] return df_copy[useful_cols] def get_col2_re_features(df): old_cols = set(df.columns) # 原告数量, 原告数据差 reg = re.compile(r"原告") df["col2_num_accuser"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[0])) ) # 原告中男性数量, 比例 reg = re.compile(r"原告.*?男.*?被告") df["col2_num_male_accuser"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[0])) ) df["col2_num_male_accuser_rate"] = ( df["col2_num_male_accuser"] / df["col2_num_accuser"] ) # 原告中委托诉讼代理人数量,比例 reg = re.compile(r"原告.*?委托诉讼代理人.*?被告") df["col2_num_company_accuser"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[0])) ) df["col2_num_company_accuser_rate"] = ( df["col2_num_company_accuser"] / df["col2_num_accuser"] ) # 被告数量, 原告数据差 reg = re.compile(r"被告") df["col2_num_defendant"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[0])) ) # 被告中男性数量, 比例 reg = re.compile(r"被告.*?男.*?。") df["col2_num_male_defendant"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[0])) ) df["col2_num_male_defendant_rate"] = ( df["col2_num_male_defendant"] / df["col2_num_defendant"] ) df["col2_defendant_minus_num_accuser"] = ( df["col2_num_defendant"] - df["col2_num_accuser"] ).astype(int) # 被告中法定代表人数量,比例 reg = re.compile(r"被告.*?法定代表人.*?。") df["col2_num_company_defendant"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[0])) ) df["col2_num_company_accuser_rate"] = ( df["col2_num_company_defendant"] / df["col2_num_defendant"] ) # 担保 reg = re.compile(r"担保") df["col2_num_danbao"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[1])) ) # 标点符号数量 reg = re.compile(r"[。:,]") df["col2_num_punctuation"] = df["col2"].apply( lambda s: len(reg.findall(s.split("\n\n")[1])) ) # 词数量 df["col2_num_word"] = df["col2"].apply( lambda s: len(list(jieba.cut(s.split("\n\n")[1]))) ) df["col2_num_word_ratio"] = df["col2_num_word"] / df["col2_num_word"].max() df["col2_num_word_divide_length"] = df["col2_num_word"] / df["col2"].apply( len ) useful_cols = list(set(df.columns).difference(old_cols)) return df[useful_cols] def do_feature_engineering(list_text): df = pd.DataFrame(list_text, columns=["col2"]) feature_list = [] feature = get_length_related_features_col2(df) feature_list.append(feature) feature = get_col2_re_features(df) feature_list.append(feature) index = feature_list[0].index for feature_dataset in feature_list[1:]: pd.testing.assert_index_equal(index, feature_dataset.index) data =
pd.concat(feature_list, axis=1)
pandas.concat
import pandas as pd import numpy as np from datetime import datetime ############### # SELECT DATA # ############### print("Selecting attributes...") # GIT_COMMITS gitCommits = pd.read_csv("../../data/raw/GIT_COMMITS.csv") attributes = ['projectID', 'commitHash', 'author', 'committer', 'committerDate'] gitCommits = gitCommits[attributes] gitCommits.to_csv('../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv', header=True) # GIT_COMMITS_CHANGES gitCommitsChanges = pd.read_csv("../../data/raw/GIT_COMMITS_CHANGES.csv") attributes = ['projectID', 'commitHash', 'changeType', 'linesAdded', 'linesRemoved'] gitCommitsChanges = gitCommitsChanges[attributes] gitCommitsChanges.to_csv('../../data/interim/DataPreparation/SelectData/GIT_COMMITS_CHANGES_select.csv', header=True) # JIRA_ISSUES jiraIssues = pd.read_csv("../../data/raw/JIRA_ISSUES.csv") attributes = ['projectID', 'key', 'creationDate', 'resolutionDate', 'type', 'priority', 'assignee', 'reporter'] jiraIssues = jiraIssues[attributes] jiraIssues.to_csv('../../data/interim/DataPreparation/SelectData/JIRA_ISSUES_select.csv', header=True) # REFACTORING_MINER refactoringMiner = pd.read_csv("../../data/raw/REFACTORING_MINER.csv") attributes = ['projectID', 'commitHash', 'refactoringType'] refactoringMiner = refactoringMiner[attributes] refactoringMiner.to_csv('../../data/interim/DataPreparation/SelectData/REFACTORING_MINER_select.csv', header=True) # SONAR_ISSUES sonarIssues = pd.read_csv("../../data/raw/SONAR_ISSUES.csv") attributes = ['projectID', 'creationDate', 'closeDate', 'creationCommitHash', 'closeCommitHash', 'type', 'severity', 'debt', 'author'] sonarIssues = sonarIssues[attributes] sonarIssues.to_csv('../../data/interim/DataPreparation/SelectData/SONAR_ISSUES_select.csv', header=True) # SONAR_MEASURES sonarMeasures = pd.read_csv("../../data/raw/SONAR_MEASURES.csv") attributes = ['commitHash', 'projectID', 'functions', 'commentLinesDensity', 'complexity', 'functionComplexity', 'duplicatedLinesDensity', 'violations', 'blockerViolations', 'criticalViolations', 'infoViolations', 'majorViolations', 'minorViolations', 'codeSmells', 'bugs', 'vulnerabilities', 'cognitiveComplexity', 'ncloc', 'sqaleIndex', 'sqaleDebtRatio', 'reliabilityRemediationEffort', 'securityRemediationEffort'] sonarMeasures = sonarMeasures[attributes] sonarMeasures.to_csv('../../data/interim/DataPreparation/SelectData/SONAR_MEASURES_select.csv', header=True) # SZZ_FAULT_INDUCING_COMMITS szzFaultInducingCommits = pd.read_csv("../../data/raw/SZZ_FAULT_INDUCING_COMMITS.csv") attributes = ['projectID', 'faultFixingCommitHash', 'faultInducingCommitHash', 'key'] szzFaultInducingCommits = szzFaultInducingCommits[attributes] szzFaultInducingCommits.to_csv('../../data/interim/DataPreparation/SelectData/SZZ_FAULT_INDUCING_COMMITS_select.csv', header=True) print("Attributes selected.") ############## # CLEAN DATA # ############## print("Cleaning data...") def intersection(l1, l2): temp = set(l2) l3 = [value for value in l1 if value in temp] return l3 def difference(li1, li2): return (list(list(set(li1)-set(li2)) + list(set(li2)-set(li1)))) # GIT_COMMITS gitCommits = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv") authorNan = list(np.where(gitCommits.author.isna()))[0] committerNan = list(np.where(gitCommits.committer.isna()))[0] inters = intersection(authorNan, committerNan) gitCommits = gitCommits.drop(inters) gitCommits.to_csv('../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv', header=True) # GIT_COMMITS_CHANGES gitCommitsChanges = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_CHANGES_select.csv").iloc[:,1:] gitCommitsChanges.to_csv('../../data/interim/DataPreparation/CleanData/GIT_COMMITS_CHANGES_clean.csv', header=True) # JIRA_ISSUES jiraIssues =
pd.read_csv("../../data/interim/DataPreparation/SelectData/JIRA_ISSUES_select.csv")
pandas.read_csv
from transformers import BertModel, BertTokenizer import torch import numpy as np import pandas as pd from torch import nn from torch.utils.data import Dataset, DataLoader from utils import cleaning RANDOM_SEED = 42 np.random.seed(RANDOM_SEED) torch.manual_seed(RANDOM_SEED) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class OMPDataset(Dataset): def __init__(self, text, targets, tokenizer, max_len): self.text = text self.targets = targets self.tokenizer = tokenizer self.max_len = max_len def __len__(self): return len(self.text) def __getitem__(self, item): text = str(self.text[item]) target = self.targets[item] encoding = self.tokenizer.encode_plus( text, add_special_tokens=True, max_length=self.max_len, return_token_type_ids=False, padding = 'max_length', return_attention_mask=True, return_tensors='pt', ) return { 'text': text, 'input_ids': encoding['input_ids'].flatten(), 'attention_mask': encoding['attention_mask'].flatten(), 'targets': torch.tensor(target, dtype=torch.float) } def create_data_loader(df:pd.DataFrame, label:str, tokenizer:BertTokenizer, max_len:int, batch_size:int) -> DataLoader: ds = OMPDataset( text=df.text.to_numpy(), targets=df[label].to_numpy(), tokenizer=tokenizer, max_len=max_len ) return DataLoader(ds, batch_size=batch_size, num_workers=0, shuffle=False) class BinaryClassifier(nn.Module): def __init__(self): super(BinaryClassifier, self).__init__() self.bert = BertModel.from_pretrained("deepset/gbert-base") self.dropout = nn.Dropout(p=0.3) self.out = nn.Linear(self.bert.config.hidden_size, 1) self.tokenizer = BertTokenizer.from_pretrained("deepset/gbert-base") def forward(self, input_ids, attention_mask): _, pooled_output = self.bert( input_ids=input_ids, attention_mask=attention_mask ).values() output = self.dropout(pooled_output) output = self.out(output) return output def get_model(state_dict_file: str) -> BinaryClassifier: model = BinaryClassifier().to(device) model.load_state_dict(torch.load(f"{state_dict_file}")) return model def get_prediction(text_list: list, model: BinaryClassifier) -> list: BATCH_SIZE = 1 MAX_LEN = 264 model.eval() # ## Data loading normalize = lambda x: cleaning.normalize(x, url_emoji_dummy=False, pure_words=False) X =
pd.Series(text_list)
pandas.Series
import pytest import numpy as np import pandas as pd from systrade.trading.brokers import PaperBroker T_START = pd.to_datetime('2019/07/10-09:30:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') T_END = pd.to_datetime('2019/07/10-10:00:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') TIMEINDEX = pd.date_range(start=T_START,end=T_END,freq='1min') DATA_DF = pd.DataFrame(data={'tick0':np.arange(len(TIMEINDEX)) , 'tick1':np.arange(len(TIMEINDEX)-1,-1,-1)}, index=TIMEINDEX) # DATA_DF = pd.DataFrame(data={'tick0':np.arange(len(TIMEINDEX))}, # index=TIMEINDEX) class TestPaperBroker: def test_init(self): testseries = pd.Series(np.arange(10)) with pytest.raises(TypeError): broker = PaperBroker(testseries) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,slippage_time=1.0) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,transaction_cost=lambda x: x**2) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,transaction_cost=-0.5) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,spread_pct=lambda x: x**2) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,spread_pct=-0.5) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,spread_pct=200) def test_next_extant_time(self): broker = PaperBroker(DATA_DF) t_get = pd.to_datetime('2019/07/10-09:35:05:000000', format='%Y/%m/%d-%H:%M:%S:%f') t_out = broker.next_extant_time(t_get) t_expect = pd.to_datetime('2019/07/10-09:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') assert t_out==t_expect t_get = pd.to_datetime('2019/07/10-11:35:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') with pytest.raises(ValueError): t_out = broker.next_extant_time(t_get) def test_get_timeindex_subset(self): broker = PaperBroker(DATA_DF) t0 = pd.to_datetime('2019/07/10-09:29:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') t1 = pd.to_datetime('2019/07/10-09:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') with pytest.raises(ValueError): tind = broker.get_timeindex_subset(t0,t1) t0 = pd.to_datetime('2019/07/10-09:34:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') t1 = pd.to_datetime('2019/07/10-11:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') with pytest.raises(ValueError): tind = broker.get_timeindex_subset(t0,t1) with pytest.raises(TypeError): tind = broker.get_timeindex_subset(0,t1) with pytest.raises(TypeError): tind = broker.get_timeindex_subset(t0,1) t1 = pd.to_datetime('2019/07/10-09:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') tind = broker.get_timeindex_subset(t0,t1) print(tind) print(pd.date_range(t0,t1,freq='1min')) assert np.array_equal(tind.values,pd.date_range(t0,t1,freq='1min').values) def test_get_firstlast_times(self): broker = PaperBroker(DATA_DF) t0,t1 = broker.get_firstlast_times() assert t0==T_START assert t1==T_END def test_get_tick_list(self): broker = PaperBroker(DATA_DF) ticks = broker.get_tick_list() assert ticks == ['tick0','tick1'] def test_get_price_list(self): broker = PaperBroker(DATA_DF) t0 = T_START t1 = T_START + pd.DateOffset(minutes=5) with pytest.raises(ValueError): prices = broker.get_price_list('badtick',t0,t1) with pytest.raises(ValueError): prices = broker.get_price_list(['badtick'],t0,t1) prices = broker.get_price_list('tick0',t0,t1) assert np.array_equal(prices['tick0'].values , np.arange(6) ) prices = broker.get_price_list(['tick0','tick1'],t0,t1) assert np.array_equal(prices['tick0'].values , np.arange(6) ) assert np.array_equal(prices['tick1'].values , np.arange(len(TIMEINDEX)-1,len(TIMEINDEX)-7,-1) ) def test_get_unslipped_price(self): broker = PaperBroker(DATA_DF) t_get = T_START+pd.DateOffset(minutes=5) with pytest.raises(ValueError): pp = broker.get_unslipped_price('badtick',t_get) price = broker.get_unslipped_price('tick0',t_get) assert price == 5 def test_get_price(self): broker = PaperBroker(DATA_DF, slippage_time=pd.DateOffset(seconds=30), transaction_cost = 2.0) t_get = T_START+
pd.DateOffset(minutes=5)
pandas.DateOffset
#!/usr/bin/env python """Tests for `qnorm` package.""" import unittest import numpy as np import pandas as pd import qnorm import tracemalloc tracemalloc.start() df1 = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) df1.to_csv("test.csv") df1.to_hdf("test.hdf", key="qnorm", format="table", data_columns=True, mode="w") df1.to_parquet("test.parquet") class TestQnorm(unittest.TestCase): def test_000_numpy(self): """ test numpy support """ arr = np.random.normal(size=(20, 2)) qnorm.quantile_normalize(arr) def test_001_pandas(self): """ test pandas support """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) qnorm.quantile_normalize(df) def test_002_wiki(self): """ test the wiki example https://en.wikipedia.org/wiki/Quantile_normalization """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) result = np.array( [ [5.66666667, 5.16666667, 2.0], [2.0, 2.0, 3.0], [3.0, 5.16666667, 4.66666667], [4.66666667, 3.0, 5.66666667], ] ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df).values, result ) def test_003_no_change(self): """ no sorting should happen here """ arr = np.empty(shape=(20, 3)) for col in range(arr.shape[1]): vals = np.arange(arr.shape[0]) np.random.shuffle(vals) arr[:, col] = vals qnorm_arr = qnorm.quantile_normalize(arr) np.testing.assert_array_almost_equal(arr, qnorm_arr) def test_004_double(self): """ if dtype is double, return double """ arr = np.random.normal(0, 1, size=(20, 3)) arr = arr.astype(np.float64) qnorm_arr = qnorm.quantile_normalize(arr) assert qnorm_arr.dtype == np.float64 def test_005_single(self): """ if dtype is single, return single """ arr = np.random.normal(0, 1, size=(20, 3)) arr = arr.astype(np.float32) qnorm_arr = qnorm.quantile_normalize(arr) assert qnorm_arr.dtype == np.float32 def test_006_target(self): """ test if the target is used instead of the qnorm values """ arr = np.array([np.arange(0, 10), np.arange(0, 10)]).T np.random.shuffle(arr) target = np.arange(10, 20) qnorm_arr = qnorm.quantile_normalize(arr, target=target) for val in target: assert ( val in qnorm_arr[:, 0] and val in qnorm_arr[:, 1] ), f"value {val} not in qnorm array" def test_007_target_notsorted(self): """ make sure an unsorted target gets sorted first """ arr = np.array([np.arange(0, 10), np.arange(0, 10)]).T np.random.shuffle(arr) # take the reverse, which should be sorted by qnorm target = np.arange(10, 20)[::-1] qnorm_arr = qnorm.quantile_normalize(arr, target=target) for val in target: assert ( val in qnorm_arr[:, 0] and val in qnorm_arr[:, 1] ), f"value {val} not in qnorm array" def test_008_short_target(self): """ test if an error is raised with a invalid sized target """ arr = np.array([np.arange(0, 10), np.arange(0, 10)]).T target = np.arange(10, 15) self.assertRaises(ValueError, qnorm.quantile_normalize, arr, target) def test_009_wiki_ncpus(self): """ test if an error is raised with a invalid sized target """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) result = np.array( [ [5.66666667, 5.16666667, 2.0], [2.0, 2.0, 3.0], [3.0, 5.16666667, 4.66666667], [4.66666667, 3.0, 5.66666667], ] ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df, ncpus=10).values, result ) def test_010_axis_numpy(self): """ test numpy axis support """ arr = np.random.normal(size=(50, 4)) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(arr.T, axis=0).T, qnorm.quantile_normalize(arr, axis=1), ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(arr, axis=1), qnorm.quantile_normalize(arr.T, axis=0).T, ) def test_011_axis_pandas(self): """ test numpy axis support """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df.T, axis=0).T, qnorm.quantile_normalize(df, axis=1), ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df, axis=1), qnorm.quantile_normalize(df.T, axis=0).T, ) def test_012_from_csv(self): """ test the basic incremental_quantile_normalize functionality """ qnorm.incremental_quantile_normalize("test.csv", "test_out.csv") df1 = pd.read_csv("test.csv", index_col=0, header=0) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_013_from_csv_rowchunk(self): """ test the incremental_quantile_normalize with rowchunks functionality """ df1 = pd.read_csv("test.csv", index_col=0, header=0) for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.csv", "test_out.csv", rowchunksize=rowchunksize ) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_014_from_csv_colchunk(self): """ test the incremental_quantile_normalize with colchunks functionality """ df1 = pd.read_csv("test.csv", index_col=0, header=0) for colchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.csv", "test_out.csv", colchunksize=colchunksize ) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_015_from_csv_colrowchunk(self): """ test the incremental_quantile_normalize with both row and colchunks """ df1 = pd.read_csv("test.csv", index_col=0, header=0) for colchunksize in range(1, 10): for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.csv", "test_out.csv", rowchunksize=rowchunksize, colchunksize=colchunksize, ) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_016_from_csv_largefile(self): """ test whether or not incremental_quantile_normalize works with a larger random file """ np.random.seed(42) df1 = pd.DataFrame(index=range(5000), columns=range(100)) df1[:] = np.random.randint(0, 100, size=df1.shape) df1.to_csv("test_large.csv") qnorm.incremental_quantile_normalize( "test_large.csv", "test_large_out.csv", rowchunksize=11, colchunksize=11, ) df2 = pd.read_csv("test_large_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=4 ) def test_017_from_hdf(self): """ test the basic incremental_quantile_normalize functionality """ qnorm.incremental_quantile_normalize("test.hdf", "test_out.hdf") df1 = pd.read_hdf("test.hdf", index_col=0, header=0) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_018_from_hdf_rowchunk(self): """ test the incremental_quantile_normalize with rowchunks functionality """ df1 = pd.read_hdf("test.hdf", index_col=0, header=0) for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.hdf", "test_out.hdf", rowchunksize=rowchunksize ) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_019_from_hdf_colchunk(self): """ test the incremental_quantile_normalize with colchunks functionality """ df1 = pd.read_hdf("test.hdf", index_col=0, header=0) for colchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.hdf", "test_out.hdf", colchunksize=colchunksize ) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_020_from_hdf_colrowchunk(self): """ test the incremental_quantile_normalize with both row and colchunks """ df1 = pd.read_hdf("test.hdf", index_col=0, header=0) for colchunksize in range(1, 10): for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.hdf", "test_out.hdf", rowchunksize=rowchunksize, colchunksize=colchunksize, ) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_021_from_hdf_largefile(self): """ test whether or not incremental_quantile_normalize works with a larger random file """ np.random.seed(42) df1 = pd.DataFrame( index=range(5000), columns=["sample" + str(col) for col in range(100)], dtype=int, ) df1[:] = np.random.randint(0, 100, size=df1.shape) df1.to_hdf( "test_large.hdf", key="qnorm", format="table", data_columns=True ) qnorm.incremental_quantile_normalize( "test_large.hdf", "test_large_out.hdf", rowchunksize=11, colchunksize=11, ) df2 = pd.read_hdf("test_large_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=4 ) def test_022(self): """ Test another array, not just wiki example. """ df = pd.DataFrame( { "C1": { "A": 2.0, "B": 2.0, "C": 2.0, "D": 2.0, "E": 6.0, "F": 1.0, }, "C2": { "A": 2.0, "B": 2.0, "C": 1.0, "D": 3.5, "E": 5.0, "F": 1.0, }, } ) np.testing.assert_almost_equal( qnorm.quantile_normalize(df).values, np.array( [ [2.0625, 2.0], [2.0625, 2.0], [2.0625, 1.25], [2.0625, 2.75], [5.5, 5.5], [1.0, 1.25], ] ), ) def test_023_from_parquet(self): """ test the basic incremental_quantile_normalize functionality """ qnorm.incremental_quantile_normalize("test.parquet", "test_out.parquet") df1 = pd.read_parquet("test.parquet") df2 = pd.read_parquet("test_out.parquet") np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_024_from_parquet_rowchunk(self): """ test the incremental_quantile_normalize with rowchunks functionality """ df1 = pd.read_parquet("test.parquet") for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.parquet", "test_out.parquet", rowchunksize=rowchunksize ) df2 = pd.read_parquet("test_out.parquet") np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_025_from_parquet_colchunk(self): """ test the incremental_quantile_normalize with colchunks functionality """ df1 = pd.read_parquet("test.parquet") for colchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.parquet", "test_out.parquet", colchunksize=colchunksize ) df2 =
pd.read_parquet("test_out.parquet")
pandas.read_parquet
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/23 21:22 Desc: 东方财富网-数据中心-年报季报-分红送配 http://data.eastmoney.com/yjfp/ """ import pandas as pd import requests from tqdm import tqdm def stock_fhps_em(date: str = "20210630") -> pd.DataFrame: """ 东方财富网-数据中心-年报季报-分红送配 http://data.eastmoney.com/yjfp/ :param date: 分红送配报告期 :type date: str :return: 分红送配 :rtype: pandas.DataFrame """ url = 'https://datacenter-web.eastmoney.com/api/data/v1/get' params = { 'sortColumns': 'PLAN_NOTICE_DATE', 'sortTypes': '-1', 'pageSize': '500', 'pageNumber': '1', 'reportName': 'RPT_SHAREBONUS_DET', 'columns': 'ALL', 'quoteColumns':'', 'js': '{"data":(x),"pages":(tp)}', 'source': 'WEB', 'client': 'WEB', 'filter': f"""(REPORT_DATE='{"-".join([date[:4], date[4:6], date[6:]])}')""" } r = requests.get(url, params=params) data_json = r.json() total_pages = int(data_json['result']['pages']) big_df = pd.DataFrame() for page in tqdm(range(1, total_pages + 1), leave=False): params.update({'pageNumber': page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ '_', '名称', '_', '_', '代码', '送转股份-送转总比例', '送转股份-送转比例', '送转股份-转股比例', '现金分红-现金分红比例', '预案公告日', '股权登记日', '除权除息日', '_', '方案进度', '_', '最新公告日期', '_', '_', '_', '每股收益', '每股净资产', '每股公积金', '每股未分配利润', '净利润同比增长', '总股本', '_', '现金分红-股息率', '-', '-', '-', ] big_df = big_df[[ '代码', '名称', '送转股份-送转总比例', '送转股份-送转比例', '送转股份-转股比例', '现金分红-现金分红比例', '现金分红-股息率', '每股收益', '每股净资产', '每股公积金', '每股未分配利润', '净利润同比增长', '总股本', '预案公告日', '股权登记日', '除权除息日', '方案进度', '最新公告日期', ]] big_df['送转股份-送转总比例'] = pd.to_numeric(big_df['送转股份-送转总比例']) big_df['送转股份-送转比例'] = pd.to_numeric(big_df['送转股份-送转比例']) big_df['送转股份-转股比例'] = pd.to_numeric(big_df['送转股份-转股比例']) big_df['现金分红-现金分红比例'] = pd.to_numeric(big_df['现金分红-现金分红比例']) big_df['现金分红-股息率'] = pd.to_numeric(big_df['现金分红-股息率']) big_df['每股收益'] = pd.to_numeric(big_df['每股收益']) big_df['每股净资产'] = pd.to_numeric(big_df['每股净资产']) big_df['每股公积金'] = pd.to_numeric(big_df['每股公积金']) big_df['每股未分配利润'] = pd.to_numeric(big_df['每股未分配利润']) big_df['净利润同比增长'] = pd.to_numeric(big_df['净利润同比增长']) big_df['总股本'] = pd.to_
numeric(big_df['总股本'])
pandas.to_numeric
from __future__ import print_function, division import pandas as pd from datetime import timedelta from nilmtk.tests.testingtools import data_dir from os.path import join import itertools from collections import OrderedDict import numpy as np from nilmtk.consts import JOULES_PER_KWH from nilmtk.measurement import measurement_columns, AC_TYPES from nilmtk.utils import flatten_2d_list MAX_SAMPLE_PERIOD = 15 def power_data(simple=True): """ Returns ------- DataFrame """ if simple: STEP = 10 data = [0, 0, 0, 100, 100, 100, 150, 150, 200, 0, 0, 100, 5000, 0] secs = np.arange(start=0, stop=len(data) * STEP, step=STEP) else: data = [0, 0, 0, 100, 100, 100, 150, 150, 200, 0, 0, 100, 5000, 0] secs = [0, 10, 20, 30, 200, 210, 220, 230, 240, 249, 260, 270, 290, 1000] data = np.array(data, dtype=np.float32) active = data reactive = data * 0.9 apparent = data * 1.1 index = [pd.Timestamp('2010-01-01') + timedelta(seconds=sec) for sec in secs] column_tuples = [('power', ac_type) for ac_type in ['active', 'reactive', 'apparent']] df = pd.DataFrame(np.array([active, reactive, apparent]).transpose(), index=index, dtype=np.float32, columns=measurement_columns(column_tuples)) # calculate energy # this is not cumulative energy timedelta_secs = np.diff(secs).clip( 0, MAX_SAMPLE_PERIOD).astype(np.float32) for ac_type in AC_TYPES: joules = timedelta_secs * df['power', ac_type].values[:-1] joules = np.concatenate([joules, [0]]) kwh = joules / JOULES_PER_KWH if ac_type == 'reactive': df['energy', ac_type] = kwh elif ac_type == 'apparent': df['cumulative energy', ac_type] = kwh.cumsum() return df def create_random_df_hierarchical_column_index(): N_PERIODS = 1E4 N_METERS = 5 N_MEASUREMENTS_PER_METER = 3 meters = ['meter{:d}'.format(i) for i in range(1, N_METERS + 1)] meters = [[m] * N_MEASUREMENTS_PER_METER for m in meters] meters = flatten_2d_list(meters) level2 = ['power', 'power', 'voltage'][ :N_MEASUREMENTS_PER_METER] * N_METERS level3 = ['active', 'reactive', ''][:N_MEASUREMENTS_PER_METER] * N_METERS columns = [meters, level2, level3] columns = pd.MultiIndex.from_arrays(columns) rng = pd.date_range('2012-01-01', freq='S', periods=N_PERIODS) data = np.random.randint(low=0, high=1000, size=(N_PERIODS, N_METERS * N_MEASUREMENTS_PER_METER)) return pd.DataFrame(data=data, index=rng, columns=columns, dtype=np.float32) MEASUREMENTS = [('power', 'active'), ('energy', 'reactive'), ('voltage', '')] def create_random_df(): N_PERIODS = 1E4 rng = pd.date_range('2012-01-01', freq='S', periods=N_PERIODS) data = np.random.randint( low=0, high=1000, size=(N_PERIODS, len(MEASUREMENTS))) return pd.DataFrame(data=data, index=rng, dtype=np.float32, columns=measurement_columns(MEASUREMENTS)) TEST_METER = {'manufacturer': 'Test Manufacturer', 'model': 'Random Meter', 'sample_period': 10, 'max_sample_period': MAX_SAMPLE_PERIOD, 'measurements': []} for col in MEASUREMENTS: TEST_METER['measurements'].append({ 'physical_quantity': col[0], 'type': col[1], 'lower_limit': 0, 'upper_limit': 6000}) def add_building_metadata(store, elec_meters, key='building1', appliances=[]): node = store.get_node(key) md = { 'instance': 1, 'elec_meters': elec_meters, 'appliances': appliances } node._f_setattr('metadata', md) def create_co_test_hdf5(): FILENAME = join(data_dir(), 'co_test.h5') N_METERS = 3 chunk = 1000 N_PERIODS = 4 * chunk rng =
pd.date_range('2012-01-01', freq='S', periods=N_PERIODS)
pandas.date_range
import pandas as pd import numpy as np from scipy import stats import warnings from qualipy.util import get_column from qualipy.reflect.function import function # numeric @function(return_format=float, input_format=float) def mean(data, column): return data[column].mean() @function(return_format=float, input_format=float) def count(data, column): return data.shape[0] @function(return_format=float, input_format=float) def std(data, column): return data[column].std() @function(return_format=float, input_format=float) def max(data, column): return data[column].max() @function(return_format=float, input_format=float) def min(data, column): return data[column].min() @function(allowed_arguments=["quantile"], return_format=float, input_format=float) def quantile(data, column, quantile=0.5): return data[column].quantile(quantile) @function(return_format=int) def number_of_duplicates(data, column): return data.shape[0] - data.drop_duplicates().shape[0] @function(return_format=float) def percentage_missing(data, column): missing_data = data[(data[column].isnull()) | (data[column] == "")] try: return missing_data.shape[0] / data.shape[0] except ZeroDivisionError: return 1 @function( return_format=int, display_name="Number of Unique Elements", description="This is a raw count of the total number of unique elements in the column", ) def number_of_unique(data, column): return data[column].nunique() @function() def get_top(data, column): return data[column].describe()["top"] @function() def freq(data, column): return data[column].describe()["freq"] @function(return_format=bool) def is_unique(data, column): if column == "index": return data.index.unique().shape[0] == data.shape[0] return data[column].unique().shape[0] == data.shape[0] @function(allowed_arguments=["column_two"], return_format=float) def correlation_two_columns(data, column, column_two): return data[column].corr(data[column_two]) @function(allowed_arguments=["std_away"], return_format=int) def number_of_outliers(data, column, std_away): data = data[data[column].notnull()] return data[np.abs(stats.zscore(data[column])) > std_away].shape[0] # non numeric @function(return_format=dict) def value_counts(data, column): if data[column].nunique() > 100: warnings.warn( f"Too many unique columns for column {column}. Ignoring value counts" ) return np.NaN return ( data[data[column] != "nan"][column] .value_counts() .sort_values(ascending=False) .head(100) .to_dict() ) @function(allowed_arguments=["include_nan", "column_two"], return_format=dict) def heatmap(data, column, column_two=None, include_nan=True): if include_nan: data = data[(data[column] != "nan") & (data[column_two] != "nan")] cross = pd.crosstab(data[column], data[column_two]) cross_data = { "z": cross.values.tolist(), "y": cross.index.values.tolist(), "x": cross.columns.tolist(), } return cross_data @function(return_format=dict, allowed_arguments=["column_two"]) def correlation(data, column, column_two): corrs = pd.DataFrame( {column: data[column].values, "other_col": data[column_two].values} ) corrs_data = { "z": corrs.values.tolist(), "y": corrs.index.values.tolist(), "x": corrs.columns.tolist(), } return corrs_data @function(return_format=dict, allowed_arguments=["time_freq", "epoch_datetime"]) def events_per_time_period(data, column, epoch_datetime="max", time_freq="1D"): d = data.copy() d[column] = pd.to_datetime(d[column]) d = d[d[column].notnull()] counts = d.groupby(pd.Grouper(key=column, freq=time_freq)).apply( lambda g: g.shape[0] ) if epoch_datetime == "max": epoch_datetime =
pd.to_datetime(d[column])
pandas.to_datetime
import asyncio import os import uuid import pandas as pd import pytest from storey import build_flow, CSVSource, CSVTarget, SyncEmitSource, Reduce, Map, FlatMap, AsyncEmitSource, ParquetTarget from .integration_test_utils import _generate_table_name has_azure_credentials = os.getenv("AZURE_ACCOUNT_NAME") and os.getenv("AZURE_ACCOUNT_KEY") and os.getenv("AZURE_BLOB_STORE") if has_azure_credentials: storage_options = {"account_name": os.getenv("AZURE_ACCOUNT_NAME"), "account_key": os.getenv("AZURE_ACCOUNT_KEY")} from adlfs import AzureBlobFileSystem @pytest.fixture() def azure_create_csv(): # Setup azure_blob = os.getenv("AZURE_BLOB_STORE") file_path = _generate_table_name(f'{azure_blob}/az_storey') _write_test_csv(file_path) # Test runs yield file_path # Teardown _delete_file(file_path) @pytest.fixture() def azure_teardown_file(): # Setup azure_blob = os.getenv("AZURE_BLOB_STORE") file_path = _generate_table_name(f'{azure_blob}/az_storey') # Test runs yield file_path # Teardown _delete_file(file_path) @pytest.fixture() def azure_setup_teardown_test(): # Setup table_name = _generate_table_name(f'{os.getenv("AZURE_BLOB_STORE")}/test') # Test runs yield table_name # Teardown azure_recursive_delete(table_name) def _write_test_csv(file_path): az_fs = AzureBlobFileSystem(**storage_options) data = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" with az_fs.open(file_path, 'w') as f: f.write(data) def _delete_file(path): az_fs = AzureBlobFileSystem(**storage_options) az_fs.delete(path) def azure_recursive_delete(path): az_fs = AzureBlobFileSystem(**storage_options) az_fs.rm(path, True) @pytest.mark.skipif(not has_azure_credentials, reason='No azure credentials found') def test_csv_reader_from_azure(azure_create_csv): controller = build_flow([ CSVSource(f'az:///{azure_create_csv}', header=True, storage_options=storage_options), FlatMap(lambda x: x), Map(lambda x: int(x)), Reduce(0, lambda acc, x: acc + x), ]).run() termination_result = controller.await_termination() assert termination_result == 495 @pytest.mark.skipif(not has_azure_credentials, reason='No azure credentials found') def test_csv_reader_from_azure_error_on_file_not_found(): controller = build_flow([ CSVSource(f'az:///{os.getenv("AZURE_BLOB_STORE")}/idontexist.csv', header=True, storage_options=storage_options), ]).run() try: controller.await_termination() assert False except FileNotFoundError: pass async def async_test_write_csv_to_azure(azure_teardown_csv): controller = build_flow([ AsyncEmitSource(), CSVTarget(f'az:///{azure_teardown_csv}', columns=['n', 'n*10'], header=True, storage_options=storage_options) ]).run() for i in range(10): await controller.emit([i, 10 * i]) await controller.terminate() await controller.await_termination() actual = AzureBlobFileSystem(**storage_options).open(azure_teardown_csv).read() expected = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert actual.decode("utf-8") == expected @pytest.mark.skipif(not has_azure_credentials, reason='No azure credentials found') def test_write_csv_to_azure(azure_teardown_file): asyncio.run(async_test_write_csv_to_azure(azure_teardown_file)) @pytest.mark.skipif(not has_azure_credentials, reason='No azure credentials found') def test_write_csv_with_dict_to_azure(azure_teardown_file): file_path = f'az:///{azure_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path, columns=['n', 'n*10'], header=True, storage_options=storage_options) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}) controller.terminate() controller.await_termination() actual = AzureBlobFileSystem(**storage_options).open(azure_teardown_file).read() expected = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert actual.decode("utf-8") == expected @pytest.mark.skipif(not has_azure_credentials, reason='No azure credentials found') def test_write_csv_infer_columns_without_header_to_azure(azure_teardown_file): file_path = f'az:///{azure_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path, storage_options=storage_options) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}) controller.terminate() controller.await_termination() actual = AzureBlobFileSystem(**storage_options).open(azure_teardown_file).read() expected = "0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert actual.decode("utf-8") == expected @pytest.mark.skipif(not has_azure_credentials, reason='No azure credentials found') def test_write_csv_from_lists_with_metadata_and_column_pruning_to_azure(azure_teardown_file): file_path = f'az:///{azure_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path, columns=['event_key=$key', 'n*10'], header=True, storage_options=storage_options) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}, key=f'key{i}') controller.terminate() controller.await_termination() actual = AzureBlobFileSystem(**storage_options).open(azure_teardown_file).read() expected = "event_key,n*10\nkey0,0\nkey1,10\nkey2,20\nkey3,30\nkey4,40\nkey5,50\nkey6,60\nkey7,70\nkey8,80\nkey9,90\n" assert actual.decode("utf-8") == expected @pytest.mark.skipif(not has_azure_credentials, reason='No azure credentials found') def test_write_to_parquet_to_azure(azure_setup_teardown_test): out_dir = f'az:///{azure_setup_teardown_test}' columns = ['my_int', 'my_string'] controller = build_flow([ SyncEmitSource(), ParquetTarget(out_dir, partition_cols='my_int', columns=columns, max_events=1, storage_options=storage_options) ]).run() expected = [] for i in range(10): controller.emit([i, f'this is {i}']) expected.append([i, f'this is {i}']) expected =
pd.DataFrame(expected, columns=columns, dtype='int32')
pandas.DataFrame
import doctest import math import os import random import sklearn import pandas as pd import numpy as np from datetime import timedelta from sklearn.utils.estimator_checks import check_transformer_general, check_transformers_unfitted from unittest2 import TestSuite, TextTestRunner, TestCase # or `from unittest import ...` if on Python 3.4+ import category_encoders as encoders __author__ = 'willmcginnis' # subroutines def create_array(n_rows=1000, extras=False, has_none=True): """ Creates a numpy dataset with some categorical variables :return: """ ds = [[ random.random(), random.random(), random.choice(['A', 'B', 'C']), random.choice(['A', 'B', 'C', 'D']) if extras else random.choice(['A', 'B', 'C']), random.choice(['A', 'B', 'C', None, np.nan]) if has_none else random.choice(['A', 'B', 'C']), random.choice(['A']) ] for _ in range(n_rows)] return np.array(ds) def create_dataset(n_rows=1000, extras=False, has_none=True): """ Creates a dataset with some categorical variables """ ds = [[ random.random(), # Floats random.choice([float('nan'), float('inf'), float('-inf'), -0, 0, 1, -1, math.pi]), # Floats with edge scenarios row, # Unique integers str(row), # Unique strings random.choice(['A']), # Invariant random.choice(['A', 'B_b', 'C_c_c']), # Strings with underscores to test reverse_dummies() random.choice(['A', 'B', 'C', None]) if has_none else random.choice(['A', 'B', 'C']), # None random.choice(['A', 'B', 'C', 'D']) if extras else random.choice(['A', 'B', 'C']), # With a new string value random.choice([12, 43, -32]) # Number in the column name ] for row in range(n_rows)] df = pd.DataFrame(ds, columns=['float', 'float_edge', 'unique_int', 'unique_str', 'invariant', 'underscore', 'none', 'extra', 321]) return df def verify_numeric(X_test): for dt in X_test.dtypes: numeric = False if np.issubdtype(dt, np.dtype(int)) or np.issubdtype(dt, np.dtype(float)): numeric = True assert numeric def verify_inverse_transform(x, x_inv): """ Verify x is equal to x_inv. The test returns true for NaN.equals(NaN) as it should. """ assert x.equals(x_inv) # data definitions np_X = create_array(n_rows=100) np_X_t = create_array(n_rows=50, extras=True) np_y = np.random.randn(np_X.shape[0]) > 0.5 np_y_t = np.random.randn(np_X_t.shape[0]) > 0.5 X = create_dataset(n_rows=100) X_t = create_dataset(n_rows=50, extras=True) y = pd.DataFrame(np_y) y_t = pd.DataFrame(np_y_t) # this class utilises parametrised tests where we loop over different encoders # tests that are applicable to only one encoder are the end of the class class TestEncoders(TestCase): def test_np(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): # Encode a numpy array enc = getattr(encoders, encoder_name)() enc.fit(np_X, np_y) verify_numeric(enc.transform(np_X_t)) def test_classification(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): cols = ['unique_str', 'underscore', 'extra', 'none', 'invariant', 321] enc = getattr(encoders, encoder_name)(cols=cols) enc.fit(X, np_y) verify_numeric(enc.transform(X_t)) enc = getattr(encoders, encoder_name)(verbose=1) enc.fit(X, np_y) verify_numeric(enc.transform(X_t)) enc = getattr(encoders, encoder_name)(drop_invariant=True) enc.fit(X, np_y) verify_numeric(enc.transform(X_t)) enc = getattr(encoders, encoder_name)(return_df=False) enc.fit(X, np_y) self.assertTrue(isinstance(enc.transform(X_t), np.ndarray)) self.assertEqual(enc.transform(X_t).shape[0], X_t.shape[0], 'Row count must not change') # documented in issue #122 # when we use the same encoder on two different datasets, it should not explode # X_a = pd.DataFrame(data=['1', '2', '2', '2', '2', '2'], columns=['col_a']) # X_b = pd.DataFrame(data=['1', '1', '1', '2', '2', '2'], columns=['col_b']) # different values and name # y_dummy = [True, False, True, False, True, False] # enc = getattr(encoders, encoder_name)() # enc.fit(X_a, y_dummy) # enc.fit(X_b, y_dummy) # verify_numeric(enc.transform(X_b)) def test_impact_encoders(self): for encoder_name in ['LeaveOneOutEncoder', 'TargetEncoder', 'WOEEncoder']: with self.subTest(encoder_name=encoder_name): # encode a numpy array and transform with the help of the target enc = getattr(encoders, encoder_name)() enc.fit(np_X, np_y) verify_numeric(enc.transform(np_X_t, np_y_t)) # target is a DataFrame enc = getattr(encoders, encoder_name)() enc.fit(X, y) verify_numeric(enc.transform(X_t, y_t)) # when we run transform(X, y) and there is a new value in X, something is wrong and we raise an error enc = getattr(encoders, encoder_name)(impute_missing=True, handle_unknown='error', cols=['extra']) enc.fit(X, y) self.assertRaises(ValueError, enc.transform, (X_t, y_t)) def test_error_handling(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): # we exclude some columns X = create_dataset(n_rows=100) X = X.drop(['unique_str', 'none'], axis=1) X_t = create_dataset(n_rows=50, extras=True) X_t = X_t.drop(['unique_str', 'none'], axis=1) # illegal state, we have to first train the encoder... enc = getattr(encoders, encoder_name)() with self.assertRaises(ValueError): enc.transform(X) # wrong count of attributes enc = getattr(encoders, encoder_name)() enc.fit(X, y) with self.assertRaises(ValueError): enc.transform(X_t.iloc[:, 0:3]) # no cols enc = getattr(encoders, encoder_name)(cols=[]) enc.fit(X, y) self.assertTrue(enc.transform(X_t).equals(X_t)) def test_handle_unknown_error(self): # BaseN has problems with None -> ignore None X = create_dataset(n_rows=100, has_none=False) X_t = create_dataset(n_rows=50, extras=True, has_none=False) for encoder_name in (set(encoders.__all__) - {'HashingEncoder'}): # HashingEncoder supports new values by design -> excluded with self.subTest(encoder_name=encoder_name): # new value during scoring enc = getattr(encoders, encoder_name)(handle_unknown='error') enc.fit(X, y) with self.assertRaises(ValueError): _ = enc.transform(X_t) def test_sklearn_compliance(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): # in sklearn < 0.19.0, these methods require classes, # in sklearn >= 0.19.0, these methods require instances if sklearn.__version__ < '0.19.0': encoder = getattr(encoders, encoder_name) else: encoder = getattr(encoders, encoder_name)() check_transformer_general(encoder_name, encoder) check_transformers_unfitted(encoder_name, encoder) def test_inverse_transform(self): # we do not allow None in these data (but "none" column without any None is ok) X = create_dataset(n_rows=100, has_none=False) X_t = create_dataset(n_rows=50, has_none=False) X_t_extra = create_dataset(n_rows=50, extras=True, has_none=False) cols = ['underscore', 'none', 'extra', 321] for encoder_name in ['BaseNEncoder', 'BinaryEncoder', 'OneHotEncoder', 'OrdinalEncoder']: with self.subTest(encoder_name=encoder_name): # simple run enc = getattr(encoders, encoder_name)(verbose=1, cols=cols) enc.fit(X) verify_inverse_transform(X_t, enc.inverse_transform(enc.transform(X_t))) # when a new value is encountered, do not raise an exception enc = getattr(encoders, encoder_name)(verbose=1, cols=cols) enc.fit(X, y) _ = enc.inverse_transform(enc.transform(X_t_extra)) def test_types(self): X = pd.DataFrame({ 'Int': [1, 2, 1, 2], 'Float': [1.1, 2.2, 3.3, 4.4], 'Complex': [3.45J, 3.45J, 3.45J, 3.45J], 'None': [None, None, None, None], 'Str': ['a', 'c', 'c', 'd'], 'PdTimestamp': [pd.Timestamp('2012-05-01'), pd.Timestamp('2012-05-02'), pd.Timestamp('2012-05-03'),
pd.Timestamp('2012-05-06')
pandas.Timestamp
r""" Auxiliary functions for :class:`anndata.AnnData` objects that are not covered in :mod:`scanpy`. """ import os from itertools import chain from typing import Callable, List, Mapping, Optional import anndata import numpy as np import pandas as pd import scipy.sparse import sklearn.decomposition import sklearn.feature_extraction.text import sklearn.preprocessing import sklearn.neighbors import sklearn.utils.extmath from . import genomics, num from .utils import logged, smart_tqdm def lsi( adata: anndata.AnnData, n_components: int = 20, use_highly_variable: Optional[bool] = None, **kwargs ) -> None: r""" LSI analysis (following the Seurat v3 approach) Parameters ---------- adata Input dataset n_components Number of dimensions to use use_highly_variable Whether to use highly variable features only, stored in ``adata.var['highly_variable']``. By default uses them if they have been determined beforehand. **kwargs Additional keyword arguments are passed to :func:`sklearn.utils.extmath.randomized_svd` """ if use_highly_variable is None: use_highly_variable = "highly_variable" in adata.var adata_use = adata[:, adata.var["highly_variable"]] if use_highly_variable else adata X = num.tfidf(adata_use.X) X_norm = sklearn.preprocessing.Normalizer(norm="l1").fit_transform(X) X_norm = np.log1p(X_norm * 1e4) X_lsi = sklearn.utils.extmath.randomized_svd(X_norm, n_components, **kwargs)[0] X_lsi -= X_lsi.mean(axis=1, keepdims=True) X_lsi /= X_lsi.std(axis=1, ddof=1, keepdims=True) adata.obsm["X_lsi"] = X_lsi @logged def get_gene_annotation( adata: anndata.AnnData, var_by: str = None, gtf: os.PathLike = None, gtf_by: str = None, by_func: Optional[Callable] = None ) -> None: r""" Get genomic annotation of genes by joining with a GTF file. Parameters ---------- adata Input dataset var_by Specify a column in ``adata.var`` used to merge with GTF attributes, otherwise ``adata.var_names`` is used by default. gtf Path to the GTF file gtf_by Specify a field in the GTF attributes used to merge with ``adata.var``, e.g. "gene_id", "gene_name". by_func Specify an element-wise function used to transform merging fields, e.g. removing suffix in gene IDs. Note ---- The genomic locations are converted to 0-based as specified in bed format rather than 1-based as specified in GTF format. """ if gtf is None or gtf_by is None: raise ValueError("Arguments `gtf` and `gtf_by` must be specified!") var_by = adata.var_names if var_by is None else adata.var[var_by] gtf = genomics.read_gtf(gtf).query("feature == 'gene'").split_attribute() if by_func: by_func = np.vectorize(by_func) var_by = by_func(var_by) gtf[gtf_by] = by_func(gtf[gtf_by]) # Safe inplace modification gtf = gtf.sort_values("seqname").drop_duplicates( subset=[gtf_by], keep="last" ) # Typically, scaffolds come first, chromosomes come last merge_df = pd.concat([ pd.DataFrame(gtf.to_bed(name=gtf_by)), pd.DataFrame(gtf).drop(columns=genomics.Gtf.COLUMNS) # Only use the splitted attributes ], axis=1).set_index(gtf_by).reindex(var_by).set_index(adata.var.index) adata.var = pd.concat([adata.var, merge_df], axis=1) def aggregate_obs( adata: anndata.AnnData, by: str, X_agg: Optional[str] = "sum", obs_agg: Optional[Mapping[str, str]] = None, obsm_agg: Optional[Mapping[str, str]] = None, layers_agg: Optional[Mapping[str, str]] = None ) -> anndata.AnnData: r""" Aggregate obs in a given dataset by certain categories Parameters ---------- adata Dataset to be aggregated by Specify a column in ``adata.obs`` used for aggregation, must be discrete. X_agg Aggregation function for ``adata.X``, must be one of ``{"sum", "mean", ``None``}``. Setting to ``None`` discards the ``adata.X`` matrix. obs_agg Aggregation methods for ``adata.obs``, indexed by obs columns, must be one of ``{"sum", "mean", "majority"}``, where ``"sum"`` and ``"mean"`` are for continuous data, and ``"majority"`` is for discrete data. Fields not specified will be discarded. obsm_agg Aggregation methods for ``adata.obsm``, indexed by obsm keys, must be one of ``{"sum", "mean"}``. Fields not specified will be discarded. layers_agg Aggregation methods for ``adata.layers``, indexed by layer keys, must be one of ``{"sum", "mean"}``. Fields not specified will be discarded. Returns ------- aggregated Aggregated dataset """ obs_agg = obs_agg or {} obsm_agg = obsm_agg or {} layers_agg = layers_agg or {} by = adata.obs[by] agg_idx = pd.Index(by.cat.categories) \ if pd.api.types.is_categorical_dtype(by) \ else pd.Index(np.unique(by)) agg_sum = scipy.sparse.coo_matrix(( np.ones(adata.shape[0]), ( agg_idx.get_indexer(by), np.arange(adata.shape[0]) ) )).tocsr() agg_mean = agg_sum.multiply(1 / agg_sum.sum(axis=1)) agg_method = { "sum": lambda x: agg_sum @ x, "mean": lambda x: agg_mean @ x, "majority": lambda x: pd.crosstab(by, x).idxmax(axis=1).loc[agg_idx].to_numpy() } X = agg_method[X_agg](adata.X) if X_agg and adata.X is not None else None obs = pd.DataFrame({ k: agg_method[v](adata.obs[k]) for k, v in obs_agg.items() }, index=agg_idx.astype(str)) obsm = { k: agg_method[v](adata.obsm[k]) for k, v in obsm_agg.items() } layers = { k: agg_method[v](adata.layers[k]) for k, v in layers_agg.items() } for c in obs: if pd.api.types.is_categorical_dtype(adata.obs[c]): obs[c] = pd.Categorical(obs[c], categories=adata.obs[c].cat.categories) return anndata.AnnData( X=X, obs=obs, var=adata.var, obsm=obsm, varm=adata.varm, layers=layers ) def transfer_labels( ref: anndata.AnnData, query: anndata.AnnData, field: str, n_neighbors: int = 5, use_rep: Optional[str] = None, key_added: Optional[str] = None, **kwargs ) -> None: r""" Transfer discrete labels from reference dataset to query dataset Parameters ---------- ref Reference dataset query Query dataset field Field to be transferred in ``ref.obs`` (must be discrete) n_neighbors Number of nearest neighbors used for label transfer use_rep Data representation based on which to find nearest neighbors, by default uses ``{ref, query}.X``. key_added New ``query.obs`` key added for the transfered labels, by default the same as ``field``. **kwargs Additional keyword arguments are passed to :class:`sklearn.neighbors.NearestNeighbors` """ ref_mat = ref.obsm[use_rep] if use_rep else ref.X query_mat = query.obsm[use_rep] if use_rep else query.X nn = sklearn.neighbors.NearestNeighbors( n_neighbors=n_neighbors, **kwargs ).fit(ref_mat) nni = nn.kneighbors(query_mat, return_distance=False) hits = ref.obs[field].to_numpy()[nni] pred = pd.crosstab( np.repeat(query.obs_names, n_neighbors), hits.ravel() ).idxmax(axis=1).loc[query.obs_names] if pd.api.types.is_categorical_dtype(ref.obs[field]): pred = pd.Categorical(pred, categories=ref.obs[field].cat.categories) query.obs[key_added or field] = pred def extract_rank_genes_groups( adata: anndata.AnnData, groups: Optional[List[str]] = None, filter_by: str = "pvals_adj < 0.01", sort_by: str = "scores", ascending: str = False ) -> pd.DataFrame: r""" Extract result of :func:`scanpy.tl.rank_genes_groups` in the form of marker gene data frame for specific cell groups Parameters ---------- adata Input dataset groups Target groups for which markers should be extracted, by default extract all groups. filter_by Marker filtering criteria (passed to :meth:`pandas.DataFrame.query`) sort_by Column used for sorting markers ascending Whether to sort in ascending order Returns ------- marker_df Extracted marker data frame Note ---- Markers shared by multiple groups will be assign to the group with highest score. """ if "rank_genes_groups" not in adata.uns: raise ValueError("Please call `sc.tl.rank_genes_groups` first!") if groups is None: groups = adata.uns["rank_genes_groups"][sort_by].dtype.names df = pd.concat([ pd.DataFrame({ k: np.asarray(v[g]) for k, v in adata.uns["rank_genes_groups"].items() if k != "params" }).assign(group=g) for g in groups ]) df["group"] = pd.Categorical(df["group"], categories=groups) df = df.sort_values( sort_by, ascending=ascending ).drop_duplicates( subset=["names"], keep="first" ).sort_values( ["group", sort_by], ascending=[True, ascending] ).query(filter_by) df = df.reset_index(drop=True) return df def bedmap2anndata( bedmap: os.PathLike, var_col: int = 3, obs_col: int = 6 ) -> anndata.AnnData: r""" Convert bedmap result to :class:`anndata.AnnData` object Parameters ---------- bedmap Path to bedmap result var_col Variable column (0-based) obs_col Observation column (0-based) Returns ------- adata Converted :class:`anndata.AnnData` object Note ---- Similar to ``rliger::makeFeatureMatrix``, but more automated and memory efficient. """ bedmap = pd.read_table( bedmap, sep="\t", header=None, usecols=[var_col, obs_col] ).dropna() obs_pool = bedmap[obs_col].str.split(";") var_pool = bedmap[var_col] obs_names = pd.Index(set(chain.from_iterable(obs_pool))) var_names = pd.Index(set(var_pool)) X = scipy.sparse.lil_matrix((var_names.size, obs_names.size)) # Transposed for obs, var in smart_tqdm(zip(obs_pool, var_pool), total=bedmap.shape[0]): row = obs_names.get_indexer(obs) col = var_names.get_loc(var) X.rows[col] += row.tolist() X.data[col] += [1] * row.size X = X.tocsc().T # Transpose back X.sum_duplicates() return anndata.AnnData( X=X, obs=pd.DataFrame(index=obs_names), var=
pd.DataFrame(index=var_names)
pandas.DataFrame
import logging from typing import NamedTuple, Dict, List, Set, Union import d3m import d3m.metadata.base as mbase import numpy as np import pandas as pd from common_primitives import utils from d3m.container import DataFrame as d3m_DataFrame from d3m.metadata import hyperparams as metadata_hyperparams from d3m.metadata import hyperparams, params from d3m.metadata.hyperparams import Enumeration, UniformInt, UniformBool from d3m.primitive_interfaces.base import CallResult from d3m.primitive_interfaces.unsupervised_learning import UnsupervisedLearnerPrimitiveBase from . import config _logger = logging.getLogger(__name__) Input = d3m.container.DataFrame Output = d3m.container.DataFrame class EncParams(params.Params): mapping: Dict cat_columns: List[str] empty_columns: List[int] class EncHyperparameter(hyperparams.Hyperparams): n_limit = UniformInt(lower=5, upper=100, default=12, description='Limits the maximum number of columns generated from a single categorical column', semantic_types=['http://schema.org/Integer', 'https://metadata.datadrivendiscovery.org/types/TuningParameter']) use_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.", ) exclude_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to not operate on. Applicable only if \"use_columns\" is not provided.", ) return_result = hyperparams.Enumeration( values=['append', 'replace', 'new'], default='replace', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Should parsed columns be appended, should they replace original columns, or should only parsed columns be returned? This hyperparam is ignored if use_semantic_types is set to false.", ) use_semantic_types = hyperparams.UniformBool( default=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Controls whether semantic_types metadata will be used for filtering columns in input dataframe. Setting this to false makes the code ignore return_result and will produce only the output dataframe" ) add_index_columns = hyperparams.UniformBool( default=True, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Also include primary index columns if input data has them. Applicable only if \"return_result\" is set to \"new\".", ) class Encoder(UnsupervisedLearnerPrimitiveBase[Input, Output, EncParams, EncHyperparameter]): """ An one-hot encoder, which 1. n_limit: max number of distinct values to one-hot encode, remaining values with fewer occurence are put in [colname]_other_ column. 2. feed in data by set_training_data, then apply fit() function to tune the encoder. 3. produce(): input data would be encoded and return. """ metadata = hyperparams.base.PrimitiveMetadata({ "id": "18f0bb42-6350-3753-8f2d-d1c3da70f279", "version": config.VERSION, "name": "ISI DSBox Data Encoder", "description": "Encode data, such as one-hot encoding for categorical data", "python_path": "d3m.primitives.data_preprocessing.Encoder.DSBOX", "primitive_family": "DATA_PREPROCESSING", "algorithm_types": ["ENCODE_ONE_HOT"], "source": { "name": config.D3M_PERFORMER_TEAM, "contact": config.D3M_CONTACT, "uris": [config.REPOSITORY] }, "keywords": ["preprocessing", "encoding"], "installation": [config.INSTALLATION], }) def __repr__(self): return "%s(%r)" % ('Encoder', self.__dict__) def __init__(self, *, hyperparams: EncHyperparameter) -> None: super().__init__(hyperparams=hyperparams) self.hyperparams = hyperparams self._mapping: Dict = {} self._input_data: Input = None self._input_data_copy = None self._fitted = False self._cat_columns = [] self._col_index = None self._empty_columns = [] def set_training_data(self, *, inputs: Input) -> None: self._input_data = inputs self._fitted = False def _trim_features(self, feature, n_limit): topn = feature.dropna().unique() if n_limit: if feature.dropna().nunique() > n_limit: topn = list(feature.value_counts().head(n_limit).index) topn.append('other_') topn = [x for x in topn if x] return feature.name, topn def fit(self, *, timeout: float = None, iterations: int = None) -> CallResult[None]: if self._fitted: return if self._input_data is None: raise ValueError('Missing training(fitting) data.') # Look at attribute columns only # print('fit in', self._input_data.columns) data = self._input_data.copy() all_attributes = utils.list_columns_with_semantic_types(metadata=data.metadata, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/Attribute"]) # Remove columns with all empty values, structural type str numeric = utils.list_columns_with_semantic_types( data.metadata, ['http://schema.org/Integer', 'http://schema.org/Float']) numeric = [x for x in numeric if x in all_attributes] self._empty_columns = [] _logger.debug(f'Numeric columns: {numeric}') for element in numeric: if data.metadata.query((mbase.ALL_ELEMENTS, element)).get('structural_type', ()) == str: if pd.isnull(pd.to_numeric(data.iloc[:, element])).sum() == data.shape[0]: _logger.debug(f'Empty numeric str column: {element}') self._empty_columns.append(element) # Remove columns with all empty values, structural numeric is_empty = pd.isnull(data).sum(axis=0) == data.shape[0] for i in all_attributes: if is_empty.iloc[i] and i not in self._empty_columns: _logger.debug(f'Empty numeric str column: {element}') self._empty_columns.append(i) _logger.debug('Removing entirely empty columns: {}'.format(data.columns[self._empty_columns])) data = utils.remove_columns(data, self._empty_columns) categorical_attributes = utils.list_columns_with_semantic_types(metadata=data.metadata, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/OrdinalData", "https://metadata.datadrivendiscovery.org/types/CategoricalData"]) all_attributes = utils.list_columns_with_semantic_types(metadata=data.metadata, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/Attribute"]) self._cat_col_index = list(set(all_attributes).intersection(categorical_attributes)) self._cat_columns = data.columns[self._cat_col_index].tolist() _logger.debug('Encoding columns: {}'.format(self._cat_columns)) mapping = {} for column_name in self._cat_columns: col = data[column_name] temp = self._trim_features(col, self.hyperparams['n_limit']) if temp: mapping[temp[0]] = temp[1] self._mapping = mapping self._fitted = True return CallResult(None, has_finished=True) def produce(self, *, inputs: Input, timeout: float = None, iterations: int = None) -> CallResult[Output]: """ Convert and output the input data into encoded format, using the trained (fitted) encoder. Notice that [colname]_other_ and [colname]_nan columns are always kept for one-hot encoded columns. """ self._input_data_copy = inputs.copy() # Remove columns with all empty values _logger.debug('Removing entirely empty columns: {}'.format(self._input_data_copy.columns[self._empty_columns])) self._input_data_copy = utils.remove_columns(self._input_data_copy, self._empty_columns) # Return if there is nothing to encode if len(self._cat_columns) == 0: return CallResult(self._input_data_copy, True, 1) _logger.debug('Encoding columns: {}'.format(self._cat_columns)) data_encode = self._input_data_copy[list(self._mapping.keys())] # Get rid of false SettingWithCopyWarning data_encode.is_copy = None res = [] for column_name in self._cat_columns: feature = data_encode[column_name].copy() other_ = lambda x: 'Other' if (x and x not in self._mapping[column_name]) else x nan_ = lambda x: x if x else np.nan feature.loc[feature.notnull()] = feature[feature.notnull()].apply(other_) feature = feature.apply(nan_) new_column_names = ['{}_{}'.format(column_name, i) for i in self._mapping[column_name] + ['nan']] encoded = pd.get_dummies(feature, dummy_na=True, prefix=column_name) missed = [name for name in new_column_names if name not in list(encoded.columns)] for m in missed: # print('missing', m) encoded[m] = 0 encoded = encoded[new_column_names] res.append(encoded) # data_encode.loc[:,column_name] = feature # Drop columns that will be encoded # data_rest = self._input_data_copy.drop(self._mapping.keys(), axis=1) columns_names = self._input_data_copy.columns.tolist() drop_indices = [columns_names.index(col) for col in self._mapping.keys()] drop_indices = sorted(drop_indices) all_categorical = False try: self._input_data_copy = utils.remove_columns(self._input_data_copy, drop_indices) except ValueError: _logger.warning("[warn] All the attributes are categorical!") all_categorical = True # metadata for columns that are not one hot encoded # self._col_index = [self._input_data_copy.columns.get_loc(c) for c in data_rest.columns] # data_rest.metadata = utils.select_columns_metadata(self._input_data_copy.metadata, self._col_index) # encode data # encoded = d3m_DataFrame(pd.get_dummies(data_encode, dummy_na=True, prefix=self._cat_columns, prefix_sep='_', # columns=self._cat_columns)) encoded = d3m_DataFrame(
pd.concat(res, axis=1)
pandas.concat
# -*- coding: UTF-8 -*- from __future__ import division import pandas as pd # For the next set of questions, we will be using census data from the United States Census Bureau. # Counties are political and geographic subdivisions of states in the United States. # This dataset contains population data for counties and states in the US from 2010 to 2015. # See this document for a description of the variable names. # The census dataset (census.csv) should be loaded as census_df. Answer questions using this as appropriate. census_df = pd.read_csv('../data/census.csv') print(census_df.head(1)) # SUMLEV REGION DIVISION STATE COUNTY STNAME CTYNAME CENSUS2010POP \ # 0 40 3 6 1 0 Alabama Alabama 4779736 # ESTIMATESBASE2010 POPESTIMATE2010 ... RDOMESTICMIG2011 \ # 0 4780127 4785161 ... 0.002295 # RDOMESTICMIG2012 RDOMESTICMIG2013 RDOMESTICMIG2014 RDOMESTICMIG2015 \ # 0 -0.193196 0.381066 0.582002 -0.467369 # RNETMIG2011 RNETMIG2012 RNETMIG2013 RNETMIG2014 RNETMIG2015 # 0 1.030015 0.826644 1.383282 1.724718 0.712594 # Question 5 # ---------------------------------------- # Quiz Question: Which state has the most counties in it? (hint: consider the sumlevel key carefully! # You'll need this for future questions too...) # This function should return a single string value. def answer_five(): stnames = census_df.groupby(census_df['STNAME']) # print(stnames) # pandas.core.groupby.DataFrameGroupBy object at 0x0000000006BE4A90> return stnames['COUNTY'].count().argmax() def answer_five2(): # 'STNAME' becomes the index name county_grp = census_df['COUNTY'].groupby(census_df['STNAME']) # print(county_grp) # <pandas.core.groupby.SeriesGroupBy object at 0x0000000006BE4A90> return county_grp.count().argmax() print('\nQuestion 5') print(answer_five()) # Texas print(answer_five2()) # Texas # Question 6 # ---------------------------------------- # Quiz Question: Only looking at the three most populous counties for each state, what are the three # most populous states (in order of highest population to lowest population)? # This function should return a list of string values. def answer_six(): # 1. Remove sub level = 40 (state level) df = census_df[census_df['SUMLEV'] == 50] # 2. First is to get top 3 most populous counties for each state group_by_state = df.groupby(census_df['STNAME']) top3_country = group_by_state['POPESTIMATE2015'].nlargest(3) # print(top3_grp) # STNAME # Alabama 0 4779736 # 37 658466 # 49 412992 # make index as list with column names. "top3" variable here is same as "top3_country". top3 = top3_country.reset_index() # print(top3) # STNAME level_1 CENSUS2010POP # 0 Alabama 0 4779736 # 1 Alabama 37 658466 # 2 Alabama 49 412992 # 3. Sum the value by state and get the top 3 most populous states group_by_state_in_top3 = top3.groupby(top3['STNAME']) county = group_by_state_in_top3['POPESTIMATE2015'].sum() # print(county) # STNAME # Alabama 5851194 # Alaska 1099638 # Arizona 11189397 return county.nlargest(3).index.values.tolist() print('\nQuestion 6') print(type(answer_six())) # <class 'list'> print(answer_six()) # ['California', 'Texas', 'Illinois'] # Question 7 # ---------------------------------------- # Quiz Question: Which county has had the largest absolute change in population within the period 2010-2015? # (Hint: population values are stored in columns POPESTIMATE2010 through POPESTIMATE2015, # you need to consider all six columns.) # e.g. If County Population in the 5 year period is 100, 120, 80, 105, 100, 130, # then its largest change in the period would be |130-80| = 50. # This function should return a single string value. def answer_seven(): # remove sub level = 40 (state level) df = census_df[census_df['SUMLEV'] == 50] # largest change would be the max population during the 5-year period minus the min population df2 = pd.DataFrame() years = ['POPESTIMATE2010', 'POPESTIMATE2011', 'POPESTIMATE2012', 'POPESTIMATE2013', 'POPESTIMATE2014', 'POPESTIMATE2015'] # 重新组合一个data frame df2['CTYNAME'] = df['CTYNAME'] df2['Y_MIN'] = df[years].min(axis=1) df2['Y_MAX'] = df[years].max(axis=1) df2['Y_CHANGE'] = abs(df2['Y_MAX'] - df2['Y_MIN']) # print(df2) # CTYNAME Y_MIN Y_MAX Y_CHANGE # 1 Autauga County 54660 55347 687 # 2 Baldwin County 183193 203709 20516 # 3 Barbour County 26489 27341 852 # print(df2['Y_CHANGE'].nlargest(5)) # 获取最大Y_CHANGE值的索引值, 后续再通过dataframe.loc去定位到该行. # dataframe.iloc按下标选取,或者使用dataframe.loc按索引选取. index = df2['Y_CHANGE'].argmax() # print(index) # 2667 return df2.loc[index, 'CTYNAME'] print('\nQuestion 7') print(answer_seven()) # Harris County def answer_seven_2(): df =
pd.DataFrame(census_df[census_df['SUMLEV'] == 50])
pandas.DataFrame
#====================================================== # General Utility Functions #====================================================== ''' Info: Utility functions for general applications. Version: 2.0 Author: <NAME> Created: Saturday, 13 April 2019 ''' # Import modules import os import numpy as np import pandas as pd import sys #import dill as pickle import pickle from datetime import datetime #------------------------------ # Utility Functions #------------------------------ # Set title def set_title(string): # Check if string is too long string_size = len(string) max_length = 57 if string_size > max_length: print('TITLE TOO LONG') else: lr_buffer_len = int((max_length - string_size) / 2) full_buffer_len = lr_buffer_len * 2 + string_size print('\n') print(full_buffer_len * '=') print(full_buffer_len * ' ') print(lr_buffer_len * ' ' + string + lr_buffer_len * ' ') print(full_buffer_len * ' ') print(full_buffer_len * '='+'\n\n') # Set section def set_section(string): # Check if string is too long string_size = len(string) max_length = 100 if string_size > max_length: print('TITLE TOO LONG') else: full_buffer_len = string_size print('\n') print(full_buffer_len * '-') print(string) print(full_buffer_len * '-'+'\n') # Print time taken def print_dur(string, st): print(string, datetime.now() - st) # Date conversion def pdf_cast_date(df, date_field): #df.loc[:, date_field] = list(map(lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M'), list(df.loc[:, date_field]))) #df.loc[:, date_field] = list(map(lambda x: pd.to_datetime(x, format='%Y/%m/%d %H:%M:%S'), list(df.loc[:, date_field]))) df.loc[:, date_field] = list(map(lambda x:
pd.to_datetime(x, format='%d/%m/%Y %H:%M')
pandas.to_datetime
# ETL: # Extract: selecting the right data and obtaining it # Transform: data cleansing is applied to that data while it sits in a staging area # Loading: loading of the transformed data into the data store or a data warehouse import numpy as np import pandas as pd import re from scripts.utils_date_features import * from scripts.utils_religion_features import * from scripts.utils_nlp_features import * ############################## Attendance dataframe building ################################ def main(): # read data from main CSVs effectifEcoles = pd.read_csv('../data/effectifs_ecolesnantes.csv', header=0, sep=';') effectifEcoles.drop(['Début année scolaire'], axis=1, inplace=True) appariement = pd.read_csv('../data/appariement_ecoles_cantines.csv', header=0, sep=',') appariement.rename(columns={"ecole": "Ecole"}, inplace=True) freqJ = pd.read_csv('../data/frequentation_cantines_v2.csv', header=0, sep=',', low_memory=False) freqJ["date"] = pd.to_datetime(freqJ["date"]) # drop useless duplicate columns freqJ.drop(['site_nom_sal', 'site_id', 'prevision_s', 'reel_s'], axis=1, inplace=True) freqJ.rename(columns={'site_nom':'cantine_nom'}, inplace=True) freqJ.sort_values(by='date', inplace=True, ascending=True) freqJ.reset_index(inplace=True, drop=True) # get aggregated headcounts by canteen effectifEcoles =
pd.merge(effectifEcoles, appariement[['cantine_nom','Ecole']], on='Ecole')
pandas.merge
import abc import base64 import contextlib from functools import partial import gc import os import random import signal import time from typing import Iterable, Tuple, Union from attrdict import AttrDict from dataclasses import dataclass import IPython from IPython import get_ipython from IPython.core.interactiveshell import InteractiveShell from IPython.display import * from more_itertools import first import numpy as np import pandas as pd import prompt_toolkit import potoo.pandas from potoo.pandas import cat_to_str from potoo.util import AttrContext, or_else, deep_round_sig, singleton def displayed(x, f=lambda x: x): display(f(x)) return x def ipy_format(*xs: any, mimetype='text/plain', join='\n') -> str: """ Format like IPython.display.display - Spec: print(ipy_format(*xs)) ~ display(*xs) - Manually line-join multiple args like display(x, y) does """ return join.join( formats.get(mimetype, formats['text/plain']) for x in xs for formats in [ipy_all_formats(x)] ) def ipy_all_formats(x: any) -> str: formats, _metadata = get_ipython().display_formatter.format(x) return formats def ipy_text(*xs: any) -> str: return ipy_format(*xs, mimetype='text/plain', join='\n') def ipy_html(*xs: any) -> str: return ipy_format(*xs, mimetype='text/html', join='<br/>') def ipy_print(*xs: any, **kwargs) -> str: """ Print like IPython.display.display, but also allow control over print kwargs like flush, file, etc. - Spec: ipy_print(*xs) ~ display(*xs) """ print(ipy_format(*xs), **kwargs) def is_ipython_console(): return or_else(None, lambda: get_ipython().__class__.__name__) == 'TerminalInteractiveShell' def is_ipython_notebook(): return or_else(None, lambda: get_ipython().__class__.__name__) == 'ZMQInteractiveShell' def ipy_load_ext_no_warnings(module_str: str) -> str: """Like %load_ext, except silence warnings (e.g. when the extension is already loaded)""" # The warnings are emitted from ExtensionMagics.load_ext (see its source), so we just call what it calls ipy = get_ipython() return ipy.extension_manager.load_extension(module_str) def disable_special_control_backslash_handler(): """ Replace special ipy binding for C-\ with normal os SIGQUIT handler - Since https://github.com/ipython/ipython/pull/9820/commits/37863a8 """ ipy = get_ipython() if hasattr(ipy, 'pt_cli'): ipy.pt_cli.application.key_bindings_registry.add_binding(prompt_toolkit.keys.Keys.ControlBackslash)( lambda ev: os.kill(os.getpid(), signal.SIGQUIT) ) def set_display_on_ipython_prompt(): """ set_display on each ipython prompt: workaround bug where user SIGWINCH handlers are ignored while readline is active - https://bugs.python.org/issue23735 - Doesn't happen in python readline, just ipython readline - Happens with python-3.6.0 and python-3.6.2 (latest as of 2017-08-26) """ if is_ipython_console(): ipy = get_ipython() ipy.set_hook( 'pre_run_code_hook', _warn_deprecated=False, hook=lambda *args: potoo.pandas.set_display(), ) def gc_on_ipy_post_run_cell(): """ Force gc after each ipy cell run, since it's _really_ easy to accumulate many uncollected-but-collectable GBs of mem pressure by re-executing one heavy cell over and over again - Adds ballpark ~40ms per cell execution - Use in combination with ipy `c.InteractiveShell.cache_size = 0` (see ~/.ipython/profile_default/ipython_config.py) """ ipy = get_ipython() if ipy: # None if not ipython # gc.collect() takes ballpark ~40ms, so avoid running it every single time def pre_run_cell(info): info.start_s = time.time() def post_run_cell(result): if hasattr(result.info, 'start_s'): elapsed_s = time.time() - result.info.start_s if elapsed_s > .5 or random.random() < 1/20: gc.collect() ipy.events.register('pre_run_cell', pre_run_cell) ipy.events.register('post_run_cell', post_run_cell) @singleton @dataclass class ipy_formats(AttrContext): # A pile of hacks to make values display prettier in ipython/jupyter # - TODO Un-hack these into something that doesn't assume a ~/.pythonrc hook so that ipynb output is reproducible deep_round_sig: bool = True # Very useful by default [and hopefully doesn't break anything...] stack_iters: bool = False # Useful, but maybe not by default # Internal state (only used as a stack-structured dynamic var) _fancy_cells: bool = False @property def precision(self): return pd.get_option('display.precision') # TODO Respect display.max_rows (currently treats it as unlimited) def set(self): self.ipy = get_ipython() if self.ipy: # TODO These 'text/plain' formatters: # 1. Do nothing, and I don't know why -- maybe interference from potoo.pretty? # 2. Are untested, because (1) # pd.DataFrame self.ipy.display_formatter.formatters['text/html'].for_type(pd.DataFrame, lambda df: ( self._format_df(df, mimetype='text/html') )) self.ipy.display_formatter.formatters['text/plain'].for_type(pd.DataFrame, lambda df, p, cycle: ( p.text(self._format_df(df, mimetype='text/plain')) )) # pd.Series self.ipy.display_formatter.formatters['text/html'].for_type(pd.Series, lambda s: ( self._format_series(s, mimetype='text/html') )) self.ipy.display_formatter.formatters['text/plain'].for_type(pd.Series, lambda s, p, cycle: ( p.text(self._format_series(s, mimetype='text/plain')) )) # Prevent plotnine plots from displaying their repr str (e.g. '<ggplot: (-9223372036537068975)>') after repr # has already side-effected the plotting of an image # - Returning '' causes the formatter to be ignored # - Returning ' ' is a HACK but empirically causes no text output to show up (in atom hydrogen-extras) # - To undo: self.ipy.display_formatter.formatters['text/html'].pop('plotnine.ggplot.ggplot') self.ipy.display_formatter.formatters['text/html'].for_type_by_name( 'plotnine.ggplot', 'ggplot', lambda g: ' ', ) def _format_df(self, df: pd.DataFrame, mimetype: str, **df_to_kwargs) -> str: with contextlib.ExitStack() as stack: # Implicitly trigger _fancy_cells by putting >0 df_cell values in your df (typical usage is whole cols) stack.enter_context(self.context(_fancy_cells=df.applymap(lambda x: isinstance(x, df_cell)).any().any())) # Format df of cells to a df of formatted strs df = df.apply(axis=0, func=lambda col: (col # cat_to_str to avoid .apply mapping all cat values, which we don't need and could be slow for large cats .pipe(cat_to_str) .apply(self._format_df_cell, mimetype=mimetype) )) # Format df of formatted strs to one formatted str if self._fancy_cells: # Disable max_colwidth else pandas will truncate and break our strs (e.g. <img> with long data url) # - Isolate this to just df.to_* so that self._format_pd_any (above) sees the real max_colwidth, so # that it correctly renders truncated strs for text/plain cells (via a manual ipy_format) # - TODO Can we clean this up now that we have df_cell_str...? stack.enter_context(pd.option_context('display.max_colwidth', -1)) if mimetype == 'text/html': return ( df.to_html(**df_to_kwargs, escape=False, # Allow html in cells ) # HACK Hide '\n' from df.to_html, else it incorrectly renders them as '\\n' (and breaks <script>) .replace('\a', '\n') ) else: return df.to_string(**df_to_kwargs) def _format_series(self, s: pd.Series, mimetype: str) -> str: # cat_to_str to avoid .apply mapping all cat values, which we don't need and could be slow for large cats text = s.pipe(cat_to_str).apply(self._format_pd_any, mimetype=mimetype).to_string() if mimetype == 'text/html': # df_cell as <pre> instead of fancy html since Series doesn't properly support .to_html like DataFrames do # - https://github.com/pandas-dev/pandas/issues/8829 # - Use <div style=...> instad of <pre>, since <pre> brings along a lot of style baggage we don't want return '<div style="white-space: pre">%s</div>' % text else: return text def _format_df_cell(self, x: any, mimetype: str) -> any: # We exclude dicts/mappings here since silently showing only dict keys (because iter(dict)) would be confusing # - In most cases it's preferred to apply df_cell_stack locally instead of setting stack_iters=True globally, # but it's important to keep the global option in cases like %%sql magic, where the result df displays as is if self.stack_iters and isinstance(x, (list, tuple, np.ndarray)): x = df_cell_stack(x) ret = self._format_pd_any(x, mimetype=mimetype) # HACK An ad-hoc, weird thing to help out atom/jupyter styling # - TODO Should this be: _has_number(ret)? _has_number(x)? _has_number(col) from one frame above? if mimetype == 'text/html' and not self._has_number(ret): ret = '<div class="not-number">%s</div>' % (ret,) # HACK Hide '\n' from df.to_html, else it incorrectly renders them as '\\n' (and breaks <script>) if mimetype == 'text/html' and isinstance(ret, str): ret = ret.replace('\n', '\a') return ret def _format_pd_any(self, x: any, mimetype: str) -> any: # HACK HACK HACK Way too much stuff going on in here that's none of our business... # If not _fancy_cells, defer formatting to pandas (to respect e.g. 'display.max_colwidth') # - Principle of least surprise: if I put no df_cell's in my df, everything should be normal if not self._fancy_cells: # Apply self.precision to numbers, like numpy but everywhere # - But only if deep_round_sig # - And don't touch np.array's since they can be really huge, and numpy already truncates them for us # - TODO How to achieve self.precision less brutishly? if self.deep_round_sig and not isinstance(x, np.ndarray): return deep_round_sig(x, self.precision) else: return x # If _fancy_cells but not a df_cell value, manually emulate pandas formatting # - This is necessary only because we have to disable 'display.max_colwidth' above to accommodate long # formatted strs (e.g. <img>) from df_cell values (next condition) # - This emulation will violate the principle of least surprise if do something wrong, which is why take care # to avoid it if the user put no df_cell's in their df (via _fancy_cells) # - TODO What are we missing by not reusing pd.io.formats.format.format_array? elif not isinstance(x, df_cell): # Do the unfancy conversion (e.g. for self.precision) with self.context(_fancy_cells=False): x = self._format_pd_any(x, mimetype=mimetype) # Truncate str(x) to 'display.max_colwidth' _only if necessary_, else leave x as is so pandas can format it # - e.g. datetime.date: pandas '2000-01-01' vs. str() 'datetime.date(2000, 1, 1)' return truncate_like_pd_max_colwidth(x) # If _fancy_cells and a df_cell value, format to html str like ipython display() else: return ipy_formats_to_mimetype(x, mimetype=mimetype) def _has_number(self, x: any) -> bool: return ( np.issubdtype(type(x), np.number) or isinstance(x, list) and any(self._has_number(y) for y in x) ) # XXX Subsumed by deep_round_sig # # def _format_pd_any(self, x: any) -> any: # if np.issubdtype(type(x), np.complexfloating): # return self._round_to_precision_complex(x) # else: # return x # # # HACK Pandas by default displays complex values with precision 16, even if you np.set_printoptions(precision=...) # # and pd.set_option('display.precision', ...). This is a hack to display like precision=3. # # - TODO Submit bug to pandas # # - TODO Make this more sophisticated, e.g. to reuse (or mimic) the magic in numpy.core.arrayprint # # - Return complex, not str, so that e.g. pd.Series displays 'dtype: complex' and not 'dtype: object' # def _round_to_precision_complex(self, z: complex) -> complex: # # Use complex(...) instead of type(z)(...), since complex parses from str but e.g. np.complex128 doesn't. # # Use z.__format___ instead of '%.3g' % ..., since the latter doesn't support complex numbers (dunno why). # return complex(z.__format__('.%sg' % self.precision)) def ipy_formats_to_text(x: any) -> str: """Format to text str using ipython formatters, to emulate ipython display()""" return ipy_formats_to_mimetype(x, mimetype='text/plain') def ipy_formats_to_html(x: any) -> str: """Format to html str using ipython formatters, to emulate ipython display()""" return ipy_formats_to_mimetype(x, mimetype='text/html') def ipy_formats_to_mimetype(x: any, mimetype: str) -> str: """Format to str for mimetype using ipython formatters, to emulate ipython display()""" # TODO Clean up / modularize dispatch on format # TODO Handle more formats (svg, ...) ret = None formats = ipy_all_formats(x) if mimetype == 'text/html': html = formats.get('text/html') img_types = [k for k in formats.keys() if k.startswith('image/')] if html: ret = html.strip() elif img_types: img_type = first(img_types) img = formats[img_type] if isinstance(img, str): img_b64 = img.strip() elif isinstance(img, bytes): img_b64 = base64.b64encode(img).decode() ret = f'<img src="data:{img_type};base64,{img_b64}"></img>' if ret is None: ret = formats['text/plain'] return ret @dataclass class df_cell: """ Mark a df cell to be displayed in some special way determined by the subtype - Motivating use case is ipy_formats._format_df """ value: any @abc.abstractmethod def _repr_mimebundle_(self, include=None, exclude=None): ... @classmethod def many(cls, xs: Iterable[any]) -> Iterable['cls']: return [cls(x) for x in xs] # TODO Untested class df_cell_union(df_cell): """ Union the mimebundles of multiple df_cell's """ def _repr_mimebundle_(self, include=None, exclude=None): df_cells = list(self.value) # Materialize iters df_cells = [x if isinstance(x, df_cell) else df_cell_display(x) for x in df_cells] # Coerce to df_cell ret = {} for cell in df_cells: for k, v in cell._repr_mimebundle_(include=include, exclude=exclude).items(): print(('[kv]', k, v)) ret.setdefault(k, v) return ret class df_cell_display(df_cell): """ Mark a df cell to be displayed like ipython display() """ def _repr_mimebundle_(self, include=None, exclude=None): # Ref: https://ipython.readthedocs.io/en/stable/config/integrating.html formats, _metadata = get_ipython().display_formatter.format(self.value) return formats class df_cell_str(df_cell): """ Mark a df cell to be displayed like str(value) - Useful e.g. for bypassing pandas 'display.max_colwidth' or ipython str wrapping """ def _repr_mimebundle_(self, include=None, exclude=None): return { 'text/plain': str(self.value), 'text/html': str(self.value), } class df_cell_stack(df_cell): """ Mark a df cell to be displayed as vertically stacked values (inspired by the bigquery web UI) - Assumes the cell value is iterable """ def _repr_mimebundle_(self, include=None, exclude=None): self.value = list(self.value) # Materialize iters return { 'text/plain': '' if len(self.value) == 0 else ( pd.Series(ipy_formats._format_pd_any(x, mimetype='text/plain') for x in self.value) .to_string(index=False) ), 'text/html': '' if len(self.value) == 0 else ( pd.Series(ipy_formats._format_pd_any(x, mimetype='text/html') for x in self.value) .to_string(index=False) .replace('\n', '<br/>') ), } def truncate_like_pd_max_colwidth(x: any) -> str: """ Emulate the behavior of pandas 'display.max_colwidth' - TODO Ugh, how can we avoid doing this ourselves? """ max_colwidth =
pd.get_option("display.max_colwidth")
pandas.get_option
import os import unittest import src.openbiolink.utils as utils import pandas import numpy as np from src.openbiolink.edgeType import EdgeType class TestUtils(unittest.TestCase): # ----- get_leaf_subclasses ------- def test_get_leaf_subclasses_no_subclasses(self): # given class A: pass cls = A # when result = utils.get_leaf_subclasses(cls) # then true_result = {A} self.assertEqual(true_result, result) def test_get_leaf_subclasses_one_lvl(self): # given class A: pass class B (A): pass cls = A # when result = utils.get_leaf_subclasses(cls) # then true_result = {B} self.assertEqual(true_result, result) def test_get_leaf_subclasses_two_lvl(self): # given class A: pass class B (A): pass class C (B): pass cls = A # when result = utils.get_leaf_subclasses(cls) # then true_result = {C} self.assertEqual(true_result, result) def test_get_leaf_subclasses_diff_lvls(self): # given class A: pass class B (A): pass class C (B): pass class D (A): pass cls = A # when result = utils.get_leaf_subclasses(cls) # then true_result = {C,D} def test_get_leaf_subclasses_None(self): # given cls = None # when result = utils.get_leaf_subclasses(cls) # then true_result = None self.assertEqual(true_result, result) # ----- make_undir ------- def test_make_undir_all_undir(self): # given df = pandas.DataFrame({'id1': list('abc'), 'id2': list('xyz')}) # when result = utils.make_undir(df) # then true_result = df np.testing.assert_array_equal(true_result, result) def test_make_undir_all_dir(self): # given df = pandas.DataFrame({'id1': list('abcd'), 'id2': list('badc')}) # when result = utils.make_undir(df) #then true_result = pandas.DataFrame({'id1': list('ac'), 'id2': list('bd')}) np.testing.assert_array_equal(true_result, result) def test_make_undir_mixed(self): # given df = pandas.DataFrame({'id1': list('abc'), 'id2': list('cxa')}) #when result = utils.make_undir(df) #then true_result = pandas.DataFrame({'id1': list('ab'), 'id2': list('cx')}) np.testing.assert_array_equal(true_result, result) def test_db_mapping_file_to_dic(self): #given #file with content # x foo a # y bar a; b # z baz # q c path = os.path.dirname(os.path.abspath(__file__)) file_path = os.path.join(path, 'test_mapping_file.tsv') #when result = utils.db_mapping_file_to_dic(file_path, 0, 2, '\t') #then true_result = {'x': ['a'], 'y': ['a; b'], 'q': ['c']} self.assertEqual(true_result, result ) def test_cls_list_to_dic(self): self.fail() def test_file_exists(self): self.fail() def test_get_diff(self): self.fail() # ----- remove_parent_duplicates_and_reverses ----- def test_remove_parent_parent_in_remain(self): #given remove = pandas.DataFrame( {'id1': ['a'], 'edgeType':[EdgeType.GENE_REACTION_GENE], 'id2': ["0"], 'qscore': "100", 'value': [1]}) remain = pandas.DataFrame( {'id1': ['a', 'b', 'c'], 'edgeType': [EdgeType.GENE_GENE, EdgeType.GENE_GENE, EdgeType.GENE_GENE], 'id2': ["0", "1", "2"], 'qscore': [120.0, 50,20], 'value': [1,1,0]}) #when result = utils.remove_parent_duplicates_and_reverses(remove_set=remove, remain_set=remain) #then true_result = pandas.DataFrame( {'id1': ['b', 'c'], 'edgeType': [ EdgeType.GENE_GENE, EdgeType.GENE_GENE], 'id2': [ "1", "2"], 'qscore': [50, 20], 'value': [1,0]}) np.testing.assert_array_equal(true_result.values, result.values) def test_remove_parent_parent_in_remove(self): #given remove = pandas.DataFrame( {'id1': ['a'], 'edgeType':[EdgeType.GENE_GENE], 'id2': ["0"], 'qscore': "100", 'value': list('x')}) remain = pandas.DataFrame( {'id1': ['a', 'b', 'c'], 'edgeType': [EdgeType.GENE_REACTION_GENE, EdgeType.GENE_REACTION_GENE, EdgeType.GENE_REACTION_GENE], 'id2': ["0", "1", "2"], 'value': list('xxy')}) #when result = utils.remove_parent_duplicates_and_reverses(remove_set=remove, remain_set=remain) #then true_result = pandas.DataFrame( {'id1': ['a', 'b', 'c'], 'edgeType': [EdgeType.GENE_REACTION_GENE, EdgeType.GENE_REACTION_GENE, EdgeType.GENE_REACTION_GENE], 'id2': ["0", "1", "2"], 'qscore': [100.0, 50, 20], 'value': list('xxy')}) np.testing.assert_array_equal(true_result.values, result.values) def test_remove_parent_reverse_parent(self): #given remove = pandas.DataFrame( {'id1': ['a'], 'edgeType':[EdgeType.GENE_REACTION_GENE], 'id2': ["0"], 'qscore': ["a"], 'value': list('x')}) remain = pandas.DataFrame( {'id1': ['0', 'b', 'c'], 'edgeType': [EdgeType.GENE_GENE, EdgeType.GENE_GENE, EdgeType.GENE_GENE], 'id2': ["a", "1", "2"], 'qscore': [100.0, 50, 20], 'value': list('xxy')}) #when result = utils.remove_parent_duplicates_and_reverses(remove_set=remove, remain_set=remain) #then true_result = pandas.DataFrame( {'id1': ['b', 'c'], 'edgeType': [EdgeType.GENE_GENE, EdgeType.GENE_GENE], 'id2': ["1", "2"], 'qscore': [50, 20], 'value': list('xy')}) np.testing.assert_array_equal(true_result.values, result.values) def test_remove_parent_child_and_parent_and_sibling_in_remain(self): # given remove = pandas.DataFrame( {'id1': ['a'], 'edgeType': [EdgeType.GENE_REACTION_GENE], 'id2': ["0"], 'qscore': "100", 'value': list('x')}) remain = pandas.DataFrame( {'id1': ['a', 'a', 'a'], 'edgeType': [EdgeType.GENE_GENE, EdgeType.GENE_EXPRESSION_GENE, EdgeType.GENE_REACTION_GENE], 'id2': ["0", "0", "0"], 'qscore': [100.0, 50, 20], 'value': list('xxx')}) # when result = utils.remove_parent_duplicates_and_reverses(remove_set=remove, remain_set=remain) # then true_result = pandas.DataFrame( {'id1': ['a', 'a'], 'edgeType': [EdgeType.GENE_EXPRESSION_GENE, EdgeType.GENE_REACTION_GENE], 'id2': ["0", "0"], 'qscore': [50, 20], 'value': list('xx')}) np.testing.assert_array_equal(true_result.values, result.values) def test_remove_parent_empty_remove(self): # given remove =
pandas.DataFrame()
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi = timedelta_range('1 day', periods=3) expected = pd.date_range('2012-01-02', periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range('2011-12-31', periods=3, freq='-1D') expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64('NaT') tdi = timedelta_range('1 day', periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta('5m4s').to_timedelta64()]) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == 'Venkman': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta('1s')]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, two_hours, box): # only test adding/sub offsets as + is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + two_hours tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate def test_timedelta64_operations_with_DateOffset(self): # GH#10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) tm.assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) tm.assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) tm.assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box_df_fail): # GH#18849 box = box_df_fail box2 = Series if box in [pd.Index, tm.to_array] else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box_with_array) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps: # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # TODO: Moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize("m", [1, 3, 10]) @pytest.mark.parametrize("unit", ['D', 'h', 'm', 's', 'ms', 'us', 'ns']) def test_timedelta64_conversions(self, m, unit): startdate = Series(pd.date_range('2013-01-01', '2013-01-03')) enddate = Series(pd.date_range('2013-03-01', '2013-03-03')) ser = enddate - startdate ser[2] = np.nan # op expected = Series([x / np.timedelta64(m, unit) for x in ser]) result = ser / np.timedelta64(m, unit) tm.assert_series_equal(result, expected) # reverse op expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in ser]) result = np.timedelta64(m, unit) / ser tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array): rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng * two_hours def test_tdi_mul_int_array_zerodim(self, box_with_array): rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_with_array): rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_with_array): box = box_with_array xbox = pd.Series if box in [pd.Index, tm.to_array] else box idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, xbox) result = idx * pd.Series(np.arange(5, dtype='int64')) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_with_array): box = box_with_array xbox = pd.Series if box in [pd.Index, tm.to_array] else box idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype='float64') expected = TimedeltaIndex(rng5f * (rng5f + 1.0)) expected = tm.box_expected(expected, xbox) result = idx * Series(rng5f + 1.0) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize('other', [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11) ], ids=lambda x: type(x).__name__) def test_tdi_rmul_arraylike(self, other, box_with_array): box = box_with_array xbox = get_upcast_box(box, other) tdi = TimedeltaIndex(['1 Day'] * 10) expected = timedelta_range('1 days', '10 days') expected._data.freq = None tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, xbox) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__, __rdiv__ def test_td64arr_div_nat_invalid(self, box_with_array): # don't allow division by NaT (maybe could in the future) rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError, match="'?true_divide'? cannot use operands"): rng / pd.NaT with pytest.raises(TypeError, match='Cannot divide NaTType by'): pd.NaT / rng def test_td64arr_div_td64nat(self, box_with_array): # GH#23829 rng = timedelta_range('1 days', '10 days',) rng = tm.box_expected(rng, box_with_array) other = np.timedelta64('NaT') expected = np.array([np.nan] * 10) expected = tm.box_expected(expected, box_with_array) result = rng / other tm.assert_equal(result, expected) result = other / rng tm.assert_equal(result, expected) def test_td64arr_div_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx / 1 tm.assert_equal(result, idx) with pytest.raises(TypeError, match='Cannot divide'): # GH#23829 1 / idx def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array): # GH#20088, GH#22163 ensure DataFrame returns correct dtype rng = timedelta_range('1 days', '10 days', name='foo') expected = pd.Float64Index((np.arange(10) + 1) * 12, name='foo') rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng / two_hours tm.assert_equal(result, expected) result = two_hours / rng expected = 1 / expected tm.assert_equal(result, expected) def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array): rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = pd.Float64Index([12, np.nan, 24], name='foo') rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng / two_hours tm.assert_equal(result, expected) result = two_hours / rng expected = 1 / expected tm.assert_equal(result, expected) def test_td64arr_div_td64_ndarray(self, box_with_array): # GH#22631 rng = TimedeltaIndex(['1 days', pd.NaT, '2 days']) expected = pd.Float64Index([12, np.nan, 24]) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) other = np.array([2, 4, 2], dtype='m8[h]') result = rng / other tm.assert_equal(result, expected) result = rng / tm.box_expected(other, box_with_array) tm.assert_equal(result, expected) result = rng / other.astype(object) tm.assert_equal(result, expected) result = rng / list(other) tm.assert_equal(result, expected) # reversed op expected = 1 / expected result = other / rng tm.assert_equal(result, expected) result = tm.box_expected(other, box_with_array) / rng tm.assert_equal(result, expected) result = other.astype(object) / rng tm.assert_equal(result, expected) result = list(other) / rng tm.assert_equal(result, expected) def test_tdarr_div_length_mismatch(self, box_with_array): rng = TimedeltaIndex(['1 days', pd.NaT, '2 days']) mismatched = [1, 2, 3, 4] rng = tm.box_expected(rng, box_with_array) for obj in [mismatched, mismatched[:2]]: # one shorter, one longer for other in [obj, np.array(obj), pd.Index(obj)]: with pytest.raises(ValueError): rng / other with pytest.raises(ValueError): other / rng # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = td1 // scalar_td tm.assert_equal(result, expected) def test_td64arr_rfloordiv_tdscalar(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = scalar_td // td1 tm.assert_equal(result, expected) def test_td64arr_rfloordiv_tdscalar_explicit(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) # We can test __rfloordiv__ using this syntax, # see `test_timedelta_rfloordiv` result = td1.__rfloordiv__(scalar_td) tm.assert_equal(result, expected) def test_td64arr_floordiv_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx // 1 tm.assert_equal(result, idx) pattern = ('floor_divide cannot use operands|' 'Cannot divide int by Timedelta*') with pytest.raises(TypeError, match=pattern): 1 // idx def test_td64arr_floordiv_tdlike_scalar(self, two_hours, box_with_array): tdi = timedelta_range('1 days', '10 days', name='foo') expected = pd.Int64Index((np.arange(10) + 1) * 12, name='foo') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi // two_hours tm.assert_equal(result, expected) # TODO: Is this redundant with test_td64arr_floordiv_tdlike_scalar? @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=10, seconds=7), Timedelta('10m7s'), Timedelta('10m7s').to_timedelta64() ], ids=lambda x: type(x).__name__) def test_td64arr_rfloordiv_tdlike_scalar(self, scalar_td, box_with_array): # GH#19125 tdi = TimedeltaIndex(['00:05:03', '00:05:03', pd.NaT], freq=None) expected = pd.Index([2.0, 2.0, np.nan]) tdi = tm.box_expected(tdi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) res = tdi.__rfloordiv__(scalar_td) tm.assert_equal(res, expected) expected = pd.Index([0.0, 0.0, np.nan]) expected = tm.box_expected(expected, box_with_array, transpose=False) res = tdi // (scalar_td) tm.assert_equal(res, expected) # ------------------------------------------------------------------ # mod, divmod # TODO: operations with timedelta-like arrays, numeric arrays, # reversed ops def test_td64arr_mod_tdscalar(self, box_with_array, three_days): tdi = timedelta_range('1 Day', '9 days') tdarr = tm.box_expected(tdi, box_with_array) expected = TimedeltaIndex(['1 Day', '2 Days', '0 Days'] * 3) expected = tm.box_expected(expected, box_with_array) result = tdarr % three_days tm.assert_equal(result, expected) if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(tdarr, three_days) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], tdarr // three_days) def test_td64arr_mod_int(self, box_with_array): tdi = timedelta_range('1 ns', '10 ns', periods=10) tdarr = tm.box_expected(tdi, box_with_array) expected = TimedeltaIndex(['1 ns', '0 ns'] * 5) expected = tm.box_expected(expected, box_with_array) result = tdarr % 2 tm.assert_equal(result, expected) with pytest.raises(TypeError): 2 % tdarr if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(tdarr, 2) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], tdarr // 2) def test_td64arr_rmod_tdscalar(self, box_with_array, three_days): tdi = timedelta_range('1 Day', '9 days') tdarr = tm.box_expected(tdi, box_with_array) expected = ['0 Days', '1 Day', '0 Days'] + ['3 Days'] * 6 expected = TimedeltaIndex(expected) expected = tm.box_expected(expected, box_with_array) result = three_days % tdarr tm.assert_equal(result, expected) if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(three_days, tdarr) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], three_days // tdarr) # ------------------------------------------------------------------ # Operations with invalid others def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box_with_array) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = 'operate|unsupported|cannot|not supported' with pytest.raises(TypeError, match=pattern): td1 * scalar_td with pytest.raises(TypeError, match=pattern): scalar_td * td1 def test_td64arr_mul_too_short_raises(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx * idx[:3] with pytest.raises(ValueError): idx * np.array([1, 2]) def test_td64arr_mul_td64arr_raises(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx * idx # ------------------------------------------------------------------ # Operations with numeric others @pytest.mark.parametrize('one', [1, np.array(1), 1.0, np.array(1.0)]) def test_td64arr_mul_numeric_scalar(self, box_with_array, one): # GH#4521 # divide/multiply by integers tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') expected = Series(['-59 Days', '-59 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdser * (-one) tm.assert_equal(result, expected) result = (-one) * tdser tm.assert_equal(result, expected) expected = Series(['118 Days', '118 Days', 'NaT'], dtype='timedelta64[ns]') expected = tm.box_expected(expected, box_with_array) result = tdser * (2 * one) tm.assert_equal(result, expected) result = (2 * one) * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('two', [2, 2.0, np.array(2), np.array(2.0)]) def test_td64arr_div_numeric_scalar(self, box_with_array, two): # GH#4521 # divide/multiply by integers tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') expected = Series(['29.5D', '29.5D', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdser / two tm.assert_equal(result, expected) with pytest.raises(TypeError, match='Cannot divide'): two / tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) def test_td64arr_rmul_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser * vector tm.assert_equal(result, expected) result = vector * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) def test_td64arr_div_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') vector = vector.astype(dtype) expected = Series(['2.95D', '1D 23H 12m', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser / vector tm.assert_equal(result, expected) pattern = ('true_divide cannot use operands|' 'cannot perform __div__|' 'cannot perform __truediv__|' 'unsupported operand|' 'Cannot divide') with pytest.raises(TypeError, match=pattern): vector / tdser if not isinstance(vector, pd.Index): # Index.__rdiv__ won't try to operate elementwise, just raises result = tdser / vector.astype(object) if box_with_array is pd.DataFrame: expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))] else: expected = [tdser[n] / vector[n] for n in range(len(tdser))] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) with pytest.raises(TypeError, match=pattern): vector.astype(object) / tdser @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_mul_int_series(self, box_df_fail, names): # GH#19042 test for correct name attachment box = box_df_fail # broadcasts along wrong axis, but doesn't raise tdi = TimedeltaIndex(['0days', '1day', '2days', '3days', '4days'], name=names[0]) # TODO: Should we be parametrizing over types for `ser` too? ser =
Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1])
pandas.Series
import os import glob import numpy as np import nibabel as nib import pandas as pd from glmsingle.design.make_design_matrix import make_design from glmsingle.glmsingle import GLM_single import time sub = 2 ses = 1 stimdur = 0.5 tr = 2 proj_path = os.path.join( '/home', 'adf', 'charesti', 'data', 'arsa-fmri', 'BIDS') data_path = os.path.join( proj_path, 'derivatives', 'fmriprep', 'sub-{}', 'ses-{}', 'func') design_path = os.path.join( proj_path, 'sub-{}', 'ses-{}', 'func') runs = glob.glob( os.path.join(data_path.format(sub, ses), '*preproc*nii.gz')) runs.sort() runs = runs[:-1] eventfs = glob.glob( os.path.join(design_path.format(sub, ses), '*events.tsv')) eventfs.sort() runs = runs[:3] eventfs = eventfs[:3] data = [] design = [] for i, (run, eventf) in enumerate(zip(runs, eventfs)): print(f'run {i}') y = nib.load(run).get_fdata().astype(np.float32) dims = y.shape # y = np.moveaxis(y, -1, 0) # y = y.reshape([y.shape[0], -1]) n_volumes = y.shape[-1] # Load onsets and item presented onsets = pd.read_csv(eventf, sep='\t')["onset"].values items = pd.read_csv(eventf, sep='\t')["stimnumber"].values n_events = len(onsets) # Create design matrix events =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, Index, MultiIndex, Series, qcut, ) import pandas._testing as tm def cartesian_product_for_groupers(result, args, names, fill_value=np.NaN): """Reindex to a cartesian production for the groupers, preserving the nature (Categorical) of each grouper """ def f(a): if isinstance(a, (CategoricalIndex, Categorical)): categories = a.categories a = Categorical.from_codes( np.arange(len(categories)), categories=categories, ordered=a.ordered ) return a index = MultiIndex.from_product(map(f, args), names=names) return result.reindex(index, fill_value=fill_value).sort_index() _results_for_groupbys_with_missing_categories = { # This maps the builtin groupby functions to their expected outputs for # missing categories when they are called on a categorical grouper with # observed=False. Some functions are expected to return NaN, some zero. # These expected values can be used across several tests (i.e. they are # the same for SeriesGroupBy and DataFrameGroupBy) but they should only be # hardcoded in one place. "all": np.NaN, "any": np.NaN, "count": 0, "corrwith": np.NaN, "first": np.NaN, "idxmax": np.NaN, "idxmin": np.NaN, "last": np.NaN, "mad": np.NaN, "max": np.NaN, "mean": np.NaN, "median": np.NaN, "min": np.NaN, "nth": np.NaN, "nunique": 0, "prod": np.NaN, "quantile": np.NaN, "sem": np.NaN, "size": 0, "skew": np.NaN, "std": np.NaN, "sum": 0, "var": np.NaN, } def test_apply_use_categorical_name(df): cats = qcut(df.C, 4) def get_stats(group): return { "min": group.min(), "max": group.max(), "count": group.count(), "mean": group.mean(), } result = df.groupby(cats, observed=False).D.apply(get_stats) assert result.index.names[0] == "C" def test_basic(): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) exp_index = CategoricalIndex(list("abcd"), name="b", ordered=True) expected = DataFrame({"a": [1, 2, 4, np.nan]}, index=exp_index) result = data.groupby("b", observed=False).mean() tm.assert_frame_equal(result, expected) cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A", observed=False) exp_idx = CategoricalIndex(["a", "b", "z"], name="A", ordered=True) expected = DataFrame({"values": Series([3, 7, 0], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) g = x.groupby(["person_id"], observed=False) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[["person_name"]]) result = x.drop_duplicates("person_name") expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates("person_name").iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name="person_id") expected["person_name"] = expected["person_name"].astype("object") tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.max(xs)), df[["a"]] ) # Filter tm.assert_series_equal(df.a.groupby(c, observed=False).filter(np.all), df["a"]) tm.assert_frame_equal(df.groupby(c, observed=False).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df[["a"]] ) # GH 9603 df = DataFrame({"a": [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4], labels=Categorical(list("abcd"))) result = df.groupby(c, observed=False).apply(len) exp_index = CategoricalIndex(c.values.categories, ordered=c.values.ordered) expected = Series([1, 0, 0, 0], index=exp_index) expected.index.name = "a" tm.assert_series_equal(result, expected) # more basic levels = ["foo", "bar", "baz", "qux"] codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True) expected = expected.reindex(exp_idx) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = np.asarray(cats).take(idx) ord_data = data.take(idx) exp_cats = Categorical( ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"] ) expected = ord_data.groupby(exp_cats, sort=False, observed=False).describe() tm.assert_frame_equal(desc_result, expected) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_level_get_group(observed): # GH15155 df = DataFrame( data=np.arange(2, 22, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(10)], codes=[[0] * 5 + [1] * 5, range(10)], names=["Index1", "Index2"], ), ) g = df.groupby(level=["Index1"], observed=observed) # expected should equal test.loc[["a"]] # GH15166 expected = DataFrame( data=np.arange(2, 12, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(5)], codes=[[0] * 5, range(5)], names=["Index1", "Index2"], ), ) result = g.get_group("a") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) # GH#21636 tracking down the xfail, in some builds np.mean(df.loc[[0]]) # is coming back as Series([0., 1., 0.], index=["missing", "dense", "values"]) # when we expect Series(0., index=["values"]) result = grouped.apply(lambda x: np.mean(x)) tm.assert_frame_equal(result, expected) # we coerce back to ints expected = expected.astype("int") result = grouped.mean() tm.assert_frame_equal(result, expected) result = grouped.agg(np.mean) tm.assert_frame_equal(result, expected) # but for transform we should still get back the original index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = Series(1, index=idx) result = grouped.apply(lambda x: 1) tm.assert_series_equal(result, expected) def test_observed(observed): # multiple groupers, don't re-expand the output space # of the grouper # gh-14942 (implement) # gh-10132 (back-compat) # gh-8138 (back-compat) # gh-8869 cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) df["C"] = ["foo", "bar"] * 2 # multiple groupers with a non-cat gb = df.groupby(["A", "B", "C"], observed=observed) exp_index = MultiIndex.from_arrays( [cat1, cat2, ["foo", "bar"] * 2], names=["A", "B", "C"] ) expected = DataFrame({"values": Series([1, 2, 3, 4], index=exp_index)}).sort_index() result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2, ["foo", "bar"]], list("ABC"), fill_value=0 ) tm.assert_frame_equal(result, expected) gb = df.groupby(["A", "B"], observed=observed) exp_index = MultiIndex.from_arrays([cat1, cat2], names=["A", "B"]) expected = DataFrame({"values": [1, 2, 3, 4]}, index=exp_index) result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2], list("AB"), fill_value=0 ) tm.assert_frame_equal(result, expected) # https://github.com/pandas-dev/pandas/issues/8138 d = { "cat": Categorical( ["a", "b", "a", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 1, 2, 2], "val": [10, 20, 30, 40], } df = DataFrame(d) # Grouping on a single column groups_single_key = df.groupby("cat", observed=observed) result = groups_single_key.mean() exp_index = CategoricalIndex( list("ab"), name="cat", categories=list("abc"), ordered=True ) expected = DataFrame({"ints": [1.5, 1.5], "val": [20.0, 30]}, index=exp_index) if not observed: index = CategoricalIndex( list("abc"), name="cat", categories=list("abc"), ordered=True ) expected = expected.reindex(index) tm.assert_frame_equal(result, expected) # Grouping on two columns groups_double_key = df.groupby(["cat", "ints"], observed=observed) result = groups_double_key.agg("mean") expected = DataFrame( { "val": [10, 30, 20, 40], "cat": Categorical( ["a", "a", "b", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 2, 1, 2], } ).set_index(["cat", "ints"]) if not observed: expected = cartesian_product_for_groupers( expected, [df.cat.values, [1, 2]], ["cat", "ints"] ) tm.assert_frame_equal(result, expected) # GH 10132 for key in [("a", 1), ("b", 2), ("b", 1), ("a", 2)]: c, i = key result = groups_double_key.get_group(key) expected = df[(df.cat == c) & (df.ints == i)] tm.assert_frame_equal(result, expected) # gh-8869 # with as_index d = { "foo": [10, 8, 4, 8, 4, 1, 1], "bar": [10, 20, 30, 40, 50, 60, 70], "baz": ["d", "c", "e", "a", "a", "d", "c"], } df = DataFrame(d) cat = pd.cut(df["foo"], np.linspace(0, 10, 3)) df["range"] = cat groups = df.groupby(["range", "baz"], as_index=False, observed=observed) result = groups.agg("mean") groups2 = df.groupby(["range", "baz"], as_index=True, observed=observed) expected = groups2.agg("mean").reset_index() tm.assert_frame_equal(result, expected) def test_observed_codes_remap(observed): d = {"C1": [3, 3, 4, 5], "C2": [1, 2, 3, 4], "C3": [10, 100, 200, 34]} df = DataFrame(d) values = pd.cut(df["C1"], [1, 2, 3, 6]) values.name = "cat" groups_double_key = df.groupby([values, "C2"], observed=observed) idx = MultiIndex.from_arrays([values, [1, 2, 3, 4]], names=["cat", "C2"]) expected = DataFrame({"C1": [3, 3, 4, 5], "C3": [10, 100, 200, 34]}, index=idx) if not observed: expected = cartesian_product_for_groupers( expected, [values.values, [1, 2, 3, 4]], ["cat", "C2"] ) result = groups_double_key.agg("mean") tm.assert_frame_equal(result, expected) def test_observed_perf(): # we create a cartesian product, so this is # non-performant if we don't use observed values # gh-14942 df = DataFrame( { "cat": np.random.randint(0, 255, size=30000), "int_id": np.random.randint(0, 255, size=30000), "other_id": np.random.randint(0, 10000, size=30000), "foo": 0, } ) df["cat"] = df.cat.astype(str).astype("category") grouped = df.groupby(["cat", "int_id", "other_id"], observed=True) result = grouped.count() assert result.index.levels[0].nunique() == df.cat.nunique() assert result.index.levels[1].nunique() == df.int_id.nunique() assert result.index.levels[2].nunique() == df.other_id.nunique() def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = Categorical(["a", "c", "a"], categories=["a", "b", "c"]) df = DataFrame({"cat": cat, "vals": [1, 2, 3]}) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64"), "c": Index([1], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "c": Index([1], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_groups_with_nan(observed): # GH 24740 df = DataFrame( { "cat": Categorical(["a", np.nan, "a"], categories=["a", "b", "d"]), "vals": [1, 2, 3], } ) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "d": Index([], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_nth(): # GH 26385 cat = Categorical(["a", np.nan, np.nan], categories=["a", "b", "c"]) ser = Series([1, 2, 3]) df = DataFrame({"cat": cat, "ser": ser}) result = df.groupby("cat", observed=False)["ser"].nth(0) index = Categorical(["a", "b", "c"], categories=["a", "b", "c"]) expected = Series([1, np.nan, np.nan], index=index, name="ser") expected.index.name = "cat" tm.assert_series_equal(result, expected) def test_dataframe_categorical_with_nan(observed): # GH 21151 s1 = Categorical([np.nan, "a", np.nan, "a"], categories=["a", "b", "c"]) s2 = Series([1, 2, 3, 4]) df = DataFrame({"s1": s1, "s2": s2}) result = df.groupby("s1", observed=observed).first().reset_index() if observed: expected = DataFrame( {"s1": Categorical(["a"], categories=["a", "b", "c"]), "s2": [2]} ) else: expected = DataFrame( { "s1": Categorical(["a", "b", "c"], categories=["a", "b", "c"]), "s2": [2, np.nan, np.nan], } ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) @pytest.mark.parametrize("observed", [True, False]) @pytest.mark.parametrize("sort", [True, False]) def test_dataframe_categorical_ordered_observed_sort(ordered, observed, sort): # GH 25871: Fix groupby sorting on ordered Categoricals # GH 25167: Groupby with observed=True doesn't sort # Build a dataframe with cat having one unobserved category ('missing'), # and a Series with identical values label = Categorical( ["d", "a", "b", "a", "d", "b"], categories=["a", "b", "missing", "d"], ordered=ordered, ) val = Series(["d", "a", "b", "a", "d", "b"]) df = DataFrame({"label": label, "val": val}) # aggregate on the Categorical result = df.groupby("label", observed=observed, sort=sort)["val"].aggregate("first") # If ordering works, we expect index labels equal to aggregation results, # except for 'observed=False': label 'missing' has aggregation None label = Series(result.index.array, dtype="object") aggr = Series(result.array) if not observed: aggr[aggr.isna()] = "missing" if not all(label == aggr): msg = ( "Labels and aggregation results not consistently sorted\n" f"for (ordered={ordered}, observed={observed}, sort={sort})\n" f"Result:\n{result}" ) assert False, msg def test_datetime(): # GH9049: ensure backward compatibility levels = pd.date_range("2014-01-01", periods=4) codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() expected = expected.reindex(levels) expected.index = CategoricalIndex( expected.index, categories=expected.index, ordered=True ) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = cats.take(idx) ord_data = data.take(idx) expected = ord_data.groupby(ord_labels, observed=False).describe() tm.assert_frame_equal(desc_result, expected) tm.assert_index_equal(desc_result.index, expected.index) tm.assert_index_equal( desc_result.index.get_level_values(0), expected.index.get_level_values(0) ) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_categorical_index(): s = np.random.RandomState(12345) levels = ["foo", "bar", "baz", "qux"] codes = s.randint(0, 4, size=20) cats = Categorical.from_codes(codes, levels, ordered=True) df = DataFrame(np.repeat(np.arange(20), 4).reshape(-1, 4), columns=list("abcd")) df["cats"] = cats # with a cat index result = df.set_index("cats").groupby(level=0, observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) # with a cat column, should produce a cat index result = df.groupby("cats", observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) def test_describe_categorical_columns(): # GH 11558 cats = CategoricalIndex( ["qux", "foo", "baz", "bar"], categories=["foo", "bar", "baz", "qux"], ordered=True, ) df = DataFrame(np.random.randn(20, 4), columns=cats) result = df.groupby([1, 2, 3, 4] * 5).describe() tm.assert_index_equal(result.stack().columns, cats) tm.assert_categorical_equal(result.stack().columns.values, cats.values) def test_unstack_categorical(): # GH11558 (example is taken from the original issue) df = DataFrame( {"a": range(10), "medium": ["A", "B"] * 5, "artist": list("XYXXY") * 2} ) df["medium"] = df["medium"].astype("category") gcat = df.groupby(["artist", "medium"], observed=False)["a"].count().unstack() result = gcat.describe() exp_columns = CategoricalIndex(["A", "B"], ordered=False, name="medium") tm.assert_index_equal(result.columns, exp_columns) tm.assert_categorical_equal(result.columns.values, exp_columns.values) result = gcat["A"] + gcat["B"] expected = Series([6, 4], index=Index(["X", "Y"], name="artist")) tm.assert_series_equal(result, expected) def test_bins_unequal_len(): # GH3011 series = Series([np.nan, np.nan, 1, 1, 2, 2, 3, 3, 4, 4]) bins = pd.cut(series.dropna().values, 4) # len(bins) != len(series) here msg = r"Length of grouper \(8\) and axis \(10\) must be same length" with pytest.raises(ValueError, match=msg): series.groupby(bins).mean() def test_as_index(): # GH13204 df = DataFrame( { "cat": Categorical([1, 2, 2], [1, 2, 3]), "A": [10, 11, 11], "B": [101, 102, 103], } ) result = df.groupby(["cat", "A"], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # function grouper f = lambda r: df.loc[r, "A"] result = df.groupby(["cat", f], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 22], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # another not in-axis grouper (conflicting names in index) s = Series(["a", "b", "b"], name="cat") result = df.groupby(["cat", s], as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) # is original index dropped? group_columns = ["cat", "A"] expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) for name in [None, "X", "B"]: df.index = Index(list("abc"), name=name) result = df.groupby(group_columns, as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) def test_preserve_categories(): # GH-13179 categories = list("abc") # ordered=True df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=True)}) index = CategoricalIndex(categories, categories, ordered=True, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, index ) # ordered=False df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=False)}) sort_index = CategoricalIndex(categories, categories, ordered=False, name="A") nosort_index = CategoricalIndex(list("bac"), list("bac"), ordered=False, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, sort_index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, nosort_index ) def test_preserve_categorical_dtype(): # GH13743, GH13854 df = DataFrame( { "A": [1, 2, 1, 1, 2], "B": [10, 16, 22, 28, 34], "C1": Categorical(list("abaab"), categories=list("bac"), ordered=False), "C2": Categorical(list("abaab"), categories=list("bac"), ordered=True), } ) # single grouper exp_full = DataFrame( { "A": [2.0, 1.0, np.nan], "B": [25.0, 20.0, np.nan], "C1": Categorical(list("bac"), categories=list("bac"), ordered=False), "C2": Categorical(list("bac"), categories=list("bac"), ordered=True), } ) for col in ["C1", "C2"]: result1 = df.groupby(by=col, as_index=False, observed=False).mean() result2 = df.groupby(by=col, as_index=True, observed=False).mean().reset_index() expected = exp_full.reindex(columns=result1.columns) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) @pytest.mark.parametrize( "func, values", [ ("first", ["second", "first"]), ("last", ["fourth", "third"]), ("min", ["fourth", "first"]), ("max", ["second", "third"]), ], ) def test_preserve_on_ordered_ops(func, values): # gh-18502 # preserve the categoricals on ops c = Categorical(["first", "second", "third", "fourth"], ordered=True) df = DataFrame({"payload": [-1, -2, -1, -2], "col": c}) g = df.groupby("payload") result = getattr(g, func)() expected = DataFrame( {"payload": [-2, -1], "col": Series(values, dtype=c.dtype)} ).set_index("payload") tm.assert_frame_equal(result, expected) def test_categorical_no_compress(): data = Series(np.random.randn(9)) codes = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) cats = Categorical.from_codes(codes, [0, 1, 2], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean() exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) codes = np.array([0, 0, 0, 1, 1, 1, 3, 3, 3]) cats = Categorical.from_codes(codes, [0, 1, 2, 3], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean().reindex(cats.categories) exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) result = data.groupby("b", observed=False).mean() result = result["a"].values exp = np.array([1, 2, 4, np.nan]) tm.assert_numpy_array_equal(result, exp) def test_groupby_empty_with_category(): # GH-9614 # test fix for when group by on None resulted in # coercion of dtype categorical -> float df = DataFrame({"A": [None] * 3, "B": Categorical(["train", "train", "test"])}) result = df.groupby("A").first()["B"] expected = Series( Categorical([], categories=["test", "train"]), index=Series([], dtype="object", name="A"), name="B", ) tm.assert_series_equal(result, expected) def test_sort(): # https://stackoverflow.com/questions/23814368/sorting-pandas- # categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') df = DataFrame({"value": np.random.randint(0, 10000, 100)}) labels = [f"{i} - {i+499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) res = df.groupby(["value_group"], observed=False)["value_group"].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_sort2(): # dataframe groupby sort was being ignored # GH 8868 df = DataFrame( [ ["(7.5, 10]", 10, 10], ["(7.5, 10]", 8, 20], ["(2.5, 5]", 5, 30], ["(5, 7.5]", 6, 40], ["(2.5, 5]", 4, 50], ["(0, 2.5]", 1, 60], ["(5, 7.5]", 7, 70], ], columns=["range", "foo", "bar"], ) df["range"] = Categorical(df["range"], ordered=True) index = CategoricalIndex( ["(0, 2.5]", "(2.5, 5]", "(5, 7.5]", "(7.5, 10]"], name="range", ordered=True ) expected_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"], index=index ) col = "range" result_sort = df.groupby(col, sort=True, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) # when categories is ordered, group is ordered by category's order expected_sort = result_sort result_sort = df.groupby(col, sort=False, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) df["range"] = Categorical(df["range"], ordered=False) index = CategoricalIndex( ["(0, 2.5]", "(2.5, 5]", "(5, 7.5]", "(7.5, 10]"], name="range" ) expected_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"], index=index ) index = CategoricalIndex( ["(7.5, 10]", "(2.5, 5]", "(5, 7.5]", "(0, 2.5]"], categories=["(7.5, 10]", "(2.5, 5]", "(5, 7.5]", "(0, 2.5]"], name="range", ) expected_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], index=index, columns=["foo", "bar"] ) col = "range" # this is an unordered categorical, but we allow this #### result_sort = df.groupby(col, sort=True, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) result_nosort = df.groupby(col, sort=False, observed=False).first() tm.assert_frame_equal(result_nosort, expected_nosort) def test_sort_datetimelike(): # GH10505 # use same data as test_groupby_sort_categorical, which category is # corresponding to datetime.month df = DataFrame( { "dt": [ datetime(2011, 7, 1), datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 2, 1), datetime(2011, 1, 1), datetime(2011, 5, 1), ], "foo": [10, 8, 5, 6, 4, 1, 7], "bar": [10, 20, 30, 40, 50, 60, 70], }, columns=["dt", "foo", "bar"], ) # ordered=True df["dt"] = Categorical(df["dt"], ordered=True) index = [ datetime(2011, 1, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 7, 1), ] result_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"] ) result_sort.index = CategoricalIndex(index, name="dt", ordered=True) index = [ datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 1, 1), ] result_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], columns=["foo", "bar"] ) result_nosort.index = CategoricalIndex( index, categories=index, name="dt", ordered=True ) col = "dt" tm.assert_frame_equal( result_sort, df.groupby(col, sort=True, observed=False).first() ) # when categories is ordered, group is ordered by category's order tm.assert_frame_equal( result_sort, df.groupby(col, sort=False, observed=False).first() ) # ordered = False df["dt"] = Categorical(df["dt"], ordered=False) index = [ datetime(2011, 1, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 7, 1), ] result_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"] ) result_sort.index = CategoricalIndex(index, name="dt") index = [ datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 1, 1), ] result_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], columns=["foo", "bar"] ) result_nosort.index = CategoricalIndex(index, categories=index, name="dt") col = "dt" tm.assert_frame_equal( result_sort, df.groupby(col, sort=True, observed=False).first() ) tm.assert_frame_equal( result_nosort, df.groupby(col, sort=False, observed=False).first() ) def test_empty_sum(): # https://github.com/pandas-dev/pandas/issues/18678 df = DataFrame( {"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"]), "B": [1, 2, 1]} ) expected_idx = CategoricalIndex(["a", "b", "c"], name="A") # 0 by default result = df.groupby("A", observed=False).B.sum() expected = Series([3, 1, 0], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count=0 result = df.groupby("A", observed=False).B.sum(min_count=0) expected = Series([3, 1, 0], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count=1 result = df.groupby("A", observed=False).B.sum(min_count=1) expected = Series([3, 1, np.nan], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count>1 result = df.groupby("A", observed=False).B.sum(min_count=2) expected = Series([3, np.nan, np.nan], expected_idx, name="B") tm.assert_series_equal(result, expected) def test_empty_prod(): # https://github.com/pandas-dev/pandas/issues/18678 df = DataFrame( {"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"]), "B": [1, 2, 1]} ) expected_idx = CategoricalIndex(["a", "b", "c"], name="A") # 1 by default result = df.groupby("A", observed=False).B.prod() expected = Series([2, 1, 1], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count=0 result = df.groupby("A", observed=False).B.prod(min_count=0) expected = Series([2, 1, 1], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count=1 result = df.groupby("A", observed=False).B.prod(min_count=1) expected = Series([2, 1, np.nan], expected_idx, name="B") tm.assert_series_equal(result, expected) def test_groupby_multiindex_categorical_datetime(): # https://github.com/pandas-dev/pandas/issues/21390 df = DataFrame( { "key1": Categorical(list("<KEY>")), "key2": Categorical( list(pd.date_range("2018-06-01 00", freq="1T", periods=3)) * 3 ), "values": np.arange(9), } ) result = df.groupby(["key1", "key2"]).mean() idx = MultiIndex.from_product( [ Categorical(["a", "b", "c"]), Categorical(pd.date_range("2018-06-01 00", freq="1T", periods=3)), ], names=["key1", "key2"], ) expected = DataFrame({"values": [0, 4, 8, 3, 4, 5, 6, np.nan, 2]}, index=idx) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "as_index, expected", [ ( True, Series( index=MultiIndex.from_arrays( [Series([1, 1, 2], dtype="category"), [1, 2, 2]], names=["a", "b"] ), data=[1, 2, 3], name="x", ), ), ( False, DataFrame( { "a": Series([1, 1, 2], dtype="category"), "b": [1, 2, 2], "x": [1, 2, 3], } ), ), ], ) def test_groupby_agg_observed_true_single_column(as_index, expected): # GH-23970 df = DataFrame( {"a": Series([1, 1, 2], dtype="category"), "b": [1, 2, 2], "x": [1, 2, 3]} ) result = df.groupby(["a", "b"], as_index=as_index, observed=True)["x"].sum() tm.assert_equal(result, expected) @pytest.mark.parametrize("fill_value", [None, np.nan, pd.NaT]) def test_shift(fill_value): ct = Categorical( ["a", "b", "c", "d"], categories=["a", "b", "c", "d"], ordered=False ) expected = Categorical( [None, "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False ) res = ct.shift(1, fill_value=fill_value) tm.assert_equal(res, expected) @pytest.fixture def df_cat(df): """ DataFrame with multiple categorical columns and a column of integers. Shortened so as not to contain all possible combinations of categories. Useful for testing `observed` kwarg functionality on GroupBy objects. Parameters ---------- df: DataFrame Non-categorical, longer DataFrame from another fixture, used to derive this one Returns ------- df_cat: DataFrame """ df_cat = df.copy()[:4] # leave out some groups df_cat["A"] = df_cat["A"].astype("category") df_cat["B"] = df_cat["B"].astype("category") df_cat["C"] = Series([1, 2, 3, 4]) df_cat = df_cat.drop(["D"], axis=1) return df_cat @pytest.mark.parametrize( "operation, kwargs", [("agg", {"dtype": "category"}), ("apply", {})] ) def test_seriesgroupby_observed_true(df_cat, operation, kwargs): # GH 24880 index = MultiIndex.from_frame( DataFrame( {"A": ["foo", "foo", "bar", "bar"], "B": ["one", "two", "one", "three"]}, **kwargs, ) ) expected = Series(data=[1, 3, 2, 4], index=index, name="C") grouped = df_cat.groupby(["A", "B"], observed=True)["C"] result = getattr(grouped, operation)(sum) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("operation", ["agg", "apply"]) @pytest.mark.parametrize("observed", [False, None]) def test_seriesgroupby_observed_false_or_none(df_cat, observed, operation): # GH 24880 index, _ = MultiIndex.from_product( [ CategoricalIndex(["bar", "foo"], ordered=False), CategoricalIndex(["one", "three", "two"], ordered=False), ], names=["A", "B"], ).sortlevel() expected = Series(data=[2, 4, np.nan, 1, np.nan, 3], index=index, name="C") if operation == "agg": expected = expected.fillna(0, downcast="infer") grouped = df_cat.groupby(["A", "B"], observed=observed)["C"] result = getattr(grouped, operation)(sum) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "observed, index, data", [ ( True, MultiIndex.from_tuples( [ ("foo", "one", "min"), ("foo", "one", "max"), ("foo", "two", "min"), ("foo", "two", "max"), ("bar", "one", "min"), ("bar", "one", "max"), ("bar", "three", "min"), ("bar", "three", "max"), ], names=["A", "B", None], ), [1, 1, 3, 3, 2, 2, 4, 4], ), ( False, MultiIndex.from_product( [ CategoricalIndex(["bar", "foo"], ordered=False), CategoricalIndex(["one", "three", "two"], ordered=False), Index(["min", "max"]), ], names=["A", "B", None], ), [2, 2, 4, 4, np.nan, np.nan, 1, 1, np.nan, np.nan, 3, 3], ), ( None, MultiIndex.from_product( [ CategoricalIndex(["bar", "foo"], ordered=False), CategoricalIndex(["one", "three", "two"], ordered=False), Index(["min", "max"]), ], names=["A", "B", None], ), [2, 2, 4, 4, np.nan, np.nan, 1, 1, np.nan, np.nan, 3, 3], ), ], ) def test_seriesgroupby_observed_apply_dict(df_cat, observed, index, data): # GH 24880 expected = Series(data=data, index=index, name="C") result = df_cat.groupby(["A", "B"], observed=observed)["C"].apply( lambda x: {"min": x.min(), "max": x.max()} ) tm.assert_series_equal(result, expected) def test_groupby_categorical_series_dataframe_consistent(df_cat): # GH 20416 expected = df_cat.groupby(["A", "B"])["C"].mean() result = df_cat.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) @pytest.mark.parametrize("code", [([1, 0, 0]), ([0, 0, 0])]) def test_groupby_categorical_axis_1(code): # GH 13420 df = DataFrame({"a": [1, 2, 3, 4], "b": [-1, -2, -3, -4], "c": [5, 6, 7, 8]}) cat = Categorical.from_codes(code, categories=list("abc")) result = df.groupby(cat, axis=1).mean() expected = df.T.groupby(cat, axis=0).mean().T tm.assert_frame_equal(result, expected) def test_groupby_cat_preserves_structure(observed, ordered): # GH 28787 df = DataFrame( {"Name": Categorical(["Bob", "Greg"], ordered=ordered), "Item": [1, 2]}, columns=["Name", "Item"], ) expected = df.copy() result = ( df.groupby("Name", observed=observed) .agg(DataFrame.sum, skipna=True) .reset_index() ) tm.assert_frame_equal(result, expected) def test_get_nonexistent_category(): # Accessing a Category that is not in the dataframe df = DataFrame({"var": ["a", "a", "b", "b"], "val": range(4)}) with pytest.raises(KeyError, match="'vau'"): df.groupby("var").apply( lambda rows: DataFrame( {"var": [rows.iloc[-1]["var"]], "val": [rows.iloc[-1]["vau"]]} ) ) def test_series_groupby_on_2_categoricals_unobserved(reduction_func, observed, request): # GH 17605 if reduction_func == "ngroup": pytest.skip("ngroup is not truly a reduction") if reduction_func == "corrwith": # GH 32293 mark = pytest.mark.xfail( reason="TODO: implemented SeriesGroupBy.corrwith. See GH 32293" ) request.node.add_marker(mark) df = DataFrame( { "cat_1": Categorical(list("AABB"), categories=list("ABCD")), "cat_2": Categorical(list("AB") * 2, categories=list("ABCD")), "value": [0.1] * 4, } ) args = {"nth": [0]}.get(reduction_func, []) expected_length = 4 if observed else 16 series_groupby = df.groupby(["cat_1", "cat_2"], observed=observed)["value"] agg = getattr(series_groupby, reduction_func) result = agg(*args) assert len(result) == expected_length def test_series_groupby_on_2_categoricals_unobserved_zeroes_or_nans( reduction_func, request ): # GH 17605 # Tests whether the unobserved categories in the result contain 0 or NaN if reduction_func == "ngroup": pytest.skip("ngroup is not truly a reduction") if reduction_func == "corrwith": # GH 32293 mark = pytest.mark.xfail( reason="TODO: implemented SeriesGroupBy.corrwith. See GH 32293" ) request.node.add_marker(mark) df = DataFrame( { "cat_1": Categorical(list("AABB"), categories=list("ABC")), "cat_2": Categorical(list("AB") * 2, categories=list("ABC")), "value": [0.1] * 4, } ) unobserved = [tuple("AC"), tuple("BC"), tuple("CA"), tuple("CB"), tuple("CC")] args = {"nth": [0]}.get(reduction_func, []) series_groupby = df.groupby(["cat_1", "cat_2"], observed=False)["value"] agg = getattr(series_groupby, reduction_func) result = agg(*args) zero_or_nan = _results_for_groupbys_with_missing_categories[reduction_func] for idx in unobserved: val = result.loc[idx] assert (pd.isna(zero_or_nan) and pd.isna(val)) or (val == zero_or_nan) # If we expect unobserved values to be zero, we also expect the dtype to be int. # Except for .sum(). If the observed categories sum to dtype=float (i.e. their # sums have decimals), then the zeros for the missing categories should also be # floats. if zero_or_nan == 0 and reduction_func != "sum": assert np.issubdtype(result.dtype, np.integer) def test_dataframe_groupby_on_2_categoricals_when_observed_is_true(reduction_func): # GH 23865 # GH 27075 # Ensure that df.groupby, when 'by' is two Categorical variables, # does not return the categories that are not in df when observed=True if reduction_func == "ngroup": pytest.skip("ngroup does not return the Categories on the index") df = DataFrame( { "cat_1": Categorical(list("AABB"), categories=list("ABC")), "cat_2": Categorical(list("1111"), categories=list("12")), "value": [0.1, 0.1, 0.1, 0.1], } ) unobserved_cats = [("A", "2"), ("B", "2"), ("C", "1"), ("C", "2")] df_grp = df.groupby(["cat_1", "cat_2"], observed=True) args = {"nth": [0], "corrwith": [df]}.get(reduction_func, []) res = getattr(df_grp, reduction_func)(*args) for cat in unobserved_cats: assert cat not in res.index @pytest.mark.parametrize("observed", [False, None]) def test_dataframe_groupby_on_2_categoricals_when_observed_is_false( reduction_func, observed, request ): # GH 23865 # GH 27075 # Ensure that df.groupby, when 'by' is two Categorical variables, # returns the categories that are not in df when observed=False/None if reduction_func == "ngroup": pytest.skip("ngroup does not return the Categories on the index") df = DataFrame( { "cat_1": Categorical(list("AABB"), categories=list("ABC")), "cat_2": Categorical(list("1111"), categories=list("12")), "value": [0.1, 0.1, 0.1, 0.1], } ) unobserved_cats = [("A", "2"), ("B", "2"), ("C", "1"), ("C", "2")] df_grp = df.groupby(["cat_1", "cat_2"], observed=observed) args = {"nth": [0], "corrwith": [df]}.get(reduction_func, []) res = getattr(df_grp, reduction_func)(*args) expected = _results_for_groupbys_with_missing_categories[reduction_func] if expected is np.nan: assert res.loc[unobserved_cats].isnull().all().all() else: assert (res.loc[unobserved_cats] == expected).all().all() def test_series_groupby_categorical_aggregation_getitem(): # GH 8870 d = {"foo": [10, 8, 4, 1], "bar": [10, 20, 30, 40], "baz": ["d", "c", "d", "c"]} df = DataFrame(d) cat = pd.cut(df["foo"], np.linspace(0, 20, 5)) df["range"] = cat groups = df.groupby(["range", "baz"], as_index=True, sort=True) result = groups["foo"].agg("mean") expected = groups.agg("mean")["foo"] tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "func, expected_values", [(Series.nunique, [1, 1, 2]), (Series.count, [1, 2, 2])], ) def test_groupby_agg_categorical_columns(func, expected_values): # 31256 df = DataFrame( { "id": [0, 1, 2, 3, 4], "groups": [0, 1, 1, 2, 2], "value": Categorical([0, 0, 0, 0, 1]), } ).set_index("id") result = df.groupby("groups").agg(func) expected = DataFrame( {"value": expected_values}, index=Index([0, 1, 2], name="groups") ) tm.assert_frame_equal(result, expected) def test_groupby_agg_non_numeric(): df = DataFrame({"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"])}) expected = DataFrame({"A": [2, 1]}, index=[1, 2]) result = df.groupby([1, 2, 1]).agg(Series.nunique) tm.assert_frame_equal(result, expected) result = df.groupby([1, 2, 1]).nunique() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["first", "last"]) def test_groupy_first_returned_categorical_instead_of_dataframe(func): # GH 28641: groupby drops index, when grouping over categorical column with # first/last. Renamed Categorical instead of DataFrame previously. df = DataFrame({"A": [1997], "B": Series(["b"], dtype="category").cat.as_ordered()}) df_grouped = df.groupby("A")["B"] result = getattr(df_grouped, func)() expected = Series(["b"], index=Index([1997], name="A"), name="B") tm.assert_series_equal(result, expected) def test_read_only_category_no_sort(): # GH33410 cats = np.array([1, 2]) cats.flags.writeable = False df = DataFrame( {"a": [1, 3, 5, 7], "b": Categorical([1, 1, 2, 2], categories=Index(cats))} ) expected = DataFrame(data={"a": [2, 6]}, index=CategoricalIndex([1, 2], name="b")) result = df.groupby("b", sort=False).mean() tm.assert_frame_equal(result, expected) def test_sorted_missing_category_values(): # GH 28597 df = DataFrame( { "foo": [ "small", "large", "large", "large", "medium", "large", "large", "medium", ], "bar": ["C", "A", "A", "C", "A", "C", "A", "C"], } ) df["foo"] = ( df["foo"] .astype("category") .cat.set_categories(["tiny", "small", "medium", "large"], ordered=True) ) expected = DataFrame( { "tiny": {"A": 0, "C": 0}, "small": {"A": 0, "C": 1}, "medium": {"A": 1, "C": 1}, "large": {"A": 3, "C": 2}, } ) expected = expected.rename_axis("bar", axis="index") expected.columns = CategoricalIndex( ["tiny", "small", "medium", "large"], categories=["tiny", "small", "medium", "large"], ordered=True, name="foo", dtype="category", ) result = df.groupby(["bar", "foo"]).size().unstack() tm.assert_frame_equal(result, expected) def test_agg_cython_category_not_implemented_fallback(): # https://github.com/pandas-dev/pandas/issues/31450 df = DataFrame({"col_num": [1, 1, 2, 3]}) df["col_cat"] = df["col_num"].astype("category") result = df.groupby("col_num").col_cat.first() expected = Series([1, 2, 3], index=Index([1, 2, 3], name="col_num"), name="col_cat") tm.assert_series_equal(result, expected) result = df.groupby("col_num").agg({"col_cat": "first"}) expected = expected.to_frame() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["min", "max"]) def test_aggregate_categorical_lost_index(func: str): # GH: 28641 groupby drops index, when grouping over categorical column with min/max ds = Series(["b"], dtype="category").cat.as_ordered() df = DataFrame({"A": [1997], "B": ds}) result = df.groupby("A").agg({"B": func}) expected = DataFrame({"B": ["b"]}, index=Index([1997], name="A")) tm.assert_frame_equal(result, expected) def test_aggregate_categorical_with_isnan(): # GH 29837 df = DataFrame( { "A": [1, 1, 1, 1], "B": [1, 2, 1, 2], "numerical_col": [0.1, 0.2, np.nan, 0.3], "object_col": ["foo", "bar", "foo", "fee"], "categorical_col": ["foo", "bar", "foo", "fee"], } ) df = df.astype({"categorical_col": "category"}) result = df.groupby(["A", "B"]).agg(lambda df: df.isna().sum()) index = pd.MultiIndex.from_arrays([[1, 1], [1, 2]], names=("A", "B")) expected = DataFrame( data={ "numerical_col": [1.0, 0.0], "object_col": [0, 0], "categorical_col": [0, 0], }, index=index, ) tm.assert_frame_equal(result, expected) def test_categorical_transform(): # GH 29037 df = DataFrame( { "package_id": [1, 1, 1, 2, 2, 3], "status": [ "Waiting", "OnTheWay", "Delivered", "Waiting", "OnTheWay", "Waiting", ], } ) delivery_status_type = pd.CategoricalDtype( categories=["Waiting", "OnTheWay", "Delivered"], ordered=True ) df["status"] = df["status"].astype(delivery_status_type) df["last_status"] = df.groupby("package_id")["status"].transform(max) result = df.copy() expected = DataFrame( { "package_id": [1, 1, 1, 2, 2, 3], "status": [ "Waiting", "OnTheWay", "Delivered", "Waiting", "OnTheWay", "Waiting", ], "last_status": [ "Delivered", "Delivered", "Delivered", "OnTheWay", "OnTheWay", "Waiting", ], } ) expected["status"] = expected["status"].astype(delivery_status_type) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["first", "last"]) def test_series_groupby_first_on_categorical_col_grouped_on_2_categoricals( func: str, observed: bool ): # GH 34951 cat = Categorical([0, 0, 1, 1]) val = [0, 1, 1, 0] df = DataFrame({"a": cat, "b": cat, "c": val}) idx = Categorical([0, 1]) idx = pd.MultiIndex.from_product([idx, idx], names=["a", "b"]) expected_dict = { "first": Series([0, np.NaN, np.NaN, 1], idx, name="c"), "last": Series([1, np.NaN, np.NaN, 0], idx, name="c"), } expected = expected_dict[func] if observed: expected = expected.dropna().astype(np.int64) srs_grp = df.groupby(["a", "b"], observed=observed)["c"] result = getattr(srs_grp, func)()
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import requests from bs4 import BeautifulSoup as bs from selenium import webdriver from fake_useragent import UserAgent from selenium.webdriver.common.desired_capabilities import DesiredCapabilities import pandas as pd import numpy as np import re import os import pickle as pk from collections import deque import string import time import psycopg2 as pg from pymongo import MongoClient import leafly.data_preprocess as dp import leafly.scrape_leafly as sl ua = UserAgent() MAIN_URL = 'http://analytical360.com/testresults' def setup_driver(): dcap = dict(DesiredCapabilities.PHANTOMJS) dcap["phantomjs.page.settings.userAgent"] = (ua.random) driver = webdriver.PhantomJS(desired_capabilities=dcap) driver.set_window_size(1920, 1080) return driver def get_headers_cookies(driver): agent = ua.random # select a random user agent headers = { "Connection": "close", # another way to cover tracks "User-Agent": agent } cookies = driver.get_cookies() cooks = {} for c in cookies: cooks[c['name']] = c['value'] # map it to be usable for requests return headers, cooks def check_rows(res): ''' args: takes a requests object returns: all table rows in doc checks to make sure the request was successful and the data we want is there in the format we expect. Otherwise throws an error ''' soup = bs(res.content, 'lxml') rows = soup.findAll('tr', {'title': 'Click To View Detail Test Results'}) if len(rows) == 0 or not res.ok: raise Exception('response returned:', res) return rows def get_links(rows): ''' take requests response object first checks to make sure there are any links in the row, if not, spits an error returns a list of unique links from all the rows ''' links = set() for i, r in enumerate(rows): row_links = r.findAll('a') if len(row_links) == 0: raise Exception('no links in row', i) links = set(row_links) | links links = list(set([l.get('href') for l in links])) return links def get_flower_links(rows): links = get_links(rows) flower_links = [l for l in links if re.search('.*flowers.*', l)] flower_rows = [r for r in rows if re.search('.*flowers.*', r.findAll('a')[0].get('href'))] return flower_links, flower_rows def check_groups(links): ''' args: takes in list of links from analytical360 returns: unique product groups in links (i.e. edibles, flowers, etc) checks to make sure number of groups in still 6 {'concentrates', 'edibles', 'flowers', 'liquids', 'listing', 'topicals'} ''' groups = [l.split('/')[-2] for l in links] groups = list(set(groups)) if len(groups) != 6: raise Exception('number of product groups has changed!') return groups def make_links_dataframe(links): ''' args: list of links returns: dataframe of links with product group, link ''' df = pd.DataFrame({'link': links, 'product': [ l.split('/')[-2] for l in links]}) return df def extract_info(link): ''' args: link to product page returns: dict or df of properties of product ''' res = requests.get(link) s = bs(res.content) h3s = s.findAll('h3') if len(h3s) < 2: raise Exception('can\'t find title in:', link) name = h3s[1] def get_links_selenium(driver): # right now only gets one link return driver.find_element_by_xpath('//*[@id="flowers"]/tbody/tr[1049]/td[1]/a') def download_image(src, filename, headers, cooks): r = requests.get(src, headers=headers, cookies=cooks) with open(filename, 'wb') as f: for chunk in r: f.write(chunk) def downloaded_strain_images(): pass def get_flower_df(rows): flower_links, flower_rows = get_flower_links(rows) # get strain name and if there are cannabinoid percentages flow_links = [] flow_names = [] flow_thc = [] flow_cbd = [] flow_active = [] nothc = [] nothcStrs = [] for r in flower_rows: links = r.findAll('a') strain = links[0].text thc = links[1].text cbd = links[2].text activated = links[3].text if thc == 'N/A' or re.search('.*\%.*', thc) is None: nothc.append(r) continue flow_links.append(links[0].get('href')) flow_names.append(strain) flow_thc.append(thc) flow_cbd.append(cbd) flow_active.append(activated) flow_df = pd.DataFrame({'name':flow_names, 'link':flow_links, 'thc':flow_thc, 'cbd':flow_cbd, 'activated':flow_active}) flow_df = flow_df.drop_duplicates() return flow_df def scrape_site(df, base_im_path='analytical360/new_images/', delay=None, sql=None, mongo=None): ''' goes through analytical360 site and scrapes images and data sql can be set to the name of a sql database to save info to, so the process can be stopped part way through ''' if sql is not None: # didn't get this working...couldn't figure out lists in sql dbname=sql conn = psycopg2.connect("dbname=" + sql + " host='localhost'") if mongo is not None: client = MongoClient() db = client[mongo[0]] coll = db[mongo[1]] driver = setup_driver() driver.get(MAIN_URL) headers, cooks = get_headers_cookies(driver) if not os.path.exists(base_im_path): os.mkdir(base_im_path) # pages that aren't really flowers, but concentrates # others that have broken images links black_list = set(['http://analytical360.com/m/flowers/604216', 'http://analytical360.com/m/flowers/550371']) name_black_list = set(['Raw Pulp CJ', 'Batch 35 Spent Trim', 'B21 Spent Trim (CBD)', 'B21 CBD', 'B22 Spent Trim (THC)', 'ACDC x Bubster #14 Male', 'ACDC x Bubster #47 Male', 'Blue Dog #19 Male', 'Blue Dog #31 Male', 'Canna-Tsu #16 Male', 'Canna-Tsu #19 Male', 'Foo Dog #3 Male', 'Foo Dog #11 Male', 'Foo Dog #12 Male', 'Harle-Tsu #2 Male', 'Harle-Tsu #7 Male', 'Miami Blues #24', 'Swiss Gold #6 Male', 'Swiss Gold #18 Male', 'Swiss Gold #26 Male', 'Under Foo #8 Male', 'Under Foo #11 Male', 'Under Foo #27 Male', 'Under Foo #35 Male', 'Harle-Tsu #7Male']) # broke here first time thru # startrow = flow_df[flow_df['name'] == 'Mango Haze'].index[0] # df_remain = flow_df.iloc[startrow:, :] cannabinoids = [] terpenes = [] im_sources = [] no_imgs = [] names = [] clean_names = [] for i, r in df.iterrows(): if delay is not None: time.sleep(delay) link = r['link'] id = link.split('/')[-1] if link in black_list or r['name'] in name_black_list or re.search('.*male.*', r['name'], re.IGNORECASE) is not None or re.search('.*raw\s*pulp.*', r['name'], re.IGNORECASE) is not None or re.search('.*spent\s+trim.*', r['name'], re.IGNORECASE) is not None: continue clean_name = re.sub('/', '-', r['name']) clean_name = re.sub('[ + ' + string.punctuation + '\s]+', '', clean_name).lower() clean_names.append(clean_name) save_path = base_im_path + clean_name + id + '.jpg' if mongo is not None and coll.find({'link':link}).count() != 0: print('already processed', r['name']) continue print(r['name']) names.append(r['name']) driver.get(link) print(link) try: img = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[5]/div/div[1]/img[1]') src = img.get_attribute('src') im_sources.append(src) print(src) if os.path.exists(save_path): print(r['name'], 'already saved image') else: print(save_path) if not isedible: try: download_image(src, save_path, headers, cooks) except: no_imgs.append(r) im_sources.pop() src = '' except: no_imgs.append(r) src = '' try: table1 = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[7]/div/div[1]/ul') except: cannabinoids.append([]) terpenes.append([]) continue table1soup = bs(table1.get_attribute('innerHTML'), 'lxml') table1rows = [l.get_text() for l in table1soup.findAll('li')] isedible = False if re.search('serving\s*size', table1rows[0], re.IGNORECASE) is not None: isedible = True cannabinoids.append(table1rows) try: table2 = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[8]/div/div/ul') except: try: table2 = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[9]/div/div/ul') except: terpenes.append([]) continue table2soup = bs(table2.get_attribute('innerHTML'), 'lxml') table2rows = [l.get_text() for l in table2soup.findAll('li')] terpenes.append(table2rows) coll.insert_one( {'cannabinoids': table1rows, 'terpenes': table2rows, 'clean_name': clean_name, 'link':link, 'im_source':src, 'isedible':isedible, 'save_path':save_path, 'name': r['name']}) client.close() return cannabinoids, terpenes, im_sources, no_imgs, names, clean_names def save_raw_scrape(cannabinoids, terpenes, no_imgs, im_sources, names, clean_names, prefix=None): if prefix is None: pk.dump(cannabinoids, open('analytical360/cannabinoids.pk', 'w'), 2) pk.dump(terpenes, open('analytical360/terpenes.pk', 'w'), 2) pk.dump(no_imgs, open('analytical360/no_imgs.pk', 'w'), 2) pk.dump(im_sources, open('analytical360/im_sources.pk', 'w'), 2) pk.dump(names, open('analytical360/names.pk', 'w'), 2) pk.dump(clean_names, open('analytical360/clean_names.pk', 'w'), 2) else: pk.dump(cannabinoids, open('analytical360/' + prefix + 'cannabinoids.pk', 'w'), 2) pk.dump(terpenes, open('analytical360/' + prefix + 'terpenes.pk', 'w'), 2) pk.dump(no_imgs, open('analytical360/' + prefix + 'no_imgs.pk', 'w'), 2) pk.dump(im_sources, open('analytical360/' + prefix + 'im_sources.pk', 'w'), 2) pk.dump(names, open('analytical360/' + prefix + 'names.pk', 'w'), 2) pk.dump(clean_names, open('analytical360/' + prefix + 'clean_names.pk', 'w'), 2) def load_raw_scrape(prefix=None): if prefix is None: cannabinoids = pk.load(open('analytical360/cannabinoids.pk')) terpenes = pk.load(open('analytical360/terpenes.pk')) no_imgs = pk.load(open('analytical360/no_imgs.pk')) im_sources = pk.load(open('analytical360/im_sources.pk')) names = pk.load(open('analytical360/names.pk')) clean_names = pk.load(open('analytical360/clean_names.pk')) else: cannabinoids = pk.load(open('analytical360/' + prefix + 'cannabinoids.pk')) terpenes = pk.load(open('analytical360/' + prefix + 'terpenes.pk')) no_imgs = pk.load(open('analytical360/' + prefix + 'no_imgs.pk')) im_sources = pk.load(open('analytical360/' + prefix + 'im_sources.pk')) names = pk.load(open('analytical360/' + prefix + 'names.pk')) clean_names = pk.load(open('analytical360/' + prefix + 'clean_names.pk')) return cannabinoids, terpenes, no_imgs, im_sources, names, clean_names def parse_raw_scrape(cannabinoids, terpenes, names): ''' parses raw scrape data for cannabinoids and terpenes. Returns dataframe with ''' trail = deque([0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1]) cannabinoid_strs = deque(['thc-a', 'thc', 'cbn', 'thc total', 'thc-total', 'cbd-a', 'cbd', 'cbd-total', 'cbd total', 'cbg', 'cbc', 'activated total', 'activated', 'active']) c_dict_keys = ['thca', 'thc', 'cbn', 'thc_total', 'cbda', 'cbd', 'cbd_total', 'cbg', 'cbc', 'activated_total'] conversion_dict = {'thc-a':'thca', 'thc total':'thc_total', 'thc-total':'thc_total', 'cbd-a':'cbda', 'cbd-total':'cbd_total', 'cbd total':'cbd_total', 'activated total':'activated_total', 'activated':'activated_total', 'active':'activated_total'} # converts similar strings to the dict key forf cannabiniod dict cannabinoid_dict = {} screen_tups = list(zip(list(range(len(trail))), trail, cannabinoid_strs)) for i, cann in enumerate(cannabinoids): print(i) temp_cann = c_dict_keys[:] #cannabinoid_dict.setdefault('name', []).append(names[i]) for ca in cann: for j, t, c in screen_tups: has_str, num = find_string(ca, c, t) if has_str: # idx = list(cannabinoid_strs).index(c) # cannabinoid_strs.rotate(-idx) # move that entry to the beginning of the list # trail.rotate(-idx) # screen_tups = zip(range(len(trail)), trail, cannabinoid_strs) print('found', c, ca) if c in conversion_dict: cannabinoid_dict.setdefault(conversion_dict[c], []).append(num) temp_cann.remove(conversion_dict[c]) else: cannabinoid_dict.setdefault(c, []).append(num) temp_cann.remove(c) break if len(temp_cann) > 0: print('didn\'t scrape:', temp_cann) for t in temp_cann: cannabinoid_dict.setdefault(t, []).append('') terp_strs = deque(['beta-Pinene', 'Humulene', 'Limonene', 'alpha-Pinene', 'Caryophyllene', 'Beta Pinene', 'Linalool', 'Caryophyllene oxide', 'Myrcene', 'TERPENE-TOTAL', 'Terpinolene', 'Ocimene', 'Alpha Pinene']) t_dict_keys = ['beta_pinene', 'alpha_pinene', 'caryophyllene_oxide', 'Humulene', 'Limonene', 'Caryophyllene', 'Linalool', 'Myrcene', 'Terpinolene', 'Ocimene', 'total_terpenes'] # converts similar strings to the dict key for terp dict terp_conv_dict = {'beta-Pinene':'beta_pinene', 'Beta Pinene':'beta_pinene', 'alpha-Pinene':'alpha_pinene', 'Alpha Pinene':'alpha_pinene', 'Caryophyllene oxide':'caryophyllene_oxide', 'TERPENE-TOTAL':'total_terpenes'} terp_dict = {} for i, terp in enumerate(terpenes): print(i) temp_cann = t_dict_keys[:] #terp_dict.setdefault('name', []).append(names[i]) for ta in terp: for c in terp_strs: has_str, num = find_string(ta, c) if has_str: idx = list(terp_strs).index(c) print('found', c, ta) if c in terp_conv_dict: terp_dict.setdefault(terp_conv_dict[c], []).append(num) temp_cann.remove(terp_conv_dict[c]) else: terp_dict.setdefault(c, []).append(num) temp_cann.remove(c) break if len(temp_cann) > 0: print('didn\'t scrape:', temp_cann) for t in temp_cann: terp_dict.setdefault(t, []).append('') cannabinoid_dict['name'] = names for k in cannabinoid_dict: print(k, len(cannabinoid_dict[k])) for k in terp_dict: print(k, len(terp_dict[k])) cdf = pd.DataFrame(cannabinoid_dict) tdf = pd.DataFrame(terp_dict) total_df = cdf.merge(tdf, left_index=True, right_index=True) return total_df def find_string(search_str, str_to_find='THC-A', trail=False): if search_str.find('8-THC') != -1: return 0, 0 # if search_str.find('< 0.01 TERPENE-TOTAL') != -1: # return 1, 0 if trail: find_str = '.*' + str_to_find + '.*' else: find_str = '.*' + str_to_find + '$' has_str = 0 res = re.search(find_str, search_str, re.IGNORECASE) if res: num = re.search('[\d\.]*', search_str).group(0) if search_str.find('<\s*0.01') != -1: return 1, 0 return 1, num return 0, 0 def check_for_string(cannabinoids, str_to_find='THC-A', trail=True): if trail: find_str = '.*' + str_to_find + '.*' else: find_str = '.*' + str_to_find #c = [' '.join(r) for r in cannabinoids] has_str = [] for c in cannabinoids: has_str_val = 0 for j in c: res = re.search(find_str, j, re.IGNORECASE) if res: has_str_val = 1 break has_str.append(has_str_val) return has_str def check_if_fields_present(): trail = [0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1] cannabinoid_strs = ['thc-a', 'thc', 'cbn', 'thc total', 'thc-total', 'cbd-a', 'cbd', 'cbd-total', 'cbd total', 'cbg', 'cbc', 'activated total', 'activated', 'active'] for t, c in zip(trail, cannabinoid_strs): has_str = check_for_string(cannabinoids, c, t) print(c, np.mean(has_str)) def stuff(): testdf = pd.DataFrame({'name':names}) testdf['name'].value_counts()[testdf['name'].value_counts() > 1] def clean_flow_df(df, clean_names=None): ''' converts strings with % into floats ''' new_df = df.copy() for c in ['activated', 'thc', 'cbd']: new_df[c] = new_df[c].apply(lambda x: x.strip('%')) new_df[c][new_df[c] == '< 0.01'] = 0 new_df[c] = new_df[c].astype('float64') if clean_names is not None: new_df['clean_name'] = new_df['name'].apply(clean_a_name) new_df['im_name'] = [x['clean_name'] + x['link'].split('/')[-1] + '.jpg' for i, x in new_df.iterrows()] #for i, n in enumerate(clean_names): # new_df.set_value(i, 'im_name', n + df.iloc[i]['link'].split('/')[-1] + '.jpg') return new_df def clean_a_name(name_str): clean_name = re.sub('/', '-', name_str) clean_name = re.sub('[ + ' + string.punctuation + '\s]+', '', clean_name).lower() return clean_name def match_up_leafly_names(nameset): ''' checks how many names roughly match in the leafly database and analytical360 db agrs: nameset -- set of names found from analytical360 to match with leafly strain names ''' nameset = nameset.copy() nameset = [clean_a_name(n) for n in nameset] strains = sl.load_strain_list() strain_clean_names = [clean_a_name(n.split('/')[-1]) for n in strains] # to get short names: short_names = [] for s in strain_clean_names: if len(s) < 4: short_names.append(s) skip_set = set(['ice', 'avi', 'ash', 'haze', 'thai', 'wsu', 'goo', 'or', 'ogkush', 'goat', 'flo', 'fireog', 'bsc', 'b4']) matches = [] # translation from some leafly strain names to specific analytical360 names trans_dict = {'k1':'kk1', 'j1':'j1ridgewayg'} for s in strain_clean_names: # these names match too much, so we need to look for exact matches for now if s in skip_set: for f in nameset: if f == s: matches.append((s, f)) break # don't need to look through the rest # of the nameset if this is true else: for f in nameset: if f.find(s) != -1 and f.find(s + 'x') == -1: matches.append((s, f)) return matches # leafly_df = dp.load_data() # leafly_df['clean_name'] = leafly_df['product'].apply(clean_a_name) if __name__ == "__main__": # attempt using selenium # driver = setup_driver() # driver.get('http://analytical360.com/testresults') # links = get_links_selenium(driver) # using requests: finding it hard to get all the correct entries scrape_full_site = False if scrape_full_site: res = requests.get(MAIN_URL) soup = bs(res.content, 'lxml') rows = check_rows(res) flow_df = get_flower_df(rows) flow_df.to_pickle('analytical360/flow_df.pk') cannabinoids, terpenes, im_sources, no_imgs, names, clean_names = scrape_site(flow_df) save_raw_scrape(cannabinoids, terpenes, no_imgs, im_sources, names, clean_names) else: flow_df =
pd.read_pickle('analytical360/flow_df.pk')
pandas.read_pickle
import pandas as pd import numpy as np import matplotlib.pyplot as pl import os from scipy import stats from tqdm import tqdm import mdtraj as md ######################################################## def get_3drobot_native(data_flag): root_dir = '/home/hyang/bio/erf/data/decoys/3DRobot_set' pdb_list = pd.read_csv(f'{root_dir}/pdb_no_missing_residue.csv')['pdb'].values energy_native = [] for pdb_id in pdb_list: df = pd.read_csv(f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_decoy_loss.csv') energy_native.append(df['loss'].values[0]) energy_native = np.array(energy_native) print(energy_native, np.mean(energy_native), np.min(energy_native), np.max(energy_native), np.std(energy_native)) def plot_3drobot(data_flag): root_dir = '/home/hyang/bio/erf/data/decoys/3DRobot_set' # pdb_list = pd.read_csv('pdb_local_rot.txt')['pdb'].values # pdb_list = pd.read_csv('pdb_profile_diff.txt')['pdb'].values # pdb_list = pd.read_csv(f'{root_dir}/pdb_profile_diff_match.txt')['pdb'].values pdb_list = pd.read_csv(f'{root_dir}/pdb_no_missing_residue.csv')['pdb'].values # data_flag = 'exp005_v2' # data_flag = 'exp5' # data_flag = 'exp6' # data_flag = 'exp12' # data_flag = 'exp14' # data_flag = 'exp17' # data_flag = 'exp21' # data_flag = 'exp24' # data_flag = 'exp29' # data_flag = 'exp33' # data_flag = 'exp35' # data_flag = 'exp50' # data_flag = 'exp50_relax' # data_flag = 'exp49' # data_flag = 'exp49_relax' # data_flag = 'exp54' # data_flag = 'exp61' # data_flag = 'rosetta' # data_flag = 'rosetta_relax' # data_flag = 'rosetta_cen' # if not os.path.exists(f'{root_dir}/fig_3drobot_{data_flag}'): # os.system(f'mkdir -p {root_dir}/fig_3drobot_{data_flag}') correct = 0 rank = [] for pdb_id in pdb_list: df = pd.read_csv(f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_decoy_loss.csv') decoy_name = df['NAME'].values assert(decoy_name[0] == 'native.pdb') ind = (df['loss'] != 999) loss = df['loss'][ind].values rmsd = df['RMSD'][ind].values if np.argmin(loss) == 0: correct += 1 num = np.arange(loss.shape[0]) + 1 rank_i = num[np.argsort(loss) == 0][0] rank.append(rank_i) if rank_i > 1: print(pdb_id, rmsd[np.argmin(loss)]) fig = pl.figure() pl.plot(rmsd, loss, 'bo') pl.plot([rmsd[0]], [loss[0]], 'rs', markersize=12) pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') # pl.savefig(f'{root_dir}/fig_3drobot_{data_flag}/{pdb_id}_score.pdf') pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_score.pdf') pl.close(fig) rank = np.array(rank) print(rank) fig = pl.figure() pl.hist(rank, bins=np.arange(21)+0.5) pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/rank.pdf') pl.close(fig) ######################################################## def plot_casp11_loss(): # pdb_list = pd.read_csv('pdb_list_new.txt')['pdb'].values pdb_list = pd.read_csv('pdb_no_need_copy_native.txt')['pdb'].values flist = pd.read_csv('list_casp11.txt')['fname'].values casp_dict = {x.split('#')[1][:5]: x.split('_')[0] for x in flist} df_tm = pd.read_csv('casp11_decoy.csv') tm_score_dict = {x: y for x, y in zip(df_tm['Target'], df_tm['Decoys'])} # data_flag = 'exp3_v2' # data_flag = 'exp5' # data_flag = 'exp7' # data_flag = 'exp13' # data_flag = 'exp15' # data_flag = 'exp21' # data_flag = 'exp24' # data_flag = 'exp29' # data_flag = 'exp33' # data_flag = 'exp35' data_flag = 'exp61' if not os.path.exists(f'fig_casp11_{data_flag}'): os.system(f'mkdir fig_casp11_{data_flag}') correct = 0 rank = [] tm_score = [] for pdb_id in pdb_list: data_path = f'data_casp11_{data_flag}/{pdb_id}_decoy_loss.csv' if not os.path.exists(data_path): continue df = pd.read_csv(data_path) decoy_name = df['NAME'].values # ind = (df['loss'] != 999) # loss = df['loss'][ind].values tm_score.append(tm_score_dict[pdb_id]) loss = df['loss'].values num = np.arange(loss.shape[0]) i = (decoy_name == f'{pdb_id}.native.pdb') if num[i] == np.argmin(loss): # print(num.shape[0] - num[i]) correct += 1 rank.append(num[np.argsort(loss) == num[i]][0] + 1) fig = pl.figure() pl.plot(num, loss, 'bo') i = (decoy_name == f'{pdb_id}.Zhang-Server_model1.pdb') pl.plot([num[i]], [loss[i]], 'g^', markersize=12, label='zhang') i = (decoy_name == f'{pdb_id}.QUARK_model1.pdb') pl.plot([num[i]], [loss[i]], 'c*', markersize=12, label='quark') i = (decoy_name == f'{pdb_id}.native.pdb') pl.plot([num[i]], [loss[i]], 'rs', markersize=12, label='native') pdb_id = casp_dict[pdb_id] pl.title(f'{pdb_id}') pl.xlabel('num') pl.ylabel('energy score') pl.savefig(f'fig_casp11_{data_flag}/{pdb_id}_score.pdf') pl.close(fig) rank = np.array(rank) tm_score = np.array(tm_score) pl.figure() pl.hist(rank, bins=np.arange(21)+0.5) # pl.figure() # pl.plot(tm_score, rank, 'bo') a = (rank <= 5) b = (rank > 5) pl.figure() pl.hist(tm_score[a], bins=np.arange(9)*0.1+0.2, label='rank=1 or 2', histtype='stepfilled') pl.hist(tm_score[b], bins=np.arange(9)*0.1+0.2, label='rank>10', histtype='step') pl.xlabel('Best TM-score in decoys') pl.ylabel('Num') pl.legend(loc=2) ######################################################## def plot_casp11(data_flag): # plot RMSD vs. loss for CASP11 root_dir = '/home/hyang/bio/erf/data/decoys/casp11' pdb_list = pd.read_csv(f'{root_dir}/casp11_rmsd/casp11_rmsd.txt')['pdb'] flist = pd.read_csv(f'{root_dir}/list_casp11.txt')['fname'].values casp_dict = {x.split('#')[1][:5]: x.split('_')[0] for x in flist} # data_flag = 'exp3_v2' # data_flag = 'exp5' # data_flag = 'exp7' # data_flag = 'exp13' # data_flag = 'exp21' # data_flag = 'exp24' # data_flag = 'exp29' # data_flag = 'exp33' # data_flag = 'exp35' # data_flag = 'exp61' for pdb_id in pdb_list: data_path = f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_decoy_loss.csv' if not os.path.exists(data_path): continue df = pd.read_csv(data_path) decoy_name = df['NAME'].values # ind = (df['loss'] != 999) # loss = df['loss'][ind].values loss = df['loss'].values df2 = pd.read_csv(f'{root_dir}/casp11_rmsd/{pdb_id}_rmsd.csv') rmsd = df2['rmsd'].values assert(rmsd.shape[0] == loss.shape[0]) fig = pl.figure() pl.plot(rmsd, loss, 'bo') i = (decoy_name == f'{pdb_id}.Zhang-Server_model1.pdb') pl.plot([rmsd[i]], [loss[i]], 'g^', markersize=12, label='zhang') i = (decoy_name == f'{pdb_id}.QUARK_model1.pdb') pl.plot([rmsd[i]], [loss[i]], 'c*', markersize=12, label='quark') i = (decoy_name == f'{pdb_id}.native.pdb') pl.plot([rmsd[i]], [loss[i]], 'rs', markersize=12, label='native') pdb_id = casp_dict[pdb_id] pl.title(f'{pdb_id}') a = max(12, rmsd.max()) pl.xlim(-1, a) pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/rmsd_{pdb_id}_score.pdf') pl.close(fig) ######################################################## def prepare_casp13(): # prepare casp13 decoys df = pd.read_csv('flist.txt') pdb_count = df['pdb'].value_counts() pdb_list = [] for pdb, count in zip(pdb_count.index, pdb_count.values): if count > 1: pdb_list.append(pdb) else: pdb_list.append(pdb + '-D1') pdb_list = np.array(pdb_list) pdb_list.sort() df2 = pd.DataFrame({'pdb': pdb_list}) df2.to_csv('pdb_list.txt', index=False) def plot_casp13(data_flag, casp_id='casp13', casp_score_type='GDT_TS'): # plot results of casp13 / casp14 decoys root_dir = f'/home/hyang/bio/erf/data/decoys/{casp_id}' if casp_id == 'casp13': pdb_list = pd.read_csv(f'{root_dir}/pdb_list_domain.txt')['pdb'].values pdb_ids = [x.split('-')[0] for x in pdb_list] else: pdb_list = pd.read_csv(f'{root_dir}/pdb_list.txt')['pdb'].values pdb_ids = pdb_list # data_flag = 'exp61' # if not os.path.exists(f'fig_casp13_{data_flag}'): # os.system(f'mkdir fig_casp13_{data_flag}') pearsonr_list = [] pearsonp_list = [] used_pdb_list = [] casp_score_max = [] casp_score_min = [] rank_1 = 0 for pdb_id, pdb_casp_name in zip(pdb_ids, pdb_list): data_path = f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_decoy_loss.csv' if not os.path.exists(data_path): continue df = pd.read_csv(data_path) decoy_name = df['pdb'].values # ind = (df['loss'] != 999) # loss = df['loss'][ind].values loss = df['loss'].values if not os.path.exists(f'{root_dir}/casp_score/{pdb_casp_name}.txt'): continue df2 = pd.read_csv(f'{root_dir}/casp_score/{pdb_casp_name}.txt', sep='\s+') casp_model = df2['Model'] if (casp_id == 'casp13') & (pdb_casp_name.endswith('-D1')): casp_model = df2['Model'].apply(lambda x: x[:-3]) if casp_score_type == 'GDT_TS': casp_score_data = df2['GDT_TS'].values elif casp_score_type == 'RMSD_CA': casp_score_data = df2['RMS_CA'].values else: raise ValueError('casp score type should be GDT_TS / RMSD_CA') casp_dict = {x: y for x, y in zip(casp_model, casp_score_data)} casp_score = [] for x in decoy_name: try: casp_score.append(casp_dict[x]) except KeyError: casp_score.append(-1) casp_score = np.array(casp_score) idx = (casp_score > 0) & (loss > 0) casp_score_good = casp_score[idx] loss_good = loss[idx] decoy_name_good = decoy_name[idx] # if np.argmax(casp_score_good) == np.argmin(loss_good): # rank_1 += 1 top5_idx = np.argpartition(loss_good, 5)[:5] best_gdt_idx = np.argmax(casp_score_good) if best_gdt_idx in top5_idx: print(best_gdt_idx, top5_idx) rank_1 += 1 print(pdb_casp_name, decoy_name_good[best_gdt_idx], decoy_name_good[top5_idx]) pearsonr = stats.pearsonr(casp_score_good, loss_good) pearsonr_list.append(pearsonr[0]) pearsonp_list.append(pearsonr[1]) used_pdb_list.append(pdb_id) casp_score_max.append(casp_score[idx].max()) casp_score_min.append(casp_score[idx].min()) df_i = pd.DataFrame({'pdb': decoy_name_good, casp_score_type: casp_score_good, 'energy': loss_good}) df_i.to_csv(f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_casp_score_{casp_score_type}_energy.csv', index=False) fig = pl.figure() # pl.plot(100.0, loss[0], 'rs') pl.plot(casp_score[idx], loss[idx], 'bo') pl.title(f'{pdb_id}') # a = max(12, rmsd.max()) # pl.xlim(-1, a) pl.xlabel(f'CASP {casp_score_type}') pl.ylabel('energy score') pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_{casp_score_type}.pdf') pl.close(fig) fig = pl.figure() # pl.plot(100.0, loss[0], 'rs') pl.plot(casp_score_good, loss_good, 'bo') for i in range(loss_good.shape[0]): pl.text(casp_score_good[i], loss_good[i], decoy_name_good[i].split('S')[1][:-3], fontsize=6) pl.title(f'{pdb_id}') y_min = loss_good.min() y_max = loss_good.max() pl.ylim(y_min - (y_max - y_min) * 0.01, y_min + (y_max - y_min) * 0.15) # a = max(12, rmsd.max()) pl.xlim(0, 100) pl.xlabel(f'CASP {casp_score_type}') pl.ylabel('energy score') pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/{pdb_id}_{casp_score_type}_zoom.pdf') pl.close(fig) print(f'rank_1 = {rank_1}') df = pd.DataFrame({'pdb': used_pdb_list, 'pearsonr': pearsonr_list, 'pearsonp': pearsonp_list, 'casp_score_max': casp_score_max, 'casp_score_min': casp_score_min}) df.to_csv(f'{root_dir}/decoy_loss_{data_flag}/pearsonr_{casp_score_type}.txt', index=False) fig = pl.figure() if casp_score_type == 'GDT_TS': pearsonr_bins = np.arange(11)*0.1-1 elif casp_score_type == 'RMSD_CA': pearsonr_bins = np.arange(11)*0.1 else: raise ValueError('casp score type should be gdt_ts / rmsd_ca') pl.hist(df['pearsonr'], bins=pearsonr_bins) pl.xlabel(r'Pearson $\rho$') pl.ylabel('N') pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/pearsonr_{casp_score_type}.pdf') pl.close(fig) # casp_score_max = df['casp_score_max'].values # fig = pl.figure() # idx = (casp_score_max >= 50) # pl.hist(df['pearsonr'][idx], bins=np.arange(11)*0.1-1) # pl.xlabel(r'Pearson $\rho$') # pl.ylabel('N') # pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/pearsonr_1.pdf') # pl.close(fig) # fig = pl.figure() # idx = (casp_score_max < 50) # pl.xlabel(r'Pearson $\rho$') # pl.ylabel('N') # pl.hist(df['pearsonr'][idx], bins=np.arange(11)*0.1-1) # pl.savefig(f'{root_dir}/decoy_loss_{data_flag}/pearsonr_2.pdf') # pl.close(fig) ######################################################## def plot_ru(decoy_set, decoy_loss_dir): # decoy_set = '4state_reduced' # decoy_set = 'lattice_ssfit' # decoy_set = 'lmds' # decoy_set = 'lmds_v2' root_dir = f'/home/hyang/bio/erf/data/decoys/rudecoy/multiple/{decoy_set}' # decoy_loss_dir = 'exp61' if not os.path.exists(f'{root_dir}/{decoy_loss_dir}'): os.system(f'mkdir -p {root_dir}/{decoy_loss_dir}') pdb_id_list = pd.read_csv(f'{root_dir}/list', header=None, names=['pdb'])['pdb'].values for pdb_id in pdb_id_list: df = pd.read_csv(f'{root_dir}/{decoy_loss_dir}/{pdb_id}_decoy_loss.csv') pdb_list = df['pdb'].values loss = df['loss'].values rmsd = df['score'].values native_name = f'{pdb_id}.pdb' i_native = np.arange(pdb_list.shape[0])[(pdb_list == native_name)] i = np.argmin(loss) print(i_native, i, pdb_list[i]) fig = pl.figure() pl.plot(rmsd, loss, 'bo') pl.plot([rmsd[i_native]], [loss[i_native]], 'rs', markersize=12) pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{decoy_loss_dir}/{pdb_id}_score.pdf') pl.close(fig) ######################################################## def plot_md_trj(decoy_loss_dir): # plot the MD trajectory data root_dir = f'/home/hyang/bio/openmm/data' if not os.path.exists(f'{root_dir}/{decoy_loss_dir}'): os.system(f'mkdir -p {root_dir}/{decoy_loss_dir}') pdb_id_list = pd.read_csv(f'{root_dir}/list', header=None, names=['pdb'])['pdb'].values for pdb_id in pdb_id_list: df = pd.read_csv(f'{root_dir}/{decoy_loss_dir}/{pdb_id}_decoy_loss.csv') loss = df['loss'].values rmsd = df['rmsd'].values pdb = df['pdb'].values # plot RMSD vs. Energy fig = pl.figure() idx = np.zeros(pdb.shape) for i in range(pdb.shape[0]): if pdb[i].startswith('T300'): idx[i] = 1 elif pdb[i].startswith('T500'): idx[i] = 2 pl.plot([rmsd[0]], [loss[0]], 'gs', markersize=12) pl.plot([rmsd[1]], [loss[1]], 'g^', markersize=12) pl.plot(rmsd[idx == 1], loss[idx == 1], 'g.', label='md_T300') pl.plot(rmsd[idx == 2], loss[idx == 2], 'c.', label='md_T500') pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{decoy_loss_dir}/{pdb_id}_score.pdf') pl.close(fig) # plot RMSD vs. time & Energy vs. time fig = pl.figure() idx = np.zeros(pdb.shape) for i in range(pdb.shape[0]): if pdb[i].startswith('T300'): idx[i] = 1 elif pdb[i].startswith('T500'): idx[i] = 2 pl.subplot(211) pl.plot(rmsd[idx == 1], 'g', label='md_T300') pl.plot(rmsd[idx == 2], 'c', label='md_T500') pl.ylabel('RMSD') pl.legend() pl.title(f'{pdb_id}') pl.subplot(212) pl.plot(loss[idx == 1], 'g') pl.plot(loss[idx == 2], 'c') pl.ylabel('energy score') pl.xlabel('time-steps') pl.savefig(f'{root_dir}/{decoy_loss_dir}/{pdb_id}_rmsd_energy_time.pdf') pl.close(fig) def plot_md_trj2(): # plot the MD trajectory data root_dir = '/home/hyang/bio/erf/data/decoys/md/cullpdb_val_deep/' pdb_id_list = pd.read_csv(f'{root_dir}/list', header=None, names=['pdb'])['pdb'].values # pdb_id_list = ['3KXT'] for pdb_id in pdb_id_list: df1 = pd.read_csv(f'{root_dir}/{pdb_id}_T300_energy_rmsd.csv') loss1 = df1['energy'].values rmsd1 = df1['rmsd'].values df2 = pd.read_csv(f'{root_dir}/{pdb_id}_T500_energy_rmsd.csv') loss2 = df2['energy'].values rmsd2 = df2['rmsd'].values # plot RMSD vs. Energy fig = pl.figure() pl.plot([rmsd1[0]], [loss1[0]], 'gs', markersize=12) pl.plot(rmsd1, loss1, 'g.', label='T300') pl.plot(rmsd2, loss2, 'c.', label='T500') pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{pdb_id}_score.pdf') pl.close(fig) # plot RMSD vs. time & Energy vs. time fig = pl.figure() pl.subplot(211) pl.plot(rmsd1, 'g', label='md_T300') pl.plot(rmsd2, 'c', label='md_T500') pl.ylabel('RMSD') pl.legend() pl.title(f'{pdb_id}') pl.subplot(212) pl.plot(loss1, 'g') pl.plot(loss2, 'c') pl.ylabel('energy score') pl.xlabel('time-steps') pl.savefig(f'{root_dir}/{pdb_id}_rmsd_energy_time.pdf') pl.close(fig) def plot_md_trj3(): # plot the MD trajectory data root_dir = '/home/hyang/bio/erf/data/decoys/md/BPTI' df = pd.read_csv(f'{root_dir}/BPTI_energy_rmsd.csv') loss1 = df['energy'].values rmsd1 = df['rmsd'].values # plot RMSD vs. Energy fig = pl.figure() pl.plot(rmsd1, loss1, 'g.', markersize=0.01) pl.title('BPTI') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/BPTI_score.jpg') pl.close(fig) # plot RMSD vs. time & Energy vs. time fig = pl.figure() pl.subplot(211) pl.plot(rmsd1, 'b.', markersize=0.01) pl.ylabel('RMSD') pl.title('BPTI') pl.subplot(212) pl.plot(loss1, 'g.', markersize=0.01) pl.ylabel('energy score') pl.xlabel('time-steps') pl.savefig(f'{root_dir}/BPTI_rmsd_energy_time.jpg') pl.close(fig) def plot_bd_trj(): # plot the mixed Langevin dynamics trajectory data root_dir = '/home/hyang/bio/erf/data/fold/exp205dynamics_val_deep501/' pdb_selected = pd.read_csv(f'/home/hyang/bio/erf/data/fold/cullpdb_val_deep/sample.csv')['pdb'].values pdb_selected = np.append(np.array(['1BPI_A']), pdb_selected) for pdb_id in pdb_selected: df1 = pd.read_csv(f'{root_dir}/{pdb_id}_energy.csv') loss1 = df1['sample_energy'].values rmsd1 = df1['sample_rmsd'].values # plot RMSD vs. Energy fig = pl.figure() pl.plot([rmsd1[0]], [loss1[0]], 'gs', markersize=12) pl.plot(rmsd1, loss1, 'go') pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{pdb_id}_score.pdf') pl.close(fig) # plot RMSD vs. time & Energy vs. time fig = pl.figure() pl.subplot(211) pl.plot(rmsd1, 'go') pl.ylabel('RMSD') pl.title(f'{pdb_id}') pl.subplot(212) pl.plot(loss1, 'bs') pl.ylabel('energy score') pl.xlabel('time-steps') pl.savefig(f'{root_dir}/{pdb_id}_rmsd_energy_time.pdf') pl.close(fig) def plot_openmm2(): root_dir = f'/home/hyang/bio/openmm/data' decoy_loss_dir = 'exp63_65' if not os.path.exists(f'{root_dir}/{decoy_loss_dir}'): os.system(f'mkdir -p {root_dir}/{decoy_loss_dir}') pdb_id_list = pd.read_csv(f'{root_dir}/list', header=None, names=['pdb'])['pdb'].values for pdb_id in pdb_id_list: fig = pl.figure() df = pd.read_csv(f'{root_dir}/exp61/{pdb_id}_decoy_loss.csv') loss = df['loss'].values * 15.0 rmsd = df['rmsd'].values pl.plot(rmsd, loss, 'g.') pl.plot([rmsd[0]], [loss[0]], 'g^', markersize=12) df = pd.read_csv(f'{root_dir}/exp63/{pdb_id}_decoy_loss.csv') loss = df['loss'].values rmsd = df['rmsd'].values pl.plot(rmsd, loss, 'bo') pl.plot([rmsd[0]], [loss[0]], 'bs', markersize=12) df = pd.read_csv(f'{root_dir}/exp65/{pdb_id}_decoy_loss.csv') loss = df['loss'].values rmsd = df['rmsd'].values pl.plot(rmsd, loss, 'c.') pl.plot([rmsd[0]], [loss[0]], 'cs', markersize=12) pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{decoy_loss_dir}/{pdb_id}_score.pdf') pl.close(fig) ######################################################## def plot_make_decoy_relax(): # plot the relaxed decoys root_dir = f'/Users/Plover/study/bio/play/erf/data/fold/exp61anneal_val_deep_loop_relax' # if not os.path.exists(f'{root_dir}/{decoy_loss_dir}'): # os.system(f'mkdir -p {root_dir}/{decoy_loss_dir}') pdb_id_list = pd.read_csv(f'{root_dir}/sample.csv')['pdb'].values for pdb_id in pdb_id_list: df = pd.read_csv(f'{root_dir}/{pdb_id}_energy.csv') # pdb_list = df['pdb'].values sample_energy = df['sample_energy'].values sample_energy_relaxed = df['sample_energy_relaxed'].values sample_rmsd = df['sample_rmsd'].values sample_relaxed_rmsd = df['sample_relaxed_rmsd'].values fig = pl.figure() pl.plot(sample_rmsd, sample_energy, 'g.', label='sample') pl.plot(sample_relaxed_rmsd, sample_energy_relaxed, 'b.', label='sample_relaxed') pl.plot([sample_rmsd[0]], [sample_energy[0]], 'ro', markersize=10) pl.plot([sample_relaxed_rmsd[0]], [sample_energy_relaxed[0]], 'rs', markersize=10) pl.legend() pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{pdb_id}_score.pdf') pl.close(fig) def plot_make_decoy(data_flag): # plot the decoys without relax root_dir = f'/home/hyang/bio/erf/data/fold/{data_flag}anneal_val_deep_loop' pdb_id_list = pd.read_csv(f'{root_dir}/../cullpdb_val_deep/sample.csv')['pdb'].values for pdb_id in pdb_id_list: if not os.path.exists(f'{root_dir}/{pdb_id}_energy.csv'): continue df = pd.read_csv(f'{root_dir}/{pdb_id}_energy.csv') sample_energy = df['sample_energy'].values sample_rmsd = df['sample_rmsd'].values fig = pl.figure() pl.plot(sample_rmsd, sample_energy, 'g.', label='sample') pl.plot([sample_rmsd[0]], [sample_energy[0]], 'ro', markersize=10) pl.legend() pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{pdb_id}_score.pdf') pl.close(fig) def plot_openmm_bd_loop_decoy(data_flag, plot_frag=False, plot_loop=False, flag='', pdb_all=False): # plot decoys from openmm / loop / Brownian dynamics together md_root_dir = f'/home/hyang/bio/openmm/data/{data_flag}' loop_root_dir = f'/home/hyang/bio/erf/data/fold/{data_flag}anneal_val_deep_loop' bd_root_dir = f'/home/hyang/bio/erf/data/fold/{data_flag}dynamics_val_deep{flag}' # plot_dir = f'/home/hyang/bio/erf/data/fold/{data_flag}_md_bd_loop{flag}_plot' plot_dir = bd_root_dir frag_root_dir = f'/home/hyang/bio/erf/data/fold/{data_flag}frag_deep/' if not os.path.exists(f'{plot_dir}'): os.system(f'mkdir -p {plot_dir}') pdb_id_list = ['3KXT'] if pdb_all: pdb_id_list = pd.read_csv(f'{md_root_dir}/../list', header=None, names=['pdb'])['pdb'].values for pdb_id in pdb_id_list: fig = pl.figure() df = pd.read_csv(f'{md_root_dir}/{pdb_id}_decoy_loss.csv') pdb = df['pdb'].values idx = np.zeros(pdb.shape) for i in range(pdb.shape[0]): if pdb[i].startswith('T300'): idx[i] = 1 elif pdb[i].startswith('T500'): idx[i] = 2 loss = df['loss'].values rmsd = df['rmsd'].values pl.plot([rmsd[0]], [loss[0]], 'gs', markersize=12) pl.plot([rmsd[1]], [loss[1]], 'g^', markersize=9) pl.plot(rmsd[idx == 1], loss[idx == 1], 'g.', label='md_T300') pl.plot(rmsd[idx == 2], loss[idx == 2], 'c.', label='md_T500') if plot_loop: df = pd.read_csv(f'{loop_root_dir}/{pdb_id}_A_energy.csv') sample_energy = df['sample_energy'].values sample_rmsd = df['sample_rmsd'].values pl.plot(sample_rmsd, sample_energy, 'b.', label='loop') pl.plot([sample_rmsd[0]], [sample_energy[0]], 'bo', markersize=10) df = pd.read_csv(f'{bd_root_dir}/{pdb_id}_A_energy.csv') sample_energy = df['sample_energy'].values sample_rmsd = df['sample_rmsd'].values pl.plot(sample_rmsd, sample_energy, 'r.', label='Brownian') pl.plot([sample_rmsd[0]], [sample_energy[0]], 'ro', markersize=10) if plot_frag: df = pd.read_csv(f'{frag_root_dir}/{pdb_id}_A_energy_all.csv') sample_energy = df['sample_energy'].values sample_rmsd = df['sample_rmsd'].values pl.plot(sample_rmsd, sample_energy, 'm.', label='Fragment') pl.plot([sample_rmsd[0]], [sample_energy[0]], 'ro', markersize=10) pl.legend() pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{plot_dir}/{pdb_id}_score.pdf') pl.close(fig) def plot_openmm_loop_decoy2(): # plot two experiments together md1_root_dir = f'/Users/Plover/study/bio/play/erf/data/fold/openmm/exp65' loop1_root_dir = f'/Users/Plover/study/bio/play/erf/data/fold/exp65anneal_val_deep_loop' md2_root_dir = f'/Users/Plover/study/bio/play/erf/data/fold/openmm/exp63' loop2_root_dir = f'/Users/Plover/study/bio/play/erf/data/fold/exp63anneal_val_deep_loop' plot_dir = f'/Users/Plover/study/bio/play/erf/data/fold/exp63_65_md_loop_plot' pdb_id_list = pd.read_csv(f'{md1_root_dir}/list', header=None, names=['pdb'])['pdb'].values for pdb_id in pdb_id_list: fig = pl.figure() df = pd.read_csv(f'{md1_root_dir}/{pdb_id}_decoy_loss.csv') pdb = df['pdb'].values idx = np.zeros(pdb.shape) for i in range(pdb.shape[0]): if pdb[i].startswith('T300'): idx[i] = 1 elif pdb[i].startswith('T500'): idx[i] = 2 loss = df['loss'].values rmsd = df['rmsd'].values pl.plot([rmsd[0]], [loss[0]], 'gs', markersize=12) pl.plot([rmsd[1]], [loss[1]], 'g^', markersize=12) pl.plot(rmsd[idx == 1], loss[idx == 1], 'g.', label='md1_T300') pl.plot(rmsd[idx == 2], loss[idx == 2], 'c.', label='md1_T500') df = pd.read_csv(f'{md2_root_dir}/{pdb_id}_decoy_loss.csv') pdb = df['pdb'].values idx = np.zeros(pdb.shape) for i in range(pdb.shape[0]): if pdb[i].startswith('T300'): idx[i] = 1 elif pdb[i].startswith('T500'): idx[i] = 2 loss = df['loss'].values rmsd = df['rmsd'].values pl.plot([rmsd[0]], [loss[0]], 'rs', markersize=12) pl.plot([rmsd[1]], [loss[1]], 'r^', markersize=12) pl.plot(rmsd[idx == 1], loss[idx == 1], 'r.', label='md2_T300') pl.plot(rmsd[idx == 2], loss[idx == 2], 'm.', label='md2_T500') df = pd.read_csv(f'{loop1_root_dir}/{pdb_id}_A_energy.csv') sample_energy = df['sample_energy'].values sample_rmsd = df['sample_rmsd'].values pl.plot(sample_rmsd, sample_energy, 'b.', label='loop1') pl.plot([sample_rmsd[0]], [sample_energy[0]], 'bo', markersize=10) df = pd.read_csv(f'{loop2_root_dir}/{pdb_id}_A_energy.csv') sample_energy = df['sample_energy'].values sample_rmsd = df['sample_rmsd'].values pl.plot(sample_rmsd, sample_energy, 'k.', label='loop2') pl.plot([sample_rmsd[0]], [sample_energy[0]], 'ko', markersize=10) pl.legend() pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{plot_dir}/{pdb_id}_score.pdf') pl.close(fig) def plot_fold_decoy(): # plot folding decoys from annealing root_dir = f'/home/hyang/bio/erf/data/fold/exp63anneal_val_deep_fd3' pdb_id = '3SOL_A' fig = pl.figure() for i in range(2): if not os.path.exists(f'{root_dir}/{pdb_id}_energy_{i}.csv'): continue df = pd.read_csv(f'{root_dir}/{pdb_id}_energy_{i}.csv') sample_energy = df['sample_energy'].values sample_rmsd = df['sample_rmsd'].values pl.plot(sample_rmsd, sample_energy, 'g.', markersize=3) pl.plot([sample_rmsd[0]], [sample_energy[0]], 'ro', markersize=10) pl.title(f'{pdb_id}') pl.xlabel('RMSD') pl.ylabel('energy score') pl.savefig(f'{root_dir}/{pdb_id}_score.png') pl.close(fig) def plot_decoy_seq(data_flag): # plot decoy seq root_dir = f'/home/hyang/bio/erf/data/decoys/decoys_seq/{data_flag}' # decoy_flag_list = ['random', 'shuffle', 'type2', 'type9', 'type2LD'] decoy_flag_list = ['random', 'shuffle', 'type9'] df = pd.read_csv(f'{root_dir}/hhsuite_CB_cullpdb_val_no_missing_residue_sample_loss.csv') pdb_list = df['pdb'].values native_energy = {x: y for x, y in zip(df['pdb'], df['loss_native'])} pl.figure() for decoy_flag in decoy_flag_list: rank = [] delta_loss = np.array([]) for pdb in pdb_list: loss = pd.read_csv(f'{root_dir}/{pdb}_{decoy_flag}_loss.csv')['loss'].values loss_native = native_energy[pdb] rank.append(loss[loss < loss_native].shape[0] + 1) if loss_native > loss.min(): print(decoy_flag, pdb, loss_native, loss.min()) delta_loss = np.append(delta_loss, loss - loss_native) rank = np.array(rank) # plot the energy gap pl.hist(delta_loss, linewidth=2, label=decoy_flag, histtype='step') pl.xlabel('E(decoy) - E(native)', fontsize=14) pl.ylabel('Num', fontsize=14) pl.legend() pl.savefig(f'{root_dir}/delta_loss_{data_flag}.pdf') pl.close() # plot the tpe2LD result separately pl.figure() pl.hist(delta_loss, label='type2LD', histtype='step') pl.xlabel('E(decoy) - E(native)') pl.ylabel('Num') pl.legend() pl.savefig(f'{root_dir}/delta_loss_type2LD.pdf') pl.close() def plot_polyAA(data_flag): # plot polyAA decoys root_dir = f'/home/hyang/bio/erf/data/decoys/decoys_seq/{data_flag}' amino_acids = pd.read_csv(f'{root_dir}/../../../amino_acids.csv') decoy_flag = 'polyAA' df = pd.read_csv(f'{root_dir}/hhsuite_CB_cullpdb_val_no_missing_residue_sample_loss.csv') pdb_list = df['pdb'].values loss_all = np.zeros((len(pdb_list), 20)) for i, pdb in enumerate(pdb_list): loss = pd.read_csv(f'{root_dir}/{pdb}_{decoy_flag}_loss.csv')['loss'].values loss_all[i] = loss for i in range(20): pl.figure() pl.plot(df['loss_native'], loss_all[:, i], 'bo') pl.title('poly-' + amino_acids.AA3C.values[i]) pl.xlabel('E(native)') pl.ylabel('E(decoy)') pl.plot(df['loss_native'], df['loss_native'], ls='--', color='g') pl.savefig(f'{root_dir}/{data_flag}_{amino_acids.AA3C.values[i]}.pdf') pl.close() # plot all 20 polyAA figures in one big figure fig = pl.figure(figsize=(10, 8)) # ax0 = fig.add_subplot(111) # The big subplot # ax0.set(xticklabels=[], yticklabels=[]) # remove the tick labels # ax0.tick_params(left=False, bottom=False) # remove the ticks for i in range(20): ax = fig.add_subplot(5, 4, i+1) ax.plot(df['loss_native'], loss_all[:, i], 'bo', markersize=6) pl.plot(df['loss_native'], df['loss_native'], ls='-', color='g') ax.set(xticklabels=[], yticklabels=[]) # remove the tick labels pl.title('poly-' + amino_acids.AA3C.values[i]) # ax0.set_xlabel('E(native)', fontsize=14) # ax0.set_ylabel('E(decoy)', fontsize=14) fig.text(0.5, 0.05, 'E(native)', fontsize=14, ha='center') fig.text(0.05, 0.5, 'E(decoy)', fontsize=14, va='center', rotation='vertical') pl.subplots_adjust(bottom=0.1, left=0.1, top=0.9, right=0.95, wspace=0.3, hspace=0.3) pl.savefig(f'{root_dir}/{data_flag}_poly_AA_all.pdf') pl.close() def plot_bd_md_rmsf(data_flag, flag='', pdb_all=False): bd_dir = f'/home/hyang/bio/erf/data/fold/{data_flag}dynamics_val_deep{flag}' md_dir = '/home/hyang/bio/openmm/data/' pdb_list = ['3KXT'] if pdb_all: pdb_list = pd.read_csv(f'{md_dir}/list', header=None, names=['pdb'])['pdb'].values for pdb in tqdm(pdb_list): trj_md = md.load(f'{md_dir}/{pdb}/production_T300.dcd', top=f'{md_dir}/{pdb}/production_T300.pdb') trj_md2 = md.load(f'{md_dir}/{pdb}/production2_T300.dcd', top=f'{md_dir}/{pdb}/production_T300.pdb') trj_bd = md.load(f'{bd_dir}/{pdb}_A_sample.pdb') a = np.arange(trj_bd.xyz.shape[0]) idx = (a == 0) | (a > len(a)/2) # frame 0 is used for coordinates alignments trj_bd_eq = trj_bd[idx] rmsd_bd = md.rmsd(trj_bd, trj_bd, frame=0) rmsf_bd = md.rmsf(trj_bd, trj_bd, frame=0) rmsf_bd_eq = md.rmsf(trj_bd_eq, trj_bd_eq, frame=0) def get_rmsd_rmsf_md(trj_md): trj_md_pro = trj_md.remove_solvent() top = trj_md_pro.topology # use CA to calculate RMSD ca_idx = top.select("name == 'CA'") xyz = trj_md_pro.xyz xyz_ca = xyz[:, ca_idx] # use CB to calculate RMSD ca_gly = top.select('(name == CA) and (resname == GLY)') cb = top.select('name == CB') beads = np.append(ca_gly, cb) beads = np.sort(beads) xyz_cb = xyz[:, beads] b = np.arange(xyz_cb.shape[0]) idx = (b == 0) | (b > len(b)/2) # frame 0 is used for coordinates alignments xyz_cb_eq = xyz_cb[idx] t_ca = md.Trajectory(xyz=xyz_ca, topology=None) rmsd_md_ca = md.rmsd(t_ca, t_ca, frame=0) rmsf_md_ca = md.rmsf(t_ca, t_ca, frame=0) t_cb = md.Trajectory(xyz=xyz_cb, topology=None) rmsd_md_cb = md.rmsd(t_cb, t_cb, frame=0) rmsf_md_cb = md.rmsf(t_cb, t_cb, frame=0) t_cb_eq = md.Trajectory(xyz=xyz_cb_eq, topology=None) # rmsd2_cb_eq = md.rmsd(t_cb_eq, t_cb_eq, frame=0) rmsf_md_cb_eq = md.rmsf(t_cb_eq, t_cb_eq, frame=0) return rmsd_md_ca, rmsd_md_cb, rmsf_md_ca, rmsf_md_cb, rmsf_md_cb_eq rmsd_md_ca, rmsd_md_cb, rmsf_md_ca, rmsf_md_cb, rmsf_md_cb_eq = get_rmsd_rmsf_md(trj_md) rmsd_md2_ca, rmsd_md2_cb, rmsf_md2_ca, rmsf_md2_cb, rmsf_md2_cb_eq = get_rmsd_rmsf_md(trj_md2) fig = pl.figure() pl.plot(rmsd_bd*10, label='erf') pl.plot(rmsd_md_ca*10, label='MD_CA') pl.plot(rmsd_md_cb*10, label='MD_CB') pl.plot(rmsd_md2_ca*10, label='MD2_CA') pl.plot(rmsd_md2_cb*10, label='MD2_CB') pl.legend() pl.title('RMSD') pl.xlabel('steps') pl.ylabel(r'RMSD [$\AA$]') pl.savefig(f'{bd_dir}/{pdb}_A_rmsd.pdf') pl.close(fig) fig = pl.figure() pl.plot(rmsf_bd*10, label='erf') pl.plot(rmsf_bd_eq*10, label='erf_eq') pl.plot(rmsf_md_ca*10, label='MD_CA') pl.plot(rmsf_md_cb*10, label='MD_CB') pl.plot(rmsf_md_cb_eq*10, label='MD_CB_eq') pl.plot(rmsf_md2_ca*10, label='MD2_CA') pl.plot(rmsf_md2_cb*10, label='MD2_CB') pl.plot(rmsf_md2_cb_eq*10, label='MD2_CB_eq') pl.legend() pl.title('RMSF') pl.xlabel('Resdidue Number') pl.ylabel(r'RMSF [$\AA$]') pl.savefig(f'{bd_dir}/{pdb}_A_rmsf.pdf') pl.close(fig) fig = pl.figure() pl.plot(rmsf_bd*10, label='erf') pl.plot(rmsf_bd_eq*10, label='erf_eq') pl.plot(rmsf_md2_cb*10, label='MD2_CB') pl.plot(rmsf_md2_cb_eq*10, label='MD2_CB_eq') pl.legend() pl.title('RMSF') pl.xlabel('Resdidue Number') pl.ylabel(r'RMSF [$\AA$]') pl.savefig(f'{bd_dir}/{pdb}_A_rmsf_simple.pdf') pl.close(fig) def plot_bd_md_rmsf2(data_flag, flag_list, pdb_all=False, debug=False, b_factor=False): md_dir = '/home/hyang/bio/openmm/data/' pdb_list = ['3KXT'] pdb_list = ['1BPI'] if pdb_all: pdb_list = pd.read_csv(f'{md_dir}/list', header=None, names=['pdb'])['pdb'].values def get_rmsd_rmsf_md(trj_md): trj_md_pro = trj_md.remove_solvent() top = trj_md_pro.topology # use CA to calculate RMSD ca_idx = top.select("name == 'CA'") xyz = trj_md_pro.xyz xyz_ca = xyz[:, ca_idx] # use CB to calculate RMSD ca_gly = top.select('(name == CA) and (resname == GLY)') cb = top.select('name == CB') beads = np.append(ca_gly, cb) beads = np.sort(beads) xyz_cb = xyz[:, beads] b = np.arange(xyz_cb.shape[0]) idx = (b == 0) | (b > len(b) / 2) # frame 0 is used for coordinates alignments xyz_cb_eq = xyz_cb[idx] t_ca = md.Trajectory(xyz=xyz_ca, topology=None) rmsd_md_ca = md.rmsd(t_ca, t_ca, frame=0) rmsf_md_ca = md.rmsf(t_ca, t_ca, frame=0) t_cb = md.Trajectory(xyz=xyz_cb, topology=None) rmsd_md_cb = md.rmsd(t_cb, t_cb, frame=0) rmsf_md_cb = md.rmsf(t_cb, t_cb, frame=0) t_cb_eq = md.Trajectory(xyz=xyz_cb_eq, topology=None) # rmsd2_cb_eq = md.rmsd(t_cb_eq, t_cb_eq, frame=0) rmsf_md_cb_eq = md.rmsf(t_cb_eq, t_cb_eq, frame=0) return rmsd_md_ca, rmsd_md_cb, rmsf_md_ca, rmsf_md_cb, rmsf_md_cb_eq for pdb in tqdm(pdb_list): if debug: trj_md = md.load(f'{md_dir}/{pdb}/production_T300.dcd', top=f'{md_dir}/{pdb}/production_T300.pdb') rmsd_md_ca, rmsd_md_cb, rmsf_md_ca, rmsf_md_cb, rmsf_md_cb_eq = get_rmsd_rmsf_md(trj_md) trj_md2 = md.load(f'{md_dir}/{pdb}/production2_T300.dcd', top=f'{md_dir}/{pdb}/production_T300.pdb') rmsd_md2_ca, rmsd_md2_cb, rmsf_md2_ca, rmsf_md2_cb, rmsf_md2_cb_eq = get_rmsd_rmsf_md(trj_md2) rmsf_delta = [] rmsf_eq_delta = [] rmsf_delta_ref = [] rmsf_eq_delta_ref = [] for flag in tqdm(flag_list): bd_dir = f'/home/hyang/bio/erf/data/fold/{data_flag}dynamics_val_deep{flag}' trj_bd = md.load(f'{bd_dir}/{pdb}_A_sample.pdb') a = np.arange(trj_bd.xyz.shape[0]) idx = (a == 0) | (a > len(a) / 2) # frame 0 is used for coordinates alignments trj_bd_eq = trj_bd[idx] rmsd_bd = md.rmsd(trj_bd, trj_bd, frame=0) rmsf_bd = md.rmsf(trj_bd, trj_bd, frame=0) rmsf_bd_eq = md.rmsf(trj_bd_eq, trj_bd_eq, frame=0) # save RMSF df_rmsf = pd.DataFrame({'RMSF_bd': rmsf_bd, 'RMSF_bd_eq': rmsf_bd_eq, 'RMSF_CB': rmsf_md2_cb, 'RMSF_CB_eq': rmsf_md2_cb_eq}) df_rmsf.to_csv(f'{bd_dir}/{pdb}_{flag}_rmsf.csv', index=False) # compute RMSF differences between Browninan dynamics and MD # rmsf_delta.append(np.sqrt(np.mean((rmsf_bd - rmsf_md2_cb)**2))) # root mean square of delta # rmsf_eq_delta.append(np.sqrt(np.mean((rmsf_bd_eq - rmsf_md2_cb_eq)**2))) rmsf_delta.append(np.mean(np.abs(rmsf_bd - rmsf_md2_cb))) rmsf_eq_delta.append(np.mean(np.abs(rmsf_bd_eq - rmsf_md2_cb_eq))) rmsf_delta_ref.append(np.mean(np.abs(rmsf_md2_cb - np.mean(rmsf_md2_cb)))) rmsf_eq_delta_ref.append(np.mean(np.abs(rmsf_md2_cb_eq - np.mean(rmsf_md2_cb_eq)))) fig = pl.figure() pl.plot(rmsd_bd*10, label='erf') if debug: pl.plot(rmsd_md_ca*10, label='MD_CA') pl.plot(rmsd_md_cb*10, label='MD_CB') pl.plot(rmsd_md2_ca*10, label='MD2_CA') pl.plot(rmsd_md2_cb*10, label='MD2_CB') pl.legend() pl.title('RMSD') pl.xlabel('steps') pl.ylabel(r'RMSD [$\AA$]') pl.savefig(f'{bd_dir}/{pdb}_A_rmsd.pdf') pl.close(fig) if b_factor: df_b_factor =
pd.read_csv(f'/home/hyang/bio/erf/data/fold/cullpdb_val_deep/{pdb}_A_bead.csv')
pandas.read_csv
# ********************************************************************************** # # # # Project: FastClassAI workbecnch # # # # Author: <NAME> # # Contact: <EMAIL> # # # # This notebook is a part of Skin AanaliticAI development kit, created # # for evaluation of public datasets used for skin cancer detection with # # large number of AI models and data preparation pipelines. # # # # License: MIT # # Copyright (C) 2021.01.30 <NAME> # # https://opensource.org/licenses/MIT # # # # ********************************************************************************** # #!/usr/bin/env python # -*- coding: utf-8 -*- import os # allow changing, and navigating files and folders, import sys import re # module to use regular expressions, import glob # lists names in folders that match Unix shell patterns import random # functions that use and generate random numbers import cv2 import numpy as np # support for multi-dimensional arrays and matrices import pandas as pd # library for data manipulation and analysis import seaborn as sns # advance plots, for statistics, import matplotlib as mpl # to get some basif functions, heping with plot mnaking import scipy.cluster.hierarchy as sch import matplotlib.pyplot as plt # for making plots, from PIL import Image, ImageDraw import matplotlib.gridspec from scipy.spatial import distance from scipy.cluster import hierarchy from matplotlib.font_manager import FontProperties from scipy.cluster.hierarchy import leaves_list, ClusterNode, leaders from sklearn.metrics import accuracy_score import graphviz # allows visualizing decision trees, from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.model_selection import ParameterGrid from sklearn.dummy import DummyClassifier from sklearn.tree import DecisionTreeClassifier # accepts only numerical data from sklearn.tree import export_graphviz from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier #. require for plots below, from src.utils.image_augmentation import * # to create batch_labels files, from src.utils.data_loaders import load_encoded_imgbatch_using_logfile, load_raw_img_batch, load_raw_img_batch_with_custom_datagen from src.utils.tools_for_plots import create_class_colors_dict from src.utils.example_plots_after_clustering import plot_img_examples, create_spaces_between_img_clusters, plot_img_examples_from_dendrogram from src.utils.annotated_pie_charts import annotated_pie_chart_with_class_and_group, prepare_img_classname_and_groupname ############################################# import tensorflow as tf import PIL.Image as Image import tensorflow.keras as keras from tensorflow.keras import backend as K # used for housekeeping of tf models, from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.decomposition import PCA from tensorflow.keras import backend as K from tensorflow.keras import Sequential from tensorflow.keras import activations from tensorflow.keras import initializers from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Dropout from tensorflow.keras import optimizers from tensorflow.keras import losses from tensorflow.keras import metrics from tensorflow.keras import Sequential, activations, initializers from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix #. os.environ['KMP_DUPLICATE_LIB_OK']='True' # To avoid restaring the kernel with keras, preffered solution; use conda install nomkl ############################################# # Function, ................................................................................ def plot_NN_loss_acc(*, model_history_df, title="", n_mean=3, figsize=(8,4), top=0.75): ''' small function to plot loss and accuracy over epoch using data created with history.history() keras functions, the columns shodul be called acc, loss, and val_acc, val_loss, # ... . model_history_df : dataframe, created with history.history() keras functions (see in the above) . n_mean : int, how many last results use to caulate values displayed in suplot title . title. : str, plot title, ''' #.. figure, axes, fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=figsize) fig.suptitle(title) #.. Plot accuracy values ax1.plot(model_history_df.loc[:,'loss'], label='train loss') ax1.plot(model_history_df.loc[:,'val_loss'], label='val loss') ax1.set_title('Mean validation loss {:.3f}'.format(np.mean(model_history_df.loc[:, 'val_loss'][-n_mean:]))) ax1.set_xlabel('epoch') ax1.set_ylabel('loss value') ax1.grid(ls="--", color="grey") ax1.legend() #.. Plot accuracy values ax2.plot(model_history_df.loc[:, 'acc'], label='train acc') ax2.plot(model_history_df.loc[:, 'val_acc'], label='val acc') ax2.set_title('Mean validation acc {:.3f}'.format( np.mean(model_history_df.loc[:, 'val_acc'][-n_mean:]))) ax2.set_xlabel('epoch') ax2.set_ylabel('accuracy') ax2.set_ylim(0,1) ax2.grid(ls="--", color="grey") ax2.legend() # ... plt.tight_layout() plt.subplots_adjust(top=top) plt.show() # Function, ................................................................................. def create_convNN(*, input_size, output_size, kwargs, verbose=False): ''' function to build cnn, with 2 convolutions, one hidden layer and one note: its not mistake with kwags, - i kept it intentionally as packed distionary, to allow to read parameter sourse in the code' ''' run=True K.clear_session() if run==True: # Convolutional Network, ........................ model = keras.Sequential() #.. 1st cnn, layer model.add(keras.layers.Conv2D( filters=kwargs['Conv2D_1__filters'], kernel_size=kwargs['Conv2D_1__kernel_size'], strides=kwargs['Conv2D_1__stride'], activation=kwargs['Conv2D_1__activation'], input_shape=input_size )) #.. maxpool 1. model.add(keras.layers.MaxPool2D(pool_size=kwargs['MaxPool2D_1__pool_size'])) #.. 2nd cnn layer, model.add(keras.layers.Conv2D( filters=kwargs['Conv2D_2__filters'], kernel_size=kwargs['Conv2D_2__kernel_size'], strides=kwargs['Conv2D_2__stride'], activation=kwargs['Conv2D_2__activation'], )) #.. maxpool 2, model.add(keras.layers.MaxPool2D(pool_size=kwargs['MaxPool2D_2__pool_size'])) # flatten the results, ......................... model.add(keras.layers.Flatten()) # dense nn, .................................... if kwargs["model"]=="two_dense_layers": #.. First hidden layer model.add(Dense( units=kwargs['h1_unit_size'], activation=kwargs["h1_activation"], kernel_regularizer=tf.keras.regularizers.l2(kwargs['h1_l2']), kernel_initializer=initializers.VarianceScaling(scale=2.0, seed=0) )) model.add(tf.keras.layers.Dropout(kwargs["h1_Dropout"])) else: pass #.. Output layer model.add(Dense( units=output_size, activation=kwargs["out_activation"], kernel_regularizer=tf.keras.regularizers.l2(kwargs['out_l2']), kernel_initializer=initializers.VarianceScaling(scale=1.0, seed=0) )) # Define Loss Function and Trianing Operation model.compile( optimizer= kwargs["optimizer"], loss= losses.categorical_crossentropy, metrics= kwargs["metrics"] # even one arg must be in the list ) if verbose==True: model.summary() else: pass return model # Function, ..................................................................................... def cnn_gridSearch(*, grid, method_name="cnn", module_name, PATH_raw, train_subset_name, # one names, str, ! test_subset_names, # ... store_predictions=True, track_progres=True, verbose=False, model_fit_verbose=0, plot_history=False # applied only if verbose==True, ): if track_progres==True: print(f"{module_name} _________________________________________ {
pd.to_datetime('now')
pandas.to_datetime
#!/usr/bin/python3 ############ FLYCOP ############ # Author: <NAME>, <NAME> # April 2018, April 2021 ################################ """ EcPp3 - Glycosilation project. Preliminary Analysis of the configurationsResults.txt file: """ import re import sys import os.path import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import seaborn as sns # import shutil, errno # import cobra # import tabulate # import getopt # import copy # import csv # import math # import cobra.flux_analysis.variability # import massedit # import subprocess # import statistics # import importlib # import optlang # import spec # PARSING PARAMETERS # ----------------------------------------------------------------------------- # Reading the arguments given by command line domainName = sys.argv[1] id_number = sys.argv[2] # ----------------------------------------------------------------------------- ############################################################################### ############################################################################### # PRE-PROCESSING 'FLYCOP_config_V0_log' # ----------------------------------------------------------------------------- # ERROR COUNT ZeroDivisionError_count = 0 # Error count for ZeroDivisionError nonOptimalSolution_count = 0 # Error count for "model solution was not optimal" # ----------------------------------------------------------------------------- # Original Analysis of 'FLYCOP_"+domainName+"_"+id_number+"_log.txt' # This is the logFile after FLYCOP run # ----------------------------------------------------------------------------- input_file = "FLYCOP_"+domainName+"_"+id_number+"_log.txt" output1 = open("nonOptimalError_configurations.txt", "w") # in LogError directory with open(input_file, "r") as file: lines = file.readlines() last_error = "" for line in lines: if re.match("\[WARN \] \[PROCESS-ERR\]", line): # ZeroDivisionError case if re.findall("ZeroDivisionError: float division by zero", line.strip("\n")): ZeroDivisionError_count += 1 last_error = "ZeroDivisionError" # Non-optimal solution case if re.findall("Exception: model solution was not optimal", line.strip("\n")): nonOptimalSolution_count += 1 last_error = "NonOptimal" if re.match("\[ERROR\]", line) and last_error == "NonOptimal": if re.findall("The following algorithm call failed", line.strip("\n")): # NOTE THAT NEXT LINE might need to be adapted as well extract = re.findall("-p1_sucr1 '[-]*[0.|\d.]*[\d]+' -p2_biomassEc '[-]*[0.|\d.]*[\d]+' -p3_biomassEc_glyc '[-]*[0.|\d.]*[\d]+' -p4_frc2 '[-]*[0.|\d.]*[\d]+' -p5_biomassKT '[-]*[0.|\d.]*[\d]+' -p6_nh4_Ec '[-]*[0.|\d.]*[\d]+' -p7_nh4_KT '[-]*[0.|\d.]*[\d]+' -p8_n_models '[\w]+'", line.strip("\n")) output1.write(str(extract[0])+"\n") last_error = "" output1.close() # WRITE A BRIEF ERROR SUMMARY configs_summary = open("ConfigurationsSummary.txt", "w") # in PreliminaryAnalysis directory configs_summary.write("-------------------------------------------------------\n") configs_summary.write("ERROR SUMMARY\n") configs_summary.write("-------------------------------------------------------\n") configs_summary.write("Number of ZeroDivisionError configurations found: "+str(ZeroDivisionError_count)+"\n") configs_summary.write("Number of nonOptimalSolution configurations found: "+str(nonOptimalSolution_count)+"\n") configs_summary.write("Total of ERROR configurations found: "+str(ZeroDivisionError_count + nonOptimalSolution_count)+"\n") configs_summary.close() # ----------------------------------------------------------------------------- # Create a file with base configurations for non-optimal solutions (FLYCOP) # Used in further comparison # ----------------------------------------------------------------------------- output2 = open("nonOptimalConfigs_asStrings.txt", "w") with open("nonOptimalError_configurations.txt", "r") as file: lines = file.readlines() for line in lines: config = "" params = re.findall("'[-]*[0.|\d.]*[\d]+'|'[\w]'", line) # Dudas con esta expresión: ¿funciona? for parameter in params: if re.findall("'[-]*[0.|\d.]*[\d]+'", parameter) or re.findall("'[\w]'", parameter): parameter = float(parameter.replace("\'", "")) config += ","+str(parameter) if config else str(parameter) output2.write(config+"\n") output2.close() os.remove("nonOptimalError_configurations.txt") ############################################################################### ############################################################################### ############################################################################### ############################################################################### # FURTHER CLASSIFYING RECORDS in configurationsResults.txt file # ----------------------------------------------------------------------------- # Read configurationsResults.txt file # configResults = pd.read_excel("configurationsResults_Scenario"+id_number+".xlsx", header = True, engine="openpyxl") # update python3.5 configResults = pd.read_csv("configurationsResults_Scenario"+id_number+".txt", sep = "\t", header='infer') configResults["ConfigKey"] = "Acceptable" # New binary classification column # INITIAL FILTERING: NON-ACCEPTABLE (NonOptimalConfig_Error) vs. ACCEPTABLE configurations # ----------------------------------------------------------------------------- # Check if the file is empty (i.e. no 'nonOptimal' configurations found) nonOptimal_flag = True if os.path.getsize("nonOptimalConfigs_asStrings.txt") else False if nonOptimal_flag: nonOptimal_file = pd.read_csv("nonOptimalConfigs_asStrings.txt", sep="\t", header='infer') # Single column (configuration of parameters) for row in nonOptimal_file.itertuples(): bad_config = row[1] for row in configResults.itertuples(): if configResults[configResults.BaseConfig == bad_config]: configResults[row[0], "ConfigKey"] = "NonOptimal" # FURTHER SORTING: # ----------------------------------------------------------------------------- # Sorting by 'ConfigKey': first 'Acceptable', then 'NonOptimal' configurations // Asegurar # Sorting by 'ID_SD': excessive SD at the end of each group # Within the last group, from highest to lowest fitness value configResults = configResults.sort_values(by=["ConfigKey", 'ID_SD', 'fitFunc'], ascending=[True, True, False]) # CHANGE sorting_order if desired # Remove repeated index_labels for column in configResults.columns: configResults = configResults.drop([column], axis = 1) if re.findall("Unnamed: .*", column) else configResults # Save modified configurationsResults.txt file (overwritting last file) configResults.to_csv("configurationsResults_Scenario"+id_number+".txt", sep = "\t", header='infer', index = False) ############################################################################### # WRITE A BRIEF SUMMARY OF ACCEPTABLE vs. NON-ACCEPTABLE # ------------------------------------------------------ configs_summary = open("ConfigurationsSummary.txt", "a") # in PreliminaryAnalysis directory configs_summary.write("\n\n\n-------------------------------------------------------\n") configs_summary.write("BRIEF SUMMARY OF CONFIGURATIONS\n") configs_summary.write("-------------------------------------------------------\n") # ------------------------- # ACCEPTABLE configurations # ------------------------- configResults_acceptable = configResults[configResults["ConfigKey"] == "Acceptable"] # Fraction of dataframe 'Acceptable' # Biomass Loss biomass_loss_cases_acc = configResults_acceptable[configResults_acceptable["DeadTracking"] == 1] biomass_loss_cases_accSD_acc = biomass_loss_cases_acc[biomass_loss_cases_acc["ID_SD"] == 0] # No Biomass Loss non_biomass_loss_cases_acc = configResults_acceptable[configResults_acceptable["DeadTracking"] == 0] non_biomass_loss_cases_accSD_acc = non_biomass_loss_cases_acc[non_biomass_loss_cases_acc["ID_SD"] == 0] configs_summary.write("ACCEPTABLE CONFIGURATIONS\n") configs_summary.write("-------------------------------------------------------") configs_summary.write("\nTotal of acceptable configurations: "+str(len(configResults_acceptable))+"\n") configs_summary.write("\nTotal of acceptable configurations with biomass loss: "+str(biomass_loss_cases_acc.count()[0])+"\n") configs_summary.write("\t - of which, the number of configurations with ACCEPTABLE SD (< 10% avgFit) is: "+str(biomass_loss_cases_accSD_acc.count()[0])+"\n") configs_summary.write("\nTotal of acceptable configurations with NO biomass loss: "+str(non_biomass_loss_cases_acc.count()[0])+"\n") configs_summary.write("\t - of which, the number of configurations with ACCEPTABLE SD (< 10% avgFit) is: "+str(non_biomass_loss_cases_accSD_acc.count()[0])+"\n\n") # Fraction of dataframe 'Acceptable' with acceptable SD for further plotting # NO further subdivision in biomass loss vs. non-biomass loss # ----------------------------------------------------------------------------- configResults_acceptable_SDok = configResults_acceptable[configResults_acceptable["ID_SD"] == 0] # ------------------------------------------------------ # NON-ACCEPTABLE (NonOptimalConfig_Error) configurations # ------------------------------------------------------ configs_summary.write("\nNON-OPTIMAL CONFIGURATIONS\n") configs_summary.write("-------------------------------------------------------") if nonOptimal_flag: configResults_nonOpt = configResults[configResults["ConfigKey"] == "NonOptimal"] # Fraction of dataframe 'NonOptimal' # Biomass Loss biomass_loss_cases_nonOpt = configResults_nonOpt[configResults_nonOpt["DeadTracking"] == 1] biomass_loss_cases_accSD_nonOpt = biomass_loss_cases_nonOpt[biomass_loss_cases_nonOpt["ID_SD"] == 0] # No Biomass Loss non_biomass_loss_cases_nonOpt = configResults_nonOpt[configResults_nonOpt["DeadTracking"] == 0] non_biomass_loss_cases_accSD_nonOpt = non_biomass_loss_cases_nonOpt[non_biomass_loss_cases_nonOpt["ID_SD"] == 0] configs_summary.write("\nTotal of configurations with NonOptimalConfig_error: "+str(len(configResults_nonOpt))+"\n") configs_summary.write("\nTotal of configurations with NonOptimalConfig_error and biomass loss: "+str(biomass_loss_cases_nonOpt.count()[0])+"\n") configs_summary.write("\t - of which, the number of configurations with ACCEPTABLE SD (< 10% avgFit) is: "+str(biomass_loss_cases_accSD_nonOpt.count()[0])+"\n") configs_summary.write("\nTotal of configurations with NonOptimalConfig_error and NO biomass loss: "+str(non_biomass_loss_cases_nonOpt.count()[0])+"\n") configs_summary.write("\t - of which, the number of configurations with ACCEPTABLE SD (< 10% avgFit) is: "+str(non_biomass_loss_cases_accSD_nonOpt.count()[0])+"\n\n") # Fraction of dataframe 'NonOptimal' with acceptable SD for further plotting # NO further subdivision in biomass loss vs. non-biomass loss # ------------------------------------------------------------------------- configResults_nonOpt_SDok = configResults_nonOpt[configResults_nonOpt["ID_SD"] == 0] else: configs_summary.write("\nNon-optimal configurations not found\n") # --------------------- configs_summary.close() ############################################################################### ############################################################################### ############################################################################### ############################################################################### # PLOTTING THE DISTRIBUTION OF CONFIGURATIONS DEPENDING ON CONSORTIUM ARCHITECTURE # -------------------------------------------------------------------------------- def basic_boxplot_scatter(dataframe, x_var, y_var, x_label, y_label, filename, plot_title): fig = plt.figure(num=0, clear=True, figsize=(7, 7)) ax_boxplot = sns.boxplot(x = x_var, y = y_var, data = dataframe, boxprops=dict(alpha=0.2)) sns.stripplot(x=x_var, y=y_var, jitter = True, data = dataframe) ax_boxplot.set(xlabel = x_label, ylabel = y_label) plt.title(plot_title, fontsize = 14) fig.savefig(filename+".png") plt.close(fig) # y_variable_count: Nombre de la columna sobre la que se cuenta para la altura de cada barra en el barplot # x_categories: Lista ordenada de categorías en eje x def basic_barplot(dataframe, y_variable_count, y_categories, x_categories, x_label, y_label, filename, plot_title): # Lists for each y_category, depending on the y_variable_count (Dictionary format) y_counts_dict = {} for y_category in y_categories: y_cat_values = [] for x_category in x_categories: x_category_prefilter_df = dataframe[dataframe["ConfigKey"] == x_category] y_cat_values.append(x_category_prefilter_df[x_category_prefilter_df[y_variable_count] == y_category].count()[0]) y_counts_dict[y_category] = y_cat_values # Create figure # fig = plt.figure(num=0, clear=True, figsize=(7, 7)) fig, axes = plt.subplots(num=0, clear=True, figsize=(7, 7)) colors = cm.rainbow(np.linspace(0, 1, len(y_categories))) bottom_flag = False for n_categories in range(len(y_categories)): if not bottom_flag: axes.bar(x_categories, y_counts_dict[y_categories[n_categories]], color=colors[n_categories], label=y_categories[n_categories]) bottom = np.array(y_counts_dict[y_categories[n_categories]]) bottom_flag = True else: axes.bar(x_categories, y_counts_dict[y_categories[n_categories]], color=colors[n_categories], bottom=bottom, label=y_categories[n_categories]) bottom = bottom + np.array(y_counts_dict[y_categories[n_categories]]) # Legend, labels, title plt.legend(loc="lower left", bbox_to_anchor=(0.8,1.0)) plt.ylabel(y_label) plt.xlabel(x_label) plt.title(plot_title, fontsize = 12) # Adjust y-axis # plt.ylim(top=len(dataframe)) plt.yticks(np.linspace(0, len(dataframe), len(dataframe)//10)) # Bar labels bars = axes.patches # Bars labels = [bars[i].get_height() for i in range(len(bars))] # Labels prev_height = 0 for bar, label in zip(bars, labels): height = bar.get_height() + prev_height prev_height = height axes.text(bar.get_x() + bar.get_width() / 2, height - 10, label, fontfamily='sans', fontsize=12, color = "black") # Save and close figure fig.savefig(filename+".png") plt.close(fig) # CONSIDER WHETHER NON-OPTIMAL CONFIGURATIONS WERE FOUND OR NOT # ------------------------------------------------------------- if nonOptimal_flag: # NonOptimal configurations found combined_configResults_SDok = pd.concat([configResults_acceptable_SDok, configResults_nonOpt_SDok], ignore_index = True) # Combined dataframe for plotting model_architecture_categories = combined_configResults_SDok["Consortium_Arch"].unique().tolist() # BARPLOT OF MODEL ARCHITECTURE vs. Acceptable or NonOptimal configurations basic_barplot(combined_configResults_SDok, y_variable_count="Consortium_Arch", y_categories = model_architecture_categories, x_categories=["Nonoptimal", "Acceptable"], x_label="Configuration Key", y_label="Consortium Architecture", filename="consortiumArchitectureEvaluation", plot_title="Consortium Architecture Evaluation I") # -------------------------------------------------------------------------------------- # ConfigKey classification with further subdivision of biomass loss vs. non-biomass loss # -------------------------------------------------------------------------------------- # NON-OPTIMAL CONFIGURATIONS configResults_nonOpt_SDok_nonBL = configResults_nonOpt_SDok[configResults_nonOpt_SDok["DeadTracking"] == 0] configResults_nonOpt_SDok_nonBL["ConfigKey"] = "Nonoptimal_nonBL" configResults_nonOpt_SDok_BL = configResults_nonOpt_SDok[configResults_nonOpt_SDok["DeadTracking"] == 1] configResults_nonOpt_SDok_BL["ConfigKey"] = "Nonoptimal_BL" combined_nonOptimal = pd.concat([configResults_nonOpt_SDok_nonBL, configResults_nonOpt_SDok_BL], ignore_index = True) # Combined dataframe (Non-optimal) # ACCEPTABLE CONFIGURATIONS configResults_acceptable_SDok_nonBL = configResults_acceptable_SDok[configResults_acceptable_SDok["DeadTracking"] == 0] configResults_acceptable_SDok_nonBL["ConfigKey"] = "Acceptable_nonBL" configResults_acceptable_SDok_BL = configResults_acceptable_SDok[configResults_acceptable_SDok["DeadTracking"] == 1] configResults_acceptable_SDok_BL["ConfigKey"] = "Acceptable_BL" combined_acceptable = pd.concat([configResults_acceptable_SDok_nonBL, configResults_acceptable_SDok_BL], ignore_index = True) # Combined dataframe (acceptable) # FINAL COMBINED DATAFRAME final_combined = pd.concat([combined_nonOptimal, combined_acceptable], ignore_index = True) # biomass loss + non-biomass loss # final_combined_nonBL = pd.concat([configResults_nonOpt_SDok_nonBL, configResults_acceptable_SDok_nonBL], ignore_index = True) # just non-biomass loss model_architecture_categories = final_combined["Consortium_Arch"].unique().tolist() # BARPLOT OF MODEL ARCHITECTURE vs. Acceptable or NonOptimal configurations, with further subdivision of biomass loss vs. non-biomass loss basic_barplot(final_combined, y_variable_count="Consortium_Arch", y_categories = model_architecture_categories, x_categories=["Nonoptimal_nonBL", "Nonoptimal_BL", "Acceptable_nonBL", "Acceptable_BL"], x_label="Configuration Key (BL vs. nonBL)", y_label="Consortium Architecture", filename="consortiumArchitectureEvaluation_BLvsnonBL", plot_title="Consortium Architecture Evaluation II") # -------------------------------------------------------------------------------------- # ConfigKey classification with further subdivision depending on model architecture # Acceptable + Non-optimal configurations: # - with acceptable SD # - without biomass loss # -------------------------------------------------------------------------------------- # NON-OPTIMAL CONFIGURATIONS configResults_nonOpt_SDok_nonBL_2models = configResults_nonOpt_SDok_nonBL[configResults_nonOpt_SDok_nonBL["Consortium_Arch"] == "2models"] configResults_nonOpt_SDok_nonBL_2models["ConfigKey"] = "Acceptable_2models" configResults_nonOpt_SDok_nonBL_3models = configResults_nonOpt_SDok_nonBL[configResults_nonOpt_SDok_nonBL["Consortium_Arch"] == "3models"] configResults_nonOpt_SDok_nonBL_3models["ConfigKey"] = "Acceptable_3models" combined_nonOptimal = pd.concat([configResults_nonOpt_SDok_nonBL_2models, configResults_nonOpt_SDok_nonBL_3models], ignore_index = True) # Combined dataframe (non-optimal) # ACCEPTABLE configResults_acceptable_SDok_nonBL_2models = configResults_acceptable_SDok_nonBL[configResults_acceptable_SDok_nonBL["Consortium_Arch"] == "2models"] configResults_acceptable_SDok_nonBL_2models["ConfigKey"] = "Acceptable_2models" configResults_acceptable_SDok_nonBL_3models = configResults_acceptable_SDok_nonBL[configResults_acceptable_SDok_nonBL["Consortium_Arch"] == "3models"] configResults_acceptable_SDok_nonBL_3models["ConfigKey"] = "Acceptable_3models" combined_acceptable = pd.concat([configResults_acceptable_SDok_nonBL_2models, configResults_acceptable_SDok_nonBL_3models], ignore_index = True) # Combined dataframe (acceptable) # FINAL COMBINED DATAFRAME final_combined = pd.concat([combined_nonOptimal, combined_acceptable], ignore_index = True) # biomass loss + non-biomass loss # PLOT OF FITNESS vs. Acceptable or NonOptimal configurations, with further subdivision depending on model architecture (categorical, scatter-boxplot) basic_boxplot_scatter(final_combined, "ConfigKey", "fitFunc", "Configuration Key - model arch", "Fitness (mM/gL)", "consortiumArchitectureEvaluation_fitness", "Consortium Architecture Evaluation III") else: # NonOptimal configurations NOT found # -------------------------------------------------------------------------------------- # ACCEPTABLE CONFIGURATIONS with further subdivision of biomass loss vs. non-biomass loss # -------------------------------------------------------------------------------------- configResults_acceptable_SDok_nonBL = configResults_acceptable_SDok[configResults_acceptable_SDok["DeadTracking"] == 0] configResults_acceptable_SDok_nonBL["ConfigKey"] = "Acceptable_nonBL" configResults_acceptable_SDok_BL = configResults_acceptable_SDok[configResults_acceptable_SDok["DeadTracking"] == 1] configResults_acceptable_SDok_BL["ConfigKey"] = "Acceptable_BL" combined_acceptable = pd.concat([configResults_acceptable_SDok_nonBL, configResults_acceptable_SDok_BL], ignore_index = True) # Combined dataframe (non-optimal) model_architecture_categories = combined_acceptable["Consortium_Arch"].unique().tolist() # BARPLOT OF MODEL ARCHITECTURE vs. Acceptable config with / without biomass loss (categorical, scatter-boxplot) basic_barplot(combined_acceptable, y_variable_count="Consortium_Arch", y_categories = model_architecture_categories, x_categories=["Acceptable_nonBL", "Acceptable_BL"], x_label="Acceptable config - BL vs. nonBL", y_label="Consortium Architecture", filename="consortiumArchitectureEvaluation_BLvsnonBL", plot_title="Consortium Architecture Evaluation I") # -------------------------------------------------------------------------------------- # ACCEPTABLE CONFIGURATIONS with further subdivision of biomass loss vs. non-biomass loss # - with acceptable SD # - without biomass loss # -------------------------------------------------------------------------------------- # ACCEPTABLE configResults_acceptable_SDok_nonBL_2models = configResults_acceptable_SDok_nonBL[configResults_acceptable_SDok_nonBL["Consortium_Arch"] == "2models"] configResults_acceptable_SDok_nonBL_2models["ConfigKey"] = "Acceptable_2models" configResults_acceptable_SDok_nonBL_3models = configResults_acceptable_SDok_nonBL[configResults_acceptable_SDok_nonBL["Consortium_Arch"] == "3models"] configResults_acceptable_SDok_nonBL_3models["ConfigKey"] = "Acceptable_3models" combined_acceptable =
pd.concat([configResults_acceptable_SDok_nonBL_2models, configResults_acceptable_SDok_nonBL_3models], ignore_index = True)
pandas.concat
import pandas as pd import numpy as np from collections import Counter, defaultdict class Hand: def __init__(self, name, leap_limit=15): self.name = name self.leap_limit = leap_limit def build_from_data(self, fingering_data): data_size = len(fingering_data) init_count = Counter() transition_count = Counter() emission_count = defaultdict(Counter) for idx, data in enumerate(fingering_data): print(f"Processing: ({idx + 1}/{data_size})") init, transition, emission = self._count_fingering( data, limit=self.leap_limit) init_count += init transition_count += transition for k, counter in emission.items(): emission_count[k].update(counter) self.init_prob = self._init_count_to_prob(init_count) self.transition_prob = self._transition_count_to_prob(transition_count) self.emission_prob = self._emission_count_to_prob(emission_count) def build_from_params(self, init, transition, emission): self.init_prob = init self.transition_prob = transition self.emission_prob = emission def decoding(self, observations): n_state = len(self.init_prob) obs_len = len(observations) delta = np.zeros((n_state, obs_len + 1)) psi = np.zeros((n_state, obs_len), dtype=int) delta[:, 0] = np.log(self.init_prob) for i, (pitch, time) in enumerate( zip(observations.pitch_diff, observations.time_diff) ): delta_mat = np.tile(delta[:, i], (n_state, 1)).transpose() prod = delta_mat + \ np.log(self.transition_prob) + \ np.log(self.emission_prob[pitch]) if time < 0.03: if self.name == "R": if pitch[0] > 0: prod[np.tril_indices(n_state)] -= 5 else: prod[np.triu_indices(n_state)] -= 5 else: if pitch[0] > 0: prod[np.triu_indices(n_state)] -= 5 else: prod[np.tril_indices(n_state)] -= 5 delta[:, i + 1] = np.amax(prod, axis=0) psi[:, i] = prod.argmax(axis=0) + 1 opt_path = [np.argmax(delta[:, obs_len]) + 1] for i in range(obs_len - 1, -1, -1): opt_path.append(psi[opt_path[-1] - 1, i]) return opt_path[::-1] def _count_fingering(self, fingering_data, limit=15): hidden_state = list( zip( fingering_data.fingernum.shift(fill_value=0), fingering_data.fingernum, ) ) pos_x, pos_y = zip(*fingering_data.pitch.map(self._pitch_to_key)) model = pd.DataFrame( {"hidden_state": hidden_state, "pos_x": pos_x, "pos_y": pos_y} ) model["pos_diff"] = list( zip( model.pos_x.diff() .fillna(0, downcast="infer") .apply(lambda x: limit if x > limit else x) .apply(lambda x: -limit if x < -limit else x), model.pos_y.diff().fillna(0, downcast="infer"), ) ) # First observation only init = Counter([model.hidden_state[0][1]]) # Without first observation transition = Counter(model.hidden_state[1:]) # Emission emission = { state: Counter(model[model.hidden_state == state].pos_diff) for state in set(model.hidden_state[1:]) } return (init, transition, Counter(emission)) def _pitch_to_key(self, pitch: str): posx = {"C": 0, "D": 1, "E": 2, "F": 3, "G": 4, "A": 5, "B": 6}[pitch[0]] posy = 0 if pitch[1].isdigit(): posx += (int(pitch[1]) - 4) * 7 elif pitch[1] == "#": posy = 1 posx += (int(pitch[2]) - 4) * 7 elif pitch[1] == "b" or pitch[1] == "-": posy = 1 posx += (int(pitch[2]) - 4) * 7 - 1 return (posx, posy) def _normalize(self, v): return v / v.sum(axis=0) def _init_count_to_prob(self, init_count): init_prob = np.zeros(5) for key, value in init_count.items(): if key < 0: init_prob[-key - 1] = value else: init_prob[key - 1] = value return self._normalize(init_prob) def _transition_count_to_prob(self, transition_count): transition_prob = np.zeros((5, 5)) for key, value in transition_count.items(): if key[0] < 0 and key[1] < 0: transition_prob[-key[0] - 1, -key[1] - 1] = value else: transition_prob[key[0] - 1, key[1] - 1] = value return np.apply_along_axis(self._normalize, axis=1, arr=transition_prob) def _series_to_matrix(self, emission_prob): out_prob = np.zeros((5, 5)) for key, value in emission_prob.items(): if key[0] < 0 and key[1] < 0: out_prob[-key[0] - 1, -key[1] - 1] = value else: out_prob[key[0] - 1, key[1] - 1] = value return out_prob def _emission_count_to_prob(self, emission_count): count_df = pd.DataFrame.from_dict( emission_count).fillna(0, downcast="infer") for i in range(-self.leap_limit, self.leap_limit + 1): if (i, -1) not in count_df.index: print((i, -1)) row = pd.Series(0, index=count_df.columns, name=(i, -1)) count_df = count_df.append(row) if (i, 0) not in count_df.index: print((i, 0)) row = pd.Series(0, index=count_df.columns, name=(i, 0)) count_df = count_df.append(row) if (i, 1) not in count_df.index: print((i, 1)) row =
pd.Series(0, index=count_df.columns, name=(i, 1))
pandas.Series
import pytest import pandas as pd from pandas.core.internals import ExtensionBlock import pandas.util.testing as tm from .base import BaseExtensionTests class BaseConstructorsTests(BaseExtensionTests): def test_array_from_scalars(self, data): scalars = [data[0], data[1], data[2]] result = data._from_sequence(scalars) assert isinstance(result, type(data)) def test_series_constructor(self, data): result = pd.Series(data) assert result.dtype == data.dtype assert len(result) == len(data) assert isinstance(result._data.blocks[0], ExtensionBlock) assert result._data.blocks[0].values is data # Series[EA] is unboxed / boxed correctly result2 = pd.Series(result) assert result2.dtype == data.dtype assert isinstance(result2._data.blocks[0], ExtensionBlock) @pytest.mark.parametrize("from_series", [True, False]) def test_dataframe_constructor_from_dict(self, data, from_series): if from_series: data = pd.Series(data) result = pd.DataFrame({"A": data}) assert result.dtypes['A'] == data.dtype assert result.shape == (len(data), 1) assert isinstance(result._data.blocks[0], ExtensionBlock) def test_dataframe_from_series(self, data): result = pd.DataFrame(
pd.Series(data)
pandas.Series
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime as dt from enum import auto, Enum from typing import List, Dict, Tuple, Union import pandas as pd from gs_quant.api.gs.data import GsDataApi from gs_quant.api.gs.risk_models import GsFactorRiskModelApi, GsRiskModelApi from gs_quant.errors import MqValueError, MqRequestError from gs_quant.markets.factor import Factor from gs_quant.models.factor_risk_model_utils import build_asset_data_map, build_factor_data_map, \ build_factor_data_dataframe, build_pfp_data_dataframe, get_isc_dataframe, get_covariance_matrix_dataframe, \ get_closest_date_index, divide_request, batch_and_upload_partial_data, risk_model_data_to_json, get_universe_size from gs_quant.target.risk_models import RiskModel as RiskModelBuilder, RiskModelEventType from gs_quant.target.risk_models import RiskModelData, RiskModelCalendar, RiskModelFactor, \ DataAssetsRequest, Measure, CoverageType, UniverseIdentifier, Entitlements, Term, \ RiskModelUniverseIdentifierRequest, FactorType class ReturnFormat(Enum): """Alternative format for data to be returned from get_data functions""" JSON = auto() DATA_FRAME = auto() class RiskModel: """ Risk Model Class """ def __init__(self, id_: str, name: str, entitlements: Union[Dict, Entitlements] = None, description: str = None): self.__id: str = id_ self.__name: str = name self.__description: str = description self.__entitlements: Entitlements = entitlements if entitlements and isinstance(entitlements, Entitlements) \ else Entitlements.from_dict(entitlements) if entitlements and isinstance(entitlements, Dict) else None @property def id(self) -> str: """ Get risk model id """ return self.__id @property def name(self) -> str: """ Get risk model name """ return self.__name @name.setter def name(self, name: str): """ Set risk model name """ self.__name = name @property def description(self) -> str: """ Get risk model description """ return self.__description @description.setter def description(self, description: str): """ Set risk model description """ self.__description = description @property def entitlements(self) -> Entitlements: """ Get risk model entitlements """ return self.__entitlements @entitlements.setter def entitlements(self, entitlements: Union[Entitlements, Dict]): """ Set risk model entitlements """ self.__entitlements = entitlements def delete(self): """ Delete existing risk model object from Marquee """ return GsRiskModelApi.delete_risk_model(self.id) def get_dates(self, start_date: dt.date = None, end_date: dt.date = None, event_type: RiskModelEventType = None) \ -> List[dt.date]: """ Get risk model dates for existing risk model :param start_date: list returned including and after start_date :param end_date: list returned up to and including end_date :param event_type: which event type to retrieve :return: list of dates where risk model data is present """ return [dt.datetime.strptime(date, "%Y-%m-%d").date() for date in GsRiskModelApi.get_risk_model_dates(self.id, start_date, end_date, event_type=event_type)] def get_calendar(self, start_date: dt.date = None, end_date: dt.date = None) -> RiskModelCalendar: """ Get risk model calendar for existing risk model between start and end date :param start_date: list returned including and after start_date :param end_date: list returned up to and including end_date :return: RiskModelCalendar for model """ calendar = GsRiskModelApi.get_risk_model_calendar(self.id) if not start_date and not end_date: return calendar start_idx = get_closest_date_index(start_date, calendar.business_dates, 'after') if start_date else 0 end_idx = get_closest_date_index(end_date, calendar.business_dates, 'before') if end_date else len( calendar.business_dates) return RiskModelCalendar(calendar.business_dates[start_idx:end_idx + 1]) def upload_calendar(self, calendar: RiskModelCalendar): """ Upload risk model calendar to existing risk model :param calendar: RiskModelCalendar containing list of dates where model data is expected """ return GsRiskModelApi.upload_risk_model_calendar(self.id, calendar) def get_missing_dates(self, start_date: dt.date = None, end_date: dt.date = None) -> List[dt.date]: """ Get any dates where data is not published according to expected days returned from the risk model calendar :param end_date: date to truncate missing dates at If no end_date is provided, end_date defaults to T-1 date according to the risk model calendar """ posted_dates = self.get_dates() if not start_date: start_date = posted_dates[0] if not end_date: end_date = dt.date.today() - dt.timedelta(days=1) calendar = [dt.datetime.strptime(date, "%Y-%m-%d").date() for date in self.get_calendar( start_date=start_date, end_date=end_date).business_dates] return [date for date in calendar if date not in posted_dates] def get_most_recent_date_from_calendar(self) -> dt.date: """ Get T-1 date according to risk model calendar """ yesterday = dt.date.today() - dt.timedelta(1) calendar = self.get_calendar(end_date=yesterday).business_dates return dt.datetime.strptime(calendar[len(calendar) - 1], '%Y-%m-%d').date() def __str__(self): return self.id def __repr__(self): s = "{}('{}','{}'".format(self.__class__.__name__, self.id, self.name) if self.entitlements is not None: s += ", entitlements={}".format(self) if self.description is not None: s += ", description={}".format(self) s += ")" return s class FactorRiskModel(RiskModel): """ Factor Risk Model used for calculating asset level factor risk""" def __init__(self, id_: str, name: str, coverage: CoverageType, term: Term, universe_identifier: UniverseIdentifier, vendor: str, version: float, entitlements: Union[Dict, Entitlements] = None, description: str = None): """ Create new factor risk model object :param id_: risk model id (cannot be changed) :param name: risk model name :param coverage: coverage of risk model asset universe :param term: horizon term :param universe_identifier: identifier used in asset universe upload (cannot be changed) :param vendor: risk model vendor :param version: version of model :param entitlements: entitlements associated with risk model :param description: risk model description :return: FactorRiskModel object """ super().__init__(id_, name, entitlements=entitlements, description=description) self.__coverage = coverage self.__term = term self.__universe_identifier = universe_identifier self.__vendor = vendor self.__version = version @property def vendor(self) -> str: """ Get risk model vendor """ return self.__vendor @vendor.setter def vendor(self, vendor): """ Set risk model vendor """ self.__vendor = vendor @property def universe_identifier(self) -> UniverseIdentifier: """ Get risk model universe identifier """ return self.__universe_identifier @property def term(self) -> Term: """ Get risk model term """ return self.__term @term.setter def term(self, term: Term): """ Set risk model term """ self.__term = term @property def version(self) -> float: """ Get risk model version """ return self.__version @version.setter def version(self, version: float): """ Set risk model version """ self.__version = version @property def coverage(self) -> CoverageType: """ Get risk model coverage """ return self.__coverage @coverage.setter def coverage(self, coverage: CoverageType): """ Set risk model coverage """ self.__coverage = coverage @classmethod def from_target(cls, model: RiskModelBuilder): uid = model.universe_identifier return FactorRiskModel( model.id, model.name, model.coverage if isinstance(model.coverage, CoverageType) else CoverageType(model.coverage), model.term if isinstance(model.term, Term) else Term(model.term), uid if isinstance(uid, UniverseIdentifier) else UniverseIdentifier(uid) if uid else None, model.vendor, model.version, entitlements=model.entitlements, description=model.description ) @classmethod def from_many_targets(cls, models: Tuple[RiskModelBuilder, ...]): return [cls.from_target(model) for model in models] @classmethod def get(cls, model_id: str): """ Get a factor risk model from Marquee :param model_id: risk model id corresponding to Marquee Factor Risk Model :return: Factor Risk Model object """ model = GsRiskModelApi.get_risk_model(model_id) return cls.from_target(model) @classmethod def get_many(cls, ids: List[str] = None, terms: List[str] = None, vendors: List[str] = None, names: List[str] = None, coverages: List[str] = None, limit: int = None): """ Get a factor risk model from Marquee :param ids: list of model identifiers in Marquee :param terms: list of model terms :param vendors: list of model vendors :param names: list of model names :param coverages: list of model coverages :param limit: limit of number of models in response :return: Factor Risk Model object """ models = GsRiskModelApi.get_risk_models(ids=ids, terms=terms, vendors=vendors, names=names, coverages=coverages, limit=limit) return cls.from_many_targets(models) def save(self): """ Upload current Factor Risk Model object to Marquee """ new_model = RiskModelBuilder(self.coverage, self.id, self.name, self.term, self.universe_identifier, self.vendor, self.version, description=self.description, entitlements=self.entitlements) GsRiskModelApi.create_risk_model(new_model) def update(self): """ Update factor risk model object on Marquee """ updated_model = RiskModelBuilder(self.coverage, self.id, self.name, self.term, self.universe_identifier, self.vendor, self.version, description=self.description, entitlements=self.entitlements) GsRiskModelApi.update_risk_model(updated_model) def get_factor(self, name: str) -> Factor: """ Get risk model factor from its name :param name: factor name associated with risk model :return: Factor object """ name_matches = [f for f in self.get_factor_data(format=ReturnFormat.JSON) if f['name'] == name] if not name_matches: raise MqValueError(f'Factor with name {name} does not in exist in risk model {self.id}') factor = name_matches.pop() return Factor(risk_model_id=self.id, id_=factor['identifier'], type_=factor['type'], name=factor.get('name'), category=factor.get('factorCategory'), tooltip=factor.get('tooltip'), description=factor.get('description'), glossary_description=factor.get('glossaryDescription')) def get_many_factors(self): factors = self.get_factor_data(format=ReturnFormat.JSON) return [Factor(risk_model_id=self.id, id_=f['identifier'], type_=f['type'], name=f.get('name'), category=f.get('factorCategory'), tooltip=f.get('tooltip'), description=f.get('description'), glossary_description=f.get('glossaryDescription')) for f in factors] def save_factor_metadata(self, factor_metadata: RiskModelFactor): """ Add metadata to a factor in a risk model :param factor_metadata: factor metadata object """ try: GsFactorRiskModelApi.get_risk_model_factor(self.id, factor_id=factor_metadata.identifier) except MqRequestError: GsFactorRiskModelApi.create_risk_model_factor(self.id, factor_metadata) GsFactorRiskModelApi.update_risk_model_factor(self.id, factor_metadata) def delete_factor_metadata(self, factor_id: str): """ Delete a factor's metadata from a risk model :param factor_id: factor id associated with risk model's factor """ GsFactorRiskModelApi.delete_risk_model_factor(self.id, factor_id) def get_factor_data(self, start_date: dt.date = None, end_date: dt.date = None, identifiers: List[str] = None, include_performance_curve: bool = False, category_filter: List[str] = None, factor_type: FactorType = None, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get factor data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param identifiers: list of factor ids associated with risk model :param include_performance_curve: request to include the performance curve of the factors :param category_filter: filter the results to those having one of the specified categories. \ Default is to return all results :param factor_type: :param format: which format to return the results in :return: risk model factor data """ factor_data = GsFactorRiskModelApi.get_risk_model_factor_data( self.id, start_date, end_date, identifiers, include_performance_curve ) if factor_type: factor_data = [factor for factor in factor_data if factor['type'] == factor_type.value] if category_filter: if factor_type == FactorType.Category: print('Category Filter is not applicable for the Category FactorType') else: factor_data = [factor for factor in factor_data if factor['factorCategory'] in category_filter] if format == ReturnFormat.DATA_FRAME: factor_data = pd.DataFrame(factor_data) return factor_data def get_asset_universe(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get asset universe data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: risk model universe """ if not assets.universe and not end_date: end_date = start_date results = GsFactorRiskModelApi.get_risk_model_data( model_id=self.id, start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Asset_Universe], limit_factors=False ).get('results') dates = [dt.datetime.strptime((data.get('date')), '%Y-%m-%d').date() for data in results] universe = [data.get('assetData').get('universe') for data in results] dates_to_universe = dict(zip(dates, universe)) if format == ReturnFormat.DATA_FRAME: dates_to_universe = pd.DataFrame(dates_to_universe) return dates_to_universe def get_historical_beta(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get historical beta data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: historical beta for assets requested """ results = GsFactorRiskModelApi.get_risk_model_data( model_id=self.id, start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Historical_Beta, Measure.Asset_Universe], limit_factors=False ).get('results') universe = assets.universe if assets.universe else results[0].get('assetData').get('universe') historical_beta = build_asset_data_map(results, universe, 'historicalBeta') if format == ReturnFormat.DATA_FRAME: historical_beta = pd.DataFrame(historical_beta) return historical_beta def get_total_risk(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get total risk data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: total risk for assets requested """ results = GsFactorRiskModelApi.get_risk_model_data( model_id=self.id, start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Total_Risk, Measure.Asset_Universe], limit_factors=False ).get('results') universe = assets.universe if assets.universe else results[0].get('assetData').get('universe') total_risk = build_asset_data_map(results, universe, 'totalRisk') if format == ReturnFormat.DATA_FRAME: total_risk = pd.DataFrame(total_risk) return total_risk def get_specific_risk(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get specific risk data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: specific risk for assets requested """ results = GsFactorRiskModelApi.get_risk_model_data( model_id=self.id, start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Specific_Risk, Measure.Asset_Universe], limit_factors=False ).get('results') universe = assets.universe if assets.universe else results[0].get('assetData').get('universe') specific_risk = build_asset_data_map(results, universe, 'specificRisk') if format == ReturnFormat.DATA_FRAME: specific_risk = pd.DataFrame(specific_risk) return specific_risk def get_residual_variance(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get residual variance data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: residual variance for assets requested """ results = GsFactorRiskModelApi.get_risk_model_data( model_id=self.id, start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Residual_Variance, Measure.Asset_Universe], limit_factors=False ).get('results') universe = assets.universe if assets.universe else results[0].get('assetData').get('universe') residual_variance = build_asset_data_map(results, universe, 'residualVariance') if format == ReturnFormat.DATA_FRAME: residual_variance = pd.DataFrame(residual_variance) return residual_variance def get_specific_return(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get specific return data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: specific returns for assets requested """ results = GsFactorRiskModelApi.get_risk_model_data( model_id=self.id, start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Specific_Return, Measure.Asset_Universe], limit_factors=False ).get('results') universe = assets.universe if assets.universe else results[0].get('assetData').get('universe') specific_return = build_asset_data_map(results, universe, 'specificReturn') if format == ReturnFormat.DATA_FRAME: specific_return =
pd.DataFrame(specific_return)
pandas.DataFrame
import os from datetime import datetime from unittest import main, TestCase from unittest.mock import patch import xml.etree.ElementTree as ET import pandas as pd import numpy as np from serenata_toolbox.datasets import helpers class TestDatasetsHelpersXml(TestCase): def setUp(self): self.sampleXml = ET.fromstring("""<?xml version=\"1.0\" encoding=\"utf-8\"?> <root> <simpleText> Sample text </simpleText> <brDate>31/05/2017</brDate> <usDate>04/30/2017</usDate> <brDateTime>31/05/2017 23:59:59</brDateTime> <usDateTime>04/30/2017 11:59:59PM</usDateTime> </root> """) def test_extract_text(self): extracted = helpers.xml_extract_text(self.sampleXml, 'simpleText') expected = 'Sample text' self.assertEqual(expected, extracted) def test_extract_date_default_to_br_format(self): extracted = helpers.xml_extract_date(self.sampleXml, 'brDate') expected = datetime(2017, 5, 31, 0, 0) self.assertEqual(expected, extracted) def test_extract_date_supports_custom_format(self): extracted = helpers.xml_extract_date(self.sampleXml, 'usDate', '%m/%d/%Y') expected = datetime(2017, 4, 30, 0, 0) self.assertEqual(expected, extracted) def test_extract_datetime_default_to_br_format(self): extracted = helpers.xml_extract_datetime(self.sampleXml, 'brDateTime') expected = datetime(2017, 5, 31, 23, 59, 59) self.assertEqual(expected, extracted) def test_extract_datetime_supports_custom_format(self): extracted = helpers.xml_extract_datetime(self.sampleXml, 'usDateTime', '%m/%d/%Y %I:%M:%S%p') expected = datetime(2017, 4, 30, 23, 59, 59) self.assertEqual(expected, extracted) class TestDatasetsHelpersDataframes(TestCase): def test_translate_column(self): records = [ ['masculino'], ['feminino'], ['masculino'], ['feminino'], ] df =
pd.DataFrame(records, columns=['gender'])
pandas.DataFrame
from flask import Flask, render_template, request, Markup, jsonify, url_for, redirect # import flask_login # For dataset reading and writing import pandas as pd from pathlib import Path unlabeled_dataset = pd.read_csv('./dataset/all_unlabeled_data.tsv', sep='\t') out_path = './dataset/labeled_dataset.pkl' out_file = Path(out_path) if out_file.exists(): labeled_dataset = pd.read_pickle(out_path) else: labeled_dataset =
pd.DataFrame(columns=['tagger_name', 'id', 'medicine', 'effect', 'text', 'relation', 'outcome', 'case'])
pandas.DataFrame
__author__ = 'lucabasa' __version__ = '1.0' __status__ = 'development' import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold, RandomizedSearchCV import lightgbm as lgb import xgboost as xgb from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor def lightgbm_train(train, test, target, kfolds): param = {'num_leaves': 111, 'min_data_in_leaf': 150, 'objective': 'regression', 'max_depth': 9, 'learning_rate': 0.005, "boosting": "gbdt", "feature_fraction": 0.7522, "bagging_freq": 1, "bagging_fraction": 0.7083 , "bagging_seed": 11, "metric": 'rmse', "lambda_l1": 0.2634, "random_seed": 133, "verbosity": -1} ''' param = {'num_leaves': 50, 'min_data_in_leaf': 11, 'objective': 'regression', 'max_depth': 5, 'learning_rate': 0.005, "boosting": "gbdt", "feature_fraction": 0.8791, "bagging_freq": 1, "bagging_fraction": 0.9238 , "bagging_seed": 11, "metric": 'rmse', "lambda_l1": 4.8679, "random_seed": 133, "verbosity": -1} ''' oof = np.zeros(len(train)) predictions = np.zeros(len(test)) feature_importance_df = pd.DataFrame() comm_cols = list(set(train.columns).intersection(test.columns)) for fold_, (trn_idx, val_idx) in enumerate(kfolds.split(train.values, target.values)): print("fold n°{}".format(fold_)) trn_data = lgb.Dataset(train.iloc[trn_idx][comm_cols], label=target.iloc[trn_idx] ) val_data = lgb.Dataset(train.iloc[val_idx][comm_cols], label=target.iloc[val_idx] ) num_round = 10000 clf = lgb.train(param, trn_data, num_round, valid_sets = [trn_data, val_data], verbose_eval=500, early_stopping_rounds = 300) oof[val_idx] = clf.predict(train.iloc[val_idx][comm_cols], num_iteration=clf.best_iteration) fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = comm_cols fold_importance_df["importance"] = clf.feature_importance() fold_importance_df["fold"] = fold_ + 1 feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0) predictions += clf.predict(test[comm_cols], num_iteration=clf.best_iteration) / kfolds.n_splits print("CV score: {:<8.5f}".format(mean_squared_error(oof, target)**0.5)) return predictions, mean_squared_error(oof, target)**0.5, feature_importance_df, oof def xgb_train(train, test, target, kfolds): oof = np.zeros(len(train)) predictions = np.zeros(len(test)) feature_importance_df = pd.DataFrame() comm_cols = list(set(train.columns).intersection(test.columns)) for fold_, (trn_idx, val_idx) in enumerate(kfolds.split(train.values, target.values)): print("fold n°{}".format(fold_)) trn_data = train.iloc[trn_idx][comm_cols] val_data = train.iloc[val_idx][comm_cols] trn_target = target.iloc[trn_idx] val_target = target.iloc[val_idx] clf = xgb.XGBRegressor(n_estimators=10000, learning_rate=0.05, max_depth=6, n_jobs=6, subsample=0.99, random_state=408, gamma=0.0217, reg_alpha=0.9411, colsample_bytree=0.3055).fit(trn_data, trn_target, eval_set=[(val_data, val_target)], eval_metric='rmse', early_stopping_rounds=200, verbose=500) oof[val_idx] = clf.predict(train.iloc[val_idx][comm_cols], ntree_limit=clf.best_iteration) fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = comm_cols fold_importance_df["importance"] = clf.feature_importances_ fold_importance_df["fold"] = fold_ + 1 feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0) predictions += clf.predict(test[comm_cols], ntree_limit=clf.best_iteration) / kfolds.n_splits print("CV score: {:<8.5f}".format(mean_squared_error(oof, target)**0.5)) return predictions, mean_squared_error(oof, target)**0.5, feature_importance_df, oof def rf_train(train, test, target, kfolds): oof = np.zeros(len(train)) predictions = np.zeros(len(test)) feature_importance_df = pd.DataFrame() comm_cols = list(set(train.columns).intersection(test.columns)) ''' grid_param = {'max_depth': np.arange(3,30), 'min_samples_split': np.arange(2, 50), 'min_samples_leaf': np.arange(1,40), 'max_features': ['sqrt', 'log2', None]} print('Optimizing parameters') grid = RandomizedSearchCV(RandomForestRegressor(n_estimators=300, n_jobs=4, random_state=345), param_distributions=grid_param, n_iter=20, cv=kfolds, random_state=654, n_jobs=-1, scoring='neg_mean_squared_error', verbose=3) grid.fit(train[comm_cols], target) best_forest = grid.best_estimator_ print(grid.best_params_) print(round( (-grid.best_score_ )**0.5 ,3)) ''' best_forest = RandomForestRegressor(n_estimators=1000, n_jobs=-1, random_state=32, max_depth=20, max_features='sqrt') for fold_, (trn_idx, val_idx) in enumerate(kfolds.split(train.values, target.values)): print("fold n°{}".format(fold_)) trn_data = train.iloc[trn_idx][comm_cols] val_data = train.iloc[val_idx][comm_cols] trn_target = target.iloc[trn_idx] val_target = target.iloc[val_idx] clf = best_forest.fit(trn_data, trn_target) oof[val_idx] = clf.predict(train.iloc[val_idx][comm_cols]) fold_importance_df =
pd.DataFrame()
pandas.DataFrame
import os import boto3 import pandas as pd bucket_name = os.getenv("S3_BUCKET_NAME") s3 = boto3.resource("s3") s3_alec = s3.Bucket(bucket_name) simulation_ids_list = [] scenario_ids_list = [] # Fetch simulation data for i in ["applications", "outcomes", "portfolios", "scenarios"]: file_paths_tmp = [f.key for f in s3_alec.objects.filter(Prefix=f"{i}/")] simulation_ids_tmp = [ simulation_id.split("/")[2].split(".")[0] for simulation_id in file_paths_tmp ] simulation_ids_list.extend(simulation_ids_tmp) scenario_ids_tmp = [simulation_id.split("/")[1] for simulation_id in file_paths_tmp] scenario_ids_list.extend(scenario_ids_tmp) simulation_ids = pd.DataFrame({"simulation_id": simulation_ids_list}) simulation_ids = simulation_ids.value_counts().reset_index() simulation_ids = simulation_ids.loc[ simulation_ids.loc[:, 0] == simulation_ids.loc[:, 0].max(), "simulation_id" ].tolist() scenario_ids =
pd.DataFrame({"scenario_id": scenario_ids_list})
pandas.DataFrame
""" this will read the goes_r data""" import pandas as pd import xarray as xr try: import s3fs has_s3fs = True except ImportError: print( "Please install s3fs if retrieving from the Amazon S3 Servers. Otherwise continue with local data" ) has_s3fs = False try: import h5py # noqa: F401 has_h5py = True except ImportError: print("Please install h5py to open files from the Amazon S3 servers.") has_h5py = False try: import h5netcdf # noqa: F401 has_h5netcdf = True except ImportError: print("Please install h5netcdf to open files from the Amazon S3 servers.") has_h5netcdf = False from ..grids import _geos_16_grid def _get_swath_from_fname(fname): vert_grid_num = fname.split(".")[-4].split("v")[-1] hori_grid_num = fname.split(".")[-4].split("v")[0].split("h")[-1] return hori_grid_num, vert_grid_num def _get_time_from_fname(fname): import pandas as pd u = pd.Series([fname.split(".")[-2]]) date = pd.to_datetime(u, format="%Y%j%H%M%S")[0] return date def _open_single_file(fname): # open the file dset = xr.open_dataset(fname) dset = dset.rename({"t": "time"}) # get the area def area = _geos_16_grid(dset) dset.attrs["area"] = area # get proj4 string dset.attrs["proj4_srs"] = area.proj_str # get longitude and latitudes lon, lat = area.get_lonlats_dask() dset.coords["longitude"] = (("y", "x"), lon) dset.coords["latitude"] = (("y", "x"), lat) for i in dset.variables: dset[i].attrs["proj4_srs"] = area.proj_str dset[i].attrs["area"] = area # expand dimensions for time dset = dset.expand_dims("time") return dset def open_dataset(date=None, filename=None, satellite="16", product=None): g = GOES() if filename is None: try: if date is None: raise ValueError if product is None: raise ValueError except ValueError: print("Please provide a date and product to be able to retrieve data from Amazon S3") ds = g.open_amazon_file(date=date, satellite=satellite, product=product) else: ds = g.open_local(filename) return ds class GOES: def __init__(self): self.date = None self.satellite = "16" self.product = "ABI-L2-AODF" self.baseurl = f"s3://noaa-goes{self.satellite}/" self.url = f"{self.baseurl}" self.filename = None self.fs = None def _update_baseurl(self): self.baseurl = f"s3://noaa-goes{self.satellite}/" def set_product(self, product=None): try: if product is None: raise ValueError else: self.url = f"{self.baseurl}{product}/" except ValueError: print("kwarg product must have a value") def get_products(self): products = [value.split("/")[-1] for value in self.fs.ls(self.baseurl)[:-1]] return products def date_to_url(self): date = pd.Timestamp(self.date) date_url_bit = date.strftime("%Y/%j/%H/") self.url = f"{self.url}{date_url_bit}" def _get_files(self, url=None): try: files = self.fs.ls(url) if len(files) < 1: raise ValueError else: return files except ValueError: print("Files not available for product and date") def _get_closest_date(self, files=[]): file_dates = [pd.to_datetime(f.split("_")[-1][:-4], format="c%Y%j%H%M%S") for f in files] date =
pd.Timestamp(self.date)
pandas.Timestamp
import os, inspect, sys from collections import OrderedDict from pathlib import Path currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) grandpadir = os.path.dirname(currentdir) sys.path.insert(0, grandpadir) from utils import helper_functions from configpkg import ConfigMger, DatasetConfig from holders.Dataset import Dataset from utils.helper_functions import sort_files_by_dim, read_nav_files from utils.shared_names import * from comparison.comparison_utils import get_dataset_name from utils.pseudo_samples import PseudoSamplesMger import pandas as pd import json import numpy as np from pipeline.automl.automl_constants import MAX_FEATURES import matplotlib.pyplot as plt pipeline = 'results_predictive_grouping' test_confs = [ {'path': Path('..', pipeline, 'iforest'), 'detector': 'iforest', 'type': 'test'} ] # conf = {'path': Path('..', pipeline, 'lof'), 'detector': 'lof', 'type': 'test'} # conf = {'path': Path('..', pipeline, 'iforest'), 'detector': 'iforest', 'type': 'test'} synth_confs =[ {'path': Path('..', pipeline, 'iforest'), 'detector': 'iforest', 'type': 'synthetic'}, {'path': Path('..', pipeline, 'lof'), 'detector': 'lof', 'type': 'synthetic'}, {'path': Path('..', pipeline, 'loda'), 'detector': 'loda', 'type': 'synthetic'} ] # conf = {'path': Path('..', pipeline, 'lof'), 'detector': 'lof', 'type': 'real'} # conf = {'path': Path('..', pipeline, 'iforest'), 'detector': 'iforest', 'type': 'real'} # conf = {'path': Path('..', pipeline, 'loda'), 'detector': 'loda', 'type': 'real'} confs_to_analyze = synth_confs def analyze(): fig_name = None prec_dict = OrderedDict() recall_dict = OrderedDict() for conf in confs_to_analyze: if fig_name is None: fig_name = 'real_features_perf.png' if conf['type'] == 'real' else 'synth-features-corr.png' nav_files = read_nav_files(conf['path'], conf['type']) nav_files = sort_files_by_dim(nav_files) feature_perf_prec, feature_perf_recall = analysis_per_nav_file(nav_files, conf) prec_dict[conf['detector']] = feature_perf_prec recall_dict[conf['detector']] = feature_perf_recall # tmp_dict = {'lof': None, 'iforest': None, 'loda': None} # indexes = ['PROTEUS_{fs}', 'PROTEUS_{ca-lasso}', 'PROTEUS_{shap}', 'PROTEUS_{loda}'] # columns = ['S 20d (10%)', 'S 40d (10%)', 'S 60d (10%)', 'S 80d (10%)', 'S 100d (10%)'] # for k in tmp_dict.keys(): # if k == 'loda': # tmp_dict[k] = pd.DataFrame(np.random.rand(4, 5), index=indexes, columns=columns) # else: # tmp_dict[k] = pd.DataFrame(np.random.rand(3, 5), index=indexes[0:-1], columns=columns) # plot_dataframes(tmp_dict, tmp_dict.copy(), fig_name) plot_dataframes(prec_dict, recall_dict, fig_name) def analysis_per_nav_file(nav_files, conf): dataset_names = [] feature_perf_prec = pd.DataFrame() feature_perf_recall =
pd.DataFrame()
pandas.DataFrame
""" Created on Jun 30, 2013 Wrappers around scipy.stats statistical tests to use Pandas data-structures and return Pandas objects as results. @author: agross """ import pandas as pd import numpy as np from scipy import stats def _match_series(a, b): """ Matches two series on shared data. (copied from Processing.Helpers to remove that dependency, public use should go through Processing.Helpers) """ a, b = a.align(b, join='inner', copy=False) valid = pd.notnull(a) & pd.notnull(b) a = a[valid] if not a.index.is_unique: a = a.groupby(lambda s: s).first() # some sort of duplicate index bug b = b[valid] if not b.index.is_unique: b = b.groupby(lambda s: s).first() return a, b def _split_on_index(s, matched=False, n_groups=2): """ Splits a series on the second level of its index. """ d = s.unstack() if matched is True: d = d.dropna() assert(d.shape[1] == n_groups) a, b = [i[1] for i in d.iteritems()] return a, b def wilcoxon_pandas(a, b=None): """ Wrapper to do a one way t-test on pandas matched samples ------------------------------------------------ a,b: matched measurements OR a: Series of matched measurements with assignment on second level of multi-index. """ if isinstance(b, pd.Series): a, b = _match_series(a, b) elif b is None and isinstance(a.index, pd.MultiIndex): a, b = _split_on_index(a, matched=True) z, p = stats.wilcoxon(a, b) return pd.Series({'T': z, 'p': p}) def ttest_rel(a, b=None): """ Wrapper to do a one way t-test on pandas matched samples ------------------------------------------------ a,b: matched measurements OR a: Series of matched measurements with assignment on second level of multi-index. """ if isinstance(b, pd.Series): a, b = _match_series(a, b) elif b is None and isinstance(a.index, pd.MultiIndex): a, b = _split_on_index(a, matched=True) z, p = stats.ttest_rel(a, b) return pd.Series({'t': z, 'p': p}) def anova(hit_vec, response_vec, min_size=5): """ Wrapper to do a one way anova on pandas Series ------------------------------------------------ hit_vec: Series of labels response_vec: Series of measurements """ if hit_vec.value_counts().min < min_size: return np.nan if not np.alltrue(hit_vec.index == response_vec.index): hit_vec, response_vec = _match_series(hit_vec, response_vec) hit_vec, response_vec = _match_series(hit_vec, response_vec) res = stats.f_oneway(*[response_vec[hit_vec == num] for num in hit_vec.unique()]) return
pd.Series(res, index=['F', 'p'])
pandas.Series
from functools import partial from typing import Callable, Dict, Iterable, Optional, Union import pandas as pd import torch from torch import nn from torch.optim.lr_scheduler import ReduceLROnPlateau from collie.interactions import (ApproximateNegativeSamplingInteractionsDataLoader, Interactions, InteractionsDataLoader) from collie.model import MultiStagePipeline, ScaledEmbedding, ZeroEmbedding from collie.utils import get_init_arguments, merge_docstrings INTERACTIONS_LIKE_INPUT = Union[ApproximateNegativeSamplingInteractionsDataLoader, Interactions, InteractionsDataLoader] class ColdStartModel(MultiStagePipeline): # NOTE: the full docstring is merged in with ``MultiStagePipeline``'s using # ``merge_docstrings``. Only the description of new or changed parameters are included in this # docstring """ Training pipeline for a matrix factorization model optimized for the cold-start problem. Many recommendation models suffer from the cold start problem, when a model is unable to provide adequate recommendations for a new item until enough users have interacted with it. But, if users only interact with recommended items, the item will never be recommended, and thus the model will never improve recommendations for this item. The ``ColdStartModel`` attempts to bypass this by limiting the item space down to "item buckets", training a model on this as the item space, then expanding out to all items. During this expansion, the learned-embeddings of each bucket is copied over to each corresponding item, providing a smarter initialization than a random one for both existing and new items. Now, when we have a new item, we can use its bucket embedding as an initialization into a model. The stages in a ``ColdStartModel`` are, in order: 1. ``item_buckets`` Matrix factorization with item embeddings and bias terms bucketed by ``item_buckets`` argument. Unlike in the next stage, many items may map on to a single bucket, and this will share the same embedding and bias representation. The model should learn user preference for buckets in this stage. 2. ``no_buckets`` Standard matrix factorization as we do in ``MatrixFactorizationModel``. However, upon advancing to this stage, the item embeddings are initialized with their bucketed embedding value (and same for biases). Not only does this provide better initialization than random, but allows new items to be incorporated into the model without training by using their item bucket embedding and bias terms at prediction time. Note that the cold start problem exists for new users as well, but this functionality will be added to this model in a future version. All ``ColdStartModel`` instances are subclasses of the ``LightningModule`` class provided by PyTorch Lightning. This means to train a model, you will need a ``collie.model.CollieTrainer`` object, but the model can be saved and loaded without this ``Trainer`` instance. Example usage may look like: .. code-block:: python from collie.model import ColdStartModel, CollieTrainer # instantiate and fit a ``ColdStartModel`` as expected model = ColdStartModel(train=train, item_buckets=item_buckets) trainer = CollieTrainer(model) trainer.fit(model) # train for X more epochs on the next stage, ``no_buckets`` trainer.max_epochs += X model.advance_stage() trainer.fit(model) model.eval() # do evaluation as normal with ``model`` # get item-item recommendations for a new item by using the bucket ID, Z similar_items = model.item_bucket_item_similarity(item_bucket_id=Z) model.save_model(filename='model.pth') new_model = ColdStartModel(load_model_path='model.pth') # do evaluation as normal with ``new_model`` Note ---- The ``forward`` calculation will be different depending on the stage that is set. Note this when evaluating / saving and loading models in. Parameters ---------- item_buckets: torch.tensor, 1-d An ordered iterable containing the bucket ID for each item ID. For example, if you have five films and are going to bucket by primary genre, and your data looks like: * Item ID: 0, Genre ID: 1 * Item ID: 1, Genre ID: 0 * Item ID: 2, Genre ID: 2 * Item ID: 3, Genre ID: 2 * Item ID: 4, Genre ID: 1 Then ``item_buckets`` would be: ``[1, 0, 2, 2, 1]`` embedding_dim: int Number of latent factors to use for user and item embeddings dropout_p: float Probability of dropout item_buckets_stage_lr: float Learning rate for user parameters and item bucket parameters optimized during the ``item_buckets`` stage no_buckets_stage_lr: float Learning rate for user parameters and item parameters optimized during the ``no_buckets`` stage item_buckets_stage_lr: float Optimizer used for user parameters and item bucket parameters optimized during the ``item_buckets`` stage. If a string, one of the following supported optimizers: * ``'sgd'`` (for ``torch.optim.SGD``) * ``'adam'`` (for ``torch.optim.Adam``) no_buckets_stage_lr: float Optimizer used for user parameters and item parameters optimized during the ``no_buckets`` stage. If a string, one of the following supported optimizers: * ``'sgd'`` (for ``torch.optim.SGD``) * ``'adam'`` (for ``torch.optim.Adam``) """ def __init__(self, train: INTERACTIONS_LIKE_INPUT = None, val: INTERACTIONS_LIKE_INPUT = None, item_buckets: Iterable[int] = None, embedding_dim: int = 30, dropout_p: float = 0.0, sparse: bool = False, item_buckets_stage_lr: float = 1e-3, no_buckets_stage_lr: float = 1e-3, lr_scheduler_func: Optional[torch.optim.lr_scheduler._LRScheduler] = partial( ReduceLROnPlateau, patience=1, verbose=False, ), weight_decay: float = 0.0, item_buckets_stage_optimizer: Union[str, torch.optim.Optimizer] = 'adam', no_buckets_stage_optimizer: Union[str, torch.optim.Optimizer] = 'adam', loss: Union[str, Callable[..., torch.tensor]] = 'hinge', metadata_for_loss: Optional[Dict[str, torch.tensor]] = None, metadata_for_loss_weights: Optional[Dict[str, float]] = None, load_model_path: Optional[str] = None, map_location: Optional[str] = None): optimizer_config_list = None num_item_buckets = None if load_model_path is None: # TODO: separate out optimizer and bias optimizer somehow optimizer_config_list = [ { 'lr': item_buckets_stage_lr, 'optimizer': item_buckets_stage_optimizer, 'parameter_prefix_list': [ 'user_embed', 'user_bias', 'item_bucket_embed', 'item_bucket_bias', ], 'stage': 'item_buckets', }, { 'lr': no_buckets_stage_lr, 'optimizer': no_buckets_stage_optimizer, 'parameter_prefix_list': [ 'user_embed', 'user_bias', 'item_embed', 'item_bias', ], 'stage': 'no_buckets', }, ] if not isinstance(item_buckets, torch.Tensor): item_buckets = torch.tensor(item_buckets) # data quality checks for ``item_buckets`` assert item_buckets.dim() == 1, ( f'``item_buckets`` must be 1-dimensional, not {item_buckets.dim()}-dimensional!' ) if len(item_buckets) != train.num_items: raise ValueError( 'Length of ``item_buckets`` must be equal to the number of items in the ' f'dataset: {len(item_buckets)} != {train.num_items}.' ) if min(item_buckets) != 0: raise ValueError(f'``item_buckets`` IDs must start at 0, not {min(item_buckets)}!') num_item_buckets = item_buckets.max().item() + 1 super().__init__(optimizer_config_list=optimizer_config_list, num_item_buckets=num_item_buckets, **get_init_arguments()) __doc__ = merge_docstrings(MultiStagePipeline, __doc__, __init__) def _move_any_external_data_to_device(self): """Move the item buckets to the device before training.""" self.hparams.item_buckets = self.hparams.item_buckets.to(self.device) def _copy_weights(self, old: nn.Embedding, new: nn.Embedding, buckets: torch.tensor) -> None: new.weight.data.copy_(old.weight.data[buckets]) def set_stage(self, stage: str) -> None: """Set the stage for the model.""" current_stage = self.hparams.stage if stage in self.hparams.stage_list: if current_stage == 'item_buckets' and stage == 'no_buckets': print('Copying over item embeddings...') self._copy_weights(self.item_bucket_biases, self.item_biases, self.hparams.item_buckets) self._copy_weights(self.item_bucket_embeddings, self.item_embeddings, self.hparams.item_buckets) else: raise ValueError( f'"{stage}" is not a valid stage, please choose one of {self.hparams.stage_list}' ) self.hparams.stage = stage print(f'Set ``self.hparams.stage`` to "{stage}"') def _setup_model(self, **kwargs) -> None: """ Method for building model internals that rely on the data passed in. This method will be called after `prepare_data`. """ # define initial embedding groups self.item_bucket_biases = ZeroEmbedding( num_embeddings=self.hparams.num_item_buckets, embedding_dim=1, sparse=self.hparams.sparse, ) self.item_bucket_embeddings = ScaledEmbedding( num_embeddings=self.hparams.num_item_buckets, embedding_dim=self.hparams.embedding_dim, sparse=self.hparams.sparse, ) # define fine-tuned embedding groups self.user_biases = ZeroEmbedding( num_embeddings=self.hparams.num_users, embedding_dim=1, sparse=self.hparams.sparse ) self.item_biases = ZeroEmbedding( num_embeddings=self.hparams.num_items, embedding_dim=1, sparse=self.hparams.sparse, ) self.user_embeddings = ScaledEmbedding( num_embeddings=self.hparams.num_users, embedding_dim=self.hparams.embedding_dim, sparse=self.hparams.sparse ) self.item_embeddings = ScaledEmbedding( num_embeddings=self.hparams.num_items, embedding_dim=self.hparams.embedding_dim, sparse=self.hparams.sparse, ) self.dropout = nn.Dropout(p=self.hparams.dropout_p) def forward(self, users: torch.tensor, items: torch.tensor) -> torch.tensor: """ Forward pass through the model. Parameters ---------- users: tensor, 1-d Array of user indices items: tensor, 1-d Array of item indices Returns ------- preds: tensor, 1-d Predicted ratings or rankings """ user_embeddings = self.user_embeddings(users) user_biases = self.user_biases(users) if self.hparams.stage == 'item_buckets': # transform item IDs to item bucket IDs items = self.hparams.item_buckets[items] item_embeddings = self.item_bucket_embeddings(items) item_biases = self.item_bucket_biases(items) elif self.hparams.stage == 'no_buckets': item_embeddings = self.item_embeddings(items) item_biases = self.item_biases(items) pred_scores = ( torch.mul(self.dropout(user_embeddings), self.dropout(item_embeddings)).sum(axis=1) + user_biases.squeeze(1) + item_biases.squeeze(1) ) return pred_scores.squeeze() def item_bucket_item_similarity(self, item_bucket_id: int) -> pd.Series: """ Get most similar item indices to a item bucket by cosine similarity. Cosine similarity is computed with item and item bucket embeddings from a trained model. Parameters ---------- item_id: int Returns ------- sim_score_idxs: pd.Series Sorted values as cosine similarity for each item in the dataset with the index being the item ID """ item_bucket_embeddings = self.item_bucket_embeddings.weight.data item_bucket_embeddings = ( item_bucket_embeddings / item_bucket_embeddings.norm(dim=1)[:, None] ) item_embeddings = self._get_item_embeddings() item_embeddings = item_embeddings / item_embeddings.norm(dim=1)[:, None] sim_score_idxs = ( torch.matmul(item_bucket_embeddings[[item_bucket_id], :], item_embeddings.transpose(1, 0)) .detach() .cpu() .numpy() .squeeze() ) sim_score_idxs_series =
pd.Series(sim_score_idxs)
pandas.Series
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict, OrderedDict from datetime import timedelta import logging import numpy as np import pandas as pd import pystan # noqa F401 from fbprophet.diagnostics import prophet_copy from fbprophet.models import prophet_stan_model from fbprophet.make_holidays import get_holiday_names, make_holidays_df from fbprophet.plot import ( plot, plot_components, plot_forecast_component, seasonality_plot_df, plot_weekly, plot_yearly, plot_seasonality, ) logger = logging.getLogger('fbprophet') logger.addHandler(logging.NullHandler()) if len(logger.handlers) == 1: logging.basicConfig(level=logging.INFO) class Prophet(object): """Prophet forecaster. Parameters ---------- growth: String 'linear' or 'logistic' to specify a linear or logistic trend. changepoints: List of dates at which to include potential changepoints. If not specified, potential changepoints are selected automatically. n_changepoints: Number of potential changepoints to include. Not used if input `changepoints` is supplied. If `changepoints` is not supplied, then n_changepoints potential changepoints are selected uniformly from the first `changepoint_range` proportion of the history. changepoint_range: Proportion of history in which trend changepoints will be estimated. Defaults to 0.8 for the first 80%. Not used if `changepoints` is specified. Not used if input `changepoints` is supplied. yearly_seasonality: Fit yearly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate. weekly_seasonality: Fit weekly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate. daily_seasonality: Fit daily seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate. holidays: pd.DataFrame with columns holiday (string) and ds (date type) and optionally columns lower_window and upper_window which specify a range of days around the date to be included as holidays. lower_window=-2 will include 2 days prior to the date as holidays. Also optionally can have a column prior_scale specifying the prior scale for that holiday. seasonality_mode: 'additive' (default) or 'multiplicative'. seasonality_prior_scale: Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality. Can be specified for individual seasonalities using add_seasonality. holidays_prior_scale: Parameter modulating the strength of the holiday components model, unless overridden in the holidays input. changepoint_prior_scale: Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints. mcmc_samples: Integer, if greater than 0, will do full Bayesian inference with the specified number of MCMC samples. If 0, will do MAP estimation. interval_width: Float, width of the uncertainty intervals provided for the forecast. If mcmc_samples=0, this will be only the uncertainty in the trend using the MAP estimate of the extrapolated generative model. If mcmc.samples>0, this will be integrated over all model parameters, which will include uncertainty in seasonality. uncertainty_samples: Number of simulated draws used to estimate uncertainty intervals. """ def __init__( self, growth='linear', changepoints=None, n_changepoints=25, changepoint_range=0.8, yearly_seasonality='auto', weekly_seasonality='auto', daily_seasonality='auto', holidays=None, seasonality_mode='additive', seasonality_prior_scale=10.0, holidays_prior_scale=10.0, changepoint_prior_scale=0.05, mcmc_samples=0, interval_width=0.80, uncertainty_samples=1000, ): self.growth = growth self.changepoints = pd.to_datetime(changepoints) if self.changepoints is not None: self.n_changepoints = len(self.changepoints) self.specified_changepoints = True else: self.n_changepoints = n_changepoints self.specified_changepoints = False self.changepoint_range = changepoint_range self.yearly_seasonality = yearly_seasonality self.weekly_seasonality = weekly_seasonality self.daily_seasonality = daily_seasonality self.holidays = holidays self.seasonality_mode = seasonality_mode self.seasonality_prior_scale = float(seasonality_prior_scale) self.changepoint_prior_scale = float(changepoint_prior_scale) self.holidays_prior_scale = float(holidays_prior_scale) self.mcmc_samples = mcmc_samples self.interval_width = interval_width self.uncertainty_samples = uncertainty_samples # Set during fitting or by other methods self.start = None self.y_scale = None self.logistic_floor = False self.t_scale = None self.changepoints_t = None self.seasonalities = {} self.extra_regressors = OrderedDict({}) self.country_holidays = None self.stan_fit = None self.params = {} self.history = None self.history_dates = None self.train_component_cols = None self.component_modes = None self.train_holiday_names = None self.validate_inputs() def validate_inputs(self): """Validates the inputs to Prophet.""" if self.growth not in ('linear', 'logistic'): raise ValueError( "Parameter 'growth' should be 'linear' or 'logistic'.") if ((self.changepoint_range < 0) or (self.changepoint_range > 1)): raise ValueError("Parameter 'changepoint_range' must be in [0, 1]") if self.holidays is not None: if not ( isinstance(self.holidays, pd.DataFrame) and 'ds' in self.holidays # noqa W503 and 'holiday' in self.holidays # noqa W503 ): raise ValueError("holidays must be a DataFrame with 'ds' and " "'holiday' columns.") self.holidays['ds'] = pd.to_datetime(self.holidays['ds']) has_lower = 'lower_window' in self.holidays has_upper = 'upper_window' in self.holidays if has_lower + has_upper == 1: raise ValueError('Holidays must have both lower_window and ' + 'upper_window, or neither') if has_lower: if self.holidays['lower_window'].max() > 0: raise ValueError('Holiday lower_window should be <= 0') if self.holidays['upper_window'].min() < 0: raise ValueError('Holiday upper_window should be >= 0') for h in self.holidays['holiday'].unique(): self.validate_column_name(h, check_holidays=False) if self.seasonality_mode not in ['additive', 'multiplicative']: raise ValueError( "seasonality_mode must be 'additive' or 'multiplicative'" ) def validate_column_name(self, name, check_holidays=True, check_seasonalities=True, check_regressors=True): """Validates the name of a seasonality, holiday, or regressor. Parameters ---------- name: string check_holidays: bool check if name already used for holiday check_seasonalities: bool check if name already used for seasonality check_regressors: bool check if name already used for regressor """ if '_delim_' in name: raise ValueError('Name cannot contain "_delim_"') reserved_names = [ 'trend', 'additive_terms', 'daily', 'weekly', 'yearly', 'holidays', 'zeros', 'extra_regressors_additive', 'yhat', 'extra_regressors_multiplicative', 'multiplicative_terms', ] rn_l = [n + '_lower' for n in reserved_names] rn_u = [n + '_upper' for n in reserved_names] reserved_names.extend(rn_l) reserved_names.extend(rn_u) reserved_names.extend([ 'ds', 'y', 'cap', 'floor', 'y_scaled', 'cap_scaled']) if name in reserved_names: raise ValueError('Name "{}" is reserved.'.format(name)) if (check_holidays and self.holidays is not None and name in self.holidays['holiday'].unique()): raise ValueError( 'Name "{}" already used for a holiday.'.format(name)) if (check_holidays and self.country_holidays is not None and name in get_holiday_names(self.country_holidays)): raise ValueError( 'Name "{}" is a holiday name in {}.'.format(name, self.country_holidays)) if check_seasonalities and name in self.seasonalities: raise ValueError( 'Name "{}" already used for a seasonality.'.format(name)) if check_regressors and name in self.extra_regressors: raise ValueError( 'Name "{}" already used for an added regressor.'.format(name)) def setup_dataframe(self, df, initialize_scales=False): """Prepare dataframe for fitting or predicting. Adds a time index and scales y. Creates auxiliary columns 't', 't_ix', 'y_scaled', and 'cap_scaled'. These columns are used during both fitting and predicting. Parameters ---------- df: pd.DataFrame with columns ds, y, and cap if logistic growth. Any specified additional regressors must also be present. initialize_scales: Boolean set scaling factors in self from df. Returns ------- pd.DataFrame prepared for fitting or predicting. """ if 'y' in df: df['y'] = pd.to_numeric(df['y']) if np.isinf(df['y'].values).any(): raise ValueError('Found infinity in column y.') df['ds'] = pd.to_datetime(df['ds']) if df['ds'].isnull().any(): raise ValueError('Found NaN in column ds.') for name in self.extra_regressors: if name not in df: raise ValueError( 'Regressor "{}" missing from dataframe'.format(name)) df[name] = pd.to_numeric(df[name]) if df[name].isnull().any(): raise ValueError('Found NaN in column ' + name) df = df.sort_values('ds') df.reset_index(inplace=True, drop=True) self.initialize_scales(initialize_scales, df) if self.logistic_floor: if 'floor' not in df: raise ValueError("Expected column 'floor'.") else: df['floor'] = 0 if self.growth == 'logistic': if 'cap' not in df: raise ValueError( "Capacities must be supplied for logistic growth in " "column 'cap'" ) df['cap_scaled'] = (df['cap'] - df['floor']) / self.y_scale df['t'] = (df['ds'] - self.start) / self.t_scale if 'y' in df: df['y_scaled'] = (df['y'] - df['floor']) / self.y_scale for name, props in self.extra_regressors.items(): df[name] = ((df[name] - props['mu']) / props['std']) return df def initialize_scales(self, initialize_scales, df): """Initialize model scales. Sets model scaling factors using df. Parameters ---------- initialize_scales: Boolean set the scales or not. df: pd.DataFrame for setting scales. """ if not initialize_scales: return if self.growth == 'logistic' and 'floor' in df: self.logistic_floor = True floor = df['floor'] else: floor = 0. self.y_scale = (df['y'] - floor).abs().max() if self.y_scale == 0: self.y_scale = 1 self.start = df['ds'].min() self.t_scale = df['ds'].max() - self.start for name, props in self.extra_regressors.items(): standardize = props['standardize'] n_vals = len(df[name].unique()) if n_vals < 2: standardize = False if standardize == 'auto': if set(df[name].unique()) == set([1, 0]): # Don't standardize binary variables. standardize = False else: standardize = True if standardize: mu = df[name].mean() std = df[name].std() self.extra_regressors[name]['mu'] = mu self.extra_regressors[name]['std'] = std def set_changepoints(self): """Set changepoints Sets m$changepoints to the dates of changepoints. Either: 1) The changepoints were passed in explicitly. A) They are empty. B) They are not empty, and need validation. 2) We are generating a grid of them. 3) The user prefers no changepoints be used. """ if self.changepoints is not None: if len(self.changepoints) == 0: pass else: too_low = min(self.changepoints) < self.history['ds'].min() too_high = max(self.changepoints) > self.history['ds'].max() if too_low or too_high: raise ValueError( 'Changepoints must fall within training data.') else: # Place potential changepoints evenly through first # changepoint_range proportion of the history hist_size = np.floor( self.history.shape[0] * self.changepoint_range) if self.n_changepoints + 1 > hist_size: self.n_changepoints = hist_size - 1 logger.info( 'n_changepoints greater than number of observations.' 'Using {}.'.format(self.n_changepoints) ) if self.n_changepoints > 0: cp_indexes = ( np.linspace(0, hist_size - 1, self.n_changepoints + 1) .round() .astype(np.int) ) self.changepoints = ( self.history.iloc[cp_indexes]['ds'].tail(-1) ) else: # set empty changepoints self.changepoints = [] if len(self.changepoints) > 0: self.changepoints_t = np.sort(np.array( (self.changepoints - self.start) / self.t_scale)) else: self.changepoints_t = np.array([0]) # dummy changepoint @staticmethod def fourier_series(dates, period, series_order): """Provides Fourier series components with the specified frequency and order. Parameters ---------- dates: pd.Series containing timestamps. period: Number of days of the period. series_order: Number of components. Returns ------- Matrix with seasonality features. """ # convert to days since epoch t = np.array( (dates - pd.datetime(1970, 1, 1)) .dt.total_seconds() .astype(np.float) ) / (3600 * 24.) return np.column_stack([ fun((2.0 * (i + 1) * np.pi * t / period)) for i in range(series_order) for fun in (np.sin, np.cos) ]) @classmethod def make_seasonality_features(cls, dates, period, series_order, prefix): """Data frame with seasonality features. Parameters ---------- cls: Prophet class. dates: pd.Series containing timestamps. period: Number of days of the period. series_order: Number of components. prefix: Column name prefix. Returns ------- pd.DataFrame with seasonality features. """ features = cls.fourier_series(dates, period, series_order) columns = [ '{}_delim_{}'.format(prefix, i + 1) for i in range(features.shape[1]) ] return pd.DataFrame(features, columns=columns) def construct_holiday_dataframe(self, dates): """Construct a dataframe of holiday dates. Will combine self.holidays with the built-in country holidays corresponding to input dates, if self.country_holidays is set. Parameters ---------- dates: pd.Series containing timestamps used for computing seasonality. Returns ------- dataframe of holiday dates, in holiday dataframe format used in initialization. """ all_holidays = pd.DataFrame() if self.holidays is not None: all_holidays = self.holidays.copy() if self.country_holidays is not None: year_list = list({x.year for x in dates}) country_holidays_df = make_holidays_df( year_list=year_list, country=self.country_holidays ) all_holidays = pd.concat((all_holidays, country_holidays_df), sort=False) all_holidays.reset_index(drop=True, inplace=True) # If the model has already been fit with a certain set of holidays, # make sure we are using those same ones. if self.train_holiday_names is not None: # Remove holiday names didn't show up in fit index_to_drop = all_holidays.index[ np.logical_not( all_holidays.holiday.isin(self.train_holiday_names) ) ] all_holidays = all_holidays.drop(index_to_drop) # Add holiday names in fit but not in predict with ds as NA holidays_to_add = pd.DataFrame({ 'holiday': self.train_holiday_names[ np.logical_not(self.train_holiday_names.isin(all_holidays.holiday)) ] }) all_holidays = pd.concat((all_holidays, holidays_to_add), sort=False) all_holidays.reset_index(drop=True, inplace=True) return all_holidays def make_holiday_features(self, dates, holidays): """Construct a dataframe of holiday features. Parameters ---------- dates: pd.Series containing timestamps used for computing seasonality. holidays: pd.Dataframe containing holidays, as returned by construct_holiday_dataframe. Returns ------- holiday_features: pd.DataFrame with a column for each holiday. prior_scale_list: List of prior scales for each holiday column. holiday_names: List of names of holidays """ # Holds columns of our future matrix. expanded_holidays = defaultdict(lambda: np.zeros(dates.shape[0])) prior_scales = {} # Makes an index so we can perform `get_loc` below. # Strip to just dates. row_index = pd.DatetimeIndex(dates.apply(lambda x: x.date())) for _ix, row in holidays.iterrows(): dt = row.ds.date() try: lw = int(row.get('lower_window', 0)) uw = int(row.get('upper_window', 0)) except ValueError: lw = 0 uw = 0 ps = float(row.get('prior_scale', self.holidays_prior_scale)) if np.isnan(ps): ps = float(self.holidays_prior_scale) if ( row.holiday in prior_scales and prior_scales[row.holiday] != ps ): raise ValueError( 'Holiday {} does not have consistent prior scale ' 'specification.'.format(row.holiday)) if ps <= 0: raise ValueError('Prior scale must be > 0') prior_scales[row.holiday] = ps for offset in range(lw, uw + 1): occurrence = dt + timedelta(days=offset) try: loc = row_index.get_loc(occurrence) except KeyError: loc = None key = '{}_delim_{}{}'.format( row.holiday, '+' if offset >= 0 else '-', abs(offset) ) if loc is not None: expanded_holidays[key][loc] = 1. else: # Access key to generate value expanded_holidays[key] holiday_features = pd.DataFrame(expanded_holidays) # Make sure column order is consistent holiday_features = holiday_features[sorted(holiday_features.columns.tolist())] prior_scale_list = [ prior_scales[h.split('_delim_')[0]] for h in holiday_features.columns ] holiday_names = list(prior_scales.keys()) # Store holiday names used in fit if self.train_holiday_names is None: self.train_holiday_names = pd.Series(holiday_names) return holiday_features, prior_scale_list, holiday_names def add_regressor( self, name, prior_scale=None, standardize='auto', mode=None ): """Add an additional regressor to be used for fitting and predicting. The dataframe passed to `fit` and `predict` will have a column with the specified name to be used as a regressor. When standardize='auto', the regressor will be standardized unless it is binary. The regression coefficient is given a prior with the specified scale parameter. Decreasing the prior scale will add additional regularization. If no prior scale is provided, self.holidays_prior_scale will be used. Mode can be specified as either 'additive' or 'multiplicative'. If not specified, self.seasonality_mode will be used. 'additive' means the effect of the regressor will be added to the trend, 'multiplicative' means it will multiply the trend. Parameters ---------- name: string name of the regressor. prior_scale: optional float scale for the normal prior. If not provided, self.holidays_prior_scale will be used. standardize: optional, specify whether this regressor will be standardized prior to fitting. Can be 'auto' (standardize if not binary), True, or False. mode: optional, 'additive' or 'multiplicative'. Defaults to self.seasonality_mode. Returns ------- The prophet object. """ if self.history is not None: raise Exception( "Regressors must be added prior to model fitting.") self.validate_column_name(name, check_regressors=False) if prior_scale is None: prior_scale = float(self.holidays_prior_scale) if mode is None: mode = self.seasonality_mode if prior_scale <= 0: raise ValueError('Prior scale must be > 0') if mode not in ['additive', 'multiplicative']: raise ValueError("mode must be 'additive' or 'multiplicative'") self.extra_regressors[name] = { 'prior_scale': prior_scale, 'standardize': standardize, 'mu': 0., 'std': 1., 'mode': mode, } return self def add_seasonality( self, name, period, fourier_order, prior_scale=None, mode=None ): """Add a seasonal component with specified period, number of Fourier components, and prior scale. Increasing the number of Fourier components allows the seasonality to change more quickly (at risk of overfitting). Default values for yearly and weekly seasonalities are 10 and 3 respectively. Increasing prior scale will allow this seasonality component more flexibility, decreasing will dampen it. If not provided, will use the seasonality_prior_scale provided on Prophet initialization (defaults to 10). Mode can be specified as either 'additive' or 'multiplicative'. If not specified, self.seasonality_mode will be used (defaults to additive). Additive means the seasonality will be added to the trend, multiplicative means it will multiply the trend. Parameters ---------- name: string name of the seasonality component. period: float number of days in one period. fourier_order: int number of Fourier components to use. prior_scale: optional float prior scale for this component. mode: optional 'additive' or 'multiplicative' Returns ------- The prophet object. """ if self.history is not None: raise Exception( "Seasonality must be added prior to model fitting.") if name not in ['daily', 'weekly', 'yearly']: # Allow overwriting built-in seasonalities self.validate_column_name(name, check_seasonalities=False) if prior_scale is None: ps = self.seasonality_prior_scale else: ps = float(prior_scale) if ps <= 0: raise ValueError('Prior scale must be > 0') if mode is None: mode = self.seasonality_mode if mode not in ['additive', 'multiplicative']: raise ValueError("mode must be 'additive' or 'multiplicative'") self.seasonalities[name] = { 'period': period, 'fourier_order': fourier_order, 'prior_scale': ps, 'mode': mode, } return self def add_country_holidays(self, country_name): """Add in built-in holidays for the specified country. These holidays will be included in addition to any specified on model initialization. Holidays will be calculated for arbitrary date ranges in the history and future. See the online documentation for the list of countries with built-in holidays. Built-in country holidays can only be set for a single country. Parameters ---------- country_name: Name of the country, like 'UnitedStates' or 'US' Returns ------- The prophet object. """ if self.history is not None: raise Exception( "Country holidays must be added prior to model fitting." ) # Validate names. for name in get_holiday_names(country_name): # Allow merging with existing holidays self.validate_column_name(name, check_holidays=False) # Set the holidays. if self.country_holidays is not None: logger.warning( 'Changing country holidays from {} to {}'.format( self.country_holidays, country_name ) ) self.country_holidays = country_name return self def make_all_seasonality_features(self, df): """Dataframe with seasonality features. Includes seasonality features, holiday features, and added regressors. Parameters ---------- df: pd.DataFrame with dates for computing seasonality features and any added regressors. Returns ------- pd.DataFrame with regression features. list of prior scales for each column of the features dataframe. Dataframe with indicators for which regression components correspond to which columns. Dictionary with keys 'additive' and 'multiplicative' listing the component names for each mode of seasonality. """ seasonal_features = [] prior_scales = [] modes = {'additive': [], 'multiplicative': []} # Seasonality features for name, props in self.seasonalities.items(): features = self.make_seasonality_features( df['ds'], props['period'], props['fourier_order'], name, ) seasonal_features.append(features) prior_scales.extend( [props['prior_scale']] * features.shape[1]) modes[props['mode']].append(name) # Holiday features holidays = self.construct_holiday_dataframe(df['ds']) if len(holidays) > 0: features, holiday_priors, holiday_names = ( self.make_holiday_features(df['ds'], holidays) ) seasonal_features.append(features) prior_scales.extend(holiday_priors) modes[self.seasonality_mode].extend(holiday_names) # Additional regressors for name, props in self.extra_regressors.items(): seasonal_features.append(
pd.DataFrame(df[name])
pandas.DataFrame