prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- """ Created on Fri Apr 22 15:07:09 2016 @author: advena """ #import re from datetime import datetime #import numpy as np import pandas as pd import os import sys import shutil from dateutil import parser ######################################################################## # User Inputs # ######################################################################## # Do not edit the PJM owner list (except to correct it) pjm_owner_list=[202,205,209,212,215,222,225,320,345] # Filter the data down to these owners. # For PJM only, set compare_owner_list = pjm_owner_list # For all untis, set compare_owner_list = [] compare_owner_list = pjm_owner_list #src_dir = r'K:\AFC_MODEL_UPDATES\2016_S\IDC Models' src_dir = r'K:\AFC_MODEL_UPDATES\2016_S\IDC Models' # Working directory. If src_dir != tgt_dir, a copy of the original raw # files is copied to tgt_dir to prevent corruption of the originals. # The copy here will have be modified; a new line will be added to the top # to allow for csv parsing without error. tgt_dir = r'C:\temp' # The raw files to compare raw_file1 = r'sum16idctr1p4_v32.RAW' raw_file2 = r'sum16idctr1p6_v32.RAW' # Maximim number of columns in any row, likely 28. max_cols = 28 # set to zero to automatically determine. # The regex pattern (before compiling) the identifies the header to a new section of the log file. end_of_section_pattern="0 / " ######################################################################## # Function Dfinitions # ######################################################################## def max_col_cnt(filename): ''' Finds row with mwx number of columns by counting commas ''' max_commas = 0 lines = open(filename) for line in lines: cnt = line.count(',') if cnt > max_commas: max_commas = cnt return max_commas + 1 def raw_to_df(src_dir, tgt_dir, filename, max_cols=28): ''' src_dir: directory in which the raw files are located tgt_dir: directory in which to copy the files (to prevent corrupting originals) filename: name of raw file (exluding path) ins_hdr: True to add a generic header to the file (col1, col2, ...) False if you already added a header to the file. max_cols: The maximim number of columns in any row, likely 28. ''' #create generic column headers cols=["col"+str(i) for i in range(max_cols)] #concatenate path and filename src=os.path.join(src_dir,filename) #copy both files to the target directory if src_dir != tgt_dir and tgt_dir!=None and tgt_dir!='': print(' copying raw file to working directory: ' + tgt_dir) tgt=os.path.join(tgt_dir,filename) shutil.copyfile(src, tgt) else: tgt=src # return dataframe print(' reading raw file into datafrme: ' + tgt_dir) lst = pd.read_csv(open(tgt), names=cols, dtype= str ) return pd.DataFrame(lst) def define_sections(df, end_of_section_pattern=end_of_section_pattern): sections = [] first_row = 3 for row_num, row in df.iterrows(): if row[0][:4] == end_of_section_pattern: #section_name = row[0][3:].replace("END OF","").strip() section_name = row[0][11:] #sections [from line, to line, section name] sections += [[first_row, row_num, section_name]] first_row = row_num+1 return sections def parse_raw_header(first_3_rows): data = list(first_3_rows.iloc[0,:][0:7])+[None] data[7] = data[6] data[5] = data[5].split('/')[1][-4].strip() data[5] = data[5].split('/')[0].strip() data += [first_3_rows.iloc[1,:][0]] data += [first_3_rows.iloc[2,:][0] + ',' + first_3_rows.iloc[2,:][1]] for i in range(len(data)): first_3_rows.iloc[0,i]=data[i] data=[item.strip(' ') for item in data] data[6]=parser.parse(data[6]) data[7]=parser.parse(data[7]) cols = ['col0','col1','col2','col3','col4','col5','Updated','Updated2',\ 'Case_Name','Updated3'] dtype_dict = {'col0':'float','col1':'float','col2':'float','col3':'float',\ 'col4':'float','col5':'str','Updated':'str','Updated2':'str',\ 'Case_Name':'str','Updated3':'str'} df = pd.DataFrame([data]) #print('raw summary:') #print(df) df.columns = cols df.dtype = dtype_dict return df def append_owner(df, owner_df): ''' Add Bus_Name columns to a Branch dataframe. Branch1/2 only has bus numbers. Look up Bus_Name in the Bus1 or Bus2 dataframe and apply ''' ret = pd.merge(df, owner_df, left_on="Owner", right_on="Owner_Num", how="inner") ret.drop('Owner_Num', axis=1, inplace=True) return ret def append_bus_info_to_branch(branch_df, bus_df): ''' Add Bus_Name columns to a Branch dataframe. Branch1/2 only has bus numbers. Look up Bus_Name in the Bus1 or Bus2 dataframe and apply ''' bus_slim = bus_df.loc[:,['Bus_Num', 'Bus_Name']].copy() # FROM bus ret = pd.merge(branch_df, bus_slim, left_on="Fr_Bus_Num", right_on="Bus_Num", how="inner") ret = ret.rename(columns = {'Bus_Name':'Fr_Bus_Name'}) ret.drop('Bus_Num', axis=1, inplace=True) # TO bus ret = pd.merge(ret, bus_slim, left_on="To_Bus_Num", right_on="Bus_Num", how="inner") ret = ret.rename(columns = {'Bus_Name':'To_Bus_Name'}) ret.drop('Bus_Num', axis=1, inplace=True) ret = ret[ret['Fr_Bus_Num'].notnull()] return ret def branch_df_compare(branch_df1, branch_df2): ''' branch_cols=['Fr_Bus_Num','To_Bus_Num','ID','Line_R_pu',\ 'Line_X_pu','Charging_pu','Rate_A_MVA',\ 'Rate_B_MVA','Rate_C_MVA','Line_G_From_pu',\ 'Line_B_From_pu','Line_G_To_pu','Line_B_To_pu',\ 'In_Service','Code','Length','Owner',\ 'Fraction'] ''' # dropped branch ret =
pd.merge(branch_df1, branch_df2, how='left', on=['Fr_Bus_Num','To_Bus_Num'])
pandas.merge
# INSERT LICENSE # This script contains statistical functions import copy import random from collections import Counter from typing import Optional, Union, Tuple import navis import navis.interfaces.neuprint as nvneu import numpy as np import pandas as pd from scipy import stats from scipy.stats import ks_2samp from tqdm import tqdm import itertools import seaborn as sns from matplotlib.lines import Line2D from neuroboom.utils import check_valid_neuron_input from neuroboom import morphoelectro as nbm def presynapse_focality( x: Union[navis.TreeNeuron, navis.NeuronList], heal_fragmented_neuron: bool = False, confidence_threshold: tuple((float, float)) = (0.9, 0.9), num_synapses_threshold: int = 1, ): """ Finds the connections that are downstream of 'x', where the presynpases of 'x' are focalised Parameters -------- x: A matrix to perform DBSCAN on heal_fragmented_neuron: bool Whether to heal the neuron or not. N.B. Its better to heal neurons during import to save time in this function. connector_confidence: tuple of floats The confidence value used to threshold the synapses. The first value (connector_confidence[0]) will be used to threshold presynapses The second value (connector_confidence[1]) will be used to threshold postsynapses num_samples_threshold: int The minimum number of synapses a partner must have to be included in the permutation test Returns -------- synapse_connections: A dataframe detailing the presynaptic connections df: A dataframe to be populated by the permutation test function Examples -------- """ x = check_valid_neuron_input(x) if heal_fragmented_neuron is True: x = navis.heal_fragmented_neuron(x) # Getting the connector table of synapses where x.id is the source synapse_connections = navis.interfaces.neuprint.fetch_synapse_connections( source_criteria=x.id ) synapse_connections.astype(object) synapse_connections = nbm.match_connectors_to_nodes(synapse_connections, x, synapse_type='pre') truth_list = [ True if len(np.unique(i)) > 1 else False for i in synapse_connections.node.values ] if synapse_connections[truth_list].shape[0] == 0: synapse_connections.node = [ np.unique(k)[0] for k in synapse_connections.node.tolist() ] else: return "There are synapses associated with multiple nodes!!!!" synapse_connections = synapse_connections[ synapse_connections.confidence_pre > confidence_threshold[0] ][synapse_connections.confidence_post > confidence_threshold[1]].copy() count = Counter(synapse_connections.bodyId_post.tolist()) count = { k: v for k, v in sorted(count.items(), key=lambda item: item[1], reverse=True) } truth_list = [ True if count[i] > num_synapses_threshold else False for i in synapse_connections.bodyId_post ] synapse_connections = synapse_connections[truth_list].copy() df = pd.DataFrame() df["partner_neuron"] = synapse_connections.bodyId_post.unique().tolist() df["gT"] = "" df["significance_val"] = "" df["p_val"] = "" df["num_syn"] = [count[i] for i in df.partner_neuron] return (synapse_connections, df) def postsynapse_focality( x: Union[navis.TreeNeuron, navis.NeuronList], heal_fragmented_neuron: bool = False, split_neuron: bool = False, confidence_threshold: tuple((float, float)) = (0.9, 0.9), num_synapses_threshold: int = 1, ): """ Finds the connections that are downstream of 'x', where the presynpases of 'x' are focalised Parameters -------- x: A matrix to perform DBSCAN on heal_fragmented_neuron: bool Whether to heal the neuron or not. N.B. Its better to heal neurons during import to save time in this function. connector_confidence: tuple of floats The confidence value used to threshold the synapses. The first value (connector_confidence[0]) will be used to threshold presynapses The second value (connector_confidence[1]) will be used to threshold postsynapses num_samples_threshold: int The minimum number of synapses a partner must have to be included in the permutation test Returns -------- synapse_connections: A dataframe detailing the presynaptic connections df: A dataframe to be populated by the permutation test function Examples -------- """ x = check_valid_neuron_input(x) if heal_fragmented_neuron is True: x = navis.heal_fragmented_neuron(x) # Getting the connector table of synapses where x.id is the source synapse_connections = navis.interfaces.neuprint.fetch_synapse_connections( target_criteria=x.id ) synapse_connections.astype(object) synapse_connections = nbm.match_connectors_to_nodes(synapse_connections, x, synapse_type='post') the_truth = [ True if len(np.unique(i)) > 1 else False for i in synapse_connections.node.values ] if synapse_connections[the_truth].shape[0] == 0: synapse_connections.node = [ np.unique(k)[0] for k in synapse_connections.node.tolist() ] else: return "There are synapses associated with multiple nodes!!!!" synapse_connections = synapse_connections[ synapse_connections.confidence_pre > confidence_threshold[0] ][synapse_connections.confidence_post > confidence_threshold[1]].copy() count = Counter(synapse_connections.bodyId_pre.tolist()) count = { k: v for k, v in sorted(count.items(), key=lambda item: item[1], reverse=True) } truth_list = [ True if count[i] > num_synapses_threshold else False for i in synapse_connections.bodyId_pre ] synapse_connections = synapse_connections[truth_list].copy() df = pd.DataFrame() df["partner_neuron"] = synapse_connections.bodyId_pre.unique().tolist() df["gT"] = "" df["significance_val"] = "" df["p_val"] = "" df["num_syn"] = [count[i] for i in df.partner_neuron] return (synapse_connections, df) def permut_test( x: Union[navis.TreeNeuron, navis.NeuronList], measuring_node: int, synapse_connections: pd.DataFrame, relation: str = "presyn", num_iter: int = 10, df: Optional = None, count: Optional = None, ): """ Runs a permutation test on the geodesic distances for connections Parameters -------- x: navis.TreeNeuron measuring_node: int Node ID for which to measure the geodesic distance of synapses synapse_connections: pandas.DataFrame A DataFrame containin the synaptic connections upon which the permutation test will be executed. relation: str Whether the synaptic connections included in synapse_connections are presynapses or postsynapses num_iter: int Number of iterations to run the permutation test for df: pandas.DataFrame A DataFrame to record the p_values of the permutation test count: dict The total number of synaptic connections the partner neuron has onto x Returns -------- df: A dataframe populated by the permutation test function containing the p_values of the partners, determined by the locations of their connections. Examples -------- """ x = check_valid_neuron_input(x) geo_mat = navis.geodesic_matrix(x, node_ids=measuring_node) geo_mat = geo_mat.T geo_mat.sort_values(by=[measuring_node], ascending=True, inplace=True) for k, j in tqdm(enumerate(df.partner_neuron)): if relation == "presyn": total_distribution = geo_mat[ ~geo_mat.index.isin( synapse_connections[ synapse_connections.bodyId_post == j ].node.tolist() ) ] specific_distribution = geo_mat[ geo_mat.index.isin( synapse_connections[ synapse_connections.bodyId_post == j ].node.tolist() ) ] elif relation == "postsyn": total_distribution = geo_mat[ ~geo_mat.index.isin( synapse_connections[ synapse_connections.bodyId_pre == j ].node.tolist() ) ] specific_distribution = geo_mat[ geo_mat.index.isin( synapse_connections[ synapse_connections.bodyId_pre == j ].node.tolist() ) ] total_mean = np.average(total_distribution.values) specific_mean = np.average(specific_distribution.values) gT = np.abs(total_mean - specific_mean) df.iloc[k, 1] = gT pV = list(total_distribution.values) + list(specific_distribution.values) pV = [i[0] for i in pV] pS = copy.copy(pV) pD = [] for i in range(0, num_iter): random.shuffle(pS) pD.append( np.abs( np.average(pS[0: int(len(pS) / 2)]) - np.average(pS[int(len(pS) / 2):]) ) ) p_val = len(np.where(pD >= gT)[0]) / num_iter df.iloc[k, 2] = p_val ttest = stats.ttest_ind(total_distribution.values, specific_distribution.values) df.iloc[k, 3] = ttest[1][0] df.sort_values(by=["p_val"], ascending=True, inplace=True) df.reset_index(inplace=True) return df def permutation_test_complete( x: Union[navis.TreeNeuron, navis.NeuronList], n_iter: int = 10, remove_fragments: bool = True, confidence_threshold: tuple = (0.9, 0.9) ): """ A wrapper function for the presynaptic and postsynaptic permutation test functions, so that both can be performed with minimal code writing by the user Parameters -------- x: navis.TreeNeuron n_iter: int Number of iterations to run the permutation test for remove_fragments: bool Whether to remove partners that are fragments/ have not been traced to completion/ do not have a soma. Returns -------- presyn_pt: A dataframe populated by the permutation test function containing the p_values of the presynaptic partners, determined by the locations of their connections. postsyn_pt: A dataframe populated by the permutation test function containing the p_values of the postsynaptic partners, determined by the locations of their connections. Examples -------- """ a_pre, a_df = presynapse_focality( x, heal_fragmented_neuron=False, confidence_threshold=confidence_threshold ) b_post, b_df = postsynapse_focality( x, heal_fragmented_neuron=False, confidence_threshold=confidence_threshold ) presyn_pt = permut_test( x, x.root[0], synapse_connections=a_pre, relation="presyn", num_iter=n_iter, df=a_df, ) postsyn_pt = permut_test( x, x.root[0], synapse_connections=b_post, relation="postsyn", num_iter=n_iter, df=b_df, ) a_partner_neurons, a_roi = nvneu.fetch_neurons(presyn_pt.partner_neuron.tolist()) b_partner_neurons, b_roi = nvneu.fetch_neurons(postsyn_pt.partner_neuron.tolist()) a_type_dict = dict( zip(a_partner_neurons.bodyId.tolist(), a_partner_neurons.type.tolist()) ) b_type_dict = dict( zip(b_partner_neurons.bodyId.tolist(), b_partner_neurons.type.tolist()) ) partner_dict = {**a_type_dict, **b_type_dict} presyn_pt["partner_type"] = presyn_pt.partner_neuron.map( partner_dict, na_action="ignore" ) postsyn_pt["partner_type"] = postsyn_pt.partner_neuron.map( partner_dict, na_action="ignore" ) if remove_fragments: presyn_pt = presyn_pt[~presyn_pt.partner_type.isnull()].copy() postsyn_pt = postsyn_pt[~postsyn_pt.partner_type.isnull()].copy() return (presyn_pt, postsyn_pt) def prefocality_to_dendrogram_coloring( x: pd.DataFrame, p_val: float, neuron: navis.TreeNeuron ): """ Function to take the results of synaptic focality tests and create colour dict for highlighting connectors """ x_thresh = x[x.p_val < p_val].copy() partner_dict = dict(zip(x_thresh.partner_neuron, x_thresh.partner_type)) # fetching synapse connections conn = nvneu.fetch_synapse_connections(source_criteria=neuron.id, target_criteria=x_thresh.partner_neuron.tolist()) # filtering for highly probably synapses conn_thresh = conn[(conn.confidence_pre > 0.9) & (conn.confidence_post > 0.9)].copy() pal = sns.color_palette('turbo', len(partner_dict)) pal_dict = dict(zip(partner_dict.keys(), pal)) nodes_matched = nbm.match_connectors_to_nodes(conn_thresh, neuron, synapse_type='pre') c2n = dict(zip(nodes_matched.connector, nodes_matched.bodyId_post)) c2color = {i: pal_dict[c2n[i]] for i in c2n.keys()} return(c2color, c2n, conn_thresh, partner_dict) def postfocality_to_dendrogram_coloring( x: pd.DataFrame, p_val: float, neuron: navis.TreeNeuron ): """ Function to take the results of synaptic focality tests and create colour dict for plotting """ x_thresh = x[x.p_val < p_val].copy() partner_dict = dict(zip(x_thresh.partner_neuron, x_thresh.partner_type)) # fetching synapse connections conn = nvneu.fetch_synapse_connections(target_criteria=neuron.id, source_criteria=x_thresh.partner_neuron.tolist()) # filtering for highly probably synapses conn_thresh = conn[(conn.confidence_pre > 0.9) & (conn.confidence_post > 0.9)].copy() pal = sns.color_palette('turbo', len(partner_dict)) pal_dict = dict(zip(partner_dict.keys(), pal)) nodes_matched = nbm.match_connectors_to_nodes(conn_thresh, neuron, synapse_type='post') c2n = dict(zip(nodes_matched.connector, nodes_matched.bodyId_pre)) c2color = {i: pal_dict[c2n[i]] for i in c2n.keys()} return(c2color, c2n, conn_thresh, partner_dict) def make_legend_elements(connector_to_color, connector_to_neuron, partner_dict): neuron_to_color = {connector_to_neuron[i]: connector_to_color[i] for i in connector_to_color.keys()} legend_elements = [] for i in range(len(neuron_to_color)): neuron = list(neuron_to_color.keys())[i] legend_elements.append(Line2D([i], [0], marker='o', color=neuron_to_color[neuron], label=f'{neuron} : {partner_dict[neuron]}', markerfacecolor=neuron_to_color[neuron], markersize=60)) return(legend_elements) ##################### ## All By All synaptic Focality ##################### # KS test def synaptic_focality_KS_test( x: navis.TreeNeuron, synapse_type: str = 'pre', confidence_threshold: Tuple = (0.9, 0.9) ): if synapse_type == 'pre': g_mat = navis.geodesic_matrix(x) syn = nvneu.fetch_synapse_connections(source_criteria=x.id) syn = syn[(syn.confidence_pre > confidence_threshold[0]) & (syn.confidence_post > confidence_threshold[1])].copy() syn = nbm.match_connectors_to_nodes(syn, x, synapse_type=synapse_type) df = pd.DataFrame() df['partner_id'] = syn.bodyId_post.unique() partner_gt = {} partner_statistic = {} partner_pval = {} for i, j in enumerate(df.partner_id): nodes = syn[syn.bodyId_post == j].node.tolist() truth_array = np.isin(g_mat.index, nodes) partner_geo_dist_vals = g_mat[truth_array].values.mean(axis=1) total_geo_dist_vals = g_mat[~truth_array].values.mean(axis=1) partner_gt[j] = partner_geo_dist_vals KS_test = ks_2samp(partner_geo_dist_vals, total_geo_dist_vals) partner_statistic[j] = KS_test.statistic partner_pval[j] = KS_test.pvalue df['gT'] = df.partner_id.map(partner_gt) df['KS statistic'] = df.partner_id.map(partner_statistic) df['KS pval'] = df.partner_id.map(partner_pval) df['n_syn'] = [len(i) for i in df.gT] elif synapse_type == 'post': g_mat = navis.geodesic_matrix(x) syn = nvneu.fetch_synapse_connections(target_criteria=x.id) syn = syn[(syn.confidence_pre > confidence_threshold[0]) & (syn.confidence_post > confidence_threshold[1])].copy() syn = nbm.match_connectors_to_nodes(syn, x, synapse_type=synapse_type) df = pd.DataFrame() df['partner_id'] = syn.bodyId_pre.unique() partner_gt = {} partner_statistic = {} partner_pval = {} for i, j in enumerate(df.partner_id): nodes = syn[syn.bodyId_pre == j].node.tolist() truth_array = np.isin(g_mat.index, nodes) partner_geo_dist_vals = g_mat[truth_array].values.mean(axis=1) total_geo_dist_vals = g_mat[~truth_array].values.mean(axis=1) partner_gt[j] = partner_geo_dist_vals KS_test = ks_2samp(partner_geo_dist_vals, total_geo_dist_vals) partner_statistic[j] = KS_test.statistic partner_pval[j] = KS_test.pvalue df['gT'] = df.partner_id.map(partner_gt) df['KS statistic'] = df.partner_id.map(partner_statistic) df['KS pval'] = df.partner_id.map(partner_pval) df['n_syn'] = [len(i) for i in df.gT] return(df) # permutation (enrichment analysis) def calculate_T_obs( neuron_id: int, neuron_to_node_dict: dict, gmat: pd.DataFrame, two_sample: bool = True): Anodes_to_query = neuron_to_node_dict[neuron_id] An = len(Anodes_to_query) Bnodes_to_query = gmat.index[~np.isin(gmat.index, Anodes_to_query)].to_numpy() Bn = len(Bnodes_to_query) A_mean = gmat.loc[Anodes_to_query, :].mean().mean() B_mean = gmat.loc[Bnodes_to_query, :].mean().mean() T_obs = A_mean - B_mean if two_sample: T_obs = abs(T_obs) return(T_obs, An, Bn) # def random_draw_sample_dist( # n_iter: int, # gmat: pd.DataFrame, # T_obs: float, # An: int, # Bn: int # ): # # A_draws = [] # B_draws = [] # # for i in range(n_iter): # # rc_A = np.random.choice(gmat.index.to_numpy(), size=An, replace=False) # rc_B = np.random.choice(gmat.index.to_numpy(), size=Bn, replace=False) # # sample_mean_A = gmat.loc[rc_A, :].mean().mean() # sample_mean_B = gmat.loc[rc_B, :].mean().mean() # # A_draws.append(sample_mean_A) # B_draws.append(sample_mean_B) # # cart_prod = [i for i in itertools.product(A_draws, B_draws)] # # sampled_permut_diff = abs(np.array([i - j for i, j in cart_prod])) # # p_value = sum(sampled_permut_diff >= T_obs) / len(sampled_permut_diff) # # return(p_value) def random_draw_sample_dist( n_iter: int, gmat: pd.DataFrame, T_obs: float, An: int, Bn: int, ): rc_A_lst = np.array([ np.random.choice( gmat.index, size = An, replace = False) for i in range(n_iter)]) rc_B_lst = np.array([ np.random.choice( gmat.index, size = Bn, replace = False) for i in range(n_iter)]) rc_A_lst = rc_A_lst - 1 rc_B_lst = rc_B_lst - 1 sample_means_A = [gmat.values[i, :].mean().mean() for i in rc_A_lst] sample_means_B = [gmat.values[i, :].mean().mean() for i in rc_B_lst] cart_prod = [i for i in itertools.product(sample_means_A, sample_means_B)] sampled_permut_diff = abs(np.array([i - j for i, j in cart_prod])) p_val = sum(sampled_permut_diff >= T_obs) / len(sampled_permut_diff) return(p_val) def aba_presyn_focality( neuron: navis.TreeNeuron, confidence_threshold: Tuple = (0.0, 0.0), n_iter: int = 100, syn_thresh: int = 1, ): print('Fetching synaptic connections...') syn = nvneu.fetch_synapse_connections(source_criteria=neuron.id) print('Thresholding synapses by confidences...') syn = syn[(syn.confidence_pre > confidence_threshold[0]) & (syn.confidence_post > confidence_threshold[1])].copy() print('Thresholding synapses by synapse count...') count_dict = dict(Counter(syn.bodyId_post).most_common()) syn = syn[[count_dict[i] > syn_thresh for i in syn.bodyId_post]].copy() print('Matching connections to nodes...') # syn_wmc = synaptic connections with connectors matched syn_wmc = nbm.match_connectors_to_nodes(syn, neuron, synapse_type='pre') connector2node = dict(zip(neuron.connectors.connector_id, neuron.connectors.node_id)) syn_wmc['node'] = syn_wmc.connector.map(connector2node).to_numpy() unique_usns = syn_wmc.bodyId_post.unique() neuron_to_uNodes = {i: syn_wmc[syn_wmc.bodyId_post == i].node.unique() for i in unique_usns} print('Calculating all by all geodesic matrix for nodes...') g_mat = navis.geodesic_matrix(neuron) df =
pd.DataFrame()
pandas.DataFrame
# Copyright 2019 QuantRocket - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import six import os import time import itertools import tempfile import requests from quantrocket.master import download_master_file from quantrocket.exceptions import ParameterError, NoHistoricalData, NoRealtimeData from quantrocket.history import ( download_history_file, get_db_config as get_history_db_config, list_databases as list_history_databases) from quantrocket.realtime import ( download_market_data_file, get_db_config as get_realtime_db_config, list_databases as list_realtime_databases) from quantrocket.zipline import ( list_bundles, get_bundle_config, download_bundle_file) TMP_DIR = os.environ.get("QUANTROCKET_TMP_DIR", tempfile.gettempdir()) def get_prices(codes, start_date=None, end_date=None, universes=None, sids=None, exclude_universes=None, exclude_sids=None, times=None, fields=None, timezone=None, infer_timezone=None, cont_fut=None, data_frequency=None): """ Query one or more history databases, real-time aggregate databases, and/or Zipline bundles and load prices into a DataFrame. For bar sizes smaller than 1-day, the resulting DataFrame will have a MultiIndex with levels (Field, Date, Time). For bar sizes of 1-day or larger, the MultiIndex will have levels (Field, Date). Parameters ---------- codes : str or list of str, required the code(s) of one or more databases to query. If multiple databases are specified, they must have the same bar size. List databases in order of priority (highest priority first). If multiple databases provide the same field for the same sid on the same datetime, the first database's value will be used. start_date : str (YYYY-MM-DD), optional limit to data on or after this date end_date : str (YYYY-MM-DD), optional limit to data on or before this date universes : list of str, optional limit to these universes (default is to return all securities in database) sids : list of str, optional limit to these sids exclude_universes : list of str, optional exclude these universes exclude_sids : list of str, optional exclude these sids times: list of str (HH:MM:SS), optional limit to these times, specified in the timezone of the relevant exchange. See additional information in the Notes section regarding the timezone to use. fields : list of str, optional only return these fields. (If querying multiple databases that have different fields, provide the complete list of desired fields; only the supported fields for each database will be queried.) timezone : str, optional convert timestamps to this timezone, for example America/New_York (see `pytz.all_timezones` for choices); ignored for non-intraday bar sizes infer_timezone : bool infer the timezone from the securities master Timezone field; defaults to True if using intraday bars and no `timezone` specified; ignored for non-intraday bars, or if `timezone` is passed cont_fut : str stitch futures into continuous contracts using this method (default is not to stitch together). Only applicable to history databases. Possible choices: concat data_frequency : str for Zipline bundles, whether to query minute or daily data. If omitted, defaults to minute data for minute bundles and to daily data for daily bundles. This parameter only needs to be set to request daily data from a minute bundle. Possible choices: daily, minute (or aliases d, m). Returns ------- DataFrame a MultiIndex (Field, Date) or (Field, Date, Time) DataFrame of prices Notes ----- The `times` parameter, if provided, is applied differently for history databases and Zipline bundles vs real-time aggregate databases. For history databases and Zipline bundles, the parameter is applied when querying the database. For real-time aggregate databases, the parameter is not applied when querying the database; rather, all available times are retrieved and the `times` filter is applied to the resulting DataFrame after casting it to the appropriate timezone (as inferred from the securities master Timezone field or as explicitly specified with the `timezone` parameter). The rationale for this behavior is that history databases and Zipline bundles store intraday data in the timezone of the relevant exchange whereas real-time aggregate databases store data in UTC. By applying the `times` filter as described, users can specify the times in the timezone of the relevant exchange for both types of databases. Examples -------- Load intraday prices: >>> prices = get_prices('stk-sample-5min', fields=["Close", "Volume"]) >>> prices.head() Sid FIBBG1 FIBBG2 Field Date Time Close 2017-07-26 09:30:00 153.62 2715.0 09:35:00 153.46 2730.0 09:40:00 153.21 2725.0 09:45:00 153.28 2725.0 09:50:00 153.18 2725.0 Isolate the closes: >>> closes = prices.loc["Close"] >>> closes.head() Sid FIBBG1 FIBBG2 Date Time 2017-07-26 09:30:00 153.62 2715.0 09:35:00 153.46 2730.0 09:40:00 153.21 2725.0 09:45:00 153.28 2725.0 09:50:00 153.18 2725.0 Isolate the 15:45:00 prices: >>> session_closes = closes.xs("15:45:00", level="Time") >>> session_closes.head() Sid FIBBG1 FIBBG2 Date 2017-07-26 153.29 2700.00 2017-07-27 150.10 2660.00 2017-07-28 149.43 2650.02 2017-07-31 148.99 2650.34 2017-08-01 149.72 2675.50 """ # Import pandas lazily since it can take a moment to import try: import pandas as pd except ImportError: raise ImportError("pandas must be installed to use this function") try: import pytz except ImportError: raise ImportError("pytz must be installed to use this function") if timezone and timezone not in pytz.all_timezones: raise ParameterError( "invalid timezone: {0} (see `pytz.all_timezones` for choices)".format( timezone)) dbs = codes if not isinstance(dbs, (list, tuple)): dbs = [dbs] fields = fields or [] if not isinstance(fields, (list, tuple)): fields = [fields] # separate history dbs from Zipline bundles from realtime dbs; in case one or # more of the services is not running, we print a warning and try the other # services try: history_dbs = set(list_history_databases()) except requests.HTTPError as e: if e.response.status_code == 502: import warnings warnings.warn( f"Error while checking if {', '.join(dbs)} is a history database, " f"will assume it's not. Error was: {e}", RuntimeWarning) history_dbs = set() else: raise try: realtime_dbs = list_realtime_databases() except requests.HTTPError as e: if e.response.status_code == 502: import warnings warnings.warn( f"Error while checking if {', '.join(dbs)} is a realtime database, " f"will assume it's not. Error was: {e}", RuntimeWarning) realtime_dbs = {} realtime_agg_dbs = set() else: raise else: realtime_agg_dbs = set(itertools.chain(*realtime_dbs.values())) try: zipline_bundles = set(list_bundles()) except requests.HTTPError as e: if e.response.status_code == 502: import warnings warnings.warn( f"Error while checking if {', '.join(dbs)} is a Zipline bundle, " f"will assume it's not. Error was: {e}", RuntimeWarning) zipline_bundles = set() else: raise history_dbs.intersection_update(set(dbs)) realtime_agg_dbs.intersection_update(set(dbs)) zipline_bundles.intersection_update(set(dbs)) unknown_dbs = set(dbs) - history_dbs - realtime_agg_dbs - zipline_bundles if unknown_dbs: tick_dbs = set(realtime_dbs.keys()).intersection(unknown_dbs) # Improve error message if possible if tick_dbs: raise ParameterError("{} is a real-time tick database, only history databases or " "real-time aggregate databases are supported".format( ", ".join(tick_dbs))) raise ParameterError( "no history or real-time aggregate databases or Zipline bundles called {}".format( ", ".join(unknown_dbs))) db_bar_sizes = set() db_bar_sizes_parsed = set() history_db_fields = {} realtime_db_fields = {} zipline_bundle_fields = {} for db in history_dbs: db_config = get_history_db_config(db) bar_size = db_config.get("bar_size") db_bar_sizes.add(bar_size) # to validate uniform bar sizes, we need to parse them in case dbs # store different but equivalent timedelta strings. History db # strings may need massaging to be parsable. if bar_size.endswith("s"): # strip s from secs, mins, hours to get valid pandas timedelta bar_size = bar_size[:-1] elif bar_size == "1 week": bar_size = "7 day" elif bar_size == "1 month": bar_size = "30 day" db_bar_sizes_parsed.add(pd.Timedelta(bar_size)) history_db_fields[db] = db_config.get("fields", []) for db in realtime_agg_dbs: db_config = get_realtime_db_config(db) bar_size = db_config.get("bar_size") db_bar_sizes.add(bar_size) db_bar_sizes_parsed.add(
pd.Timedelta(bar_size)
pandas.Timedelta
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (
TS('2015-01-03')
pandas.Timestamp
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import datetime as dt import os from typing import Union import numpy as np import pandas as pd import pytest import pytz from gs_quant.target.common import XRef, PricingLocation, Currency as CurrEnum from numpy.testing import assert_allclose from pandas.testing import assert_series_equal from pandas.tseries.offsets import CustomBusinessDay from pytz import timezone from testfixtures import Replacer from testfixtures.mock import Mock import gs_quant.timeseries.measures as tm import gs_quant.timeseries.measures_rates as tm_rates from gs_quant.api.gs.assets import GsTemporalXRef, GsAssetApi, GsIdType, IdList, GsAsset from gs_quant.api.gs.data import GsDataApi, MarketDataResponseFrame from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.dataset import Dataset from gs_quant.data.fields import Fields from gs_quant.errors import MqError, MqValueError, MqTypeError from gs_quant.markets.securities import AssetClass, Cross, Index, Currency, SecurityMaster, Stock, \ Swap, CommodityNaturalGasHub from gs_quant.session import GsSession, Environment from gs_quant.test.timeseries.utils import mock_request from gs_quant.timeseries import Returns from gs_quant.timeseries.measures import BenchmarkType _index = [pd.Timestamp('2019-01-01')] _test_datasets = ('TEST_DATASET',) def mock_empty_market_data_response(): df = MarketDataResponseFrame() df.dataset_ids = () return df def map_identifiers_default_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-LIBOR-BBA" in ids: return {"USD-LIBOR-BBA": "MAPDB7QNB2TZVQ0E"} elif "EUR-EURIBOR-TELERATE" in ids: return {"EUR-EURIBOR-TELERATE": "MAJNQPFGN1EBDHAE"} elif "GBP-LIBOR-BBA" in ids: return {"GBP-LIBOR-BBA": "MAFYB8Z4R1377A19"} elif "JPY-LIBOR-BBA" in ids: return {"JPY-LIBOR-BBA": "MABMVE27EM8YZK33"} elif "EUR OIS" in ids: return {"EUR OIS": "MARFAGXDQRWM07Y2"} def map_identifiers_swap_rate_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m" in ids: return {"USD-3m": "MAAXGV0GZTW4GFNC"} elif "EUR-6m" in ids: return {"EUR-6m": "MA5WM2QWRVMYKDK0"} elif "KRW" in ids: return {"KRW": 'MAJ6SEQH3GT0GA2Z'} def map_identifiers_inflation_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "CPI-UKRPI" in ids: return {"CPI-UKRPI": "MAQ7ND0MBP2AVVQW"} elif "CPI-CPXTEMU" in ids: return {"CPI-CPXTEMU": "MAK1FHKH5P5GJSHH"} def map_identifiers_cross_basis_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m/JPY-3m" in ids: return {"USD-3m/JPY-3m": "MA99N6C1KF9078NM"} elif "EUR-3m/USD-3m" in ids: return {"EUR-3m/USD-3m": "MAXPKTXW2D4X6MFQ"} elif "GBP-3m/USD-3m" in ids: return {"GBP-3m/USD-3m": "MA8BZHQV3W32V63B"} def get_data_policy_rate_expectation_mocker( start: Union[dt.date, dt.datetime] = None, end: Union[dt.date, dt.datetime] = None, as_of: dt.datetime = None, since: dt.datetime = None, fields: Union[str, Fields] = None, asset_id_type: str = None, **kwargs) -> pd.DataFrame: if 'meetingNumber' in kwargs: if kwargs['meetingNumber'] == 0: return mock_meeting_spot() elif 'meeting_date' in kwargs: if kwargs['meeting_date'] == dt.date(2019, 10, 24): return mock_meeting_spot() return mock_meeting_expectation() def test_parse_meeting_date(): assert tm.parse_meeting_date(5) == '' assert tm.parse_meeting_date('') == '' assert tm.parse_meeting_date('test') == '' assert tm.parse_meeting_date('2019-09-01') == dt.date(2019, 9, 1) def test_currency_to_default_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) asset_id_list = ["MAZ7RWC904JYHYPS", "MAJNQPFGN1EBDHAE", "MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] correct_mapping = ["MAPDB7QNB2TZVQ0E", "MAJNQPFGN1EBDHAE", "MAFYB8Z4R1377A19", "MABMVE27EM8YZK33", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_default_swap_rate_asset(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_swap_rate_mocker) asset_id_list = ['MAZ7RWC904JYHYPS', 'MAJNQPFGN1EBDHAE', 'MAJ6SEQH3GT0GA2Z'] correct_mapping = ['MAAXGV0GZTW4GFNC', 'MA5WM2QWRVMYKDK0', 'MAJ6SEQH3GT0GA2Z'] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_swap_rate_asset(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_inflation_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_inflation_mocker) asset_id_list = ["MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] correct_mapping = ["MAQ7ND0MBP2AVVQW", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_inflation_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.currency_to_inflation_benchmark_rate('MA66CZBQJST05XKG') == 'MA66CZBQJST05XKG' def test_cross_to_basis(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_cross_basis_mocker) asset_id_list = ["MAYJPCVVF2RWXCES", "MA4B66MW5E27U8P32SB", "nobbid"] correct_mapping = ["MA99N6C1KF9078NM", "MA4B66MW5E27U8P32SB", "nobbid"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_basis(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.cross_to_basis('MAYJPCVVF2RWXCES') == 'MAYJPCVVF2RWXCES' def test_currency_to_tdapi_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA25DW5ZGC1BSC8Y', 'NOK') bbid_mock.return_value = 'NOK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAFRSWPAF5QPNTP2' == correct_id bbid_mock.return_value = 'CHF' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAW25BGQJH9P6DPT' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAA9MVX15AJNQCVG' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA6QCAP9B7ABS9HA' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAEE219J5ZP0ZKRK' == correct_id bbid_mock.return_value = 'SEK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAETMVTPNP3199A5' == correct_id bbid_mock.return_value = 'HKD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MABRNGY8XRFVC36N' == correct_id bbid_mock.return_value = 'NZD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAH16NHE1HBN0FBZ' == correct_id bbid_mock.return_value = 'AUD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAY8147CRK0ZP53B' == correct_id bbid_mock.return_value = 'CAD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MANJ8SS88WJ6N28Q' == correct_id bbid_mock.return_value = 'KRW' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAP55AXG5SQVS6C5' == correct_id bbid_mock.return_value = 'INR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA20JHJXN1PD5HGE' == correct_id bbid_mock.return_value = 'CNY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA4K1D8HH2R0RQY5' == correct_id bbid_mock.return_value = 'SGD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA5CQFHYBPH9E5BS' == correct_id bbid_mock.return_value = 'DKK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAF131NKWVRESFYA' == correct_id asset = Currency('MA890', 'PLN') bbid_mock.return_value = 'PLN' assert 'MA890' == tm_rates._currency_to_tdapi_swap_rate_asset(asset) replace.restore() def test_currency_to_tdapi_basis_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA890', 'NOK') bbid_mock.return_value = 'NOK' assert 'MA890' == tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAQB1PGEJFCET3GG' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAGRG2VT11GQ2RQ9' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAHCYNB3V75JC5Q8' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAXVRBEZCJVH0C4V' == correct_id replace.restore() def test_check_clearing_house(): assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house('lch') assert tm_rates._ClearingHouse.CME == tm_rates._check_clearing_house(tm_rates._ClearingHouse.CME) assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house(None) invalid_ch = ['NYSE'] for ch in invalid_ch: with pytest.raises(MqError): tm_rates._check_clearing_house(ch) def test_get_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] assert dict(csaTerms='USD-1') == tm_rates._get_swap_csa_terms('USD', fed_funds_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_swap_csa_terms('EUR', estr_index) assert {} == tm_rates._get_swap_csa_terms('EUR', euribor_index) assert {} == tm_rates._get_swap_csa_terms('USD', usd_libor_index) def test_get_basis_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] sofr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.SOFR.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] eonia_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EONIA.value] assert dict(csaTerms='USD-1') == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, sofr_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_basis_swap_csa_terms('EUR', estr_index, eonia_index) assert {} == tm_rates._get_basis_swap_csa_terms('EUR', eonia_index, euribor_index) assert {} == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, usd_libor_index) def test_match_floating_tenors(): swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='6m') assert swap_args == tm_rates._match_floating_tenors(swap_args) def test_get_term_struct_date(mocker): today = datetime.datetime.today() biz_day = CustomBusinessDay() assert today == tm_rates._get_term_struct_date(tenor=today, index=today, business_day=biz_day) date_index = datetime.datetime(2020, 7, 31, 0, 0) assert date_index == tm_rates._get_term_struct_date(tenor='2020-07-31', index=date_index, business_day=biz_day) assert date_index == tm_rates._get_term_struct_date(tenor='0b', index=date_index, business_day=biz_day) assert datetime.datetime(2021, 7, 30, 0, 0) == tm_rates._get_term_struct_date(tenor='1y', index=date_index, business_day=biz_day) def test_cross_stored_direction_for_fx_vol(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_stored_direction_for_fx_vol(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_usd_based_cross_for_fx_forecast(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_usd_based_cross(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_used_based_cross(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_to_usd_based_cross(Cross('FUN', 'EURUSD')) replace.restore() def test_cross_stored_direction(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_stored_direction_for_fx_vol(Cross('FUN', 'EURUSD')) replace.restore() def test_get_tdapi_rates_assets(mocker): mock_asset_1 = GsAsset(asset_class='Rate', id='MAW25BGQJH9P6DPT', type_='Swap', name='Test_asset') mock_asset_2 = GsAsset(asset_class='Rate', id='MAA9MVX15AJNQCVG', type_='Swap', name='Test_asset') mock_asset_3 = GsAsset(asset_class='Rate', id='MANQHVYC30AZFT7R', type_='BasisSwap', name='Test_asset') replace = Replacer() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1] assert 'MAW25BGQJH9P6DPT' == tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict(asset_parameters_termination_date='10y', asset_parameters_effective_date='0b') with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [] with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict() assert ['MAW25BGQJH9P6DPT', 'MAA9MVX15AJNQCVG'] == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() # test case will test matching sofr maturity with libor leg and flipping legs to get right asset kwargs = dict(type='BasisSwap', asset_parameters_termination_date='10y', asset_parameters_payer_rate_option=BenchmarkType.LIBOR, asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=BenchmarkType.SOFR, asset_parameters_receiver_designated_maturity='1y', asset_parameters_clearing_house='lch', asset_parameters_effective_date='Spot', asset_parameters_notional_currency='USD', pricing_location='NYC') assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_3] assert 'MANQHVYC30AZFT7R' == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() def test_get_swap_leg_defaults(): result_dict = dict(currency=CurrEnum.JPY, benchmark_type='JPY-LIBOR-BBA', floating_rate_tenor='6m', pricing_location=PricingLocation.TKO) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.JPY) assert result_dict == defaults result_dict = dict(currency=CurrEnum.USD, benchmark_type='USD-LIBOR-BBA', floating_rate_tenor='3m', pricing_location=PricingLocation.NYC) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.USD) assert result_dict == defaults result_dict = dict(currency=CurrEnum.EUR, benchmark_type='EUR-EURIBOR-TELERATE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.EUR) assert result_dict == defaults result_dict = dict(currency=CurrEnum.SEK, benchmark_type='SEK-STIBOR-SIDE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.SEK) assert result_dict == defaults def test_check_forward_tenor(): valid_tenors = [datetime.date(2020, 1, 1), '1y', 'imm2', 'frb2', '1m', '0b'] for tenor in valid_tenors: assert tenor == tm_rates._check_forward_tenor(tenor) invalid_tenors = ['5yr', 'imm5', 'frb0'] for tenor in invalid_tenors: with pytest.raises(MqError): tm_rates._check_forward_tenor(tenor) def mock_commod(_cls, _q): d = { 'price': [30, 30, 30, 30, 35.929686, 35.636039, 27.307498, 23.23177, 19.020833, 18.827291, 17.823749, 17.393958, 17.824999, 20.307603, 24.311249, 25.160103, 25.245728, 25.736873, 28.425206, 28.779789, 30.519996, 34.896348, 33.966973, 33.95489, 33.686348, 34.840307, 32.674163, 30.261665, 30, 30, 30] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-05-01', periods=31, freq='H', tz=timezone('UTC'))) df.dataset_ids = _test_datasets return df def mock_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 11.6311, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "M20", "J20", "K20", "M20", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 9)) df.dataset_ids = _test_datasets return df def mock_fair_price(_cls, _q): d = { 'fairPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_natgas_forward_price(_cls, _q): d = { 'forwardPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_fair_price_swap(_cls, _q): d = {'fairPrice': [2.880]} df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)])) df.dataset_ids = _test_datasets return df def mock_implied_volatility(_cls, _q): d = { 'impliedVolatility': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_missing_bucket_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "J20", "K20", "M20", ] } return pd.DataFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 8)) def mock_fx_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'impliedVolatility': [3]}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) d = { 'strikeReference': ['delta', 'spot', 'forward'], 'relativeStrike': [25, 100, 100], 'impliedVolatility': [5, 1, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=
pd.date_range('2019-01-01', periods=3, freq='D')
pandas.date_range
from sklearn import datasets from sklearn.datasets import load_breast_cancer from tensorflow import keras import pandas as pd import numpy as np from src.auxiliary_functions.auxiliary_functions import fd def fetch_data_set(name: str, samples_per_class_synthetic: int = 100, noise_synthetic: float = 0.1): """ Loads the data sets. Args: Args: name: str Name of the data set. data set name: # samples / # features / # classes - 'abalone': 4067 / 10 / 16 - 'banknote': 1372 / 4 / 2 - 'cancer': 569 / 30 / 2 - 'digits': 1797 / 64 / 10 - 'htru2': 17898 / 8 / 2 - 'iris': 150 / 4 / 3 - 'madelon': 2600 / 500 / 2 - 'seeds': 210 / 7 / 3 - 'sonar': 208 / 60 / 2 - 'spam': 4601 / 57 / 2 - 'synthetic': 2 x samples_per_class_synthetic / 3 / 2 - 'voice': 126 / 310 / 2 - 'wine': 178 / 13 / 3 samples_per_class_synthetic: int, Optional (Default is 100.) noise_synthetic: int, Optional (Default is 0.1.) Returns: X: np.ndarray Data. y: np.ndarray Labels. """ if name == "abalone": X, y = download_abalone() elif name == 'banknote': X, y = download_banknote() elif name == 'cancer': X, y = download_cancer() elif name == 'digits': X, y = download_digits() elif name == 'htru2': X, y = download_htru2() elif name == 'iris': X, y = download_iris() elif name == 'madelon': X, y = download_madelon() elif name == 'sonar': X, y = download_sonar() elif name == 'spam': X, y = download_spam() elif name == 'synthetic': X, y = create_synthetic_data(samples_per_class_synthetic, noise_synthetic) elif name == 'seeds': X, y = download_seeds() elif name == 'voice': X, y = download_voice() elif name == 'wine': X, y = download_wine() else: X, y = None, None print("No valid data set was selected.") return fd(X), fd(y) def download_abalone(): """ Downloads the 'abalone' data set, turns the 'Sex' category to three numerical features: 'Male', 'Female', and 'Infant', and then delets all classes except the ones with {5, 6, ..., 20} 'Rings', ultimately culminating in a data set of 4067 samples with 10 features 'Male', 'Female', 'Infant', 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', and 'Shell weight' and the label 'Rings'. Returns: X: np.array Data. y: np.array Labels. Data set information: Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time- consuming task. Other measurements, which are easier to obtain, are used to predict the age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem. From the original data examples with missing values were removed (the majority having the predicted value missing), and the ranges of the continuous values have been scaled for use with an ANN (by dividing by 200). Attribute information: Given is the attribute name, attribute type, the measurement unit and a brief description. The number of rings is the value to predict: either as a continuous value or as a classification problem. Name / Data Type / Measurement Unit / Description ----------------------------- Sex / nominal / -- / M, F, and I (infant) Length / continuous / mm / Longest shell measurement Diameter / continuous / mm / perpendicular to length Height / continuous / mm / with meat in shell Whole weight / continuous / grams / whole abalone Shucked weight / continuous / grams / weight of meat Viscera weight / continuous / grams / gut weight (after bleeding) Shell weight / continuous / grams / after being dried Rings / integer / -- / +1.5 gives the age in years Class distribution: Class Examples ----- -------- 1 1 2 1 3 15 4 57 5 115 6 259 7 391 8 568 9 689 10 634 11 487 12 267 13 203 14 126 15 103 16 67 17 58 18 42 19 32 20 26 21 14 22 6 23 9 24 2 25 1 26 1 27 2 29 1 ----- ---- Total 4177 References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ dataset_path = keras.utils.get_file("abalone", "https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data") column_names = ['Sex', 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'Rings'] dataset = pd.read_csv(dataset_path, names=column_names) cleanup_nums = {"Sex": {"M": 1, "F": 2, "I": 3}} dataset = dataset.replace(cleanup_nums) dataset['Sex'] = dataset['Sex'].map({1: 'Male', 2: 'Female', 3: 'Infant'}) dataset = pd.get_dummies(dataset, prefix='', prefix_sep='') dataset = dataset[['Male', 'Female', 'Infant', 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'Rings']] dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) smaller = (y <= 20).flatten() X = X[smaller, :] y = y[smaller, :] larger = (y >= 5).flatten() X = X[larger, :] y = y[larger, :] assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 4067, "Wrong number of samples." assert X.shape[1] == 10, "Wrong number of features." return X, y def download_banknote(): """ Downloads the 'banknote' data set, a data set of 1372 samples with 4 features 'Variance of wavelet transformed image', 'Skewness of wavelet transformed image ','Curtosis of wavelet transformed image', and 'Entropy of image'. The labels indicate whether a banknote is fake or not. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ dataset_path = keras.utils.get_file("banknote", "https://archive.ics.uci.edu/ml/machine-learning-databases/00267/data_banknote_authentication.txt") column_names = ['Variance of wavelet transformed image', 'Skewness of wavelet transformed image ', 'Curtosis of wavelet transformed image', 'Entropy of image', 'Class'] dataset = pd.read_csv(dataset_path, names=column_names) dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 1372, "Wrong number of samples." assert X.shape[1] == 4, "Wrong number of features." return X, y def download_cancer(): """Downloads the 'cancer' data set. It consists of 569 samples of 30 features, which are used to predict whether a tumor is benign or malignant. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ X, y = load_breast_cancer(return_X_y=True) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 569, "Wrong number of samples." assert X.shape[1] == 30, "Wrong number of features." return X, y def download_digits(): """ Downloads the 'digits' data set, a data set of 1797 samples with 64 features and 10 classes. The goal is to determine the hand-written number corresponding to each sample. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ digits = datasets.load_digits() X = digits.data y = digits.target assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 1797, "Wrong number of samples." assert X.shape[1] == 64, "Wrong number of features." return X, y def download_htru2(): """ Downloads the 'htru2' data set, a data set of 17898 samples with 8 features and 2 classes. Candidates must be classified in to pulsar and non-pulsar classes to aid discovery. htru2 is a data set which describes a sample of pulsar candidates collected during the High Time Resolution Universe Survey (South) [1]. Returns: X: np.array Data. y: np.array Labels. References: [1] <NAME> et al., 'The High Time Resolution Universe Pulsar Survey - I. System Configuration and Initial Discoveries',2010, Monthly Notices of the Royal Astronomical Society, vol. 409, pp. 619-627. DOI: 10.1111/j.1365-2966.2010.17325.x [2] <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ try: dataset = pd.read_csv("data_sets/HTRU_2/HTRU_2.csv", header=None, engine='python') except: dataset = pd.read_csv("../data_sets/HTRU_2/HTRU_2.csv", header=None, engine='python') dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 17898, "Wrong number of samples." assert X.shape[1] == 8, "Wrong number of features." return X, y def download_iris(): """ Downloads the 'iris' data set, a data set of 150 samples with 4 features 'sepal length in cm', 'sepal width in cm', 'petal length in cm', and 'petal width in cm'. The goal is to determine to which of the three classes each sample belongs. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ iris = datasets.load_iris() X = iris.data y = iris.target assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 150, "Wrong number of samples." assert X.shape[1] == 4, "Wrong number of features." return X, y def download_madelon(): """ Downloads the training and validation samples of the 'madelon' data set, a binary classification data set totalling 2600 samples with 500 features. References: [1] <NAME>, <NAME>, <NAME>, <NAME>, 2004. Result analysis of the NIPS 2003 feature selection challenge. In: NIPS. [Web Link]. [2] <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ path_X_train = keras.utils.get_file("madelon_train_data", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/madelon_train.data") X_train = pd.read_csv(path_X_train, sep=" ", header=None).to_numpy()[:, :-1] path_y_train = keras.utils.get_file("madelon_train_labels", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/madelon_train.labels") y_train = pd.read_csv(path_y_train, sep=" ", header=None).to_numpy() path_X_valid = keras.utils.get_file("madelon_valid_data", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/madelon_valid.data") X_valid = pd.read_csv(path_X_valid, sep=" ", header=None).to_numpy()[:, :-1] path_y_valid = keras.utils.get_file("madelon_valid_labels", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/madelon_valid.labels") y_valid = pd.read_csv(path_y_valid, sep=" ", header=None).to_numpy() X = np.vstack((X_train, X_valid)) y = np.vstack((y_train, y_valid)) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 2600, "Wrong number of samples." assert X.shape[1] == 500, "Wrong number of features." return X, y def download_seeds(): """ Downloads the 'seeds' data set, called 'seeds', consisting of 7 input variables and 210 observations. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ dataset_path = keras.utils.get_file("seeds", "https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt") dataset = pd.read_csv(dataset_path, sep='\s+', header=None, engine='python') dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 210, "Wrong number of samples." assert X.shape[1] == 7, "Wrong number of features." return X, y def download_sonar(): """ Downloads the 'sonar' data set, which consists of 208 samples of 60 features. The goal is to classify whether an object is a rock or a mine. References: The data set was contributed to the benchmark collection by <NAME>, now at the Salk Institute and the University of California at San Deigo. The data set was developed in collaboration with <NAME> of Allied-Signal Aerospace Technology Center <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ dataset_path = keras.utils.get_file("sonar", "https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/sonar.all-data") dataset = pd.read_csv(dataset_path, header=None) dataset = dataset.replace(['M', 'R'], [0, 1]) cleanup_nums = {"Sex": {"M": 1, "F": 2, "I": 3}} dataset = dataset.replace(cleanup_nums) dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 208, "Wrong number of samples." assert X.shape[1] == 60, "Wrong number of features." return X, y def download_spam(): """ Downloads the 'spam' spambase data set, a binary classification data set totalling 4601 samples with 57 features. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ dataset_path = keras.utils.get_file("spam", "https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data") dataset = pd.read_csv(dataset_path, header=None).to_numpy() X = dataset[:, :-1] y = dataset[:, -1] assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 4601, "Wrong number of samples." assert X.shape[1] == 57, "Wrong number of features." return X, y def create_synthetic_data(samples_per_class: int = 100, noise: float = 0.1): """ Creates a 'synthetic' data set of samples_per_class samples per class with noise Gaussian noise. Creates a synthetic data set consisting of two classes: Samples of class 1 satisfy x_1^2 + 0.01 * x_2^2 + x_3^2 - 1 = 0. Samples of class 2 satisfy x_1^2 + x_3^2 - 1.4 = 0. Args: samples_per_class: int, Optional (Default is 100.) noise: int, Optional (Default is 0.1.) Returns: X: np.ndarray y: np.ndarray """ # class 1 x_1 = np.random.random((samples_per_class, 1)) * 0.99 x_2 = np.random.random((samples_per_class, 1)) x_3 = np.sqrt(np.ones((samples_per_class, 1)) - x_1 ** 2 - 0.01 * x_2 ** 2) X_1 = np.hstack((x_1, x_2, x_3)) y_1 = fd(np.zeros((samples_per_class, 1))) assert (np.abs( (X_1[:, 0] ** 2 + 0.01 * X_1[:, 1] ** 2 + X_1[:, 2] ** 2 - np.ones((samples_per_class, 1)))) <= 10e-10).all() # class 2 x_1 = np.random.random((samples_per_class, 1)) x_2 = np.random.random((samples_per_class, 1)) x_3 = np.sqrt(1.4 * np.ones((samples_per_class, 1)) - x_1 ** 2) X_2 = np.hstack((x_1, x_2, x_3)) y_2 = fd(np.ones((samples_per_class, 1))) assert (np.abs((X_2[:, 0] ** 2 + X_2[:, 2] ** 2 - 1.4 * np.ones((samples_per_class, 1)))) <= 10e-10).all() X = np.vstack((X_1, X_2)) y = np.vstack((y_1, y_2)) # add noise noise_matrix = np.random.normal(0, 0.1, X.shape) X = X + noise_matrix # embedd in R10 # X = tmp_X.dot(np.random.normal(0, 0.5, (4, 10))) # correlation_matrix = np.array([[1, 0, 0, 1, 0, 0, 1, 0, 0, 1], # [0, 1, 0, 0, 1, 0, 0, 1, 0, 0], # [0, 0, 1, 0, 0, 1, 0, 0, 1, 0], # ]) correlation_matrix_tmp = np.random.normal(0, noise, (10, 10)) correlation_matrix = np.triu(correlation_matrix_tmp.dot(correlation_matrix_tmp.T) + np.identity(10))[:3, :10] # print(correlation_matrix) X = X.dot(correlation_matrix) assert X.shape[1] == 10, "Wrong number of features." return X, y def download_voice(): """ Downloads the lsvt 'voice' rehabilitation data set, a data set of 126 samples with 310 features. Aim: assess whether voice rehabilitation treatment lead to phonations considered 'acceptable' or 'unacceptable' (binary class classification problem). Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ try: X =
pd.read_excel("data_sets/lsvt/LSVT_voice_rehabilitation.xlsx", sheet_name="Data")
pandas.read_excel
""" Script for plotting Figures 3, 5, 6 """ import numpy as np import pandas as pd from datetime import datetime import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.lines import Line2D import matplotlib.ticker as mtick import seaborn as sns from datetime import timedelta import plotly.graph_objects as go countries = ['Brazil', 'Canada', 'England', 'France', 'Germany', 'India', 'Japan', 'Scotland', 'USA', 'Wales'] samp_entropy_df = {} for country in countries: df = pd.read_csv(f'data/entropy/monthly/fast_samp_entropy_monthly_{country}.csv') df['Date'] = pd.to_datetime(df['Date']) df = df[(df['Date'] >= '03-01-2020') & (df['Date'] <= '06-30-2021')] samp_entropy_df[country] = df colors = {'France':'darkblue', 'Germany':'dodgerblue', 'Northern-Ireland':'yellowgreen', 'USA':'orange', 'Canada':'red'} ########## Fig 3 fig, ax = plt.subplots(1,2, figsize=(16,4), sharey=True) fig.subplots_adjust(hspace=0.2, wspace=0.1) for country in ['France', 'Germany']: v = samp_entropy_df[country].iloc[:,1:37].sum(axis=0) if country == 'Germany': ax[0].plot(v, color = colors[country], label=country, alpha=0.5) else: ax[0].plot(v, color = colors[country], label=country) ax[0].legend(bbox_to_anchor=(1, 1), loc=1, borderaxespad=0, fontsize=12) ax[0].set_xticks(list(range(0,36,2))) ax[0].set_xticklabels(list(range(1,37,2)), fontsize=12) ax[0].set_xlabel('Dimension', fontsize=13, labelpad=10) for country in ['USA', 'Canada']: v = samp_entropy_df[country].iloc[:,1:37].sum(axis=0) ax[1].plot(v, color = colors[country], label=country) ax[1].legend(bbox_to_anchor=(1, 1), loc=1, borderaxespad=0, fontsize=12) ax[1].set_xticks(list(range(0,36,2))) ax[1].set_xticklabels(list(range(1,37,2)), fontsize=12) ax[1].set_xlabel('Dimension', fontsize=13, labelpad=10) fig.text(0.09, 0.5, 'Sum of Entropies', va='center', rotation='vertical', fontsize=13) plt.suptitle("Sum of Sample Entropies for each dimension", fontsize=16) fig.savefig("figures/Fig2.png", dpi=500, bbox_inches = 'tight') plt.show() ########## Fig 5 def get_melted_df(df, dim_nums): melted_df = pd.DataFrame() for dim in dim_nums: entropy_dim = f'Entropy_{dim}' subdf = df[['Date', entropy_dim]] subdf = subdf.rename(columns = {entropy_dim: 'Entropy'}) melted_df = pd.concat([melted_df, subdf], axis=0, ignore_index=True) return melted_df cases_df = pd.read_csv('new_cases.csv') cases_df = cases_df.rename(columns = {'Unnamed: 0': 'month'}) cases_df['month'] = pd.to_datetime(cases_df['month']) cases_df = cases_df[(cases_df['month'] >= '03-01-2020') & (cases_df['month'] <= '06-30-2021')] rf1 = pd.read_csv('predictions/RF_preds.csv') rf2 =
pd.read_csv('predictions/RF_infer_preds.csv')
pandas.read_csv
import os from root import * import xgboost from xgboost import XGBRegressor import pickle import pandas as pd import datetime from preprocessing.data_utils import * from datetime import datetime, timedelta pd.set_option('display.max_columns', 100) train_all_x = pd.read_csv(root+"/data/interim/train_all_x.csv") train_all_y = pd.read_csv(root+"/data/interim/train_all_y.csv") future_input = pd.read_csv(root+"/data/interim/future_input.csv") test_preds_plot =
pd.read_csv(root+"/data/interim/test_preds_plot.csv")
pandas.read_csv
'''THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' # Bitcoin Cash (BCH) qpz32c4lg7x7lnk9jg6qg7s4uavdce89myax5v5nuk # Ether (ETH) - 0x843d3DEC2A4705BD4f45F674F641cE2D0022c9FB # Litecoin (LTC) - Lfk5y4F7KZa9oRxpazETwjQnHszEPvqPvu # Bitcoin (BTC) - 34L8qWiQyKr8k4TnHDacfjbaSqQASbBtTd # contact :- <EMAIL> # I am not affiliated, associated, authorized, endorsed by, or in any way officially connected with rapid7.com, or any of its subsidiaries or its affiliates. # https://opendata.rapid7.com/sonar.http/ # https://github.com/rapid7/sonar/wiki/HTTP # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND # NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE # DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, # WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Could use some help to rent a bigger VPS to get the bigger datasets! # Bitcoin Cash (BCH) qpz32c4lg7x7lnk9jg6qg7s4uavdce89myax5v5nuk # Ether (ETH) - 0x843d3DEC2A4705BD4f45F674F641cE2D0022c9FB # Litecoin (LTC) - Lfk5y4F7KZa9oRxpazETwjQnHszEPvqPvu # Bitcoin (BTC) - 34L8qWiQyKr8k4TnHDacfjbaSqQASbBtTd import json import gzip import base64 import csv import glob import re import pandas as pd OUTFILE = "outfile.csv" bypass_err = [ "404 Not Found", "403 Forbidden", "403", "404", "ERROR: The requested URL could not be retrieved", "400 Bad Request", "Not Found", "Moved Permanently", "Unauthorized", "401 Authorization Required", "502 Bad Gateway", "407 Proxy Authentication Required", "Access Denied", "Document moved", "Bad Request", "400 The plain HTTP request was sent to HTTPS port", "401", "503", "ERROR: Forbidden", "Error" ] header_section_re = re.compile( r'HTTP/(?P<version>\d+\.?\d*) (?P<status>\d+ .+?)((\r\n)|(\n))(?P<headers>.+?)((\r\n\r\n)|(\n\n))', flags=re.DOTALL) header_re = re.compile('(?P<name>.+?): (?P<value>.+)(\r?)') title_re = re.compile( r'(\<title\>)(?P<title>.+?)(\</title\>)', flags=re.IGNORECASE) server_re = re.compile('Server: (?P<server>.+?)\r?\n', flags=re.IGNORECASE) content_type_re = re.compile( 'Content-Type: (?P<content_type>.+?)\r?\n', flags=re.IGNORECASE) content_encoding_re = re.compile( 'Content-Encoding: (?P<content_encoding>.+?)\r?\n', flags=re.IGNORECASE) last_modified_re = re.compile( 'Last-Modified: (?P<last_modified>.+?)\r?\n', flags=re.IGNORECASE) x_powered_by_re = re.compile( 'X-Powered-By: (?P<x_powered_by>.+?)\r?\n', flags=re.IGNORECASE) def write_to_csv(row): with open(OUTFILE, 'a+') as csvfile: writer = csv.writer(csvfile, delimiter=',') writer.writerow(row) csvfile.close() def get_x_powered_by(html): match_obj = x_powered_by_re.search(html) if match_obj is not None: match_obj = match_obj.group('x_powered_by').strip() return match_obj def get_content_type(html): match_obj = content_type_re.search(html) if match_obj is not None: match_obj = match_obj.group('content_type').strip() return match_obj def get_content_encoding(html): match_obj = content_encoding_re.search(html) if match_obj is not None: match_obj = match_obj.group('content_encoding').strip() return match_obj def get_server(html): match_obj = server_re.search(html) if match_obj is not None: match_obj = match_obj.group('server').strip() return match_obj def get_title(html): match_obj = title_re.search(html) if match_obj is not None: match_obj = match_obj.group('title').strip() return match_obj def get_last_modified(html): match_obj = last_modified_re.search(html) if match_obj is not None: match_obj = match_obj.group('last_modified').strip() return match_obj def to_ascii(data): if isinstance(data, str): return data.encode("ascii", errors="ignore") elif isinstance(data, bytes): return data.decode("ascii", errors="ignore") def to_utf(data): if isinstance(data, str): return data.encode("utf8", errors="ignore") elif isinstance(data, bytes): return data.decode("utf8", errors="ignore") server_vers = [] host_server =[] ignore_hosts = ["Apache", "nginx", "Microsoft", "lighttpd", "xxxxxxxx-xxxxx", "xxxx"] def parse_json_zips(): for INFILE in glob.glob("*.json.gz"): ####################################################################### # this is needed to identify the different data sets, by port number. ####################################################################### port_no = INFILE.replace('.json.gz', '') port_no = str(port_no.split('_')[-1]) ####################################################################### # this is needed to identify the different data sets, by port number. ####################################################################### print("[+] debug, port:..." + str(port_no)) with gzip.open(INFILE) as f: print('[+] Parsing JSON: {}'.format(INFILE)) for line in f: tmp_lst = [] html_data = json.loads(line) decoded_data = to_ascii(base64.b64decode(html_data["data"])) server_header_name = get_server(decoded_data) if server_header_name is not None: if not any(x in server_header_name for x in ignore_hosts): #remove common servers tmp_lst.append(str(html_data["host"]) + ":" + str(port_no)) #tmp_lst.append(get_title(decoded_data)) #not in use, Apr 2020 tmp_lst.append(server_header_name) server_vers.append(server_header_name) #tmp_lst.append(get_content_type(decoded_data)) #not in use, Apr 2020 #tmp_lst.append(get_content_encoding(decoded_data)) #not in use, Apr 2020 #tmp_lst.append(get_x_powered_by(decoded_data)) #not in use, Apr 2020 #tmp_lst.append(get_last_modified(decoded_data)) #not in use, Apr 2020 host_server.append(tmp_lst) #write_to_csv(tmp_lst) #not in use, Apr 2020 def parse_json_headers(): headers = {} for INFILE in glob.glob("*.json.gz"): # this is needed to identify the different data sets, by port number. port_no = INFILE.replace('.json.gz', '') # this is needed to identify the different data sets, by port number. port_no = str(port_no.split('_')[-1]) # this is needed to identify the different data sets, by port number. print("[+]debug, port:..." + str(port_no)) with gzip.open(INFILE) as f: print('[+] Parsing JSON: {}'.format(INFILE)) for line in f: html_data = json.loads(line) decoded_data = to_ascii(base64.b64decode(html_data["data"])) match_obj = header_section_re.search(decoded_data) if match_obj is None: continue for header in match_obj.group('headers').split('\n'): header_match = header_re.search(header) if header_match is None: continue if header_match.group('name').strip() not in headers: headers[header_match.group('name').strip()] = 0 headers[header_match.group('name').strip()] += 1 return headers parse_json_zips() #debug,debug,debug,debug ----> counting the occurances of each type to fine tune. Helps create ignore_hosts above print(
pd.Series(server_vers)
pandas.Series
import sys import nltk import time import pickle import re import pandas as pd import numpy as np from sqlalchemy import create_engine from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem.wordnet import WordNetLemmatizer from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer def load_data(database_filepath: str): """" load messages table from sqlite database and splits the table into: X: message str, training feature Y: target variables parameters ----------- database_filename: str Database name using the following format 'sqlite:///<database name>.db' returns ------- X: pd.DataFrame message str, training feature Y: pd.DataFrame target variables category_names: list list containing categories to be used """ engine = create_engine('sqlite:///'+database_filepath) df =
pd.read_sql_table("messages", engine)
pandas.read_sql_table
import pandas as pd import numpy as np import os import requests import time directory = 'C:/Users/phil_/OneDrive/Documents/GitHub/rocket-league-stats/stat_files/' playerli = [] # loop through player files and add to data frame for filename in os.listdir(directory): if filename.startswith("PLAYER_"): #print(os.path.join(directory, filename)) df =
pd.read_csv(directory+filename, sep=';', index_col=None, header=0)
pandas.read_csv
''' Para o r/brasil Pesquisa, análise e gráficos por: u/Drunpy • Estrutura do código: • Apresentação • Imports • Separação dos dados • Gráficos ''' #IMPORTS import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') pesquisa = pd.read_csv("Pesquisa T.csv") df = pd.DataFrame(pesquisa) #SEPARAÇÃO DOS DADOS #Renomeando as colunas para facilitar a leitura df.columns = ["data", "estado", "idade", "sexo", "renda", "estadocivil", "jatraiu", "jafoitraido", "comoseusamigosencaramisso", "comovcencaraisso", "nafamilia", "qmtraimais", "Sugestoesoucomentarios"] #Lista com todos os estado para serem usados na separação dos dados estadosunico = ['MG', 'SC', 'RS', 'SP', 'RJ', 'PE', 'GO', 'DF', 'BA', 'CE', 'PR', 'AL', 'ES', 'RN', 'SE', 'PB', 'TO', 'PI', 'PA', 'RO', 'MT', 'MA', 'AM', 'RR', 'MS', 'AP'] #Abaixo todos os códigos tem intenção de filtrar os dados estado_x_pessoas = {} estados_validos = {} for i in estadosunico: qnt = np.count_nonzero(df.estado == i) estado_x_pessoas[i] = int(qnt) #Quantidade de participantes >=19 para o estado ser válido for k,v in estado_x_pessoas.items(): if v >= 19: estados_validos[k] = v #Separando qnt de traidores(pessoas) por estado estado_x_jatraiu = {} for i in estados_validos: qntjatraiu = np.count_nonzero((df.estado == i) & (df.jatraiu == 'Não')) estado_x_jatraiu[i] = int(qntjatraiu) #Extraindo opcoes de idade idadeops = [] for i in df.idade: if i not in idadeops: idadeops.append(i) #correlacionando idades + traidores idade_traiuqnt = {} for i in idadeops: qntraidores = np.count_nonzero((df.idade == i) & (df.jatraiu == 'Sim')) idade_traiuqnt[i] = int(qntraidores) #Total de pessoas por idade total_poridade = {} for i in idadeops: cont = np.count_nonzero(df.idade == i) total_poridade[i] = cont #Correlacionando participantes e renda rendas_un = [] total_prenda ={} for i in df.renda: if i not in rendas_un: rendas_un.append(i) #^GAMBIARRA para trocar o nome do Xticks no gráfico total_prenda = {'<1000': 78, 'Entre 1000 e 2000': 71, '8000+': 46, 'Entre 3000 e 5000': 49, 'Entre 2000 e 3000': 46, 'Entre 5000 e 8000': 28} #Quem trai mais traimais = {'Mulher': 0 , 'Homem': 0} for i in df.qmtraimais: mulher = np.count_nonzero(df.qmtraimais == 'Mulher') homem = np.count_nonzero(df.qmtraimais == 'Homem') traimais['Mulher'] = mulher traimais['Homem'] = homem #Correlação sexo + Trai (qual dos sexos traiu mais) sexo_traicao_sim = {} for i in df.sexo: ses = np.count_nonzero((df.sexo == i) & (df.jatraiu == 'Sim')) if ses != 0: sexo_traicao_sim[i] = ses sexo_traicao_nao ={} for i in df.sexo: sen = np.count_nonzero((df.sexo == i) & (df.jatraiu == 'Não')) if sen != 0: sexo_traicao_nao[i] = sen #O que você acha sobre traicao ? opn_g = {} for i in df.comovcencaraisso: como = np.count_nonzero(df.comovcencaraisso == i) opn_g[i] = como ''' #Muitos dados para um intel pentium... SKIPED #Correl sexo/jafoitraido sexo_jafoitraido = {} for sexo in df.sexo: for i in df.jafoitraido: jafoi = np.count_nonzero((df.sexo == sexo) & (df.jafoitraido == i)) if jafoi != 0: sexo_jafoitraido[sexo] = jafoi ''' #GRAFICOS def total_pessoas(): exp = pd.DataFrame.from_dict(estados_validos, orient='index') exp.plot(kind='pie', subplots=True, shadow=True, explode=[0,0 ,0.05 ,0 , 0], labeldistance=1.1, autopct='%.1f%%') plt.title('Participações validadas', fontsize=15) plt.suptitle('Não foram obtidos dados significativos\n de outros estados.', y=0.88, fontsize=6) plt.show() def mulhertraida(): dfmulhertraida = pd.DataFrame.from_dict(sexo_jafoitraido, orient='index') def opn_geral(): dfopng = pd.DataFrame.from_dict(opn_g, orient='index') dfopng.plot(kind='pie', subplots=True, shadow=True, explode=[0.05, 0 ,0 ,0 , 0], autopct = '%.1f%%') plt.title('O que as pessoas acham sobre traição ?', size=20) plt.suptitle('**Do total de respostas.', y=0.88, size=12) plt.show() def sexotraicaosim(): dfsts = pd.DataFrame.from_dict(sexo_traicao_sim, orient='index') dfsts.plot(kind='pie', subplots=True, shadow=True, explode= [0, 0.1, 0,0], autopct='%.1f%%') plt.title('Os que já trairam são: ', size=20) plt.suptitle('**Ou opção sexual', y=0.88, size=9) plt.show() def traidores_estado(): dfestadosvalidos = pd.DataFrame.from_dict(estados_validos, orient='index') dfestadosvalidos.columns = ['estado'] dfestado =
pd.DataFrame.from_dict(estado_x_jatraiu, orient='index')
pandas.DataFrame.from_dict
from itertools import groupby, zip_longest from fractions import Fraction from random import sample import json import pandas as pd import numpy as np import music21 as m21 from music21.meter import TimeSignatureException m21.humdrum.spineParser.flavors['JRP'] = True from collections import defaultdict #song has no meter class UnknownPGramType(Exception): def __init__(self, arg): self.arg = arg def __str__(self): return f"Unknown pgram type: {self.arg}." #compute features: def compute_completesmeasure_phrase(seq, ix, start_ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][start_ix]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % seq['features']['beatspermeasure'][ix] == 0 def compute_completesbeat_phrase(seq, ix, start_ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][start_ix]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % 1 == 0 def compute_completesmeasure_song(seq, ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][0]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % seq['features']['beatspermeasure'][ix] == 0 def compute_completesbeat_song(seq, ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][0]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % 1 == 0 #extract IOI in units of beat #IOI_beatfraction[i] is IOI from start of ith note till start of (i+1)th note #for last note: beatfraction is taken #Also to be interpreted as duration of note + duration of following rests (except for rests at end of melody) # #extract beats per measure def extractFeatures(seq_iter, vocalfeatures=True): count = 0 for seq in seq_iter: count += 1 if count % 100 == 0: print(count, end=' ') pairs = zip(seq['features']['beatinsong'],seq['features']['beatinsong'][1:]) #this possibly includes rests IOI_beatfraction = [Fraction(o[1])-Fraction(o[0]) for o in pairs] IOI_beatfraction = [str(bf) for bf in IOI_beatfraction] + [seq['features']['beatfraction'][-1]] seq['features']['IOI_beatfraction'] = IOI_beatfraction beatspermeasure = [m21.meter.TimeSignature(ts).beatCount for ts in seq['features']['timesignature']] seq['features']['beatspermeasure'] = beatspermeasure phrasepos = seq['features']['phrasepos'] phrasestart_ix=[0]*len(phrasepos) for ix in range(1,len(phrasestart_ix)): if phrasepos[ix] < phrasepos[ix-1]: phrasestart_ix[ix] = ix else: phrasestart_ix[ix] = phrasestart_ix[ix-1] seq['features']['phrasestart_ix'] = phrasestart_ix endOfPhrase = [x[1]<x[0] for x in zip(phrasepos, phrasepos[1:])] + [True] seq['features']['endOfPhrase'] = endOfPhrase cm_p = [compute_completesmeasure_phrase(seq, ix, phrasestart_ix[ix]) for ix in range(len(phrasepos))] cb_p = [compute_completesbeat_phrase(seq, ix, phrasestart_ix[ix]) for ix in range(len(phrasepos))] cm_s = [compute_completesmeasure_song(seq, ix) for ix in range(len(phrasepos))] cb_s = [compute_completesbeat_song(seq, ix) for ix in range(len(phrasepos))] seq['features']['completesmeasure_phrase'] = cm_p seq['features']['completesbeat_phrase'] = cb_p seq['features']['completesmeasure_song'] = cm_s seq['features']['completesbeat_song'] = cb_s if vocalfeatures: #move lyric features to end of melisma: #rhymes, rhymescontentwords, wordstress, noncontentword, wordend #and compute rhyme_noteoffset and rhyme_beatoffset if 'melismastate' in seq['features'].keys(): #vocal? lyrics = seq['features']['lyrics'] phoneme = seq['features']['phoneme'] melismastate = seq['features']['melismastate'] rhymes = seq['features']['rhymes'] rhymescontentwords = seq['features']['rhymescontentwords'] wordend = seq['features']['wordend'] noncontentword = seq['features']['noncontentword'] wordstress = seq['features']['wordstress'] rhymes_endmelisma, rhymescontentwords_endmelisma = [], [] wordend_endmelisma, noncontentword_endmelisma, wordstress_endmelisma = [], [], [] lyrics_endmelisma, phoneme_endmelisma = [], [] from_ix = 0 inmelisma = False for ix in range(len(phrasepos)): if melismastate[ix] == 'start': from_ix = ix inmelisma = True if melismastate[ix] == 'end': if not inmelisma: from_ix = ix inmelisma = False rhymes_endmelisma.append(rhymes[from_ix]) rhymescontentwords_endmelisma.append(rhymescontentwords[from_ix]) wordend_endmelisma.append(wordend[from_ix]) noncontentword_endmelisma.append(noncontentword[from_ix]) wordstress_endmelisma.append(wordstress[from_ix]) lyrics_endmelisma.append(lyrics[from_ix]) phoneme_endmelisma.append(phoneme[from_ix]) else: rhymes_endmelisma.append(False) rhymescontentwords_endmelisma.append(False) wordend_endmelisma.append(False) noncontentword_endmelisma.append(False) wordstress_endmelisma.append(False) lyrics_endmelisma.append(None) phoneme_endmelisma.append(None) seq['features']['rhymes_endmelisma'] = rhymes_endmelisma seq['features']['rhymescontentwords_endmelisma'] = rhymescontentwords_endmelisma seq['features']['wordend_endmelisma'] = wordend_endmelisma seq['features']['noncontentword_endmelisma'] = noncontentword_endmelisma seq['features']['wordstress_endmelisma'] = wordstress_endmelisma seq['features']['lyrics_endmelisma'] = lyrics_endmelisma seq['features']['phoneme_endmelisma'] = phoneme_endmelisma #compute rhyme_noteoffset and rhyme_beatoffset rhyme_noteoffset = [0] rhyme_beatoffset = [0.0] previous = 0 previousbeat = float(Fraction(seq['features']['beatinsong'][0])) for ix in range(1,len(rhymescontentwords_endmelisma)): if rhymescontentwords_endmelisma[ix-1]: #previous rhymes previous = ix previousbeat = float(Fraction(seq['features']['beatinsong'][ix])) rhyme_noteoffset.append(ix - previous) rhyme_beatoffset.append(float(Fraction(seq['features']['beatinsong'][ix])) - previousbeat) seq['features']['rhymescontentwords_noteoffset'] = rhyme_noteoffset seq['features']['rhymescontentwords_beatoffset'] = rhyme_beatoffset else: #vocal features requested, but not present. #skip melody continue #Or do this? if False: length = len(phrasepos) seq['features']['rhymes_endmelisma'] = [None] * length seq['features']['rhymescontentwords_endmelisma'] = [None] * length seq['features']['wordend_endmelisma'] = [None] * length seq['features']['noncontentword_endmelisma'] = [None] * length seq['features']['wordstress_endmelisma'] = [None] * length seq['features']['lyrics_endmelisma'] = [None] * length seq['features']['phoneme_endmelisma'] = [None] * length yield seq class NoFeaturesError(Exception): def __init__(self, arg): self.args = arg class NoTrigramsError(Exception): def __init__(self, arg): self.args = arg def __str__(self): return repr(self.value) #endix is index of last note + 1 def computeSumFractions(fractions, startix, endix): res = 0.0 for fr in fractions[startix:endix]: res = res + float(Fraction(fr)) return res #make groups of indices with the same successive pitch, but (optionally) not crossing phrase boundaries <- 20200331 crossing phrase boundaries should be allowed (contourfourth) #returns tuples (ix of first note in group, ix of last note in group + 1) #crossPhraseBreak=False splits on phrase break. N.B. Is Using GroundTruth! def breakpitchlist(midipitch, phrase_ix, crossPhraseBreak=False): res = [] if crossPhraseBreak: for _, g in groupby( enumerate(midipitch), key=lambda x:x[1]): glist = list(g) res.append( (glist[0][0], glist[-1][0]+1) ) else: #N.B. This uses the ground truth for _, g in groupby( enumerate(zip(midipitch,phrase_ix)), key=lambda x:(x[1][0],x[1][1])): glist = list(g) res.append( (glist[0][0], glist[-1][0]+1) ) return res #True if no phrase end at first or second item (span) in the trigram #trigram looks like ((8, 10), (10, 11), (11, 12)) def noPhraseBreak(tr, endOfPhrase): return not ( ( True in endOfPhrase[tr[0][0]:tr[0][1]] ) or \ ( True in endOfPhrase[tr[1][0]:tr[1][1]] ) ) #pgram_type : "pitch", "note" def extractPgramsFromCorpus(corpus, pgram_type="pitch", startat=0, endat=None): pgrams = {} arfftype = {} for ix, seq in enumerate(corpus): if endat is not None: if ix >= endat: continue if ix < startat: continue if not ix%100: print(ix, end=' ') songid = seq['id'] try: pgrams[songid], arfftype_new = extractPgramsFromMelody(seq, pgram_type=pgram_type) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'interval', newname='intervalsize', typeconv=lambda x: abs(int(x))) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'interval', newname='intervaldir', typeconv=np.sign) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'diatonicpitch', typeconv=int) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'VosHarmony', typeconv=int) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'beatstrength', typeconv=float) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'IOIbeatfraction', typeconv=float) if 'melismastate' in seq['features'].keys(): _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'wordstress', typeconv=int) if 'informationcontent' in seq['features'].keys(): _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'informationcontent', typeconv=float) except NoFeaturesError: print(songid, ": No features extracted.") except NoTrigramsError: print(songid, ": No trigrams extracted") #if ix > startat: # if arfftype.keys() != arfftype_new.keys(): # print("Warning: Melodies have different feature sets.") # print(list(zip_longest(arfftype.keys(), arfftype_new.keys()))) #Keep largest set of features possible. N.B. no guarantee that all features in arfftype are in each sequence. arfftype.update(arfftype_new) #concat melodies pgrams = pd.concat([v for v in pgrams.values()]) return pgrams, arfftype def extractPgramsFromMelody(seq, pgram_type, skipPhraseCrossing=False): # some aliases scaledegree = seq['features']['scaledegree'] endOfPhrase = seq['features']['endOfPhrase'] midipitch = seq['features']['midipitch'] phrase_ix = seq['features']['phrase_ix'] if pgram_type == "pitch": event_spans = breakpitchlist(midipitch, phrase_ix) #allow pitches to cross phrase break elif pgram_type == "note": event_spans = list(zip(range(len(scaledegree)),range(1,len(scaledegree)+1))) else: raise UnknownPGramType(pgram_type) # make trigram of spans event_spans = event_spans + [(None, None), (None, None)] pgram_span_ixs = list(zip(event_spans,event_spans[1:],event_spans[2:],event_spans[3:],event_spans[4:])) # If skipPhraseCrossing prune trigrams crossing phrase boundaries. WHY? #Why actually? e.g. kindr154 prhases of 2 pitches if skipPhraseCrossing: pgram_span_ixs = [ixs for ixs in pgram_span_ixs if noPhraseBreak(ixs,endOfPhrase)] if len(pgram_span_ixs) == 0: raise NoTrigramsError(seq['id']) # create dataframe with pgram names as index pgram_ids = [seq["id"]+'_'+str(ixs[0][0]).zfill(3) for ixs in pgram_span_ixs] pgrams = pd.DataFrame(index=pgram_ids) pgrams['ix0_0'] = pd.array([ix[0][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix0_1'] = pd.array([ix[0][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix1_0'] = pd.array([ix[1][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix1_1'] = pd.array([ix[1][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix2_0'] = pd.array([ix[2][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix2_1'] = pd.array([ix[2][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix3_0'] = pd.array([ix[3][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix3_1'] = pd.array([ix[3][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix4_0'] = pd.array([ix[4][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix4_1'] =
pd.array([ix[4][1] for ix in pgram_span_ixs], dtype="Int16")
pandas.array
""" Download, transform and simulate various datasets. """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: MIT from os.path import join from re import sub from collections import Counter from itertools import product from urllib.parse import urljoin from string import ascii_lowercase from zipfile import ZipFile from io import BytesIO, StringIO from sqlite3 import connect from scipy.io import loadmat import io from rich.progress import track import requests import numpy as np import pandas as pd from sklearn.utils import check_X_y from imblearn.datasets import make_imbalance from research.utils import img_array_to_pandas UCI_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/" KEEL_URL = "http://sci2s.ugr.es/keel/keel-dataset/datasets/imbalanced/" GIC_URL = "http://www.ehu.eus/ccwintco/uploads/" OPENML_URL = "https://www.openml.org/data/get_csv/" FETCH_URLS = { "breast_tissue": urljoin(UCI_URL, "00192/BreastTissue.xls"), "ecoli": urljoin(UCI_URL, "ecoli/ecoli.data"), "eucalyptus": urljoin(OPENML_URL, "3625/dataset_194_eucalyptus.arff"), "glass": urljoin(UCI_URL, "glass/glass.data"), "haberman": urljoin(UCI_URL, "haberman/haberman.data"), "heart": urljoin(UCI_URL, "statlog/heart/heart.dat"), "iris": urljoin(UCI_URL, "iris/bezdekIris.data"), "libras": urljoin(UCI_URL, "libras/movement_libras.data"), "liver": urljoin(UCI_URL, "liver-disorders/bupa.data"), "pima": "https://gist.githubusercontent.com/ktisha/c21e73a1bd1700294ef790c56c8aec1f" "/raw/819b69b5736821ccee93d05b51de0510bea00294/pima-indians-diabetes.csv", "vehicle": urljoin(UCI_URL, "statlog/vehicle/"), "wine": urljoin(UCI_URL, "wine/wine.data"), "new_thyroid_1": urljoin( urljoin(KEEL_URL, "imb_IRlowerThan9/"), "new-thyroid1.zip" ), "new_thyroid_2": urljoin( urljoin(KEEL_URL, "imb_IRlowerThan9/"), "new-thyroid2.zip" ), "cleveland": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p2/"), "cleveland-0_vs_4.zip" ), "led": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p2/"), "led7digit-0-2-4-5-6-7-8-9_vs_1.zip" ), "page_blocks_1_3": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p1/"), "page-blocks-1-3_vs_4.zip" ), "vowel": urljoin(urljoin(KEEL_URL, "imb_IRhigherThan9p1/"), "vowel0.zip"), "yeast_1": urljoin(urljoin(KEEL_URL, "imb_IRlowerThan9/"), "yeast1.zip"), "banknote_authentication": urljoin( UCI_URL, "00267/data_banknote_authentication.txt" ), "arcene": urljoin(UCI_URL, "arcene/"), "audit": urljoin(UCI_URL, "00475/audit_data.zip"), "spambase": urljoin(UCI_URL, "spambase/spambase.data"), "parkinsons": urljoin(UCI_URL, "parkinsons/parkinsons.data"), "ionosphere": urljoin(UCI_URL, "ionosphere/ionosphere.data"), "breast_cancer": urljoin(UCI_URL, "breast-cancer-wisconsin/wdbc.data"), "adult": urljoin(UCI_URL, "adult/adult.data"), "abalone": urljoin(UCI_URL, "abalone/abalone.data"), "acute": urljoin(UCI_URL, "acute/diagnosis.data"), "annealing": urljoin(UCI_URL, "annealing/anneal.data"), "census": urljoin(UCI_URL, "census-income-mld/census-income.data.gz"), "contraceptive": urljoin(UCI_URL, "cmc/cmc.data"), "covertype": urljoin(UCI_URL, "covtype/covtype.data.gz"), "credit_approval": urljoin(UCI_URL, "credit-screening/crx.data"), "dermatology": urljoin(UCI_URL, "dermatology/dermatology.data"), "echocardiogram": urljoin(UCI_URL, "echocardiogram/echocardiogram.data"), "flags": urljoin(UCI_URL, "flags/flag.data"), "heart_disease": [ urljoin(UCI_URL, "heart-disease/processed.cleveland.data"), urljoin(UCI_URL, "heart-disease/processed.hungarian.data"), urljoin(UCI_URL, "heart-disease/processed.switzerland.data"), urljoin(UCI_URL, "heart-disease/processed.va.data"), ], "hepatitis": urljoin(UCI_URL, "hepatitis/hepatitis.data"), "german_credit": urljoin(UCI_URL, "statlog/german/german.data"), "thyroid": urljoin(UCI_URL, "thyroid-disease/thyroid0387.data"), "first_order_theorem": urljoin(OPENML_URL, "1587932/phpPbCMyg"), "gas_drift": urljoin(OPENML_URL, "1588715/phpbL6t4U"), "autouniv_au7": urljoin(OPENML_URL, "1593748/phpmRPvKy"), "autouniv_au4": urljoin(OPENML_URL, "1593744/phpiubDlf"), "mice_protein": urljoin(OPENML_URL, "17928620/phpchCuL5"), "steel_plates": urljoin(OPENML_URL, "18151921/php5s7Ep8"), "cardiotocography": urljoin(OPENML_URL, "1593756/phpW0AXSQ"), "waveform": urljoin(OPENML_URL, "60/dataset_60_waveform-5000.arff"), "volkert": urljoin(OPENML_URL, "19335689/file1c556e3db171.arff"), "asp_potassco": urljoin(OPENML_URL, "21377447/file18547f421393.arff"), "wine_quality": urljoin(OPENML_URL, "4965268/wine-quality-red.arff"), "mfeat_zernike": urljoin(OPENML_URL, "22/dataset_22_mfeat-zernike.arff"), "gesture_segmentation": urljoin(OPENML_URL, "1798765/phpYLeydd"), "texture": urljoin(OPENML_URL, "4535764/phpBDgUyY"), "usps": urljoin(OPENML_URL, "19329737/usps.arff"), "japanese_vowels": urljoin(OPENML_URL, "52415/JapaneseVowels.arff"), "pendigits": urljoin(OPENML_URL, "32/dataset_32_pendigits.arff"), "image_segmentation": urljoin(OPENML_URL, "18151937/phpyM5ND4"), "baseball": urljoin(OPENML_URL, "3622/dataset_189_baseball.arff"), "indian_pines": [ urljoin(GIC_URL, "2/22/Indian_pines.mat"), urljoin(GIC_URL, "c/c4/Indian_pines_gt.mat"), ], "salinas": [ urljoin(GIC_URL, "f/f1/Salinas.mat"), urljoin(GIC_URL, "f/fa/Salinas_gt.mat"), ], "salinas_a": [ urljoin(GIC_URL, "d/df/SalinasA.mat"), urljoin(GIC_URL, "a/aa/SalinasA_gt.mat"), ], "pavia_centre": [ urljoin(GIC_URL, "e/e3/Pavia.mat"), urljoin(GIC_URL, "5/53/Pavia_gt.mat"), ], "pavia_university": [ urljoin(GIC_URL, "e/ee/PaviaU.mat"), urljoin(GIC_URL, "5/50/PaviaU_gt.mat"), ], "kennedy_space_center": [ urljoin(GIC_URL, "2/26/KSC.mat"), urljoin(GIC_URL, "a/a6/KSC_gt.mat"), ], "botswana": [ urljoin(GIC_URL, "7/72/Botswana.mat"), urljoin(GIC_URL, "5/58/Botswana_gt.mat"), ], } RANDOM_STATE = 0 class Datasets: """Base class to download and save datasets.""" def __init__(self, names="all"): self.names = names @staticmethod def _modify_columns(data): """Rename and reorder columns of dataframe.""" X, y = data.drop(columns="target"), data.target X.columns = range(len(X.columns)) return pd.concat([X, y], axis=1) def download(self): """Download the datasets.""" if self.names == "all": func_names = [func_name for func_name in dir(self) if "fetch_" in func_name] else: func_names = [ f"fetch_{name}".lower().replace(" ", "_") for name in self.names ] self.content_ = [] for func_name in track(func_names, description="Datasets"): name = func_name.replace("fetch_", "").upper().replace("_", " ") fetch_data = getattr(self, func_name) data = self._modify_columns(fetch_data()) self.content_.append((name, data)) return self def save(self, path, db_name): """Save datasets.""" with connect(join(path, f"{db_name}.db")) as connection: for name, data in self.content_: data.to_sql(name, connection, index=False, if_exists="replace") class ImbalancedBinaryDatasets(Datasets): """Class to download, transform and save binary class imbalanced datasets.""" MULTIPLICATION_FACTORS = [2, 3] @staticmethod def _calculate_ratio(multiplication_factor, y): """Calculate ratio based on IRs multiplication factor.""" ratio = Counter(y).copy() ratio[1] = int(ratio[1] / multiplication_factor) return ratio def _make_imbalance(self, data, multiplication_factor): """Undersample the minority class.""" X_columns = [col for col in data.columns if col != "target"] X, y = check_X_y(data.loc[:, X_columns], data.target) if multiplication_factor > 1.0: sampling_strategy = self._calculate_ratio(multiplication_factor, y) X, y = make_imbalance( X, y, sampling_strategy=sampling_strategy, random_state=RANDOM_STATE ) data = pd.DataFrame(np.column_stack((X, y))) data.iloc[:, -1] = data.iloc[:, -1].astype(int) return data def download(self): """Download the datasets and append undersampled versions of them.""" super(ImbalancedBinaryDatasets, self).download() undersampled_datasets = [] for (name, data), factor in list( product(self.content_, self.MULTIPLICATION_FACTORS) ): ratio = self._calculate_ratio(factor, data.target) if ratio[1] >= 15: data = self._make_imbalance(data, factor) undersampled_datasets.append((f"{name} ({factor})", data)) self.content_ += undersampled_datasets return self def fetch_breast_tissue(self): """Download and transform the Breast Tissue Data Set. The minority class is identified as the `car` and `fad` labels and the majority class as the rest of the labels. http://archive.ics.uci.edu/ml/datasets/breast+tissue """ data = pd.read_excel(FETCH_URLS["breast_tissue"], sheet_name="Data") data = data.drop(columns="Case #").rename(columns={"Class": "target"}) data["target"] = data["target"].isin(["car", "fad"]).astype(int) return data def fetch_ecoli(self): """Download and transform the Ecoli Data Set. The minority class is identified as the `pp` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/ecoli """ data = pd.read_csv(FETCH_URLS["ecoli"], header=None, delim_whitespace=True) data = data.drop(columns=0).rename(columns={8: "target"}) data["target"] = data["target"].isin(["pp"]).astype(int) return data def fetch_eucalyptus(self): """Download and transform the Eucalyptus Data Set. The minority class is identified as the `best` label and the majority class as the rest of the labels. https://www.openml.org/d/188 """ data = pd.read_csv(FETCH_URLS["eucalyptus"]) data = data.iloc[:, -9:].rename(columns={"Utility": "target"}) data = data[data != "?"].dropna() data["target"] = data["target"].isin(["best"]).astype(int) return data def fetch_glass(self): """Download and transform the Glass Identification Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/glass+identification """ data = pd.read_csv(FETCH_URLS["glass"], header=None) data = data.drop(columns=0).rename(columns={10: "target"}) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_haberman(self): """Download and transform the Haberman's Survival Data Set. The minority class is identified as the `1` label and the majority class as the `0` label. https://archive.ics.uci.edu/ml/datasets/Haberman's+Survival """ data = pd.read_csv(FETCH_URLS["haberman"], header=None) data.rename(columns={3: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_heart(self): """Download and transform the Heart Data Set. The minority class is identified as the `2` label and the majority class as the `1` label. http://archive.ics.uci.edu/ml/datasets/statlog+(heart) """ data =
pd.read_csv(FETCH_URLS["heart"], header=None, delim_whitespace=True)
pandas.read_csv
import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from msticpy.analysis.anomalous_sequence import sessionize class TestSessionize(unittest.TestCase): def setUp(self): self.df1 = pd.DataFrame({"UserId": [], "time": [], "operation": []}) self.df1_with_ses_col = pd.DataFrame( {"UserId": [], "time": [], "operation": [], "session_ind": []} ) self.df1_sessionized = pd.DataFrame( { "UserId": [], "time_min": [], "time_max": [], "operation_list": [], "duration": [], "number_events": [], } ) self.df2 = pd.DataFrame( { "UserId": [1, 1, 2, 3, 1, 2, 2], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-06 11:06:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), ], "operation": ["A", "B", "C", "A", "A", "B", "C"], } ) self.df2_with_ses_col_1 = pd.DataFrame( { "UserId": [1, 1, 1, 2, 2, 2, 3], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation": ["A", "B", "A", "C", "B", "C", "A"], "session_ind": [0, 0, 1, 2, 3, 4, 5], } ) self.df2_sessionized_1 = pd.DataFrame( { "UserId": [1, 1, 2, 2, 2, 3], "time_min": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "time_max": [ pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation_list": [["A", "B"], ["A"], ["C"], ["B"], ["C"], ["A"]], "duration": [ pd.to_timedelta(1, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), ], "number_events": [2, 1, 1, 1, 1, 1], } ) self.df2_with_ses_col_2 = pd.DataFrame( { "UserId": [1, 1, 1, 2, 2, 2, 3], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation": ["A", "B", "A", "C", "B", "C", "A"], "session_ind": [0, 0, 1, 2, 3, 3, 4], } ) self.df2_sessionized_2 = pd.DataFrame( { "UserId": [1, 1, 2, 2, 3], "time_min": [ pd.to_datetime("2020-01-03 00:00:00"),
pd.to_datetime("2020-01-03 01:00:00")
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt import numpy as np import smtplib from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import time def send_email(con="你好!"): _user = "<EMAIL>" _pwd = "<PASSWORD>" _to = "<EMAIL>" # 使用MIMEText构造符合smtp协议的header及body msg = MIMEMultipart('related') subject = "以下是今天的报表,请查收!--" + str(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) # # msgRoot['From'] = Header("菜鸟教程", 'utf-8') msg["Subject"] = subject msg["From"] = _user msg["To"] = _to # 可供选择的内容 msgAlternative = MIMEMultipart('alternative') msg.attach(msgAlternative) mail_msg1 = '<p><img src="cid:image1"></p>' mail_msg2 = '<p><img src="cid:image2"></p>' mail_msg3 = '<p><img src="cid:image3"></p>' mail_msg4 = '<p><img src="cid:image4"></p>' mail_msg = mail_msg1 + mail_msg2 + mail_msg3 + mail_msg4 msgAlternative.attach(MIMEText(mail_msg, 'html', 'utf-8')) # 指定图片为当前目录 with open("pic1.png", "rb") as f: msgImage1 = MIMEImage(f.read()) with open("pic2.png", "rb") as f: msgImage2 = MIMEImage(f.read()) with open("pic3.png", "rb") as f: msgImage3 = MIMEImage(f.read()) with open("pic4.png", "rb") as f: msgImage4 = MIMEImage(f.read()) # 定义图片 ID,在 HTML 文本中引用 msgImage1.add_header('Content-ID', '<image1>') msgImage2.add_header('Content-ID', '<image2>') msgImage3.add_header('Content-ID', '<image3>') msgImage4.add_header('Content-ID', '<image4>') msg.attach(msgImage1) msg.attach(msgImage2) msg.attach(msgImage3) msg.attach(msgImage4) s = smtplib.SMTP("smtp.sina.com", 25, timeout=30) # 连接smtp邮件服务器,端口默认是25 s.login(_user, _pwd) # 登陆服务器 s.sendmail(_user, _to, msg.as_string()) # 发送邮件 s.close() def get_pic(): df = pd.read_csv("./count.csv", index_col=None, names=["total"], parse_dates=True, dtype={"total": np.int64}, encoding="utf-8") end_day = str(time.strftime("%Y-%m-%d 00:00:00", time.localtime())) df = df.loc["2018-01-03 00:00:00":end_day] # plt.figure(1) # 显示总量变化 采样频率为1分钟 # 绘图 df.plot() plt.title('Total counts change each minute', color='#123456') plt.savefig("pic1.png") # plt.show() # 降低采样频率 以一小时为单位显示总量变化 a = df.resample('1H').mean() # 绘图 a.plot() # marker="v" 点的形状 plt.title('Total counts change each hour', color='#123456') plt.savefig("pic2.png") # plt.show() # 以一小时为单位显示采集速度 increment = df['total'].diff() dif = pd.DataFrame({"crawl speed": increment}, index=df.index) b = dif.resample('1H').sum() # 绘图 b.plot() plt.title('Crawl speed each day', color='#123456') plt.savefig("pic3.png") # plt.show() # 显示每天采集的量 c = dif.resample('1D').sum() # 绘图 c.plot(kind="bar", figsize=(10, 6)) plt.title('Crawl Data Quantity Of HLJ Spider Each Day', color='#123456') plt.xlabel("DateTime") plt.ylabel("Data Total(row)") plt.ylim(0, 130000) plt.grid(True) plt.text(2, 100000, r'$mu=100, sigma=15$') plt.savefig("pic4.png") # plt.axis([40, 160, 0, 0.03]) # plt.show() def data_li(s): st = "" for i in str(s).split("\n")[1:]: a = "<li>" + i + "</li>" st += a return st def deal_data(): df = pd.read_csv("./count.csv", index_col=None, names=["total"], parse_dates=True, dtype={"total": np.int64}, encoding="utf-8") # 获取今天零点的时间字符串 end_day = str(time.strftime("%Y-%m-%d 00:00:00", time.localtime())) # 获取总数 total = df.iat[-1, -1] s1 = "<li>以下是近期的采集数据报告</li>" s2 = "<li>截自目前采集总数为:%d 条</li>" % total # 获得近10分钟的采集速度 increment = df['total'].diff() recent_status = pd.DataFrame({"Crawl Speed": increment}, index=df.index) s3 = "<li>近10分钟采集速度 (条)</li>" s4 = str(recent_status[-10:]) s4 = data_li(s4) # 获取今日之前每日的采集量 df_standard = df.loc["2018-01-03 00:00:00":end_day] # 生成每分钟速度DF increment = df_standard['total'].diff() df_speed_of_min = pd.DataFrame({"Crawl Speed": increment}, index=df_standard.index) # 构造不同精度DF each_day_speed_sum = df_speed_of_min.resample('1D').sum() each_day_speed_sum["Crawl Speed"] = each_day_speed_sum["Crawl Speed"].astype(np.int64) each_day_speed_sum = each_day_speed_sum.sort_index(axis=0) each_day_speed_mean = df_speed_of_min.resample('1D').mean() each_day_speed_mean["Crawl Speed"] = each_day_speed_mean["Crawl Speed"].astype(np.float32) # 控制台打印时显示两位小数
pd.set_option('precision', 2)
pandas.set_option
# The MIT License (MIT) # Copyright (c) 2021 by the xcube development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from datetime import datetime from dateutil.relativedelta import relativedelta import bisect import copy import itertools import json import logging import math import time import warnings from abc import abstractmethod, ABCMeta from collections.abc import MutableMapping from numcodecs import Blosc from typing import Iterator, Any, List, Dict, Tuple, Callable, Iterable, KeysView, Mapping, Union import numpy as np import pandas as pd from .cciodp import CciOdp from .constants import COMMON_COORD_VAR_NAMES _STATIC_ARRAY_COMPRESSOR_PARAMS = dict(cname='zstd', clevel=1, shuffle=Blosc.SHUFFLE, blocksize=0) _STATIC_ARRAY_COMPRESSOR_CONFIG = dict(id='blosc', **_STATIC_ARRAY_COMPRESSOR_PARAMS) _STATIC_ARRAY_COMPRESSOR = Blosc(**_STATIC_ARRAY_COMPRESSOR_PARAMS) _LOG = logging.getLogger() _TIMESTAMP_FORMAT = "%Y-%m-%dT%H:%M:%S" def _dict_to_bytes(d: Dict): return _str_to_bytes(json.dumps(d, indent=2)) def _str_to_bytes(s: str): return bytes(s, encoding='utf-8') # todo move this to xcube class RemoteChunkStore(MutableMapping, metaclass=ABCMeta): """ A remote Zarr Store. :param data_id: The identifier of the data resource :param cube_params: A mapping containing additional parameters to define the data set. :param observer: An optional callback function called when remote requests are mode: observer(**kwargs). :param trace_store_calls: Whether store calls shall be printed (for debugging). """ def __init__(self, data_id: str, cube_params: Mapping[str, Any] = None, observer: Callable = None, trace_store_calls=False): if not cube_params: cube_params = {} self._variable_names = cube_params.get('variable_names', self.get_all_variable_names()) self._attrs = {} self._observers = [observer] if observer is not None else [] self._trace_store_calls = trace_store_calls self._dataset_name = data_id self._time_ranges = self.get_time_ranges(data_id, cube_params) logging.debug('Determined time ranges') if not self._time_ranges: raise ValueError('Could not determine any valid time stamps') t_array = [s.to_pydatetime() + 0.5 * (e.to_pydatetime() - s.to_pydatetime()) for s, e in self._time_ranges] t_array = np.array(t_array).astype('datetime64[s]').astype(np.int64) t_bnds_array = \ np.array(self._time_ranges).astype('datetime64[s]').astype(np.int64) time_coverage_start = self._time_ranges[0][0] time_coverage_end = self._time_ranges[-1][1] cube_params['time_range'] = (self._extract_time_range_as_strings( cube_params.get('time_range', self.get_default_time_range(data_id)))) self._vfs = {} self._var_name_to_ranges = {} self._ranges_to_indexes = {} self._ranges_to_var_names = {} bbox = cube_params.get('bbox', None) lon_size = -1 lat_size = -1 self._dimension_chunk_offsets = {} self._dimensions = self.get_dimensions() coords_data = self.get_coords_data(data_id) logging.debug('Determined coordinates') coords_data['time'] = {} coords_data['time']['size'] = len(t_array) coords_data['time']['data'] = t_array if 'time_bounds' in coords_data: coords_data.pop('time_bounds') coords_data['time_bnds'] = {} coords_data['time']['size'] = len(t_bnds_array) coords_data['time']['data'] = t_bnds_array sorted_coords_names = list(coords_data.keys()) sorted_coords_names.sort() lat_min_offset = -1 lat_max_offset = -1 lon_min_offset = -1 lon_max_offset = -1 for coord_name in sorted_coords_names: if coord_name == 'time' or coord_name == 'time_bnds': continue coord_attrs = self.get_attrs(coord_name) coord_attrs['_ARRAY_DIMENSIONS'] = coord_attrs['dimensions'] coord_data = coords_data[coord_name]['data'] if bbox is not None and \ (coord_name == 'lat' or coord_name == 'latitude'): if coord_data[0] < coord_data[-1]: lat_min_offset = bisect.bisect_left(coord_data, bbox[1]) lat_max_offset = bisect.bisect_right(coord_data, bbox[3]) else: lat_min_offset = len(coord_data) - \ bisect.bisect_left(coord_data[::-1], bbox[3]) lat_max_offset = len(coord_data) - \ bisect.bisect_right(coord_data[::-1], bbox[1]) coords_data = self._adjust_coord_data(coord_name, lat_min_offset, lat_max_offset, coords_data, coord_attrs) coord_data = coords_data[coord_name]['data'] elif bbox is not None and \ (coord_name == 'lon' or coord_name == 'longitude'): lon_min_offset = bisect.bisect_left(coord_data, bbox[0]) lon_max_offset = bisect.bisect_right(coord_data, bbox[2]) coords_data = self._adjust_coord_data(coord_name, lon_min_offset, lon_max_offset, coords_data, coord_attrs) coord_data = coords_data[coord_name]['data'] elif bbox is not None and \ (coord_name == 'latitude_bounds' or coord_name == 'lat_bounds' or coord_name == 'latitude_bnds' or coord_name == 'lat_bnds'): coords_data = self._adjust_coord_data(coord_name, lat_min_offset, lat_max_offset, coords_data, coord_attrs) coord_data = coords_data[coord_name]['data'] elif bbox is not None and \ (coord_name == 'longitude_bounds' or coord_name == 'lon_bounds' or coord_name == 'longitude_bnds' or coord_name == 'lon_bnds'): coords_data = self._adjust_coord_data(coord_name, lon_min_offset, lon_max_offset, coords_data, coord_attrs) coord_data = coords_data[coord_name]['data'] if len(coord_data) > 0: coord_array = np.array(coord_data) self._add_static_array(coord_name, coord_array, coord_attrs) else: shape = list(coords_data[coord_name]. get('shape', coords_data[coord_name].get('size'))) chunk_size = coords_data[coord_name]['chunkSize'] if not isinstance(chunk_size, List): chunk_size = [chunk_size] encoding = self.get_encoding(coord_name) self._add_remote_array(coord_name, shape, chunk_size, encoding, coord_attrs) time_attrs = { "_ARRAY_DIMENSIONS": ['time'], "units": "seconds since 1970-01-01T00:00:00Z", "calendar": "proleptic_gregorian", "standard_name": "time", "bounds": "time_bnds", } time_bnds_attrs = { "_ARRAY_DIMENSIONS": ['time', 'bnds'], "units": "seconds since 1970-01-01T00:00:00Z", "calendar": "proleptic_gregorian", "standard_name": "time_bnds", } self._add_static_array('time', t_array, time_attrs) self._add_static_array('time_bnds', t_bnds_array, time_bnds_attrs) coordinate_names = [coord for coord in coords_data.keys() if coord not in COMMON_COORD_VAR_NAMES] coordinate_names = ' '.join(coordinate_names) global_attrs = dict( Conventions='CF-1.7', coordinates=coordinate_names, title=data_id, date_created=
pd.Timestamp.now()
pandas.Timestamp.now
import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import pytest from plateau.utils.pandas import ( aggregate_to_lists, concat_dataframes, drop_sorted_duplicates_keep_last, is_dataframe_sorted, mask_sorted_duplicates_keep_last, merge_dataframes_robust, sort_dataframe, ) class TestConcatDataframes: @pytest.fixture(params=[True, False]) def dummy_default(self, request): if request.param: return pd.DataFrame(data={"a": [-2, -3], "b": 1.0}, columns=["a", "b"]) else: return None @pytest.fixture(params=[True, False]) def maybe_iter(self, request): if request.param: return iter else: return list def test_many(self, dummy_default, maybe_iter): dfs = [ pd.DataFrame( data={"a": [0, 1], "b": 1.0}, columns=["a", "b"], index=[10, 11] ), pd.DataFrame( data={"a": [2, 3], "b": 2.0}, columns=["a", "b"], index=[10, 11] ), pd.DataFrame(data={"a": [4, 5], "b": 3.0}, columns=["a", "b"]), ] expected = pd.DataFrame( {"a": [0, 1, 2, 3, 4, 5], "b": [1.0, 1.0, 2.0, 2.0, 3.0, 3.0]}, columns=["a", "b"], ) actual = concat_dataframes(maybe_iter(dfs), dummy_default) pdt.assert_frame_equal(actual, expected) def test_single(self, dummy_default, maybe_iter): df = pd.DataFrame( data={"a": [0, 1], "b": 1.0}, columns=["a", "b"], index=[10, 11] ) actual = concat_dataframes(maybe_iter([df.copy()]), dummy_default)
pdt.assert_frame_equal(actual, df)
pandas.testing.assert_frame_equal
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3}," "s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5, seconds=4) ops = ['__mul__', '__floordiv__', '__pow__', '__rmul__', '__rfloordiv__', '__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 # ## datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 # ## datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 # ## timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] tz = 'US/Eastern' dt1 = Series(date_range('2000-01-01 09:00:00', periods=5, tz=tz), name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min', periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_sub_single_tz(self): # GH12290 s1 = Series([pd.Timestamp('2016-02-10', tz='America/Sao_Paulo')]) s2 = Series([pd.Timestamp('2016-02-08', tz='America/Sao_Paulo')]) result = s1 - s2 expected = Series([Timedelta('2days')]) assert_series_equal(result, expected) result = s2 - s1 expected = Series([
Timedelta('-2days')
pandas.tseries.tdi.Timedelta
#!/usr/bin/env python ONLINE_RETAIL_XLSX = 'OnlineRetail.xlsx' ONLINE_RETAIL_CSV = 'OnlineRetail.csv' ONLINE_RETAIL_JSON = 'OnlineRetail.json' def download_spreadsheet(): print('Starting download_spreadsheet() ...') # support python 2 and 3 try: # python 3 import urllib.request as urlrequest except ImportError: import urllib as urlrequest source_url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00352/Online%20Retail.xlsx" urlrequest.urlretrieve(source_url, ONLINE_RETAIL_XLSX) print('Finished download_spreadsheet() ...') def create_csv(): print('Starting create_csv() ...') import pandas as pd import datetime df = pd.read_excel(ONLINE_RETAIL_XLSX, sheetname='Online Retail') # remove nan customer IDs df = df[pd.notnull(df['CustomerID'])] df['CustomerID'] = df['CustomerID'].astype(int) # remove negative quantities - this also removes non-numeric InvoiceNo's df = df.ix[df['Quantity'] > 0] # Add a line number for each item in an invoice df['LineNo'] = df.groupby(['InvoiceNo']).cumcount()+1 # the dataset starts at approx 6am and finishes at approx 10pm # we want to data to span 24 hours df_AM = df.copy() df_PM = df.copy() df_AM['InvoiceNo'] = (df_AM['InvoiceNo'].astype('str') + '1').astype(int) df_PM['InvoiceNo'] = (df_PM['InvoiceNo'].astype('str') + '2').astype(int) df_PM['InvoiceDate'] = df_PM['InvoiceDate'] + datetime.timedelta(hours=12) df = pd.concat([df_AM, df_PM]) # Sort dataframe df['InvoiceTime'] =
pd.DatetimeIndex(df['InvoiceDate'])
pandas.DatetimeIndex
# -*- coding: utf-8 -*- """ Created on Thu Jun 11 13:38:13 2020 @author: zhanghai """ ''' Input parameters: ticker,interval, test start date, test end date, model name Output : dataframe: initial deposit, gross profit,gross loss, total net profit,profit factor, expected payoff, absolute drawdown, maximal drawdown, relative drawdown, profit trades%, loss trades Entry strategy: -1: close long position and wait; 0: keep current position; 1: create Exit strategy: reverse signal appears; reach stop loss entry-ATR position size control: ATR based,ATR period = 20; ATR multiplier = 1; 2% risk tolerance, nomal value is average of ATR ''' import pandas as pd pd.set_option('mode.chained_assignment', None) import numpy as np import datetime import matplotlib.pyplot as plt import stockstats import sys sys.path.append('../') from uis.calculate_ama import calculate_ama from data_processing.load_data import load_rawdata class AMABackTest(): def __init__(self, etf, start_date, end_date, model_name='AMA',initial_deposit=100000, price_type='open',er_window = 9, slow_window = 20, fast_window = 4): self.ticker = etf self.start_date = start_date self.end_date = end_date self.model_name = model_name self.init_deposit = initial_deposit self.price_type = price_type self.er_window = er_window self.slow_window = slow_window self.fast_window = fast_window self.raw_data = load_rawdata(etf, 'weekly') print("Self.raw",self.raw_data) self.indicators = stockstats.StockDataFrame.retype(self.raw_data.copy()) ama, _, _ = calculate_ama(self.raw_data, self.indicators, self.price_type, self.er_window, self.slow_window, self.fast_window) self.raw_data['ama'] = ama self.report = pd.DataFrame(columns=['position size','total','profit']) def predict(self,cur_date): if self.raw_data.loc[cur_date]['open'] > self.raw_data.loc[cur_date]['ama'] and self.raw_data.loc[cur_date]['close'] > \ self.raw_data.loc[cur_date]['ama']: signal = 1 elif self.raw_data.loc[cur_date]['open'] < self.raw_data.loc[cur_date]['ama'] and self.raw_data.loc[cur_date]['close'] < \ self.raw_data.loc[cur_date]['ama']: signal = -1 else: signal = 0 return signal def up_action(self,cur_date): if self.position == 'empty': self.entry_price = self.raw_data['close'][cur_date] self.entyr_atr = self.indicators['atr'].loc[cur_date] self.position_size = int(self.total_value*0.05/self.entyr_atr) if self.position_size*self.entry_price > self.total_value: self.position_size = int(self.total_value/self.entry_price) df = pd.DataFrame({'position size':self.position_size,'total':self.total_value,'profit':0},index=[cur_date]) self.report = self.report.append(df) self.position = 'long' else: stop_price = self.entry_price - 0.1*self.entyr_atr target_price = self.entry_price * 1.3 if self.raw_data['low'][cur_date] < stop_price < self.raw_data['high'][cur_date]: #sell at stop price profit = round((self.raw_data['high'][cur_date] - self.entry_price)*self.position_size, 2) self.total_value += profit df = pd.DataFrame({'position size':0,'total':self.total_value,'profit':profit},index=[cur_date]) self.report = self.report.append(df) self.position = 'empty' elif self.raw_data['low'][cur_date] < target_price < self.raw_data['high'][cur_date]: #sell at target price profit = round((self.raw_data['low'][cur_date]-self.entry_price)*self.position_size, 2) self.total_value += profit df = pd.DataFrame({'position size':0,'total':self.total_value,'profit':profit},index=[cur_date]) self.report = self.report.append(df) self.position = 'empty' else: #hold the position profit = round((self.raw_data['close'][cur_date]-self.entry_price)*self.position_size, 2) current_value = self.total_value + profit df = pd.DataFrame({'position size':self.position_size,'total':current_value,'profit':0},index=[cur_date]) self.report = self.report.append(df) def down_action(self,cur_date): if self.position == 'long': #sell long position sell_price = self.raw_data['close'][cur_date] profit = round((sell_price-self.entry_price)*self.position_size, 2) self.total_value += profit df = pd.DataFrame({'position size':0,'total':self.total_value,'profit':profit},index=[cur_date]) self.report = self.report.append(df) self.position = 'empty' else: #wait df = pd.DataFrame({'position size':0,'total':self.total_value,'profit':0},index=[cur_date]) self.report = self.report.append(df) def sideway_action(self,cur_date): if self.position == 'long': #maintain long position stop_price = self.entry_price - 0.1 * self.entyr_atr target_price = self.entry_price * 1.3 if self.raw_data['low'][cur_date] < stop_price < self.raw_data['high'][cur_date]: #sell at stop price profit = round((self.raw_data['high'][cur_date] - self.entry_price)*self.position_size, 2) self.total_value += profit df =
pd.DataFrame({'position size':0,'total':self.total_value,'profit':profit},index=[cur_date])
pandas.DataFrame
import enum import numpy as np import pandas as pd import pytest from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Float, Enum from cascade.dismod.db.wrapper import DismodFile, _get_engine, _validate_data from cascade.dismod.db import DismodFileError @pytest.fixture def engine(): return _get_engine(None) @pytest.fixture def base_file(engine): dm_file = DismodFile(engine, {"howdy": float}, {"there": int}) dm_file.make_densities() ages = pd.DataFrame({"age": np.array([6.0, 22.0, 48.0])}) dm_file.age = ages dm_file.time = pd.DataFrame({"time": [1997.0, 2005.0, 2017.0]}) dm_file.integrand = pd.DataFrame({"integrand_name": ["prevalence"]}) return dm_file def test_wrong_type(base_file): ages = pd.DataFrame({"age": np.array(["strings", "for", "ages"])}) base_file.age = ages with pytest.raises(DismodFileError): base_file.flush() def test_is_dirty__initially(base_file): assert base_file._is_dirty("age") def test_is_dirty__after_flush(base_file): base_file.flush() assert not base_file._is_dirty("age") def test_is_dirty__after_modification(base_file): base_file.flush() base_file.age.loc[0, "age"] *= 2 assert base_file._is_dirty("age") def test_is_dirty__on_read(base_file, engine): base_file.flush() dm_file2 = DismodFile(engine, {"howdy": float}, {"there": int}) dm_file2.age assert not dm_file2._is_dirty("age") def test_is_dirty__not_yet_read(base_file): assert not base_file._is_dirty("foo_bar") def test_dmfile_read(base_file, engine): ages = base_file.age times = base_file.time base_file.flush() dm_file2 = DismodFile(engine, {"howdy": float}, {"there": int}) assert ages.equals(dm_file2.age) assert times.equals(dm_file2.time) def test_reading_modified_columns(base_file, engine): base_file.flush() base_file.age.loc[0, "age"] *= 2 ages = base_file.age.copy() base_file.flush() dm_file2 = DismodFile(engine, {"howdy": float}, {"there": int}) assert ages.equals(dm_file2.age) DummyBase = declarative_base() class DummyTable(DummyBase): __tablename__ = "test_table" primary_key_column = Column(Integer(), primary_key=True) integer_column = Column(Integer()) float_column = Column(Float()) nonnullable_column = Column(Integer(), nullable=False) string_column = Column(String()) enum_column = Column(Enum(enum.Enum("Bee", "bumble honey carpenter wool_carder"))) def test_validate_data__happy_path(): data = pd.DataFrame( { "integer_column": [1, 2, 3], "float_column": [1.0, 2.0, 3.0], "string_column": ["a", "b", "c"], "enum_column": ["bumble", "honey", "carpenter"], "nonnullable_column": [1, 2, 3], } ) _validate_data(DummyTable.__table__, data) def test_validate_data__bad_integer(): data = pd.DataFrame({"integer_column": [1.0, 2.0, 3.0], "nonnullable_column": [1, 2, 3]}) with pytest.raises(DismodFileError) as excinfo: _validate_data(DummyTable.__table__, data) assert "integer_column" in str(excinfo.value) def test_validate_data__bad_float(): data = pd.DataFrame({"float_column": ["1.0", "2.0", "3.0"], "nonnullable_column": [1, 2, 3]}) with pytest.raises(DismodFileError) as excinfo: _validate_data(DummyTable.__table__, data) assert "float_column" in str(excinfo.value) def test_validate_data__bad_string(): data = pd.DataFrame({"string_column": [1, 2, 3], "nonnullable_column": [1, 2, 3]}) with pytest.raises(DismodFileError) as excinfo: _validate_data(DummyTable.__table__, data) assert "string_column" in str(excinfo.value) def test_validate_data__bad_enum(): data =
pd.DataFrame({"enum_column": [1, 2, 3], "nonnullable_column": [1, 2, 3]})
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- import pandas as pd import sys from pyfaidx import Faidx from clonesig.data_loader import PAT_LIST, DataWriter import pathlib from scipy.stats import beta import numpy as np tumor = sys.argv[1] seq_depth = sys.argv[2] """ tumor = "T2" seq_depth = "8X" #sed 's/^\#\#/\&/g' data/salcedo_dream_challenge/MuTect_inputs/mutect_filtered_T2.T.16XnoXY.vcf > data/salcedo_dream_challenge/MuTect_inputs/mutect_filtered_T2.T.16XnoXY_clean.vcf """ np.random.seed(int(seq_depth[:-1])*int(tumor[1])) def get_context(x): match_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'} if x['REF'] in ('C', 'T'): context = x['triplet'][0] + '[' + x['REF'] + '>' + x['ALT'] + ']' + \ x['triplet'][2] else: context = match_dict[x['triplet'][2]] + '[' + match_dict[x['REF']] +\ '>' + match_dict[x['ALT']] + ']' + match_dict[x['triplet'][0]] return context vcf_filename = 'data/salcedo_dream_challenge/MuTect_inputs/mutect_filtered_{}.T.{}noXY_clean.vcf'.format(tumor, seq_depth) cnv_filename = 'data/salcedo_dream_challenge/MuTect_inputs/{}-{}_refit_subclones_noXY.txt'.format(tumor, seq_depth) purity_filename = 'data/salcedo_dream_challenge/MuTect_inputs/{}-{}_refit_cellularity_ploidy.txt'.format(tumor, seq_depth) ref_fasta = 'external_data/hs37d5.fa' fa = Faidx(ref_fasta) # downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence vcf_data =
pd.read_csv(vcf_filename, sep='\t', comment='&')
pandas.read_csv
from linearmodels.compat.statsmodels import Summary import warnings import numpy as np from numpy.linalg import pinv from numpy.testing import assert_allclose, assert_equal import pandas as pd from pandas.testing import assert_series_equal import pytest import scipy.linalg from statsmodels.tools.tools import add_constant from linearmodels.datasets import card from linearmodels.iv import IV2SLS, IVGMM, IVGMMCUE, IVLIML from linearmodels.iv.model import _OLS from linearmodels.iv.results import compare from linearmodels.shared.hypotheses import WaldTestStatistic from linearmodels.shared.utility import AttrDict @pytest.fixture(scope="module") def data(): n, q, k, p = 1000, 2, 5, 3 rs = np.random.RandomState(12345) clusters = rs.randint(0, 10, n) rho = 0.5 r = scipy.linalg.toeplitz([1] + (rho + np.linspace(0.1, -0.1, 8)).tolist()) r[-1, 2:] = 0 r[2:, -1] = 0 r[-1, -1] = 1 v = rs.multivariate_normal(np.zeros(r.shape[0]), r, n) x = v[:, :k] z = v[:, k : k + p] e = v[:, [-1]] params = np.arange(1, k + 1) / k params = params[:, None] y = x @ params + e exog_instr = np.column_stack((x[:, q:], z)) xhat = exog_instr @ np.linalg.pinv(exog_instr) @ x nobs, nvar = x.shape s2 = e.T @ e / nobs s2_debiased = e.T @ e / (nobs - nvar) v = xhat.T @ xhat / nobs vinv = np.linalg.inv(v) kappa = 0.99 vk = (x.T @ x * (1 - kappa) + kappa * xhat.T @ xhat) / nobs return AttrDict( nobs=nobs, e=e, x=x, y=y, z=z, xhat=xhat, params=params, s2=s2, s2_debiased=s2_debiased, clusters=clusters, nvar=nvar, v=v, vinv=vinv, vk=vk, kappa=kappa, dep=y, exog=x[:, q:], endog=x[:, :q], instr=z, ) def get_all(v): attr = [d for d in dir(v) if not d.startswith("_")] for a in attr: val = getattr(v, a) if a in ("conf_int", "durbin", "wu_hausman", "c_stat"): val() def test_rank_deficient_exog_exception(data): exog = data.exog.copy() exog[:, :2] = 1 with pytest.raises(ValueError): IV2SLS(data.dep, exog, data.endog, data.instr) def test_rank_deficient_endog_exception(data): endog = data.endog.copy() endog[:, :2] = 1 with pytest.raises(ValueError): IV2SLS(data.dep, data.exog, endog, data.instr) with pytest.raises(ValueError): IV2SLS(data.dep, data.exog, data.exog, data.instr) def test_invalid_weights_exception(data): weights = np.zeros_like(data.dep) with pytest.raises(ValueError): IV2SLS(data.dep, data.exog, data.endog, data.instr, weights=weights) def test_rank_deficient_instr_exception(data): instr = data.instr.copy() instr[:, :2] = 1 with pytest.raises(ValueError): IV2SLS(data.dep, data.exog, data.endog, instr) with pytest.raises(ValueError): IV2SLS(data.dep, data.exog, data.endog, data.exog) def test_kappa_error_exception(data): with pytest.raises(ValueError): IVLIML(data.dep, data.exog, data.endog, data.instr, kappa=np.array([1])) def test_fuller_error_exception(data): with pytest.raises(ValueError): IVLIML(data.dep, data.exog, data.endog, data.instr, fuller=np.array([1])) def test_kappa_fuller_warning_exception(data): with warnings.catch_warnings(record=True) as w: IVLIML(data.dep, data.exog, data.endog, data.instr, kappa=0.99, fuller=1) assert len(w) == 1 def test_string_cat_exception(data): instr = data.instr.copy() n = data.instr.shape[0] cat = pd.Series(["a"] * (n // 2) + ["b"] * (n // 2)) instr = pd.DataFrame(instr) instr["cat"] = cat res = IV2SLS(data.dep, data.exog, data.endog, instr).fit(cov_type="unadjusted") instr["cat"] = cat.astype("category") res_cat = IV2SLS(data.dep, data.exog, data.endog, instr).fit(cov_type="unadjusted")
assert_series_equal(res.params, res_cat.params)
pandas.testing.assert_series_equal
#!/usr/bin/env python3 import glob import os import pprint import traceback import pandas as pd from tensorboard.backend.event_processing.event_accumulator import EventAccumulator # Extraction function def tflog2pandas(path: str) -> pd.DataFrame: """convert single tensorflow log file to pandas DataFrame Parameters ---------- path : str path to tensorflow log file Returns ------- pd.DataFrame converted dataframe """ DEFAULT_SIZE_GUIDANCE = { "compressedHistograms": 1, "images": 1, "scalars": 0, # 0 means load all "histograms": 1, } runlog_data = pd.DataFrame({"metric": [], "value": [], "step": []}) try: event_acc = EventAccumulator(path, DEFAULT_SIZE_GUIDANCE) event_acc.Reload() tags = event_acc.Tags()["scalars"] event_list = event_acc.Scalars('Eval_Reward/Mean') values = list(map(lambda x: x.value, event_list)) step = list(map(lambda x: x.step, event_list)) r = {"metric": ['Eval_Reward/Mean'] * len(step), "value": values, "step": step} r =
pd.DataFrame(r)
pandas.DataFrame
import pandas as pd import numpy as np from tkinter import * from tkinter import filedialog # Importing Chen Values chen_67_to_69 = pd.read_csv('chcof1.id', index_col=0) chen_70_to_74 =
pd.read_csv('chcof2.id', index_col=0)
pandas.read_csv
from __future__ import division # import libraries from datetime import datetime, timedelta import pandas as pd # %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns import plotly as py import plotly.offline as pyoff import plotly.graph_objs as go #inititate Plotly pyoff.init_notebook_mode() #it generates offline graph in jupyter notebook #load our data from CSV # tx_data = pd.read_csv("data.csv") tx_data = pd.read_csv('data.csv',header=0,encoding = 'unicode_escape') #read csv file and other than ascii mode enabled extra type of characters also tx_data.head(10) #it prints #convert the string date field to datetime tx_data['InvoiceDate'] =
pd.to_datetime(tx_data['InvoiceDate'])
pandas.to_datetime
# Bereken het percentuele verschil tov een x-aantal dagen ervoor import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sn import platform import datetime import datetime as dt import streamlit as st from streamlit import caching from helpers import * # cell_background, select_period, save_df, drop_columns from datetime import datetime from matplotlib.backends.backend_agg import RendererAgg _lock = RendererAgg.lock def week_to_week(df, column_): column_ = column_ if type(column_) == list else [column_] newcolumns = [] newcolumns2 = [] for c in column_: newname = str(c) + "_weekdiff" newname2 = str(c) + "_weekdiff_index" newcolumns.append(newname) newcolumns2.append(newname2) df[newname] = np.nan df[newname2] = np.nan for n in range(7, len(df)): vorige_week = df.iloc[n - 7][c] nu = df.iloc[n][c] waarde = round((((nu - vorige_week) / vorige_week) * 100), 2) waarde2 = round((((nu) / vorige_week) * 100), 2) df.at[n, newname] = waarde df.at[n, newname2] = waarde2 return df, newcolumns, newcolumns2 @st.cache(ttl=60 * 60 * 24) def get_data_casus_landelijk(): if platform.processor() != "": url1 = "C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\input\\COVID-19_casus_landelijk.csv" url1 = "C:/Users/rcxsm/Documents/phyton_scripts/covid19_seir_models/input/COVID-19_casus_landelijk.csv" else: url1= "https://data.rivm.nl/covid-19/COVID-19_casus_landelijk.csv" df = pd.read_csv(url1, delimiter=";", low_memory=False) df["Date_statistics"] = pd.to_datetime(df["Date_statistics"], format="%Y-%m-%d") df = df.groupby(["Date_statistics", "Agegroup"], sort=True).count().reset_index() return df def select_period(df, field, show_from, show_until): """Shows two inputfields (from/until and Select a period in a df (helpers.py). Args: df (df): dataframe field (string): Field containing the date Returns: df: filtered dataframe """ if show_from is None: show_from = "2021-1-1" if show_until is None: show_until = "2030-1-1" #"Date_statistics" mask = (df[field].dt.date >= show_from) & (df[field].dt.date <= show_until) df = df.loc[mask] df = df.reset_index() return df def calculate_fraction(df): nr_of_columns = len (df.columns) nr_of_rows = len(df) column_list = df.columns.tolist() max_waarde = 0 data = [] waardes = [] # 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90+ pop_ = [1756000, 1980000, 2245000, 2176000, 2164000, 2548000, 2141000, 1615000, 709000, 130000] # tot 17 464 000 fraction = [0.10055, 0.11338, 0.12855, 0.12460, 0.12391, 0.14590, 0.12260, 0.09248, 0.0405978, 0.0074438846] for r in range(nr_of_rows): row_data = [] for c in range(0,nr_of_columns): if c==0 : row_data.append( df.iat[r,c]) else: #try waarde = df.iat[r,c]/pop_[c-1] * 100_000 row_data.append(waarde) waardes.append(waarde) if waarde > max_waarde: max_waarde = waarde #except: # date # row_data.append( df.iat[r,c]) # pass data.append(row_data) df_fractie = pd.DataFrame(data, columns=column_list) top_waarde = 0.975*max_waarde return df_fractie, top_waarde def save_df(df, name): """ _ _ _ """ OUTPUT_DIR = ( "C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\output\\" ) name_ = OUTPUT_DIR + name + ".csv" compression_opts = dict(method=None, archive_name=name_) df.to_csv(name_, index=False, compression=compression_opts) print("--- Saving " + name_ + " ---") def smooth(df, columnlist): columnlist_sma_df = [] columnlist_df= [] columnlist_names= [] columnlist_ages = [] # 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ #pop_ = [1756000, 1980000, 2245000, 2176000, 2164000, 2548000, 2141000, 1615000, 839000] #fraction = [0.10055, 0.11338, 0.12855, 0.12460, 0.12391, 0.14590, 0.12260, 0.09248, 0.04804] for c in columnlist: new_column = c + "_SMA" #new_column = c # print("Generating " + new_column + "...") df[new_column] = ( df.iloc[:, df.columns.get_loc(c)].rolling(window=WDW2, center=True).mean() ) columnlist_sma_df.append(df[new_column]) columnlist_df.append(df[c]) columnlist_names.append(new_column) columnlist_ages.append(c) # alleen de leeftijden, voor de legenda return df,columnlist_df, columnlist_sma_df,columnlist_names,columnlist_ages, columnlist def drop_columns(df, what_to_drop): """ drop columns. what_to_drop : list """ if what_to_drop != None: what_to_drop = [what_to_drop] print("dropping " + str(what_to_drop)) for d in what_to_drop: df = df.drop(columns=[d], axis=1) return df def convert(list): return tuple(list) def make_age_graph(df, d, columns_original, legendanames, titel): if d is None: st.warning("Choose ages to show") st.stop() with _lock: color_list = [ "#3e5c76", # blue 6, "#ff6666", # reddish 0 "#ac80a0", # purple 1 "#3fa34d", # green 2 "#EAD94C", # yellow 3 "#EFA00B", # orange 4 "#7b2d26", # red 5 "#e49273" , # dark salmon 7 "#1D2D44", # 8 "#02A6A8", "#4E9148", "#F05225", "#024754", "#FBAA27", "#302823", "#F07826", ] # df = agg_ages(df) fig1y, ax = plt.subplots() for i, d_ in enumerate(d): #if d_ == "TOTAAL_index": if d_[:6] == "TOTAAL": ax.plot(df["Date_of_statistics_week_start"], df[d_], color = color_list[0], label = columns_original[i], linestyle="--", linewidth=2) ax.plot(df["Date_of_statistics_week_start"], df[columns_original[i]], color = color_list[0], alpha =0.5, linestyle="dotted", label = '_nolegend_', linewidth=2) else: ax.plot(df["Date_of_statistics_week_start"], df[d_], color = color_list[i+1], label = columns_original[i]) ax.plot(df["Date_of_statistics_week_start"], df[columns_original[i]], color = color_list[i+1], alpha =0.5, linestyle="dotted", label = '_nolegend_' ) plt.legend() if y_zero == True: ax.set_ylim(bottom = 0) titel_ = titel + " (weekcijfers)" plt.title(titel_) plt.xticks(rotation=270) ax.text( 1, 1.1, "Created by <NAME> — @rcsmit", transform=ax.transAxes, fontsize="xx-small", va="top", ha="right", ) # plt.tight_layout() # plt.show() st.pyplot(fig1y) def show_age_graph (df,d, titel): df, columnlist_df, columnlist_sma_df, columnlist_sma, columnlist_ages_legenda, columnlist_original = smooth(df, d) make_age_graph(df, columnlist_sma, columnlist_original, columnlist_ages_legenda, titel) def agg_ages(df): # make age groups df["0-29"] = df["0-14"] + df["15-19"] + df["20-24"] + df["25-29"] df["30-49"] = df["30-34"] + df["35-39"] + df["40-44"] + df["45-49"] df["50-69"] = df["50-54"] + df["55-59"] + df["60-64"] + df["65-69"] df["70-89"] = df["70-74"] + df["75-79"] + df["80-84"] + df["85-89"] # # extra groep df["30-69"] = df["30-34"] + df["35-39"] + df["40-44"] + df["45-49"] + df["50-54"] + df["55-59"] + df["60-64"] + df["65-69"] # # indeling RIVM df["0-39"] = df["0-14"] + df["15-19"] + df["20-24"] + df["25-29"] + df["30-34"] + df["35-39"] df["40-59"] = df["40-44"] + df["45-49"] + df["50-54"] + df["55-59"] df["60-79"] = df["60-64"] + df["65-69"] + df["70-74"] + df["75-79"] df["80+"] = df["80-84"] + df["85-89"] + df["90+"] # CORRESPONDEREND MET CASUS LANDELIJK # indeling RIVM df["0-19"] = df["0-14"] + df["15-19"] df["20-29"] = df["20-24"] + df["25-29"] df["30-39"] = df["30-34"] + df["35-39"] df["40-49"] = df["40-44"] + df["45-49"] df["50-59"] = df["50-54"] + df["55-59"] df["60-69"] = df["60-64"] + df["65-69"] df["70-79"] = df["70-74"] + df["75-79"] df["80-89"] = df["80-84"] + df["85-89"] df["TOTAAL"] = df["0-14"] + df["15-19"] + df["20-24"] + df["25-29"] + df["30-34"] + df["35-39"] + df["40-44"] + df["45-49"] + df["50-54"] + df["55-59"] + df["60-64"] + df["65-69"] + df["70-74"] + df["75-79"] + df["80-84"] + df["85-89"] + df["90+"]+ df["Unknown"] return df @st.cache(ttl=60 * 60 * 24) def load_data(): url1 = "https://data.rivm.nl/covid-19/COVID-19_ziekenhuis_ic_opnames_per_leeftijdsgroep.csv" return pd.read_csv(url1, delimiter=";", low_memory=False) def prepare_data(): #url1 = "C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\input\\COVID-19_ziekenhuis_ic_opnames_per_leeftijdsgroep.csv" df_getdata = load_data() df = df_getdata.copy(deep=False) # prevent an error [Return value of `prepare_data()` was mutated between runs.] datumveld = "Date_of_statistics_week_start" df[datumveld] =
pd.to_datetime(df[datumveld], format="%Y-%m-%d")
pandas.to_datetime
# -*- coding: utf-8 -*- # Copyright (c) 2015-2016, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 """ NWChem Output ####################### Parse NWChem output files and convert them into an exatomic Universe container. """ import six from os import sep, path import numpy as np import pandas as pd from six import StringIO from collections import defaultdict from exa import TypedMeta from exa.util.units import Length from exatomic.core.frame import compute_frame_from_atom from exatomic.algorithms.numerical import _square_indices from exatomic.algorithms.basis import lmap from exatomic.core.frame import Frame from exatomic.core.atom import Atom from exatomic.core.basis import BasisSet, BasisSetOrder from exatomic.core.orbital import Orbital, MOMatrix from .editor import Editor from .basis import cartesian_ordering_function, spherical_ordering_function class OutMeta(TypedMeta): atom = Atom orbital = Orbital momatrix = MOMatrix basis_set = BasisSet basis_set_order = BasisSetOrder frame = Frame class Output(six.with_metaclass(OutMeta, Editor)): """Editor for NWChem calculation output file (stdout).""" def parse_atom(self): """Parse the atom dataframe.""" _reatom01 = 'Geometry "' _reatom02 = 'Atomic Mass' _reatom03 = 'ECP "ecp basis"' _reatom04 = 'Output coordinates in' found = self.find(_reatom01, _reatom02, _reatom03, _reatom04, keys_only=True) unit = self[found[_reatom04][0]].split()[3] unit = "Angstrom" if unit == "angstroms" else "au" starts = np.array(found[_reatom01]) + 7 stops = np.array(found[_reatom02]) - 1 ecps = np.array(found[_reatom03]) + 2 ecps = {self[ln].split()[0]: int(self[ln].split()[3]) for ln in ecps} columns = ['label', 'tag', 'Z', 'x', 'y', 'z'] atom = pd.concat([self.pandas_dataframe(s, e, columns) for s, e in zip(starts, stops)]) atom['symbol'] = atom['tag'].str.extract('([A-z]{1,})([0-9]*)', expand=False)[0].str.lower().str.title() atom['Z'] = atom['Z'].astype(np.int64) atom['Zeff'] = (atom['Z'] - atom['tag'].map(ecps).fillna(value=0)).astype(np.int64) #n = len(atom) nf = atom.label.value_counts().max() nat = atom.label.max() atom['frame'] = [i for i in range(nf) for j in range(nat)] atom['label'] -= 1 atom['x'] *= Length[unit, 'au'] atom['y'] *= Length[unit, 'au'] atom['z'] *= Length[unit, 'au'] if atom['frame'].max() > 0: li = atom['frame'].max() atom = atom[~(atom['frame'] == li)] atom.reset_index(drop=True, inplace=True) del atom['label'] self.atom = Atom(atom) def parse_orbital(self): """Parse the :class:`~exatomic.core.orbital.Orbital` dataframe.""" orbital = None _remo01 = 'Molecular Orbital Analysis' _remo02 = 'alpha - beta orbital overlaps' _remo03 = 'center of mass' check = self.find(_remo01) if any(['Alpha' in value for value in check]): alpha_starts = np.array([no for no, line in check if 'Alpha' in line], dtype=np.int64) + 2 alpha_stops = np.array([no for no, line in check if 'Beta' in line], dtype=np.int64) - 1 beta_starts = alpha_stops + 3 beta_stops = np.array(self.find(_remo02, keys_only=True), dtype=np.int64) - 1 alpha_orbital = self._parse_orbital(alpha_starts, alpha_stops) beta_orbital = self._parse_orbital(beta_starts, beta_stops) alpha_orbital['spin'] = 0 beta_orbital['spin'] = 1 orbital =
pd.concat((alpha_orbital, beta_orbital), ignore_index=True)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 23 11:40:16 2017 @author: tobias """ import os import re import glob import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt # Get data for axes contig_input_file = '/Users/tobias/Desktop/target_contigs/match_table.txt' workdir = '/'.join(contig_input_file.split('/')[:-1]) contig_matrix =
pd.read_csv(contig_input_file,sep='\t',index_col=0)
pandas.read_csv
from __future__ import division import pandas as pd import numpy as np # In[2]: import gc import subprocess from ImageDataGenerator import * import os import pickle from keras.models import Model from keras.layers import Dense, Dropout, Input from keras.optimizers import Adam, Nadam from sklearn.model_selection import KFold import tensorflow as tf from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLogger from keras.backend.tensorflow_backend import set_session from keras.preprocessing.sequence import pad_sequences from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.layers import Input, Dropout, Dense, concatenate, CuDNNGRU, Embedding, Flatten, Activation, BatchNormalization, PReLU from keras.initializers import he_uniform, RandomNormal from keras.layers import Conv1D, SpatialDropout1D, Bidirectional, Reshape, Dot, GaussianDropout from keras.layers import GlobalMaxPooling1D, GlobalAveragePooling1D, Conv2D, MaxPooling2D, GlobalAveragePooling2D from sklearn.preprocessing import MinMaxScaler import keras.backend as K from tqdm import tqdm from nltk import ngrams from sklearn.preprocessing import LabelEncoder from utility import * from sklearn.metrics import mean_squared_error os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.environ['TF_CPP_MIN_LOG_LEVEL']='3' # restrict gpu usage config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) set_session(sess) ################################# Load Data Stage ######################################## train_dir = '../input/train_jpg/data/competition_files/train_jpg/' test_dir = '../input/test_jpg/data/competition_files/test_jpg/' test = pd.read_csv('../input/test.csv.zip', parse_dates=["activation_date"]) train = pd.read_csv('../input/train.csv.zip', parse_dates=["activation_date"]) gp = pd.read_csv('../input/aggregated_features.csv') train = train.merge(gp, on='user_id', how='left') test = test.merge(gp, on='user_id', how='left') with open('../input/train_image_features.p','rb') as f: x = pickle.load(f) train_blurinesses = x['blurinesses'] train_dullnesses = x['dullnesses'] train_whitenesses = x['whitenesses'] train_average_pixel_width = x['average_pixel_width'] train_widths = x['widths'] train_heights = x['heights'] train_ids = x['ids'] del x gc.collect() with open('../input/test_image_features.p','rb') as f: x = pickle.load(f) test_blurinesses = x['blurinesses'] test_dullnesses = x['dullnesses'] test_whitenesses = x['whitenesses'] test_average_pixel_width = x['average_pixel_width'] test_widths = x['widths'] test_heights = x['heights'] test_ids = x['ids'] del x gc.collect() incep_train_image_df = pd.DataFrame(train_blurinesses, columns = ['blurinesses']) incep_test_image_df = pd.DataFrame(test_blurinesses, columns = [f'blurinesses']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') incep_train_image_df = pd.DataFrame(train_dullnesses, columns = ['dullnesses']) incep_test_image_df = pd.DataFrame(test_dullnesses, columns = [f'dullnesses']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') incep_train_image_df = pd.DataFrame(train_whitenesses, columns = ['whitenesses']) incep_test_image_df = pd.DataFrame(test_whitenesses, columns = [f'whitenesses']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') incep_train_image_df = pd.DataFrame(train_widths, columns = ['widths']) incep_test_image_df = pd.DataFrame(test_widths, columns = [f'widths']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') incep_train_image_df = pd.DataFrame(train_heights, columns = ['heights']) incep_test_image_df = pd.DataFrame(test_heights, columns = [f'heights']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') with open('../input/train_image_features_1.p','rb') as f: x = pickle.load(f) train_average_pixel_width = x['average_pixel_width'] train_average_reds = x['average_reds'] train_average_greens = x['average_greens'] train_average_blues = x['average_blues'] train_ids = x['ids'] del x gc.collect() with open('../input/test_image_features_1.p','rb') as f: x = pickle.load(f) test_average_pixel_width = x['average_pixel_width'] test_average_reds = x['average_reds'] test_average_greens = x['average_greens'] test_average_blues = x['average_blues'] test_ids = x['ids'] del x gc.collect() incep_train_image_df = pd.DataFrame(train_average_pixel_width, columns = ['average_pixel_width']) incep_test_image_df = pd.DataFrame(test_average_pixel_width, columns = [f'average_pixel_width']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') incep_train_image_df = pd.DataFrame(train_average_reds, columns = ['average_reds']) incep_test_image_df = pd.DataFrame(test_average_reds, columns = [f'average_reds']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') incep_train_image_df = pd.DataFrame(train_average_blues, columns = ['average_blues']) incep_test_image_df = pd.DataFrame(test_average_blues, columns = [f'average_blues']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') incep_train_image_df = pd.DataFrame(train_average_greens, columns = ['average_greens']) incep_test_image_df = pd.DataFrame(test_average_greens, columns = [f'average_greens']) incep_train_image_df['image'] = train_ids incep_test_image_df['image'] = test_ids train = train.join(incep_train_image_df.set_index('image'), on='image') test = test.join(incep_test_image_df.set_index('image'), on='image') train_image_feat = pd.read_csv('../input/train_image_feature_new.csv') test_image_feat = pd.read_csv('../input/test_image_feature_new.csv') new_image_feat = list(set(train_image_feat.columns) - set(['image'])) new_image_feat = [f for f in new_image_feat] train = train.merge(train_image_feat, on='image', how='left') test = test.merge(test_image_feat, on='image', how='left') data =
pd.concat([train, test], axis=0, sort=False)
pandas.concat
#This auxiliary code prepares for each date and country the cases, a table of greylisted status, deaths and tests as publicly reported #for a window starting before and ending after the date. This is used in evaluating the value of public data. import numpy as np import pandas as pd history_start=20 #---how far into the past--- future_end=20 #----how-far into the future #---Should testing data be raw or should the OWID smooting be used? raw=True; #Downloading actual case and death data from owid and drop duplicates url="https://covid.ourworldindata.org/data/owid-covid-data.csv" df = pd.read_csv(url) df=df.drop_duplicates() #---Specifying correct date format df['date']=pd.to_datetime(df['date'], format='%Y-%m-%d') #Filtering for after July 15th. Estimates are valid after 08/02, so window of +- 20 days. df=df[(df['date']>=pd.to_datetime('07/01/2020')) \ & (df['date']<pd.to_datetime('11/22/2020'))] #----Keeping only relevant fields: cases, deaths, tests and dealing with #----Countries that make corrections in reported data (reporting many times #----for same date) if raw: df=df[['iso_code','date','location','new_cases_smoothed_per_million',\ 'new_deaths_smoothed_per_million','new_tests_per_thousand']] else: df=df[['iso_code','date','location','new_cases_smoothed_per_million',\ 'new_deaths_smoothed_per_million','new_tests_smoothed_per_thousand']] df=df.sort_values(by=['iso_code','date']) df=df.loc[df.groupby(['iso_code','date']).date.idxmax()] #--Transforming three digit ISO code to 2 digit ISO code using conversion table #--found in other data url="../OtherData/short_to_iso.csv" short_to_iso=pd.read_csv(url,error_bad_lines=False) df=pd.merge(df,short_to_iso,how='left', left_on='iso_code', right_on='alpha-3') #----Remove duplicates----- df=df.drop_duplicates() #-------Reading greylisting and prevalence data from OPE estimation outputs estimates=\
pd.read_csv('../OPE_Outputs/ope_dat_TRUE_Window_3_MinTest_30_SmoothPrior_TRUE_2001_0.9.csv')
pandas.read_csv
import sys, os sys.path.append('yolov3_detector') from yolov3_custom_helper import yolo_detector from darknet import Darknet sys.path.append('pytorch-YOLOv4') from tool.darknet2pytorch import Darknet as DarknetYolov4 import argparse import cv2,time import numpy as np from tool.plateprocessing import find_coordinates, plate_to_string, padder, get_color from tool.utils import alphanumeric_segemntor,plot_boxes_cv2 from tool.torch_utils import * import time from utility_codes.tsv_converter import ConverterTSV use_cuda = True #################### PLATE #################### cfg_v4 = 'pytorch-YOLOv4/cfg/yolo-obj.cfg' weight_v4 = 'weights/plate.weights' m = DarknetYolov4(cfg_v4) m.load_weights(weight_v4) num_classes = m.num_classes class_names = ['plate'] print('Loading weights from %s... Done!' % (weight_v4)) if use_cuda: m.cuda() # m_alpha.cuda() # yolo_vehicle.cuda() vehicle_save_filename = 'tsv_files/plate_tester.tsv' vehicle_writer = ConverterTSV(vehicle_save_filename,file_type='vehicle') image_dir = 'SIH_hackathon/Detection_Day3/Day3' image_files = os.listdir(image_dir) image_files.sort() OUTPUT_SIZE = (1280, 720) for img_name in image_files: frame = cv2.imread(os.path.join(image_dir, img_name)) h, w = frame.shape[0:2] sized = cv2.resize(frame, (m.width, m.height)) sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB) confidence = 0.2 boxes = do_detect(m, sized, confidence , 0.6, use_cuda) result_img, cls_conf_plate, coordinates_all, labels = plot_boxes_cv2(frame, boxes[0],classes_to_detect=class_names,fontScale=0.5,thick=2, savename=False, class_names=class_names) cls_conf_plate = float(cls_conf_plate) for i,co in enumerate(coordinates_all): print(co) data = [img_name, co, labels[i]] vehicle_writer.put_vehicle(img_name, co, 'plate') # vehicle_writer.put_vehicle(img_loc, c, 'plate') cv2.imshow('Image', result_img) if cv2.waitKey(1) & 0xff == ord('q'): break # cv2.waitKey(0) cv2.destroyAllWindows() import pandas as pd def merge_and_save(fp1, fp2, outfile_path): tsv_file1 = pd.read_csv(fp1, sep='\t', header=0) tsv_file2 =
pd.read_csv(fp2, sep='\t', header=0)
pandas.read_csv
import copy import warnings import catboost as cgb import hyperopt import lightgbm as lgb import pandas as pd import xgboost as xgb from wax_toolbox import Timer from churnchall.constants import MODEL_DIR, RESULT_DIR from churnchall.datahandler import DataHandleCookie, to_gradboost_dataset from churnchall.tuning import HyperParamsTuningMixin warnings.filterwarnings(action="ignore", category=DeprecationWarning) def compute_auc_lift(y_pred, y_true, target): df_lift = pd.DataFrame({'pred': y_pred, 'true': y_true}) # Sort by prediction if target == 1: df_lift = df_lift.sort_values("pred", ascending=False) elif target == 0: df_lift = df_lift.sort_values("pred", ascending=True) else: raise ValueError # compute lift score for each sample of population nb_targets = float(df_lift[df_lift['true'] == target].shape[0]) df_lift["auclift"] = (df_lift["true"] == target).cumsum() / nb_targets auc_lift = df_lift["auclift"].mean() return auc_lift def lgb_auc_lift(y_pred, y_true, target=0): y_true = y_true.label auc_lift = compute_auc_lift(y_pred, y_true, target) return "AUC Lift", auc_lift, True def xgb_auc_lift(y_pred, y_true, target=0): y_true = y_true.get_label() auc_lift = compute_auc_lift(y_pred, y_true, target) # return a pair metric_name, result. The metric name must not contain a colon (:) or a space # since preds are margin(before logistic transformation, cutoff at 0) return "AUC_Lift", auc_lift def get_df_importance(booster): if hasattr(booster, "feature_name"): # lightgbm idx = booster.feature_name() arr = booster.feature_importance() df = pd.DataFrame(index=idx, data=arr, columns=["importance"]) elif hasattr(booster, "get_score"): # xgboost serie = pd.Series(booster.get_score()) df = pd.DataFrame(columns=["importance"], data=serie) elif hasattr(booster, "get_feature_importance"): # catboost idx = booster.feature_names_ arr = booster.get_feature_importance() df = pd.DataFrame(index=idx, data=arr, columns=["importance"]) else: raise ValueError(type(booster)) # Traduce in percentage: df["importance"] = df["importance"] / df["importance"].sum() * 100 df = df.sort_values("importance", ascending=False) return df class BaseModelCookie(DataHandleCookie, HyperParamsTuningMixin): # Attributes to be defined: @property def algo(): raise NotImplementedError @property def common_params(): raise NotImplementedError @property def params_best_fit(): raise NotImplementedError def save_model(self, booster): now = pd.Timestamp.now(tz='CET').strftime("%d-%Hh-%Mm") f = MODEL_DIR / "{}_model_{}.txt".format(self.algo, now) booster.save_model(f.as_posix()) return f @staticmethod def _generate_plot(eval_hist): try: from plotlyink import register_iplot_accessor register_iplot_accessor() dfhist = pd.DataFrame(eval_hist) fig = dfhist.iplot.scatter(as_figure=True) import plotly now = pd.Timestamp.now(tz='CET').strftime("%d-%Hh-%Mm") filepath = RESULT_DIR / 'lgb_eval_hist_{}.html'.format(now) plotly.offline.plot(fig, filename=filepath.as_posix()) except ImportError: pass # Methods to be implemented def train(): raise NotImplementedError def validate(): raise NotImplementedError def cv(): raise NotImplementedError class LgbCookie(BaseModelCookie): algo = 'lightgbm' # Common params for LightGBM common_params = { "verbose": -1, "nthreads": 16, # 'is_unbalance': 'true', #because training data is unbalance (replaced with scale_pos_weight) "scale_pos_weight": 0.97, # used only in binary application, weight of labels with positive class "objective": "xentropy", # better optimize on cross-entropy loss for auc "metric": {"auc"}, # alias for roc_auc_score } # Best fit params params_best_fit = { "boosting_type": "gbdt", # algorithm to use "learning_rate": 0.04, "num_leaves": 10, # we should let it be smaller than 2^(max_depth) # "min_data_in_leaf": 20, # Minimum number of data need in a child "max_depth": -1, # -1 means no limit "bagging_fraction": 0.9487944316907742, # Subsample ratio of the training instance. "feature_fraction": 0.9763410806631222, # Subsample ratio of columns when constructing each tree. "bagging_freq": 14, # frequence of subsample, <=0 means no enable # "max_bin": 200, 'min_data_in_leaf': 14, # minimal number of data in one leaf # 'min_child_weight': 5, # Minimum sum of instance weight(hessian) needed in a child(leaf) # 'subsample_for_bin': 200000, # Number of samples for constructing bin # 'min_split_gain': 0, # lambda_l1, lambda_l2 and min_gain_to_split to regularization # 'reg_alpha': 0, # L1 regularization term on weights # 'reg_lambda': 0, # L2 regularization term on weights **common_params, } # tuning attributes in relation to HyperParamsTuningMixin int_params = ("num_leaves", "max_depth", "min_data_in_leaf", "bagging_freq") float_params = ("learning_rate", "feature_fraction", "bagging_fraction") hypertuning_space = { "boosting": hyperopt.hp.choice("boosting", ["gbdt", "dart"]), # "rf", "num_leaves": hyperopt.hp.quniform("num_leaves", 10, 60, 2), "min_data_in_leaf": hyperopt.hp.quniform("min_data_in_leaf", 5, 20, 2), # "learning_rate": hyperopt.hp.uniform("learning_rate", 0.001, 0.1), "feature_fraction": hyperopt.hp.uniform("feature_fraction", 0.85, 0.99), "bagging_fraction": hyperopt.hp.uniform("bagging_fraction", 0.85, 0.99), "bagging_freq": hyperopt.hp.quniform("bagging_freq", 6, 18, 2), } def validate(self, save_model=True, **kwargs): dtrain, dtest = self.get_train_valid_set(as_lgb_dataset=True) valid_sets = [dtrain, dtest] valid_names = ['train', 'test'] booster = lgb.train( params=self.params_best_fit, train_set=dtrain, valid_sets=valid_sets, valid_names=valid_names, feval=lgb_auc_lift, # adaptative learning rate : # learning_rates=lambda iter: 0.5 * (0.999 ** iter), **kwargs, ) if save_model: self.save_model(booster) return booster def cv(self, params_model=None, nfold=5, num_boost_round=10000, early_stopping_rounds=100, generate_plot=False, **kwargs): dtrain = self.get_train_set(as_lgb_dataset=True) # If no params_model is given, take self.params_best_fit if params_model is None: params_model = self.params_best_fit eval_hist = lgb.cv( params=params_model, train_set=dtrain, nfold=nfold, verbose_eval=True, # display the progress feval=lgb_auc_lift, # display the standard deviation in progress, results are not affected show_stdv=True, num_boost_round=num_boost_round, early_stopping_rounds=early_stopping_rounds, **kwargs, ) if generate_plot: self._generate_plot(eval_hist) return eval_hist def predict(self, from_model_saved, label=None): booster = lgb.Booster(model_file=from_model_saved) df = self.get_test_set() with Timer("Predicting"): pred = booster.predict(df) if not label: now = pd.Timestamp.now(tz='CET').strftime("%d-%Hh-%Mm") label = 'pred_{}_{}'.format(self.algo, now) return
pd.DataFrame({label: pred})
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import division, print_function import numpy as np, pandas as pd from astropy.table import Table from astropy.coordinates import SkyCoord from astropy import units as u from glob import glob import os def make_prioritycut_ctl(datadir='/Users/luke/local/TIC/CTL71/', prioritycut=0.0015, subcols = ['RA', 'DEC', 'TESSMAG', 'TEFF', 'PRIORITY', 'RADIUS', 'MASS', 'CONTRATIO', 'ECLONG', 'ECLAT', 'DIST', 'TICID', 'SPEC_LIST'], savpath = '../data/TIC71_prioritycut.csv'): ''' I downloaded the 2018/07/07 CTL direct from http://astro.phy.vanderbilt.edu/~oelkerrj/tic7_ctl1_20182606.tar.gz. It's only 2Gb, but regardless I put in on a storage drive. From the docs at https://filtergraph.com/tess_ctl: This portal was updated to reflect the CTL of TIC-7.1 on July 7, 2018. This Candidate Target List (CTL-7.1) is a compilation of several catalogs, including 2MASS, Gaia DR1, UCAC-4 & 5, Tycho-2, APASS DR9 and others. The CTL is the current best effort to identify stars most suitable for transit detection with TESS. Stars are considered for the CTL if they are: 1) identified as RPMJ dwarfs with greater than 2-sigma confidence; and 2) meet one of the following temperature/magnitude criteria: (TESSmag < 12 and Teff >= 5500K) or (TESSmag < 13 and Teff < 5500K). Alternatively, a star is included in the CTL, regardless of the conditions above, if the star is a member of the bright star list (TESSmag < 6) or the specially curated cool dwarf, hot subdwarf, and known planet lists. Users who are interested only in the top 200K or 400K stars may use a filter on the priority of 0.0017 and 0.0011 respectively. The full TIC & CTL will be available for download at MAST. The full machine-readable version of this CTL filtergraph portal is available as a comma-separated file at (above link). Kwargs: datadir, extracted should start looking like: luke@brik:~/local/TIC/CTL71$ tree -L 1 . ├── 00-02.csv ├── 02-04.csv ├── 04-06.csv ├── 06-08.csv ├── 08-10.csv ├── 10-12.csv ├── 12-14.csv ├── 14-16.csv ├── 16-18.csv ├── 18-20.csv ├── 20-22.csv ├── 22-24.csv └── header.txt prioritycut: 0.0015 corresponds to top 300k or so. subcols: to write out in prioritycut csv ''' with open(datadir+'header.txt') as f: hdr = f.readlines()[0] columns = [l.strip('\n') for l in hdr.split(',')] subcats = np.sort(glob(datadir+'??-??.csv')) print('making priority cut catalog...') for ix, subcat in enumerate(subcats): print(ix) if os.path.exists(datadir+'temp_{:d}.csv'.format(ix)): continue sc = pd.read_csv(subcat, names=columns) sc = sc[subcols] sc = sc[sc['PRIORITY']>prioritycut] sc.to_csv(datadir+'temp_{:d}.csv'.format(ix), index=False) temps = np.sort(glob(datadir+'temp_*.csv')) for ix, temp in enumerate(temps): if ix == 0: df = pd.read_csv(temp) else: new = pd.read_csv(temp) df = pd.concat([df, new]) print('length of priorty-cut TIC list is {:d}'.format(len(df))) os.remove(temp) df.to_csv(savpath, index=False) print('saved {:s}'.format(savpath)) def make_sublist_ctl(datadir='/Users/luke/local/TIC/CTL71/', sublist=None): ''' sublist: str in ["knownplanet" , ... ] see make_prioritycut_ctl for verbose docstring ''' with open(datadir+'header.txt') as f: hdr = f.readlines()[0] columns = [l.strip('\n') for l in hdr.split(',')] subcols = ['RA', 'DEC', 'TESSMAG', 'TEFF', 'PRIORITY', 'RADIUS', 'MASS', 'CONTRATIO', 'ECLONG', 'ECLAT', 'DIST', 'TICID', 'SPEC_LIST'] subcats = np.sort(glob(datadir+'??-??.csv')) print('making {:s}-cut catalog'.format(sublist)) for ix, subcat in enumerate(subcats): print(ix) if os.path.exists(datadir+'temp_{:d}.csv'.format(ix)): continue sc =
pd.read_csv(subcat, names=columns)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Feb 15 17:07:38 2021 @author: perger """ # import packages import pandas as pd from datetime import timedelta, datetime import pyam import FRESH_clustering from pathlib import Path import glob # Model name and version, scenario, region model_name = 'FRESH:COM v2.0' scenario_name = 'Default scenario' region_name = 'Austria' #filename_community = 'Input_data_community_IAMC.xlsx' filename_grid = 'Input_data_grid_IAMC.csv' filename_output = 'output_iamc.xlsx' clustering = True # Aggregation in the time domain: preparation time_zone = '+01:00' # deviation from UTC (+01:00 is CET) start_date = '2019-01-01 00:00' # YYYY-MM-DD HH:MM number_days = 365 delta = timedelta(hours=1) # resolution ... hourly time_steps = [] for t in range(24*number_days): time_steps.append((datetime.fromisoformat(start_date+time_zone)+t*delta)) index_time = list(range(len(time_steps))) # Read Input Data (from the IAMC Format) # input data of prosuemr #_p = Path('Input_data/Prosumer_data') prosumer_files = {} prosumer = [] for file in glob.glob("*.csv"): i = Path(file).stem if i.startswith('Prosumer'): prosumer.append(i) prosumer_files[i] = Path(file) #file_community = pd.ExcelFile(filename_community) #prosumer = file_community.sheet_names # Electricity demand, PV generation, and other prosumer data variable_load = 'Final Energy|Residential and Commercial|Electricity' variable_PV = 'Secondary Energy|Electricity|Solar|PV' SoC_max = 'Maximum Storage|Electricity|Energy Storage System' SoC_min = 'Minimum Storage|Electricity|Energy Storage System' q_bat_max = 'Maximum Charge|Electricity|Energy Storage System' q_bat_min = 'Maximum Discharge|Electricity|Energy Storage System' PV_capacity = 'Maximum Active power|Electricity|Solar' w = 'Price|Carbon' _a = [SoC_max, SoC_min, q_bat_max, q_bat_min, PV_capacity, w] load = pd.DataFrame() PV = pd.DataFrame() prosumer_data = pd.DataFrame() for i in prosumer: # read excel sheet and convert to pyam.IamDataFrame _df = pd.read_csv(prosumer_files[i], sep=';') _df_pyam = pyam.IamDataFrame(_df) # filter data (load) _data = (_df_pyam .filter(variable=variable_load) .filter(region=region_name) .filter(model=model_name) .filter(scenario=scenario_name) .filter(time=time_steps)) _b = _data.as_pandas().set_index('time') load = pd.concat([load, _b['value'].reindex(time_steps)], axis=1).rename(columns={'value':i}) # filter data (PV) _data = (_df_pyam .filter(variable=variable_PV) .filter(region=region_name) .filter(model=model_name) .filter(scenario=scenario_name) .filter(time=time_steps)) _b = _data.as_pandas().set_index('time') PV = pd.concat([PV, _b['value'].reindex(time_steps)], axis=1).rename(columns={'value':i}) # Prosumer data (other) _data = (_df_pyam .filter(variable=_a) .filter(region=region_name) .filter(model=model_name) .filter(scenario=scenario_name)) _b = _data.as_pandas().set_index('variable') prosumer_data = pd.concat([prosumer_data, _b['value'].reindex(_a)], axis=1).rename(columns={'value':i}) # Prices _df =
pd.read_csv(filename_grid, sep=';')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 31 13:31:13 2019 @author: mehrdad """ import pandas as pd import numpy as np import tslib.trip_detection # Compute the difference between observed trips and computed trips ---------------------- # Any mode to any mode def compute_observed_vs_computed_diffs(observed_, computed_): M1 = pd.merge(observed_[['duration_in_min','distance','od_distance2','emission', 'walk_distance', 'bike_distance', 'active_distance']], computed_[['duration_in_min','distance','od_distance2','emission', 'walk_distance', 'bike_distance', 'active_distance']], left_index=True, right_index=True, how='left', suffixes=['_observed', '_alt'], indicator=True) #TOOD: whenever need the user-trip-plan_id column values as columns: # ... M1.reset_index() diff = pd.DataFrame() #index is automatically created by this first insert!!! # plan_id part of the index is that of the computed # diff['user'] = M1.user # diff['trip'] = M1.trip # diff['plan_id'] = M1.plan_id diff['has_any_computed'] = (M1._merge=='both') diff['deltaT'] = M1.duration_in_min_observed - M1.duration_in_min_alt diff['deltaE'] = M1.emission_observed - M1.emission_alt diff['deltaD'] = M1.distance_observed - M1.distance_alt diff['delta_walk_D'] = M1.walk_distance_observed - M1.walk_distance_alt diff['delta_bike_D'] = M1.bike_distance_observed - M1.bike_distance_alt diff['delta_AD'] = M1.active_distance_observed - M1.active_distance_alt return diff # Choose the desired time-relevant low-carbon alternative -------------------------------- # Selection is made in comparison to the observed trip's attributes def compute_substitutes(observed_, computed_, observed_vs_computed_deltas_, with_ebike): alts = observed_vs_computed_deltas_[observed_vs_computed_deltas_.has_any_computed] alts = alts.drop(columns='has_any_computed') alts = pd.merge(alts, computed_[['mode']], left_index=True, right_index=True, how='inner') alts.rename(columns={'mode':'mode_alt'}, inplace = True) # Consider e-bike or not if not with_ebike: alts = alts[alts.mode_alt != 'EBICYCLE'] # Skip bike for bad weather months alts =
pd.merge(alts, observed_[['month']], left_index=True, right_index=True, how='inner')
pandas.merge
""" Plaster-specific plots These fall into two categories: * Mature: plots that are ready to be used in notebook report templates * Development: Plots that are still being worked on across various notebooks Note: * All plots are free-functions * All plots should accept a run parameters and *optional* modifications to the default plot. * Naming conventions: def text_* dump information as print statements def plot_* are plots def wizard_* are interactive wizard-type components that may have plot components * bokeh imports should be deferred (they tend to slow down tests) """ import numpy as np import pandas as pd from plaster.run.lnfit.lnfit_result import LNFitResult from plaster.tools.ipynb_helpers.displays import hd, md from plaster.tools.schema import check from plaster.tools.utils import utils from plaster.tools.zplots.zplots import ZPlots from plaster.tools.zlog.zlog import tell import logging log = logging.getLogger(__name__) # Mature # ==================================================================================================== # On some of our plots, e.g. peptide PR, if there are too many traces it causes the browser # to really chug, even when just scrolling the page because something is getting updated/redrawn. # Short of figuring out how to do this better, many fns avoid too many traces, so define a # constant that can be used in multiple places. MAX_BOKEH_PLOT_TRACES = 50 # Prep & sim related # ----------------------- def text_prep_and_sim_info(run): """ State statistics about labelling and sim including protein identifiability under the labelling scheme. Audience: Basic users Goal: Allow the user to understand the experimental setup and the high-level overview of the label space. """ if hasattr(run, "sim_v1"): n_train_non_zero_recall_peps = (run.sim_v1.train_pep_recalls > 0.0).sum() n_train_zero_recall_peps = (run.sim_v1.train_pep_recalls == 0.0).sum() n_train_peps = n_train_non_zero_recall_peps + n_train_zero_recall_peps n_test_non_zero_recall_peps = (run.sim_v1.test_recalls > 0.0).sum() n_test_zero_recall_peps = (run.sim_v1.test_recalls == 0.0).sum() n_test_peps = n_test_non_zero_recall_peps + n_test_zero_recall_peps print( f"The preparation consisted of:\n" f" Proteins: {len(run.prep.pros()) - 1}.\n" f" Of which: {len(run.prep.pros__from_decoys())} are decoys generated by the {run.prep.params.decoy_mode} method.\n" f" Labels: {run.sim_v1.params.to_label_str()}.\n" f" Protease: {run.prep.params.protease} including {run.prep.params.include_misses} missed cleavages.\n" f" Peptides: {len(run.prep.peps()) - 1}.\n" f" Unique: {len(run.prep.pepstrs().seqstr.drop_duplicates()) - 1}\n" f" From real sources: {len(run.prep.peps__no_decoys()) - 1}\n" f" From decoy sources: {len(run.prep.peps__from_decoys())}\n" f"Simulation was run with:\n" f" n_pres: {run.sim_v1.params.n_pres}, n_mocks: {run.sim_v1.params.n_mocks}, n_edmans: {run.sim_v1.params.n_edmans}\n" f" Train set:\n" f" {n_train_non_zero_recall_peps} ({100 * n_train_non_zero_recall_peps / n_train_peps:2.0f}%) have positive recall (observable)\n" f" {n_train_zero_recall_peps} ({100 * n_train_zero_recall_peps / n_train_peps:2.0f}%) had zero recall (unlabelable)\n" f" Test set:\n" f" {n_test_non_zero_recall_peps} ({100 * n_test_non_zero_recall_peps / n_test_peps:2.0f}%) have positive recall (observable)\n" f" {n_test_zero_recall_peps} ({100 * n_test_zero_recall_peps / n_test_peps:2.0f}%) had zero recall (unlabelable)\n" ) else: # TODO: find sim_v2 appropriate replacements for sim_v1 params listed above print( f"The preparation consisted of:\n" f" Proteins: {len(run.prep.pros()) - 1}.\n" f" Of which: {len(run.prep.pros__from_decoys())} are decoys generated by the {run.prep.params.decoy_mode} method.\n" f" Protease: {run.prep.params.protease} including {run.prep.params.include_misses} missed cleavages.\n" f" Peptides: {len(run.prep.peps()) - 1}.\n" f" Unique: {len(run.prep.pepstrs().seqstr.drop_duplicates()) - 1}\n" f" From real sources: {len(run.prep.peps__no_decoys()) - 1}\n" f" From decoy sources: {len(run.prep.peps__from_decoys())}\n" f"Simulation was run with sim_v2.\n" ) # TODO: if the run has a "protein of interest" then repeat a lot of the above for # just the protein of interest -- e.g. how many peptides, unique, positive recall, etc. if ( run.prep.n_pois > 0 and run.prep.n_pros > 2 ): # ==2 means 1 protein and the 'null' entry pro_ids = run.prep.pros__pois().pro_id pep_iz = run.prep.peps__pois().pep_i.unique() pepstrs = run.prep.pepstrs() pepstrs = pepstrs[pepstrs.pep_i.isin(pep_iz)] poi_string = f"{list(pro_ids)}" if len(pro_ids) < 10 else f"{len(pro_ids)}" print( f"\n\n" f"Protein(s) of interest: {poi_string}\n" f" Peptides: {len(pep_iz)}\n" f" Unique: {len(pepstrs.seqstr.drop_duplicates())}\n" f" TODO: more stats on just this protein(s)\n" ) # Classification related # ----------------------- def text_call_score_info(run, classifier=None): """ State statistics about classification. Audience: Advanced users Goal: Allow the user to see: How many uniq FluoroSeqs, PeptideSeqs, and ProteinSeqs were called true and pred. How many real vs decoys were called with counts classifier: None to use any available preferred classifier, or one of the supported classifiers in RunResult::test_call_bag(), e.g. 'rf', 'nn' """ bag = run.test_call_bag(classifier=classifier) n_zeros = (bag.pred_pep_iz == 0).sum() pred = bag.pred_peps__pros() n_pred_real = (pred.pro_is_decoy < 1).sum() n_pred_decoy = (pred.pro_is_decoy > 0).sum() n_preds = len(pred) print( f"Test {bag.classifier_name.upper()} classification result has {bag.n_rows} rows.\n" f" Of which: {n_zeros} were predicted to empty.\n" f"True calls came from:\n" f" {len(bag.true_peps__pros())} samples over {bag.true_peps__pros().groupby('pep_i').ngroups} total peptides of which {len(bag.true_peps__unique())} were unique\n" f"Predicted calls went to:\n" f" {len(bag.pred_peps__pros())} samples covering {len(bag.pred_peps__unique())} unique peptides\n" f" {100.0 * n_pred_real / n_preds:2.0f}% reals and {100.0 * n_pred_decoy / n_preds:2.0f}% decoys\n" ) def pep_iz_in_report(run, with_ptms=False): if with_ptms: return run.prep.peps__ptms(poi_only=True, ptms_to_rows=False).pep_i.unique() return run.prep.peps__pois().pep_i.values def plot_peptide_effective_labelability(run, **kwargs): """ 'effective labelability' means how often does a peptide result in a dye-track signature that is non-zero. A 'zero' signature might occur because the peptide detaches immediately, a dye is a dud, a dye bleaches immediately (in a mock cycle), or, most typically, that the peptide has no amino acids that can be labeled. The latter is 'unlabelable'. All the others are 'effectively unlabelable' I am using the name 'labelability' because the next fn in this file plots observability vs precision, and it is confusing to use the word observability for both plots. I have also considered "scope_observability" vs "classifier_observability". The confusion arises when you look at the plot produced by this function, which looks only at "train recalls", and see that 100%, or nearly 100%, of peptides are "observable". And then in the next set of plots which look at PR for peptides, you see that only 80% of the peptides are observable even at precision=0. How can this be? It is because even if a peptide has labels and produces a non-zero dye-track (so it is "scope observable" or "labelable"), it may NEVER get picked by the classifier because some other peptide class receives a higher score. So in our "post classification" notion of PR, even at precision 0, the peptide is not observable by the classifier. Y axis is the fraction 'scope' observable, or 'effectively labelable' X axis is rank ordered peptides where peptide with highest “frac observable” is on the left. Some of the peptides will have zero observability, we call those by the special name “unlabelable” Up to three plots may be displayed: 1. All peptides the classifier will be trained on 2. Only peptides belonging to any "protein_of_interest"; see set_protein_of_interest() 3. Only peptides satisfying (2) and additionally containing PTM locations Goal: Allow user to see: What portion/how well the peptides can be "seen" given the current labelling scheme. """ pep_iz_poi = pep_iz_in_report(run, with_ptms=False) pep_iz_ptm = pep_iz_in_report(run, with_ptms=True) pep_indices = [np.array(range(1, run.sim_v2.train_pep_recalls.shape[0]))] if len(pep_iz_poi): pep_indices.append(np.sort(pep_iz_poi)) if len(pep_iz_ptm): pep_indices.append(np.sort(pep_iz_ptm)) z = ZPlots.zplot_singleton with z( _cols=len(pep_indices), f_y_axis_label="per-class fraction labelable", f_x_axis_label="peptide class rank", f_y_range=(0, 1), **kwargs, ): for idx, domain in zip(pep_indices, ["", "POI ", "PTM "]): train_pep_recalls = run.sim_v2.train_pep_recalls[idx] train_pep_recalls_sorted = np.sort(train_pep_recalls)[::-1] n_classes = len(train_pep_recalls_sorted) n_observable = np.sum(train_pep_recalls_sorted.astype(bool)) z.cols( train_pep_recalls_sorted, f_title=f"{domain}{n_observable} of {n_classes} ({100.0 * n_observable / n_classes:,.1f}%) peptides labelable", ) def plot_peptides_per_fluorosequence(run, **kwargs): peps__flus = ( run.sim_v2.peps__flus(run.prep) .drop_duplicates("flustr") .sort_values("flu_count", ascending=False) .reset_index() ) labels = peps__flus.apply(lambda x: f"{x.flustr} ({x.flu_count})", axis=1) z = kwargs.pop("_zplot_context", ZPlots()) # Note 1: below -- we are not showing the unlabeled peptides. z.cols( peps__flus.flu_count.values[1:], _label=labels.values[1:], _size_x=1000, f_title="(Labelable) Peptides per fluorosequence", f_x_axis_label="fluorsequence class rank", f_y_axis_label="peptide count", **kwargs, ) def _plot_peptide_observability_vs_precision( pr_df, pep_iz=None, as_fraction_observable=True, pr_axes=True, **kwargs ): """ given a precision-recall information for a set of peptides, plot the fraction of those pep_i observable as a function of precision. pr_df: a df that contains precision,recall values for each pep_i pep_iz: the subset of pep_i to consider, or None or all pep_i as_fraction_observable: when True show observability as fraction of total peptides pr_axes: when True orient the plot as standard PR plots, with PEPTIDE recall on the x-axis. Y axis is number of classes or fraction of classes observable at precision X X axis is precision Goal: Answer question: How many of the peptide classes can I observe at precision X? (or, equivalently) At precision X, how many peptide classes have a recall > 0? """ pep_iz_with_pr = list(pr_df.pep_i.unique()) # no_pr = [pi for pi in pep_iz if pi not in pep_iz_with_pr ] # print(no_pr) assert pep_iz is None or all( [pi in pep_iz_with_pr for pi in pep_iz] ), "pr_df must contain PR info for all pep_iz" if pep_iz is None: pep_iz = pep_iz_with_pr pr_by_pep = pr_df[pr_df.pep_i.isin(pep_iz)] n_peps_at_precision = [] precisions = np.linspace(0, 1, 51) for prec in precisions: peps_observable_at_prec = pr_by_pep[ (pr_by_pep.prec >= prec) & (pr_by_pep.recall > 0) ].pep_i.unique() n_peps_at_precision += [len(peps_observable_at_prec)] n_classes = len(pep_iz) y_range = (0, n_classes) if as_fraction_observable: n_peps_at_precision = np.array(n_peps_at_precision) / n_classes y_range = (0, 1.05) x_range = (0, 1.05) y_axis = ( "fraction of classes observable" if as_fraction_observable else "peptide classes observable" ) x_axis = "precision" y_values = n_peps_at_precision x_values = precisions if not pr_axes: # because this was the default for a long time args = dict( x=x_values, y=y_values, f_x_axis_label=x_axis, f_y_axis_label=y_axis, f_x_range=x_range, f_y_range=y_range, ) else: args = dict( y=x_values, x=y_values, f_y_axis_label=x_axis, f_x_axis_label="peptide-classes recall", f_y_range=x_range, f_x_range=y_range, ) z = ZPlots.zplot_singleton z.line(**args, **kwargs, line_width=2) def plot_peptide_observability_vs_precision( run, pep_iz=None, pep_subset="all", as_fraction_observable=True, pr_axes=True, classifier=None, **kwargs, ): """ See docs at _plot_peptide_observability_vs_precision() pep_iz: list of peptide indices that should be plotted, or None. May be used together with pep_subset. pep_subset: named subset controlling which portion of peptides the test_call_bag that should be plotted. Valid subset names are all, poi, and ptm. pr_style_axes: If True, orient the axes as a standard PR plot, with PEPTIDE recall on the x-axis. Otherwise, interpret as "peptide observability vs precision" classifier: None to use any available preferred classifier, or one of the supported classifiers in RunResult::test_call_bag(), e.g. 'rf', 'nn' """ bag = run.test_call_bag(classifier=classifier) pr_by_pep_all = bag.pr_curve_by_pep() domain = "" if pep_subset == "all": pep_iz_subset = list(pr_by_pep_all.pep_i.unique()) elif pep_subset == "poi": pep_iz_subset = pep_iz_in_report(run, with_ptms=False) domain = "POI " elif pep_subset == "ptm": pep_iz_subset = pep_iz_in_report(run, with_ptms=True) domain = "PTM " else: raise ValueError("pep_subset must be all, poi, or ptm") if pep_iz is not None and len(pep_iz) > 0: pep_iz_subset = [pi for pi in pep_iz_subset if pi in pep_iz] z = ZPlots.zplot_singleton with z(): vs_text = ( "Peptide-Classes PR" if pr_axes else "Peptide Observability vs Precision" ) title = f"{bag.classifier_name.upper()} {domain}{vs_text}, {len(pep_iz_subset)} classes" _plot_peptide_observability_vs_precision( pr_by_pep_all, pep_iz_subset, as_fraction_observable=as_fraction_observable, pr_axes=pr_axes, f_title=title, **kwargs, ) def plot_call_score_hist(run, classifier=None, **kwargs): """ Demonstrate an overview of classification scores for predictions to non-decoy versus decoys. Audience: Advanced users Goal: Allow the user to see: if the decoy and real false rates have roughly equal distributions if high scores are a good predictor of correctness. Plan: This is probably not a long-term useful plot as the imposter map will probably communicate most of this information in a more useful way. classifier: None to use any available preferred classifier, or one of the supported classifiers in RunResult::test_call_bag(), e.g. 'rf', 'nn' """ bag = run.test_call_bag(classifier=classifier) z = ZPlots.zplot_singleton with z( _bins=np.linspace(0, 1, 20), _merge=True, line_alpha=1, f_plot_width=500, f_plot_height=250, f_x_range=(0, 1), f_y_range=(0, 0.9), f_x_axis_label="Score", f_y_axis_label="Count", f_title=f"Normalized distribution of call scores - {bag.classifier_name.upper()}", _step=True, _legend_click_policy="hide", ): correct_mask = bag.true_pep_iz == bag.pred_pep_iz real_mask = bag.pred_peps__pros().pro_is_decoy < 1 decoy_mask = bag.pred_peps__pros().pro_is_decoy > 0 mask = correct_mask & real_mask if np.any(mask): z.hist( bag.scores[mask], _normalizer=mask.sum(), line_color=ZPlots.feature, line_width=3, legend_label="Correct calls predicted to an any-real source", ) wrong_mask = ~correct_mask mask = wrong_mask & real_mask if np.any(mask): z.hist( bag.scores[mask], _normalizer=mask.sum(), line_color=ZPlots.compare1, line_width=2, line_dash=[2, 2], legend_label="Wrong calls predicted to an any-real source", ) if np.any(decoy_mask): z.hist( bag.scores[mask], _normalizer=decoy_mask.sum(), line_color=ZPlots.compare2, line_width=2, line_dash=[5, 3], legend_label="Any calls predicted to an any-decoy source", ) def _plot_pr_curve(prsa, **kwargs): """ Plot one pr curve. Note that the pr_curve might have a very large number of points and this makes the plotting slow. The information at the top (high prec) is usually more interesting so we sample from the set logarithmically. Arguments: prsa: a 4-tuple of precision, recall, min_score, AUC generated by AssignmentEval.pr_curve or similar. TASK I want this to have hover tools but I need to sort out hovers using zplots. But I also need this to be zplot mergable so for now I'm taking out the hover. """ check.affirm(len(prsa) == 4) check.list_or_tuple_t(prsa[0:2], np.ndarray) n_rows = prsa[0].shape[0] check.array_t(prsa[0], (n_rows,)) check.array_t(prsa[1], (n_rows,)) n_prs = len(prsa[0]) if n_prs <= 1: log.error(f"Unable to show plot of pr_curve with n_prs of {n_prs}") return kwargs = utils.set_defaults(kwargs, line_width=2, line_alpha=1.0, _noise=0.000) # Add noise to keep them from sitting on top of each other # An _noise of about 0.005 is typically sufficient if any is needed _noise = kwargs.pop("_noise") x_noise = np.random.uniform(-_noise, +_noise, size=n_rows) y_noise = np.random.uniform(-_noise, +_noise, size=n_rows) z = ZPlots.zplot_singleton z.line( x=prsa[1] + x_noise, y=prsa[0] + y_noise, _range=(0, 1.05, 0, 1.05), f_x_axis_label="read recall", f_y_axis_label="precision", f_title=kwargs.pop("f_title", "Precision-Recall"), **kwargs, ) def plot_pr_aggregate(run, pep_iz=None, classifier=None, **kwargs): """ Show P/R for all some set aggregate set of peptides (ie. renders a single line for the set. See also: plot_pr_breakout) Arguments: pep_iz: If None computes over all peps, otherwise the subset classifier: None to use any available preferred classifier, or one of the supported classifiers in RunResult::test_call_bag(), e.g. 'rf', 'nn' kwargs: Passed to the zplot Audience: Trained users. P/R curves will not be familiar to many customers but it is an important concept to teach as it is central to the way we treat evidence. Goal: Allow user to see: The P/R curve for ALL peptides as an aggregate statistic Plan: There's a lot of way to look at this and it probably needs to be subdivided into separate curves or made into an interactive widget. In general, I'm going to avoid having lots of switches on this and instead rely on with z.Opts(_merge=True) when the need to be overlaid. """ cb = run.test_call_bag(classifier=classifier) prsa = cb.pr_curve_pep(pep_iz_subset=pep_iz) utils.set_defaults( kwargs, f_title=f"{cb.classifier_name.upper()} P/R over all peptides" ) _plot_pr_curve(prsa, **kwargs) def plot_pr_breakout(run, pep_iz=None, classifier=None, **kwargs): """ Render a separate P/R curve for each pep_iz. See plot_pr_aggregate() Arguments: If pep_iz is None it renders ALL peptides. (Might be large!) classifier: None to use any available preferred classifier, or one of the supported classifiers in RunResult::test_call_bag(), e.g. 'rf', 'nn' kwargs: passed to zplot """ master_bag = run.test_call_bag(classifier=classifier) if pep_iz is None: pep_iz = list(range(1, run.prep.n_peps)) utils.set_defaults( kwargs, f_title=f"{master_bag.classifier_name.upper()} P/R over all peptides" ) z = ZPlots.zplot_singleton user_color = kwargs.get("color", None) with z( _merge=True, _range=(0, 1.05, 0, 1.05), f_x_axis_label="read recall", f_y_axis_label="precision", **kwargs, ): pr_df = master_bag.pr_curve_by_pep(pep_iz=pep_iz) peps_flus_df = master_bag.peps__pepstrs__flustrs__p2() for pep_i, g in pr_df.groupby("pep_i"): prsa = (g.prec.values, g.recall.values, g.score.values, []) # for pep_i in pep_iz: # prsa = master_bag.pr_curve_by_pep(pep_iz_subset=[pep_i]) row = peps_flus_df[peps_flus_df.pep_i == pep_i].iloc[0] legend_label = f"pep{pep_i:03d}" line_label = f"{row.pro_id} pep{pep_i:03d} {row.seqstr} {row.flustr}" _plot_pr_curve( prsa, line_color=user_color or z.next(), _label=line_label, legend_label=legend_label, **kwargs, ) # this will only get plotted if all class scores are available: prsa = master_bag.pr_curve_sklearn(pep_i) if prsa[0] is not None: _plot_pr_curve(prsa, line_width=1, **kwargs) def plot_pr_for_run( run, aggregate_only=False, force_all_proteins=False, classifier=None, **kwargs ): """ Display one or more PR plots depending on the config of run. Plot aggregate and breakout PRs for protein(s) of interest if any are set, otherwise plot aggregate of all proteins/peptides. Note that individual PR curves are not plotted if the number of peptides exceeds some value (currently 50) because of some slowdown in notebooks when there are lots of individual curves. This slowdown needs to be investigated - it should be able to do hundreds without any issue. Right? aggregate_only: Do not plot PR curves for any individual peptides, whether the domain is all proteins, or proteins of interest, or proteins with PTMs. force_all_proteins: Plot PR for *all* proteins (always an aggregate PR) even if there are proteins-of-interest specified for this run. classifier: None to use any available preferred classifier, or one of the supported classifiers in RunResult::test_call_bag(), e.g. 'rf', 'nn' kwargs: passed to zplot NOTE: in my experience, aggregate PR curves are not very informative. """ z = ZPlots.zplot_singleton zOpts = ( {} if ( aggregate_only or run.prep.n_pois == 0 or run.prep.n_pois > MAX_BOKEH_PLOT_TRACES ) else {"_cols": 3} ) with z(**zOpts): z.color_reset() # *Up to* three columns, if we have interesting domains to look at. if run.prep.n_pois > 0 and not force_all_proteins: pep_iz = run.prep.peps__pois().pep_i.unique() n_peps = len(pep_iz) if n_peps > 1 or aggregate_only: plot_pr_aggregate( run, pep_iz=pep_iz, classifier=classifier, f_title=f"{classifier.upper()} Aggregate PR ({n_peps} peptides of interest)", **kwargs, ) # maybe do breakout of individual peps of interest if not aggregate_only: if n_peps < MAX_BOKEH_PLOT_TRACES: # See comment at top. plot_pr_breakout( run, pep_iz=pep_iz, classifier=classifier, f_title=f"{classifier.upper()} Individual PR ({n_peps} peptides of interest)", **kwargs, ) else: tell( f"Individual peptide PR for protein-of-interest skipped because plot with {n_peps} peptides may be slow." ) # maybe do breakout of peps of interest that have PTM locations df = run.prep.peps__ptms(poi_only=True, ptms_to_rows=False) pep_w_ptm_iz = df.pep_i.values n_peps_w_ptm = len(pep_w_ptm_iz) if n_peps_w_ptm > 0 and not aggregate_only and n_peps_w_ptm != n_peps: if n_peps_w_ptm < MAX_BOKEH_PLOT_TRACES: # See comment at top. plot_pr_breakout( run, pep_iz=pep_w_ptm_iz, classifier=classifier, f_title=f"{classifier.upper()} Individual PR ({n_peps_w_ptm} peptides w PTMs)", **kwargs, ) else: tell( f"Individual PTM-peptide PR skipped because plot with {n_peps_w_ptm} peptides may be slow." ) else: # All proteins, less the "null" entry at 0 n_peps = run.prep.n_peps - 1 n_pros = run.prep.n_pros - 1 plot_pr_aggregate( run, classifier=classifier, f_title=f"{classifier.upper()} Aggregate PR ({n_pros} proteins, {n_peps} peptides)", **kwargs, ) def plot_pr_for_job(job, force_all_proteins=False, classifier="nn_v2", **kwargs): """ Single plot containing relevant PR per run, with legend to indicate run. force_all_proteins: Plot PR for *all* proteins (aggregate) even if there are proteins-of-interest specified for this run. classifier: None to use any available preferred classifier, or one of the supported classifiers in RunResult::test_call_bag(), e.g. 'rf', 'nn' kwargs: passed to zplot """ domain = f"all proteins, observable peptides per run" run = job.runs[0] # get proteins_of_interest, same for each run if run.prep.n_pois > 0 and not force_all_proteins: domain = ( f"{run.prep.n_pois} protein(s) of interest, observable peptides per run" ) from bokeh.palettes import Category20 palette = Category20[20] z = ZPlots() with z( _merge=True, f_title=f"PR all runs, {domain}", f_x_axis_label="read recall", f_y_axis_label="precision", ): for i, run in enumerate(job.runs): color = palette[i % 20] name = "_".join(run.run_name.split("_")[:-1]) plot_pr_for_run( run, aggregate_only=True, force_all_proteins=force_all_proteins, classifier=classifier, color=color, legend_label=name, **kwargs, ) def standard_run_report(run, display_run_title=True, classifier=None): if display_run_title: hd("h2", f"Run: {run.run_name}") # Information from Prep and Simulation that has nothing # to do with classification hd("h3", f"Prep and simulation") text_prep_and_sim_info(run) if hasattr(run, "sim_v2"): plot_peptide_effective_labelability(run) plot_peptides_per_fluorosequence(run) # If no classifier is specified, print information from all available # classifiers, otherwise just the one that was requested. hd("h3", f"Classification") classifiers = run.get_available_classifiers() if classifier in classifiers: classifiers = [classifier] # Do textual information on classifiers one after the other. for classifier in classifiers: text_call_score_info(run, classifier=classifier) z = ZPlots() # Do call/score histograms next to each other with z(_cols=len(classifiers)): for classifier in classifiers: plot_call_score_hist(run, classifier=classifier) # Do PR plots for each classifier grouped together. If there are proteins of # interest, then each call will already result in multiple plots, but if there are # not, each call will only be one plot, so in that case group them on the same # to to make comparison between classifiers easier. zOpts = {} if run.prep.n_pois == 0 or run.prep.n_pois > MAX_BOKEH_PLOT_TRACES: zOpts = {"_cols": 2} with z(**zOpts): for classifier in classifiers: plot_peptide_observability_vs_precision(run, classifier=classifier) plot_pr_for_run(run, _noise=0.01, classifier=classifier) # In development # ==================================================================================================== def plot_channel_signal_scatter(run, ch0=0, ch1=1, **kwargs): sample_size = kwargs.get("sample_size", 500) n_std_plot_range = kwargs.get("n_std_plot_range", 4) sigproc = run.sigproc_v1 if run.has_result("sigproc_v1") else run.sigproc_v2 r = sigproc.radmats() n_peaks = len(r.peak_i.unique()) title = ( f"ch{ch1} vs ch{ch0} signal, n={sample_size}, axis-range={n_std_plot_range}-STD" ) md(f"## {title}") sample = np.random.choice(range(n_peaks), replace=False, size=sample_size) max_x = max_y = 0 z = ZPlots() with z(_cols=4, f_plot_width=250, f_plot_height=280): for cy in range(sigproc.n_cycles): x = r[(r.cycle_i == cy) & (r.channel_i == ch0)].signal.values y = r[(r.cycle_i == cy) & (r.channel_i == ch1)].signal.values x_sample = x[sample] y_sample = y[sample] if max_x == 0: max_x = np.mean(x_sample) + np.std(x_sample) * n_std_plot_range max_y = np.mean(y_sample) + np.std(y_sample) * n_std_plot_range z.scat( x=x_sample, y=y_sample, f_x_axis_label=f"signal, channel {ch0}", f_y_axis_label=f"signal, channel {ch1}", f_title=f"cycle {cy}", f_x_range=( 1 if kwargs.get("f_x_axis_type") == "log" else 0, # Bokeh has issues with zeros in log scale plots https://github.com/bokeh/bokeh/issues/6536 max_x, ), f_y_range=(0, max_y), **kwargs, ) def text_lnfit_links(run): from plumbum import local names = LNFitResult.task_names(run) tell(f"lnfit tasks in run: {names}") # We can use any name to get an lnfit result object # which deals with multiple lnfits per run for us. lnfit = run[names[0]] cwd = local.cwd for ch, html_files in enumerate(lnfit.html_files()): if not html_files: # TODO: should we print some kind of warning here? Due to the structure of the data returned by LNFitResult.html_files, # if html_files is empty then there's not a whole lot of other information to relay to the user. continue task_folder = html_files[0].split()[-2] md(f"### {task_folder}") m = "" for f in sorted(html_files): relative_path = f.relative_to(cwd) m += f"* [{f.name}]({relative_path})\n" md(m) def plot_signal_for_lnfit_sequence(run, channel, sequence, lnfit_taskname=None): # Used in lnfit_template """ Plot signal vs cycle for all peaks with a given lnfit sequence on a particular channel. sequence is e.g. '22221111000000' """ names = LNFitResult.task_names(run) lnfit = run[names[0]] df_ln = lnfit.lnfit_bestseq_df( lnfit_taskname ) # contains lnfit bestseq per peak_i and channel; sigproc = run.sigproc_v1 if run.has_result("sigproc_v1") else run.sigproc_v2 df = sigproc.fields__n_peaks__peaks__radmat() df =
pd.merge(df_ln, df, how="left", on=["peak_i", "channel_i"])
pandas.merge
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Created by <NAME> import unittest import pandas as pd import pandas.testing as pdtest from allfreqs import AlleleFreqs from allfreqs.classes import Reference, MultiAlignment from allfreqs.tests.constants import ( REAL_ALG_X_FASTA, REAL_ALG_X_NOREF_FASTA, REAL_RSRS_FASTA, REAL_ALG_L6_FASTA, REAL_ALG_L6_NOREF_FASTA, SAMPLE_MULTIALG_FASTA, SAMPLE_MULTIALG_NOREF_FASTA, SAMPLE_REF_FASTA, SAMPLE_MULTIALG_CSV, SAMPLE_MULTIALG_NOREF_CSV, SAMPLE_REF_CSV, sample_sequences_df, SAMPLE_SEQUENCES_DICT, sample_sequences_freqs, sample_sequences_freqs_amb, SAMPLE_FREQUENCIES, SAMPLE_FREQUENCIES_AMB, REAL_ALG_X_DF, REAL_X_FREQUENCIES, REAL_ALG_L6_DF, REAL_L6_FREQUENCIES, TEST_CSV ) class TestBasic(unittest.TestCase): def setUp(self) -> None: ref = Reference("AAG-CTNGGGCATTTCAGGGTGAGCCCGGGCAATACAGGG-TAT") alg = MultiAlignment(SAMPLE_SEQUENCES_DICT) self.af = AlleleFreqs(multialg=alg, reference=ref) self.af_amb = AlleleFreqs(multialg=alg, reference=ref, ambiguous=True) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_frequencies_ambiguous(self): # Given/When exp_freqs = sample_sequences_freqs_amb() # Then pdtest.assert_frame_equal(self.af_amb.frequencies, exp_freqs) def test__get_frequencies(self): # Given test_freq = pd.Series({'A': 0.2, 'C': 0.2, 'G': 0.1, 'T': 0.3, '-': 0.1, 'N': 0.1}) exp_freq = {'A': 0.2, 'C': 0.2, 'G': 0.1, 'T': 0.3, 'gap': 0.1, 'oth': 0.1} # When result = self.af._get_frequencies(test_freq) # Then self._dict_almost_equal(result, exp_freq) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) def test_to_csv_ambiguous(self): # Given/When self.af_amb.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES_AMB) # Then pdtest.assert_frame_equal(result, expected) @staticmethod def _dict_almost_equal(expected: dict, result: dict, acc=10**-8) -> bool: """Compare to dictionaries and ensure that all their values are the same, accounting for some fluctuation up to the given accuracy value. Args: expected: expected dictionary result: resulting dictionary acc: accuracy to use [default: 10**-8] """ if expected.keys() == result.keys(): for key in expected.keys(): if abs(expected[key] - result[key]) < acc: continue return True return False # From Fasta class TestFromFasta(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=SAMPLE_MULTIALG_FASTA) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestFromFastaNoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=SAMPLE_MULTIALG_NOREF_FASTA, reference=SAMPLE_REF_FASTA) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) # From Csv class TestFromCsv(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_csv(sequences=SAMPLE_MULTIALG_CSV) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestFromCsvNoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_csv(sequences=SAMPLE_MULTIALG_NOREF_CSV, reference=SAMPLE_REF_CSV) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) # Real Datasets class TestRealDatasetsX(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=REAL_ALG_X_FASTA) def test_df(self): # Given/When exp_df = pd.read_csv(REAL_ALG_X_DF, index_col=0) # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = pd.read_csv(REAL_X_FREQUENCIES) # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/when self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(REAL_X_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestRealDatasetsXNoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=REAL_ALG_X_NOREF_FASTA, reference=REAL_RSRS_FASTA) def test_df(self): # Given/When exp_df = pd.read_csv(REAL_ALG_X_DF, index_col=0) # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = pd.read_csv(REAL_X_FREQUENCIES) # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(REAL_X_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestRealDatasetsL6(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=REAL_ALG_L6_FASTA) def test_df(self): # Given/When exp_df = pd.read_csv(REAL_ALG_L6_DF, index_col=0) pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = pd.read_csv(REAL_L6_FREQUENCIES) # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(REAL_L6_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestRealDatasetsL6NoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=REAL_ALG_L6_NOREF_FASTA, reference=REAL_RSRS_FASTA) def test_df(self): # Given/When exp_df = pd.read_csv(REAL_ALG_L6_DF, index_col=0) # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = pd.read_csv(REAL_L6_FREQUENCIES) # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(REAL_L6_FREQUENCIES) # Then
pdtest.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
from bs4 import BeautifulSoup from urllib.request import urlopen import re import requests import urllib.request import json import pandas as pd import csv # 利用colab云上编译 # 保存文件 # from pydrive.auth import GoogleAuth # from pydrive.drive import GoogleDrive # from google.colab import auth # from oauth2client.client import GoogleCredentials # 爬取所有搜索页面的url def url_load(url): print(url) headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'} req = urllib.request.Request(url,None,headers = headers) #print(req) html = urllib.request.urlopen(req).read() soup = BeautifulSoup(html, features='lxml') centent = soup.find('div', {"class": "category-products"}) b = centent.find_all('li') url_all = [] name_all = [] size_all = [] prize_all = [] # 爬取各搜索页中各详情页的url for a in b: all_href = a.find_all('a',{"class":"product-image"}) #print(all_href) # 进入详情页,爬取各页面的详情参数 for l in all_href: #print(l['href']) #list[] = l['href'] e = l['href'] u = printurl(e) url_all.append(u) #print(u) n = printname(e) name_all.append(n) s = printsize(e) size_all.append(s) p = printprize(e) prize_all.append(p) #print(au) data = { 'url' : url_all, 'name' : name_all, 'size' : size_all, 'prize' : prize_all } #print(data) #data_csv = pd.DataFrame(data) return data #data_csv.to_csv("data.csv",index=False,sep=',') #print(u) # 爬取详情页链接 def printurl(url): print(url) headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'} req = urllib.request.Request(url,None,headers = headers) #print(req) html = urllib.request.urlopen(req).read() soup = BeautifulSoup(html, features='lxml') url_single = [] #for i in range(1,24): url_single.append(url) #print(url_single) return url_single # 爬取详情页产品名称 def printname(url): #print(url) headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'} req = urllib.request.Request(url,None,headers = headers) #print(req) html = urllib.request.urlopen(req).read() soup = BeautifulSoup(html, features='lxml') #<h1 class="product-name" itemprop="name"> h = soup.find('h1',{"class":"product-name"}) #print(h.get_text()) name_single = [] #for i in range(1,24): name_single.append(h.get_text()) return name_single # 爬取详情页产品的鞋码 def printsize(url): #print(url) headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'} req = urllib.request.Request(url,None,headers = headers) #print(req) html = urllib.request.urlopen(req).read() soup = BeautifulSoup(html, features='lxml') #<span class="product-sizes__size">7*</span> s = soup.find_all('span',{"class":"product-sizes__size"}) size_single = [] for size in s: #print(size.get_text()) size_single.append(size.get_text()) return size_single # 爬取详情页产品的价格 def printprize(url): #print(url) headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'} req = urllib.request.Request(url,None,headers = headers) #print(req) html = urllib.request.urlopen(req).read() soup = BeautifulSoup(html, features='lxml') #<span class="product-sizes__price" data-selected-price>CN¥5,296.00</span> p = soup.find_all('span',{"class":"product-sizes__price"}) #print(p.get_text()) prize_single = [] for prize in p: #print(prize.get_text()) prize_single.append(prize.get_text()) return prize_single #def write_csv(content): if __name__ == '__main__': # 以Air Jordan 1 为例 url = 'https://www.stadiumgoods.com/air-jordan/air-jordan-1' # 开始爬取 x = url_load(url) # 分页面保存 data_csv =
pd.DataFrame(x)
pandas.DataFrame
import inspect import json import os import re from urllib.parse import quote from urllib.request import urlopen import pandas as pd import param from .configuration import DEFAULTS class TutorialData(param.Parameterized): label = param.String(allow_None=True) raw = param.Boolean() verbose = param.Boolean() return_meta = param.Boolean() use_cache = param.Boolean() _source = None _base_url = None _data_url = None _description = None def __init__(self, **kwds): super().__init__(**kwds) self._cache_dir = DEFAULTS["cache_kwds"]["directory"] self._remove_href = re.compile(r"<(a|/a).*?>") os.makedirs(self._cache_dir, exist_ok=True) self._init_owid() @property def _cache_path(self): cache_file = f"{self.label}.pkl" return os.path.join(self._cache_dir, cache_file) @property def _dataset_options(self): options = set([]) for method in dir(self): if method.startswith("_load_") and "owid" not in method: options.add(method.replace("_load_", "")) return list(options) + list(self._owid_labels_df.columns) @staticmethod def _specify_cache(cache_path, **kwds): if kwds: cache_ext = "_".join( f"{key}={val}".replace(os.sep, "") for key, val in kwds.items() ) cache_path = f"{os.path.splitext(cache_path)[0]}_{cache_ext}.pkl" return cache_path def _cache_dataset(self, df, cache_path=None, **kwds): if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) df.to_pickle(cache_path) def _read_cache(self, cache_path=None, **kwds): if not self.use_cache: return None if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) try: return pd.read_pickle(cache_path) except Exception: if os.path.exists(cache_path): os.remove(cache_path) return None @staticmethod def _snake_urlify(s): # Replace all hyphens with underscore s = s.replace(" - ", "_").replace("-", "_") # Remove all non-word characters (everything except numbers and letters) s = re.sub(r"[^\w\s]", "", s) # Replace all runs of whitespace with a underscore s = re.sub(r"\s+", "_", s) return s.lower() def _init_owid(self): cache_path = os.path.join(self._cache_dir, "owid_labels.pkl") self._owid_labels_df = self._read_cache(cache_path=cache_path) if self._owid_labels_df is not None: return owid_api_url = ( "https://api.github.com/" "repos/owid/owid-datasets/" "git/trees/master?recursive=1" ) with urlopen(owid_api_url) as f: sources = json.loads(f.read().decode("utf-8")) owid_labels = {} owid_raw_url = "https://raw.githubusercontent.com/owid/owid-datasets/master/" for source_tree in sources["tree"]: path = source_tree["path"] if ".csv" not in path and ".json" not in path: continue label = "owid_" + self._snake_urlify(path.split("/")[-2].strip()) if label not in owid_labels: owid_labels[label] = {} url = f"{owid_raw_url}/{quote(path)}" if ".csv" in path: owid_labels[label]["data"] = url elif ".json" in path: owid_labels[label]["meta"] = url self._owid_labels_df = pd.DataFrame(owid_labels) self._cache_dataset(self._owid_labels_df, cache_path=cache_path) def _load_owid(self, **kwds): self._data_url = self._owid_labels_df[self.label]["data"] meta_url = self._owid_labels_df[self.label]["meta"] with urlopen(meta_url) as response: meta = json.loads(response.read().decode()) self.label = meta["title"] self._source = ( " & ".join(source["dataPublishedBy"] for source in meta["sources"]) + " curated by Our World in Data (OWID)" ) self._base_url = ( " & ".join(source["link"] for source in meta["sources"]) + " through https://github.com/owid/owid-datasets" ) self._description = re.sub(self._remove_href, "", meta["description"]) df = self._read_cache(**kwds) if df is None: df = pd.read_csv(self._data_url, **kwds) self._cache_dataset(df, **kwds) if self.raw: return df df.columns = [self._snake_urlify(col) for col in df.columns] return df def _load_annual_co2(self, **kwds): self._source = "NOAA ESRL" self._base_url = "https://www.esrl.noaa.gov/" self._data_url = ( "https://www.esrl.noaa.gov/" "gmd/webdata/ccgg/trends/co2/co2_annmean_mlo.txt" ) self._description = ( "The carbon dioxide data on Mauna Loa constitute the longest record " "of direct measurements of CO2 in the atmosphere. They were started " "by <NAME> of the Scripps Institution of Oceanography in " "March of 1958 at a facility of the National Oceanic and Atmospheric " "Administration [Keeling, 1976]. NOAA started its own CO2 measurements " "in May of 1974, and they have run in parallel with those made by " "Scripps since then [Thoning, 1989]." ) df = self._read_cache(**kwds) if df is None: base_kwds = dict( header=None, comment="#", sep="\s+", # noqa names=["year", "co2_ppm", "uncertainty"], ) base_kwds.update(kwds) df = pd.read_csv(self._data_url, **base_kwds) self._cache_dataset(df, **kwds) return df def _load_tc_tracks(self, **kwds): self._source = "IBTrACS v04 - USA" self._base_url = "https://www.ncdc.noaa.gov/ibtracs/" self._data_url = ( "https://www.ncei.noaa.gov/data/" "international-best-track-archive-for-climate-stewardship-ibtracs/" "v04r00/access/csv/ibtracs.last3years.list.v04r00.csv" ) self._description = ( "The intent of the IBTrACS project is to overcome data availability " "issues. This was achieved by working directly with all the Regional " "Specialized Meteorological Centers and other international centers " "and individuals to create a global best track dataset, merging storm " "information from multiple centers into one product and archiving " "the data for public use." ) df = self._read_cache(**kwds) if df is None: base_kwds = dict(keep_default_na=False) base_kwds.update(kwds) df = pd.read_csv(self._data_url, **base_kwds) self._cache_dataset(df, **kwds) if self.raw: return df cols = [ "BASIN", "NAME", "LAT", "LON", "ISO_TIME", "USA_WIND", "USA_PRES", "USA_SSHS", "USA_RMW", ] df = df[cols] df.columns = df.columns.str.lower() df = df.iloc[1:] df = df.set_index("iso_time") df.index = pd.to_datetime(df.index) numeric_cols = ["lat", "lon", "usa_rmw", "usa_pres", "usa_sshs", "usa_rmw"] df[numeric_cols] = df[numeric_cols].apply(pd.to_numeric, errors="coerce") return df def _load_covid19_us_cases(self, **kwds): self._source = "JHU CSSE COVID-19" self._base_url = "https://github.com/CSSEGISandData/COVID-19" self._data_url = ( "https://github.com/CSSEGISandData/COVID-19/raw/master/" "csse_covid_19_data/csse_covid_19_time_series/" "time_series_covid19_confirmed_US.csv" ) df = self._read_cache(**kwds) if df is None: df = pd.read_csv(self._data_url, **kwds) self._cache_dataset(df, **kwds) if self.raw: return df df = df.drop( ["UID", "iso2", "iso3", "code3", "FIPS", "Admin2", "Country_Region"], axis=1, ) df.columns = df.columns.str.lower().str.rstrip("_") df = df.melt( id_vars=["lat", "long", "combined_key", "province_state"], var_name="date", value_name="cases", ) df["date"] = pd.to_datetime(df["date"]) return df def _load_covid19_global_cases(self, **kwds): self._source = "JHU CSSE COVID-19" self._base_url = "https://github.com/CSSEGISandData/COVID-19" self._data_url = ( "https://github.com/CSSEGISandData/COVID-19/raw/master/" "csse_covid_19_data/csse_covid_19_time_series/" "time_series_covid19_confirmed_global.csv" ) self._description = ( "This is the data repository for the 2019 Novel Coronavirus " "Visual Dashboard operated by the Johns Hopkins University Center " "for Systems Science and Engineering (JHU CSSE). Also, Supported " "by ESRI Living Atlas Team and the Johns Hopkins University " "Applied Physics Lab (JHU APL)." ) df = self._read_cache(**kwds) if df is None: df = pd.read_csv(self._data_url, **kwds) self._cache_dataset(df, **kwds) if self.raw: return df df.columns = df.columns.str.lower().str.rstrip("_") df = df.melt( id_vars=["province/state", "country/region", "lat", "long"], var_name="date", value_name="cases", ) df.columns = df.columns.str.replace("/", "_") df["date"] = pd.to_datetime(df["date"]) return df def _load_covid19_population(self, **kwds): self._source = "JHU CSSE COVID-19" self._base_url = "https://github.com/CSSEGISandData/COVID-19" self._data_url = ( "https://raw.githubusercontent.com/" "CSSEGISandData/COVID-19/master/" "csse_covid_19_data/UID_ISO_FIPS_LookUp_Table.csv" ) self._description = ( "This is the data repository for the 2019 Novel Coronavirus " "Visual Dashboard operated by the Johns Hopkins University Center " "for Systems Science and Engineering (JHU CSSE). Also, Supported " "by ESRI Living Atlas Team and the Johns Hopkins University " "Applied Physics Lab (JHU APL)." ) df = self._read_cache(**kwds) if df is None: df = pd.read_csv(self._data_url, **kwds) self._cache_dataset(df, **kwds) if self.raw: return df df.columns = df.columns.str.lower().str.rstrip("_") return df def _load_gapminder_life_expectancy(self, **kwds): self._source = "World Bank Gapminder" self._base_url = ( "https://github.com/open-numbers/ddf--gapminder--systema_globalis" ) self._data_url = ( "https://raw.githubusercontent.com/open-numbers/" "ddf--gapminder--systema_globalis/master/" "countries-etc-datapoints/ddf--datapoints--" "life_expectancy_years--by--geo--time.csv" ) self._description = ( "This is the main dataset used in tools on the official Gapminder " "website. It contains local & global statistics combined from " "hundreds of sources." ) df = self._read_cache(**kwds) if df is None: df = pd.read_csv(self._data_url, **kwds) self._cache_dataset(df, **kwds) if self.raw: return df df = df.rename(columns={"life_expectancy_years": "life_expectancy"}) return df def _load_gapminder_income(self, **kwds): self._source = "World Bank Gapminder" self._base_url = ( "https://github.com/open-numbers/ddf--gapminder--systema_globalis" ) self._data_url = ( "https://raw.githubusercontent.com/open-numbers/" "ddf--gapminder--systema_globalis/master/" "countries-etc-datapoints/ddf--datapoints--" "income_per_person_gdppercapita_ppp_inflation_adjusted" "--by--geo--time.csv" ) self._description = ( "This is the main dataset used in tools on the official Gapminder " "website. It contains local & global statistics combined from " "hundreds of sources." ) df = self._read_cache(**kwds) if df is None: df =
pd.read_csv(self._data_url, **kwds)
pandas.read_csv
import sys import os import pandas as pd import numpy as np import scipy as sp import camoco as co from itertools import chain from camoco.Tools import log # Initialize a new log object log = log() def snp2gene(args): """ Perform SNP (locus) to candidate gene mapping """ if args.out != sys.stdout: # Create any non-existant directories if os.path.dirname(args.out) != "": os.makedirs(os.path.dirname(args.out), exist_ok=True) if os.path.exists(args.out) and not args.force: print("Output for {} exists! Skipping!".format(args.out), file=sys.stderr) return None # Set a flag saying this is from a COB refgen from_cob = False # Create the refgen (option to create it from a COB) if co.Tools.available_datasets("Expr", args.refgen): refgen = co.COB(args.refgen).refgen from_cob = args.refgen elif co.Tools.available_datasets("RefGen", args.refgen): refgen = co.RefGen(args.refgen) # Create the GWAS object ont = co.GWAS(args.gwas) if "all" in args.terms: terms = ont.iter_terms() else: terms = [ont[term] for term in args.terms] data = pd.DataFrame() results = [] for term in terms: for window_size in args.candidate_window_size: for flank_limit in args.candidate_flank_limit: if "effective" in args.snp2gene: # Map to effective effective_loci = term.effective_loci(window_size=window_size) elif "strongest" in args.snp2gene: effective_loci = term.strongest_loci( window_size=window_size, attr=args.strongest_attr, lowest=args.strongest_higher, ) genes = pd.DataFrame( [ x.as_dict() for x in refgen.candidate_genes( effective_loci, flank_limit=flank_limit, include_parent_locus=True, include_num_siblings=True, include_num_intervening=True, include_rank_intervening=True, include_SNP_distance=True, include_parent_attrs=args.include_parent_attrs, attrs={"Term": term.id}, ) ] ) genes["FlankLimit"] = flank_limit genes["WindowSize"] = window_size genes["RefGen"] = refgen.name if from_cob != False: genes["COB"] = from_cob data =
pd.concat([data, genes])
pandas.concat
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # These are queries to validate RT_deid_base_cdr import urllib import pandas as pd pd.options.display.max_rows = 120 # + tags=["parameters"] project_id = "" com_cdr = "" deid_base_cdr="" pipeline="" # - # df will have a summary in the end df = pd.DataFrame(columns = ['query', 'result']) # # 1 Verify that if a person has multiple SELECTion(Hispanic + other race) in pre_deid_com_cdr, the output in deid_base_cdr observation table should result in two rows - one for Ethnicity AND one for race. # # test steps: # # - Verify the following columns in the de-id Observation table have been set to null: # o value_as_string # o value_source_value" # however, this is already done in query 1, no need here anymore # - Find person_ids in pre_deid_com_cdr person table who have ethnicity_source_concept_id values AS 1586147 & race_source_concept_id AS ( 1586146 OR 1586142 OR 1586143) , then verify that the output in the deid_base_cdr observation table for that person_id will results in 2-rows . # - Verify that the 2-rows have 2-different value_source_concept_id values in the deid_base_cdr Observation table. # - Verify that if a person_id in pre_deid_com_cdr hAS ethnicity_source_concept_id values AS 1586147 & race_source_concept_id AS ( 1586145 OR 1586144) in the person table, the output in the deid_base_cdr observation table for that person_id will result in 2-rows . # - Verify that if a person_id hAS ethnicity_source_concept_id values AS 1586147 & race_source_concept_id AS multiple SELECTions (2 or more) in the person table, the output in the deid_base_cdr observation table for that person_id will result in 2 OR MORE rows . # # # ## 1.1 step1 # - Verify the following columns in the deid_cdr Observation table have been set to null: # o value_as_string # o value_source_value # # has been done in first sql for deid, can be skipped here # # 1.2 step2 Find person_ids in pre_dedi_com_cdr person table who have ethnicity_source_concept_id values AS 1586147 & race_source_concept_id AS ( 1586146 OR 1586142 OR 1586143) , then verify that the output in the deid_base_cdr observation table for that person_id after mapping will results in 2-rows . # # step 3 # Verify that the 2-rows have 2-different value_source_concept_id values in the deid_base_cdr Observation table. query=f''' WITH df1 AS ( SELECT m.research_id AS person_id FROM `{project_id}.{pipeline}.pid_rid_mapping` m JOIN `{project_id}.{com_cdr}.person` com ON m.person_id = com.person_id WHERE com.ethnicity_source_concept_id = 1586147 AND com.race_source_concept_id in (1586142, 1586143, 1586146 ) ), df2 AS ( SELECT DISTINCT person_id , COUNT (distinct value_source_concept_id ) AS countp FROM `{project_id}.{deid_base_cdr}.observation` WHERE observation_source_value = 'Race_WhatRaceEthnicity' GROUP BY person_id ) SELECT COUNT (*) AS n_not_two_rows FROM df2 WHERE person_id IN (SELECT person_id FROM df1) AND countp !=2 ''' df1=pd.read_gbq(query, dialect='standard') if df1.eq(0).any().any(): df = df.append({'query' : 'Query 1.2 these person_ids have 2-rows in observation', 'result' : 'PASS'}, ignore_index = True) else: df = df.append({'query' : 'Query1.2 these person_ids have 2-rows in observation', 'result' : ''}, ignore_index = True) df1 # ## one error in new cdr. this person_id fails to meet the rule. # + query=f''' WITH df1 AS ( SELECT m.research_id AS person_id FROM `{project_id}.{pipeline}.pid_rid_mapping` m JOIN `{project_id}.{com_cdr}.person` com ON m.person_id = com.person_id WHERE com.ethnicity_source_concept_id = 1586147 AND com.race_source_concept_id in (1586142, 1586143, 1586146 ) ), df2 AS ( SELECT DISTINCT person_id , count (distinct value_source_concept_id ) AS countp FROM `{project_id}.{deid_base_cdr}.observation` WHERE observation_source_value = 'Race_WhatRaceEthnicity' GROUP BY person_id ) SELECT distinct person_id, value_source_concept_id, value_source_value FROM `{project_id}.{deid_base_cdr}.observation` WHERE observation_source_value = 'Race_WhatRaceEthnicity' AND person_id IN (SELECT person_id from df2 where countp !=2 ) AND person_id IN (SELECT person_id FROM df1) ''' df1=
pd.read_gbq(query, dialect='standard')
pandas.read_gbq
from functools import reduce from os.path import join, exists from src.log import create_experiment from joblib import Parallel, delayed, dump, load import numpy as np import pandas as pd from itertools import product from time import time from sklearn import svm from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.model_selection import TimeSeriesSplit, GridSearchCV, train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.svm import SVC from tqdm import tqdm import logging import random import click import random import warnings from src.models import create_dir, instantiate_classifier, FUZZY_CLASSIFIERS from src.data import ( get_sectors, load_OHLCV_files, create_target, load_stock_entities, USED_SECTORS, ) from src.data.preparation import TRAIN_SIZE, drop_initial_nans from src.models import lstm logging.basicConfig( format="%(asctime)s:%(name)s:%(levelname)s:%(message)s", level=logging.INFO, ) logger = logging.getLogger(__name__) def score_classifier(y_true, y_pred) -> dict: """Compute performance measures.""" perf = { "f1_macro": f1_score(y_true, y_pred, average="macro", zero_division=0), "f1_weighted": f1_score(y_true, y_pred, average="weighted", zero_division=0), "f1_pos": f1_score( y_true, y_pred, labels=[0, 2], average="weighted", zero_division=0 ), } return perf def oversample(X_train, y_train, method): from imblearn.over_sampling import ADASYN, SMOTE if method == "adasyn": return ADASYN().fit_resample(X_train, y_train) else: return SMOTE().fit_resample(X_train, y_train) def get_stock_splits( stock_df, year, classifier, horizon, l_threshold, h_threshold, training_type, oversampling, ): # Create discrete targets targets = create_target(stock_df, horizon, l_threshold, h_threshold) assert len(targets) == len(stock_df) if classifier == "L3": stock_df = stock_df.drop(columns=["Open", "High", "Low", "Close", "Volume"]) #  Create training and testing split (eventually validation) X, y = stock_df.loc[year, :], targets.loc[year] X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=TRAIN_SIZE, shuffle=False ) if training_type == "cumulative": past_years = stock_df.loc[: str(int(year) - 1), :] past_targets = targets.loc[: str(int(year) - 1)] X_train = pd.concat([past_years, X_train], axis=0) y_train = pd.concat([past_targets, y_train], axis=0) #  use the specified year as test # X_train = past_years # y_train = past_targets # X_test = stock_df.loc[year, :] # y_test = targets.loc[year] #  Drop initial days with nans due to the technical indicators X_train, first_valid_idx = drop_initial_nans(X_train) y_train = y_train.iloc[first_valid_idx:] # Drop last `horizon` days not to be predicted X_test = X_test.iloc[:-horizon] y_test = y_test.iloc[:-horizon] # if a stock is trained on a single target label, e.g. all days are HOLD, # just skip it, nothing can be learned if y_train.unique().size <= 1: raise RuntimeError() #  Oversampling for all but L3 if oversampling and classifier != "L3": logger.info(f"Oversampling requested with {oversampling}") X_train, y_train = oversample(X_train, y_train, method=oversampling) return X_train, X_test, y_train, y_test def test(model, X_test, y_test): return model.predict(X_test) def train( X_train, y_train, tick: str, classifier: str, output_dir: str, do_grid_search: bool, normalize: bool, **classifier_kwargs, ): if do_grid_search: logger.info(f"Grid search for {classifier} requested.") clf, params, grid = instantiate_classifier( classifier, return_grid=True, **classifier_kwargs ) # update param grid keys to match the use of pipeline if isinstance(grid, list): grid = [{f"clf__{k}": v for k, v in g.items()} for g in grid] else: grid = {f"clf__{k}": v for k, v in grid.items()} #  Normalize for all classifiers but L3 if normalize: scaler = ( MinMaxScaler() if classifier in FUZZY_CLASSIFIERS else StandardScaler() ) pipeline = Pipeline([("scaler", scaler), ("clf", clf)]) else: pipeline = Pipeline([("clf", clf)]) n_jobs = 1 if classifier == "MLP" else -1 gs = GridSearchCV( pipeline, param_grid=grid, scoring="f1_macro", n_jobs=n_jobs, cv=TimeSeriesSplit(n_splits=3), verbose=10, ) if classifier == "L3": gs.fit( X_train, y_train, clf__column_names=X_train.columns, clf__remove_training_dir=True, ) else: gs.fit(X_train, y_train) # save the best estimator dump( gs.best_estimator_, join(output_dir, "models", f"best_model_{tick}.joblib") ) # for L3 save also the rules if classifier == "L3": create_dir(join(output_dir, "rules", tick)) gs.best_estimator_.named_steps["clf"].save_rules( join(output_dir, "rules", tick) ) return gs else: # TODO implement this if we ever need it raise RuntimeError("We don't want to do that now.") @click.command() @click.argument("output_dir", type=click.Path(file_okay=False, writable=True)) @click.argument("classifier", type=click.STRING) @click.argument("year", type=click.STRING) @click.option( "--training_type", type=click.Choice(["year", "cumulative"]), default="year" ) @click.option("--horizon", type=click.INT, default=1) @click.option("--log_comet", is_flag=True) @click.option("--do_grid_search", is_flag=True) @click.option("--normalize", is_flag=True) @click.option("--oversampling", type=click.STRING, default=None) @click.option("--h_threshold", type=click.FLOAT, default=1) @click.option("--l_threshold", type=click.FLOAT, default=-1) @click.option("--seed", type=click.INT, default=42) @click.option("--test_run", is_flag=True) @click.option("--parallel", is_flag=True) @click.option("--n_workers", type=click.INT, default=16) @click.option("--seq_length", type=click.INT, default=5) @click.option("--batch_size", type=click.INT, default=128) @click.option("--max_epochs", type=click.INT, default=30) @click.option("--lr", type=click.FLOAT, default=2e-5) @click.option("--early_stop", type=click.INT, default=0) @click.option("--gpus", type=click.INT, default=1) @click.option("--stateful", is_flag=True) @click.option("--reduce_lr", type=click.INT, default=0) @click.option("--rule_sets_modifier", type=click.STRING, default="standard") @click.option("--use_sectors", is_flag=True) def main( output_dir, classifier, year, training_type, horizon, log_comet, do_grid_search, normalize, oversampling, h_threshold, l_threshold, seed, test_run, parallel, n_workers, seq_length, batch_size, max_epochs, lr, early_stop, gpus, stateful, reduce_lr, rule_sets_modifier, use_sectors, ): hparams = locals() random.seed(seed) create_dir(output_dir) create_dir(join(output_dir, "models")) if classifier == "L3": create_dir(join(output_dir, "rules")) in_dir = ( join("data", "processed", "SP500_technical") if classifier != "L3" else join("data", "processed", "SP500_technical_discretized", "DENSE") ) stock_by_tick = load_OHLCV_files(in_dir) logger.info(f"Loaded {len(stock_by_tick)} stocks") #  sort ticks alphabetically ticks = sorted(list(stock_by_tick.keys())) if test_run: stock_by_tick = { "AAPL": stock_by_tick["AAPL"], "MSFT": stock_by_tick["MSFT"], "AMZN": stock_by_tick["AMZN"], } experiment = None if log_comet: exp = create_experiment() exp.add_tag("training") exp.log_parameters(hparams) exp.log_other("n_stocks", len(stock_by_tick)) classifier_args = dict() if classifier == "L3": classifier_args["rule_sets_modifier"] = rule_sets_modifier if classifier == "MLP": classifier_args["random_state"] = seed if classifier == "LSTM": classifier_args["seed"] = seed if not use_sectors: """Run trading separately per stock.""" results = list() for tick in tqdm(ticks, desc="Stocks"): stock_df = stock_by_tick[tick] X_train, X_test, y_train, y_test = get_stock_splits( stock_df, year, classifier, horizon, l_threshold, h_threshold, training_type, oversampling, ) if classifier != "LSTM": model = train( X_train, y_train, tick, classifier, output_dir, do_grid_search, normalize, seed, experiment, **classifier_args, ) y_pred = model.predict(X_test) best_params = model.best_params_ else: #  LSTM logger.info("Disabling model and experiment logging with LSTM.") save_model = False comet_experiment = None best_model_path = lstm.train( X_train, y_train, 3, seq_length, batch_size, max_epochs, lr, reduce_lr, gpus, seed, early_stop, stateful, comet_experiment=comet_experiment, model_dir=join(output_dir, "models"), tick=tick, save_model=save_model, ) y_pred = lstm.test( best_model_path, X_train, X_test, y_train, y_test, seq_length, batch_size, ) best_params = None os.remove(best_model_path) test_perf = score_classifier(y_test, y_pred) results.append((y_test, test_perf, y_pred, best_params)) else: """Group stocks into sectors. We keep only the most populated ones.""" if log_comet: exp.add_tag("sectors") logger.info(f"Training on {len(USED_SECTORS)} sectors") logger.info(f"Sectors: {USED_SECTORS}") stocks = load_stock_entities(join("data", "raw")) sectors = get_sectors(stocks) results = list() process_ticks = list() for sec in tqdm(USED_SECTORS, desc="Sectors"): curr_ticks = sectors.loc[sectors == sec].index.values process_ticks.extend(curr_ticks) Xtr, Xte, ytr, yte = list(), list(), list(), list() for tick in curr_ticks: stock_df = stock_by_tick[tick] X_train, X_test, y_train, y_test = get_stock_splits( stock_df, year, classifier, horizon, l_threshold, h_threshold, training_type, oversampling, ) Xtr.append(X_train) Xte.append(X_test) ytr.append(y_train) yte.append(y_test) X_train = pd.concat(Xtr, axis=0) y_train = pd.concat(ytr, axis=0) logger.info(f"Dimensions of this sector: X_train: {X_train.shape}") if classifier != "LSTM": model = train( X_train=X_train, y_train=y_train, tick=sec, classifier=classifier, output_dir=output_dir, do_grid_search=do_grid_search, normalize=normalize, **classifier_args, ) #  Predict one stock at a time within the current sector for tick, X_test, y_test in tqdm( zip(curr_ticks, Xte, yte), desc="Stocks", leave=False, total=len(curr_ticks), ): y_pred = model.predict(X_test) test_perf = score_classifier(y_test, y_pred) results.append((y_test, test_perf, y_pred, model.best_params_)) else: #  LSTM logger.info("Disabling model and experiment logging with LSTM.") save_model = False comet_experiment = None best_model_path = lstm.train( X_train=X_train, y_train=y_train, num_classes=3, seq_length=seq_length, batch_size=batch_size, max_epochs=max_epochs, lr=lr, reduce_lr=reduce_lr, gpus=gpus, seed=seed, early_stop=early_stop, stateful=stateful, comet_experiment=comet_experiment, model_dir=join(output_dir, "models"), tick=sec, save_model=save_model, ) #  Predict one stock at a time within the current sector for tick, X_test, y_test in tqdm( zip(curr_ticks, Xte, yte), desc="Stocks", leave=False, total=len(curr_ticks), ): y_pred = lstm.test( best_model_path, X_train, X_test, y_train, y_test, seq_length, batch_size, ) test_perf = score_classifier(y_test, y_pred) results.append((y_test, test_perf, y_pred, None)) os.remove(best_model_path) logger.info(f"Processed {len(results)} stocks") ticks = process_ticks # Save all the results create_dir(join(output_dir, "preds")) y_tests = [r[0] for r in results] y_tests =
pd.concat(y_tests, axis=1, keys=ticks)
pandas.concat
''' Program: LBplot v3.1 Author: <NAME> Released: 06/10/2020 Available in <https://github.com/HectorKroes/LBplot> ''' ##REFERENCES## References = (''' -<NAME>., & <NAME>. (1934). The Determination of Enzyme Dissociation Constants. Journal of the American Chemical Society, 56(3), 658–666. doi:10.1021/ja01318a036 -<NAME>., and <NAME>. (1913) Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 -<NAME>.; <NAME>.; and <NAME>. Statistical Distributions, 3rd ed. New York: Wiley, p. 12-14, 2000. -<NAME>. "Hypothesis Testing." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HypothesisTesting.html -Weisstein, <NAME>. "Standard Error." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StandardError.html -Weisstein, <NAME>. "Correlation Coefficient." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CorrelationCoefficient.html ''') ##IMPORTS## from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import time, math, copy, os, sys, codecs, datetime, calendar from matplotlib.backends.backend_pdf import PdfPages from matplotlib.ticker import NullFormatter import matplotlib.pyplot as plt from datetime import datetime import PySimpleGUI as sg from scipy import stats import pandas as pd import numpy as np ##FUNCTIONS## def erro(x, z): a = [] xm = sum(x)/len(x) for r in range(0,len(x)): at = ((x[r]-xm)**2) a.append(at) atot = (sum(a)/(len(x)-z)) return atot def floatit(a): b = [] for aa in a: b.append(float(aa)) return b def breaqui(): global sm sm = 'end' global st st = 'end' def format(a, j): c = [] for b in a: c.append(j.format(float(b))) return c def DI(): layout1 = [ [sg.Image(os.getcwd()+os.sep+'Logo.png')], [sg.Text('')], [sg.Button('Start new project', size = (40,1))], [sg.Button('Load previous projects', size = (40,1))], [sg.Button('References', size = (40,1))], [sg.Button('Credits', size = (40,1))], [sg.Button('End program', size = (40,1))], [sg.Text('')]] global de de = sg.Window('LBplot', layout1, element_justification = 'center') def pdftable(df): RNG3 = [[sg.Text("What should be the archive name?")], [sg.InputText('', size = (51,1), key= '-archnam-')], [sg.Text(" "), sg.Button('Continue', size = (20,1), key = '-namt-')]] dp = sg.Window('LBplot', RNG3, element_justification = 'left') eventp, valuep = dp.read() namt = ((str(valuep['-archnam-']).replace('.pdf', ''))+'.pdf') dp.close() fig, ax =plt.subplots(figsize=(12,4)) ax.axis('tight') ax.axis('off') the_table = ax.table(cellText=df.values, colLabels=df.columns, loc= 'center') pp = PdfPages(arq+namt) pp.savefig(fig, bbox_inches='tight') pp.close() RNG4 = [[sg.Text(namt+" created successfully!")], [sg.Button('Continue', size = (21,1), key = '-rnm2-')]] dc = sg.Window('LBplot', RNG4, element_justification = 'center') eventc, valuec = dc.read() dc.close() plt.clf() plt.close() def exceltable(df): RNG3 = [[sg.Text("What should be the archive name?")], [sg.InputText('', size = (51,1), key= '-archnam-')], [sg.Text(" "), sg.Button('Continue', size = (20,1), key = '-namt-')]] dp = sg.Window('LBplot', RNG3, element_justification = 'left') eventp, valuep = dp.read() namt = ((str(valuep['-archnam-']).replace('.xlsx', ''))+'.xlsx') dp.close() df.to_excel (arq+namt, index = False, header=True) RNG4 = [[sg.Text(namt+" created successfully!")], [sg.Button('Continue', size = (21,1), key = '-rnm2-')]] dc = sg.Window('LBplot', RNG4, element_justification = 'center') eventc, valuec = dc.read() dc.close() plt.clf() plt.close() def savefig(ext): RNG1 = [[sg.Text("What should be the archive name?")], [sg.InputText('', size = (51,1), key= '-archnam-')], [sg.Text(" "), sg.Button('Continue', size = (20,1), key = '-namt-')]] dp = sg.Window('LBplot', RNG1, element_justification = 'left') kt = 'a' while kt == 'a': eventp, valuep = dp.read() if eventp == '-namt-': namt = ((str(valuep['-archnam-']).replace(ext, ''))+ext) dp.close() plt.savefig(arq+namt) RNG2 = [[sg.Text(namt+" created successfully!")], [sg.Button('Continue', size = (21,1), key = '-rnm2-')]] dc = sg.Window('LBplot', RNG2, element_justification = 'center') kd = 'a' while kd == 'a': eventc, valuec = dc.read() if eventc == '-rnm2-': dc.close() kt='b' kd='b' break elif event in (None, 'Exit'): dc.close() kt='b' kd='b' breaqui() break def pltnow(title, xx, yy, mymodel, x, uV, v): plt.plot(x, mymodel, '-r') plt.plot([xx], [yy], 'bo') plt.xlim(0,) plt.ylim(0,) plt.suptitle(title) plt.xlabel('1/[S] '+'(1/'+v+')', color='#298A08') if len(uV) == 1: plt.ylabel('1/V0 '+'(1/'+u+')', color='#B40404') elif len(uV) == 2: plt.ylabel('1/V0 '+'('+str(uV[1])+'/'+str(uV[0])+')', color='#B40404') plt.grid() def bulk(): x = copy.copy(oS) y = copy.copy(oV0) xx = copy.copy(x) yy = copy.copy(y) slope, intercept, rv, pv, std_err = stats.linregress(x, y) def myfunc(x): return slope * x + intercept errorg2 = erro(x, 0) errorg = (math.sqrt(errorg2)) errors2 = erro(x, 1) errors = (math.sqrt(errors2)) x.append(0) x.append(1.1*(float(max(x)))) mymodel = list(map(myfunc, x)) title = 'Lineweaver-Burk double reciprocal plot' sm = 'start' while sm == 'start': layout3 = [[sg.T('DATA SET', size=(103,1), justification='center')]] headings1 = [' ','V0','1/V0','[S]','1/[S]'] leg1 = [sg.T(a, size=(20,1), background_color='white', justification='center', pad=(1,1)) for a in headings1] layout3.append(leg1) for a in range(len(oV0)): data1 = [ a+1, "{:.2e}".format(float(tmpV0[a])), "{:.2e}".format(float(oV0[a])), "{:.2e}".format(float(tmpS[a])), "{:.2e}".format(float(oS[a]))] row = [sg.T(a, size=(20,1), background_color='white', justification='center', pad=(1,1)) for a in data1] layout3.append(row) line = [sg.T('', size=(20,1), justification='center', pad=(1,1))] layout3.append(line) title2 = [sg.T('KM AND VMAX', size=(103,1), justification='center', pad=(1,1))] layout3.append(title2) headings2 =['Michaelis constant (Km)', 'Maximum Reaction Rate (Vmax)', 'Slope (Km/Vmax)'] leg2 = [sg.T(a, size=(34,1), background_color='white', justification='center', pad=(1,1)) for a in headings2] layout3.append(leg2) data2 = ["{:.5e}".format(slope/intercept), "{:.5e}".format(1/intercept), "{:.5e}".format(slope)] row2 = [sg.T(a, size=(34,1), background_color='white', justification='center', pad=(1,1)) for a in data2] layout3.append(row2) line = [sg.T('', size=(15,1), justification='center', pad=(1,1))] layout3.append(line) title3 = [sg.T('LINEAR REGRESSION', size=(103,1), justification='center', pad=(1,1))] layout3.append(title3) headings3 = ['Correlation Coefficient (R)', 'Coefficient of Determination (R^2)', 'Standard error', 'P-Value'] leg3 = [sg.T(a, size=(25,1), background_color='white', justification='center', pad=(1,1)) for a in headings3] layout3.append(leg3) data3 = ["{:.5e}".format(rv), "{:.5e}".format(rv**2), "{:.5e}".format(std_err), "{:.5e}".format(pv)] row3 = [sg.T(a, size=(25,1), background_color='white', justification='center', pad=(1,1)) for a in data3] layout3.append(row3) line = [sg.T('', size=(15,1), justification='center', pad=(1,1))] layout3.append(line) title4 = [sg.T('VARIANCES AND DEVIATIONS', size=(103,1), justification='center', pad=(1,1))] layout3.append(title4) headings4 = ['Population Variance (σ^2)', 'Population Standard Deviation (σ)', 'Sample Variance (S^2)', 'Sample Standard Deviation (S)'] leg4 = [sg.T(a, size=(25,1), background_color='white', justification='center', pad=(1,1)) for a in headings4] layout3.append(leg4) data4 = ["{:.5e}".format(errorg2), "{:.5e}".format(errorg), "{:.5e}".format(errors2), "{:.5e}".format(errors)] row4 = [sg.T(a, size=(25,1), background_color='white', justification='center', pad=(1,1)) for a in data4] layout3.append(row4) line = [sg.T('', size=(15,1), justification='center', pad=(1,1))] layout3.append(line) GBM = ['PLOT', ['&Show plot::-SHP-', '&Rename graph::-RNG-', '&Save as pdf::-GPDF-', '&Save as png::-GPNG-', '&Save as jpg::-GJPG-']] DSM = ['DSM', ['&Save as pdf::SPNG', '&Export to excel::-EXTE-']] OPT = ['OPT', ['&Return to main menu::-RTMM-', '&End program::-ENP-']] scroll = [[sg.Text('Project: '+prjname), sg.Text('Date of creation: '+doc)], [sg.Col(layout3, size=(846, 500), scrollable=True, vertical_scroll_only=True)], [sg.ButtonMenu('PLOT', GBM, key='-GBM-', size=(38,1)), sg.ButtonMenu('DATA SET', DSM, key='-DSM-', size=(38,1)), sg.ButtonMenu('KM AND VMAX', DSM, key='-KAV-', size=(38,1))], [sg.ButtonMenu('LINEAR REGRESSION', DSM, key='-LNR-', size=(38,1)), sg.ButtonMenu('VARIANCES AND DEVIATIONS', DSM, key='-VAD-', size=(38,1)), sg.ButtonMenu('OPTIONS', OPT, key='-OPT-', size=(38,1))]] dg = sg.FlexForm('LBplot', scroll) eventg, valueg = dg.read() if valueg == {'-GBM-': 'Show plot::-SHP-', '-DSM-': None, '-KAV-': None, '-LNR-': None, '-VAD-': None, '-OPT-': None}: print('a') dg.close() plt.subplot() pltnow(title, xx, yy, mymodel, x, uV, v) plt.gca().yaxis.set_minor_formatter(NullFormatter()) plt.subplots_adjust(top=0.90, bottom=0.10, left=0.14, right=0.95, hspace=0.25, wspace=0.35) fig = plt.gcf() figure_x, figure_y, figure_w, figure_h = fig.bbox.bounds def draw_figure(canvas, figure, loc=(0, 0)): figure_canvas_agg = FigureCanvasTkAgg(figure, canvas) figure_canvas_agg.draw() figure_canvas_agg.get_tk_widget().pack(side='top', fill='both', expand=1) return figure_canvas_agg layout = [[sg.Canvas(size=(figure_w, figure_h), key='canvas')], [sg.Button('Continue', size = (21,1), key = '-grphr-')]] window = sg.Window('LBplot', layout, finalize=True, element_justification = 'center') fig_canvas_agg = draw_figure(window['canvas'].TKCanvas, fig) event, values = window.read() if event in (None, 'Exit'): breaqui() window.close() break elif event == '-grphr-': window.close() plt.clf() plt.close() elif valueg == {'-GBM-': 'Rename graph::-RNG-', '-DSM-': None, '-KAV-': None, '-LNR-': None, '-VAD-': None, '-OPT-': None}: dg.close() RNG1 = [[sg.Text("What should be the graph's title?")], [sg.InputText('', size = (51,1), key= '-title-')], [sg.Text(" "), sg.Button('Continue', size = (20,1), key = '-rnm1-')]] dh = sg.Window('LBplot', RNG1, element_justification = 'left') kt = 'a' while kt == 'a': eventh, valueh = dh.read() if eventh == '-rnm1-': title = str(valueh['-title-']) dh.close() RNG2 = [[sg.Text(title+" is now the graph's title!")], [sg.Button('Continue', size = (21,1), key = '-rnm2-')]] dj = sg.Window('LBplot', RNG2, element_justification = 'center') kd = 'a' while kd == 'a': eventj, valuej = dj.read() if eventj == '-rnm2-': dj.close() kt='b' kd='b' break elif valueg == {'-GBM-': 'Save as pdf::-GPDF-', '-DSM-': None, '-KAV-': None, '-LNR-': None, '-VAD-': None, '-OPT-': None}: pltnow(title, xx, yy, mymodel, x, uV, u, v) dg.close() savefig('.pdf') plt.clf() plt.close() elif valueg == {'-GBM-': 'Save as png::-GPNG-', '-DSM-': None, '-KAV-': None, '-LNR-': None, '-VAD-': None, '-OPT-': None}: pltnow(title, xx, yy, mymodel, x, uV, u, v) dg.close() savefig('.png') plt.clf() plt.close() elif valueg == {'-GBM-': 'Save as jpg::-GJPG-', '-DSM-': None, '-KAV-': None, '-LNR-': None, '-VAD-': None, '-OPT-': None}: pltnow(title, xx, yy, mymodel, x, uV, u, v) dg.close() savefig('.jpg') plt.clf() plt.close() elif eventg == '-DSM-': plt.clf() cap=[] V0j = format(tmpV0, "{:.2e}") oV0j = format(oV0, "{:.2e}") Sj = format(tmpS, "{:.2e}") oSj = format(oS, "{:.2e}") for bap in range(0, len(tmpV0)): cap.append(str(bap+1)) data = {'': cap, 'V0': V0j, '1/V0': oV0j, '[S]': Sj, '1/[S]': oSj } df =
pd.DataFrame(data, columns = ['','V0','1/V0','[S]','1/[S]'])
pandas.DataFrame
from functools import partial import os import unittest from nose.tools import assert_equal, assert_list_equal, nottest, raises from py_stringmatching.tokenizer.delimiter_tokenizer import DelimiterTokenizer from py_stringmatching.tokenizer.qgram_tokenizer import QgramTokenizer from six import iteritems import pandas as pd from py_stringsimjoin.join.cosine_join import cosine_join from py_stringsimjoin.join.dice_join import dice_join from py_stringsimjoin.join.jaccard_join import jaccard_join from py_stringsimjoin.join.overlap_coefficient_join import overlap_coefficient_join from py_stringsimjoin.join.overlap_join import overlap_join from py_stringsimjoin.utils.converter import dataframe_column_to_str from py_stringsimjoin.utils.generic_helper import COMP_OP_MAP, \ remove_redundant_attrs from py_stringsimjoin.utils.simfunctions import get_sim_function JOIN_FN_MAP = {'COSINE': cosine_join, 'DICE': dice_join, 'JACCARD': jaccard_join, 'OVERLAP_COEFFICIENT': overlap_coefficient_join} DEFAULT_COMP_OP = '>=' DEFAULT_L_OUT_PREFIX = 'l_' DEFAULT_R_OUT_PREFIX = 'r_' @nottest def test_valid_join(scenario, sim_measure_type, args, convert_to_str=False): (ltable_path, l_key_attr, l_join_attr) = scenario[0] (rtable_path, r_key_attr, r_join_attr) = scenario[1] join_fn = JOIN_FN_MAP[sim_measure_type] # load input tables for the tests. ltable = pd.read_csv(os.path.join(os.path.dirname(__file__), ltable_path)) rtable = pd.read_csv(os.path.join(os.path.dirname(__file__), rtable_path)) if convert_to_str: dataframe_column_to_str(ltable, l_join_attr, inplace=True) dataframe_column_to_str(rtable, r_join_attr, inplace=True) missing_pairs = set() # if allow_missing flag is set, compute missing pairs. if len(args) > 4 and args[4]: for l_idx, l_row in ltable.iterrows(): for r_idx, r_row in rtable.iterrows(): if (pd.isnull(l_row[l_join_attr]) or pd.isnull(r_row[r_join_attr])): missing_pairs.add(','.join((str(l_row[l_key_attr]), str(r_row[r_key_attr])))) # remove rows with missing value in join attribute and create new dataframes # consisting of rows with non-missing values. ltable_not_missing = ltable[pd.notnull(ltable[l_join_attr])].copy() rtable_not_missing = rtable[pd.notnull(rtable[r_join_attr])].copy() if len(args) > 3 and (not args[3]): ltable_not_missing = ltable_not_missing[ltable_not_missing.apply( lambda row: len(args[0].tokenize(str(row[l_join_attr]))), 1) > 0] rtable_not_missing = rtable_not_missing[rtable_not_missing.apply( lambda row: len(args[0].tokenize(str(row[r_join_attr]))), 1) > 0] # generate cartesian product to be used as candset ltable_not_missing['tmp_join_key'] = 1 rtable_not_missing['tmp_join_key'] = 1 cartprod = pd.merge(ltable_not_missing[[l_key_attr, l_join_attr, 'tmp_join_key']], rtable_not_missing[[r_key_attr, r_join_attr, 'tmp_join_key']], on='tmp_join_key').drop('tmp_join_key', 1) ltable_not_missing.drop('tmp_join_key', 1) rtable_not_missing.drop('tmp_join_key', 1) sim_func = get_sim_function(sim_measure_type) # apply sim function to the entire cartesian product to obtain # the expected set of pairs satisfying the threshold. cartprod['sim_score'] = cartprod.apply(lambda row: round(sim_func( args[0].tokenize(str(row[l_join_attr])), args[0].tokenize(str(row[r_join_attr]))), 4), axis=1) comp_fn = COMP_OP_MAP[DEFAULT_COMP_OP] # Check for comp_op in args. if len(args) > 2: comp_fn = COMP_OP_MAP[args[2]] expected_pairs = set() for idx, row in cartprod.iterrows(): if comp_fn(float(row['sim_score']), args[1]): expected_pairs.add(','.join((str(row[l_key_attr]), str(row[r_key_attr])))) expected_pairs = expected_pairs.union(missing_pairs) orig_return_set_flag = args[0].get_return_set() # use join function to obtain actual output pairs. actual_candset = join_fn(ltable, rtable, l_key_attr, r_key_attr, l_join_attr, r_join_attr, *args) assert_equal(args[0].get_return_set(), orig_return_set_flag) expected_output_attrs = ['_id'] l_out_prefix = DEFAULT_L_OUT_PREFIX r_out_prefix = DEFAULT_R_OUT_PREFIX # Check for l_out_prefix in args. if len(args) > 7: l_out_prefix = args[7] expected_output_attrs.append(l_out_prefix + l_key_attr) # Check for r_out_prefix in args. if len(args) > 8: r_out_prefix = args[8] expected_output_attrs.append(r_out_prefix + r_key_attr) # Check for l_out_attrs in args. if len(args) > 5: if args[5]: l_out_attrs = remove_redundant_attrs(args[5], l_key_attr) for attr in l_out_attrs: expected_output_attrs.append(l_out_prefix + attr) # Check for r_out_attrs in args. if len(args) > 6: if args[6]: r_out_attrs = remove_redundant_attrs(args[6], r_key_attr) for attr in r_out_attrs: expected_output_attrs.append(r_out_prefix + attr) # Check for out_sim_score in args. if len(args) > 9: if args[9]: expected_output_attrs.append('_sim_score') else: expected_output_attrs.append('_sim_score') # verify whether the output table has the necessary attributes. assert_list_equal(list(actual_candset.columns.values), expected_output_attrs) actual_pairs = set() for idx, row in actual_candset.iterrows(): actual_pairs.add(','.join((str(row[l_out_prefix + l_key_attr]), str(row[r_out_prefix + r_key_attr])))) # verify whether the actual pairs and the expected pairs match. assert_equal(len(expected_pairs), len(actual_pairs)) common_pairs = actual_pairs.intersection(expected_pairs) assert_equal(len(common_pairs), len(expected_pairs)) def test_set_sim_join(): # data to be tested. test_scenario_1 = [(os.sep.join(['data', 'table_A.csv']), 'A.ID', 'A.name'), (os.sep.join(['data', 'table_B.csv']), 'B.ID', 'B.name')] data = {'TEST_SCENARIO_1' : test_scenario_1} # similarity measures to be tested. sim_measure_types = ['COSINE', 'DICE', 'JACCARD', 'OVERLAP_COEFFICIENT'] # similarity thresholds to be tested. thresholds = {'JACCARD' : [0.3, 0.5, 0.7, 0.85, 1], 'COSINE' : [0.3, 0.5, 0.7, 0.85, 1], 'DICE' : [0.3, 0.5, 0.7, 0.85, 1], 'OVERLAP_COEFFICIENT' : [0.3, 0.5, 0.7, 0.85, 1]} # tokenizers to be tested. tokenizers = {'SPACE_DELIMITER': DelimiterTokenizer(delim_set=[' '], return_set=True), '2_GRAM': QgramTokenizer(qval=2, return_set=True), '3_GRAM': QgramTokenizer(qval=3, return_set=True)} # Test each combination of similarity measure, threshold and tokenizer for different test scenarios. for label, scenario in iteritems(data): for sim_measure_type in sim_measure_types: for threshold in thresholds.get(sim_measure_type): for tok_type, tok in iteritems(tokenizers): test_function = partial(test_valid_join, scenario, sim_measure_type, (tok, threshold)) test_function.description = 'Test ' + sim_measure_type + \ ' with ' + str(threshold) + ' threshold and ' + \ tok_type + ' tokenizer for ' + label + '.' yield test_function, # Test each similarity measure with different comparison operators. for sim_measure_type in sim_measure_types: for comp_op in ['>', '=']: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.3, comp_op, False)) test_function.description = 'Test ' + sim_measure_type + \ ' with comp_op ' + comp_op + '.' yield test_function, # Test each similarity measure with allow_missing set to True. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.7, '>=', False, True)) test_function.description = 'Test ' + sim_measure_type + \ ' with allow_missing set to True.' yield test_function, # Test each similarity measure with output attributes added. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.3, '>=', False, False, ['A.ID', 'A.birth_year', 'A.zipcode'], ['B.ID', 'B.name', 'B.zipcode'])) test_function.description = 'Test ' + sim_measure_type + \ ' with output attributes.' yield test_function, # Test each similarity measure with a different output prefix. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.7, '>=', False, False, ['A.birth_year', 'A.zipcode'], ['B.name', 'B.zipcode'], 'ltable.', 'rtable.')) test_function.description = 'Test ' + sim_measure_type + \ ' with output attributes and prefix.' yield test_function, # Test each similarity measure with output_sim_score disabled. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.7, '>=', False, False, ['A.birth_year', 'A.zipcode'], ['B.name', 'B.zipcode'], 'ltable.', 'rtable.', False)) test_function.description = 'Test ' + sim_measure_type + \ ' with sim_score disabled.' yield test_function, # Test each similarity measure with n_jobs above 1. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.3, '>=', False, False, ['A.birth_year', 'A.zipcode'], ['B.name', 'B.zipcode'], 'ltable.', 'rtable.', False, 2)) test_function.description = 'Test ' + sim_measure_type + \ ' with n_jobs above 1.' yield test_function, # scenario where join attributes are of type int test_scenario_2 = [(os.sep.join(['data', 'table_A.csv']), 'A.ID', 'A.zipcode'), (os.sep.join(['data', 'table_B.csv']), 'B.ID', 'B.zipcode')] # Test each similarity measure with join attribute of type int. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_2, sim_measure_type, (tokenizers['2_GRAM'], 0.3), True) test_function.description = 'Test ' + sim_measure_type + \ ' with join attribute of type int.' yield test_function, # scenario where join attributes are of type float test_scenario_3 = [(os.sep.join(['data', 'table_A.csv']), 'A.ID', 'A.hourly_wage'), (os.sep.join(['data', 'table_B.csv']), 'B.ID', 'B.hourly_wage')] # Test each similarity measure with join attribute of type float. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_3, sim_measure_type, (tokenizers['2_GRAM'], 0.3), True) test_function.description = 'Test ' + sim_measure_type + \ ' with join attribute of type float.' yield test_function, # Test each similarity measure with a tokenizer with return_set flag set to False. for sim_measure_type in sim_measure_types: tok = QgramTokenizer(2) test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tok, 0.3)) test_function.description = 'Test ' + sim_measure_type + \ ' with a tokenizer with return_set flag set to False .' yield test_function, # Test each similarity measure with allow_empty set to True. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.7, '>=', True)) test_function.description = 'Test ' + sim_measure_type + \ ' with allow_empty set to True.' yield test_function, # Test each similarity measure with allow_empty set to True and with output attributes. for sim_measure_type in sim_measure_types: test_function = partial(test_valid_join, test_scenario_1, sim_measure_type, (tokenizers['SPACE_DELIMITER'], 0.7, '>=', True, False, ['A.name'], ['B.name'])) test_function.description = 'Test ' + sim_measure_type + \ ' with allow_empty set to True and with output attributes.' yield test_function, class JaccardJoinInvalidTestCases(unittest.TestCase): def setUp(self): self.A = pd.DataFrame([{'A.id':1, 'A.attr':'hello', 'A.int_attr':5}]) self.B = pd.DataFrame([{'B.id':1, 'B.attr':'world', 'B.int_attr':6}]) self.tokenizer = DelimiterTokenizer(delim_set=[' '], return_set=True) self.threshold = 0.8 @raises(TypeError) def test_jaccard_join_invalid_ltable(self): jaccard_join([], self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(TypeError) def test_jaccard_join_invalid_rtable(self): jaccard_join(self.A, [], 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_jaccard_join_invalid_l_key_attr(self): jaccard_join(self.A, self.B, 'A.invalid_id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_jaccard_join_invalid_r_key_attr(self): jaccard_join(self.A, self.B, 'A.id', 'B.invalid_id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_jaccard_join_invalid_l_join_attr(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.invalid_attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_jaccard_join_invalid_r_join_attr(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.invalid_attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_jaccard_join_numeric_l_join_attr(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.int_attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_jaccard_join_numeric_r_join_attr(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.int_attr', self.tokenizer, self.threshold) @raises(TypeError) def test_jaccard_join_invalid_tokenizer(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', [], self.threshold) @raises(AssertionError) def test_jaccard_join_invalid_threshold_above(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, 1.5) @raises(AssertionError) def test_jaccard_join_invalid_threshold_below(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, -0.1) @raises(AssertionError) def test_jaccard_join_invalid_threshold_zero(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, 0) @raises(AssertionError) def test_jaccard_join_invalid_comp_op_lt(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '<') @raises(AssertionError) def test_jaccard_join_invalid_comp_op_le(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '<=') @raises(AssertionError) def test_jaccard_join_invalid_l_out_attr(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '>=', True, False, ['A.invalid_attr'], ['B.attr']) @raises(AssertionError) def test_jaccard_join_invalid_r_out_attr(self): jaccard_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '>=', True, False, ['A.attr'], ['B.invalid_attr']) class CosineJoinInvalidTestCases(unittest.TestCase): def setUp(self): self.A = pd.DataFrame([{'A.id':1, 'A.attr':'hello', 'A.int_attr':5}]) self.B = pd.DataFrame([{'B.id':1, 'B.attr':'world', 'B.int_attr':6}]) self.tokenizer = DelimiterTokenizer(delim_set=[' '], return_set=True) self.threshold = 0.8 @raises(TypeError) def test_cosine_join_invalid_ltable(self): cosine_join([], self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(TypeError) def test_cosine_join_invalid_rtable(self): cosine_join(self.A, [], 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_cosine_join_invalid_l_key_attr(self): cosine_join(self.A, self.B, 'A.invalid_id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_cosine_join_invalid_r_key_attr(self): cosine_join(self.A, self.B, 'A.id', 'B.invalid_id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_cosine_join_invalid_l_join_attr(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.invalid_attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_cosine_join_invalid_r_join_attr(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.invalid_attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_cosine_join_numeric_l_join_attr(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.int_attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_cosine_join_numeric_r_join_attr(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.int_attr', self.tokenizer, self.threshold) @raises(TypeError) def test_cosine_join_invalid_tokenizer(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', [], self.threshold) @raises(AssertionError) def test_cosine_join_invalid_threshold_above(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, 1.5) @raises(AssertionError) def test_cosine_join_invalid_threshold_below(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, -0.1) @raises(AssertionError) def test_cosine_join_invalid_threshold_zero(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, 0) @raises(AssertionError) def test_cosine_join_invalid_comp_op_lt(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '<') @raises(AssertionError) def test_cosine_join_invalid_comp_op_le(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '<=') @raises(AssertionError) def test_cosine_join_invalid_l_out_attr(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '>=', True, False, ['A.invalid_attr'], ['B.attr']) @raises(AssertionError) def test_cosine_join_invalid_r_out_attr(self): cosine_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '>=', True, False, ['A.attr'], ['B.invalid_attr']) class DiceJoinInvalidTestCases(unittest.TestCase): def setUp(self): self.A = pd.DataFrame([{'A.id':1, 'A.attr':'hello', 'A.int_attr':5}]) self.B = pd.DataFrame([{'B.id':1, 'B.attr':'world', 'B.int_attr':6}]) self.tokenizer = DelimiterTokenizer(delim_set=[' '], return_set=True) self.threshold = 0.8 @raises(TypeError) def test_dice_join_invalid_ltable(self): dice_join([], self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(TypeError) def test_dice_join_invalid_rtable(self): dice_join(self.A, [], 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_dice_join_invalid_l_key_attr(self): dice_join(self.A, self.B, 'A.invalid_id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_dice_join_invalid_r_key_attr(self): dice_join(self.A, self.B, 'A.id', 'B.invalid_id', 'A.attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_dice_join_invalid_l_join_attr(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.invalid_attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_dice_join_invalid_r_join_attr(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.invalid_attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_dice_join_numeric_l_join_attr(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.int_attr', 'B.attr', self.tokenizer, self.threshold) @raises(AssertionError) def test_dice_join_numeric_r_join_attr(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.int_attr', self.tokenizer, self.threshold) @raises(TypeError) def test_dice_join_invalid_tokenizer(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', [], self.threshold) @raises(AssertionError) def test_dice_join_invalid_threshold_above(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, 1.5) @raises(AssertionError) def test_dice_join_invalid_threshold_below(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, -0.1) @raises(AssertionError) def test_dice_join_invalid_threshold_zero(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, 0) @raises(AssertionError) def test_dice_join_invalid_comp_op_lt(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '<') @raises(AssertionError) def test_dice_join_invalid_comp_op_le(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '<=') @raises(AssertionError) def test_dice_join_invalid_l_out_attr(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '>=', True, False, ['A.invalid_attr'], ['B.attr']) @raises(AssertionError) def test_dice_join_invalid_r_out_attr(self): dice_join(self.A, self.B, 'A.id', 'B.id', 'A.attr', 'B.attr', self.tokenizer, self.threshold, '>=', True, False, ['A.attr'], ['B.invalid_attr']) class OverlapCoefficientJoinInvalidTestCases(unittest.TestCase): def setUp(self): self.A =
pd.DataFrame([{'A.id':1, 'A.attr':'hello', 'A.int_attr':5}])
pandas.DataFrame
import pandas as pd import os from scipy import signal import matplotlib.pyplot as plt data1n = [] data2n = [] root = 'Filtered' emosi = ['kaget','marah','santai','senang'] def lowpass_filter(sinyal,fcl): sampleRate = 200 wnl = fcl/(sampleRate) b,a = signal.butter(3,wnl,'lowpass') fil = signal.filtfilt(b, a, sinyal) return fil def filtering(): print("Filter dimulai, harap tunggu sebentar") df =
pd.read_csv('Data_raw/nice1.csv')
pandas.read_csv
#!/usr/bin/env python3 # (c) 2017-2020 L.Spiegelberg # validates output of flights query import pandas as pd import os import glob import numpy as np import json import re from tqdm import tqdm root_path = '.' def compare_dfs(dfA, dfB): if len(dfA) != len(dfB): print('not equal, lengths do not coincide {} != {}'.format(len(dfA), len(dfB))) return False if len(dfA.columns) != len(dfB.columns): print('number of columns do not coincide') return False str_cols = list(dfA.select_dtypes([object]).columns) numeric_cols = list(dfA.select_dtypes([bool, int, float]).columns) # print(numeric_cols) # print(str_cols) if len(str_cols) + len(numeric_cols) != len(dfA.columns): print('column separation wrong') return False # go over each single row (will take a lot of time) for i in tqdm(range(len(dfA))): rowA = dfA.iloc[i].copy() rowB = dfB.iloc[i].copy() num_valsA = rowA[numeric_cols].astype(np.float64) num_valsB = rowB[numeric_cols].astype(np.float64) if str(rowA[str_cols].values) != str(rowB[str_cols].values): print('{} != {}'.format(str(rowA[str_cols].values), str(rowB[str_cols].values))) print(i) return False if not np.allclose(num_valsA, num_valsB, rtol=1e-3, atol=1e-3, equal_nan=True): print('{} != {}'.format(num_valsA, num_valsB)) print(i) return False return True def main(): spark_folder = 'pyspark_output' dask_folder = 'dask_output' root_path = '.' paths = os.listdir(root_path) paths_to_verify = [] spark_paths = [] dask_paths = [] if spark_folder in paths: spark_paths = glob.glob(os.path.join(root_path, spark_folder, '*.csv')) paths_to_verify += spark_paths if dask_folder in paths: dask_paths = glob.glob(os.path.join(root_path, dask_folder, '*part*')) dask_paths = sorted(dask_paths, key=lambda p: int(re.sub('[^0-9]', '', os.path.basename(p)))) paths_to_verify += dask_paths print('>>> loading dask files ({} found)'.format(len(dask_paths))) df_dask = pd.DataFrame() for path in dask_paths: df_dask = pd.concat((df_dask, pd.read_csv(path, low_memory=False))) print('>>> loading spark files ({} found)'.format(len(spark_paths))) df_spark =
pd.DataFrame()
pandas.DataFrame
"""Loading example datasets.""" from os.path import dirname, join import datetime import io import requests import numpy as np import pandas as pd import time def load_daily(long: bool = True): """2020 Covid, Air Pollution, and Economic Data. Sources: Covid Tracking Project, EPA, and FRED Args: long (bool): if True, return data in long format. Otherwise return wide """ module_path = dirname(__file__) data_file_name = join(module_path, 'data', 'covid_daily.zip') df_wide = pd.read_csv(data_file_name, index_col=0, parse_dates=True) if not long: return df_wide else: df_long = df_wide.reset_index(drop=False).melt( id_vars=['datetime'], var_name='series_id', value_name='value' ) return df_long def load_fred_monthly(): """ Federal Reserve of St. Louis. from autots.datasets.fred import get_fred_data SeriesNameDict = {'GS10':'10-Year Treasury Constant Maturity Rate', 'MCOILWTICO':'Crude Oil West Texas Intermediate Cushing Oklahoma', 'CSUSHPISA': ' U.S. National Home Price Index', 'EXUSEU': 'US Euro Foreign Exchange Rate', 'EXCHUS': 'China US Foreign Exchange Rate', 'EXCAUS' : 'Canadian to US Dollar Exchange Rate Daily', 'EMVOVERALLEMV': 'Equity Market Volatility Tracker Overall', # this is a more irregular series 'T10YIEM' : '10 Year Breakeven Inflation Rate', 'USEPUINDXM': 'Economic Policy Uncertainty Index for United States' # also very irregular } monthly_data = get_fred_data(fredkey = 'XXXXXXXXX', SeriesNameDict = SeriesNameDict) """ module_path = dirname(__file__) data_file_name = join(module_path, 'data', 'fred_monthly.zip') df_long = pd.read_csv(data_file_name, compression='zip') df_long['datetime'] = pd.to_datetime( df_long['datetime'], infer_datetime_format=True ) return df_long def load_monthly(long: bool = True): """Federal Reserve of St. Louis monthly economic indicators.""" if long: return load_fred_monthly() else: from autots.tools.shaping import long_to_wide df_long = load_fred_monthly() df_wide = long_to_wide( df_long, date_col='datetime', value_col='value', id_col='series_id', aggfunc='first', ) return df_wide def load_fred_yearly(): """ Federal Reserve of St. Louis. from autots.datasets.fred import get_fred_data SSeriesNameDict = {'GDPA':"Gross Domestic Product", 'ACOILWTICO':'Crude Oil West Texas Intermediate Cushing Oklahoma', 'AEXUSEU': 'US Euro Foreign Exchange Rate', 'AEXCHUS': 'China US Foreign Exchange Rate', 'AEXCAUS' : 'Canadian to US Dollar Exchange Rate Daily', 'MEHOINUSA672N': 'Real Median US Household Income', 'CPALTT01USA661S': 'Consumer Price Index All Items', 'FYFSD': 'Federal Surplus or Deficit', 'DDDM01USA156NWDB': 'Stock Market Capitalization to US GDP', 'LEU0252881600A': 'Median Weekly Earnings for Salary Workers', 'LFWA64TTUSA647N': 'US Working Age Population', 'IRLTLT01USA156N' : 'Long Term Government Bond Yields' } monthly_data = get_fred_data(fredkey = 'XXXXXXXXX', SeriesNameDict = SeriesNameDict) """ module_path = dirname(__file__) data_file_name = join(module_path, 'data', 'fred_yearly.zip') df_long = pd.read_csv(data_file_name) df_long['datetime'] = pd.to_datetime( df_long['datetime'], infer_datetime_format=True ) return df_long def load_yearly(long: bool = True): """Federal Reserve of St. Louis annual economic indicators.""" if long: return load_fred_yearly() else: from autots.tools.shaping import long_to_wide df_long = load_fred_yearly() df_wide = long_to_wide( df_long, date_col='datetime', value_col='value', id_col='series_id', aggfunc='first', ) return df_wide def load_traffic_hourly(long: bool = True): """ From the MN DOT via the UCI data repository. Yes, Minnesota is the best state of the Union. """ module_path = dirname(__file__) data_file_name = join(module_path, 'data', 'traffic_hourly.zip') df_wide = pd.read_csv( data_file_name, index_col=0, parse_dates=True, compression='zip' ) if not long: return df_wide else: df_long = df_wide.reset_index(drop=False).melt( id_vars=['datetime'], var_name='series_id', value_name='value' ) return df_long def load_hourly(long: bool = True): """Traffic data from the MN DOT via the UCI data repository.""" return load_traffic_hourly(long=long) def load_eia_weekly(): """Weekly petroleum industry data from the EIA.""" module_path = dirname(__file__) data_file_name = join(module_path, 'data', 'eia_weekly.zip') df_long = pd.read_csv(data_file_name, compression='zip') df_long['datetime'] = pd.to_datetime( df_long['datetime'], infer_datetime_format=True ) return df_long def load_weekly(long: bool = True): """Weekly petroleum industry data from the EIA.""" if long: return load_eia_weekly() else: from autots.tools.shaping import long_to_wide df_long = load_eia_weekly() df_wide = long_to_wide( df_long, date_col='datetime', value_col='value', id_col='series_id', aggfunc='first', ) return df_wide def load_weekdays(long: bool = False, categorical: bool = True, periods: int = 180): """Test edge cases by creating a Series with values as day of week. Args: long (bool): if True, return a df with columns "value" and "datetime" if False, return a Series with dt index categorical (bool): if True, return str/object, else return int periods (int): number of periods, ie length of data to generate """ idx = pd.date_range(end=pd.Timestamp.today(), periods=periods, freq="D") df_wide = pd.Series(idx.weekday, index=idx, name="value") df_wide.index.name = "datetime" if categorical: df_wide = df_wide.replace( { 0: "Mon", 1: "Tues", 2: "Wed", 3: "Thor's", 4: "Fri", 5: "Sat", 6: "Sun", 7: "Mon", } ) if long: return df_wide.reset_index() else: return df_wide def load_live_daily( long: bool = False, fred_key: str = None, fred_series: list = ["DGS10", "T5YIE", "SP500", "DCOILWTICO", "DEXUSEU"], tickers: list = ["MSFT"], trends_list: list = ["forecasting", "cycling", "cpu", "microsoft"], weather_data_types: list = ["AWND", "WSF2", "TAVG"], weather_stations: list = ["USW00094846", "USW00014925"], weather_years: int = 10, london_air_stations: list = ['CT3', 'SK8'], london_air_species: str = "PM25", london_air_days: int = 180, earthquake_days: int = 180, earthquake_min_magnitude: int = 5, ): """Generates a dataframe of data up to the present day. Args: long (bool): whether to return in long format or wide fred_key (str): https://fred.stlouisfed.org/docs/api/api_key.html fred_series (list): list of FRED series IDs. This requires fredapi package tickers (list): list of stock tickers, requires yfinance trends_list (list): list of search keywords, requires pytrends. None to skip. weather_data_types (list): from NCEI NOAA api data types, GHCN Daily Weather Elements PRCP, SNOW, TMAX, TMIN, TAVG, AWND, WSF1, WSF2, WSF5, WSFG weather_stations (list): from NCEI NOAA api station ids. Pass empty list to skip. london_air_stations (list): londonair.org.uk source station IDs. Pass empty list to skip. london_species (str): what measurement to pull from London Air. Not all stations have all metrics.\ earthquake_min_magnitude (int): smallest earthquake magnitude to pull from earthquake.usgs.gov. Set None to skip this. """ dataset_lists = [] current_date = datetime.datetime.utcnow() try: if fred_key is not None: from fredapi import Fred # noqa from autots.datasets.fred import get_fred_data fred_df = get_fred_data(fred_key, fred_series, long=False) fred_df.index = fred_df.index.tz_localize(None) dataset_lists.append(fred_df) except ModuleNotFoundError: print("pip install fredapi (and you'll also need an api key)") except Exception as e: print(f"FRED data failed: {repr(e)}") for ticker in tickers: try: import yfinance as yf msft = yf.Ticker(ticker) # get historical market data msft_hist = msft.history(period="max") msft_hist = msft_hist.rename(columns=lambda x: x.lower().replace(" ", "_")) msft_hist = msft_hist.rename(columns=lambda x: ticker.lower() + "_" + x) try: msft_hist.index = msft_hist.index.tz_localize(None) except Exception: pass dataset_lists.append(msft_hist) time.sleep(1) except ModuleNotFoundError: print("You need to: pip install yfinance") except Exception as e: print(f"yfinance data failed: {repr(e)}") str_end_time = current_date.strftime("%Y-%m-%d") start_date = (current_date - datetime.timedelta(days=360 * weather_years)).strftime( "%Y-%m-%d" ) for wstation in weather_stations: try: wbase = "https://www.ncei.noaa.gov/access/services/data/v1/?dataset=daily-summaries" wargs = f"&dataTypes={','.join(weather_data_types)}&stations={wstation}" wargs = ( wargs + f"&startDate={start_date}&endDate={str_end_time}&boundingBox=90,-180,-90,180&units=standard&format=csv" ) wdf = pd.read_csv(wbase + wargs) wdf['DATE'] = pd.to_datetime(wdf['DATE'], infer_datetime_format=True) wdf = wdf.set_index('DATE').drop(columns=['STATION']) wdf.rename(columns=lambda x: wstation + "_" + x, inplace=True) dataset_lists.append(wdf) time.sleep(1) except Exception as e: print(f"weather data failed: {repr(e)}") str_end_time = current_date.strftime("%d-%b-%Y") start_date = (current_date - datetime.timedelta(days=london_air_days)).strftime( "%d-%b-%Y" ) for asite in london_air_stations: try: # abase = "http://api.erg.ic.ac.uk/AirQuality/Data/Site/Wide/" # aargs = "SiteCode=CT8/StartDate=2021-07-01/EndDate=2021-07-30/csv" abase = 'https://www.londonair.org.uk/london/asp/downloadsite.asp' aargs = f"?site={asite}&species1={london_air_species}m&species2=&species3=&species4=&species5=&species6=&start={start_date}&end={str_end_time}&res=6&period=daily&units=ugm3" s = requests.get(abase + aargs).content adf = pd.read_csv(io.StringIO(s.decode('utf-8'))) acol = adf['Site'].iloc[0] + "_" + adf['Species'].iloc[0] adf['Datetime'] = pd.to_datetime(adf['ReadingDateTime'], dayfirst=True) adf[acol] = adf['Value'] dataset_lists.append(adf[['Datetime', acol]].set_index("Datetime")) time.sleep(1) # "/Data/Traffic/Site/SiteCode={SiteCode}/StartDate={StartDate}/EndDate={EndDate}/Json" except Exception as e: print(f"London Air data failed: {repr(e)}") if earthquake_min_magnitude is not None: try: str_end_time = current_date.strftime("%Y-%m-%d") start_date = ( current_date - datetime.timedelta(days=earthquake_days) ).strftime("%Y-%m-%d") # is limited to ~1000 rows of data, ie individual earthquakes ebase = "https://earthquake.usgs.gov/fdsnws/event/1/query?" eargs = f"format=csv&starttime={start_date}&endtime={str_end_time}&minmagnitude={earthquake_min_magnitude}" eq = pd.read_csv(ebase + eargs) eq["time"] = pd.to_datetime(eq["time"], infer_datetime_format=True) eq["time"] = eq["time"].dt.tz_localize(None) eq.set_index("time", inplace=True) global_earthquakes = eq.resample("1D").agg( {"mag": "mean", "depth": "count"} ) global_earthquakes["mag"] = global_earthquakes["mag"].fillna( earthquake_min_magnitude ) global_earthquakes = global_earthquakes.rename( columns={ "mag": "largest_magnitude_earthquake", "depth": "count_large_earthquakes", } ) dataset_lists.append(global_earthquakes) except Exception as e: print(f"earthquake data failed: {repr(e)}") if trends_list is not None: try: from pytrends.request import TrendReq pytrends = TrendReq(hl="en-US", tz=360) # pytrends.build_payload(kw_list, cat=0, timeframe='today 5-y', geo='', gprop='') pytrends.build_payload(trends_list, timeframe="all") gtrends = pytrends.interest_over_time() gtrends.index = gtrends.index.tz_localize(None) gtrends.drop(columns="isPartial", inplace=True, errors="ignore") dataset_lists.append(gtrends) except ImportError: print("You need to: pip install pytrends") except Exception as e: print(f"pytrends data failed: {repr(e)}") if len(dataset_lists) < 1: raise ValueError("No data successfully downloaded!") elif len(dataset_lists) == 1: df = dataset_lists[0] else: from functools import reduce df = reduce( lambda x, y: pd.merge(x, y, left_index=True, right_index=True, how="outer"), dataset_lists, ) print(f"{df.shape[1]} series downloaded.") if not long: return df else: df_long = df.reset_index(drop=False).melt( id_vars=['datetime'], var_name='series_id', value_name='value' ) return df_long def load_zeroes(long=False, shape=None, start_date: str = "2021-01-01"): """Create a dataset of just zeroes for testing edge case.""" if shape is None: shape = (200, 5) df_wide = pd.DataFrame( np.zeros(shape), index=pd.date_range(start_date, periods=shape[0], freq="D") ) if not long: return df_wide else: df_wide.index.name = "datetime" df_long = df_wide.reset_index(drop=False).melt( id_vars=['datetime'], var_name='series_id', value_name='value' ) return df_long def load_linear( long=False, shape=None, start_date: str = "2021-01-01", introduce_nan: float = None, introduce_random: float = None, random_seed: int = 123, ): """Create a dataset of just zeroes for testing edge case. Args: long (bool): whether to make long or wide shape (tuple): shape of output dataframe start_date (str): first date of index introduce_nan (float): percent of rows to make null. 0.2 = 20% introduce_random (float): shape of gamma distribution random_seed (int): seed for random """ if shape is None: shape = (500, 5) idx = pd.date_range(start_date, periods=shape[0], freq="D") df_wide = pd.DataFrame(np.ones(shape), index=idx) df_wide = (df_wide * list(range(0, shape[1]))).cumsum() if introduce_nan is not None: df_wide = df_wide.sample( frac=(1 - introduce_nan), random_state=random_seed ).reindex(idx) if introduce_random is not None: df_wide = df_wide + np.random.default_rng(random_seed).gamma( introduce_random, size=shape ) if not long: return df_wide else: df_wide.index.name = "datetime" df_long = df_wide.reset_index(drop=False).melt( id_vars=['datetime'], var_name='series_id', value_name='value' ) return df_long def load_sine(long=False, shape=None, start_date: str = "2021-01-01"): """Create a dataset of just zeroes for testing edge case.""" if shape is None: shape = (500, 5) df_wide = pd.DataFrame( np.ones(shape), index=pd.date_range(start_date, periods=shape[0], freq="D"), columns=range(shape[1]), ) X =
pd.to_numeric(df_wide.index, errors='coerce', downcast='integer')
pandas.to_numeric
import argparse import warnings from io import StringIO import joblib import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import GridSearchCV from xgboost import XGBRegressor import volcengine_ml_platform from volcengine_ml_platform import constant from volcengine_ml_platform.io import tos from volcengine_ml_platform.util import cache_dir warnings.filterwarnings(action="ignore", category=UserWarning) volcengine_ml_platform.init() client = tos.TOSClient() BUCKET = constant.get_public_examples_readonly_bucket() CACHE_DIR = cache_dir.create("price_prediction/xgboost") zero_list = [ "MasVnrArea", "GarageCars", "GarageArea", "BsmtHalfBath", "BsmtFullBath", ] na_list = [ "PoolQC", "MiscFeature", "Alley", "Fence", "GarageFinish", "GarageQual", "GarageCond", "GarageType", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2", "FireplaceQu", ] na_values = [ "Electrical", "Functional", "Utilities", "Exterior2nd", "Exterior1st", "KitchenQual", "SaleType", "MSZoning", "MasVnrType", "BsmtHalfBath", "BsmtFullBath", "TotalBsmtSF", "BsmtUnfSF", "BsmtFinSF2", "BsmtFinSF1", ] csv_string_train = ( client.get_object(bucket=BUCKET, key="house-price-prediction/dataset/train.csv") .read() .decode("utf-8") ) train = pd.read_csv(StringIO(csv_string_train)) csv_string_test = ( client.get_object(bucket=BUCKET, key="house-price-prediction/dataset/test.csv") .read() .decode("utf-8") ) test = pd.read_csv(StringIO(csv_string_test)) test_ids = test.Id train.drop(["Id"], axis=1, inplace=True) train_tmp = train.drop(["SalePrice"], axis=1) test = test.drop(["Id"], axis=1) total = pd.concat([train_tmp, test]).reset_index(drop=True) def fill_zero_values(zero_list): global train, test, test_ids, total for elem in zero_list: total[elem] = total[elem].fillna(0) train[elem] = train[elem].fillna(0) test[elem] = test[elem].fillna(0) def fill_na_values(na_list): global train, test, test_ids, total for elem in na_list: total[elem] = total[elem].fillna("NA") train[elem] = train[elem].fillna("NA") test[elem] = test[elem].fillna("NA") def replace_with_mode(na_values): global train, test, test_ids, total for elem in na_values: total[elem] = total[elem].fillna(total[elem].mode()[0]) train[elem] = train[elem].fillna(train[elem].mode()[0]) test[elem] = test[elem].fillna(test[elem].mode()[0]) def replace_with_linear_regression(): # execute a linear regression to replace the null values global train, test, test_ids, total total_lot = total[ (
pd.notna(total.LotFrontage)
pandas.notna
from shapely import geometry import numpy as np import xarray as xr import pandas as pd import geopandas as gpd from .base_class_for_query_of_nearest_points import Query_Nearest_Points def _get_nearest_pixels(ground_pixel_tree, xy, radius=100 # in meters ): """ Query the kd-tree for all point within distance radius of point(s) x Keyword arguments: point -- a (lat, lon) tuple or array of tuples radius -- the search radius (km) """ if isinstance(xy, geometry.Point): point = (xy.y, xy.x) elif len(xy) == 2: point = xy else: raise AttributeError('The geometry must have both lon and latitude (geographic crs), \ or x and y (planar crs)') rome_index = ground_pixel_tree.query_ball_point(point, radius) return ground_pixel_tree.dataset[rome_index] def get_nearest_pixels(da_array, xy, radius=1, lat_coord_name='lat', lon_coord_name='lon', da_array_crs_epsg=4326, target_epsg=4978): ground_pixel_tree = Query_Nearest_Points(da_array, lat_coord_name=lat_coord_name, lon_coord_name=lon_coord_name, da_array_crs_epsg=da_array_crs_epsg, target_epsg=target_epsg) return _get_nearest_pixels(ground_pixel_tree, xy, radius=1) def reduce_df(da, reductions = {'mean', 'max', 'min', 'std', 'count'}, variable_columns=[]): df = da.to_dataframe() df_reduced = df.agg(reductions) df_reduced = df_reduced.loc[: , variable_columns] return df_reduced def query_nearest_points(ground_pixel_tree, xy, k, da_time_coord_name = 'time', gdf_time_coord_name='datetime', dict_of_windows = {'time_window':3, 'time_unit':'D'} ): time_delta = pd.Timedelta(dict_of_windows['time_window'], dict_of_windows['time_unit']) time_init = pd.to_datetime(xy[gdf_time_coord_name]) - time_delta time_end =
pd.to_datetime(xy[gdf_time_coord_name])
pandas.to_datetime
import pandas as pd from pandas._testing import assert_frame_equal import pytest import numpy as np from scripts.my_normalize_data import ( normalize_expedition_section_cols, remove_bracket_text, remove_whitespace, normalize_columns ) class XTestNormalizeColumns: def test_replace_column_name_with_value_from_columns_mapping(self): columns_mapping = {"aa": "A"} data = {"aa": [1]} df = pd.DataFrame(data) data = {"A": [1]} expected = pd.DataFrame(data) normalize_columns(df, columns_mapping) assert_frame_equal(df, expected) def test_replace_multiple_column_name_with_value_from_columns_mapping(self): columns_mapping = {"aa": "A", "b b": "B"} data = {"aa": [1], "b b": [2]} df = pd.DataFrame(data) data = {"A": [1], "B": [2]} expected = pd.DataFrame(data) normalize_columns(df, columns_mapping) assert_frame_equal(df, expected) def test_does_not_affect_columns_not_in_columns_mapping(self): columns_mapping = {"aa": "A", "b b": "B"} data = {"aa": [1], "b b": [2], "cc": [3]} df = pd.DataFrame(data) data = {"A": [1], "B": [2], "cc": [3]} expected = pd.DataFrame(data) normalize_columns(df, columns_mapping) assert_frame_equal(df, expected) def test_does_not_affect_columns_if_columns_mapping_has_no_value(self): columns_mapping = {"aa": None, "bb": "", "cc": np.nan} data = {"aa": [1], "b b": [2], "cc": [3]} df =
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, time from numpy import nan from numpy.random import randn import numpy as np from pandas import (DataFrame, Series, Index, Timestamp, DatetimeIndex, to_datetime, date_range) import pandas as pd import pandas.tseries.offsets as offsets from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.compat import product from pandas.tests.frame.common import TestData class TestDataFrameTimeSeriesMethods(tm.TestCase, TestData): def test_diff(self): the_diff = self.tsframe.diff(1) assert_series_equal(the_diff['A'], self.tsframe['A'] - self.tsframe['A'].shift(1)) # int dtype a = 10000000000000000 b = a + 1 s = Series([a, b]) rs = DataFrame({'s': s}).diff() self.assertEqual(rs.s[1], 1) # mixed numeric tf = self.tsframe.astype('float32') the_diff = tf.diff(1) assert_series_equal(the_diff['A'], tf['A'] - tf['A'].shift(1)) # issue 10907 df = pd.DataFrame({'y': pd.Series([2]), 'z': pd.Series([3])}) df.insert(0, 'x', 1) result = df.diff(axis=1) expected = pd.DataFrame({'x': np.nan, 'y': pd.Series( 1), 'z': pd.Series(1)}).astype('float64') assert_frame_equal(result, expected) def test_diff_timedelta(self): # GH 4533 df = DataFrame(dict(time=[Timestamp('20130101 9:01'), Timestamp('20130101 9:02')], value=[1.0, 2.0])) res = df.diff() exp = DataFrame([[pd.NaT, np.nan], [pd.Timedelta('00:01:00'), 1]], columns=['time', 'value']) assert_frame_equal(res, exp) def test_diff_mixed_dtype(self): df = DataFrame(np.random.randn(5, 3)) df['A'] = np.array([1, 2, 3, 4, 5], dtype=object) result = df.diff() self.assertEqual(result[0].dtype, np.float64) def test_diff_neg_n(self): rs = self.tsframe.diff(-1) xp = self.tsframe - self.tsframe.shift(-1) assert_frame_equal(rs, xp) def test_diff_float_n(self): rs = self.tsframe.diff(1.) xp = self.tsframe.diff(1) assert_frame_equal(rs, xp) def test_diff_axis(self): # GH 9727 df = DataFrame([[1., 2.], [3., 4.]]) assert_frame_equal(df.diff(axis=1), DataFrame( [[np.nan, 1.], [np.nan, 1.]])) assert_frame_equal(df.diff(axis=0), DataFrame( [[np.nan, np.nan], [2., 2.]])) def test_pct_change(self): rs = self.tsframe.pct_change(fill_method=None) assert_frame_equal(rs, self.tsframe / self.tsframe.shift(1) - 1) rs = self.tsframe.pct_change(2) filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = self.tsframe.pct_change(fill_method='bfill', limit=1) filled = self.tsframe.fillna(method='bfill', limit=1) assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = self.tsframe.pct_change(freq='5D') filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(freq='5D') - 1) def test_pct_change_shift_over_nas(self): s = Series([1., 1.5, np.nan, 2.5, 3.]) df = DataFrame({'a': s, 'b': s}) chg = df.pct_change() expected = Series([np.nan, 0.5, np.nan, 2.5 / 1.5 - 1, .2]) edf = DataFrame({'a': expected, 'b': expected}) assert_frame_equal(chg, edf) def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')).values self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')).values self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_shift(self): # naive shift shiftedFrame = self.tsframe.shift(5) self.assert_index_equal(shiftedFrame.index, self.tsframe.index) shiftedSeries = self.tsframe['A'].shift(5) assert_series_equal(shiftedFrame['A'], shiftedSeries) shiftedFrame = self.tsframe.shift(-5) self.assert_index_equal(shiftedFrame.index, self.tsframe.index) shiftedSeries = self.tsframe['A'].shift(-5) assert_series_equal(shiftedFrame['A'], shiftedSeries) # shift by 0 unshifted = self.tsframe.shift(0) assert_frame_equal(unshifted, self.tsframe) # shift by DateOffset shiftedFrame = self.tsframe.shift(5, freq=offsets.BDay()) self.assertEqual(len(shiftedFrame), len(self.tsframe)) shiftedFrame2 = self.tsframe.shift(5, freq='B') assert_frame_equal(shiftedFrame, shiftedFrame2) d = self.tsframe.index[0] shifted_d = d + offsets.BDay(5) assert_series_equal(self.tsframe.xs(d), shiftedFrame.xs(shifted_d), check_names=False) # shift int frame int_shifted = self.intframe.shift(1) # noqa # Shifting with PeriodIndex ps = tm.makePeriodFrame() shifted = ps.shift(1) unshifted = shifted.shift(-1) self.assert_index_equal(shifted.index, ps.index) self.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal(unshifted.iloc[:, 0].valid().values, ps.iloc[:-1, 0].values) shifted2 = ps.shift(1, 'B') shifted3 = ps.shift(1, offsets.BDay()) assert_frame_equal(shifted2, shifted3) assert_frame_equal(ps, shifted2.shift(-1, 'B')) assertRaisesRegexp(ValueError, 'does not match PeriodIndex freq', ps.shift, freq='D') # shift other axis # GH 6371 df = DataFrame(np.random.rand(10, 5)) expected = pd.concat([DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1) result = df.shift(1, axis=1) assert_frame_equal(result, expected) # shift named axis df = DataFrame(np.random.rand(10, 5)) expected = pd.concat([DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1) result = df.shift(1, axis='columns') assert_frame_equal(result, expected) def test_shift_bool(self): df = DataFrame({'high': [True, False], 'low': [False, False]}) rs = df.shift(1) xp = DataFrame(np.array([[np.nan, np.nan], [True, False]], dtype=object), columns=['high', 'low']) assert_frame_equal(rs, xp) def test_shift_categorical(self): # GH 9416 s1 = pd.Series(['a', 'b', 'c'], dtype='category') s2 = pd.Series(['A', 'B', 'C'], dtype='category') df = DataFrame({'one': s1, 'two': s2}) rs = df.shift(1) xp = DataFrame({'one': s1.shift(1), 'two': s2.shift(1)}) assert_frame_equal(rs, xp) def test_shift_empty(self): # Regression test for #8019 df = DataFrame({'foo': []}) rs = df.shift(-1) assert_frame_equal(df, rs) def test_tshift(self): # PeriodIndex ps = tm.makePeriodFrame() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_frame_equal(shifted, shifted2) shifted3 = ps.tshift(freq=offsets.BDay()) assert_frame_equal(shifted, shifted3) assertRaisesRegexp(ValueError, 'does not match', ps.tshift, freq='M') # DatetimeIndex shifted = self.tsframe.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(self.tsframe, unshifted) shifted2 = self.tsframe.tshift(freq=self.tsframe.index.freq) assert_frame_equal(shifted, shifted2) inferred_ts = DataFrame(self.tsframe.values, Index(np.asarray(self.tsframe.index)), columns=self.tsframe.columns) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(shifted, self.tsframe.tshift(1)) assert_frame_equal(unshifted, inferred_ts) no_freq = self.tsframe.iloc[[0, 5, 7], :] self.assertRaises(ValueError, no_freq.tshift) def test_truncate(self): ts = self.tsframe[::3] start, end = self.tsframe.index[3], self.tsframe.index[6] start_missing = self.tsframe.index[2] end_missing = self.tsframe.index[7] # neither specified truncated = ts.truncate() assert_frame_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) assert_frame_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) assert_frame_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) assert_frame_equal(truncated, expected) truncated = ts.truncate(before=start_missing) assert_frame_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) assert_frame_equal(truncated, expected) truncated = ts.truncate(after=end_missing) assert_frame_equal(truncated, expected) self.assertRaises(ValueError, ts.truncate, before=ts.index[-1] - 1, after=ts.index[0] + 1) def test_truncate_copy(self): index = self.tsframe.index truncated = self.tsframe.truncate(index[5], index[10]) truncated.values[:] = 5. self.assertFalse((self.tsframe.values[5:11] == 5).any()) def test_asfreq(self): offset_monthly = self.tsframe.asfreq(offsets.BMonthEnd()) rule_monthly = self.tsframe.asfreq('BM') assert_almost_equal(offset_monthly['A'], rule_monthly['A']) filled = rule_monthly.asfreq('B', method='pad') # noqa # TODO: actually check that this worked. # don't forget! filled_dep = rule_monthly.asfreq('B', method='pad') # noqa # test does not blow up on length-0 DataFrame zero_length = self.tsframe.reindex([]) result = zero_length.asfreq('BM') self.assertIsNot(result, zero_length) def test_asfreq_datetimeindex(self): df = DataFrame({'A': [1, 2, 3]}, index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)]) df = df.asfreq('B') tm.assertIsInstance(df.index, DatetimeIndex) ts = df['A'].asfreq('B') tm.assertIsInstance(ts.index, DatetimeIndex) def test_asfreq_fillvalue(self): # test for fill value during upsampling, related to issue 3715 # setup rng = pd.date_range('1/1/2016', periods=10, freq='2S') ts = pd.Series(np.arange(len(rng)), index=rng) df = pd.DataFrame({'one': ts}) # insert pre-existing missing value df.loc['2016-01-01 00:00:08', 'one'] = None actual_df = df.asfreq(freq='1S', fill_value=9.0) expected_df = df.asfreq(freq='1S').fillna(9.0) expected_df.loc['2016-01-01 00:00:08', 'one'] = None assert_frame_equal(expected_df, actual_df) expected_series = ts.asfreq(freq='1S').fillna(9.0) actual_series = ts.asfreq(freq='1S', fill_value=9.0) assert_series_equal(expected_series, actual_series) def test_first_last_valid(self): N = len(self.frame.index) mat = randn(N) mat[:5] = nan mat[-5:] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) index = frame.first_valid_index() self.assertEqual(index, frame.index[5]) index = frame.last_valid_index() self.assertEqual(index, frame.index[-6]) # GH12800 empty = DataFrame() self.assertIsNone(empty.last_valid_index()) self.assertIsNone(empty.first_valid_index()) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.loc[time(9, 30)] expected = ts.loc[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_operation_on_NaT(self): # Both NaT and Timestamp are in DataFrame. df = pd.DataFrame({'foo': [pd.NaT, pd.NaT,
pd.Timestamp('2012-05-01')
pandas.Timestamp
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2022/5/2 15:58 Desc: 东方财富-股票-财务分析 """ import pandas as pd import requests from tqdm import tqdm def stock_balance_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-资产负债表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按报告期 :rtype: pandas.DataFrame """ url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" params = { "companyType": "4", "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i: i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": "4", "reportDateType": "0", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_balance_sheet_by_yearly_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-资产负债表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按年度 :rtype: pandas.DataFrame """ url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" params = { "companyType": "4", "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i: i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": "4", "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_profit_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-利润表-报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-报告期 :rtype: pandas.DataFrame """ url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": "4", "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df =
pd.DataFrame(data_json["data"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author:XuMing(<EMAIL>) @description: """ import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from .discretize import discretize from .feature import ContinuousFeature, CategoricalFeature, MultiCategoryFeature from ..utils.logger import logger class FeatureDict: def __init__(self): self.continuous_feats = {} self.categorical_feats = {} self.multi_category_feats = {} self.feat_dict = {} def add_continuous_feat(self, name, transformation=None, discretize=None, discretize_bin=10): self.delete_feat(name) self.continuous_feats[name] = ContinuousFeature(name, transformation, discretize, discretize_bin) self.feat_dict[name] = 'continuous' def add_categorical_feat(self, name, all_categories=None): self.delete_feat(name) self.categorical_feats[name] = CategoricalFeature(name, all_categories) self.feat_dict[name] = 'categorical' def add_multi_category_feat(self, name, all_categories=None): self.delete_feat(name) self.multi_category_feats[name] = MultiCategoryFeature(name, all_categories) self.feat_dict[name] = 'multi_category' def delete_feat(self, name): if name in self.feat_dict: feat_type = self.feat_dict[name] if feat_type == 'continuous': del self.continuous_feats[name] elif feat_type == 'categorical': del self.categorical_feats[name] elif feat_type == 'multi_category': del self.multi_category_feats[name] def feature_size(self): total_size = 0 total_size += len(self.continuous_feats) for key in self.categorical_feats: feat = self.categorical_feats[key] total_size += feat.dim for key in self.multi_category_feats: feat = self.multi_category_feats[key] total_size += feat.dim return total_size def field_size(self): """ Num of features keys :return: int """ return len(self.feat_dict) def field_range(self): fields = [] for k,v in self.continuous_feats.items(): fields.append(v.dim) for k,v in self.categorical_feats.items(): fields.append(v.dim) for k,v in self.multi_category_feats.items(): fields.append(v.dim) return fields def __repr__(self): feats_list = [self.continuous_feats, self.categorical_feats, self.multi_category_feats] info_strs = [] for feats in feats_list: info_str = '' for key in feats: feat = feats[key] info_str += str(feat) info_str += '\n' info_strs.append(info_str) return 'Continuous Features:\n{}Categorical Features:\n{}Multi-Category Features:\n{}'.format(*info_strs) def process_features(features: FeatureDict, data: pd.DataFrame): r"""Transform raw data into index and value form. Continuous features will be discretized, standardized, normalized or scaled according to feature meta. Categorical features will be encoded with a label encoder. :param features: The FeatureList instance that describes raw_data. :param data: The raw_data to be transformed. :return: feat_index, feat_value, category_index, continuous_value (DataFrame) """ logger.info('process_features start') continuous_feats = features.continuous_feats categorical_feats = features.categorical_feats columns = list(continuous_feats.keys()) columns.extend(list(categorical_feats.keys())) data = data[columns] feat_idx = pd.DataFrame() # transform continuous features logger.info('transforming continuous features') feat_value_continuous = pd.DataFrame() idx = 0 for name in continuous_feats: feat = continuous_feats[name] feat.start_idx = idx if feat.discretize: # use discretize discrete_data, intervals = discretize(data[name], feat.discretize, feat.dim) feat.bins = intervals feat_idx[name] = discrete_data + idx feat_value_continuous[name] = pd.Series(np.ones(len(data[name]))) idx += feat.dim else: # standardized, normalize or MinMaxScaler processor = feat.transformation col_data = np.reshape(data[name].values, (-1, 1)) col_data = processor.fit_transform(col_data) col_data = np.reshape(col_data, -1) feat_value_continuous[name] = col_data feat_idx[name] = np.repeat(idx, repeats=len(data)) idx += 1 logger.info('transforming categorical features') # transform categorical features categorical_index = pd.DataFrame() for name in categorical_feats: categorical_feat = categorical_feats[name] le = LabelEncoder() feat_idx[name] = le.fit_transform(data[name]) + idx categorical_index[name] = feat_idx[name] categorical_feat.processor = le num_classes = len(le.classes_) categorical_feat.dim = num_classes categorical_feat.start_idx = idx idx += num_classes feat_idx = feat_idx.apply(lambda x: x.values, axis=1) categorical_index = categorical_index.apply(lambda x: x.values, axis=1) feat_value_category = pd.DataFrame(np.ones((len(data), len(categorical_feats)))) feat_value =
pd.concat([feat_value_continuous, feat_value_category], axis=1)
pandas.concat
# encoding=utf-8 from nltk.corpus import stopwords from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import FeatureUnion from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.cross_validation import KFold from sklearn.linear_model import Ridge from scipy.sparse import hstack, csr_matrix import pandas as pd import numpy as np import lightgbm as lgb import matplotlib.pyplot as plt import gc, re from sklearn.utils import shuffle from contextlib import contextmanager from sklearn.externals import joblib import time start_time=time.time() print("Starting job at time:", time.time()) debug = True print("loading data ...") used_cols = ["item_id", "user_id"] if debug == False: train_df = pd.read_csv("../input/train.csv", parse_dates=["activation_date"]) y = train_df["deal_probability"] test_df = pd.read_csv("../input/test.csv", parse_dates=["activation_date"]) # suppl train_active = pd.read_csv("../input/train_active.csv", usecols=used_cols) test_active = pd.read_csv("../input/test_active.csv", usecols=used_cols) train_periods = pd.read_csv("../input/periods_train.csv", parse_dates=["date_from", "date_to"]) test_periods = pd.read_csv("../input/periods_test.csv", parse_dates=["date_from", "date_to"]) else: train_df = pd.read_csv("../input/train.csv", parse_dates=["activation_date"]) train_df = shuffle(train_df, random_state=1234); train_df = train_df.iloc[:100000] y = train_df["deal_probability"] test_df = pd.read_csv("../input/test.csv", nrows=1000, parse_dates=["activation_date"]) # suppl train_active = pd.read_csv("../input/train_active.csv", nrows=1000, usecols=used_cols) test_active = pd.read_csv("../input/test_active.csv", nrows=1000, usecols=used_cols) train_periods = pd.read_csv("../input/periods_train.csv", nrows=1000, parse_dates=["date_from", "date_to"]) test_periods =
pd.read_csv("../input/periods_test.csv", nrows=1000, parse_dates=["date_from", "date_to"])
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Feb 13 10:31:11 2020 @author: <NAME> """ # Imports import os import pandas as pd import itertools import numpy as np # import multiprocessing as mp from operator import itemgetter from support_modules.readers import log_reader as lr from support_modules import role_discovery as rl from support_modules import support as sup class IntercasFeatureExtractor(): """ This is the man class encharged of the Feature extraction """ def __init__(self, params, log, user_role): """constructor""" self.log = log self.settings = params self.sub_group = params['sub_group'] self.expanded_log = pd.DataFrame self.event_slides = pd.DataFrame self.user_role = user_role # create input folder self.process_temp_folder(params['temp_input']) # create output folder self.process_temp_folder(params['temp_output']) # Split and process eventlog self.data_source_preparation() # Process folds self.process_folds() def data_source_preparation(self): self.log['event_id'] = self.log.index self.log = self.calculate_event_duration(self.log) # Split event log self.folding_creation(self.log, self.settings['splits'], self.settings['temp_input']) @staticmethod def folding_creation(log, splits, output): log = log.sort_values(by='end_timestamp') idxs = [x for x in range(0, len(log), round(len(log)/splits))] idxs.append(len(log)) log['lead_trail'] = False folds = [pd.DataFrame(log.iloc[idxs[i-1]:idxs[i]]) for i in range(1, len(idxs))] for i in range(1, len(folds)): fold = folds[i] # Find initial incomplete traces inc_traces = pd.DataFrame(fold.groupby('caseid') .first() .reset_index()) inc_traces = inc_traces[inc_traces.pos_trace > 0] inc_traces = inc_traces['caseid'].to_list() # find completion of incomplete traces prev_fold = folds[i - 1] times = prev_fold[(prev_fold.caseid.isin(inc_traces)) & (prev_fold.lead_trail == False)] del inc_traces # Define timespan for leading events minimum = times.end_timestamp.min() leading = prev_fold[(prev_fold.end_timestamp >= minimum) & (prev_fold.lead_trail == False)] leading = leading.caseid.to_list() leading = pd.DataFrame(prev_fold[prev_fold.caseid.isin(leading)]) minimum = leading.groupby('caseid').tail(2).reset_index() minimum = minimum.end_timestamp.min() leading = leading[leading.end_timestamp >= minimum] leading['lead_trail'] = True # Attach leading events folds[i] = pd.concat([leading, fold], axis=0, ignore_index=True) del leading del fold for i in range(0, len(folds)-1): fold = folds[i] # Find initial incomplete traces inc_traces = pd.DataFrame(fold.groupby('caseid') .last() .reset_index()) inc_traces = inc_traces[inc_traces.pos_trace < inc_traces.trace_len] inc_traces = inc_traces['caseid'].to_list() # find completion of incomplete traces next_fold = folds[i + 1] times = next_fold[(next_fold.caseid.isin(inc_traces)) & (next_fold.lead_trail == False)] del inc_traces # Define timespan for leading events maximum = times.end_timestamp.max() trailing = pd.DataFrame( next_fold[(next_fold.end_timestamp <= maximum) & (next_fold.lead_trail == False)]) trailing['lead_trail'] = True # Attach leading events folds[i] = pd.concat([fold, trailing], axis=0, ignore_index=True) del trailing del fold # Export folds for i, fold in enumerate(folds): fold.to_csv(os.path.join(output,'split_'+str(i+1)+'.csv')) def process_folds(self): for fold in self.create_file_list(self.settings['temp_input']): print('processing split', fold, sep=':') log_path = os.path.join(self.settings['temp_input'], fold) self.log = pd.read_csv(log_path, index_col='Unnamed: 0') self.log['end_timestamp'] = pd.to_datetime(self.log['end_timestamp'], format='%Y-%m-%d %H:%M:%S') self.log = self.log.sort_values(by='event_id') print('Expanding event-log') self.expanded_log_creation() print('Calculating features') self.calculate_features() print('filter leading events') self.log = self.log[self.log.lead_trail==False] self.log['fold'] = fold self.log.to_csv(os.path.join(self.settings['temp_output'], fold)) # clean memory del self.expanded_log del self.log # Read proceced folds print('Processing outputs') folds = list() for filename in self.create_file_list(self.settings['temp_output']): df = pd.read_csv(os.path.join(self.settings['temp_output'], filename), index_col='Unnamed: 0') folds.append(df) processed_log = pd.concat(folds, axis=0, ignore_index=True) processed_log = processed_log.sort_values(by='event_id') # Clean folders self.process_temp_folder(self.settings['temp_input']) os.rmdir(self.settings['temp_input']) self.process_temp_folder(self.settings['temp_output']) os.rmdir(self.settings['temp_output']) processed_log.to_csv(os.path.join( 'outputs', 'inter_'+self.settings['file_name'].split('.')[0]+'.csv')) # ============================================================================= # Expanded log management # ============================================================================= def expanded_log_creation(self): # Matching events with slices ranges = self.split_events(self.log) ranges = self.match_slices(ranges) ranges_slides = {k: r['events'] for k, r in ranges.items()} ranges =
pd.DataFrame.from_dict(ranges, orient='index')
pandas.DataFrame.from_dict
from tkinter import * from datetime import timedelta, datetime from urllib.request import urlopen, Request, urlretrieve import urllib from urllib import request from pathlib import Path import urllib.error from urllib.request import Request, urlopen import os import sys import pandas as pd import numpy as np import requests import csv import io import gspread_dataframe as gd from lxml import html from lxml import etree from openpyxl import load_workbook position_fii, position_dii = 0, 0 workbookPath = 'test.xlsx' def dii_and_fii_data(date): """DIIs and FIIs Data Single Day""" # The given url requires date to be in the format ---- ddmmyyyy url = 'https://www.nseindia.com/content/nsccl/fao_participant_oi_' + \ date.replace('-', '') + '.csv' hdr = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 'Accept-Encoding': 'none', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive'} r = requests.get(url, headers=hdr) df = pd.read_csv(io.StringIO(r.content.decode('utf-8'))) try: new_header = df.iloc[0] # grab the first row for the header df = df[1:] # take the data less the header row df.columns = new_header # set the header row as the df header df.insert(loc=0, column="Date", value=date) df_right_dii = df.loc[2:2, ('Future Index Long', 'Future Index Short', 'Future Stock Long', 'Future Stock Short', 'Option Index Call Long', 'Option Index Put Long', 'Option Index Call Short', 'Option Index Put Short')] df_right_fii = df.loc[3:3, ('Future Index Long', 'Future Index Short', 'Future Stock Long', 'Future Stock Short', 'Option Index Call Long', 'Option Index Put Long', 'Option Index Call Short', 'Option Index Put Short')] df_date = df.loc[2:2, ('Date',)] except KeyError: print("[+] Sorry, content for %s is not available online,\nKindly try after 7:30 PM for Today's Contents"%(date)) sys.exit(1) return df_date, df_right_dii, df_right_fii def availableDate(date): """Find next available data on site. This removes the possibilty of holidays in the list. Returns working day DATE as str Sub-module: <Only for use with nextDate function> DO NOT TOUCH""" url = 'https://www.nseindia.com/content/nsccl/fao_participant_oi_' + date + '.csv' r = requests.get(url) tree = html.fromstring(r.content) checkDate = tree.findtext('.//title') # p Returns None if Data to be scrapped is found # p Returns 404 Not Found if Data to be scrapped is not found return checkDate def findDate(): """Returns the str of Last filled Date and next Date to be filled""" global position_dii, position_fii df = pd.read_excel(workbookPath) lastFilledDate = pd.isna(df['Unnamed: 16']).index[-1] # This gives the row index from which data can be started appending position_fii = len(df) + 1 position_dii = len(df) + 1 - 378 nextDate = (datetime.strptime(lastFilledDate, '%d-%m-%Y') + timedelta(days=1)).strftime('%d-%m-%Y') while availableDate(nextDate.replace('-', '')) == '404 Not Found': nextDate = (datetime.strptime(nextDate, '%d-%m-%Y') + timedelta(days=1)).strftime('%d-%m-%Y') return lastFilledDate, nextDate def niftySpot(date): """Returns the nifty closing value of the day as string""" # Requires date format to be dd-mm-yyyy url = "https://www.nseindia.com/products/dynaContent/equities/indices/historicalindices.jsp?indexType=NIFTY%2050&fromDate=" + date + "&toDate=" + date page = requests.get(url) tree = html.fromstring(page.content) try: nifty_close = tree.xpath('/html/body/table/tr/td[5]/text()')[0].strip() return nifty_close except IndexError: print("Sorry the nifty value of %s, has not been refreshed online yet. \nKindly try after 7:30 PM"%(date)) sys.exit(1) def dataAppend(): # lastFilledDate = findDate()[0] # now.time() > datetime.time(hour=8) while datetime.now().strftime('%d-%m-%Y') != findDate()[0]: if datetime.now().strftime('%d-%m-%Y') == findDate()[0]: print("[+][+] Process Completed") break # lastFilledDate = findDate()[1] # Load current date inside the variable, thus changing according to the loop of the function date = findDate()[1] # Load the excel file into the script book = load_workbook(workbookPath) writer = pd.ExcelWriter( workbookPath, engine='openpyxl') writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) # Get the value to be appended for a given date in the loop df_date, df_right_dii, df_right_fii = dii_and_fii_data(date) nifty_close = niftySpot(date) # Appending Date to FIIs Data and DIIs Data print("[+] Appending Dates of FIIs and DIIs of date %s to row %s (FII) and row %s (DII)" % (date, position_fii, position_dii)) df_date.to_excel(writer, "FII Activity", startrow=position_fii, index=False, header=None) df_date.to_excel(writer, "DII", startrow=position_dii, index=False, header=None) # Appending FII and nifty information to FIIs Data print("[+] Appending Data of FIIs and Nifty of date %s to row %s" % (date, position_fii)) df_right_fii.to_excel(writer, "FII Activity", startrow=position_fii, startcol=14, index=False, header=None)
pd.DataFrame(data=[nifty_close])
pandas.DataFrame
from typing import List import numpy as np import pandas as pd from trader.core.model import Position from trader.core.const.candle_index import OPEN_TIME_INDEX from trader.core.util.common import Storable import plotly.graph_objects as go class TradeReport(Storable): def __init__( self, start_cash: float, positions: List[Position], trade_ratio: float, candles: np.ndarray, interval: str, leverage: int, ): self.candles = candles self.start_timestamp = candles[0][OPEN_TIME_INDEX] self.end_timestamp = candles[-1][OPEN_TIME_INDEX] self.trade_ratio = trade_ratio self.interval = interval self.start_cash = start_cash self.profits = tuple(position.profit() for position in positions) self.end_cash = sum(self.profits) + self.start_cash self.leverage = leverage self.wins = len(tuple(position for position in positions if position.profit() > 0)) self.losses = len(tuple(position for position in positions if position.profit() < 0)) @property def number_of_candles(self): return self.candles.shape[0] @property def start_time(self): return
pd.to_datetime(self.start_timestamp, unit='s')
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Tue Aug 13 16:30:16 2019 @author: <NAME> """ ### Program for controlling BK8542B DC Electronic Load for IV curve measurement of solar panel ### import serial, time, csv, os import pandas as pd import itertools as it from time import strftime from array import array global ser, ser_relay, resp_status_dict, mode_cc, mode_cv, mode_cw, mode_cr global scale_curr, scale_volt, scale_watt, scale_resi global r1, r2, r3, r4, r5, r6, r7, r8 global sample_id sample_id = 29381 # Initialize PC-load serial communication and global variables def init_load(): """Docstring""" global ser, resp_status_dict, mode_cc, mode_cv, mode_cw, mode_cr global scale_curr, scale_volt, scale_watt, scale_resi baudrate = 9600 port = "COM4" ser = serial.Serial(port,baudrate, timeout=1) resp_status_dict = { 0x90: "ERROR: Invalid checksum", 0xA0: "ERROR: Invalid value", 0xB0: "ERROR: Unable to execute", 0xC0: "ERROR: invalid command", 0x80: True, } mode_cc = 0 # constant current mode mode_cv = 1 # constant voltage mode mode_cw = 2 # constant power mode mode_cr = 3 # constant resistance mode scale_volt = 1000 scale_curr = 10000 scale_watt = 1000 scale_resi = 1000 def close(): """Docstring""" ser.close() def parse_data(resp): """Docstring""" data = resp[4] | (resp[5] << 8) | (resp[6] << 16) | (resp[7] << 24) print(data) return data def check_resp(resp): """Docstring""" if len(resp) == 26: # Confirm start byte if resp[0] == 0xAA: resp_type = resp[2] if resp_type == 0x12: # Status type return resp_status_dict[resp[3]] else: return True else: print('Start byte mismatch') return None else: print('Packet length mismatch') return None def build_cmd(cmd, value=None): """Docstring""" build_cmd = array('B', [0x00]*26) build_cmd[0] = 0xAA # Packet start build_cmd[1] = 0x00 # Unsupported address location build_cmd[2] = cmd & 0xFF # Command value if value is not None: build_cmd[3] = value & 0xFF # value 1st byte little endian build_cmd[4] = (value >> 8) & 0xFF # value 2nd byte little endian build_cmd[5] = (value >> 16) & 0xFF # value 3rd byte little endian build_cmd[6] = (value >> 24) & 0xFF # value 4th byte little endian checksum = 0 for item in build_cmd: checksum += item checksum %= 256 build_cmd[25] = checksum & 0xFF return build_cmd.tobytes() def send_recv_cmd(cmd_packet): """Docstring""" # House cleaning, flush serial input and output bufferss ser.reset_output_buffer() ser.reset_input_buffer() # Send and receive ser.write(cmd_packet) time.sleep(0.250) # Provide time for response resp_array = array('B', ser.read(26)) # get resp and put in array check = check_resp(resp_array) if check is True: return resp_array else: print('Response check failed') print(check) return None def get_device_info(): """Docstring""" built_packet = build_cmd(0x6A) resp = send_recv_cmd(built_packet) if resp is not None: model = chr(resp[3]) + chr(resp[4]) + chr(resp[5]) + chr(resp[6]) version = str(resp[9]) + '.' + str(resp[8]) serial = chr(resp[10]) + chr(resp[11]) + chr(resp[12]) + chr(resp[13]) + chr(resp[14]) + chr(resp[16]) + chr(resp[17]) + chr(resp[18]) + chr(resp[19]) return (model, version, serial) else: return None def get_input_values(): """Docstring""" built_packet = build_cmd(0x5F) resp = send_recv_cmd(built_packet) if resp is not None: volts = (resp[3] | (resp[4] << 8) | (resp[5] << 16) | (resp[6] << 24)) / scale_volt current = (resp[7] | (resp[8] << 8) | (resp[9] << 16) | (resp[10] << 24)) / scale_curr power = (resp[11] | (resp[12] << 8) | (resp[13] << 16) | (resp[14] << 24)) / scale_watt return (volts, current, power) else: return None def set_function(function): """Docstring""" built_packet = build_cmd(0x5D, value=function) resp = send_recv_cmd(built_packet) return resp def get_function(): built_packet = build_cmd(0x5E) resp = send_recv_cmd(built_packet) if resp is not None: return resp[3] else: return None def set_remote_sense(is_remote=False): """Docstring""" built_packet = build_cmd(0x56, value=int(is_remote)) resp = send_recv_cmd(built_packet) return resp def get_remote_sense(): """Docstring""" built_packet = build_cmd(0x57) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) else: return None def set_remote_control(is_remote=False): """Docstring""" built_packet = build_cmd(0x20, value=int(is_remote)) resp = send_recv_cmd(built_packet) if is_remote == False: return False else: return True def set_local_control(is_local=True): """Docstring""" built_packet = build_cmd(0x55, value=int(is_local)) resp = send_recv_cmd(built_packet) return resp def set_mode(mode): """Docstring""" built_packet = build_cmd(0x28, value=mode) resp = send_recv_cmd(built_packet) return resp def get_mode(): """Docstring""" built_packet = build_cmd(0x29) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) else: return None def set_enable_load(is_enabled=False): """Docstring""" built_packet = build_cmd(0x21, value=int(is_enabled)) resp = send_recv_cmd(built_packet) return resp def set_max_volts(max_volts=0): """Docstring""" built_packet = build_cmd(0x22, value=int(max_volts)) resp = send_recv_cmd(built_packet) return resp def get_max_volts(): """Docstring""" built_packet = build_cmd(0x23) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_volt else: return None def set_max_current( max_current=0): """Docstring""" built_packet = build_cmd(0x24, value=int(max_current * scale_curr)) resp = send_recv_cmd(built_packet) return resp def get_max_current(): """Docstring""" built_packet = build_cmd(0x25) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_curr else: return None def set_max_power( max_power=0): """Docstring""" built_packet = build_cmd(0x24, value=int(max_power * scale_watt)) resp = send_recv_cmd(built_packet) return resp def get_max_power(): """Docstring""" built_packet = build_cmd(0x27) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_volt else: return None def set_CV_volts(cv_volts=0): """Docstring""" built_packet = build_cmd(0x2C, value=int(cv_volts * scale_volt)) resp = send_recv_cmd(built_packet) return resp def get_CV_volts(): """Docstring""" built_packet = build_cmd(0x2D) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_volt else: return None def set_CC_current(cc_current=0): """Docstring""" built_packet = build_cmd(0x2A, value=int(cc_current * scale_curr)) resp = send_recv_cmd(built_packet) return resp def get_CC_current(): """Docstring""" built_packet = build_cmd(0x2B) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_curr else: return None def get_CP_power(): """Docstring""" def set_CP_power(cp_power=0): """Docstring""" built_packet = build_cmd(0x2E, value=int(cp_power * scale_watt)) resp = send_recv_cmd(built_packet) return resp built_packet = build_cmd(0x2F) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_watt else: return None def set_CR_resistance(cr_resistance=0): """Docstring""" built_packet = build_cmd(0x30, value=int(cr_resistance * scale_resi)) resp = send_recv_cmd(built_packet) return resp def get_CR_resistance(): """Docstring""" built_packet = build_cmd(0x31) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_resi else: return None def set_bat_volts_min(min_volts=3): """Docstring""" built_packet = build_cmd(0x4E, value=int(min_volts * scale_volt)) resp = send_recv_cmd(built_packet) return resp def get_bat_volts_min(): """Docstring""" built_packet = build_cmd(0x4F) resp = send_recv_cmd(built_packet) if resp is not None: return parse_data(resp) / scale_volt else: return None #______________________________________________________________________________ ### Vellemen VM8090 relay card communication and control def init_relay_card(): global ser_relay port = "COM5" baudrate = 19200 ser_relay = serial.Serial(port,baudrate, timeout=1) def close_relay(): """Disconnect from relay card""" ser_relay.close() def build_cmd_relay(cmd_relay, which_relay): """Construct command for relay card""" global r1, r2, r3, r4, r5, r6, r7, r8 r1 = 0x01 r2 = 0x02 r3 = 0x04 r4 = 0x08 r5 = 0x10 r6 = 0x20 r7 = 0x40 r8 = 0x80 build_cmd_relay = array('B', [0x00]*7) stx = build_cmd_relay[0] cmd = build_cmd_relay[1] msk = build_cmd_relay[2] param1 = build_cmd_relay[3] param2 = build_cmd_relay[4] chk = build_cmd_relay[5] etx = build_cmd_relay[6] stx = 0x04 # start byte cmd = cmd_relay & 0xFF # command byte msk = which_relay # mask byte to select relay chk = -(stx + cmd + msk + param1 + param2) + 1 # checksum of byte packet etx = 0x0F # end byte return build_cmd_relay.tobytes() def send_cmd_relay(cmd_relay_packet): """Send or receive command packet from relay card""" ser_relay.reset_output_buffer() ser_relay.reset_input_buffer() ser_relay.write(cmd_relay_packet) def switch_relay_on(which_relay): """Switch on one or more relays""" built_packet_relay = build_cmd_relay(0x11, which_relay) resp = send_cmd_relay(built_packet_relay) return resp def switch_relay_off(which_relay): built_packet_relay = build_cmd_relay(0x12, which_relay) resp = send_cmd_relay(built_packet_relay) return resp # Save data: current, voltage, and power def data_file(log_file, log_file_header): """Docstring""" if os.path.exists(log_file) is not True: with open(log_file, mode='a',newline='') as the_file: writer = csv.writer(the_file, dialect='excel') writer.writerow(log_file_header) return log_file def data_point(inputs: list): """Organizes data for export to excel""" opv = '1' timenow = strftime("%#m/%#d/%Y %#H:%M") volts = inputs[0] current = inputs[1] power = inputs[2] data_point = [opv, timenow, volts, current, power] return data_point def write_data_tofile(data_point): global sample_id if data_point is not None: sample_id += 1 sample_id_lst = [sample_id] log_file = data_file() with open(log_file, mode='a',newline='') as the_file: writer = csv.writer(the_file, dialect='excel') writer.writerow(sample_id_lst + data_point) # IV curve measurement def open_circ(): """Open circuit voltage measurement""" set_mode(mode_cc) # set operation mode to CC time.sleep(.250) set_CC_current(cc_current=0) # set CC mode current to 0 amps time.sleep(.1) oc_vals = get_input_values() # read open circuits levels oc_data_point = data_point(oc_vals) # create data point for open circuit measurement voc = oc_data_point[2] # open circuit voltage measurement print('Open circuit voltage: ', voc) write_data_tofile(oc_data_point) # write data to file return voc def iv_curve(voc): """Measure intermediate current voltage points""" set_mode(mode_cv) # set operation mode to CC time.sleep(.250) volt_step = voc while volt_step > 0.5: set_CV_volts(volt_step) time.sleep(.1) curve_vals = get_input_values() curve_data_point = data_point(curve_vals) print('voltage, current, power: ', curve_data_point[2], curve_data_point[3], curve_data_point[4]) write_data_tofile(curve_data_point) new_volt_step = curve_data_point[2] - 1.0 volt_step = new_volt_step pass def short_circ(): """Measure short circuit current (nearest to 0 volts)""" set_mode(mode_cv) time.sleep(.250) set_CV_volts(0.1) time.sleep(.250) sc_vals = get_input_values() sc_data_point = data_point(sc_vals) jsc = sc_data_point[3] print('Short circuit current: ', jsc) write_data_tofile(sc_data_point) def sweep(): """Measure entire IV curve""" set_enable_load(True) # turn input ON time.sleep(.250) print('Begin IV curve measurement') voc = open_circ() # measure open circuit voltage iv_curve(voc) # measure iv curve short_circ() # measure short circuit current time.sleep(.250) set_enable_load(False) # turn input OFF #______________________________________________________________________________ def process_data(in_file=str, out_file=str, opv_num=str): """Process data for each IV curve measurement""" out_file_header = ['opv', 'curve_id', 'time', 'hour', 'voc', 'jsc', 'mpp', 'ff'] data_file(out_file, out_file_header) df = pd.read_csv(in_file) out_file_header = ['opv', 'curve_id', 'time', 'hour', 'voc', 'jsc', 'mpp', 'ff'] curve_id_count = 1 curve = df.loc[df['curve_id'] == curve_id_count] while curve is not None: opv = opv_num time = curve['time'].iloc[0] # start time of IV curve measurement hour = float(time[-2] + time[-1])/60.0 + float(time[-5] + time[-4]) voc = curve['volts'].max() jsc = curve['current'].max() mpp = curve['power'].max() ff = mpp / (voc * jsc) data_point = [opv, curve_id_count, time, hour, voc, jsc, mpp, ff] with open(out_file, mode='a',newline='') as the_file: writer = csv.writer(the_file, dialect='excel') writer.writerow(data_point) new_curve_id_count = curve_id_count + 1 curve_id_count = new_curve_id_count curve = df.loc[df['curve_id'] == curve_id_count] pass return def match_env(opv_in_file, env_in_file, out_file): """Match corresponding environmental measurement to IV curve measurement""" df_opv = pd.read_csv(opv_in_file) df_env = pd.read_csv(env_in_file) # df_env['TIMESTAMP'] = pd.to_datetime(df_env['TIMESTAMP'],format='%m/%d/%y %H:%M').drop_duplicates() # 10-27-19 to 10-31-19 df_env['TIMESTAMP'] =
pd.to_datetime(df_env['TIMESTAMP'],format='%Y-%m-%d %H:%M:%S')
pandas.to_datetime
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib import datetime as dt import collections import sklearn.preprocessing import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader import matplotlib.animation as animation import tempfile from PIL import Image first_date = dt.date(2020, 3, 1) ## Main def main(): df = download_data() countries = get_all_countries(df, min_population=100000) plot_by_country(df=df, ctype='deaths') death_rate_chart(df=df, countries=countries, ctype='deaths', num_to_display=30) ## Visualisation def death_rate_chart(df, countries, ctype, num_to_display=None): results = pd.DataFrame(index=pd.date_range(start=first_date, end='today'), columns=countries) for country in countries: sr = country_series(df, country, ctype, cumsum=True, log=False) sr /= df[df.countriesAndTerritories == country].iloc[0].popData2018 results[country] = sr results = results.fillna(0) sr = results.iloc[-1] sr = sr.sort_values() if isinstance(num_to_display, int): sr = sr[-num_to_display:] title = '%s per 100,000 for top %d countries' % (ctype.title(), num_to_display) else: title = '%s per 100,000' % (ctype.title()) sr *= 100000 l = len(sr) labels = clean_labels(sr.index) spacing = [(1/l)*i for i in range(l)] colours = matplotlib.cm.hsv(sr / float(max(sr))) fig, ax = plt.subplots() plt.barh(spacing, width=sr.to_list(), height=(1/l)*0.92, tick_label=labels, color='orange') plt.yticks(fontsize=8) plt.title(title) plt.xlabel(ctype.title()) # plt.show() plt.savefig('bar_chart.png', bbox_inches='tight', dpi=300) def plot_by_country(df, ctype): df = normalised_progression_by_country(df, get_all_countries(df), ctype) countries_shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries') cmap = matplotlib.cm.get_cmap('Spectral') saved_figs = [] limit=5 for i in range(df.shape[0]): tfile = tempfile.TemporaryFile() ax = plt.axes(projection=ccrs.PlateCarree(), label=str(i)) for country in shpreader.Reader(countries_shp).records(): c = clean_country(country.attributes['NAME_LONG']) if c == None: rgba = (0.5, 0.5, 0.5, 1.0) else: rgba = cmap(df[c][i]) ax.add_geometries([country.geometry], ccrs.PlateCarree(), facecolor=rgba, label=country.attributes['NAME_LONG']) plt.title(str(df.index[i]).split(' ')[0]) plt.savefig(tfile, dpi=400, bbox_inches='tight') saved_figs.append(tfile) plt.close() fig = plt.figure() ims = [] for temp_img in saved_figs: X = Image.open(temp_img) ims.append([plt.imshow(X, animated=True)]) ani = animation.ArtistAnimation(fig, ims, interval=800, blit=True, repeat_delay=1000) plt.axis('off') plt.tight_layout(pad=0) # plt.show() ani.save('animation.gif', writer='imagemagick', fps=2, dpi=400) # Writer = animation.writers['ffmpeg'] # writer = Writer(fps=2, metadata=dict(artist='Me'), bitrate=100000) # ani.save('/Users/daniel/Desktop/animation.mp4', writer=writer, dpi=400) ## Data acquisition and processing def clean_labels(labels): results = [] for label in labels: if label == 'Cases_on_an_international_conveyance_Japan': results.append('Japan') elif label == 'United_States_of_America': results.append('United States') else: results.append(label.replace('_', ' ')) return results def download_data(): covid_raw_pd = pd.read_csv('https://opendata.ecdc.europa.eu/covid19/casedistribution/csv') # covid_raw_pd = pd.read_csv('/Users/daniel/Downloads/cv.csv') cols_to_drop = ['day', 'month', 'year', 'geoId', 'countryterritoryCode', 'continentExp'] covid_raw_pd = covid_raw_pd[covid_raw_pd.columns.drop(cols_to_drop)] covid_raw_pd['dateRep'] = pd.to_datetime(covid_raw_pd['dateRep'], format=r'%d/%m/%Y') return covid_raw_pd def get_all_countries(df, min_population=None): if isinstance(min_population, int): df = df[df.popData2018 >= min_population] return df.loc[:, 'countriesAndTerritories'].drop_duplicates() def get_eu_countries(): return
pd.Series(['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czechia', 'Denmark', 'Estonia', 'France', 'Germany', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden'])
pandas.Series
import pandas as pd import numpy as np import matplotlib.pyplot as plt import sys cardData = pd.read_csv('CardData.csv', header=0, encoding='utf-8-sig') coinData = pd.read_csv('CoinData.csv', header=0, encoding='utf-8-sig') baseCost = pd.read_csv('BaseCost.csv', header=0, encoding='utf-8-sig') numCards = len(cardData.index) numCoins = len(coinData.index) baseCost1 = baseCost.at[0,'CPU Price'] + baseCost.at[0, 'Mobo Price'] + baseCost.at[0, 'SSD Price'] + baseCost.at[0, 'Case Price'] + baseCost.at[0, 'PSU Price'] + baseCost.at[0, 'RAM Price'] multCard = int(sys.argv[1]) powerCost = pd.Series() for i in range (0, numCards): powerCost2 = pd.Series(((cardData.at[i, 'Power Consumption'] * 24 * baseCost.at[0, 'Power Cost']/1000) * multCard), index =[i]) powerCost = powerCost.append(powerCost2) costEquip = pd.Series() for i in range (0, numCards): costEquip1 = pd.Series(baseCost1 + (cardData.at[i, 'Cost'] * multCard), index=[i]) costEquip = costEquip.append(costEquip1) costEquipdf =
pd.DataFrame(costEquip, columns=['Initial Investment'])
pandas.DataFrame
# coding=utf-8 """ Porównanie skuteczności metod uczenia maszynowego. Klasyfikacja - czy klient banku spłaci pożyczkę. Źródło danych: http://archive.ics.uci.edu/ml/machine-learning-databases/00350/ """ import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.preprocessing import OneHotEncoder import ssn from utils import fibonacci_range, prep_data, prep_test_data_y, prep_test_data_x VERBOSE = True def load_dataset(path="bank.csv", verbose=True): print("Loading data...") dataset = pd.read_csv(path, dtype=str) if verbose: print(dataset.head()) print(dataset.describe()) return dataset def split_dataset(dataset): print("Spliting dataset...") X = dataset.drop(['deposit', 'age', 'balance'], axis=1) y = dataset['deposit'] z = dataset[['age', 'balance']] return X, y, z if __name__ == "__main__": df = load_dataset(verbose=VERBOSE) X, y, z = split_dataset(df) z = z.replace(" ", "0.0", regex=True) z = z.apply(pd.to_numeric) X = pd.DataFrame(OneHotEncoder().fit_transform(X).toarray()) y = pd.DataFrame(OneHotEncoder().fit_transform(np.array(y).reshape(-1, 1)).toarray()).loc[:, 1] X = pd.concat([X, z], axis=1) out =
pd.concat([X, z, y], axis=1)
pandas.concat
#!/usr/bin/env python3 # # Copyright 2019 <NAME> <<EMAIL>> # # This file is part of Salus # (see https://github.com/SymbioticLab/Salus). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- coding: utf-8 -*- """ Created on Sun Sep 2 04:25:58 2018 @author: peifeng """ from __future__ import print_function, absolute_import, division import re from datetime import datetime from collections import defaultdict import multiprocessing as mp from pathlib import Path import subprocess as sp import tempfile import pandas as pd #import seaborn as sns import numpy as np import matplotlib.pyplot as plt import plotutils as pu import compmem as cm def load_case(path): df = pd.read_csv(path, header=None, sep=' ', names=['date', 'time', 'event', 'skip', 'Model'], parse_dates=[['date', 'time']]) df = df[['date_time', 'event', 'Model']] df['timestamp'] = df['date_time'] df = df.drop('date_time', axis=1) wls = df.pivot_table(values='timestamp', index=['Model'], columns='event', aggfunc='first').reset_index() for col in ['Started', 'Queued', 'Finished']: wls[col] = wls[col].str[:-1] wls[col] = pd.to_datetime(wls[col]) wls['queuing'] = wls.Started - wls.Queued wls['JCT'] = wls.Finished - wls.Queued # for convinent wls['No'] = pd.to_numeric(wls['Model'].str.rpartition('.')[2]) return wls def load_trace(path, fifo=True): df = pd.read_csv(path) df = df.sort_values(by='submit_time') if fifo: models = defaultdict(dict) curr = 0 for idx, row in df.iterrows(): if curr < row['submit_time']: curr = row['submit_time'] models[idx]['Queued'] = row['submit_time'] models[idx]['Started'] = curr curr += row['duration'] models[idx]['Finished'] = curr data = [ { "Model": '{model_name}.tf.{iterations}iter.{job_id}'.format(**df.iloc[idx]), "Finished": m['Finished'], "Queued": m['Queued'], "Started": m['Started'], "queuing": m['Started'] - m['Queued'], "JCT": m['Finished'] - m['Queued'] } for idx, m in models.items() ] df = pd.DataFrame(data) else: data = [ { "Model": f"{row.model_name}.tf.{row.iterations}iter.{row.job_id}", "Finished": row.submit_time + row.duration, "Queued": row.submit_time, "Started": row.submit_time, "queuing": 0, "JCT": row.duration } for idx, row in df.iterrows() ] df = pd.DataFrame(data) for col in ['Finished', 'Queued', 'Started', 'queuing', 'JCT']: df[col] = pd.to_timedelta(df[col], unit='s') df['No'] = pd.to_numeric(df['Model'].str.rpartition('.')[2]) return df def load_refine(pathdir): # load preempt select events with tempfile.NamedTemporaryFile() as f: server_output = pathdir/'server.output' sp.check_call(['grep', 'preempt_select_sess', str(server_output)], stdout=f) f.flush() df = cm.load_generic(f.name, event_filters=['preempt_select_sess']) df = df.drop(['evt', 'level', 'loc', 'thread', 'type'], axis=1) # convert UTC from server to local df['timestamp'] = df.timestamp.dt.tz_localize('UTC').dt.tz_convert('US/Eastern').dt.tz_localize(None) sess2Model = {} # model name -> sess handle ptn = re.compile('Created session with handle (?P<sess>.+)$') for fpath in pathdir.glob('*.*.*.*.output'): with fpath.open() as f: for line in f: m = ptn.search(line) if m: sess2Model[m.group('sess')] = fpath.name.rstrip('.output') # add model name info to it df['Model'] = df.Sess.map(sess2Model) # make sure every session is covered assert df.Model.isnull().sum() == 0 # for convinent df['No'] = pd.to_numeric(df['Model'].str.rpartition('.')[2]) return df def load_serverevents(pathdir): # sess handle -> lane id with tempfile.NamedTemporaryFile() as f: server_output = pathdir/'server.output' sp.check_call(['grep', 'lane_assigned', str(server_output)], stdout=f) f.flush() df = cm.load_generic(f.name, event_filters=['lane_assigned']) df = df.drop(['evt', 'level', 'loc', 'thread', 'type'], axis=1) # sess handles are unique assert len(df.Sess.unique()) == len(df.Sess) # make Sess as index so we can lookup df = df.set_index('Sess') # add a new column df['Model'] = None # model name -> sess handle ptn = re.compile('Created session with handle (?P<sess>.+)$') for fpath in pathdir.glob('*.*.*.*.output'): with fpath.open() as f: for line in f: m = ptn.search(line) if m: df.loc[m.group('sess'), 'Model'] = fpath.name.rstrip('.output') # reset index so we can use that later df = df.reset_index() return df def refine_time_events(df, sevts): """Return a copy of df""" assert df.Model.is_unique assert sevts.Model.is_unique df = df.set_index('Model').sort_index() sevts = sevts.set_index('Model').sort_index() # check sevts contains all needed info assert sevts.index.equals(df.index) # Server logs in UTC, convert to local sevts['Started'] = sevts.timestamp.dt.tz_localize('UTC').dt.tz_convert('US/Eastern').dt.tz_localize(None) sevts = sevts.drop(['timestamp'], axis=1) df['Queued'] = df.Started df = df.drop(['Started'], axis=1) # set Model as index for both as then and then concat df = pd.concat([df, sevts], axis=1) # update queuing df['queuing'] = df.Started - df.Queued return df.reset_index() def plot_timeline(df, colors=None, **kwargs): ax = kwargs.pop('ax', None) if ax is None: ax = plt.gca() # sort df by no df['No'] = pd.to_numeric(df['Model'].str.rpartition('.')[2]) df = df.sort_values(by='No') offset = df.Queued.min() qmin = (df.Queued - offset) / pd.Timedelta(1, unit='s') xmin = (df.Started - offset) / pd.Timedelta(1, unit='s') xmax = (df.Finished - offset) / pd.Timedelta(1, unit='s') if colors is None: color_cycle = ax._get_lines.prop_cycler colors = [next(color_cycle)['color'] for _ in qmin] for (_, row), q, left, right, color in zip(df.iterrows(), qmin, xmin, xmax, colors): barheight = 0.8 # queuing time ax.barh(row.No, left - q, barheight, q, color='#b6b6b6') # run time bar = ax.barh(row.No, right - left, barheight, left, color=color, label='#{3}: {0}'.format(*row.Model.split('.'))) if 'LaneId' in row: ax.text(right + 2, row.No, f'Lane {row.LaneId}', ha='left', va='center', fontsize=3) # ax.legend() ax.set_xlabel('Time (s)') # ax.set_ylabel('Workload') ax.yaxis.set_ticks([]) return bar, colors def plot_refine(ax, df, refine_data): # so that we can access job using no df = df.set_index('No') # for every preempt event pair, mask jobs that's not the left event's switch_to job offset = df.Queued.min() refine_data['Ntime'] = (refine_data['timestamp'] - offset) / pd.Timedelta(1, unit='s') # also convert df.Queued to relative time df['Started'] = (df.Started - offset) / pd.Timedelta(1, unit='s') df['Finished'] = (df.Finished - offset) / pd.Timedelta(1, unit='s') bars = [] # group refine_data by laneId for laneId, grp in refine_data.groupby('LaneId'): magic = grp.iterrows() next(magic) for (_, left), (_, right) in zip(grp.iterrows(), magic): for no in df.index.unique(): if no == left.No: continue if laneId != df.loc[no].LaneId: continue l = max(df.loc[no].Started, left.Ntime) r = min(df.loc[no].Finished, right.Ntime) if l >= r: continue # make sure left and right within job no's started and finished # mask from left to right bars.append(ax.barh(no, r - l, 0.5, l, color='#ffffff', edgecolor='#ffffff')) return bars def plot_lanes(refined_df, **kwargs): lanes = refined_df.groupby(['LaneId', 'LaneSize']).agg({ 'Queued': 'first', 'Finished': 'last' }).rename(columns={'Queued':'Started'}).reset_index() tables = [] for col in ['Started', 'Finished']: t = lanes.pivot_table(values='LaneSize', columns='LaneId', index=[col], aggfunc='first') tables.append(t) lanes2 =
pd.concat(tables)
pandas.concat
import argparse from contextlib import redirect_stdout import os from matplotlib import pyplot as plt import numpy as np import pandas as pd import configs import plot_utils # Set matplotlib font size SMALL_SIZE = 12 MEDIUM_SIZE = 14 BIGGER_SIZE = 18 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title def create_fg_plots(fg_results_dir, output_dir): fg_results_df = pd.DataFrame(None, columns=['model_name', 'name', 'acc']) for model_spec in configs.model_specs: model_name = model_spec['name'] results_fp = os.path.join(fg_results_dir, model_name + ".pkl") if not os.path.exists(results_fp): print("WARNING: did not find results for model %s at %s" % (model_name, results_fp)) continue results_df = pd.read_pickle(results_fp) fg_results_df =
pd.concat([fg_results_df, results_df], axis=0, ignore_index=True)
pandas.concat
import json import os import warnings import casadi as ca import numpy as np import pandas as pd import pandas.testing as pdt import pytest from scipy.signal import chirp from skmid.integrator import RungeKutta4 from skmid.models import DynamicModel from skmid.models import generate_model_attributes @pytest.fixture def load_non_linear_model_data(): """Generate input signal""" CWD = os.getcwd() DATA_DIR = "data" SUB_DATA_DIR = "non_linear_model" U = pd.read_csv( filepath_or_buffer=os.path.join(CWD, DATA_DIR, SUB_DATA_DIR, "u_data.csv"), index_col=0, ) Y = pd.read_csv( filepath_or_buffer=os.path.join(CWD, DATA_DIR, SUB_DATA_DIR, "y_data.csv"), index_col=0, ) # reading the data from the file with open( os.path.join(CWD, DATA_DIR, SUB_DATA_DIR, "settings.json"), mode="r" ) as j_object: settings = json.load(j_object) return (U, Y, settings) # test f(x,u) with multiple input, multiple size, list @pytest.fixture def generate_input_signal(): """Generate input signal""" N = 2000 # Number of samples fs = 500 # Sampling frequency [hz] t = np.linspace(0, (N - 1) * (1 / fs), N) df_input = pd.DataFrame( data={ "chirp": 2 * chirp(t, f0=1, f1=10, t1=5, method="logarithmic"), "noise": 2 * np.random.random(N), }, index=t, ) return (df_input, fs) @pytest.fixture def generate_step_signal(): """Generate Step input signal""" N = 1000 # Number of samples fs = 25 # Sampling frequency [hz] t = np.linspace(0, (N - 1) * (1 / fs), N) df_input = pd.DataFrame(index=t).assign( step=lambda x: np.where(x.index < t[int(N / 4)], 0, 1) ) return (df_input, fs) @pytest.fixture def generate_inpulse_signal(): """Generate Impulse input signal""" N = 500 # Number of samples fs = 50 # Sampling frequency [hz] t = np.linspace(0, (N - 1) * (1 / fs), N) df_input = pd.DataFrame(index=t).assign(inpulse=np.zeros(N)) df_input.iloc[0] = 1 return (df_input, fs) class TestRungeKutta4: """Test class for function generate_model_parameters.""" def test_model_with_states(self): """Test simulation with model dx=f(x).""" (x, _, _) = generate_model_attributes( state_size=1, input_size=0, parameter_size=0 ) # initialize first-order model tau = 1 sys = DynamicModel(state=x, model_dynamics=[-(1 / tau) * x]) n_steps = 50 x0 = [1] rk4 = RungeKutta4(model=sys) _ = rk4.simulate(initial_condition=x0, n_steps=n_steps) df_X = rk4.state_sim_ df_Y = rk4.output_sim_ # check equality of dataframe
pdt.assert_frame_equal(df_X, df_Y)
pandas.testing.assert_frame_equal
""" kbible.py - base bible object and commands """ import pandas as pd import yaml import os import subprocess __author__ = "<NAME> <<EMAIL>>" __docformat__ = "restructuredtext en" class KBible(object): """ Bible text object """ def __init__(self, version="개역한글판성경", debug=False, **kwargs): """ read or parse bible text """ self._biblelist = [] self._versionlist = {} this_dir, this_filename = os.path.split(__file__) listname = os.path.join(this_dir, "data", u"book_names.csv") self._table = pd.read_csv(listname, index_col=0) self.add(version, **kwargs) def add(self, version, **kwargs): """ add different version """ b = read_full_bible(version_name=version, **kwargs) self._biblelist.append(b) self._versionlist[version] = len(self._biblelist) - 1 def delete(self, version): """ remove version """ if (version in self._versionlist) and (len(self._versionlist) > 1): i = self._versionlist[version] del self._versionlist[version] del self._biblelist[i] else: print('... not found or only have one bible version: {}'.format(version)) def save(self, version="개역한글판성경"): """ save bible text as compressed csv """ if version in self._versionlist: this_dir, this_filename = os.path.split(__file__) filename = os.path.join(this_dir, "data", version + ".csv.gz") b = self._biblelist[self._versionlist[version]] b.to_csv(filename, compression='gzip') print('... save file: {}'.format(filename)) def get(self, version=""): """ return bible as pandas """ if version == "": return self._biblelist[0] try: return self._biblelist[self._versionlist[version]] except: print('... no bible version: {}'.format(version)) return [] def bystr(self, sstr, form="md"): """ extract bible verse """ if form == "pd": res = pd.DataFrame() for b in self._biblelist: res = pd.concat([res, extract_bystr(b, sstr, form="pd")], axis=0) return res else: msg = "" for b in self._biblelist: msg = msg + extract_bystr(b, sstr, form=form) + '\n' return msg def search(self, sstr, form="md", regex=False): """ search string in bible """ res =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import fasttext import pandas as pd import math import re import os import sys reload(sys) sys.setdefaultencoding('utf-8') # Folder Location DIR = os.path.dirname(os.path.realpath(__file__)) # Read Raw Corpus data dat = pd.read_csv(DIR + '/kosacCorpus.csv') # column labels of data frame # Rename Columns to snake case dat.columns = [ re.sub('^_|_$', '', re.sub('\\W+', '_', column)) for column in dat.columns ] # Select sentiment columns and raw sentence dat = dat[[ 'polarity', 'intensity', 'subjectivity_type', 'subjectivity_polarity', 'raw_sentence', 'confident' ]] # Filter for High Confidence dat = dat[dat['confident'] == True] # Exclude NaN and None values # values are missing? dat = dat[ ( pd.isnull(dat.polarity) == False | dat.polarity.str.contains('None') ) & (
pd.isnull(dat.intensity)
pandas.isnull
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(is_integer_dtype(left['baz'])) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_float_dtype(left['foo'])) self.assertTrue(is_float_dtype(left['baz'])) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) tm.assert_frame_equal(df, expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) self.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(randn(4, 3), index=list('ABCD')) expected = df.ix[['E']] dfnu = DataFrame(randn(5, 3), index=list('AABCD')) result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) result = df.ix[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.ix[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) result = df.ix[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.ix[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.ix[idx, 'test'] = temp self.assertEqual(df.iloc[0, 2], '-----') # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with self.assertRaises(KeyError): df[[22, 26, -8]] self.assertEqual(df[21].shape[0], df.shape[0]) def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: nan, 21: nan, 22: nan, 23: nan, 24: 1.0, 25: nan, 26: nan, 27: nan, 28: nan, 29: nan, 30: nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.ix[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isnull() cols = ['col1', 'col2'] dft = df2 * 2 dft.ix[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs df2 = df.copy() df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self): # GH #1142 df = DataFrame(tm.getSeriesData()) df['foo'] = 'bar' orig = df.ix[:, 'B'].copy() df.ix[:, 'B'] = df.ix[:, 'B'] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.ix[indexer, 'y'] = v self.assertEqual(expected.ix[indexer, 'y'], v) df.ix[df.x % 2 == 0, 'y'] = df.ix[df.x % 2 == 0, 'y'] * 100 tm.assert_frame_equal(df, expected) # GH 4508, making sure consistency of assignments df = DataFrame({'a': [1, 2, 3], 'b': [0, 1, 2]}) df.ix[[0, 2, ], 'b'] = [100, -100] expected = DataFrame({'a': [1, 2, 3], 'b': [100, 1, -100]}) tm.assert_frame_equal(df, expected) df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df.ix[[1, 3], 'b'] = [100, -100] expected = DataFrame({'a': [0, 1, 2, 3], 'b': [np.nan, 100, np.nan, -100]}) tm.assert_frame_equal(df, expected) # ok, but chained assignments are dangerous # if we turn off chained assignement it will work with option_context('chained_assignment', None): df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df['b'].ix[[1, 3]] = [100, -100] tm.assert_frame_equal(df, expected) def test_ix_get_set_consistency(self): # GH 4544 # ix/loc get/set not consistent when # a mixed int/string index df = DataFrame(np.arange(16).reshape((4, 4)), columns=['a', 'b', 8, 'c'], index=['e', 7, 'f', 'g']) self.assertEqual(df.ix['e', 8], 2) self.assertEqual(df.loc['e', 8], 2) df.ix['e', 8] = 42 self.assertEqual(df.ix['e', 8], 42) self.assertEqual(df.loc['e', 8], 42) df.loc['e', 8] = 45 self.assertEqual(df.ix['e', 8], 45) self.assertEqual(df.loc['e', 8], 45) def test_setitem_list(self): # GH 6043 # ix with a list df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = [1, 2, 3] df.ix[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = [1, 2] tm.assert_frame_equal(result, df) # ix with an object class TO(object): def __init__(self, value): self.value = value def __str__(self): return "[{0}]".format(self.value) __repr__ = __str__ def __eq__(self, other): return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_iloc_mask(self): # GH 3631, iloc with a mask (of a series) should raise df = DataFrame(lrange(5), list('ABCDE'), columns=['a']) mask = (df.a % 2 == 0) self.assertRaises(ValueError, df.iloc.__getitem__, tuple([mask])) mask.index = lrange(len(mask)) self.assertRaises(NotImplementedError, df.iloc.__getitem__, tuple([mask])) # ndarray ok result = df.iloc[np.array([True] * len(mask), dtype=bool)] tm.assert_frame_equal(result, df) # the possibilities locs = np.arange(4) nums = 2 ** locs reps = lmap(bin, nums) df = DataFrame({'locs': locs, 'nums': nums}, reps) expected = { (None, ''): '0b1100', (None, '.loc'): '0b1100', (None, '.iloc'): '0b1100', ('index', ''): '0b11', ('index', '.loc'): '0b11', ('index', '.iloc'): ('iLocation based boolean indexing ' 'cannot use an indexable as a mask'), ('locs', ''): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the indexed ' 'object do not match', ('locs', '.loc'): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the ' 'indexed object do not match', ('locs', '.iloc'): ('iLocation based boolean indexing on an ' 'integer type is not available'), } # UserWarnings from reindex of a boolean mask with warnings.catch_warnings(record=True): result = dict() for idx in [None, 'index', 'locs']: mask = (df.nums > 2).values if idx: mask = Series(mask, list(reversed(getattr(df, idx)))) for method in ['', '.loc', '.iloc']: try: if method: accessor = getattr(df, method[1:]) else: accessor = df ans = str(bin(accessor[mask]['nums'].sum())) except Exception as e: ans = str(e) key = tuple([idx, method]) r = expected.get(key) if r != ans: raise AssertionError( "[%s] does not match [%s], received [%s]" % (key, ans, r)) def test_ix_slicing_strings(self): # GH3836 data = {'Classification': ['SA EQUITY CFD', 'bbb', 'SA EQUITY', 'SA SSF', 'aaa'], 'Random': [1, 2, 3, 4, 5], 'X': ['correct', 'wrong', 'correct', 'correct', 'wrong']} df = DataFrame(data) x = df[~df.Classification.isin(['SA EQUITY CFD', 'SA EQUITY', 'SA SSF' ])] df.ix[x.index, 'X'] = df['Classification'] expected = DataFrame({'Classification': {0: 'SA EQUITY CFD', 1: 'bbb', 2: 'SA EQUITY', 3: 'SA SSF', 4: 'aaa'}, 'Random': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5}, 'X': {0: 'correct', 1: 'bbb', 2: 'correct', 3: 'correct', 4: 'aaa'}}) # bug was 4: 'bbb' tm.assert_frame_equal(df, expected) def test_non_unique_loc(self): # GH3659 # non-unique indexer with loc slice # https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs # these are going to raise becuase the we are non monotonic df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, 2)])) # monotonic are ok df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]).sort_index(axis=0) result = df.loc[1:] expected = DataFrame({'A': [2, 4, 5, 6], 'B': [4, 6, 7, 8]}, index=[1, 1, 2, 3]) tm.assert_frame_equal(result, expected) result = df.loc[0:] tm.assert_frame_equal(result, df) result = df.loc[1:2] expected = DataFrame({'A': [2, 4, 5], 'B': [4, 6, 7]}, index=[1, 1, 2]) tm.assert_frame_equal(result, expected) def test_loc_name(self): # GH 3880 df = DataFrame([[1, 1], [1, 1]]) df.index.name = 'index_name' result = df.iloc[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.ix[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.loc[[0, 1]].index.name self.assertEqual(result, 'index_name') def test_iloc_non_unique_indexing(self): # GH 4017, non-unique indexing (on the axis) df = DataFrame({'A': [0.1] * 3000, 'B': [1] * 3000}) idx = np.array(lrange(30)) * 99 expected = df.iloc[idx] df3 = pd.concat([df, 2 * df, 3 * df]) result = df3.iloc[idx] tm.assert_frame_equal(result, expected) df2 = DataFrame({'A': [0.1] * 1000, 'B': [1] * 1000}) df2 = pd.concat([df2, 2 * df2, 3 * df2]) sidx = df2.index.to_series() expected = df2.iloc[idx[idx <= sidx.max()]] new_list = [] for r, s in expected.iterrows(): new_list.append(s) new_list.append(s * 2) new_list.append(s * 3) expected = DataFrame(new_list) expected = pd.concat([expected, DataFrame(index=idx[idx > sidx.max()]) ]) result = df2.loc[idx] tm.assert_frame_equal(result, expected, check_index_type=False) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = pd.DataFrame([1], pd.Index([pd.Timestamp('2011-01-01')], dtype=object)) self.assertTrue(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] df = pd.DataFrame() self.assertFalse(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] def test_mi_access(self): # GH 4145 data = """h1 main h3 sub h5 0 a A 1 A1 1 1 b B 2 B1 2 2 c B 3 A1 3 3 d A 4 B2 4 4 e A 5 B2 5 5 f B 6 A2 6 """ df = pd.read_csv(StringIO(data), sep=r'\s+', index_col=0) df2 = df.set_index(['main', 'sub']).T.sort_index(1) index = Index(['h1', 'h3', 'h5']) columns = MultiIndex.from_tuples([('A', 'A1')], names=['main', 'sub']) expected = DataFrame([['a', 1, 1]], index=columns, columns=index).T result = df2.loc[:, ('A', 'A1')] tm.assert_frame_equal(result, expected) result = df2[('A', 'A1')] tm.assert_frame_equal(result, expected) # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) expected = Series(['a', 1, 1], index=['h1', 'h3', 'h5'], name='A1') result = df2['A']['A1'] tm.assert_series_equal(result, expected) # selecting a non_unique from the 2nd level expected = DataFrame([['d', 4, 4], ['e', 5, 5]], index=Index(['B2', 'B2'], name='sub'), columns=['h1', 'h3', 'h5'], ).T result = df2['A']['B2'] tm.assert_frame_equal(result, expected) def test_non_unique_loc_memory_error(self): # GH 4280 # non_unique index with a large selection triggers a memory error columns = list('ABCDEFG') def gen_test(l, l2): return pd.concat([DataFrame(randn(l, len(columns)), index=lrange(l), columns=columns), DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns)]) def gen_expected(df, mask): l = len(mask) return pd.concat([df.take([0], convert=False), DataFrame(np.ones((l, len(columns))), index=[0] * l, columns=columns), df.take(mask[1:], convert=False)]) df = gen_test(900, 100) self.assertFalse(df.index.is_unique) mask = np.arange(100) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) df = gen_test(900000, 100000) self.assertFalse(df.index.is_unique) mask = np.arange(100000) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64) expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64) expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # full replacements / no nans df = DataFrame({'A': [1., 2., 3., 4.]}) df.iloc[:, 0] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({'A': [1., 2., 3., 4.]}) df.loc[:, 'A'] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) def test_astype_assignment_with_dups(self): # GH 4686 # assignment with dups that has a dtype change cols = pd.MultiIndex.from_tuples([('A', '1'), ('B', '1'), ('A', '2')]) df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) index = df.index.copy() df['A'] = df['A'].astype(np.float64) self.assert_index_equal(df.index, index) # TODO(wesm): unused variables # result = df.get_dtype_counts().sort_index() # expected = Series({'float64': 2, 'object': 1}).sort_index() def test_dups_loc(self): # GH4726 # dup indexing with iloc/loc df = DataFrame([[1, 2, 'foo', 'bar', Timestamp('20130101')]], columns=['a', 'a', 'a', 'a', 'a'], index=[1]) expected = Series([1, 2, 'foo', 'bar', Timestamp('20130101')], index=['a', 'a', 'a', 'a', 'a'], name=1) result = df.iloc[0] tm.assert_series_equal(result, expected) result = df.loc[1] tm.assert_series_equal(result, expected) def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() def f(): s.iloc[3] = 5. self.assertRaises(IndexError, f) def f(): s.iat[3] = 5. self.assertRaises(IndexError, f) # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=['A', 'B'], dtype='int64') # iloc/iat raise df = df_orig.copy() def f(): df.iloc[4, 2] = 5. self.assertRaises(IndexError, f) def f(): df.iat[4, 2] = 5. self.assertRaises(IndexError, f) # row setting where it exists expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({'A': [0, 2, 4, 4], 'B': [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': [0, 2, 4]})) df = df_orig.copy() df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': Series([0, 2, 4])})) df = df_orig.copy() df['B'] = df['B'].astype(np.float64) df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # ## panel ## p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') # panel setting via item p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') expected = p_orig.copy() expected['Item3'] = expected['Item1'] p = p_orig.copy() p.loc['Item3'] = p['Item1'] tm.assert_panel_equal(p, expected) # panel with aligned series expected = p_orig.copy() expected = expected.transpose(2, 1, 0) expected['C'] = DataFrame({'Item1': [30, 30, 30, 30], 'Item2': [32, 32, 32, 32]}, index=p_orig.major_axis) expected = expected.transpose(2, 1, 0) p = p_orig.copy() p.loc[:, :, 'C'] = Series([30, 32], index=p_orig.items) tm.assert_panel_equal(p, expected) # GH 8473 dates = date_range('1/1/2000', periods=8) df_orig = DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) expected = pd.concat([df_orig, DataFrame( {'A': 7}, index=[dates[-1] + 1])]) df = df_orig.copy() df.loc[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=[dates[-1] + 1]) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=['A', 'B'], index=[0])) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=['B']) exp = DataFrame([[np.nan, 1]], columns=['A', 'B'], index=[0], dtype='float64') tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=['A', 'B']) def f(): df.loc[0] = [1, 2, 3] self.assertRaises(ValueError, f) # these are coerced to float unavoidably (as its a list-like to begin) df = DataFrame(columns=['A', 'B']) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=['A', 'B'], dtype='float64') tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, 'x']) result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, 'x', 1]) result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) result = Series([0.1, 0.2, 0.3], index=[1, 2, 3]).loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) result = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]).loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype='int64', name='idx') ser = Series([0.1, 0.2], index=idx, name='s') # loc exp_idx = Index([3, 2, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 2, 3, 'x'], dtype='object', name='idx') expected = Series([np.nan, 0.2, np.nan, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 'x', 1], dtype='object', name='idx') expected = Series([0.2, 0.2, np.nan, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) exp_idx = Index([2, 2, 3], dtype='int64', name='idx') expected = Series([0.2, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 4, 4], dtype='int64', name='idx') expected = Series([0.3, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3], index=idx, name='s').loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 3, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.3, 0.3], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 4, 4], dtype='int64', name='idx') expected = Series([np.nan, 0.4, 0.4], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([7, 2, 2], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([4, 5, 6, 7], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([4, 5, 5], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc exp_idx = Index([2, 2, 1, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name='s') result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_partial_set_invalid(self): # GH 4940 # allow only setting of 'valid' values orig = tm.makeTimeDataFrame() df = orig.copy() # don't allow not string inserts def f(): df.loc[100.0, :] = df.ix[0] self.assertRaises(TypeError, f) def f(): df.loc[100, :] = df.ix[0] self.assertRaises(TypeError, f) def f(): df.ix[100.0, :] = df.ix[0] self.assertRaises(TypeError, f) def f(): df.ix[100, :] = df.ix[0] self.assertRaises(ValueError, f) # allow object conversion here df = orig.copy() df.loc['a', :] = df.ix[0] exp = orig.append(pd.Series(df.ix[0], name='a')) tm.assert_frame_equal(df, exp) tm.assert_index_equal(df.index, pd.Index(orig.index.tolist() + ['a'])) self.assertEqual(df.index.dtype, 'object') def test_partial_set_empty_series(self): # GH5226 # partially set with an empty object series s = Series() s.loc[1] = 1 tm.assert_series_equal(s, Series([1], index=[1])) s.loc[3] = 3 tm.assert_series_equal(s, Series([1, 3], index=[1, 3])) s = Series() s.loc[1] = 1. tm.assert_series_equal(s, Series([1.], index=[1])) s.loc[3] = 3. tm.assert_series_equal(s, Series([1., 3.], index=[1, 3])) s = Series() s.loc['foo'] = 1 tm.assert_series_equal(s, Series([1], index=['foo'])) s.loc['bar'] = 3 tm.assert_series_equal(s, Series([1, 3], index=['foo', 'bar'])) s.loc[3] = 4 tm.assert_series_equal(s, Series([1, 3, 4], index=['foo', 'bar', 3])) def test_partial_set_empty_frame(self): # partially set with an empty object # frame df = DataFrame() def f(): df.loc[1] = 1 self.assertRaises(ValueError, f) def f(): df.loc[1] = Series([1], index=['foo']) self.assertRaises(ValueError, f) def f(): df.loc[:, 1] = 1 self.assertRaises(ValueError, f) # these work as they don't really change # anything but the index # GH5632 expected = DataFrame(columns=['foo'], index=pd.Index( [], dtype='int64')) def f(): df = DataFrame() df['foo'] = Series([], dtype='object') return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = Series(df.index) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = df.index return df tm.assert_frame_equal(f(), expected) expected = DataFrame(columns=['foo'], index=pd.Index([], dtype='int64')) expected['foo'] = expected['foo'].astype('float64') def f(): df = DataFrame() df['foo'] = [] return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = Series(range(len(df))) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() tm.assert_index_equal(df.index, pd.Index([], dtype='object')) df['foo'] = range(len(df)) return df expected = DataFrame(columns=['foo'], index=pd.Index([], dtype='int64')) expected['foo'] = expected['foo'].astype('float64') tm.assert_frame_equal(f(), expected) df = DataFrame() tm.assert_index_equal(df.columns, pd.Index([], dtype=object)) df2 = DataFrame() df2[1] = Series([1], index=['foo']) df.loc[:, 1] = Series([1], index=['foo']) tm.assert_frame_equal(df, DataFrame([[1]], index=['foo'], columns=[1])) tm.assert_frame_equal(df, df2) # no index to start expected = DataFrame({0: Series(1, index=range(4))}, columns=['A', 'B', 0]) df = DataFrame(columns=['A', 'B']) df[0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) df = DataFrame(columns=['A', 'B']) df.loc[:, 0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_row(self): # GH5720, GH5744 # don't create rows when empty expected = DataFrame(columns=['A', 'B', 'New'], index=pd.Index([], dtype='int64')) expected['A'] = expected['A'].astype('int64') expected['B'] = expected['B'].astype('float64') expected['New'] = expected['New'].astype('float64') df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] y['New'] = np.nan tm.assert_frame_equal(y, expected) # tm.assert_frame_equal(y,expected) expected = DataFrame(columns=['a', 'b', 'c c', 'd']) expected['d'] = expected['d'].astype('int64') df = DataFrame(columns=['a', 'b', 'c c']) df['d'] = 3 tm.assert_frame_equal(df, expected) tm.assert_series_equal(df['c c'], Series(name='c c', dtype=object)) # reindex columns is ok df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] result = y.reindex(columns=['A', 'B', 'C']) expected = DataFrame(columns=['A', 'B', 'C'], index=pd.Index([], dtype='int64')) expected['A'] = expected['A'].astype('int64') expected['B'] = expected['B'].astype('float64') expected['C'] = expected['C'].astype('float64') tm.assert_frame_equal(result, expected) def test_partial_set_empty_frame_set_series(self): # GH 5756 # setting with empty Series df = DataFrame(Series()) tm.assert_frame_equal(df, DataFrame({0: Series()})) df = DataFrame(Series(name='foo')) tm.assert_frame_equal(df, DataFrame({'foo': Series()})) def test_partial_set_empty_frame_empty_copy_assignment(self): # GH 5932 # copy on empty with assignment fails df = DataFrame(index=[0]) df = df.copy() df['a'] = 0 expected = DataFrame(0, index=[0], columns=['a']) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_empty_consistencies(self): # GH 6171 # consistency on empty frames df = DataFrame(columns=['x', 'y']) df['x'] = [1, 2] expected = DataFrame(dict(x=[1, 2], y=[np.nan, np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False) df = DataFrame(columns=['x', 'y']) df['x'] = ['1', '2'] expected = DataFrame( dict(x=['1', '2'], y=[np.nan, np.nan]), dtype=object) tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df.loc[0, 'x'] = 1 expected = DataFrame(dict(x=[1], y=[np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False) def test_cache_updating(self): # GH 4939, make sure to update the cache on setitem df = tm.makeDataFrame() df['A'] # cache series df.ix["Hello Friend"] = df.ix[0] self.assertIn("Hello Friend", df['A'].index) self.assertIn("Hello Friend", df['B'].index) panel = tm.makePanel() panel.ix[0] # get first item into cache panel.ix[:, :, 'A+1'] = panel.ix[:, :, 'A'] + 1 self.assertIn("A+1", panel.ix[0].columns) self.assertIn("A+1", panel.ix[1].columns) # 5216 # make sure that we don't try to set a dead cache a = np.random.rand(10, 3) df = DataFrame(a, columns=['x', 'y', 'z']) tuples = [(i, j) for i in range(5) for j in range(2)] index = MultiIndex.from_tuples(tuples) df.index = index # setting via chained assignment # but actually works, since everything is a view df.loc[0]['z'].iloc[0] = 1. result = df.loc[(0, 0), 'z'] self.assertEqual(result, 1) # correct setting df.loc[(0, 0), 'z'] = 2 result = df.loc[(0, 0), 'z'] self.assertEqual(result, 2) # 10264 df = DataFrame(np.zeros((5, 5), dtype='int64'), columns=[ 'a', 'b', 'c', 'd', 'e'], index=range(5)) df['f'] = 0 df.f.values[3] = 1 # TODO(wesm): unused? # y = df.iloc[np.arange(2, len(df))] df.f.values[3] = 2 expected = DataFrame(np.zeros((5, 6), dtype='int64'), columns=[ 'a', 'b', 'c', 'd', 'e', 'f'], index=range(5)) expected.at[3, 'f'] = 2 tm.assert_frame_equal(df, expected) expected = Series([0, 0, 0, 2, 0], name='f') tm.assert_series_equal(df.f, expected) def test_set_ix_out_of_bounds_axis_0(self): df = pd.DataFrame( randn(2, 5), index=["row%s" % i for i in range(2)], columns=["col%s" % i for i in range(5)]) self.assertRaises(ValueError, df.ix.__setitem__, (2, 0), 100) def test_set_ix_out_of_bounds_axis_1(self): df = pd.DataFrame( randn(5, 2), index=["row%s" % i for i in range(5)], columns=["col%s" % i for i in range(2)]) self.assertRaises(ValueError, df.ix.__setitem__, (0, 2), 100) def test_iloc_empty_list_indexer_is_ok(self): from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(5, 2) # vertical empty tm.assert_frame_equal(df.iloc[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.iloc[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True) def test_loc_empty_list_indexer_is_ok(self): from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(5, 2) # vertical empty tm.assert_frame_equal(df.loc[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.loc[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.loc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True) def test_ix_empty_list_indexer_is_ok(self): from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(5, 2) # vertical empty tm.assert_frame_equal(df.ix[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.ix[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.ix[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True) def test_index_type_coercion(self): # GH 11836 # if we have an index type and set it with something that looks # to numpy like the same, but is actually, not # (e.g. setting with a float or string '0') # then we need to coerce to object # integer indexes for s in [Series(range(5)), Series(range(5), index=range(1, 6))]: self.assertTrue(s.index.is_integer()) for indexer in [lambda x: x.ix, lambda x: x.loc, lambda x: x]: s2 = s.copy() indexer(s2)[0.1] = 0 self.assertTrue(s2.index.is_floating()) self.assertTrue(indexer(s2)[0.1] == 0) s2 = s.copy() indexer(s2)[0.0] = 0 exp = s.index if 0 not in s: exp = Index(s.index.tolist() + [0]) tm.assert_index_equal(s2.index, exp) s2 = s.copy() indexer(s2)['0'] = 0 self.assertTrue(s2.index.is_object()) for s in [Series(range(5), index=np.arange(5.))]: self.assertTrue(s.index.is_floating()) for idxr in [lambda x: x.ix, lambda x: x.loc, lambda x: x]: s2 = s.copy() idxr(s2)[0.1] = 0 self.assertTrue(s2.index.is_floating()) self.assertTrue(idxr(s2)[0.1] == 0) s2 = s.copy() idxr(s2)[0.0] = 0 tm.assert_index_equal(s2.index, s.index) s2 = s.copy() idxr(s2)['0'] = 0 self.assertTrue(s2.index.is_object()) def test_float_index_to_mixed(self): df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)}) df['a'] = 10 tm.assert_frame_equal(DataFrame({0.0: df[0.0], 1.0: df[1.0], 'a': [10] * 10}), df) def test_duplicate_ix_returns_series(self): df = DataFrame(np.random.randn(3, 3), index=[0.1, 0.2, 0.2], columns=list('abc')) r = df.ix[0.2, 'a'] e = df.loc[0.2, 'a'] tm.assert_series_equal(r, e) def test_float_index_non_scalar_assignment(self): df = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.]) df.loc[df.index[:2]] = 1 expected = DataFrame({'a': [1, 1, 3], 'b': [1, 1, 5]}, index=df.index) tm.assert_frame_equal(expected, df) df =
DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.])
pandas.core.api.DataFrame
""" MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pandas as pd import numpy as np import sys, os, site, zipfile, math, time, json, io import googlemaps, urllib, shapely, shutil, requests import xml.etree.ElementTree as ET from glob import glob from urllib.error import HTTPError from urllib.request import URLError from http.client import IncompleteRead from zipfile import BadZipFile from tqdm import tqdm, trange from warnings import warn ########################### ### IMPORT PROJECT PATH ### import pvvm.settings revmpath = pvvm.settings.revmpath datapath = pvvm.settings.datapath apikeys = pvvm.settings.apikeys nsrdbparams = pvvm.settings.nsrdbparams ##################### ### Imports from pvvm import pvvm.toolbox import pvvm.io ####################### ### DICTS AND LISTS ### ####################### isos = ['CAISO', 'ERCOT', 'MISO', 'PJM', 'NYISO', 'ISONE'] resolutionlmps = { ('CAISO', 'da'): 60, ('CAISO', 'rt'): 5, ('ERCOT', 'da'): 60, ('ERCOT', 'rt'): 5, ('MISO', 'da'): 60, ('MISO', 'rt'): 60, ('PJM', 'da'): 60, ('PJM', 'rt'): 60, ('NYISO', 'da'): 60, ('NYISO', 'rt'): 5, ('ISONE', 'da'): 60, ('ISONE', 'rt'): 60, } ################ ### DOWNLOAD ### ################ ############### ### General use def constructpayload(**kwargs): out = [] for kwarg in kwargs: out.append('{}={}'.format(kwarg, kwargs[kwarg])) stringout = '&'.join(out) return stringout def constructquery(urlstart, **kwargs): out = '{}{}'.format(urlstart, constructpayload(**kwargs)) return out def stampify(date, interval=pd.Timedelta('1H')): datetime = pd.Timestamp(date) if interval == pd.Timedelta('1H'): dateout = '{}{:02}{:02}T{:02}'.format( datetime.year, datetime.month, datetime.day, datetime.hour) elif interval == pd.Timedelta('1D'): dateout = '{}{:02}{:02}'.format( datetime.year, datetime.month, datetime.day) return dateout def download_file_series(urlstart, urlend, fileseries, filepath, overwrite=False, sleeptime=60, numattempts=200, seriesname=True): """ Example ------- You want to download a list of files at urls = [ 'http://www.test.com/foo001.csv', 'http://www.test.com/foo002.csv']. Then: urlstart = 'http://www.test.com/foo' urlend = '.csv' fileseries = ['001', '002'] If you want the files to be named 'foo001.csv', use seriesname=False If you want the files to be named '001.csv', use seriesname=True """ filepath = pvvm.toolbox.pathify(filepath, make=True) ### Make lists of urls, files to download, and filenames urls = [(urlstart + file + urlend) for file in fileseries] todownload = [os.path.basename(url) for url in urls] if seriesname == True: filenames = [os.path.basename(file) + urlend for file in fileseries] else: filenames = todownload ### Get the list of downloaded files downloaded = [os.path.basename(file) for file in glob(filepath + '*')] ### Remake the list if overwrite == False if overwrite == False: filestodownload = [] urlstodownload = [] fileseriesnames = [] for i in range(len(filenames)): if filenames[i] not in downloaded: filestodownload.append(todownload[i]) urlstodownload.append(urls[i]) fileseriesnames.append(filenames[i]) elif overwrite == True: filestodownload = todownload urlstodownload = urls fileseriesnames = filenames ### Download the files for i in trange(len(urlstodownload)): ### Attempt the download attempts = 0 while attempts < numattempts: try: urllib.request.urlretrieve( urlstodownload[i], filepath + fileseriesnames[i]) break except (HTTPError, IncompleteRead, EOFError) as err: print(urlstodownload[i]) print(filestodownload[i]) print('Rebuffed on attempt # {} at {} by "{}".' 'Will retry in {} seconds.'.format( attempts, pvvm.toolbox.nowtime(), err, sleeptime)) attempts += 1 time.sleep(sleeptime) ########################### ### Geographic manipulation def rowlatlon2x(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 x = math.cos(latrad) * math.cos(lonrad) return x def rowlatlon2y(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 y = math.cos(latrad) * math.sin(lonrad) return y def rowlatlon2z(row): latrad = row['latitude'] * math.pi / 180 z = math.sin(latrad) return z ############ ### ISO LMPs """ Note: These scripts worked as of early 2018, but MISO, PJM, and NYISO have since changed their websites, and CAISO has removed data prior to 20150303. Scripts are included here for documentary purposes and as a resource for future data collection, but are unlikely to work given ISO website changes. """ def download_caiso_lmp_allnodes(market, start, filepathout, product='LMP', numattempts=200, waittime=10): urlstart = 'http://oasis.caiso.com/oasisapi/GroupZip?' columnsout = [ 'INTERVALSTARTTIME_GMT', 'NODE', 'MW', 'OPR_DT', 'OPR_HR', 'OPR_INTERVAL'] if market in ['RTM', 'HASP', 'RTPD']: interval = pd.Timedelta('1H') elif market in ['DAM', 'RUC']: interval = pd.Timedelta('1D') starttimestamp = pd.Timestamp(start) endtimestamp = starttimestamp + interval startdatetime = '{}{:02}{:02}T{:02}:00-0000'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day, starttimestamp.hour) enddatetime = '{}{:02}{:02}T{:02}:00-0000'.format( endtimestamp.year, endtimestamp.month, endtimestamp.day, endtimestamp.hour) if interval == pd.Timedelta('1D'): fileout = '{}{:02}{:02}.gz'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day) elif interval == pd.Timedelta('1H'): fileout = '{}{:02}{:02}T{:02}.gz'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day, starttimestamp.hour) url = constructquery( urlstart, groupid='{}_LMP_GRP'.format(market), startdatetime=startdatetime, enddatetime=enddatetime, version=1, resultformat=6) attempts = 0 while attempts < numattempts: try: # if product.lower() in ['mcc', 'mce', 'mcl']: # if (market.upper() in ['DAM', 'RUC']) and (starttimestamp.year >= 2016): # if market.upper() in ['DAM', 'RUC']: if ((product.lower() in ['mcc', 'mce', 'mcl']) or ((market == 'DAM') and product.lower() == 'lmp')): zip_file = zipfile.ZipFile(io.BytesIO( urllib.request.urlopen(url).read())) for csv_file in zip_file.infolist(): if csv_file.filename.endswith( '{}_v1.csv'.format(product.upper())): df = pd.read_csv(zip_file.open(csv_file.filename)) else: df = pd.read_csv(url, compression='zip') dfout = df[df['LMP_TYPE'] == product.upper()][columnsout] dfout.to_csv( '{}{}'.format(filepathout, fileout), columns=columnsout, index=False, compression='gzip') return dfout except ( URLError, IncompleteRead, pd.errors.ParserError, BadZipFile, KeyError, HTTPError, UnboundLocalError) as error: print( 'Error for {} on attempt {}/{}: {}'.format( start, attempts, numattempts, error), # end='\r', ) attempts += 1 time.sleep(waittime) if attempts >= numattempts: raise URLError('{}{}'.format(filepathout, fileout)) def download_lmps(year, iso, market, overwrite=False, sleeptime=60, product='LMP', submarket=None, numattempts=200, subset=None, waittime=10, filepath=None): """ Inputs ------ subset: None or slice() Notes ----- * ERCOT LMPs more than 30 days old must be requested from ERCOT. Requests can be filed at http://www.ercot.com/about/contact/inforequest. Files should be placed in the folder revmpath + 'ERCOT/in/lmp/{}/{}/'.format(market, year) where year is the year of the timestamp within the files. Note that the date in the filename for day-ahead LMPs is the date before the timestamps within the file: for example, file ('cdr.00012328.0000000000000000.20151231.125905514.DAMHRLMPNP4183_csv') contains timestamps for 20160101, and should be placed in the 2016 folder. """ ### Normalize inputs iso = iso.upper() market = market.lower() year = int(year) assert market in ['da', 'rt'] assert iso in ['CAISO', 'MISO', 'PJM', 'NYISO', 'ISONE'] ### Set file structure if filepath is None: filepath = revmpath+'{}/in/lmp/{}/'.format(iso, market) if not os.path.exists(filepath): os.makedirs(filepath) ### Adjust inputs for different isos urlstart = { 'ISONE': { 'da': 'https://www.iso-ne.com/static-transform/csv/histRpts/da-lmp/WW_DALMP_ISO_', 'rt': 'https://www.iso-ne.com/static-transform/csv/histRpts/rt-lmp/lmp_rt_final_'}, 'MISO': { # 'da': 'https://old.misoenergy.org/Library/Repository/Market%20Reports/', # 'rt': 'https://old.misoenergy.org/Library/Repository/Market%20Reports/', 'da': 'https://docs.misoenergy.org/marketreports/', 'rt': 'https://docs.misoenergy.org/marketreports/', }, 'PJM': { 'da': 'http://www.pjm.com/pub/account/lmpda/', 'rt': 'http://www.pjm.com/pub/account/lmp/'}, 'NYISO': { 'da': 'http://mis.nyiso.com/public/csv/damlbmp/', 'rt': 'http://mis.nyiso.com/public/csv/realtime/'}, } urlend = { 'ISONE': {'da': '.csv', 'rt': '.csv'}, 'MISO': {'da': '_da_lmp.csv', 'rt': '_rt_lmp_final.csv'}, 'PJM': {'da': '-da.zip', 'rt': '.zip'}, 'NYISO': {'da': 'damlbmp_gen_csv.zip', 'rt': 'realtime_gen_csv.zip'}, } files = { 'ISONE': pvvm.toolbox.makedays(year), 'MISO': pvvm.toolbox.makedays(year), 'PJM': pvvm.toolbox.makedays(year), 'NYISO': ['{}{:02}01'.format(year, month) for month in range(1,13)] } ### Download files if iso == 'ISONE': download_file_series( urlstart=urlstart[iso][market], urlend=urlend[iso][market], fileseries=files[iso], filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'MISO': urls = [(urlstart[iso][market] + file + '_da_expost_lmp.csv') if (int(file) >= 20150301) and (market == 'da') else (urlstart[iso][market] + file + urlend[iso][market]) for file in files[iso]] download_file_series( urlstart='', urlend='', fileseries=urls, filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'PJM': da_updated = { '20151201': '-da_updated.zip', '20150930': '-da_updated.zip', '20140617': '-da_updated.zip', '20150616': '-da_updated.zip', '20150615': '-da_updated.zip', '20150614': '-da_updated.zip', '20140613': '-da_updated.zip', '20150603': '-da_updated.zip', '20150602': '-da_updated.zip', '20150601': '-da_updated.zip', '20150409': '-da_updated.zip', '20140327': '-da_updated.zip', '20111012': '-da_update.zip', '20111011': '-da_update.zip', } rt_updated = { '20170116': '_updated.zip', '20170115': '_updated.zip', '20170114': '_updated.zip', '20170113': '_updated.zip', '20160923': '_updated.zip', '20160417': '_updated.zip', '20160416': '_updated.zip', '20160415': '_updated.zip', '20151110': '_updated.zip', '20150929': '_updated.zip', '20150901': '_updated.zip', '20150831': '_updated.zip', '20150601': '_updated.zip', '20150504': '_updated.zip', '20150427': '_updated.zip', '20150407': '_updated.zip', '20150310': '_updated.zip', '20150309': '_updated.zip', '20150201': '_updated.zip', '20150131': '_updated.zip', '20150130': '_updated.zip', '20141112': '_updated.zip', '20141023': '_updated.zip', '20141013': '_updated.zip', '20140805': '_updated.zip', '20140710': '_updated.zip', '20140507': '_updated.zip', '20140128': '_updated.zip', '20131125': '_updated.zip', '20131120': '_updated.zip', '20130424': '_updated.zip', '20130307': '_updated.zip', '20121109': '_updated.zip', '20121023': '_updated.zip', '20121004': '_updated.zip', '20121003': '_updated2.zip', '20121001': '_updated.zip', '20110914': '_updated.zip', '20110829': '_updated.zip', '20110617': '_updated.zip', '20110306': '_updated.zip', '20110305': '_updated.zip', '20110304': '_updated.zip', '20101005': '_updated.zip', '20100526': '_updated.zip', '20100201': '_updated.zip', '20100129': '_updated.zip', '20100125': '_updated.zip', '20080904': '_updated.zip', '20080413': '_updated.zip', '20080305': '_updated.zip', '20080215': '_updated.zip', '20080214': '_updated.zip', '20071002': '_updated.zip', '20070822': '_updated.zip', } if market == 'da': # print("Download 'updated' files from http://www.pjm.com/markets-and-operations/" # "energy/day-ahead/lmpda.aspx and replace the files of the corresponding date" # "downloaded here") # ### Files switch from .zip to .csv on 20171109 for day-ahead # urls = [(urlstart[iso][market] + file + '-da.csv') # if int(file) >= 20171109 # else (urlstart[iso][market] + file + '-da.zip') # for file in files[iso]] # ^ Out of date; files have been reposted as zips (20180621) urls = [(urlstart[iso][market] + file + da_updated[file]) if file in da_updated.keys() else (urlstart[iso][market] + file + '-da.zip') for file in files[iso]] elif market == 'rt': # print("Download 'updated' files from http://www.pjm.com/markets-and-operations/" # "energy/real-time/lmpda.aspx and replace the files of the corresponding date" # "downloaded here") # ### Files switch from .zip to .csv on 20171212 for real-time # urls = [(urlstart[iso][market] + file + '.csv') # if int(file) >= 20171212 # else (urlstart[iso][market] + file + '.zip') # for file in files[iso]] # ^ Out of date; files have been reposted as zips (20180621) urls = [(urlstart[iso][market] + file + rt_updated[file]) if file in rt_updated.keys() else (urlstart[iso][market] + file + '.zip') for file in files[iso]] download_file_series( urlstart='', urlend='', fileseries=urls, filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'NYISO': ### NYISO files are zipped by month; put them in a separate folder zippath = '{}/in/lmp/{}-zip/'.format(iso, market) if not os.path.exists(zippath): os.makedirs(zippath) download_file_series( urlstart=urlstart[iso][market], urlend=urlend[iso][market], fileseries=files[iso], filepath=zippath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) ### Unzip files zips = [(zippath + file + urlend[iso][market]) for file in files[iso]] for i in trange(len(zips)): zip_ref = zipfile.ZipFile(zips[i], 'r') zip_ref.extractall(filepath) zip_ref.close() elif iso == 'CAISO': if (submarket == None) and (market == 'rt'): submarket = 'RTM' elif (submarket == None) and (market == 'da'): submarket = 'DAM' if submarket in ['RTM', 'HASP', 'RTPD']: interval = pd.Timedelta('1H') elif submarket in ['DAM', 'RUC']: interval = pd.Timedelta('1D') ### Set output filepath filepath = '{}/in/{}/{}/'.format(iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepath = '{}/in/{}/{}/{}/'.format( iso, product.lower(), market, submarket) if not os.path.exists(filepath): os.makedirs(filepath) queries = pd.date_range( start=pd.Timestamp('{}-01-01T00:00'.format(year)), end=(pd.Timestamp('{}-01-01T00:00'.format(year+1)) - interval), freq=interval) ### Initialize error container and subset if necessary errors = [] if subset == None: subset = slice(None) # already_downloaded = glob('{}{}*'.format(filepath, year)) for query in tqdm(queries[subset]): # if '{}{}.gz'.format(filepath, stampify(query)) not in already_downloaded: if interval == pd.Timedelta('1D'): fileout = stampify(query)[:-3] elif interval == pd.Timedelta('1H'): fileout = stampify(query) if not os.path.exists('{}{}.gz'.format(filepath, fileout)): # if overwrite == False: # if os.path.exists('{}{}.gz'.format(filepath, stampify(query))): # break try: download_caiso_lmp_allnodes( market=submarket, start=str(query), filepathout=filepath, product=product, numattempts=numattempts, waittime=waittime) except (URLError, IncompleteRead, pd.errors.ParserError, BadZipFile, HTTPError) as error: errors.append(error) print(error) if len(errors) > 0: pd.Series(errors).to_csv( '{}__Errors__{}.csv'.format(filepath, time.strftime('%Y%m%dT%H%M%S')), index=False) ################ ### NODALIZE ### def nodalize(year, market, iso, filepathin=None, filepathout=None, nodesfile=None, product='LMP', submarket=None, fillmissinghour=True): """ """ ### Set defaults if necessary if iso.upper() == 'CAISO': if filepathin == None: filepathin = revmpath+'{}/in/{}/{}'.format( iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepathin = revmpath+'{}/in/{}/{}/{}/'.format( iso, product.lower(), market, submarket) if filepathout == None: filepathout = revmpath+'{}/io/{}-nodal/{}/'.format( iso, product.lower(), market) if (market == 'rt') and (submarket == 'RTM'): filepathout = revmpath+'{}/io/{}-nodal/{}-month/'.format( iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepathout = revmpath+'{}/io/{}-nodal/{}/{}/'.format( iso, product.lower(), market, submarket) if (submarket == None) and (market == 'rt'): submarket = 'RTM' elif (submarket == None) and (market == 'da'): submarket = 'DAM' elif iso.upper() == 'ERCOT': if (filepathin == None) and (market == 'da'): filepathin = revmpath+'{}/in/lmp/{}/{}/'.format(iso, market, year) elif (filepathout == None) and (market == 'rt'): filepathout = revmpath+'{}/io/lmp-nodal/{}-month/'.format(iso, market) elif filepathout == None: filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) else: if filepathin == None: filepathin = revmpath+'{}/in/lmp/{}/'.format(iso, market) if filepathout == None: filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) ### Make output folders if necessary if not os.path.exists(filepathout): os.makedirs(filepathout, exist_ok=True) if not os.path.exists(revmpath+'{}/io/missingnodes/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/missingnodes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/datatimes/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/datatimes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/fulltimenodes/year/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/datatimes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/fulltimenodes/day/{}/'.format(iso.upper(), market)): os.makedirs(revmpath+'{}/io/fulltimenodes/day/{}/'.format(iso.upper(), market), exist_ok=True) print(filepathout) ### Shared components nodesfiles = { 'CAISO': revmpath+'CAISO/io/caiso-node-latlon.csv', 'ERCOT': revmpath+'ERCOT/io/ercot-node-latlon.csv', #'MISO': revmpath+'MISO/in/miso-node-map.csv', 'MISO': revmpath+'MISO/io/miso-node-latlon.csv', # 'PJM': revmpath+'PJM/io/pjm-pnode-latlon-uniquepoints.csv', 'PJM': revmpath+'PJM/io/pjm-node-latlon.csv', 'NYISO': revmpath+'NYISO/io/nyiso-node-latlon.csv', 'ISONE': revmpath+'ISONE/io/isone-node-latlon.csv' } if nodesfile is None: nodesfile = nodesfiles[iso] resolution = { 'CAISO': {'da': 60, 'rt': 5}, 'ERCOT': {'da': 60, 'rt': 5}, 'MISO': {'da': 60, 'rt': 60}, 'PJM': {'da': 60, 'rt': 60}, 'NYISO': {'da': 60, 'rt': 5}, 'ISONE': {'da': 60, 'rt': 60}, } ### Get file list and iso/market info # files = glob('{}{}*'.format(filepathin, year)) files = sorted(glob('{}{}*'.format(filepathin, year))) print('head(files):') for file in files[:3]: print(file) print('tail(files):') for file in files[-3:]: print(file) timezone = pvvm.toolbox.tz_iso[iso] res = resolution[iso][market] ### Make the inputs easier to work with iso = iso.upper() hours = pvvm.toolbox.yearhours(year) dates = pvvm.toolbox.makedays(year) ### DO: figure out how to generalize this # if len(files) != len(dates): # print('len(files) = {}'.format(len(files))) # print('len(dates) = {}'.format(len(dates))) # raise Exception("files and dates don't match") if iso == 'ISONE': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node'], skiprows=1) ### Load daily files colnames = ['intime', 'node', 'lmp'] dfdict = {} for i in trange(len(files)): dfday = pd.read_csv( files[i], skiprows=6, usecols=[2,4,6], names=colnames, dtype={'intime':str, 'node':'category', 'lmp':float}) dfday.drop(dfday.index[-1], inplace=True) dfday.loc[:,'intime'] = dates[i] + 'H' + dfday.loc[:,'intime'] dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) ### Make new index oldtime = list(dfall.intime.unique()) newtime = list(pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year))) for i in range(len(newtime)): newtime[i] = str(newtime[i]) indexconvert = dict(zip(oldtime, newtime)) dfall.loc[:,'intime'] = dfall.loc[:,'intime'].apply( lambda x: indexconvert[x]) dfall.loc[:,'intime'] = pd.to_datetime(dfall['intime']) fullindex = pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year)) fullindex = fullindex.tz_localize(timezone) fullindex = pd.DataFrame(index=fullindex) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = dfall[dfall['node'] == nodesin[j]][['intime','lmp']].copy() df.index = df['intime'].values del df['intime'] df.index = df.index.tz_localize(timezone) df = df.merge(fullindex, how='right', left_index=True, right_index=True) numhours = hours - len(df[df['lmp'].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'MISO': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node']) ### Pick columns from input file usecols = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14, 15,16,17,18,19,20,21,22,23,24,25,26] ### Load daily files dfdict = {} for i in trange(len(files)): colnames = ['Node', 'Value'] for j in range(24): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=5, header=None, usecols=usecols, dtype={0: 'category'}, names=colnames) dfday = dfin.loc[dfin['Value'] == 'LMP'].T.copy() dfday.columns = dfday.iloc[0,:] dfday = dfday.drop(dfday.index[[0,1]]) dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) dfall.index = dfall.index.droplevel(0) dfall.index = pd.date_range(dates[0], periods=hours, freq='H') dfall.index = dfall.index.tz_localize(timezone) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = pd.DataFrame(dfall.loc[:,nodesin[j]]) numhours = hours - len(df[df[nodesin[j]].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'PJM': ### Set skiprows (different headers for 'da' and 'rt' markets) skiprows = {'da': 8, 'rt': 18} ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True) ### Pick columns from input file usecols = [1, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76] usecols_dst_springforward = [1, 7, 10, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76] usecols_dst_fallback = [1, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79] ### Load daily files dfdict = {} for i in trange(len(files)): colnames = ['PnodeID'] if dates[i] not in [pvvm.toolbox.dst_springforward[year], pvvm.toolbox.dst_fallback[year]]: for j in range(24): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols, dtype={1: 'category'}, names=colnames) elif dates[i] == pvvm.toolbox.dst_springforward[year]: for j in range(23): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols_dst_springforward, dtype={1: 'category'}, names=colnames) elif dates[i] == pvvm.toolbox.dst_fallback[year]: for j in range(25): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols_dst_fallback, dtype={1: 'category'}, names=colnames) dfday = dfin.T.copy() dfday.columns = dfday.iloc[0,:] dfday = dfday.drop(dfday.index[[0]]) del dfday[np.nan] dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) dfall.index = dfall.index.droplevel(0) dfall.index = pd.date_range(dates[0], periods=hours, freq='H') dfall.index = dfall.index.tz_localize(timezone) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = pd.DataFrame(dfall.loc[:,nodesin[j].astype(str)]) numhours = hours - len(df[df[nodesin[j].astype(str)].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv(filepathout + '{}-{}.gz'.format(nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'NYISO': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['node'], skiprows=1) if market == 'da': dates = pvvm.toolbox.makedays(year) if len(files) != len(dates): print('len(files) = {}'.format(len(files))) print('len(dates) = {}'.format(len(dates))) raise Exception("files and dates don't match") ### Make daylight savings mangler def dstfallback(dataframe): fallback = pvvm.toolbox.dst_fallback[year] backfall = '{}/{}/{}'.format(fallback[4:6], fallback[6:], fallback[:4]) fallbackhalf = int(len(dataframe[dataframe['intime'] == backfall + ' 01:00'])/2) if str(dataframe[dataframe['intime'] == backfall + ' 01:00'].iloc[0,1]) != \ str(dataframe[dataframe['intime'] == backfall + ' 01:00'].iloc[fallbackhalf,1]): raise Exception("DST fallback ptid's don't match.") mask = dataframe['intime'] == backfall + ' 01:00' mask.iloc[fallbackhalf:2*fallbackhalf] = False dataframe.loc[mask, 'intime'] = backfall + ' 01:00 DST' print("DST fallback conversion worked!") return dataframe ### Make datetime converter def makeindexconvert(files, dates): """ """ dicttimes = {} for i in trange(len(files)): df = pd.read_csv(files[i], usecols = [0,2,3], skiprows=1, names=['intime', 'node', 'lmp'], dtype={'ptid': 'category', 'lmp': float}) if dates[i] == pvvm.toolbox.dst_fallback[year]: # print(df.head()) df = dstfallback(df) dicttimes[dates[i]] = df dftimes =
pd.concat(dicttimes, copy=False)
pandas.concat
#TODO: DISTINCT from abc import abstractmethod from numpy.lib.arraysetops import isin from models.instructions.Expression.expression import * from pandas.core.frame import DataFrame from models.instructions.DML.special_functions import * from models.nodo import Node import pandas as pd class Instruction: '''Clase abstracta''' @abstractmethod def process(self): ''' metodo para la ejecucion ''' pass @abstractmethod def compile(self): ''' metodo para la ejecucion ''' pass class From(Instruction): ''' FROM recibe una tabla en la cual buscar los datos ''' def __init__(self, tables) : self.tables = tables if self.tables is None: self.alias = None else: self.alias = f'{self.tables[0].alias}' def __repr__(self): return str(vars(self)) def process(self, instrucction): try: tables = loop_list(self.tables,instrucction) lista1 = [] lista2 = [] if isinstance(tables, DataFrame): return [tables] else: lista_name_original = tables[0] lista_alias = tables[1] if len(tables) > 0: for index, data in enumerate(lista_name_original): data_frame = select_all(data, 0, 0, lista_alias[index]) lista1.append(data_frame) lista2.append(lista_alias[index]) if len(lista1) > 1: cross_join = self.union_tables(lista1) storage_columns(cross_join.values.tolist(), cross_join.columns.tolist(), 0, 0) for data in lista2: storage_table(cross_join.values.tolist(), cross_join.columns.tolist(), data, 0, 0) return [cross_join, lista2[0]] else: return [lista1[0], lista2[0]] except: desc = "FATAL ERROR, murio en From, F" ErrorController().add(34, 'Execution', desc, 0, 0) def union_tables(self, right: list): if len(right) < 1: return for index in right: index['key'] = 1 left = right[0] for index, _ in enumerate(right): if index == len(right)-1: break else: left =
pd.merge(left, right[index+1], on=['key'])
pandas.merge
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # moved from habitat_baselines due to dependency issues import os from typing import Any, Dict, List, Optional import matplotlib.pyplot as plt import numpy as np import torch from habitat.core.utils import try_cv2_import from habitat.utils.visualizations.utils import images_to_video from mpl_toolkits.axes_grid1 import ImageGrid from torch.utils.tensorboard import SummaryWriter import pandas as pd import seaborn as sns from habitat.utils.visualizations import maps from PIL import Image from src.constants.constants import NumericalMetrics from habitat.utils.visualizations.utils import draw_collision cv2 = try_cv2_import() class TensorboardWriter: def __init__(self, log_dir: str, *args: Any, **kwargs: Any): r"""A Wrapper for tensorboard SummaryWriter. It creates a dummy writer when log_dir is empty string or None. It also has functionality that generates tb video directly from numpy images. Args: log_dir: Save directory location. Will not write to disk if log_dir is an empty string. *args: Additional positional args for SummaryWriter **kwargs: Additional keyword args for SummaryWriter """ self.writer = None if log_dir is not None and len(log_dir) > 0: self.writer = SummaryWriter(log_dir, *args, **kwargs) def __getattr__(self, item): if self.writer: return self.writer.__getattribute__(item) else: return lambda *args, **kwargs: None def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if self.writer: self.writer.close() def add_video_from_np_images( self, video_name: str, step_idx: int, images: np.ndarray, fps: int = 10 ) -> None: r"""Write video into tensorboard from images frames. Args: video_name: name of video string. step_idx: int of checkpoint index to be displayed. images: list of n frames. Each frame is a np.ndarray of shape. fps: frame per second for output video. Returns: None. """ if not self.writer: return # initial shape of np.ndarray list: N * (H, W, 3) frame_tensors = [torch.from_numpy(np_arr).unsqueeze(0) for np_arr in images] video_tensor = torch.cat(tuple(frame_tensors)) video_tensor = video_tensor.permute(0, 3, 1, 2).unsqueeze(0) # final shape of video tensor: (1, n, 3, H, W) self.writer.add_video(video_name, video_tensor, fps=fps, global_step=step_idx) def generate_video( video_option: List[str], video_dir: Optional[str], images: List[np.ndarray], episode_id: int, scene_id: int, agent_seed: int, checkpoint_idx: int, metrics: Dict[str, float], tb_writer: TensorboardWriter, fps: int = 10, ) -> None: r"""Generate video according to specified information. Args: video_option: string list of "tensorboard" or "disk" or both. video_dir: path to target video directory. images: list of images to be converted to video. episode_id: episode id for video naming. scene_id: scene id for video naming. agent_seed: agent initialization seed for video naming. checkpoint_idx: checkpoint index for video naming. metric_name: name of the performance metric, e.g. "spl". metric_value: value of metric. tb_writer: tensorboard writer object for uploading video. fps: fps for generated video. Returns: None """ if len(images) < 1: return metric_strs = [] for k, v in metrics.items(): metric_strs.append(f"{k}={v:.2f}") scene_id = os.path.basename(scene_id) video_name = ( f"episode={episode_id}-scene={scene_id}-seed={agent_seed}-ckpt={checkpoint_idx}-" + "-".join(metric_strs) ) if "disk" in video_option: assert video_dir is not None images_to_video(images, video_dir, video_name) if "tensorboard" in video_option: tb_writer.add_video_from_np_images( f"episode{episode_id}", checkpoint_idx, images, fps=fps ) def generate_grid_of_maps(episode_id, scene_id, seeds, maps, map_dir): """ Paste top-down-maps from agent initialized with the given seeds to a grid image. Save the grid image to <map_dir>/episode=<episode_id>-scene=<scene_id>.png. Code modified based on tutorial from https://matplotlib.org/stable/gallery/axes_grid1/simple_axesgrid.html Args: episode_id: episode's ID. scene_id: scene ID of the episode, starts with data/dataset/... seeds: seeds used to initialize the agents. maps: maps produced by the agents navigating in np.ndarray format. Should be in the same order as seeds. map_dir: directory to store the map """ fig = plt.figure(figsize=(16.0, 4.0)) grid = ImageGrid( fig, 111, # similar to subplot(111) nrows_ncols=(2, int(np.ceil(len(seeds) / 2))), # creates n/2 x 2 grid of axes axes_pad=0.4, # pad between axes in inch. ) for ax, im, seed in zip(grid, maps, seeds): # iterating over the grid to return the axes ax.set_title(f"Seed={seed}", fontdict=None, loc="center", color="k") ax.imshow(im) fig.savefig( f"{map_dir}/episode={episode_id}-scene={os.path.basename(scene_id)}.png" ) plt.close(fig) def colorize_and_fit_to_height(top_down_map_raw: np.ndarray, output_height: int): r"""Given the output of the TopDownMap measure, colorizes the map, and fits to a desired output height. Modified on the basis of maps.colorize_draw_agent_and_fit_to_height from habitat-lab :param top_down_map_raw: raw top-down map :param output_height: The desired output height """ top_down_map = maps.colorize_topdown_map(top_down_map_raw, None) if top_down_map.shape[0] > top_down_map.shape[1]: top_down_map = np.rot90(top_down_map, 1) # scale top down map to align with rgb view old_h, old_w, _ = top_down_map.shape top_down_height = output_height top_down_width = int(float(top_down_height) / old_h * old_w) # cv2 resize (dsize is width first) top_down_map = cv2.resize( top_down_map, (top_down_width, top_down_height), interpolation=cv2.INTER_CUBIC, ) return top_down_map def save_blank_map(episode_id: str, scene_id: str, blank_map: np.ndarray, map_dir: str): r""" Save the given blank map in .pgm format in <map_dir>/ :param episode_id: episode ID :param scene_id: scene ID :param blank_map: blank top-down map of the specified episode :param map_dir: directory to save the map """ map_img = Image.fromarray(blank_map, "RGB") map_img.save( f"{map_dir}/blank_map-episode={episode_id}-scene={os.path.basename(scene_id)}.pgm" ) def resolve_metric_unit(metric_name): r""" Return a string of the unit of the given metric. :param metric_name: name of the metric :return: a unit string """ if metric_name == NumericalMetrics.DISTANCE_TO_GOAL: return "(meters)" elif ( metric_name == NumericalMetrics.SUCCESS or metric_name == NumericalMetrics.SPL or metric_name == NumericalMetrics.NUM_STEPS): return "" elif ( metric_name == NumericalMetrics.SIM_TIME or metric_name == NumericalMetrics.RESET_TIME or metric_name == NumericalMetrics.AGENT_TIME): return "(seconds)" def visualize_variability_due_to_seed_with_box_plots( metrics_list: List[Dict[str, Dict[str, float]]], seeds: List[int], plot_dir: str, ): r""" Generate box plots from metrics and seeds. Requires same metrics collected from all seeds. Save the plots to <plot_dir>/<metric_name>-<n>_seeds.png, where <metric_name> is for eg. "spl", <n> is the number of seeds. Args: metrics_list: list of metrics collected from experiment run with the given seeds. seeds: seeds to initialize agents. Should be in the same order as metrics_list. plot_dir: directory to save the box plot. """ # check if we have metrics from all seeds num_seeds = len(seeds) assert len(metrics_list) == num_seeds # return if no data if num_seeds == 0: return num_samples_per_seed = len(metrics_list[0]) if num_samples_per_seed == 0: return # check if all seeds have the same number of data points # for i in range(num_seeds): # assert len(metrics_list[i]) == num_samples_per_seed # extract metric names metric_names = [] for _, episode_metrics in metrics_list[0].items(): for metric_name, _ in episode_metrics.items(): metric_names.append(metric_name) break # build dataframe data = {} total_num_samples = num_samples_per_seed * num_seeds data["seed"] = np.ndarray((total_num_samples,)) for metric_name in metric_names: data[metric_name] = np.ndarray((total_num_samples,)) # populate each array total_sample_count = 0 for seed_index in range(num_seeds): for _, episode_metrics in metrics_list[seed_index].items(): # register a new sample data["seed"][total_sample_count] = seeds[seed_index] for metric_name in metric_names: data[metric_name][total_sample_count] = episode_metrics[metric_name] total_sample_count += 1 df = pd.DataFrame(data) # drop invalid samples # code adapted from piRSquared's work on # https://stackoverflow.com/questions/45745085/python-pandas-how-to-remove-nan-and-inf-values df = df[~df.isin([np.nan, np.inf, -np.inf]).any(1)] # create box-and-strip plot for each metric for metric_name in metric_names: fig = plt.figure(figsize=(12.8, 9.6)) ax = fig.add_subplot(111) ax.set_xticklabels(ax.get_xticklabels(), rotation=90) sns.boxplot(x="seed", y=metric_name, data=df, ax=ax) sns.stripplot(x="seed", y=metric_name, data=df, color=".25", size=2, ax=ax) fig.subplots_adjust(bottom=0.15) fig.savefig(f"{plot_dir}/{metric_name}-{num_seeds}_seeds.png") plt.close(fig) def visualize_metrics_across_configs_with_box_plots( metrics_list: List[Dict[str, Dict[str, float]]], config_names: List[str], configs_or_seeds: str, plot_dir: str, ): r""" Generate box plots from metrics and experiment configurations. Requires same metrics collected across all configs. Save the plots to <plot_dir>/<metric_name>.png, where <metric_name> is for eg. "agent_time". Args: metrics_list: list of metrics collected from experiment run with the given seeds. config_names: names of experiment configurations. Should be in the same order as metrics_list. configs_or_seeds: if visualizing across configs or seeds. Can only be "configurations" or "seeds" plot_dir: directory to save the box plot. """ # check configs_or_seeds assert configs_or_seeds in ["configurations", "seeds"] # check if we have metrics from all configs num_configs = len(config_names) assert len(metrics_list) == num_configs # return if no data if num_configs == 0: return num_samples_per_config = len(metrics_list[0]) if num_samples_per_config == 0: return # check if all configs have the same number of data points # for i in range(num_configs): # assert len(metrics_list[i]) == num_samples_per_config # extract metric names metric_names = [] for _, episode_metrics in metrics_list[0].items(): for metric_name, _ in episode_metrics.items(): metric_names.append(metric_name) break # build dataframe data = {} total_num_samples = num_samples_per_config * num_configs data[configs_or_seeds] = np.ndarray((total_num_samples,), dtype=object) for metric_name in metric_names: data[metric_name] = np.ndarray((total_num_samples,)) # populate each array total_sample_count = 0 for config_index in range(num_configs): for _, episode_metrics in metrics_list[config_index].items(): # register a new sample data[configs_or_seeds][total_sample_count] = config_names[config_index] for metric_name in metric_names: data[metric_name][total_sample_count] = episode_metrics[metric_name] total_sample_count += 1 df = pd.DataFrame(data) # drop invalid samples # code adapted from piRSquared's work on # https://stackoverflow.com/questions/45745085/python-pandas-how-to-remove-nan-and-inf-values df = df[~df.isin([np.nan, np.inf, -np.inf]).any(1)] # create box-and-strip plot for each metric for metric_name in metric_names: fig = plt.figure(figsize=(12.8, 9.6)) ax = fig.add_subplot(111) sns.set(font_scale=1.2, style="white") sns.boxplot(x=configs_or_seeds, y=metric_name, data=df, ax=ax) sns.stripplot(x=configs_or_seeds, y=metric_name, data=df, color=".25", size=2, ax=ax) ax.set_xlabel(f"{configs_or_seeds}", fontsize=22) if configs_or_seeds == "seeds": plt.xticks(rotation=90, ha="right") plt.subplots_adjust(bottom=0.2) else: plt.xticks(rotation=0) plt.subplots_adjust(bottom=0.1) ax.set_ylabel(f"{metric_name.value} {resolve_metric_unit(metric_name)}", fontsize=22) #fig.suptitle(f"{metric_name.value} across {num_configs} {configs_or_seeds}") fig.savefig(f"{plot_dir}/{metric_name}-{num_configs}_{configs_or_seeds}.png") plt.close(fig) def visualize_success_across_configs_with_pie_charts( metrics_list: List[Dict[str, Dict[str, float]]], config_names: List[str], configs_or_seeds: str, plot_dir: str, ): r""" Generate pie charts to show success counts across experiment configurations. Require the success metric collected across all configs. Save the plot to <plot_dir>/success.png. Args: metrics_list: list of metrics collected from experiment run with the given seeds. config_names: names of experiment configurations. Should be in the same order as metrics_list. configs_or_seeds: if visualizing across configs or seeds. Can only be "configurations" or "seeds" plot_dir: directory to save the pie chart. """ # check configs_or_seeds assert configs_or_seeds in ["configurations", "seeds"] # check if we have metrics from all configs num_configs = len(config_names) assert len(metrics_list) == num_configs # return if no data if num_configs == 0: return num_samples_per_config = len(metrics_list[0]) if num_samples_per_config == 0: return # check if all configs have the same number of data points # for i in range(num_configs): # assert len(metrics_list[i]) == num_samples_per_config # build data for plotting success_counts = [] for config_index in range(0, num_configs): # count success in this config dict_of_metrics = metrics_list[config_index] count = 0 for _, per_episode_metrics in dict_of_metrics.items(): count += per_episode_metrics[NumericalMetrics.SPL] success_counts.append(count) dict_of_success_counts = {} for config_index in range(0, num_configs): dict_of_success_counts[config_names[config_index]] = [ success_counts[config_index], num_samples_per_config - success_counts[config_index], ] # create pie plots for all configs fig, axes = plt.subplots( int(np.ceil(num_configs/2)), 2, sharey=True, figsize=(9.6, 12.8)) axes_flattened = axes.ravel() for config_index in range(0, num_configs): config_name = config_names[config_index] data_per_config = dict_of_success_counts[config_name] axes_flattened[config_index].pie(data_per_config, labels=["success", "fail"], autopct='%1.1f%%', shadow=False, startangle=90) axes_flattened[config_index].set_title(config_name) #fig.suptitle(f"proportion of succeeded/failed episodes across {num_configs} {configs_or_seeds}") fig.tight_layout() fig.savefig(f"{plot_dir}/success-{num_configs}_{configs_or_seeds}.png") plt.close(fig) def visualize_metrics_across_configs_with_histograms( metrics_list: List[Dict[str, Dict[str, float]]], config_names: List[str], configs_or_seeds: str, plot_dir: str, ): r""" Generate histograms from metrics and experiment configurations. Requires same metrics collected across all configs. Save the plots to <plot_dir>/<metric_name>.png, where <metric_name> is for eg. "spl". Args: metrics_list: list of metrics collected from experiment run with the given seeds. config_names: names of experiment configurations. Should be in the same order as metrics_list. configs_or_seeds: if visualizing across configs or seeds. Can only be "configurations" or "seeds" plot_dir: directory to save the histograms. """ # check configs_or_seeds assert configs_or_seeds in ["configurations", "seeds"] # check if we have metrics from all configs num_configs = len(config_names) assert len(metrics_list) == num_configs # return if no data if num_configs == 0: return num_samples_per_config = len(metrics_list[0]) if num_samples_per_config == 0: return # check if all configs have the same number of data points # for i in range(num_configs): # assert len(metrics_list[i]) == num_samples_per_config # extract metric names metric_names = [] for _, episode_metrics in metrics_list[0].items(): for metric_name, _ in episode_metrics.items(): metric_names.append(metric_name) break # build data for plotting data_all_configs_all_metrics = {} # Dict[Dict[List[float]]] for config_index in range(0, num_configs): data_per_config_all_metrics = {} # Dict[List[float]] metrics_per_config = metrics_list[config_index] for metric_name in metric_names: data_per_config_per_metric = [] for _, dict_of_metrics in metrics_per_config.items(): if ( not np.isnan(dict_of_metrics[metric_name]) and not np.isinf(dict_of_metrics[metric_name]) ): data_per_config_per_metric.append(dict_of_metrics[metric_name]) data_per_config_all_metrics[metric_name] = data_per_config_per_metric data_all_configs_all_metrics[config_names[config_index]] = data_per_config_all_metrics # plot histograms for metric_name in metric_names: fig, axes = plt.subplots( int(np.ceil(num_configs/2)), 2, sharey=True, figsize=(12.8, 9.6)) axes_flattened = axes.ravel() for config_index in range(0, num_configs): config_name = config_names[config_index] # create histogram per metric, per config data_to_plot = data_all_configs_all_metrics[config_name][metric_name] if ( metric_name == NumericalMetrics.DISTANCE_TO_GOAL or metric_name == metric_name == NumericalMetrics.SPL or metric_name == NumericalMetrics.NUM_STEPS ): axes_flattened[config_index].hist( data_to_plot, bins=50 ) else: raise NotImplementedError axes_flattened[config_index].set_title(config_name, fontsize=18) # set common x and y label. Code adapted from # https://stackoverflow.com/questions/16150819/common-xlabel-ylabel-for-matplotlib-subplots fig.text(0.5, 0.04, f"{metric_name.value} {resolve_metric_unit(metric_name)}", ha="center", fontsize=22) fig.text(0.04, 0.5, "number of episodes", va="center", rotation="vertical", fontsize=22) plt.xticks(rotation=0) plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.6) fig.savefig(f"{plot_dir}/{metric_name}-{num_configs}_{configs_or_seeds}.png") plt.close(fig) def observations_to_image_for_roam( observation: Dict, info: Dict, max_depth: float, ) -> np.ndarray: r"""Generate image of single frame from observation and info returned from a single environment step(). Modified upon habitat.utils.visualizations.observations_to_image(). Args: observation: observation returned from an environment step(). info: info returned from an environment step(). max_depth: max depth reading of the depth sensor. Returns: generated image of a single frame. """ egocentric_view_l: List[np.ndarray] = [] if "rgb" in observation: rgb = observation["rgb"] if not isinstance(rgb, np.ndarray): rgb = rgb.cpu().numpy() egocentric_view_l.append(rgb) # draw depth map if observation has depth info if "depth" in observation: depth_map = observation["depth"].squeeze() * (255.0 / max_depth) if not isinstance(depth_map, np.ndarray): depth_map = depth_map.cpu().numpy() depth_map = depth_map.astype(np.uint8) depth_map = np.stack([depth_map for _ in range(3)], axis=2) egocentric_view_l.append(depth_map) # add image goal if observation has image_goal info if "imagegoal" in observation: rgb = observation["imagegoal"] if not isinstance(rgb, np.ndarray): rgb = rgb.cpu().numpy() egocentric_view_l.append(rgb) assert len(egocentric_view_l) > 0, "Expected at least one visual sensor enabled." egocentric_view = np.concatenate(egocentric_view_l, axis=1) # draw collision if "collisions" in info and info["collisions"]["is_collision"]: egocentric_view = draw_collision(egocentric_view) frame = egocentric_view if "top_down_map_for_roam" in info: top_down_map = maps.colorize_draw_agent_and_fit_to_height( info["top_down_map_for_roam"], egocentric_view.shape[0] ) frame = np.concatenate((egocentric_view, top_down_map), axis=1) return frame def visualize_running_times_with_bar_plots( running_times: List[float], config_names: List[str], plot_dir: str ): r""" Visualize running times from multiple experiments as bar charts. Save the plot to <plot_dir>/running_time_across_configs.png. :param running_times: running times from a sequence of experiments. :param config_names: names of experiment configs, should be in same order as `running_times` :param plot_dir: directory to save the plot """ # precondition check assert len(running_times) == len(config_names) fig = plt.figure(figsize=(12.8, 9.6)) data = {} data["config"] = config_names data["running_time"] = running_times df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/python3.9 # -*- coding: utf-8 -*- # # Copyright (C) 2021 LinYulong. All Rights Reserved # # @Time : 2021/10/9 23:10 # @Author : LinYulong import numpy import pandas from src.alg import cross_verify, math_helper from src.excel import excel_helper from src.train import train_cfg from train import train def merge_chd(df: pandas.DataFrame) -> pandas.DataFrame: """ 将表格按组合并。 注意:sklearn 算法要求不是 float,所以统一乘精度要求然后取整 :param df: :return: """ line_size = df.index.size np_zero = numpy.zeros(shape=(line_size, 5), dtype=int) ret = pandas.DataFrame(np_zero, columns=['G1', 'G2', 'G3', 'G4', 'G5'], dtype=int) ret["G1"] = (df["CHD1"] + df["CHD2"] + df["CHD9"]) / 3 ret["G2"] = (df["CHD3"] + df["CHD4"] + df["CHD5"] + df["CHD6"] + df["CHD7"]) / 5 ret["G3"] = df["CHD11"] ret["G4"] = (df["CHD8"] + df["CHD10"]) / 2 ret["G5"] = (df["CHD12"] + df["CHD13"] + df["CHD14"]) / 3 ret = ret * train_cfg.get_times() ret = pandas.DataFrame(ret, dtype=int) # 截断(不是四舍五入)为整数 return ret def merge_chd2(df: pandas.DataFrame) -> pandas.DataFrame: """ 将表格按组,且区分重要性合并。 注意:sklearn 算法要求不是 float,所以统一乘精度要求然后取整 :param df: :return: """ line_size = df.index.size np_zero = numpy.zeros(shape=(line_size, 2), dtype=int) ret = pandas.DataFrame(np_zero, columns=['G1', 'G2'], dtype=int) ret["G1"] = df["CHD8"] ret["G2"] = df["CHD10"] ret = ret * train_cfg.get_times() ret = pandas.DataFrame(ret, dtype=int) # 截断(不是四舍五入)为整数 return ret def merge_chd3(df: pandas.DataFrame) -> pandas.DataFrame: """ 将表格按组,且区分重要性合并。 注意:sklearn 算法要求不是 float,所以统一乘精度要求然后取整 :param df: :return: """ line_size = df.index.size np_zero = numpy.zeros(shape=(line_size, 3), dtype=int) ret = pandas.DataFrame(np_zero, columns=['G1', 'G2', 'G3'], dtype=int) ret["G1"] = df["CHD12"] ret["G2"] = df["CHD13"] ret["G3"] = df["CHD14"] ret = ret * train_cfg.get_times() ret =
pandas.DataFrame(ret, dtype=int)
pandas.DataFrame
import datetime import os import numpy as np import pandas as pd from tqdm import tqdm from multiprocessing import Pool from itertools import zip_longest from os.path import isfile, join import cProfile import io import pstats import fitdecode from utils import log, list_all_files def profile(func): def wrapper(*args, **kwargs): pr = cProfile.Profile() pr.enable() retval = func(*args, **kwargs) pr.disable() s = io.StringIO() sortby = pstats.SortKey.CUMULATIVE # 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print(s.getvalue()) return retval return wrapper def fit_is_running(fit_file_name): try: with fitdecode.FitReader(fit_file_name) as fit: for frame in fit: if (isinstance(frame, fitdecode.FitDataMessage) and frame.name in ['sport', 'workout', 'lap', 'session']): if frame.has_field('sport'): if frame.get_field('sport').value != 'running': return False else: return True except: return False return False def add_delta_col(df, orig_col, rolled_col, delta_col, is_time=False): df[rolled_col] = df[orig_col] df.iloc[-1, df.columns.get_loc(rolled_col)] = np.nan df[rolled_col] = np.roll(df[rolled_col], 1) df = df.fillna(method='bfill') if is_time: df[delta_col] = df.apply(lambda x: (x[orig_col] - x[rolled_col]).total_seconds(), axis=1) else: df[delta_col] = df.apply(lambda x: (x[orig_col] - x[rolled_col]), axis=1) return df # @profile def extract_points(fit_file_name): points = [] if not fit_is_running(fit_file_name): return None with fitdecode.FitReader(fit_file_name) as fit: for frame in fit: if isinstance(frame, fitdecode.FitDataMessage) and frame.name == 'record': fields_read = ['timestamp', 'distance', 'heart_rate', 'enhanced_speed', 'enhanced_altitude'] optional_fields = ['heart_rate', 'enhanced_altitude'] current_point = [] for f in fields_read: if frame.has_field(f): current_point.append(frame.get_field(f).value) else: if f in optional_fields: current_point.append(0) else: log("File %s from %s is missing field %s. It has fields: %s" % (fit_file_name, frame.get_field('timestamp').value, f, ", ".join([field.name for field in frame.fields]))) return None points.append(current_point) if len(points) == 0: return None df = pd.DataFrame(points, columns=['time', 'distance', 'heart_rate', 'speed', 'altitude']) df = df.sort_values(by=['time']) df = df.reset_index() df = df.fillna(method='ffill') df = df.fillna(method='bfill') df['time'] = pd.to_datetime(df['time'], utc=True) df['time'] = df['time'].dt.tz_localize(tz=None) df = add_delta_col(df, 'time', 'time-start', 'time_delta', True) df = add_delta_col(df, 'distance', 'distance-start', 'distance_delta') df['distance_cumsum'] = df['distance_delta'].cumsum() df['time_cumsum'] = df['time_delta'].cumsum() return df # @profile def get_best_section(fit_file, df, section): # If the total distance of the workout is smaller then the section # we're looking for we can skip this iteration. if df['distance_delta'].sum() < section: return None column_names = [ 'date', 'section', 'filename', 'time', 'distance', 'minutes_per_kilometer', 'total_distance', 'total_time'] section_list = [] date = df['time'].min() total_distance = df['distance_delta'].sum() total_time = df['time_delta'].sum() df_distance_cumsum = df['distance_cumsum'] for i in range(len(df.index)): curr_row = df.loc[i] distance_cumsum = curr_row['distance_cumsum'] time_cumsum = curr_row['time_cumsum'] df_section = df[(df_distance_cumsum - distance_cumsum) >= section] if(len(df_section.index) != 0): time = df_section['time_cumsum'].iat[0] - time_cumsum distance_i = df_section['distance_cumsum'].iat[0] - distance_cumsum minutes_per_kilometer = (time/60)/(distance_i/1000) section_list.append([ date, section, fit_file, time, distance_i, minutes_per_kilometer, total_distance, total_time]) df_output = pd.DataFrame(section_list, columns=column_names) return df_output.loc[df_output['minutes_per_kilometer'].idxmin()] def process_file(input_folder, output_folder, invalid_folder, fit_file, sections): if fit_file is None: return df_final =
pd.DataFrame(columns=['time', 'distance', 'minutes_per_kilometer'])
pandas.DataFrame
from preppy524 import datatype import pandas as pd import pytest test_dict = {'cat1': ['apple', None, 'pear', 'banana', 'blueberry', 'lemon'], 'num1': [0, 1, 2, 3, 4, 5], 'cat2': [True, False, False, True, False, None], 'num2': [0, 16, 7, None, 10, 14], 'num3': [0.5, 3, 3.9, 5.5, 100.2, 33]} test_data =
pd.DataFrame(test_dict)
pandas.DataFrame
import pandas as pd import numpy as np from ionsrcopt import source_stability as stab class TestSourceStability: def test_stability_mean_variance_classification(self): def timedelta_to_seconds(timedelta): if not pd.isnull(timedelta): return timedelta.total_seconds() else: return np.nan values = 10000 * [1] timestamps = range(0, (int)(1e13), (int)(1e9)) df = pd.DataFrame() df["Timestamp"] = timestamps df["value"] = values df["Timestamp"] = pd.to_datetime(df["Timestamp"]) df = df.set_index(
pd.DatetimeIndex(df["Timestamp"])
pandas.DatetimeIndex
"""This file is the pipeline for data etl""" # import relation package. import pickle import pandas as pd from sklearn.preprocessing import OneHotEncoder, LabelEncoder # import project package. from config.config_setting import ConfigSetting class DataEtlService: def __init__(self): config_setting = ConfigSetting() self.config = config_setting.yaml_parser() self.log = config_setting.set_logger(["data_etl_service"]) self.df = {} self.train_label = [] self.one_hot_encoder = None self.label_encoder = LabelEncoder() def load_data(self): # read train data self.df['train'] = pd.read_csv(self.config['extract']['train_file']) self.train_label = list(self.df['train']['SalePrice']) # read test data self.df['test'] =
pd.read_csv(self.config['extract']['test_file'])
pandas.read_csv
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115:
pd.Timestamp("2012-08-25 00:00:00")
pandas.Timestamp
import pandas as pd from sktime.transformers.series_as_features.base import \ BaseSeriesAsFeaturesTransformer from sktime.utils.data_container import tabularize from sktime.utils.validation.series_as_features import check_X __author__ = "<NAME>" class PAA(BaseSeriesAsFeaturesTransformer): """ (PAA) Piecewise Aggregate Approximation Transformer, as described in <NAME>, <NAME>, <NAME>, and <NAME>. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and information Systems, 3(3), 263-286, 2001. For each series reduce the dimensionality to num_intervals, where each value is the mean of values in the interval. TO DO: pythonise it to make it more efficient. Maybe check vs this version http://vigne.sh/posts/piecewise-aggregate-approx/ Could have: Tune the interval size in fit somehow? Parameters ---------- num_intervals : int, dimension of the transformed data (default 8) """ def __init__(self, num_intervals=8 ): self.num_intervals = num_intervals super(PAA, self).__init__() def set_num_intervals(self, n): self.num_intervals = n def transform(self, X, y=None): """ Parameters ---------- X : nested pandas DataFrame of shape [n_instances, 1] Nested dataframe with univariate time-series in cells. Returns ------- dims: Pandas data frame with first dimension in column zero """ self.check_is_fitted() X = check_X(X, enforce_univariate=True) X = tabularize(X, return_array=True) num_atts = X.shape[1] num_insts = X.shape[0] dims = pd.DataFrame() data = [] for i in range(num_insts): series = X[i, :] frames = [] current_frame = 0 current_frame_size = 0 frame_length = num_atts / self.num_intervals frame_sum = 0 for n in range(num_atts): remaining = frame_length - current_frame_size if remaining > 1: frame_sum += series[n] current_frame_size += 1 else: frame_sum += remaining * series[n] current_frame_size += remaining if current_frame_size == frame_length: frames.append(frame_sum / frame_length) current_frame += 1 frame_sum = (1 - remaining) * series[n] current_frame_size = (1 - remaining) # if the last frame was lost due to double imprecision if current_frame == self.num_intervals - 1: frames.append(frame_sum / frame_length) data.append(
pd.Series(frames)
pandas.Series
import re import sys import matplotlib.pyplot as plt import pandas as pd from bld.project_paths import project_paths_join as ppj def data_prep(data): """Function calculating yearly and monthly change Args: data (pd.Dataframe): dataset with predicted values Returns: | monthly_change (pd.Dataframe): includes monthly change in mean prices | yearly_change (pd.Dataframe): includes change in mean prices compared to last year's same month """ mean_df = data.mean(axis=0) # Rearranging the index mean_df.index =
pd.to_datetime(mean_df.index, format="%Y_%m_%d")
pandas.to_datetime
import os import time import random import argparse import numpy as np import pandas as pd import cv2 import PIL.Image from tqdm import tqdm from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold import torch from torch.utils.data import DataLoader, Dataset import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torch.utils.data.sampler import RandomSampler, SequentialSampler from torch.optim.lr_scheduler import CosineAnnealingLR from util import GradualWarmupSchedulerV2 import apex from apex import amp from dataset import get_df, get_transforms, MelanomaDataset from models import Effnet_Melanoma, Resnest_Melanoma, Seresnext_Melanoma from train import get_trans def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--kernel-type', type=str, required=True) parser.add_argument('--data-dir', type=str, default='/raid/') parser.add_argument('--data-folder', type=int, required=True) parser.add_argument('--image-size', type=int, required=True) parser.add_argument('--enet-type', type=str, required=True) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--num-workers', type=int, default=32) parser.add_argument('--out-dim', type=int, default=9) parser.add_argument('--use-amp', action='store_true') parser.add_argument('--use-meta', action='store_true') parser.add_argument('--DEBUG', action='store_true') parser.add_argument('--model-dir', type=str, default='./weights') parser.add_argument('--log-dir', type=str, default='./logs') parser.add_argument('--oof-dir', type=str, default='./oofs') parser.add_argument('--eval', type=str, choices=['best', 'best_20', 'final'], default="best") parser.add_argument('--CUDA_VISIBLE_DEVICES', type=str, default='0') parser.add_argument('--n-meta-dim', type=str, default='512,128') args, _ = parser.parse_known_args() return args def val_epoch(model, loader, mel_idx, is_ext=None, n_test=1, get_output=False): model.eval() val_loss = [] LOGITS = [] PROBS = [] TARGETS = [] with torch.no_grad(): for (data, target) in tqdm(loader): if args.use_meta: data, meta = data data, meta, target = data.to(device), meta.to(device), target.to(device) logits = torch.zeros((data.shape[0], args.out_dim)).to(device) probs = torch.zeros((data.shape[0], args.out_dim)).to(device) for I in range(n_test): l = model(get_trans(data, I), meta) logits += l probs += l.softmax(1) else: data, target = data.to(device), target.to(device) logits = torch.zeros((data.shape[0], args.out_dim)).to(device) probs = torch.zeros((data.shape[0], args.out_dim)).to(device) for I in range(n_test): l = model(get_trans(data, I)) logits += l probs += l.softmax(1) logits /= n_test probs /= n_test LOGITS.append(logits.detach().cpu()) PROBS.append(probs.detach().cpu()) TARGETS.append(target.detach().cpu()) loss = criterion(logits, target) val_loss.append(loss.detach().cpu().numpy()) val_loss = np.mean(val_loss) LOGITS = torch.cat(LOGITS).numpy() PROBS = torch.cat(PROBS).numpy() TARGETS = torch.cat(TARGETS).numpy() if get_output: return LOGITS, PROBS else: acc = (PROBS.argmax(1) == TARGETS).mean() * 100. auc = roc_auc_score((TARGETS == mel_idx).astype(float), PROBS[:, mel_idx]) auc_20 = roc_auc_score((TARGETS[is_ext == 0] == mel_idx).astype(float), PROBS[is_ext == 0, mel_idx]) return val_loss, acc, auc, auc_20 def main(): df, df_test, meta_features, n_meta_features, mel_idx = get_df( args.kernel_type, args.out_dim, args.data_dir, args.data_folder, args.use_meta ) transforms_train, transforms_val = get_transforms(args.image_size) LOGITS = [] PROBS = [] dfs = [] for fold in range(5): df_valid = df[df['fold'] == fold] if args.DEBUG: df_valid = pd.concat([ df_valid[df_valid['target'] == mel_idx].sample(args.batch_size * 3), df_valid[df_valid['target'] != mel_idx].sample(args.batch_size * 3) ]) dataset_valid = MelanomaDataset(df_valid, 'valid', meta_features, transform=transforms_val) valid_loader = torch.utils.data.DataLoader(dataset_valid, batch_size=args.batch_size, num_workers=args.num_workers) if args.eval == 'best': model_file = os.path.join(args.model_dir, f'{args.kernel_type}_best_fold{fold}.pth') elif args.eval == 'best_20': model_file = os.path.join(args.model_dir, f'{args.kernel_type}_best_20_fold{fold}.pth') if args.eval == 'final': model_file = os.path.join(args.model_dir, f'{args.kernel_type}_final_fold{fold}.pth') model = ModelClass( args.enet_type, n_meta_features=n_meta_features, n_meta_dim=[int(nd) for nd in args.n_meta_dim.split(',')], out_dim=args.out_dim ) model = model.to(device) try: # single GPU model_file model.load_state_dict(torch.load(model_file), strict=True) except: # multi GPU model_file state_dict = torch.load(model_file) state_dict = {k[7:] if k.startswith('module.') else k: state_dict[k] for k in state_dict.keys()} model.load_state_dict(state_dict, strict=True) if len(os.environ['CUDA_VISIBLE_DEVICES']) > 1: model = torch.nn.DataParallel(model) model.eval() this_LOGITS, this_PROBS = val_epoch(model, valid_loader, mel_idx, is_ext=df_valid['is_ext'].values, n_test=8, get_output=True) LOGITS.append(this_LOGITS) PROBS.append(this_PROBS) dfs.append(df_valid) dfs =
pd.concat(dfs)
pandas.concat
# ActivitySim # See full license in LICENSE.txt. import logging import numpy as np import pandas as pd from activitysim.core import simulate from activitysim.core import tracing from activitysim.core import pipeline from activitysim.core import config from activitysim.core import inject from activitysim.core import expressions from activitysim.abm.models.util.canonical_ids import set_trip_index from activitysim.core.util import assign_in_place from activitysim.core.util import reindex from .util import estimation logger = logging.getLogger(__name__) @inject.injectable() def stop_frequency_alts(): # alt file for building trips even though simulation is simple_simulate not interaction_simulate file_path = config.config_file_path('stop_frequency_alternatives.csv') df = pd.read_csv(file_path, comment='#') df.set_index('alt', inplace=True) return df def process_trips(tours, stop_frequency_alts): OUTBOUND_ALT = 'out' assert OUTBOUND_ALT in stop_frequency_alts.columns # get the actual alternatives for each person - have to go back to the # stop_frequency_alts dataframe to get this - the stop_frequency choice # column has the index values for the chosen alternative trips = stop_frequency_alts.loc[tours.stop_frequency] # assign tour ids to the index trips.index = tours.index """ :: tours.stop_frequency => proto trips table ________________________________________________________ stop_frequency | out in tour_id | tour_id 954910 1out_1in | 954910 1 1 985824 0out_1in | 985824 0 1 """ # reformat with the columns given below trips = trips.stack().reset_index() trips.columns = ['tour_id', 'direction', 'trip_count'] # tours legs have one more leg than stop trips.trip_count += 1 # prefer direction as boolean trips['outbound'] = trips.direction == OUTBOUND_ALT """ tour_id direction trip_count outbound 0 954910 out 2 True 1 954910 in 2 False 2 985824 out 1 True 3 985824 in 2 False """ # now do a repeat and a take, so if you have two trips of given type you # now have two rows, and zero trips yields zero rows trips = trips.take(np.repeat(trips.index.values, trips.trip_count.values)) trips = trips.reset_index(drop=True) grouped = trips.groupby(['tour_id', 'outbound']) trips['trip_num'] = grouped.cumcount() + 1 trips['person_id'] = reindex(tours.person_id, trips.tour_id) trips['household_id'] = reindex(tours.household_id, trips.tour_id) trips['primary_purpose'] = reindex(tours.primary_purpose, trips.tour_id) # reorder columns and drop 'direction' trips = trips[['person_id', 'household_id', 'tour_id', 'primary_purpose', 'trip_num', 'outbound', 'trip_count']] """ person_id household_id tour_id primary_purpose trip_num outbound trip_count 0 32927 32927 954910 work 1 True 2 1 32927 32927 954910 work 2 True 2 2 32927 32927 954910 work 1 False 2 3 32927 32927 954910 work 2 False 2 4 33993 33993 985824 univ 1 True 1 5 33993 33993 985824 univ 1 False 2 6 33993 33993 985824 univ 2 False 2 """ set_trip_index(trips) return trips @inject.step() def stop_frequency( tours, tours_merged, stop_frequency_alts, network_los, chunk_size, trace_hh_id): """ stop frequency model For each tour, shoose a number of intermediate inbound stops and outbound stops. Create a trip table with inbound and outbound trips. Thus, a tour with stop_frequency '2out_0in' will have two outbound and zero inbound stops, and four corresponding trips: three outbound, and one inbound. Adds stop_frequency str column to trips, with fields creates trips table with columns: :: - person_id - household_id - tour_id - primary_purpose - atwork - trip_num - outbound - trip_count """ trace_label = 'stop_frequency' model_settings_file_name = 'stop_frequency.yaml' model_settings = config.read_model_settings(model_settings_file_name) tours = tours.to_frame() tours_merged = tours_merged.to_frame() assert not tours_merged.household_id.isnull().any() assert not (tours_merged.origin == -1).any() assert not (tours_merged.destination == -1).any() nest_spec = config.get_logit_model_settings(model_settings) constants = config.get_model_constants(model_settings) # - run preprocessor to annotate tours_merged preprocessor_settings = model_settings.get('preprocessor', None) if preprocessor_settings: # hack: preprocessor adds origin column in place if it does not exist already assert 'origin' in tours_merged assert 'destination' in tours_merged od_skim_stack_wrapper = network_los.get_default_skim_dict().wrap('origin', 'destination') skims = [od_skim_stack_wrapper] locals_dict = { "od_skims": od_skim_stack_wrapper, 'network_los': network_los } locals_dict.update(constants) simulate.set_skim_wrapper_targets(tours_merged, skims) # this should be pre-slice as some expressions may count tours by type annotations = expressions.compute_columns( df=tours_merged, model_settings=preprocessor_settings, locals_dict=locals_dict, trace_label=trace_label) assign_in_place(tours_merged, annotations) tracing.print_summary('stop_frequency segments', tours_merged.primary_purpose, value_counts=True) spec_segments = model_settings.get('SPEC_SEGMENTS') assert spec_segments is not None, f"SPEC_SEGMENTS setting not found in model settings: {model_settings_file_name}" segment_col = model_settings.get('SEGMENT_COL') assert segment_col is not None, f"SEGMENT_COL setting not found in model settings: {model_settings_file_name}" nest_spec = config.get_logit_model_settings(model_settings) choices_list = [] for segment_settings in spec_segments: segment_name = segment_settings[segment_col] segment_value = segment_settings[segment_col] chooser_segment = tours_merged[tours_merged[segment_col] == segment_value] if len(chooser_segment) == 0: logging.info(f"{trace_label} skipping empty segment {segment_name}") continue logging.info(f"{trace_label} running segment {segment_name} with {chooser_segment.shape[0]} chooser rows") estimator = estimation.manager.begin_estimation(model_name=segment_name, bundle_name='stop_frequency') segment_spec = simulate.read_model_spec(file_name=segment_settings['SPEC']) assert segment_spec is not None, "spec for segment_type %s not found" % segment_name coefficients_file_name = segment_settings['COEFFICIENTS'] coefficients_df = simulate.read_model_coefficients(file_name=coefficients_file_name) segment_spec = simulate.eval_coefficients(segment_spec, coefficients_df, estimator) if estimator: estimator.write_spec(segment_settings, bundle_directory=False) estimator.write_model_settings(model_settings, model_settings_file_name, bundle_directory=True) estimator.write_coefficients(coefficients_df, segment_settings) estimator.write_choosers(chooser_segment) estimator.set_chooser_id(chooser_segment.index.name) choices = simulate.simple_simulate( choosers=chooser_segment, spec=segment_spec, nest_spec=nest_spec, locals_d=constants, chunk_size=chunk_size, trace_label=tracing.extend_trace_label(trace_label, segment_name), trace_choice_name='stops', estimator=estimator) # convert indexes to alternative names choices =
pd.Series(segment_spec.columns[choices.values], index=choices.index)
pandas.Series
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, Series, concat, date_range, ) import pandas._testing as tm class TestEmptyConcat: def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( {"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=0) # name will be reset exp = Series([1, 2, 3]) tm.assert_series_equal(res, exp) # empty Series with no name s1 = Series([1, 2, 3], name="x") s2 = Series(name=None, dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]}, columns=["x", 0], index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) @pytest.mark.parametrize("tz", [None, "UTC"]) @pytest.mark.parametrize("values", [[], [1, 2, 3]]) def test_concat_empty_series_timelike(self, tz, values): # GH 18447 first = Series([], dtype="M8[ns]").dt.tz_localize(tz) dtype = None if values else np.float64 second = Series(values, dtype=dtype) expected = DataFrame( { 0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz), 1: values, } ) result = concat([first, second], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "left,right,expected", [ # booleans (np.bool_, np.int32, np.int32), (np.bool_, np.float32, np.object_), # datetime-like ("m8[ns]", np.bool_, np.object_), ("m8[ns]", np.int64, np.object_), ("M8[ns]", np.bool_, np.object_), ("M8[ns]", np.int64, np.object_), # categorical ("category", "category", "category"), ("category", "object", "object"), ], ) def test_concat_empty_series_dtypes(self, left, right, expected): result = concat([Series(dtype=left), Series(dtype=right)]) assert result.dtype == expected @pytest.mark.parametrize( "dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"] ) def test_concat_empty_series_dtypes_match_roundtrips(self, dtype): dtype = np.dtype(dtype) result = concat([Series(dtype=dtype)]) assert result.dtype == dtype result = concat([Series(dtype=dtype),
Series(dtype=dtype)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 24 16:43:33 2019 @author: jeremy_lehner """ import pandas as pd import datetime from selenium import webdriver import time from bs4 import BeautifulSoup from os import path def get_scrape_date(): """ Gets the date on which data was scraped Parameters ---------- None Returns ------- date : string Date that data was scraped in the format 'YYYY-MM-DD' """ # Get current date and time now = datetime.datetime.now() year_scraped = str(now.year) month_scraped = str(now.month) day_scraped = str(now.day) # Add leading zeroes to single-digit months and days if len(month_scraped) == 1: month_scraped = '0' + month_scraped if len(day_scraped) == 1: day_scraped = '0' + day_scraped # Construct date string date_data = year_scraped + '-' + month_scraped + '-' + day_scraped # Bye! <3 return date_data def scrape_champ_names(save=True): """ Scrapes champion names from League of Legends Wiki and saves them to csv file, but returns nothing Parameters ---------- save : boolean Save names to csv file? Returns ------- None """ # Assign scrape path variables url = 'https://leagueoflegends.fandom.com/wiki/List_of_champions' # Get champion names names = pd.read_html(url)[1] names = list(names['Champion']) names = [s.split(',')[0] for s in names] names = [s.split('\xa0the')[0] for s in names] names = pd.Series(names).rename('champion') # Write names to csv file if save: names.to_csv('./data/champion_names.csv', index=False) # Bye! <3 return def scrape_release_dates(save=True): """ Scrapes champion release dates from League of Legends Wiki and saves them to csv file, but returns nothing Parameters ---------- save : boolean Save release dates to csv file ('YYYY-MM-DD')? Returns ------- None """ # Assign scrape path variables url = 'https://leagueoflegends.fandom.com/wiki/List_of_champions' # Get release dates dates = pd.read_html(url)[1] dates = dates['Release Date'].rename('release_date') # Write release dates to csv file if save: dates.to_csv('./data/champion_release_dates.csv', index=False) # Bye! <3 return def scrape_number_of_skins(names, save=True): """ Scrapes number of champion skins from League of Legends Wiki and saves them to a csv file, but returns nothing Parameters ---------- names : pandas series Contains the champion names as strings in alphabetical order save : boolean Save number of champion skins to csv file? Returns ------- None """ # Assign scrape path variables style = 'display:inline-block; margin:5px; width:342px' # Set up selenium web driver driver = webdriver.Chrome('./src/utils/chromedriver') # Get number of skins num_skins = [] for name in names: name = name.replace(' ', '_') skins_url = f'https://leagueoflegends.fandom.com/wiki/{name}/Skins' driver.get(skins_url) time.sleep(2) soup = BeautifulSoup(driver.page_source, 'html.parser') num_skins.append(len(soup.find_all('div', {'style': style}))) num_skins = pd.Series(num_skins) # Close selenium web driver driver.close() if save: num_skins.to_csv('./data/num_skins.csv', index=False) # Bye! <3 return def scrape_win_rates(save=True): """ Scrapes the current day North America champion win rates from op.gg and saves them to a csv file along with the date, but returns nothing Parameters ---------- save : boolean Save win rates as csv file? Returns ------- None """ # Get date at time of scraping date = get_scrape_date() # Assign scraping variables champstats_url = 'https://na.op.gg/statistics/champion/' today_xpath = '//*[@id="recent_today"]/span/span' winrate_xpath = '//*[@id="rate_win"]/span/span' scroll_down = "window.scrollTo(0, document.body.scrollHeight);" champs = 'Champion.1' win = 'Win rate' # Set up selenium web driver driver = webdriver.Chrome('./src/utils/chromedriver') driver.get(champstats_url) # Select stats for current day today_button = driver.find_element_by_xpath(today_xpath) today_button.click() # Select win rates winrate_button = driver.find_element_by_xpath(winrate_xpath) winrate_button.click() # Scroll to bottom of page and wait to bypass ads driver.execute_script(scroll_down) time.sleep(10) # Scrape win rates winrates = pd.read_html(driver.page_source)[1] winrates = winrates[[champs, win]] # Sort win rates by champion in alphabetical order winrates.sort_values(by=champs, inplace=True) winrates = winrates[win].reset_index()[win] # Close selenium web driver driver.close() # Convert win rates to float winrates = winrates.str.replace('%', '') winrates = round(winrates.astype('float')/100, 4) # Add a column with the date winrates = pd.DataFrame({'winrate': winrates, 'date': date}) # Write win rates to csv file if save: date = date.replace('-', '') winrates.to_csv(f'./data/win/win_rates_{date}.csv', index=False) else: print('Win rates were scraped, but not saved!') # Bye! <3 return def scrape_ban_rates(save=True): """ Scrapes the current day North America champion ban rates from op.gg and saves them to a csv file along with the date, but returns nothing Parameters ---------- save : boolean Save ban rates as csv file? Returns ------- None """ # Get date at time of scraping date = get_scrape_date() # Assign scraping variables champstats_url = 'https://na.op.gg/statistics/champion/' today_xpath = '//*[@id="recent_today"]/span/span' banrate_xpath = '//*[@id="rate_ban"]/span/span' scroll_down = "window.scrollTo(0, document.body.scrollHeight);" champs = 'Champion.1' ban = 'Ban ratio per game' # Set up selenium web driver driver = webdriver.Chrome('./src/utils/chromedriver') driver.get(champstats_url) # Select stats for current day today_button = driver.find_element_by_xpath(today_xpath) today_button.click() # Select ban rates banrate_button = driver.find_element_by_xpath(banrate_xpath) banrate_button.click() # Scroll to bottom of page and wait to bypass ads driver.execute_script(scroll_down) time.sleep(10) # Scrape ban rates banrates = pd.read_html(driver.page_source)[1] banrates = banrates[[champs, ban]] # Sort ban rates by champion in alphabetical order banrates.sort_values(by=champs, inplace=True) banrates = banrates[ban].reset_index()[ban] # Close Selenioum web driver driver.close() # Convert ban rates to float banrates = banrates.str.replace('%', '') banrates = round(banrates.astype('float')/100, 4) # Add a column with the date banrates =
pd.DataFrame({'banrate': banrates, 'date': date})
pandas.DataFrame
#!/usr/bin/env python import bz2 import gzip import logging import os import subprocess from collections import OrderedDict from pathlib import Path from pprint import pformat import pandas as pd import yaml from Bio import SeqIO def fetch_executable(cmd, ignore_errors=False): executables = [ cp for cp in [ str(Path(p).joinpath(cmd)) for p in os.environ['PATH'].split(os.pathsep) ] if os.access(cp, os.X_OK) ] if executables: return executables[0] elif ignore_errors: return None else: raise RuntimeError(f'command not found: {cmd}') def read_fasta_and_generate_seq(path): print_log(f'Read a FASTA file:\t{path}') if path.endswith('.gz'): f = gzip.open(path, 'rt') elif path.endswith('.bz2'): f = bz2.open(path, 'rt') else: f = open(path, 'r') for s in SeqIO.parse(f, 'fasta'): yield s.id, s.seq f.close() def print_yml(data): logger = logging.getLogger(__name__) logger.debug(data) print(yaml.dump(data)) def read_bed(path, merge=True, **kwargs): print_log( 'Read a BED file{0}:\t{1}'.format( (' (merging intervals)' if merge else ''), path ) ) dtype = { 'chrom': str, 'chromStart': int, 'chromEnd': int, 'name': str, 'score': int, 'strand': str, 'thickStart': int, 'thickEnd': int, 'itemRgb': str, 'blockCount': int, 'blockSizes': int, 'blockStarts': int, 'ADDITIONAL': str } bed_lines = [d for d in _stream_bed_lines(path=path, **kwargs)] return ( pd.DataFrame(bed_lines) if bed_lines else pd.DataFrame() ).pipe( lambda d: d.astype(dtype={k: v for k, v in dtype.items() if k in d.columns}) ) def read_vcf(path, sample_name=None, min_af=None, max_af=None, include_filtered=False, **kwargs): print_log( 'Read a VCF file ({0} filtered variants):\t{1}'.format( ('including' if include_filtered else 'excluding'), path ) ) dtype = { 'CHROM': str, 'POS': int, 'ID': str, 'REF': str, 'ALT': str, 'QUAL': str, 'FILTER': str, 'INFO': str, 'FORMAT': str } vcf_lines = [d for d in _stream_vcf_lines(path=path, **kwargs)] if not vcf_lines: return
pd.DataFrame()
pandas.DataFrame
import pandas as pd from pomegranate import HiddenMarkovModel, DiscreteDistribution import numpy as np from pomegranate import * import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score from sklearn.metrics import confusion_matrix from sklearn.tree import DecisionTreeClassifier TIME_INTERVAL = "60s" N_STATES = 16 # n_clusters = 10 # one in [10, 20, 50, 100] ## The main claim in the paper is that: there are problems that are not logged. In order to find them we need to consider alternative approach, e.g. measuring frequenceies, counts or coocurances. ## Therefore, it is important to ## Structure of the paper: # 1) # for TIME_INTERVAL in ["120s", "180s", "240s", "300s"]: # for n_clusters in [10, 20, 50, 100]: from collections import defaultdict dd = defaultdict() # for TIME_INTERVAL in ["120s"]: # for n_clusters in [10]: flag = True for TIME_INTERVAL in ["180s", "240s", "300s"]: # for TIME_INTERVAL in ["120s"]: for n_clusters in [30]: # for n_clusters in [30]: if flag == True: try: po = pd.read_csv( "/home/matilda/PycharmProjects/FailurePrediction/6_insights/0_different_clustering_results_anomaly_detection/different_clustering_results_AD_"+ str(N_STATES) + "_states.csv") po.columns = ["exp_name", "scores"] po.index = po.exp_name po = po.drop(["exp_name"], axis=1) dd = po.to_dict()["scores"] except: dd = defaultdict() print(dd) flag = False for run_id in range(0, 2): print("------"*20) print("Processsing time interval: {}, with n_clusters {} and round {}".format(TIME_INTERVAL, n_clusters, run_id)) pom_data =
pd.read_csv("/home/matilda/PycharmProjects/RCA_logs/2_copy_original_data/Fault-Injection-Dataset-master/nova.tsv", sep="\t")
pandas.read_csv
''' Replica of Jupyter notebook - useful for debugging SA code. ''' from sklearn.cluster import KMeans from sklearn.datasets import make_blobs import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import cProfile import pstats from sa import SACluster, ExponentialCoolingSchedule, CoruCoolingSchedule if __name__ == '__main__': df = pd.read_csv('data/Mall_Customers.csv') unlabelled_x = df.iloc[:, [3, 4]].values n_clusters = 5 max_iter = max(150 * unlabelled_x.shape[0], 10000) cooling_schedule = CoruCoolingSchedule(1000, max_iter=max_iter) #cooling_schedule = ExponentialCoolingSchedule(1000) sa = SACluster(n_clusters=n_clusters, cooling_schedule=cooling_schedule, dist_metric='euclidean', max_iter=max_iter, random_state=101) #.run('sa.fit(unlabelled_x)', filename = 'pr.txt') #p = pstats.Stats('pr.txt') #p.sort_stats('cumulative').print_stats(70) state, energy = sa.fit(unlabelled_x) print(
pd.DataFrame(sa.search_history)
pandas.DataFrame
from typing import Union import pandas as pd from sklearn.model_selection import train_test_split from ..datastore import DataItem def get_sample( src: Union[DataItem, pd.core.frame.DataFrame], sample: int, label: str, reader=None ): """generate data sample to be split (candidate for mlrun) Returns features matrix and header (x), and labels (y) :param src: data artifact :param sample: sample size from data source, use negative integers to sample randomly, positive to sample consecutively from the first row :param label: label column title """ if type(src) == pd.core.frame.DataFrame: table = src else: table = src.as_df() # get sample if (sample == -1) or (sample >= 1): # get all rows, or contiguous sample starting at row 1. raw = table.dropna() labels = _get_label_from_raw(raw, label) raw = raw.iloc[:sample, :] labels = labels.iloc[:sample] else: # grab a random sample raw = table.dropna().sample(sample * -1) labels = _get_label_from_raw(raw, label) return raw, labels, raw.columns.values def _get_label_from_raw(raw, label): """ Just a stupid wrapper so that nice error will be raised when users give wrong label """ if label not in raw: raise ValueError(f"Specified label could not be found: {label}") return raw.pop(label) def get_splits( raw, labels, n_ways: int = 3, test_size: float = 0.15, valid_size: float = 0.30, label_names: list = ["labels"], random_state: int = 1, ): """generate train and test sets (candidate for mlrun) cross validation: 1. cut out a test set 2a. use the training set in a cross validation scheme, or 2b. make another split to generate a validation set 2 parts (n_ways=2): train and test set only 3 parts (n_ways=3): train, validation and test set :param raw: dataframe or numpy array of raw features :param labels: dataframe or numpy array of raw labels :param n_ways: (3) split data into 2 or 3 parts :param test_size: proportion of raw data to set asid as test data :param valid_size: proportion of remaining data to be set as validation :param label_names: label names :param random_state: (1) random number seed """ x, xte, y, yte = train_test_split( raw, labels, test_size=test_size, random_state=random_state ) if n_ways == 2: return (x, y), (xte, yte) elif n_ways == 3: xtr, xva, ytr, yva = train_test_split( x, y, train_size=1 - valid_size, random_state=random_state ) return (xtr, ytr), (xva, yva), (xte, yte) else: raise Exception("n_ways must be in the range [2,3]") def save_test_set( context, data: dict, header: list, label: str = "labels", file_ext: str = "parquet", index: bool = False, debug: bool = False, ): """log a held out test set :param context: the function execution context :param data: dict with keys 'xtest'. 'ytest', and optionally 'xcal', 'ycal' if n_ways=4 in `get_splits` :param ytest: test labels, as np.ndarray output from `get_splits` :param header: ([])features header if required :param label: ("labels") name of label column :param file_ext: format of test set file :param index: preserve index column :param debug: (False) """ if all(x in data.keys() for x in ["xtest", "ytest"]): test_set = pd.concat( [ pd.DataFrame(data=data["xtest"], columns=header), pd.DataFrame(data=data["ytest"].values, columns=[label]), ], axis=1, ) context.log_dataset("test_set", df=test_set, format=file_ext, index=index) if all(x in data.keys() for x in ["xcal", "ycal"]): cal_set = pd.concat( [ pd.DataFrame(data=data["xcal"], columns=header),
pd.DataFrame(data=data["ycal"].values, columns=[label])
pandas.DataFrame
import warnings from collections import OrderedDict from datetime import time import tables as tb import pandas as pd import pandas.lib as lib import numpy as np import pandas.io.pytables as pdtables from trtools.compat import izip, pickle from trtools.io.common import _filename from trtools.io.table_indexing import create_slices MIN_ITEMSIZE = 10 class MismatchColumnsError(Exception): pass def convert_frame(df): """ Input: DataFrame Output: pytable table description and pytable compatible recarray """ sdict = OrderedDict() atoms = OrderedDict() types = OrderedDict() #index index_name = df.index.name or 'pd_index' converted, inferred_type, atom = _convert_obj(df.index) atoms[index_name] = atom sdict[index_name] = converted types[index_name] = inferred_type # columns for col in df.columns: converted, inferred_type, atom = _convert_obj(df[col]) atoms[col] = atom sdict[col] = converted types[col] = inferred_type # create table desc desc = OrderedDict() for pos, data in enumerate(atoms.items()): k, atom = data col = tb.Col.from_atom(atom, pos=pos) desc[str(k)] = col # create recarray dtypes = [(str(k), v.dtype) for k, v in list(sdict.items())] recs = np.recarray(shape=len(df), dtype=dtypes) for k, v in list(sdict.items()): recs[str(k)] = v return desc, recs, types def _convert_obj(obj): """ Convert a series to pytables values and Atom """ if isinstance(obj, pd.DatetimeIndex): converted = obj.asi8 return converted, 'datetime64', tb.Int64Atom() elif isinstance(obj, pd.PeriodIndex): converted = obj.values return converted, 'periodindex', tb.Int64Atom() elif isinstance(obj, pd.PeriodIndex): converted = obj.values return converted, 'int64', tb.Int64Atom() inferred_type = lib.infer_dtype(obj) values = np.asarray(obj) if inferred_type == 'datetime64': converted = values.view('i8') return converted, inferred_type, tb.Int64Atom() if inferred_type == 'string': # TODO, am I doing this right? converted = np.array(list(values), dtype=np.bytes_) itemsize = converted.dtype.itemsize # for OBT, can't assume value will be right for future # frame keys if itemsize < MIN_ITEMSIZE: itemsize = MIN_ITEMSIZE converted = converted.astype("S{0}".format(itemsize)) return converted, inferred_type, tb.StringAtom(itemsize) elif inferred_type == 'unicode': # table's don't seem to support objects raise Exception("Unsupported inferred_type {0}".format(inferred_type)) converted = np.asarray(values, dtype='O') return converted, inferred_type, tb.ObjectAtom() elif inferred_type == 'datetime': converted = np.array([(time.mktime(v.timetuple()) + v.microsecond / 1E6) for v in values], dtype=np.float64) return converted, inferred_type, tb.Time64Atom() elif inferred_type == 'integer': converted = np.asarray(values, dtype=np.int64) return converted, inferred_type, tb.Int64Atom() elif inferred_type == 'floating': converted = np.asarray(values, dtype=np.float64) return converted, inferred_type, tb.Float64Atom() raise Exception("Unsupported inferred_type {0} {1}".format(inferred_type, str(values[-5:]))) def _handle(obj): if isinstance(obj, tb.file.File): handle = obj else: handle = obj._v_file return _wrap(handle) def _meta(obj, meta=None): obj = _unwrap(obj) if isinstance(obj, tb.file.File): obj = obj.root return _meta_file(obj, meta) handle = _handle(obj) type = handle.type if type == 'directory': return _meta_dir(obj, meta) return _meta_file(obj, meta) def _meta_file(obj, meta): if meta: obj._v_attrs.pd_meta = meta return try: meta = obj._v_attrs.pd_meta if isinstance(meta, str): meta = pickle.loads(meta) return meta except: return {} def _meta_path(obj): import os.path dir = os.path.dirname(obj._v_file.filename) filename = obj._v_pathname[1:] bits = filename.split('/') bits.append('meta') filename = ".".join(bits) filepath = os.path.join(dir, filename) return filepath def _meta_dir(obj, meta=None): filepath = _meta_path(obj) if meta: with open(filepath, 'wb') as f: pickle.dump(meta, f) return try: with open(filepath, 'rb') as f: meta = pickle.load(f) return meta except: return {} def _name(table): try: name = table.attrs.pandas_name except: name = table._v_name return name def _columns(table): try: columns = list(_meta(table)['columns']) except: # assume first is index columns = table.colnames[1:] return columns def _index_name(obj): if isinstance(obj, pd.DataFrame): return _index_name_frame(obj) return _index_name_table(obj) def _index_name_table(table): try: index_name = _meta(table)['index_name'] except: # assume first is index index_name = table.colnames[0] return index_name def _index_name_frame(df): #TODO support multiindex index = df.index def unconvert_obj(values, type): if type == 'datetime64': return values.astype("M8[ns]") if type == 'string': return values.astype(np.unicode_) return values def unconvert_index(index_values, type): return pdtables._unconvert_index(index_values, type) def create_table(group, name, desc, types, filters=None, expectedrows=None, title=None, columns=None, index_name=None, extra_meta=None): if title is None: title = name with warnings.catch_warnings(): # ignore the name warnings table = group._v_file.createTable(group, name, desc, title, expectedrows=expectedrows, filters=filters) meta = {} meta['columns'] = columns or list(desc.keys()) meta['value_types'] = types meta['index_name'] = index_name meta['name'] = name if extra_meta: meta.update(extra_meta) _meta(table, meta) return table def frame_to_table(name, df, group, filters=None, expectedrows=None, create_only=False, *args, **kwargs): """ create_only will create the table but not appending the DF. Since the machinery for figuring out a table definition and converting values for appending are the same. """ # TODO: potentially could change this to subset the DF so we don't convert and iterate over all # the values hfile = group._v_file # kind of a kludge to get series to work if isinstance(df, pd.Series): series_name = 'vals' df = pd.DataFrame({series_name:df}, index=df.index) desc, recs, types = convert_frame(df) columns = list(df.columns) index_name = df.index.name or 'pd_index' table = create_table(group, name, desc, types, filters=filters, columns=columns, expectedrows=expectedrows, index_name=index_name,*args, **kwargs) if not create_only: table.append(recs) hfile.flush() def table_to_frame(table, where=None): """ Simple converison of table to DataFrame """ if where: try: data = table_where(table, where) except Exception as err: raise Exception("readWhere error: {0} {1}".format(where, str(err))) else: data = table.read() df = table_data_to_frame(data, table) return df def copy_table_def(group, name, orig): table_meta = _meta(orig) desc = orig.description types = table_meta['value_types'] index_name = table_meta['index_name'] columns = table_meta['columns'] expectedrows = orig.nrows table = group.create_table(name, desc, types, columns=columns, index_name=index_name, expectedrows=expectedrows) return table def table_where(table, where): """ Optimized Where """ return table.readWhere(where) def get_table_index(table, index_name=None, types=None): """ Get the pandas index from a pytable """ if index_name is None: index_name = _index_name(table) if index_name is None: #neither passed in or set in meta return None if types is None: meta = _meta(table) types = meta.setdefault('value_types', {}) index_values = table.col(index_name) index = unconvert_index(index_values, types[index_name]) return index def _data_names(data): if hasattr(data, 'keys'): return list(data.keys()) if hasattr(data, 'dtype'): return data.dtype.names def table_data_to_frame(data, table, columns=None): """ Given the pytables.recarray data and the metadata taken from table, create a DataFrame """ columns = columns or _columns(table) index_name = _index_name(table) name = _name(table) meta = _meta(table) types = meta.setdefault('value_types', {}) index = None if index_name: if index_name not in _data_names(data): # handle case where we dont send index with data index_values = table.col(index_name) else: index_values = data[index_name] index = unconvert_index(index_values, types[index_name]) try: columns.remove(index_name) except ValueError: pass sdict = {} for col in columns: # recarrays have only str columns temp = data[str(col)] temp = unconvert_obj(temp, types[col]) sdict[col] = temp df = pd.DataFrame(sdict, columns=columns, index=index) df.name = name return df def _convert_param(param, base_type=None): """ A well not thought out function to convert params to the proper base type. """ if base_type == 'datetime64' and isinstance(param, str): return pd.Timestamp(param).value if isinstance(param, str): # quote the string params param = "{0}".format(param.encode('UTF8')) if isinstance(param, pd.Timestamp): # Timestamp itself is never valid type param = param.value return param class HDFSql(object): """ HDFSql object. Kept in separate obj so we don't polute __getattr__ on table """ def __init__(self, table, mapping=None): # TODO I could coalesce all types/mapping/table into one dict # so HDFSql doesn't need to know about the table self.table = table self.mapping = mapping or {} # assuming meta won't change during object lifetime... self.meta = _meta(table) self.types = self.meta['value_types'] def __getattr__(self, key): key = self.get_valid_key(key) try: type = self.types[key] except: type = None return HDFQuery(key, type) raise AttributeError("No column") def get_valid_key(self, key): if key in self.table.colnames: return key # shortcuts if key == 'index': return _index_name(self.table) if key in self.mapping: return self.mapping[key] raise AttributeError("No column") class HDFQuery(object): def __init__(self, base, base_type=None): self.base = base self.base_type = base_type def base_op(self, other, op): """ quick convert to pytable expression """ base = "{0} {1} {2}".format(self.base, op, _convert_param(other, self.base_type)) return HDFQuery(base, 'statement') __eq__ = lambda self, other: self.base_op(other, "==") __gt__ = lambda self, other: self.base_op(other, ">") __ge__ = lambda self, other: self.base_op(other, ">=") __lt__ = lambda self, other: self.base_op(other, "<") __le__ = lambda self, other: self.base_op(other, "<=") def __and__(self, other): base = "({0}) & ({1})".format(self.base, other) return HDFQuery(base) def __or__(self, other): base = "({0}) | ({1})".format(self.base, other) return HDFQuery(base) def __repr__(self): return str(self.base) def hdf5_obj_repr(self, obj): cls = self.__class__.__name__ return "{0}\n\n{1}".format(cls, repr(obj)) class HDF5Wrapper(object): def __repr__(self): return hdf5_obj_repr(self, self.obj) def keys(self): return list(self.obj._v_children.keys()) def meta(self, key=None, value=None): meta = _meta(self) if key and value: meta[key] = value # store meta _meta(self, meta) return meta if key: # single val return meta[key] return meta def _unwrap(obj): if isinstance(obj, HDF5Wrapper): return obj.obj return obj def _wrap(obj, parent=None): """ Wrap the pytables object with an appropiate Object. Note: since only obj, parent is passed in here, all other params need to be stored in _meta. This is to make creation/reading the same process """ if isinstance(obj, tb.group.RootGroup): return HDF5Group(obj, parent) if isinstance(obj, tb.Group): return HDF5Group(obj, parent) if isinstance(obj, tb.Table): return HDF5Table(obj) if isinstance(obj, tb.file.File): return HDF5Handle(obj) return obj class HDF5Handle(HDF5Wrapper): """ This wraps around the handle object """ def __init__(self, filepath, mode='a', type=None): if isinstance(filepath, tb.file.File): return self._init_from_handle(filepath) self.filepath = filepath self.mode = mode self.obj = None self.obj = self.open(self.mode) meta = _meta(self.obj) if 'type' in meta: assert type is None or meta['type'] == type # these should never mismatch type = meta['type'] if type is None: type = 'file' # default if self.mode != 'r': meta['type'] = type _meta(self.obj, meta) def _init_from_handle(self, handle): self.filepath = handle.filename self.mode = handle.mode self.obj = handle meta = _meta(handle) type = meta.setdefault('type', 'file') if self.mode != 'r': _meta(handle, meta) self.type = type @property def handle(self): return self.obj def keys(self): return list(self.root._v_children.keys()) def reopen(self): self.obj = self.open(self.mode) def open(self, mode="a", warn=True): handle = tb.openFile(self.filepath, mode) return handle def close(self): if self.obj is not None and self.obj.isopen: self.obj.close() def create_group(self, group_name, filters=None, meta=None, root=None): """ Create HDFPanelGroup """ handle = self.handle if root is None: root = handle.root group = handle.createGroup(root, group_name, group_name, filters=filters) if meta is None: meta = {} meta['group_type'] = 'default' meta['filters'] = filters _meta(group, meta) return _wrap(group, self) def __getattr__(self, key): if hasattr(self.obj, key): val = getattr(self.obj, key) return _wrap(val, self) if hasattr(self.obj.root, key): val = getattr(self.obj.root, key) return _wrap(val, self) raise AttributeError() def __getitem__(self, key): if hasattr(self.obj.root, key): val = getattr(self.obj.root, key) return _wrap(val, self) raise KeyError() class HDF5Group(HDF5Wrapper): def __init__(self, group, handle): self.obj = group self.handle = handle self.filters = None @property def group(self): return self.obj def create_table(self, name, desc, types, filters=None, expectedrows=None, title=None, columns=None, index_name=None): table = create_table(self.group, name, desc, types, filters, expectedrows, title, columns, index_name) return _wrap(table) def frame_to_table(self, name, df, *args, **kwargs): group = self.group frame_to_table(name, df, group, *args, **kwargs) def create_group(self, *args, **kwargs): return self.handle.create_group(*args, root=self.obj, **kwargs) def __getitem__(self, key): if hasattr(self.obj, key): val = getattr(self.obj, key) return _wrap(val) raise KeyError() def __getattr__(self, key): if hasattr(self.obj, key): val = getattr(self.obj, key) return _wrap(val) raise AttributeError() class HDF5Table(HDF5Wrapper): def __init__(self, table, mapping=None, cache_index=True): self.obj = table self.mapping = mapping or {} self.cache_index = cache_index self._index = None self._ix = None _columns = None @property def columns(self): if self._columns is None: self._columns = _meta(self.table)['columns'] return self._columns @property def table(self): return self.obj @property def index(self): if self._index is None and self.cache_index: self._index = CachingIndex(self) return self._index def append(self, data, flush=False): if isinstance(data, pd.DataFrame): self._append_frame(data, flush) def _append_frame(self, df, flush=False): desc, recs, types = convert_frame(df) if not np.all(df.columns == self.columns): raise MismatchColumnsError("HDFTable and DataFrame columns are not the same {0} vs {1}".format( df.columns, self.columns)) self.table.append(recs) if flush: self.table.flush() def keys(self): return self.table.colnames @property def sql(self): return HDFSql(self.table, self.mapping) def __getitem__(self, key): # TODO This can be faster if we cache the getWhereList somewhere on disk key = _convert_param(key) if isinstance(key, HDFQuery): return self.query(key) if isinstance(key, slice): data = self.table[key] df = table_data_to_frame(data, self.table) return df if isinstance(key, np.ndarray): if key.dtype == 'bool': return self._getitem_bools(key) if key.dtype == 'int': return self._getitem_ints(key) try: # list of slices if isinstance(key[0], slice): return self._getitem_slices(key) except: pass def _getitem_slices(self, key): parts = [] for slice in key: part = self.table[slice] parts.append(part) data = np.concatenate(parts) df = table_data_to_frame(data, self.table) return df def _getitem_ints(self, key): slices = create_slices(key) return self._getitem_slices(slices) def _getitem_bools(self, key): slices = create_slices(key) return self._getitem_slices(slices) def query(self, query): where = str(query) df = table_to_frame(self.table, where=where) return df def __getattr__(self, key): if hasattr(self.obj, key): val = getattr(self.obj, key) return _wrap(val) raise AttributeError() @property def ix(self): # start splitting out if self._ix is None: self._ix = SimpleIndexer(self) return self._ix def add_index(self, col): column = self.col(col) if not column.is_indexed: print(("Creating Index on {0}".format(col))) num = column.createCSIndex() print(("Index created with {0} vals".format(num))) else: print(("Index already exists {0}. Reindex?".format(col))) def reindex(self, col): column = self.col(col) if column.is_indexed: print(("Re-indexing on {0}".format(col))) column.reIndex() else: print(("{0} is not indexed".format(col))) def reindex_all(self): cols = self.table.colnames for col in cols: self.reindex(col) class CachingIndex(object): def __init__(self, obj): self.obj = obj self._index = get_table_index(obj.table) def __getattr__(self, key): if hasattr(self._index, key): return getattr(self._index, key) raise AttributeError() __eq__ = lambda self, other: self._comparison('__eq__', other) __ne__ = lambda self, other: self._comparison('__ne__', other) __gt__ = lambda self, other: self._comparison('__gt__', other) __ge__ = lambda self, other: self._comparison('__ge__', other) __lt__ = lambda self, other: self._comparison('__lt__', other) __le__ = lambda self, other: self._comparison('__le__', other) def _comparison(self, op, other): # TODO add gt, ge, lt, le comparisons that output IndexSlice. index_op = getattr(self._index, op) if isinstance(self._index, pd.DatetimeIndex): return self._datetime_comparison(index_op, other) result = index_op(other) return result def _datetime_comparison(self, op, other): other =
pd.Timestamp(other)
pandas.Timestamp
"""Test functions in owid.datautils.dataframes module. """ import numpy as np import pandas as pd from pytest import warns from typing import Any, Dict from owid.datautils import dataframes class TestCompareDataFrames: def test_with_large_absolute_tolerance_all_equal(self): assert dataframes.compare( df1=pd.DataFrame({"col_01": [1, 2]}), df2=pd.DataFrame({"col_01": [2, 3]}), absolute_tolerance=1, relative_tolerance=1e-8, ).equals(pd.DataFrame({"col_01": [True, True]})) def test_with_large_absolute_tolerance_all_unequal(self): assert dataframes.compare( df1=pd.DataFrame({"col_01": [1, 2]}), df2=pd.DataFrame({"col_01": [2, 3]}), absolute_tolerance=0.9, relative_tolerance=1e-8, ).equals(pd.DataFrame({"col_01": [False, False]})) def test_with_large_absolute_tolerance_mixed(self): assert dataframes.compare( df1=pd.DataFrame({"col_01": [1, 2]}), df2=pd.DataFrame({"col_01": [2, 3.1]}), absolute_tolerance=1, relative_tolerance=1e-8, ).equals(pd.DataFrame({"col_01": [True, False]})) def test_with_large_relative_tolerance_all_equal(self): assert dataframes.compare( df1=pd.DataFrame({"col_01": [1, 2]}), df2=pd.DataFrame({"col_01": [2, 3]}), absolute_tolerance=1e-8, relative_tolerance=0.5, ).equals(pd.DataFrame({"col_01": [True, True]})) def test_with_large_relative_tolerance_all_unequal(self): assert dataframes.compare( df1=pd.DataFrame({"col_01": [1, 2]}), df2=pd.DataFrame({"col_01": [2, 3]}), absolute_tolerance=1e-8, relative_tolerance=0.3, ).equals(pd.DataFrame({"col_01": [False, False]})) def test_with_large_relative_tolerance_mixed(self): assert dataframes.compare( df1=pd.DataFrame({"col_01": [1, 2]}), df2=pd.DataFrame({"col_01": [2, 3]}), absolute_tolerance=1e-8, relative_tolerance=0.4, ).equals(pd.DataFrame({"col_01": [False, True]})) def test_with_dataframes_of_equal_values_but_different_indexes(self): # Even if dataframes are not identical, compare_dataframes should return all Trues (since it does not care about # indexes, only values). assert dataframes.compare( df1=pd.DataFrame({"col_01": [1, 2], "col_02": ["a", "b"]}).set_index( "col_02" ), df2=pd.DataFrame({"col_01": [1, 2], "col_02": ["a", "c"]}).set_index( "col_02" ), ).equals(pd.DataFrame({"col_01": [True, True]})) def test_with_two_dataframes_with_object_columns_with_nans(self): assert dataframes.compare( df1=pd.DataFrame({"col_01": [np.nan, "b", "c"]}), df2=pd.DataFrame({"col_01": [np.nan, "b", "c"]}), ).equals(pd.DataFrame({"col_01": [True, True, True]})) class TestAreDataFramesEqual: def test_on_equal_dataframes_with_one_integer_column(self): assert dataframes.are_equal( df1=pd.DataFrame({"col_01": [1, 2, 3]}), df2=pd.DataFrame({"col_01": [1, 2, 3]}), )[0] def test_on_almost_equal_dataframes_but_differing_by_one_element(self): assert not dataframes.are_equal( df1=pd.DataFrame({"col_01": [1, 2, 3]}), df2=pd.DataFrame({"col_01": [1, 2, 0]}), )[0] def test_on_almost_equal_dataframes_but_differing_by_type(self): assert not dataframes.are_equal( df1=pd.DataFrame({"col_01": [1, 2, 3]}), df2=pd.DataFrame({"col_01": [1, 2, 3.0]}), )[0] def test_on_equal_dataframes_containing_nans(self): assert dataframes.are_equal( df1=pd.DataFrame({"col_01": [1, 2, np.nan]}), df2=pd.DataFrame({"col_01": [1, 2, np.nan]}), )[0] def test_on_equal_dataframes_containing_only_nans(self): assert dataframes.are_equal( df1=pd.DataFrame({"col_01": [np.nan, np.nan]}), df2=pd.DataFrame({"col_01": [np.nan, np.nan]}), )[0] def test_on_equal_dataframes_both_empty(self): assert dataframes.are_equal(df1=pd.DataFrame(), df2=pd.DataFrame())[0] def test_on_equal_dataframes_with_various_types_of_columns(self): assert dataframes.are_equal( df1=pd.DataFrame( { "col_01": [1, 2], "col_02": [0.1, 0.2], "col_03": ["1", "2"], "col_04": [True, False], } ), df2=pd.DataFrame( { "col_01": [1, 2], "col_02": [0.1, 0.2], "col_03": ["1", "2"], "col_04": [True, False], } ), )[0] def test_on_almost_equal_dataframes_but_columns_sorted_differently(self): assert not dataframes.are_equal( df1=pd.DataFrame( { "col_01": [1, 2], "col_02": [0.1, 0.2], "col_03": ["1", "2"], "col_04": [True, False], } ), df2=pd.DataFrame( { "col_02": [0.1, 0.2], "col_01": [1, 2], "col_03": ["1", "2"], "col_04": [True, False], } ), )[0] def test_on_unequal_dataframes_with_all_columns_different(self): assert not dataframes.are_equal( df1=pd.DataFrame({"col_01": [1, 2], "col_02": [0.1, 0.2]}), df2=pd.DataFrame({"col_03": [0.1, 0.2], "col_04": [1, 2]}), )[0] def test_on_unequal_dataframes_with_some_common_columns(self): assert not dataframes.are_equal( df1=pd.DataFrame({"col_01": [1, 2], "col_02": [0.1, 0.2]}), df2=pd.DataFrame({"col_01": [1, 2], "col_03": [1, 2]}), )[0] def test_on_equal_dataframes_given_large_absolute_tolerance(self): assert dataframes.are_equal( df1=pd.DataFrame({"col_01": [10, 20]}), df2=pd.DataFrame({"col_01": [11, 21]}), absolute_tolerance=1, relative_tolerance=1e-8, )[0] def test_on_unequal_dataframes_given_large_absolute_tolerance(self): assert not dataframes.are_equal( df1=pd.DataFrame({"col_01": [10, 20]}), df2=pd.DataFrame({"col_01": [11, 21]}), absolute_tolerance=0.9, relative_tolerance=1e-8, )[0] def test_on_equal_dataframes_given_large_relative_tolerance(self): assert dataframes.are_equal( df1=pd.DataFrame({"col_01": [1]}), df2=
pd.DataFrame({"col_01": [2]})
pandas.DataFrame
import os from datetime import datetime import time from sklearn.preprocessing import StandardScaler import plotly.express as px import plotly.graph_objs as go import matplotlib.pyplot as plt import seaborn as sns import math import statsmodels.api as sm from statsmodels.tsa.ar_model import AutoReg from statsmodels.tsa.arima_model import ARMA from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.tsa.seasonal import seasonal_decompose from scipy import stats from itertools import product import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import os """ Read the info and train data """ info = pd.read_csv("asset_details.csv") ctrain = pd.read_csv("train.csv") #print(info.head(10)) # Impute missing time value def c_time_sub(asset_id,data=ctrain): df=data[ctrain["Asset_ID"]==asset_id].set_index("timestamp") df=df.reindex(range(df.index[0],df.index[-1]+60,60), method="pad") return df # subgroup BTC(bitcoin) btc = c_time_sub(asset_id=1) # subgroup ETH(Ethereum) eth = c_time_sub(asset_id=6) # subgroup cardano(bitcoin) ada = c_time_sub(asset_id=3) #print("btc",btc.head(10),"eth",eth.head(10),"ADA",ada.head(10)) # time frame selection: from datetime to timestamp totimestamp= lambda s: np.int32(time.mktime(datetime.strptime(s,"%d/%m/%Y").timetuple())) # Log Return def log_return(series, periods=1): return np.log(series).diff(periods=periods) # Data Selection def crypto_sub(asset_id ,data= ctrain ): df = data[data["Asset_ID"]==asset_id].reset_index(drop = True) df['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') df = df.set_index('timestamp') return df #Subgroup Bitcoin btc1=crypto_sub(asset_id=1) #Subgroup Eth eth1=crypto_sub(asset_id=6) #Subgroup Ada ada1=crypto_sub(asset_id=3) """ Data visualization """ info_s=info.sort_values("Weight") fig_index=px.bar(info_s,x="Asset_Name" , y="Weight", color="Weight", title="Popular Cryptocurrency Weight Distribution") #fig_index.show() """ Cryptocurrency Log return correlation plot for 2021 """ # time frame selection: from datetime to timestamp totimestamp= lambda s: np.int32(time.mktime(datetime.strptime(s,"%d/%m/%Y").timetuple())) # Log Return def log_return(series, periods=1): return np.log(series).diff(periods=periods) all2021=pd.DataFrame([]) for asset_id, asset_name in zip(info.Asset_ID, info.Asset_Name): asset=ctrain[ctrain["Asset_ID"]==asset_id].set_index("timestamp") asset=asset.loc[totimestamp("01/01/2021"):totimestamp("21/09/2021")] asset=asset.reindex(range(asset.index[0],asset.index[-1]+60,60), method="pad") lret=log_return(asset.Close.fillna(0))[1:] all2021=all2021.join(lret,rsuffix=asset_name,how="outer") plt.imshow(all2021.corr()); plt.yticks(info.Asset_ID, info.Asset_Name.values) plt.xticks(info.Asset_ID, info.Asset_Name.values,rotation="vertical"); plt.colorbar() """ Closing price Trend in 2021 """ # Impute Missing Time Value def c_time_sub(asset_id, data=ctrain): df=data[ctrain["Asset_ID"]==asset_id].set_index("timestamp") df=df.reindex(range(df.index[0],df.index[-1]+60,60), method="pad") return df #1. Subgroup Bitcoin btc=c_time_sub(asset_id=1) (btc.index[1:] -btc.index[:-1]).value_counts().head() btc.head() #2. Subgroup Ethereum eth=c_time_sub(asset_id=6) (btc.index[1:] -btc.index[:-1]).value_counts().head() eth.head() #3. Subgroup Cardano ada=c_time_sub(asset_id=3) (ada.index[1:] -ada.index[:-1]).value_counts().head() ada.head() # Create time interval for 2021 def dur(start,end,data): df=data.loc[totimestamp(start): totimestamp(end)] return df btc2021= dur(start="01/01/2021", end="21/09/2021", data=btc) eth2021= dur(start="01/01/2021", end="21/09/2021", data=eth) ada2021= dur(start="01/01/2021", end="21/09/2021", data=ada) # Plot the Closing Price for BTC, ETH, ADA f= plt.figure(figsize=(10,12)) def gplot(no , data, price, label, ylabel, color): ax=f.add_subplot(no) plt.plot(data[price], label=label, color=color) plt.legend() plt.xlabel("Time") plt.ylabel(ylabel) return plt gplot(no=311, data=btc, price="Close" , label="BTC 2021 Overall Performance", ylabel="BTC Closing Price", color="Lightskyblue") gplot(no=312, data=eth, price="Close" ,label="ETH 2021 Overall Performance", ylabel="ETH Closing Price", color="Coral") gplot(no=313, data=ada, price="Close" ,label="Cardano 2021 Overall Performance", ylabel="ADA Closing Price", color="khaki") plt.tight_layout() plt.show() # Return rate for BTC,ETH and ADA f= plt.figure(figsize=(10,12)) gplot(no=311, data=btc, price="Target" , label="BTC 2021 15min Return Residue", ylabel="BTC residual return", color="Aqua") gplot(no=312, data=eth, price="Target" ,label="ETH 2021 15min Return Residue", ylabel="ETH residual return", color="Pink") gplot(no=313, data=ada, price="Target" ,label="ADA 2021 15min Return Residue", ylabel="ADA residual return", color="gold") plt.tight_layout() plt.show() def c_chart(data,label): candlestick = go.Figure(data = [go.Candlestick(x =data.index, open = data[('Open')], high = data[('High')], low = data[('Low')], close = data[('Close')])]) candlestick.update_xaxes(title_text = 'Time', rangeslider_visible = True) candlestick.update_layout( title = { 'text': '{:} Candelstick Chart'.format(label), "y":0.8, "x":0.5, 'xanchor': 'center', 'yanchor': 'top'}) candlestick.update_yaxes(title_text = 'Price in USD', ticksuffix = '$') return candlestick btc1.head() btc_candle=c_chart(btc1[-90:], label="BTC Price") btc_candle.show() eth_candle=c_chart(eth1[100888:100988], label="ETH Price ") eth_candle.show() ada_candle=c_chart(eth1[-500:-400], label="ETH Price ") ada_candle.show() # ARIMA Model def mini_data(data): df=data[["Close","Low","High","Open"]] return df btc1_mini=mini_data(btc1) eth1_mini=mini_data(eth1) ada1_mini=mini_data(ada1) btc1.head() # Function to Plot plt.rcParams["figure.figsize"]=(15,7) def season_df(data, label): df=data.resample("M").mean() seasonal_decompose(df.Close).plot() print(label) return plt.show() season_df(data=btc1_mini, label="BTC Seasonal Decomposition") season_df(data=eth1_mini, label="ETH Seasonal Decomposition") #ADA seasonal decompostion season_df(data=ada1_mini, label="ADA Seasonal Decomposition") #Box-Cox Transformation btc_month=btc1_mini.resample("M").mean() btc_month["close_box"], lmbda=stats.boxcox(btc_month.Close) #btc_month['close_box'], lmbda = stats.boxcox(btc_month.Close) qs = range(0, 3) ps = range(0, 3) d=1 parameters = product(ps, qs) parameters_list = list(parameters) len(parameters_list) # Model Selection results = [] best_aic = float("inf") warnings.filterwarnings('ignore') for param in parameters_list: try: model = SARIMAX(btc_month.close_box, order=(param[0], d, param[1])).fit(disp=-1) except ValueError: print('bad parameter combination:', param) continue aic = model.aic if aic < best_aic: best_model = model best_aic = aic best_param = param results.append([param, model.aic]) result_table =
pd.DataFrame(results)
pandas.DataFrame
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Copyright [2020] [Indian Institute of Science, Bangalore] SPDX-License-Identifier: Apache-2.0 """ __name__ = "Instantiate a city and dump instantiations as json" import os, sys import json import pandas as pd import warnings warnings.filterwarnings('ignore') import time #Data-processing Functions from modules.processDemographics import * from modules.processGeoData import * # Functions to instantiate individuals to houses, schools, workplaces and community centres from modules.assignHouses import * from modules.assignSchools import * from modules.assignWorkplaces import * # get the city and target population as inputs def instantiate(city, targetPopulation, averageStudents, averageWorkforce): #create directory to store parsed data path = "data/%s_population%s_students%s"%(city, targetPopulation, averageStudents) if not os.path.exists(path): os.mkdir(path) targetPopulation = int(targetPopulation) averageStudents = int(averageStudents) averageWorkforce = float(averageWorkforce) print("processing data ready ...") start = time.time() cityGeojson = "data/base/"+city+"/city.geojson" cityGeoDF = parse_geospatial_data(cityGeojson) if "cityProfile.json" in os.listdir("data/base/"+city): cityProfile = "data/base/"+city+"/cityProfile.json" ageDistribution, householdDistribution, schoolDistribution, householdSizes, maxWorkplaceDistance = process_city_profile(cityProfile) demographicsData = pd.read_csv("data/base/"+city+"/demographics.csv") housesData =
pd.read_csv("data/base/"+city+"/households.csv")
pandas.read_csv
# http://github.com/timestocome # Attempt to predict nasdaq indexes and find outliers # http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/TestForRandomness_RunsTest.pdf import numpy as np import pandas as pd import matplotlib.pyplot as plt ###################################################################### # load data ######################################################################## # read in data file data =
pd.read_csv('data/nasdaq.csv', parse_dates=True, index_col=0)
pandas.read_csv
# Author: <NAME>, PhD # # Email: <EMAIL> # # # Ref: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html # Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jaccard.html#scipy.spatial.distance.jaccard # Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html # Ref: https://sourceforge.net/p/rdkit/mailman/message/24426410/ # Ref: https://python-graph-gallery.com/197-available-color-palettes-with-matplotlib/ # Ref: https://stackoverflow.com/questions/57568311/matplotlib-scatter-issue-with-python-3-x # Ref: https://www.science-emergence.com/Articles/How-to-create-a-scatter-plot-with-several-colors-in-matplotlib-/ # Ref: https://www.pluralsight.com/guides/choosing-color-palettes # Ref: https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf # Ref: https://htmlcolorcodes.com/color-picker/ # #1179B0 # #F58C30 # #74BB5A # #BC412C # #795B9A # #764A0C # #D37DB5 # #7A7A7A # #B8C449 import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns import sys import pandas as pd import rdkit from rdkit import Chem from scaffold_keys import smiles2bmscaffold, smiles2scaffoldkey, sk_distance #import matplotlib #matplotlib.use('agg') #import matplotlib.pyplot as plt #import seaborn as sns import numpy as np from sklearn.manifold import TSNE import math from knn import get_mol, get_fingerprint def tr_expand_coords (df, source_col, id_col, delimiter): df_orig = df df = df[source_col].str.split(delimiter, expand = True) nr_cols = len (df.columns) columns = [] for i in range (nr_cols): columns.append('Dim_' + str(i + 1)) df.columns = columns df = df.astype('int32') #df[id_col] = df_orig[id_col] df = pd.concat([df_orig, df], axis = 1) return (df) def closest_scaffold (sk_struct, df_space, idx, nr_structures): print ('[*] Processing structure %d out of %d .' % (idx, nr_structures)) df = df_space df['sk_struct'] = sk_struct df['sk_distance'] = df.apply (lambda x: sk_distance (x['sk_struct'], x['scaffold_key']), axis = 1) df = df.sort_values (['sk_distance']) closest_scaffold_order = df['order'].values[0] return (closest_scaffold_order) def get_coordinates (hc, bucket_id): # print (bucket_id) coordinates = [] coordinates = hc.coordinates_from_distance(bucket_id - 1) coordinate_str = '' nr_dim = len (coordinates) for i in range(nr_dim): coordinate_str += str(coordinates[i]) + ';' coordinate_str = coordinate_str[:-1] return (coordinate_str) def altered_tsne (df_structures, str_colname, id_colname, df_space, hc_order, n_dim): hilbert_curve = HilbertCurve(hc_order, n_dim) df_structures = df_structures[[id_colname, str_colname]].copy() df_structures['bms'] = df_structures.apply (lambda x: smiles2bmscaffold (x[str_colname]), axis = 1) # filter out invalid of nonsense/empty scaffolds: df_structures = df_structures[df_structures['bms'] != 'NA'] #df_space['jk'] = 1 df_space = df_space.rename (columns = { 'structure': 'ref_scaffold_smiles' }) nr_scaffolds = df_space.shape[0] bucket_nr = math.pow(math.pow(2, hc_order), n_dim) bucket_size = float(nr_scaffolds / (bucket_nr - 1)) #df_structures['jk'] = 1 df_structures['sk_struct'] = df_structures.apply (lambda x: smiles2scaffoldkey(x['bms'], trailing_inchikey = False), axis = 1) print ('nr_scaffolds: %d, bucket_nr: %d, bucket_size %f' % (nr_scaffolds, bucket_nr, bucket_size)) print ('[*] Number of input structures: %d' % (df_structures.shape[0])) df_structures = df_structures[df_structures['sk_struct'] != 'NA'] print ('[*] Number of structures for which scaffold_key was generated: %d' % (df_structures.shape[0])) #df3 = df_space.merge (df_structures, on = 'jk', how = 'inner') #df = df3.copy() #df = df.reset_index (drop = True) df_structures = df_structures.reset_index() df_structures['idx'] = df_structures.index + 1 nr_structures = df_structures.shape[0] df_structures['closest_order'] = df_structures.apply (lambda x: closest_scaffold (x['sk_struct'], df_space, x['idx'], nr_structures), axis = 1) df_structures['bucket_id'] = df_structures.apply (lambda x: get_bucket_id(x['closest_order'], bucket_size), axis = 1) df_structures['embedded_hs_coordinates'] = df_structures.apply (lambda x: get_hilbert_coordinates(hilbert_curve, x['bucket_id']), axis = 1) df = df_structures #df = df_structures.merge (df_space, left_on = 'closest_order', right_on = 'order', how = 'inner') # ignore -> """ df = df.sort_values(['sk_distance']) df = df.groupby([str_colname], as_index = False).agg ({ id_colname: 'first', 'hs_coordinates': 'first', 'scaffold_id': 'first', 'ref_scaffold_smiles': 'first' }) """ # <- ignore df = tr_expand_coords (df, 'embedded_hs_coordinates', id_colname, delimiter = ';') return (df) def to_bitstring (fp): return (fp.ToBitString()) def generate_fp (df): df['bms_mol'] = df.apply(lambda x: get_mol (x['structure']), axis = 1) df['bms_fp'] = df.apply (lambda x: get_fingerprint(x['bms_mol'], radius = 3, fplength = 2048), axis = 1) df['bms_fp_str'] = df.apply (lambda x: to_bitstring(x['bms_fp']), axis = 1) return (df) def get_fp_np_array (fps): first = True fpl = 0 all_fp = [] fp_array = [] for i in range(len(fps)): fp_array = [] fp = fps[i] if first: fpl = len(fp) first = False else: if len(fp) != fpl: print ('[ERROR] Fingerprint length mismatch. Terminating ...') sys.exit (-1) for j in range(len(fp)): fp_array.append(int(fp[j])) all_fp.append(fp_array) all_fp = np.array(all_fp) return (all_fp) def embed_ref_scaffolds (df_ref_bms, tsne_model): df_ref_bms = generate_fp (df_ref_bms) print (df_ref_bms.head) X = list(df_ref_bms['bms_fp_str']) X = get_fp_np_array (X) #print (X) X_embedded = tsne_model.fit_transform(X) print (X_embedded) ids = list(df_ref_bms['scaffold_id']) df_embedded =
pd.DataFrame ({'scaffold_id': ids, 'Dim_1': X_embedded[:,0], 'Dim_2': X_embedded[:,1]})
pandas.DataFrame
import pandas as pd ''' Data pipeline for ingestion of 311-data datasets General sections: 1. ACQUIRE: Download data from source 2. CLEAN: Perform data cleaning and organization before entering into SQL 3. INGEST: Add data set to SQL database These workflows can be abstracted/encapsulated in order to better generalize across tasks if necessary. ''' ### 1. ACQUIRE ### # Code for automated data download goes here ### 2. CLEAN ### # Load data file from TSV/CSV ### xNOTE: Can encapsulate this workflow and reapply for each data set dfb = pd.read_table('311data2019.tsv',sep='\t') # For now assume data in this folder # Format dates as datetime (Time intensive) dfb['CreatedDate'] =
pd.to_datetime(dfb['CreatedDate'])
pandas.to_datetime
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python [conda env:bandit_38] # language: python # name: conda-env-bandit_38-py # --- # %% language="javascript" # IPython.notebook.kernel.restart() # %% import datetime import xarray as xr import pandas as pd import numpy as np from Bandit.bandit_multi_locations import read_file from pyPRMS.ParamDb import ParamDb # %% hw_data_dir = '/Users/pnorton/Projects/National_Hydrology_Model/datasets/paramdb_v11/headwaters' paramdb_dir = '/Users/pnorton/Projects/National_Hydrology_Model/datasets/paramdb_v11/paramdb_v11_gridmet_CONUS' falcone_dir = '/Users/pnorton/GIS/gagesII_additiona_data/basinchar_and_report_sept_2011' workdir = '/Users/pnorton/Projects/National_Hydrology_Model/datasets/bandit/poi_data' nwis_file = f'{workdir}/*_pois.nc' st_date = datetime.datetime(1980, 1, 1) en_date = datetime.datetime(2019, 12, 31) # %% # xdf = xr.open_dataset(nwis_file, decode_cf=True, engine='netcdf4') poi_xdf = xr.open_mfdataset(nwis_file, decode_cf=True, combine='nested', concat_dim='poi_id', engine='netcdf4') poi_xdf # %% poi_xdf = xr.open_mfdataset(nwis_file, decode_cf=True, combine='nested', concat_dim='poi_id', engine='netcdf4') poi_df = poi_xdf[['poi_name', 'latitude', 'longitude', 'drainage_area', 'drainage_area_contrib']].to_pandas() poi_df.rename(columns={'drainage_area': 'da_obs', 'drainage_area_contrib': 'da_contrib_obs'}, inplace=True) # Compute the correction factor for obs values poi_df['da_ratio_obs'] = poi_df['da_contrib_obs'] / poi_df['da_obs'] # Any NaN values should default to a correction factor of 1.0 poi_df['da_ratio_obs'].fillna(value=1.0, inplace=True) # Sometimes the full da and contributing da are swapped poi_df['da_ratio_obs'] = np.where(poi_df['da_ratio_obs'] > 1.0, 1.0 / poi_df['da_ratio_obs'], poi_df['da_ratio_obs']) poi_df['da_actual_obs'] = poi_df[['da_obs', 'da_contrib_obs']].min(axis=1) poi_df.head() # %% df1 = poi_xdf['discharge'].loc[:, st_date:en_date].to_pandas() # Get POIs which have no missing values in POR missing_obs_cnt_df = df1.isnull().sum(axis=1) missing_obs_cnt_df.name = 'missing_obs' poi_contiguous = missing_obs_cnt_df[missing_obs_cnt_df == 0].index.tolist() print(f'POIs with contiguous observations: {len(poi_contiguous)}') # %% missing_obs_cnt_df.head() # %% # da_nwis = xdf['drainage_area'].to_pandas() # print(da_nwis.head()) # Convert area to acres # da_nwis *= 640. # print(da_nwis.head()) # %% # da_stuff = xdf[['drainage_area', 'drainage_area_contrib']].to_pandas() # %% # da_stuff.head(50) # %% missing_obs_cnt_df['02157490'] # %% [markdown] # ### Load headwater segments # %% segs_by_hw = read_file(f'{hw_data_dir}/hw_segs.csv') segs_list = [] seg_to_hw = {} for kk, vv in segs_by_hw.items(): # kk is the headwater number # segs_list.append(kk) for xx in vv: seg_to_hw[xx] = kk segs_list.append(xx) # Get set of unique segment ID segs_set = set(segs_list) print(f'Total number of segments: {len(segs_list)}') print(f'Unique number of segments: {len(segs_set)}') # %% # %% [markdown] # ### Load parameter database # %% pdb = ParamDb(paramdb_dir, verbose=True, verify=True) poi_to_seg = pdb.parameters.poi_to_seg seg_to_poi = {vv: kk for kk, vv in poi_to_seg.items()} poi_gage_id = pdb.parameters.get('poi_gage_id').data.tolist() seg_cum_area = pdb.parameters.get_dataframe('seg_cum_area') # Create list of POIs in headwater domains hw_poi_list = [] for xx in segs_set: try: hw_poi_list.append(seg_to_poi[xx]) except KeyError: pass # print(f'{xx} has no POI') print(f'Number of POIs in headwater areas: {len(hw_poi_list)}') # Create list of POIs with the NHM drainage area poi_areas = {'poi_id': [], 'hw_id': [], 'da_seg_cum': []} for xx in poi_gage_id: try: if xx in hw_poi_list: # Convert NHM acres to sq. mi. poi_areas['poi_id'].append(xx) poi_areas['hw_id'].append(seg_to_hw[poi_to_seg[xx]]) if poi_to_seg[xx] > 0: poi_areas['da_seg_cum'].append(seg_cum_area.loc[poi_to_seg[xx]].values[0] * 0.0015625) else: # I think this only happened in NHM v1.0 poi_areas['da_seg_cum'].append(0) except KeyError: print(f'{xx} has no POI') # Create a dataframe of NHM drainage by POI poi_areas_df = pd.DataFrame.from_dict(poi_areas) poi_areas_df.set_index('poi_id', inplace=True) poi_areas_df.head() # %% # Merge POI information with seg_cum_area poi_info_df = poi_df poi_info_df = pd.merge(poi_info_df, poi_areas_df, how='inner', left_index=True, right_index=True) poi_info_df = pd.merge(poi_info_df, missing_obs_cnt_df, how='inner', left_index=True, right_index=True) poi_info_df.head() # Add drainage area ratio between nwis/hydat and NHM poi_info_df['da_ratio'] = poi_info_df['da_actual_obs'] / poi_info_df['da_seg_cum'] poi_info_df['da_ratio'] = np.where(poi_info_df['da_ratio'] > 1.0, 1.0 / poi_info_df['da_ratio'], poi_info_df['da_ratio']) # %% poi_info_df.info() # %% # %% # %% [markdown] # ### Get POIs in headwaters that have contiguous records # %% hw_contig = set(hw_poi_list) & set(poi_contiguous) print(f'Number of contiguous POIs in headwaters: {len(hw_contig)}') # %% # %% # %% [markdown] # ### Load Falcone information # %% col_names = ['STAID', 'CLASS', 'HYDRO_DISTURB_INDX'] col_types = [str, str, int] cols = dict(zip(col_names, col_types)) falcone_df = pd.read_excel(open(f'{falcone_dir}/gagesII_sept30_2011_conterm.xlsx', 'rb'), sheet_name='Bas_Classif', usecols=[0, 1], dtype=cols) falcone_df.rename(columns={'STAID': 'poi_id', 'CLASS': 'falcone_class'}, inplace=True) falcone_df.set_index('poi_id', inplace=True) falcone_df.info() falcone_ids = falcone_df.index.tolist() falcone_ref = falcone_df[falcone_df['falcone_class'] == 'Ref'] falcone_ref_ids = falcone_ref.index.tolist() # %% # %% # Headwater POIs that are in Falcone dataset hw_contig_falcone = set(falcone_ids) & hw_contig print(f'Number of headwater POIs also in Falcone: {len(hw_contig_falcone)}') hw_contig_ref = set(falcone_ref_ids) & hw_contig print(f'Number of headwater POIs that are Falcone reference gages: {len(hw_contig_ref)}') # %% len(falcone_ref_ids) # %% poi_info_df = pd.merge(poi_info_df, falcone_df, how='inner', left_index=True, right_index=True) poi_info_df.head() # %% poi_info_df.info() # %% # %% # Remove POIs which are missing more than a given number of obs df_reduce_1 = poi_info_df[poi_info_df['missing_obs'] < 3650] # %% df_reduce_1.info() # %% # Remove POIs that lack a DA df_reduce_2 = df_reduce_1[df_reduce_1['da_actual_obs'].notna()] # %% df_reduce_2.info() # %% df_reduce_3 = df_reduce_2[df_reduce_2['da_ratio'] >= 0.9] # %% df_reduce_3.info() # %% df_reduce_3.head() # %% df_reduce_3.to_csv('/Users/pnorton/tmp/nhm_v11_hwobs_1.csv', sep='\t', index=True) # %% df_reduce_1.loc['02160105'] # %% # %% # %% # %% # %% # %% # %% # %% hw_id_set = set(df_reduce_3['hw_id'].tolist()) # %% len(hw_id_set) # %% # poi_areas_df = pd.DataFrame.from_dict(poi_areas) # poi_areas_df.set_index('poi_id', inplace=True) hwid = {'hw_id': list(hw_id_set)} hwid_df = pd.DataFrame.from_dict(hwid) hwid_df['use_obs'] = 1 hwid_df.set_index('hw_id', inplace=True) hwid_df.head() # %% hwid_df.to_csv('/Users/pnorton/tmp/nhm_v11_hwobsid_1.csv', sep='\t', index=True) # %% hw2_df =
pd.read_csv(f'{hw_data_dir}/hw_hrus.csv')
pandas.read_csv
"""Code used for notebooks and data exploration on https://github.com/oscovida/oscovida""" import datetime import math import os import pytz import time import joblib import numpy as np import pandas as pd import IPython.display from typing import Tuple, Union # choose font - can be deactivated from matplotlib import rcParams from oscovida.data_sources import base_url, hungary_data, jhu_population_url, rki_data, rki_population_url, rki_population_backup_file from oscovida.plotting_helpers import align_twinx_ticks, cut_dates, has_twin, limit_to_smoothed, uncertain_tail rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Tahoma', 'DejaVu Sans', 'Lucida Grande', 'Verdana'] rcParams['svg.fonttype'] = 'none' # need many figures for index.ipynb and germany.ipynb rcParams['figure.max_open_warning'] = 50 from matplotlib.collections import LineCollection from matplotlib.colors import LinearSegmentedColormap from matplotlib.dates import DateFormatter, date2num, MONDAY, WeekdayLocator from matplotlib.ticker import ScalarFormatter, FuncFormatter, FixedLocator from bisect import bisect import matplotlib.pyplot as plt plt.style.use('ggplot') # suppress warning from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() LW = 3 # line width # set up joblib memory to avoid re-fetching files joblib_location = "./cachedir" joblib_memory = joblib.Memory(joblib_location, verbose=0) def compute_binder_link(notebook_name): """Given a string """ root_url = "https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/" return root_url + notebook_name def display_binder_link(notebook_name): url = compute_binder_link(notebook_name) # print(f"url is {url}") IPython.display.display( IPython.display.Markdown(f'[Execute this notebook with Binder]({url})')) def clear_cache(): """Need to run this before new data for the day is created""" joblib_memory.clear() def double_time_exponential(q2_div_q1, t2_minus_t1=None): """ See https://en.wikipedia.org/wiki/Doubling_time""" if t2_minus_t1 is None: t2_minus_t1 = np.ones(q2_div_q1.shape) return t2_minus_t1 * np.log(2) / np.log(q2_div_q1) def report_download(url, df): print(f"Downloaded data: last data point {df.columns[-1]} from {url}") @joblib_memory.cache def fetch_deaths_last_execution(): """Use to remember at what time and date the last set of deaths was downloaded. A bit of a hack as we didn't know how to get this out of joblib. """ return datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S") @joblib_memory.cache def fetch_cases_last_execution(): """See fetch_deaths_last_execution""" return datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S") @joblib_memory.cache def fetch_deaths(): """Download deaths from Johns Hopkins data repository""" url = os.path.join(base_url, "time_series_covid19_" + "deaths" + "_global.csv") df = pd.read_csv(url, index_col=1) report_download(url, df) fetch_deaths_last_execution() return df @joblib_memory.cache def fetch_deaths_US(): """Download deaths for US states from Johns Hopkins data repository""" url = os.path.join(base_url, "time_series_covid19_" + "deaths" + "_US.csv") df = pd.read_csv(url, index_col=1) report_download(url, df) # fetch_deaths_last_execution_() return df @joblib_memory.cache def fetch_cases(): """Download cases from Johns Hopkins data repository""" url = os.path.join(base_url, "time_series_covid19_" + "confirmed" + "_global.csv") df = pd.read_csv(url, index_col=1) report_download(url, df) fetch_cases_last_execution() return df @joblib_memory.cache def fetch_cases_US(): """Download cases for US status from Johns Hopkins data repository""" url = os.path.join(base_url, "time_series_covid19_" + "confirmed" + "_US.csv") df = pd.read_csv(url, index_col=1) report_download(url, df) fetch_cases_last_execution() return df def get_country_data_johns_hopkins(country: str, region: str = None, subregion: str = None) -> Tuple[pd.DataFrame, pd.DataFrame]: """Given a country name, return deaths and cases as a tuple of pandas time series. Works for all (?) countries in the world, or at least those in the Johns Hopkins data set. All rows should contain a datetime index and a value. """ deaths = fetch_deaths() cases = fetch_cases() assert country in deaths.index, f"{country} not in available countries. These are {sorted(deaths.index)}" # Some countries report sub areas (i.e. multiple rows per country) such as China, France, United Kingdom # Denmark. In that case, we sum over all regions (by summing over the relevant rows). tmp = deaths.loc[country] if len(tmp.shape) == 1: # most countries (Germany, Italy, ...) d = tmp elif len(tmp.shape) == 2: # China, France, United Kingdom, ... d = tmp.drop(columns=['Province/State']).sum() d.rename("deaths", inplace=True) else: raise ValueError("Unknown data set structure for deaths {country}:", tmp) tmp = cases.loc[country] if len(tmp.shape) == 1: c = tmp elif len(tmp.shape) == 2: c = tmp.drop(columns=['Province/State']).sum() c.rename("cases", inplace=True) else: raise ValueError("Unknown data set structure for cases {country}:", tmp) # make date string into timeindex d.index = pd.to_datetime(d.index, errors="coerce", format="%m/%d/%y") c.index = pd.to_datetime(c.index, errors="coerce", format="%m/%d/%y") # drop all rows that don't have data # sanity check: how many do we drop? if c.index.isnull().sum() > 3: print(f"about to drop {c.index.isnull().sum()} entries due to NaT in index", c) c = c[c.index.notnull()] if d.index.isnull().sum() > 3: print(f"about to drop {d.index.isnull().sum()} entries due to NaT in index", d) d = d[d.index.notnull()] # check there are no NaN is in the data assert c.isnull().sum() == 0, f"{c.isnull().sum()} NaNs in {c}" assert d.isnull().sum() == 0, f"{d.isnull().sum()} NaNs in {d}" # label data c.name = country + " cases" d.name = country + " deaths" return c, d def get_US_region_list(): """return list of strings with US state names""" deaths = fetch_deaths_US() return list(deaths.groupby("Province_State").sum().index) def get_region_US(state, county=None, debug=False): """Given a US state name and county, return deaths and cases as a tuple of pandas time series. (Johns Hopkins data set) If country is None, then sum over all counties in that state (i.e. return the numbers for the state.) """ if not county is None: raise NotImplementedError("Can only process US states (no counties)") deaths = fetch_deaths_US() cases = fetch_cases_US() assert state in deaths['Province_State'].values, \ f"{state} not in available states. These are {sorted(set(deaths['Province_State']))}" if county is None: tmpd = deaths.groupby('Province_State').sum() d = tmpd.loc[state] tmpc = cases.groupby('Province_State').sum() c = tmpc.loc[state] else: raise NotImplementedError("Can't do counties yet.") # Some countries report sub areas (i.e. multiple rows per country) such as China, France, United Kingdom # Denmark. In that case, we sum over all regions. # make date string into timeindex d.index = pd.to_datetime(d.index, errors="coerce", format="%m/%d/%y") c.index = pd.to_datetime(c.index, errors="coerce", format="%m/%d/%y") # drop all rows that don't have data # sanity check: how many do we drop? if c.index.isnull().sum() > 3: if debug: print(f"about to drop {c.index.isnull().sum()} entries due to NaT in index", c) c = c[c.index.notnull()] if d.index.isnull().sum() > 3: if debug: print(f"about to drop {d.index.isnull().sum()} entries due to NaT in index", d) d = d[d.index.notnull()] # check there are no NaN is in the data assert c.isnull().sum() == 0, f"{c.isnull().sum()} NaNs in {c}" assert d.isnull().sum() == 0, f"{d.isnull().sum()} NaNs in {d}" # label data country = f"US-{state}" c.name = country + " cases" d.name = country + " deaths" return c, d def compose_dataframe_summary(cases, deaths): """Used in per-country template to show data table. Could be extended. Expects series of cases and deaths (time-aligned), combines those in DataFrame and returns it """ df = pd.DataFrame() df["total cases"] = cases df["daily new cases"] = cases.diff() if deaths is not None: df["total deaths"] = deaths df["daily new deaths"] = deaths.diff() # drop first row with nan -> otherwise ints are shows as float in table df = df.dropna().astype(int) # change index: latest numbers shown first df = df[::-1] return df @joblib_memory.cache def fetch_data_germany_last_execution(): return datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S") @joblib_memory.cache def fetch_data_germany(include_last_day=True) -> pd.DataFrame: """Fetch data for Germany from Robert Koch institute and return as a pandas DataFrame with the `Meldedatum` as the index. Data source is https://npgeo-corona-npgeo-de.hub.arcgis.com . The text on that webpage implies that the data comes from the Robert Koch Institute. As an option (`include_last_day`), we can omit the last day with data from the retrieved data sets (see reasoning below in source), as the data is commonly update one day later with more accurate (and typically higher) numbers. """ # outdated: datasource = "https://opendata.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0.csv" datasource = rki_data t0 = time.time() print(f"Please be patient - downloading data from {datasource} ...") germany = pd.read_csv(datasource) delta_t = time.time() - t0 print(f"Completed downloading {len(germany)} rows in {delta_t:.1f} seconds.") ## create new column 'landkreis' and get rid of "SK " and "LK " for this ## - this is too simplistic. We have fields like "Region Hannover" # germany['landkreis'] = germany['Landkreis'].apply(lambda s: s[3:]) # (at least) the last data from the Robert-Koch-Institute (RKI) seems not to be # fully reported the day after. For example, on 3 April, the number of cases # from RKI is well below what is expected. Example: # # From RKI (as of evening of 2020-04-03:) # 2020-03-29 62653 # 2020-03-30 66692 # 2020-03-31 72333 # 2020-04-01 77464 # 2020-04-02 79625 # # From Johns Hopkins (as of evening of 2020-04-03:): # 2020-03-29 62095 # 2020-03-30 66885 # 2020-03-31 71808 # 2020-04-01 77872 # 2020-04-02 84794 # # So we must assume that the RKI data will be corrected later; maybe the next day. # # To make our plots not inaccurate, we'll remove the last data point from the RKI data: g2 = germany.set_index(pd.to_datetime(germany['Meldedatum'])) g2.index.name = 'date' # get rid of last day in data if desired if include_last_day == False: last_day = g2.index.max() sel = g2.index == last_day cleaned = g2.drop(g2[sel].index, inplace=False) else: cleaned = g2 fetch_data_germany_last_execution() return cleaned def pad_cumulative_series_to_yesterday(series): """Given a time series with date as index and cumulative cases/deaths as values: - if the last date in the index is older than yesterday, then - add that date - resample the series with a daily interval, using padding with last known value - and return. Required for <NAME> Data, where only a new data point is provided if the numbers change, but the plotting algorithms need to know that there is no change. Without this padding, the data set looks old as the last plotted data point is the last one for which data is provided. """ now = datetime.datetime.now() rki_tz = pytz.timezone('Europe/Berlin') now_tz = datetime.datetime.now(rki_tz) # remove time zone information from datetime, so we can compare against # datatime dates from get_country_data which has no timezone information # attached. now = now.replace(tzinfo=None) today = now.replace(hour=0, minute=0, second=0, microsecond=0) yesterday = today - pd.Timedelta("1D") last = series.index.max() if last < yesterday: # repeat last data point with index for yesterday series[yesterday] = series[last] series2 = series.resample("1D").fillna(method="ffill") return series2 else: return series def germany_get_region(state=None, landkreis=None, pad2yesterday=False): """ Returns cases and deaths time series for Germany, and a label for the state/kreis. If state is given, return sum of cases (as function of time) in that state (state=Bundesland) If Landkreis is given, return data from just that Landkreis. Landkreis seems unique, so there is no need to provide state and Landkreis. [Should tidy up names here; maybe go to region and subregion in the function argument name, and translate later.] """ germany = fetch_data_germany() """Returns two time series: (cases, deaths)""" assert state or landkreis, "Need to provide a value for state or landkreis" if state and landkreis: raise NotImplementedError("Try to use 'None' for the state.") # TODO: We need to check if this is important. if state: if not state in germany['Bundesland'].values: raise Exception( f"{state} not in available German states. These are " f"{sorted(germany['Bundesland'].drop_duplicates())}" ) land = germany[germany['Bundesland'] == state] land = land.set_index(pd.to_datetime(land['Meldedatum'])) land.index.name = 'date' land.sort_index(inplace=True) # group over multiple rows for the same date # (this will also group over the different landkreise in the state) cases = land["AnzahlFall"].groupby('date').agg('sum').cumsum() region_label = f'Germany-{state}' cases.name = region_label + " cases" # group over all multiple entries per day deaths = land["AnzahlTodesfall"].groupby('date').agg('sum').cumsum() deaths.name = region_label + " deaths" if pad2yesterday: deaths = pad_cumulative_series_to_yesterday(deaths) cases = pad_cumulative_series_to_yesterday(cases) return cases, deaths if landkreis: assert landkreis in germany['Landkreis'].values, \ f"{landkreis} not in available German districts. These are {sorted(germany['Landkreis'].drop_duplicates())}" lk = germany[germany["Landkreis"] == landkreis] lk.index = pd.to_datetime(lk['Meldedatum']) lk.index.name = 'date' lk = lk.sort_index() cases = lk["AnzahlFall"].groupby('date').agg('sum').cumsum() region_label = f'Germany-{landkreis}' cases.name = region_label + ' cases' deaths = lk["AnzahlTodesfall"].groupby('date').agg('sum').cumsum() deaths.name = region_label + ' deaths' if pad2yesterday: deaths = pad_cumulative_series_to_yesterday(deaths) cases = pad_cumulative_series_to_yesterday(cases) return cases, deaths @joblib_memory.cache def fetch_csv_data_from_url(source) -> pd.DataFrame: """Given a URL, fetch the csv using pandas. Put into separate function (from germany_get_population) to avoid repeated download of file (for better performance).""" data = pd.read_csv(source) return data # type: ignore def _germany_get_population_backup_data_raw() -> pd.DataFrame: """Function is not meant to be used directly. Use germany_get_population() instead (which will call this function if required). """ # where is the backup file? rki_population_backup_path = os.path.join(os.path.split(__file__)[0], rki_population_backup_file) population = pd.read_csv(rki_population_backup_path) return population @joblib_memory.cache def germany_get_population() -> pd.DataFrame: """The function's behavior duplicates the one for `germany_get_region()` one.""" source = rki_population_url population = fetch_csv_data_from_url(source) try: population = ( population .set_index('county') ) except KeyError as exception: print(f"Couldn't retrieve population data from RKI ({rki_population_url}). " "Using backup data from August 2020 instead " "(https://github.com/oscovida/oscovida/blob/master/oscovida/backup_data/RKI_Corona_Landkreise.csv)" ) population = _germany_get_population_backup_data_raw() population = ( population .set_index('county') ) population = population.rename(columns={"EWZ": "population"}) # Some tidy up of the data: # see https://github.com/oscovida/oscovida/issues/210 # try to remove this if-clause and see if tests fail: if "LK Saar-Pfalz-Kreis" in population.index: population.loc['LK Saarpfalz-Kreis'] = population.loc['LK Saar-Pfalz-Kreis'] population = population.drop('LK Saar-Pfalz-Kreis') # 27 July 2021 - test fail because name is "Städteregion Aachen'" in actual data ( # i.e. 'StädteRegion' versus 'Städteregion' Aachen) # see https://github.com/oscovida/oscovida/runs/3170956651?check_suite_focus=true#step:6:651 # if "StädteRegion Aachen" in population.index: # population.loc['Städteregion Aachen'] = population.loc['StädteRegion Aachen'] # population = population.drop('StädteRegion Aachen') # # Update: 19 November 2021 # This behaviour now seems reversed, ie Aachen has the same name in population and RKI data now again. # We leave the code above commented out, in case the problem # comes back again. return population # type: ignore @joblib_memory.cache def get_population() -> pd.DataFrame: """Returns a DataFrame with population data""" source = jhu_population_url population = fetch_csv_data_from_url(source) # Only include population of entire countries by excluding rows that belong # to a province or state population = population[population['Province_State'].isnull()] population = population[population["Population"] != 0] population = ( population .groupby('Country_Region') .sum() # Here we sum over individual regions in a country to get the total country population .rename(columns={"Population": "population"}) # Rename Population to population ) return population # type: ignore def population(country: str, region: str = None, subregion: str = None) -> Union[int, None]: """ Returns an `int` which corresponds to the population. Only supports JHU countries and Germany Landkreise so far. Example: $> population(country="Germany", subregion="LK Pinneberg") 316103 $> population(country="France") 65273512 """ df = fetch_csv_data_from_url(jhu_population_url)\ .rename(columns={"Population": "population", "Country_Region": "country", "Province_State": "region", "Admin2": "subregion"}) df = df[df['population'].notnull()] if country in df.country.values: if region is None and subregion is None: # use JHU data return int(df[(df['country'] == country) & (df['region'].isnull()) & (df['subregion'].isnull()) ].population) elif region and subregion: raise NotImplementedError("Cannot use both region and subregion") elif country.casefold() == 'germany': if region or subregion: df = germany_get_population() # XXX Aachen is broken: # if subregion == "StädteRegion Aachen": # subregion = "Städteregion Aachen" if region in df['BL'].values: return int(df[df['BL'] == region].population.sum()) elif subregion in df.index: return int(df.population[subregion]) elif region in df.index: # silently try to use as subregion return int(df.population[region]) else: raise NotImplementedError(f"region={region} subregion={subregion} in neither in available German Lands nor in Landkreises. " \ f"These are {', '.join(sorted(df['BL'].drop_duplicates()))} for Lands and " \ f"{', '.join(sorted(df.index))} for Landkreises.") else: if region or subregion: if region in df['region'].values: combined_key = f"{region}, {country}" if combined_key in df['Combined_Key'].values: # the total population of the region is known return int(df[df['Combined_Key'] == combined_key].population) else: # there's no total population in the dataset, we have to sum up on our own return int(df[df['region'] == region].population.sum()) elif subregion in df['subregion'].values: return int(df.population[subregion]) elif region in df['subregion']: # silently try to use as subregion return int(df.population[subregion]) else: return else: return @joblib_memory.cache def get_incidence_rates_countries(period=14): cases = fetch_cases() deaths = fetch_deaths() cases = cases.groupby(cases.index).sum().astype(int) deaths = deaths.groupby(deaths.index).sum().astype(int) # Sanity checks that the column format is as expected assert all(cases.columns == deaths.columns) assert all(cases.columns[:2] == ["Lat", "Long"]) yesterday = datetime.datetime.now() - datetime.timedelta(days=1) fortnight_ago = yesterday - datetime.timedelta(days=period+1) periods = (fortnight_ago < pd.to_datetime(cases.columns[2:])) & (
pd.to_datetime(cases.columns[2:])
pandas.to_datetime
from os.path import join as opj import numpy as np from pandas import read_sql_query, concat import matplotlib.pylab as plt import seaborn as sns from configs.nucleus_style_defaults import Interrater as ir, NucleusCategories as ncg from interrater.interrater_utils import _maybe_mkdir, \ _connect_to_anchor_db, get_roc_and_auroc_for_who, \ get_precision_recall_for_who CLS = { 'main': [j for j in ncg.main_categs if j != 'AMBIGUOUS'], 'super': [j for j in ncg.super_categs if j != 'AMBIGUOUS'], } def _get_accuracy_stats( dbcon, whoistruth: str, unbiased_is_truth: bool, clsgroup: str, evalset=None): evquery = '' if evalset is None else f'AND "evalset" = "{evalset}"' # read accuracy stats classes = ['detection', 'classification'] + CLS[clsgroup] accuracy = read_sql_query(f""" SELECT * FROM "participant_AccuracyStats_{clsgroup}ClassGroup" WHERE "whoistruth" = "{whoistruth}" AND "unbiased_is_truth" = {0 + unbiased_is_truth} AND "total" > 1 {evquery} AND "participant" IN ({ir._get_sqlite_usrstr_for_who('All')}) AND "class" IN ({ir._get_sqlitestr_for_list(classes)}) ;""", dbcon) return classes, accuracy def plot_participant_accuracy_stats( dbcon, savedir: str, unbiased_is_truth: bool, whoistruth: str, evalset: str, clsgroup: str): """""" truthstr = f'{"UNBIASED_" if unbiased_is_truth else ""}' \ f'{whoistruth}_AreTruth' # noqa where = opj(savedir, truthstr) _maybe_mkdir(where) _maybe_mkdir(opj(where, 'csv')) _maybe_mkdir(opj(where, 'plots')) classes, accuracy = _get_accuracy_stats( dbcon=dbcon, whoistruth=whoistruth, clsgroup=clsgroup, unbiased_is_truth=unbiased_is_truth, evalset=evalset) if whoistruth == 'Ps': tpr, fpr, roc_auc = get_roc_and_auroc_for_who( dbcon=dbcon, evalset=evalset, who='NPs', whoistruth=whoistruth, unbiased_is_truth=unbiased_is_truth, clsgroup=clsgroup) # to save raw values for calculating p-values later overalldf = [] # organize canvas and plot nperrow = 4 if len(classes) <= 4 else 3 nrows = int(np.ceil((len(classes)) / nperrow)) fig, ax = plt.subplots(nrows, nperrow, figsize=(5 * nperrow, 5.5 * nrows)) scprops = {'alpha': 0.75, 's': 9 ** 2, 'edgecolor': 'k'} axno = -1 for axis in ax.ravel(): axno += 1 if axno == len(classes): break cls = classes[axno] isdetection = cls == 'detection' for who in ['NPs', 'JPs', 'SPs']: pstyle = ir.PARTICIPANT_STYLES[who] scprops.update({k: pstyle[k] for k in ['c', 'marker']}) keep = accuracy.loc[:, 'participant'].apply( lambda x: x in ir.who[who]) dfslice = accuracy.loc[keep, :] dfslice = dfslice.loc[dfslice.loc[:, 'class'] == cls, :] overalldf.append(dfslice) # add PR / ROC curve for inferred truth (from NPs) # versus the "actual" inferred truth (from SPs) if (whoistruth == 'Ps') and (who == 'NPs'): lprops = {'color': scprops['c'], 'alpha': 0.7, 'linewidth': 2} if isdetection: # get precision-recalll curve prc = get_precision_recall_for_who( dbcon=dbcon, evalset=evalset, who='NPs', whoistruth=whoistruth, unbiased_is_truth=unbiased_is_truth) # plot axis.plot( prc['recall'], prc['precision'], linestyle='-', label=f'{who} "Truth" (AP=%0.2f)' % prc['AP'], **lprops ) axis.axhline( prc['random'], xmin=0., xmax=1., c='gray', linestyle='--', label='Random guess') elif cls == 'classification': axis.plot( fpr['micro'], tpr['micro'], linestyle='-', # noqa label=f'{who} "Truth" - MicroAvg (AUC=%0.2f)' % roc_auc['micro'], # noqa **lprops ) axis.plot( fpr['macro'], tpr['macro'], linestyle='--', label=f'{who} "Truth" - MacroAvg (AUC=%0.2f)' % roc_auc['macro'], **lprops ) else: axis.plot( fpr[cls], tpr[cls], linestyle='-', # noqa label=f'{who} "Truth" (AUC=%0.2f)' % roc_auc[cls], # noqa **lprops ) # scatter the various participants if isdetection: axis.scatter( dfslice.loc[:, 'recall'], dfslice.loc[:, 'precision'], label=f'{who}', **scprops) else: axis.scatter( 1 - dfslice.loc[:, 'specificity'], dfslice.loc[:, 'sensitivity'], label=f'{who}', **scprops) if isdetection: xlab, ylab = ('Recall (Sensitivity)', 'Precision (PPV)') else: axis.plot( [0., 0.5, 1.0], [0., 0.5, 1.0], c='gray', linestyle='--', label='Random guess') xlab, ylab = ('1 - Specificity (FPR)', 'Sensitivity (TPR)') axis.set_xlim(-0.02, 1.02) axis.set_ylim(-0.02, 1.02) axis.set_aspect('equal') axis.set_title(cls.capitalize(), fontsize=14, fontweight='bold') axis.set_xlabel(xlab, fontsize=11) axis.set_ylabel(ylab, fontsize=11) axis.legend(fontsize=8) # save plot plt.tight_layout(pad=0.3, w_pad=0.5, h_pad=0.3) savename = f'{truthstr}_{evalset}_accuracy_stats' plt.savefig(opj(where, 'plots', savename + '.svg')) plt.close() # save raw numbers overalldf = concat(overalldf, axis=0, ignore_index=True) overalldf.to_csv(opj(where, 'csv', savename + '.csv')) def plot_participant_accuracy_stats_v2( dbcon, savedir: str, unbiased_is_truth: bool, whoistruth: str, clsgroup: str): """""" truthstr = f'{"UNBIASED_" if unbiased_is_truth else ""}' \ f'{whoistruth}_AreTruth' where = opj(savedir, truthstr) _maybe_mkdir(where) _maybe_mkdir(opj(where, 'plots')) classes, accuracy = _get_accuracy_stats( dbcon=dbcon, whoistruth=whoistruth, clsgroup=clsgroup, unbiased_is_truth=unbiased_is_truth) # to save raw values for calculating p-values later overalldf = [] # reorder evalsets tmp = [] for evalset in ir.MAIN_EVALSET_NAMES: tmp.append(accuracy.loc[accuracy.loc[:, 'evalset'] == evalset, :]) accuracy = concat(tmp, axis=0) # organize canvas and plot nperrow = 4 if len(classes) <= 4 else 3 nrows = int(np.ceil((len(classes)) / nperrow)) fig, ax = plt.subplots(nrows, nperrow, figsize=(5 * nperrow, 5.5 * nrows)) scprops = {'alpha': 0.7, 's': 7 ** 2, 'edgecolor': 'k'} axno = -1 for axis in ax.ravel(): axno += 1 if axno == len(classes): break cls = classes[axno] metric = 'F1' if cls == 'detection' else 'MCC' dfslice = accuracy.loc[accuracy.loc[:, 'class'] == cls, :].copy() dfslice.index = dfslice.loc[:, 'participant'] dfslice.loc[:, 'who'] = 'NPs' for who in ['JPs', 'SPs']: for p in dfslice.index: if p in ir.who[who]: dfslice.loc[p, 'who'] = who dfslice.loc[:, 'swho'] = dfslice.loc[:, 'who'].copy() dfslice.loc[dfslice.loc[:, 'swho'] == 'SPs', 'swho'] = 'Ps' dfslice.loc[dfslice.loc[:, 'swho'] == 'JPs', 'swho'] = 'Ps' dfslice = dfslice.loc[:, ['class', 'evalset', metric, 'who', 'swho']] overalldf.append(dfslice) # main boxplots bppr = {'alpha': 0.5} sns.boxplot( ax=axis, data=dfslice, x='evalset', y=metric, hue='swho', palette=[ir.PARTICIPANT_STYLES[who]['c'] for who in ['Ps', 'NPs']], boxprops=bppr, whiskerprops=bppr, capprops=bppr, medianprops=bppr, showfliers=False, # notch=True, bootstrap=5000, ) # scatter each participant group for who in ['NPs', 'JPs', 'SPs']: pstyle = ir.PARTICIPANT_STYLES[who] scprops.update({k: pstyle[k] for k in ['c', 'marker']}) plotme = dfslice.loc[dfslice.loc[:, 'who'] == who, :].copy() offset = -0.2 if who in ['JPs', 'SPs'] else 0.2 plotme.loc[:, 'x'] = plotme.loc[:, 'evalset'].apply( lambda x: ir.MAIN_EVALSET_NAMES.index(x) + offset) plotme = np.array(plotme.loc[:, ['x', metric]]) # add jitter plotme[:, 0] += 0.05 * np.random.randn(plotme.shape[0]) # now scatter axis.scatter( plotme[:, 0], plotme[:, 1], label=f'{who}', **scprops) axis.set_ylim(0., 1.) # axis.set_ylim(0.5, 1.) axis.set_title(cls.capitalize(), fontsize=14, fontweight='bold') axis.set_ylabel(metric.capitalize(), fontsize=11) axis.legend() plt.tight_layout(pad=0.3, w_pad=0.5, h_pad=0.3) savename = f'{truthstr}_evalset_accuracy_comparison' plt.savefig(opj(where, 'plots', savename + '.svg')) plt.close() # save raw numbers overalldf =
concat(overalldf, axis=0, ignore_index=True)
pandas.concat
# Some utilites functions for loading the data, adding features import numpy as np import pandas as pd from functools import reduce from sklearn.preprocessing import MinMaxScaler def load_csv(path): """Load dataframe from a csv file Args: path (STR): File path """ # Load the file df = pd.read_csv(path) # Lowercase column names df.rename(columns=lambda x: x.lower().strip(), inplace=True) return df def fill_missing_values(df): """Fill the missing data points Args: df: Input dataframe Return: the modified dataframe """ # Get datetime col df['ds'] = pd.to_datetime(df['update_time']) + df['hour_id'].astype('timedelta64[h]') pdlist = [] for z in df.zone_code.unique(): zone = df[df['zone_code'] == z] r = pd.date_range(zone.ds.min(), zone.ds.max(), freq='H') ds_range = pd.DataFrame({'ds': r, 'zone_code': z}) zone_merged = ds_range.merge(zone, how='left', on=['ds', 'zone_code']) zone_merged['hour_id'] = zone_merged['ds'].dt.hour # Fill the null values for col in ['bandwidth_total', 'max_user']: for index, row in zone_merged[zone_merged[col].isnull()].iterrows(): shifted_index = index - (24*7) flag = True while flag: fill_val = zone_merged.loc[shifted_index, col] if pd.isnull(fill_val): shifted_index -= (24*7) continue zone_merged.loc[index, col] = fill_val flag = False pdlist.append(zone_merged) out = pd.concat(pdlist) out.drop(['update_time'], axis=1, inplace=True) assert not out.isnull().values.any(), 'Error in asserting. There are still nans.' return out def add_time_features(df, test=False): """Add time features for the data Args: df (DataFrame): Input dataframe Return: the modified df """ if test: df['ds'] = pd.to_datetime(df['update_time']) + df['hour_id'].astype('timedelta64[h]') else: df['update_time'] = df['ds'].dt.date df['dow'] = df['ds'].dt.dayofweek df['month'] = df['ds'].dt.month df['doy'] = df['ds'].dt.dayofyear df['year'] = df['ds'].dt.year df['day'] = df['ds'].dt.day df['week'] = df['ds'].dt.week # df['weekend'] = df['dow'] // 5 == 1 # Normalise day of week col week_period = 7 / (2 * np.pi) df['dow_norm'] = df.dow.values / week_period return df def add_time_periods(df): """Add time periods of a day Args: df (DataFrame): Input dataframe Return: the modified df """ df['hour_id'] =
pd.to_numeric(df['hour_id'])
pandas.to_numeric