prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
''' Load data template. Includes load(), metadata, split_stations(), remove_upcast() and locals().update(). Inputs: load() - data/ctd/<DATE>.cnv metadata() - data/csv/coordenadas_<DATE>.csv ''' # Dependencies import pandas as pd from code.functions import * saida1 = 'data/ctd/stations_25-01-2017_processed.cnv' saida2 = 'data/ctd/stations_27-05-2017_processed.cnv' saida3 = 'data/ctd/stations_08-07-2017_processed.cnv' saida4 = 'data/ctd/stations_01-10-2017_processed.cnv' df = pd.read_csv('data/csv/coordenadas.csv', sep=';') dates = set(df['Data']) dates = list(dates) ''' Saída 1 - 25-01-2017 ''' # Loading the data hd1, hd2, variables, datapoints, alldata = load(saida1) # Loading metadata today = dates[2] stations = list(df.loc[df['Data'] == today]['Ponto']) lat = list(df.loc[df['Data'] == today]['Lat']) lon = list(df.loc[df['Data'] == today]['Lon']) [i.insert(3, i[2]) for i in [stations, lat, lon]] # Splitting data into different stations d = split_stations(datapoints, stations, variables, lat, lon) # Removing upcasts for st in d: d[st] = remove_upcast(d[st]) # Creating variables with stations from the dictionary locals().update(d) # Let's put them all into lists st_list = list(d.values()) # Picking out surface and bottom temperatures top, bot, names = [], [], [] for i in st_list: top.append(i['sal00:'][0]) bot.append(i['sal00:'][len(i)-1]) names.append(i['STATION'][0]) top, bot, names = pd.Series(top), pd.Series(bot), pd.Series(names) df2 = pd.DataFrame([top, bot, names]) df2 = df2.transpose() df2.to_csv('./25-jan-sal.csv') ''' Saída 2 - 27-05-2017 ''' # Loading the data hd1, hd2, variables, datapoints, alldata = load(saida2) # Loading metadata today = dates[0] stations = list(df.loc[df['Data'] == today]['Ponto']) lat = list(df.loc[df['Data'] == today]['Lat']) lon = list(df.loc[df['Data'] == today]['Lon']) # This particular day (27-05) there was a test station before sampling. stations, lat, lon = ['test'] + stations, ['test'] + lat, ['test'] + lon # Splitting data into different stations d = split_stations(datapoints, stations, variables, lat, lon) # Removing upcasts for st in d: d[st] = remove_upcast(d[st]) # Creating variables with stations from the dictionary locals().update(d) # Let's put them all into lists st_list = list(d.values()) top, bot, names = [], [], [] for i in st_list: top.append(i['sal00:'][0]) bot.append(i['sal00:'][len(i)-1]) names.append(i['STATION'][0]) top, bot, names = pd.Series(top), pd.Series(bot), pd.Series(names) df2 = pd.DataFrame([top, bot, names]) df2 = df2.transpose() df2.to_csv('./27-may-sal.csv') ''' Saída 3 - 08-07-2017 ''' # Loading the data hd1, hd2, variables, datapoints, alldata = load(saida3) # Loading metadata today = dates[3] stations = list(df.loc[df['Data'] == today]['Ponto']) lat = list(df.loc[df['Data'] == today]['Lat']) lon = list(df.loc[df['Data'] == today]['Lon']) # Splitting data into different stations d = split_stations(datapoints, stations, variables, lat, lon) # Removing upcasts for st in d: d[st] = remove_upcast(d[st]) # Creating variables with stations from the dictionary locals().update(d) st_list = list(d.values()) top, bot, names = [], [], [] for i in st_list: top.append(i['sal00:'][0]) bot.append(i['sal00:'][len(i)-1]) names.append(i['STATION'][0]) top, bot, names = pd.Series(top), pd.Series(bot), pd.Series(names) df2 = pd.DataFrame([top, bot, names]) df2 = df2.transpose() df2.to_csv('./08-jul-sal.csv') ''' Saída 4 - 01-10-2017 ''' # Loading the data hd1, hd2, variables, datapoints, alldata = load(saida4) # Loading metadata today = dates[1] stations = list(df.loc[df['Data'] == today]['Ponto']) lat = list(df.loc[df['Data'] == today]['Lat']) lon = list(df.loc[df['Data'] == today]['Lon']) [i.insert(3, i[2]) for i in [stations, lat, lon]] # Splitting data into different stations d = split_stations(datapoints, stations, variables, lat, lon) # Removing upcasts for st in d: d[st] = remove_upcast(d[st]) # Creating variables with stations from the dictionary locals().update(d) st_list = list(d.values()) top, bot, names = [], [], [] for i in st_list: top.append(i['sal00:'][0]) bot.append(i['sal00:'][len(i)-1]) names.append(i['STATION'][0]) top, bot, names =
pd.Series(top)
pandas.Series
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with tm.assert_raises_regex(ValueError, msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp = Categorical(['A', 'B', 'B', 'B', np.nan]) tm.assert_categorical_equal(res, exp) val1 = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.NaT] val2 = [pd.NaT, pd.Timestamp('2011-01-01'), pd.Timestamp('2011-02-01')] res = union_categoricals([pd.Categorical(val1), pd.Categorical(val2)]) exp = Categorical(val1 + val2, categories=[pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.Timestamp('2011-02-01')]) tm.assert_categorical_equal(res, exp) # all NaN res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical(['X'])]) exp = Categorical([np.nan, np.nan, 'X']) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical([np.nan, np.nan])]) exp = Categorical([np.nan, np.nan, np.nan, np.nan]) tm.assert_categorical_equal(res, exp) def test_union_categoricals_empty(self): # GH 13759 res = union_categoricals([pd.Categorical([]), pd.Categorical([])]) exp = Categorical([]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([]), pd.Categorical([1.0])]) exp = Categorical([1.0]) tm.assert_categorical_equal(res, exp) # to make dtype equal nanc = pd.Categorical(np.array([np.nan], dtype=np.float64)) res = union_categoricals([nanc, pd.Categorical([])]) tm.assert_categorical_equal(res, nanc) def test_union_categorical_same_category(self): # check fastpath c1 = Categorical([1, 2, 3, 4], categories=[1, 2, 3, 4]) c2 = Categorical([3, 2, 1, np.nan], categories=[1, 2, 3, 4]) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, 4, 3, 2, 1, np.nan], categories=[1, 2, 3, 4]) tm.assert_categorical_equal(res, exp) c1 = Categorical(['z', 'z', 'z'], categories=['x', 'y', 'z']) c2 = Categorical(['x', 'x', 'x'], categories=['x', 'y', 'z']) res = union_categoricals([c1, c2]) exp = Categorical(['z', 'z', 'z', 'x', 'x', 'x'], categories=['x', 'y', 'z']) tm.assert_categorical_equal(res, exp) def test_union_categoricals_ordered(self): c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) res = union_categoricals([c1, c1]) exp = Categorical([1, 2, 3, 1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, np.nan, 3, 2], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_ignore_order(self): # GH 15219 c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) res = union_categoricals([c1, c1], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c1, c1], ignore_order=False) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, np.nan, 3, 2]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c2, c1], ignore_order=True, sort_categories=True) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([4, 5, 6], ordered=True) result = union_categoricals([c1, c2], ignore_order=True) expected = Categorical([1, 2, 3, 4, 5, 6]) tm.assert_categorical_equal(result, expected) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_sort(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['a', 'b', 'c', 'x', 'y', 'z']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['a', 'b'], categories=['c', 'a', 'b']) c2 = Categorical(['b', 'c'], categories=['c', 'a', 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 = Categorical(['a', 'b'], categories=['a', 'b', 'c']) c2 = Categorical(['b', 'c'], categories=['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['x', np.nan]) c2 = Categorical([np.nan, 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', np.nan, np.nan, 'b'], categories=['b', 'x']) tm.assert_categorical_equal(result, expected) c1 = Categorical([np.nan]) c2 = Categorical([np.nan]) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical([np.nan, np.nan], categories=[]) tm.assert_categorical_equal(result, expected) c1 = Categorical([]) c2 = Categorical([]) result = union_categoricals([c1, c2], sort_categories=True) expected =
Categorical([])
pandas.Categorical
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Nov 20 16:00:06 2018 @author: nmei """ if __name__ == "__main__": import os import pandas as pd import numpy as np import utils import seaborn as sns sns.set_style('whitegrid') sns.set_context('poster') from matplotlib import pyplot as plt from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm from itertools import combinations import pymc3 as pm import theano.tensor as tt # define result saving directory dir_saving = 'consective_transitions' if not os.path.exists(dir_saving): os.makedirs(dir_saving) ############################################################################################ df1 = pd.read_csv('e1.csv').iloc[:,1:] df = df1.copy() # select the columns that I need df = df[['blocks.thisN', 'trials.thisN', 'key_resp_2.keys', 'resp.corr', 'resp_mrating.keys', 'participant',]] # rename the columns df.columns = ['blocks', 'trials', 'awareness', 'correctness', 'confidence', 'participant',] # use success, awareness, and confidence as features np.random.seed(12345) # use judgement features feature_names = [ 'correctness', 'awareness', 'confidence', ] target_name = 'awareness' experiment = 'e1' # for some of the variables, we need to rescale them to a more preferable range like 0-1 name_for_scale = ['awareness'] # ['ah', 'av', 'bj', 'cm', 'db', 'ddb', 'fcm', 'kf', 'kk', 'ml', 'qa','sk', 'yv'] # get one of the participants' data transition_matrix,sub = [], [] transition_count = [] for participant,df_sub in df.groupby('participant'): awareness = df_sub['awareness'].values - 1 with pm.Model() as model: a = pm.Beta('a', 0.5, 0.5) yl = pm.Bernoulli('yl', a, observed=awareness) trace = pm.sample(1000, step=pm.SMC(), random_seed=42) # for 1-back temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'), normalize=1) transition_matrix.append(temp.get_values().flatten()) temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'),) transition_count.append(temp.get_values().flatten()) sub.append(participant) df1_transition = pd.DataFrame(transition_matrix,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df1_count = pd.DataFrame(transition_count,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df1_transition['experiment'] = 1 df1_transition['sub'] = sub df1_count['experiment'] = 1 df1_count['sub'] = sub ############################################################################## df2 = pd.read_csv('e2.csv').iloc[:,1:] df = df2.copy() # select the columns that I need df = df[['blocks.thisN', 'trials.thisN', 'key_resp_2.keys', 'resp.corr', 'resp_mrating.keys', 'participant',]] # rename the columns df.columns = ['blocks', 'trials', 'awareness', 'correctness', 'confidence', 'participant',] # use success, awareness, and confidence as features np.random.seed(12345) # use judgement features feature_names = [ 'correctness', 'awareness', 'confidence', ] target_name = 'awareness' experiment = 'e2' # for some of the variables, we need to rescale them to a more preferable range like 0-1 name_for_scale = ['awareness'] transition_matrix,sub = [],[] transition_count = [] for participant,df_sub in df.groupby('participant'): df_sub = df_sub[df_sub['awareness'] != 3] # for 1-back temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'), normalize=1) transition_matrix.append(temp.get_values().flatten()) temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'),) transition_count.append(temp.get_values().flatten()) sub.append(participant) df2_transition = pd.DataFrame(transition_matrix,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df2_count = pd.DataFrame(transition_count,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df2_transition['experiment'] = 2 df2_transition['sub'] = sub df2_count['experiment'] = 2 df2_count['sub'] = sub ############################################################################## df3 = pd.read_csv('e3.csv').iloc[:,1:] df = df3.copy() # select the columns that I need df = df[['blocks.thisN', 'trials.thisN', 'key_resp_2.keys', 'resp.corr', 'resp_mrating.keys', 'participant',]] # rename the columns df.columns = ['blocks', 'trials', 'awareness', 'correctness', 'confidence', 'participant',] # use success, awareness, and confidence as features np.random.seed(12345) # use judgement features feature_names = [ 'correctness', 'awareness', 'confidence', ] target_name = 'awareness' experiment = 'e3' # for some of the variables, we need to rescale them to a more preferable range like 0-1 name_for_scale = ['awareness'] transition_matrix,sub = [],[] transition_count = [] for participant,df_sub in df.groupby('participant'): df_sub = df_sub[df_sub['awareness'] != 3] # for 1-back temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'), normalize=1) transition_matrix.append(temp.get_values().flatten()) temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'),) transition_count.append(temp.get_values().flatten()) sub.append(participant) df3_transition = pd.DataFrame(transition_matrix,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df3_count = pd.DataFrame(transition_count,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df3_transition['experiment'] = 3 df3_transition['sub'] = sub df3_count['experiment'] = 3 df3_count['sub'] = sub ################################################################################## df_transition =
pd.concat([df1_transition,df2_transition,df3_transition])
pandas.concat
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy.testing as npt import os.path import pandas as pd import pkgutil import sys from tabulate import tabulate import unittest try: from StringIO import StringIO except ImportError: from io import StringIO, BytesIO # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # print("parent_dir") # print(parent_dir) # sys.path.append(parent_dir) from ..trex_exe import Trex, TrexOutputs print("sys.path") print(sys.path) # load transposed qaqc data for inputs and expected outputs # this works for both local nosetests and travis deploy # input details try: if __package__ is not None: csv_data = pkgutil.get_data(__package__, 'trex_qaqc_in_transpose.csv') data_inputs = BytesIO(csv_data) pd_obj_inputs =
pd.read_csv(data_inputs, index_col=0, engine='python')
pandas.read_csv
from warnings import catch_warnings, simplefilter import numpy as np from numpy.random import randn import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna) from pandas.util import testing as tm @pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") class TestMultiIndexSetItem(object): def test_setitem_multiindex(self): with catch_warnings(record=True): for index_fn in ('ix', 'loc'): def assert_equal(a, b): assert a == b def check(target, indexers, value, compare_fn, expected=None): fn = getattr(target, index_fn) fn.__setitem__(indexers, value) result = fn.__getitem__(indexers) if expected is None: expected = value compare_fn(result, expected) # GH7190 index = MultiIndex.from_product([np.arange(0, 100), np.arange(0, 80)], names=['time', 'firm']) t, n = 0, 2 df = DataFrame(np.nan, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=0, compare_fn=assert_equal) df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=1, compare_fn=assert_equal) df = DataFrame(columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=2, compare_fn=assert_equal) # gh-7218: assigning with 0-dim arrays df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=np.array(3), compare_fn=assert_equal, expected=3, ) # GH5206 df = DataFrame(np.arange(25).reshape(5, 5), columns='A,B,C,D,E'.split(','), dtype=float) df['F'] = 99 row_selection = df['A'] % 2 == 0 col_selection = ['B', 'C'] with catch_warnings(record=True): df.ix[row_selection, col_selection] = df['F'] output = DataFrame(99., index=[0, 2, 4], columns=['B', 'C']) with catch_warnings(record=True): tm.assert_frame_equal(df.ix[row_selection, col_selection], output) check(target=df, indexers=(row_selection, col_selection), value=df['F'], compare_fn=tm.assert_frame_equal, expected=output, ) # GH11372 idx = MultiIndex.from_product([ ['A', 'B', 'C'], date_range('2015-01-01', '2015-04-01', freq='MS')]) cols = MultiIndex.from_product([ ['foo', 'bar'], date_range('2016-01-01', '2016-02-01', freq='MS')]) df = DataFrame(np.random.random((12, 4)), index=idx, columns=cols) subidx = MultiIndex.from_tuples( [('A', Timestamp('2015-01-01')), ('A', Timestamp('2015-02-01'))]) subcols = MultiIndex.from_tuples( [('foo', Timestamp('2016-01-01')), ('foo', Timestamp('2016-02-01'))]) vals = DataFrame(np.random.random((2, 2)), index=subidx, columns=subcols) check(target=df, indexers=(subidx, subcols), value=vals, compare_fn=tm.assert_frame_equal, ) # set all columns vals = DataFrame( np.random.random((2, 4)), index=subidx, columns=cols) check(target=df, indexers=(subidx, slice(None, None, None)), value=vals, compare_fn=tm.assert_frame_equal, ) # identity copy = df.copy() check(target=df, indexers=(df.index, df.columns), value=df, compare_fn=tm.assert_frame_equal, expected=copy) def test_multiindex_setitem(self): # GH 3738 # setting with a multi-index right hand side arrays = [np.array(['bar', 'bar', 'baz', 'qux', 'qux', 'bar']), np.array(['one', 'two', 'one', 'one', 'two', 'one']), np.arange(0, 6, 1)] df_orig = DataFrame(np.random.randn(6, 3), index=arrays, columns=['A', 'B', 'C']).sort_index() expected = df_orig.loc[['bar']] * 2 df = df_orig.copy() df.loc[['bar']] *= 2 tm.assert_frame_equal(df.loc[['bar']], expected) # raise because these have differing levels with pytest.raises(TypeError): df.loc['bar'] *= 2 # from SO # http://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation df_orig = DataFrame.from_dict({'price': { ('DE', 'Coal', 'Stock'): 2, ('DE', 'Gas', 'Stock'): 4, ('DE', 'Elec', 'Demand'): 1, ('FR', 'Gas', 'Stock'): 5, ('FR', 'Solar', 'SupIm'): 0, ('FR', 'Wind', 'SupIm'): 0 }}) df_orig.index = MultiIndex.from_tuples(df_orig.index, names=['Sit', 'Com', 'Type']) expected = df_orig.copy() expected.iloc[[0, 2, 3]] *= 2 idx = pd.IndexSlice df = df_orig.copy() df.loc[idx[:, :, 'Stock'], :] *= 2 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[idx[:, :, 'Stock'], 'price'] *= 2 tm.assert_frame_equal(df, expected) def test_multiindex_assignment(self): # GH3777 part 2 # mixed dtype df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), columns=list('abc'), index=[[4, 4, 8], [8, 10, 12]]) df['d'] = np.nan arr = np.array([0., 1.]) with catch_warnings(record=True): df.ix[4, 'd'] = arr tm.assert_series_equal(df.ix[4, 'd'], Series(arr, index=[8, 10], name='d')) # single dtype df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), columns=list('abc'), index=[[4, 4, 8], [8, 10, 12]]) with catch_warnings(record=True): df.ix[4, 'c'] = arr exp = Series(arr, index=[8, 10], name='c', dtype='float64') tm.assert_series_equal(df.ix[4, 'c'], exp) # scalar ok with catch_warnings(record=True): df.ix[4, 'c'] = 10 exp = Series(10, index=[8, 10], name='c', dtype='float64') tm.assert_series_equal(df.ix[4, 'c'], exp) # invalid assignments with pytest.raises(ValueError): with catch_warnings(record=True): df.ix[4, 'c'] = [0, 1, 2, 3] with pytest.raises(ValueError): with catch_warnings(record=True): df.ix[4, 'c'] = [0] # groupby example NUM_ROWS = 100 NUM_COLS = 10 col_names = ['A' + num for num in map(str, np.arange(NUM_COLS).tolist())] index_cols = col_names[:5] df = DataFrame(np.random.randint(5, size=(NUM_ROWS, NUM_COLS)), dtype=np.int64, columns=col_names) df = df.set_index(index_cols).sort_index() grp = df.groupby(level=index_cols[:4]) df['new_col'] = np.nan f_index = np.arange(5) def f(name, df2): return Series(np.arange(df2.shape[0]), name=df2.index.values[0]).reindex(f_index) # TODO(wesm): unused? # new_df = pd.concat([f(name, df2) for name, df2 in grp], axis=1).T # we are actually operating on a copy here # but in this case, that's ok for name, df2 in grp: new_vals = np.arange(df2.shape[0]) with catch_warnings(record=True): df.ix[name, 'new_col'] = new_vals def test_series_setitem( self, multiindex_year_month_day_dataframe_random_data): ymd = multiindex_year_month_day_dataframe_random_data s = ymd['A'] s[2000, 3] = np.nan assert isna(s.values[42:65]).all() assert notna(s.values[:42]).all() assert notna(s.values[65:]).all() s[2000, 3, 10] = np.nan assert isna(s[49]) def test_frame_getitem_setitem_boolean( self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data df = frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) tm.assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2)
tm.assert_almost_equal(df.values, values)
pandas.util.testing.assert_almost_equal
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core import ops from pandas.errors import NullFrequencyError from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = pd.timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected =
TimedeltaIndex(['1 Day', '12 Hours'])
pandas.TimedeltaIndex
import pandas as pd from isitfit.utils import logger class TagsImplierHelper: def __init__(self, names_df): self.names_df = names_df self.names_original = names_df.Name.tolist() def freq_list(self): logger.info("Step 1: calculate word frequencies") # lower-case self.names_lower = [x.lower() for x in self.names_original] # count single word frequencies # https://programminghistorian.org/en/lessons/counting-frequencies import re #names_split = (' '.join(names_original)).split(' ') #words = re.findall("\w+", "the quick person did not realize his speed and the quick person bumped") names_split = re.findall("\w+", ' '.join(self.names_lower)) # Counting bigrams # https://stackoverflow.com/a/12488794/4126114 from itertools import tee, islice from collections import Counter def ngrams(lst, n): tlst = lst while True: a, b = tee(tlst) l = tuple(islice(a, n)) if len(l) == n: yield l next(b) tlst = b else: break def get_freq(n): # names_freq = dict(Counter(zip(names_split, islice(names_split, n-1, None)))) names_freq = dict(Counter(ngrams(names_split, n))) names_freq = [(k,v) for k,v in names_freq.items()] return names_freq self.freq_1w = get_freq(1) self.freq_2w = get_freq(2) def freq_df(self): logger.info("Step 2: convert word frequencies to pandas dataframe") # convert to pandas dataframe def min_is_2(df_in): return df_in[df_in.n >= 2] # minimum occurence is 2 def freq2df(freq_in, l): df_freq_in = pd.DataFrame(freq_in, columns=['word_tuple', 'n']) df_freq_in = min_is_2(df_freq_in) df_freq_in['l'] = l return df_freq_in df_freq_1w = freq2df(self.freq_1w, 1) df_freq_1w['word_1'] = df_freq_1w.word_tuple.apply(lambda x: x[0]) df_freq_1w['word_2'] = None df_freq_2w = freq2df(self.freq_2w, 2) df_freq_2w['word_1'] = df_freq_2w.word_tuple.apply(lambda x: x[0]) df_freq_2w['word_2'] = df_freq_2w.word_tuple.apply(lambda x: x[1]) # print("##########") # print("before filter") # print("1w") # print(df_freq_1w) # print("") # print("2w") # print(df_freq_2w) # print("##########") # filter out 1-grams if their 2-gram counterpart is superior df_freq_2w = df_freq_2w.merge(df_freq_1w[['word_1', 'n']], how='left', left_on='word_1', right_on='word_1', suffixes=['', '.1w=2w.word1']) df_freq_2w = df_freq_2w.merge(df_freq_1w[['word_1', 'n']], how='left', left_on='word_2', right_on='word_1', suffixes=['', '.1w=2w.word2']) df_freq_2w = df_freq_2w.drop(columns=['word_1.1w=2w.word2']) df_freq_2w = df_freq_2w[(df_freq_2w.n >= df_freq_2w['n.1w=2w.word1']) & (df_freq_2w.n >= df_freq_2w['n.1w=2w.word2'])] # print("") # print("after filtering 2w") # print(df_freq_2w) # drop from 1w the components that were used in the 2w df_freq_1w = df_freq_1w[~(df_freq_1w.word_1.isin(df_freq_2w.word_1) | df_freq_1w.word_1.isin(df_freq_2w.word_2))] # drop columns df_freq_2w = df_freq_2w.drop(columns=['n.1w=2w.word1', 'n.1w=2w.word2']) # concatenate into 1 df df_freq_all =
pd.concat([df_freq_1w,df_freq_2w], axis=0)
pandas.concat
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with tm.assert_raises_regex(ValueError, msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp = Categorical(['A', 'B', 'B', 'B', np.nan]) tm.assert_categorical_equal(res, exp) val1 = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.NaT] val2 = [pd.NaT, pd.Timestamp('2011-01-01'), pd.Timestamp('2011-02-01')] res = union_categoricals([pd.Categorical(val1), pd.Categorical(val2)]) exp = Categorical(val1 + val2, categories=[
pd.Timestamp('2011-01-01')
pandas.Timestamp
import pandas as pd import numpy as np import math import cmath import pickle joints = ['Nose','Neck','Right_shoulder','Right_elbow','Right_wrist','Left_shoulder', 'Left_elbow','Left_wrist','Right_hip','Right_knee','Right_ankle','Left_hip', 'Left_knee','Left_ankle','Right_eye','Left_eye','Right_ear','Left_ear'] def calculateAngle2d(a, b, c): x1, y1 = a x2, y2 = b #midpoint x3, y3 = c ABx = x1 - x2 ABy = y1 - y2 BCx = x3 - x2 BCy = y3 - y2 dotProduct = ABx * BCx + ABy * BCy # print(dotProduct) magnitudeAB = math.sqrt(ABx * ABx + ABy * ABy) # print(magnitudeAB) magnitudeBC = math.sqrt(BCx * BCx + BCy * BCy) # print(magnitudeBC) angle = math.acos(dotProduct/(magnitudeAB*magnitudeBC)) angle = (angle * 180) / math.pi # return(round(abs(angle), 4)) return angle def calculateAngle3d(p1, p2, p3): x1, y1, z1 = p1 x2, y2, z2 = p2 x3, y3, z3 = p3 ABx = x1 - x2 ABy = y1 - y2 ABz = z1 - z2 BCx = x3 - x2 BCy = y3 - y2 BCz = z3 - z2 dotProduct = ABx * BCx +ABy * BCy +ABz * BCz magnitudeAB = ABx * ABx +ABy * ABy +ABz * ABz magnitudeBC = BCx * BCx +BCy * BCy +BCz * BCz angle = dotProduct if (magnitudeAB == 0 or magnitudeBC == 0): angle = 0.0 else: angle = cmath.acos(angle/math.sqrt(magnitudeAB *magnitudeBC)) angle = (angle * 180) / math.pi return(round(abs(angle), 4)) def calculateDistance(p1, p2): squared_dist = np.sum((p1-p2)**2, axis=0) dist = np.sqrt(squared_dist) return dist def get_init_pos_from_pkl(): with open('initial3d_by_mean.pkl', 'rb') as file: init_pos3d = pickle.load(file) with open('initial3d_by_median.pkl', 'rb') as file: init_pos3d_median = pickle.load(file) with open('initial2d_by_mean.pkl', 'rb') as file: init_pos2d = pickle.load(file) with open('initial2d_by_median.pkl', 'rb') as file: init_pos2d_median = pickle.load(file) with open('initial2d_dis_by_mean.pkl', 'rb') as file: init_dis2d = pickle.load(file) with open('initial2d_dis_by_median.pkl', 'rb') as file: init_dis2d_median = pickle.load(file) return init_dis2d, init_dis2d_median, init_pos2d, init_pos2d_median, init_pos3d, init_pos3d_median def get_init_pos_from_csv(): df = pd.read_csv("C:\\Users\\Testing\\Downloads\\reachstepout_position3d_new.csv") df2 =
pd.read_csv("C:\\Users\\Testing\\Downloads\\reachstepout_position2d_new.csv")
pandas.read_csv
import numpy as np import pandas as pd import random from rpy2.robjects.packages import importr utils = importr('utils') #utils.install_packages('prodlim') prodlim = importr('prodlim') eventglm = importr('eventglm') #utils.install_packages('eventglm') import rpy2.robjects as robjects from rpy2.robjects import r def get_clinical_data_po(df, cutoff): data_converted =
pd.get_dummies(df,columns= ['race' ,'ethnicity' ,'pathologic_stage' ,'molecular_subtype'],dtype=float)
pandas.get_dummies
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEquals(i1, i2) self.assertEquals(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/12/12', freq='D') self.assertEquals(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEquals(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 =
Period('9/1/2005', freq='Q')
pandas.tseries.period.Period
import requests from bs4 import BeautifulSoup import multiprocessing as mp import os import pandas as pd import time folder = './adj_temp' os.makedirs(folder, exist_ok=True) def _try_request( url, params, max_tries = 10, pause = 0.01 ): res = None n_tries = 1 while True: try: res = requests.get( url, params=params ) break except (KeyboardInterrupt, SystemExit): raise except: time.sleep(pause) if n_tries < max_tries: # print( f"Trying {n_tries}-th time." ) n_tries += 1 else: raise return res def get_fund_split_data(symbol): """Download fund split data from Tiantian Jijinwang Args: symbol (str): fund symbol Returns: pd.DataFrame: fund split data, indexed by date, with one column `amount` """ url = f'https://fundf10.eastmoney.com/fhsp_{symbol}.html' # res = requests.get(url) res = _try_request(url, None) html = BeautifulSoup(res.text, features="lxml") split_data = html.find('table', attrs={'class':'w782 comm fhxq'}) split = pd.read_html(str(split_data))[0] if split.iloc[0,0] == '暂无拆分信息!': return pd.DataFrame() rename = {'年份' : 'year', '拆分折算日' : 'date', '拆分类型' : 'splitType', '拆分折算比例' : 'amount'} split = split.rename(columns=rename) split['date'] = pd.to_datetime(split['date']) split = split[split['amount']!="暂未披露"] if len(split) == 0: return pd.DataFrame() split['amount'] = split['amount'].str.split(':', expand=True)[1].astype(float) split = split.drop(['year', 'splitType'], axis=1).set_index('date').sort_index() return split def get_fund_div_data(symbol): """Download fund dividend data from Sina Finance Args: symbol (str): fund symbol Returns: pd.DataFrame: fund dividend data, indexed by date, with one column `amount` """ url = 'https://stock.finance.sina.com.cn/fundInfo/api/openapi.php/FundPageInfoService.tabfh' data_input = { 'symbol' : symbol, 'format' : 'json', } # resp = requests.get(url, params=data_input) resp = _try_request(url, data_input) data = resp.json() fhdata = data['result']['data']['fhdata'] if len(fhdata)==0: return pd.DataFrame() div =
pd.DataFrame(fhdata)
pandas.DataFrame
''' MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import csv """ Los productos que salen de la contribucion de la UDD son: 34 """ import pandas as pd import glob from utils import * import numpy as np def prod33(fte, prod): data = [] for file in glob.glob(fte + '/*IM.csv'): print('Processing ' + file) df = pd.read_csv(file, sep=",", encoding="utf-8", decimal=",") # standardize column names df.rename(columns={'date': 'Fecha', 'comuna': 'Comuna'}, inplace=True) # hay 4 comunas perdidas 5502, 5703, 11302 12202 # 5502, 5703 listas # 11302: O'Higgins no esta # 122012: Antartica no esta df = normalizaNombreCodigoRegionYComuna(df) df = FechaAlFinal(df) data.append(df) df =
pd.concat(data)
pandas.concat
"""This module contains the Model class in Pastas. """ from collections import OrderedDict from logging import getLogger from os import getlogin import numpy as np from pandas import date_range, Series, Timedelta, DataFrame, Timestamp from .decorators import get_stressmodel from .io.base import dump, _load_model from .modelstats import Statistics from .noisemodels import NoiseModel from .plots import Plotting from .solver import LeastSquares from .stressmodels import Constant from .timeseries import TimeSeries from .utils import _get_dt, _get_time_offset, get_sample, \ frequency_is_supported, validate_name from .version import __version__ class Model: """Class that initiates a Pastas time series model. Parameters ---------- oseries: pandas.Series or pastas.TimeSeries pandas Series object containing the dependent time series. The observation can be non-equidistant. constant: bool, optional Add a constant to the model (Default=True). noisemodel: bool, optional Add the default noisemodel to the model. A custom noisemodel can be added later in the modelling process as well. name: str, optional String with the name of the model, used in plotting and saving. metadata: dict, optional Dictionary containing metadata of the oseries, passed on the to oseries when creating a pastas TimeSeries object. hence, ml.oseries.metadata will give you the metadata. Returns ------- ml: pastas.model.Model Pastas Model instance, the base object in Pastas. Examples -------- A minimal working example of the Model class is shown below: >>> oseries = pd.Series([1,2,1], index=pd.to_datetime(range(3), unit="D")) >>> ml = Model(oseries) """ def __init__(self, oseries, constant=True, noisemodel=True, name=None, metadata=None): self.logger = getLogger(__name__) # Construct the different model components self.oseries = TimeSeries(oseries, settings="oseries", metadata=metadata) if name is None: name = self.oseries.name if name is None: name = 'Observations' self.name = validate_name(name) self.parameters = DataFrame( columns=["initial", "name", "optimal", "pmin", "pmax", "vary", "stderr"]) # Define the model components self.stressmodels = OrderedDict() self.constant = None self.transform = None self.noisemodel = None # Default solve/simulation settings self.settings = { "tmin": None, "tmax": None, "freq": "D", "warmup": Timedelta(3650, "D"), "time_offset": Timedelta(0), "noise": noisemodel, "solver": None, "fit_constant": True, } if constant: constant = Constant(initial=self.oseries.series.mean(), name="constant") self.add_constant(constant) if noisemodel: self.add_noisemodel(NoiseModel()) # File Information self.file_info = self._get_file_info() # initialize some attributes for solving and simulation self.sim_index = None self.oseries_calib = None self.interpolate_simulation = None self.normalize_residuals = False self.fit = None # Load other modules self.stats = Statistics(self) self.plots = Plotting(self) self.plot = self.plots.plot # because we are lazy def __repr__(self): """Prints a simple string representation of the model. """ template = ('{cls}(oseries={os}, name={name}, constant={const}, ' 'noisemodel={noise})') return template.format(cls=self.__class__.__name__, os=self.oseries.name, name=self.name, const=not self.constant is None, noise=not self.noisemodel is None) def add_stressmodel(self, stressmodel, replace=False): """Add a stressmodel to the main model. Parameters ---------- stressmodel: pastas.stressmodel or list of pastas.stressmodel instance of a pastas.stressmodel class. Multiple stress models can be provided (e.g., ml.add_stressmodel([sm1, sm2]) in one call. replace: bool, optional force replace the stressmodel if a stressmodel with the same name already exists. Not recommended but useful at times. Default is False. Notes ----- To obtain a list of the stressmodel names, type: >>> ml.get_stressmodel_names() Examples -------- >>> sm = ps.StressModel(stress, rfunc=ps.Gamma, name="stress") >>> ml.add_stressmodel(sm) To add multiple stress models at once you can do the following: >>> sm1 = ps.StressModel(stress, rfunc=ps.Gamma, name="stress1") >>> sm1 = ps.StressModel(stress, rfunc=ps.Gamma, name="stress2") >>> ml.add_stressmodel([sm1, sm2]) See Also -------- pastas.stressmodels """ # Method can take multiple stressmodels at once through args if isinstance(stressmodel, list): for sm in stressmodel: self.add_stressmodel(sm) elif (stressmodel.name in self.stressmodels.keys()) and not replace: self.logger.error("The name for the stressmodel you are trying " "to add already exists for this model. Select " "another name.") else: self.stressmodels[stressmodel.name] = stressmodel self.parameters = self.get_init_parameters(initial=False) if self.settings["freq"] is None: self._set_freq() stressmodel.update_stress(freq=self.settings["freq"]) # Check if stress overlaps with oseries, if not give a warning if (stressmodel.tmin > self.oseries.series.index.max()) or \ (stressmodel.tmax < self.oseries.series.index.min()): self.logger.warning("The stress of the stressmodel has no " "overlap with ml.oseries.") self._check_stressmodel_compatibility() def add_constant(self, constant): """Add a Constant to the time series Model. Parameters ---------- constant: pastas.Constant Pastas constant instance, possibly more things in the future. Examples -------- >>> d = ps.Constant() >>> ml.add_constant(d) """ self.constant = constant self.parameters = self.get_init_parameters(initial=False) self._check_stressmodel_compatibility() def add_transform(self, transform): """Add a Transform to the time series Model. Parameters ---------- transform: pastas.transform instance of a pastas.transform object. Examples -------- >>> tt = ps.ThresholdTransform() >>> ml.add_transform(tt) See Also -------- pastas.transform """ transform.set_model(self) self.transform = transform self.parameters = self.get_init_parameters(initial=False) self._check_stressmodel_compatibility() def add_noisemodel(self, noisemodel): """Adds a noisemodel to the time series Model. Parameters ---------- noisemodel: pastas.noisemodels.NoiseModelBase Instance of NoiseModelBase Examples -------- >>> n = ps.NoiseModel() >>> ml.add_noisemodel(n) """ self.noisemodel = noisemodel self.noisemodel.set_init_parameters(oseries=self.oseries.series) # check whether noise_alpha is not smaller than ml.settings["freq"] freq_in_days = _get_dt(self.settings["freq"]) noise_alpha = self.noisemodel.parameters.initial.iloc[0] if freq_in_days > noise_alpha: self.noisemodel._set_initial("noise_alpha", freq_in_days) self.parameters = self.get_init_parameters(initial=False) @get_stressmodel def del_stressmodel(self, name): """Method to safely delete a stress model from the Model. Parameters ---------- name: str string with the name of the stressmodel object. Notes ----- To obtain a list of the stressmodel names type: >>> ml.get_stressmodel_names() """ self.stressmodels.pop(name, None) self.parameters = self.get_init_parameters(initial=False) def del_constant(self): """Method to safely delete the Constant from the Model. """ if self.constant is None: self.logger.warning("No constant is present in this model.") else: self.constant = None self.parameters = self.get_init_parameters(initial=False) def del_transform(self): """Method to safely delete the transform from the Model. """ if self.transform is None: self.logger.warning("No transform is present in this model.") else: self.transform = None self.parameters = self.get_init_parameters(initial=False) def del_noisemodel(self): """Method to safely delete the noise model from the Model. """ if self.noisemodel is None: self.logger.warning("No noisemodel is present in this model.") else: self.noisemodel = None self.parameters = self.get_init_parameters(initial=False) def simulate(self, p=None, tmin=None, tmax=None, freq=None, warmup=None, return_warmup=False): """Method to simulate the time series model. Parameters ---------- p: array_like, optional array_like object with the values as floats representing the model parameters. See Model.get_parameters() for more info if parameters is None. tmin: str, optional String with a start date for the simulation period (E.g. '1980'). If none is provided, the tmin from the oseries is used. tmax: str, optional String with an end date for the simulation period (E.g. '2010'). If none is provided, the tmax from the oseries is used. freq: str, optional String with the frequency the stressmodels are simulated. Must be one of the following: (D, h, m, s, ms, us, ns) or a multiple of that e.g. "7D". warmup: float or int, optional Warmup period (in Days). return_warmup: bool, optional Return the simulation including the the warmup period or not, default is False. Returns ------- sim: pandas.Series pandas.Series containing the simulated time series Notes ----- This method can be used without any parameters. When the model is solved, the optimal parameters values are used and if not, the initial parameter values are used. This allows the user to get an idea of how the simulation looks with only the initial parameters and no calibration. """ # Default options when tmin, tmax, freq and warmup are not provided. if tmin is None and self.settings['tmin']: tmin = self.settings['tmin'] else: tmin = self.get_tmin(tmin, use_oseries=False, use_stresses=True) if tmax is None and self.settings['tmax']: tmax = self.settings['tmax'] else: tmax = self.get_tmax(tmax, use_oseries=False, use_stresses=True) if freq is None: freq = self.settings["freq"] if warmup is None: warmup = self.settings["warmup"] elif not isinstance(warmup, Timedelta): warmup = Timedelta(warmup, "D") # Get the simulation index and the time step sim_index = self._get_sim_index(tmin, tmax, freq, warmup) dt = _get_dt(freq) # Get parameters if none are provided if p is None: p = self.get_parameters() sim = Series(data=np.zeros(sim_index.size, dtype=float), index=sim_index, fastpath=True) istart = 0 # Track parameters index to pass to stressmodel object for sm in self.stressmodels.values(): contrib = sm.simulate(p[istart: istart + sm.nparam], sim_index.min(), tmax, freq, dt) sim = sim.add(contrib) istart += sm.nparam if self.constant: sim = sim + self.constant.simulate(p[istart]) istart += 1 if self.transform: sim = self.transform.simulate(sim, p[istart:istart + self.transform.nparam]) # Respect provided tmin/tmax at this point, since warmup matters for # simulation but should not be returned, unless return_warmup=True. if not return_warmup: sim = sim.loc[tmin:tmax] if sim.hasnans: sim = sim.dropna() self.logger.warning('Nan-values were removed from the simulation.') sim.name = 'Simulation' return sim def residuals(self, p=None, tmin=None, tmax=None, freq=None, warmup=None): """Method to calculate the residual series. Parameters ---------- p: array_like, optional array_like object with the values as floats representing the model parameters. See Model.get_parameters() for more info if parameters is None. tmin: str, optional String with a start date for the simulation period (E.g. '1980'). If none is provided, the tmin from the oseries is used. tmax: str, optional String with an end date for the simulation period (E.g. '2010'). If none is provided, the tmax from the oseries is used. freq: str, optional String with the frequency the stressmodels are simulated. Must be one of the following: (D, h, m, s, ms, us, ns) or a multiple of that e.g. "7D". warmup: float or int, optional Warmup period (in Days). Returns ------- res: pandas.Series pandas.Series with the residuals series. """ # Default options when tmin, tmax, freq and warmup are not provided. if tmin is None: tmin = self.settings['tmin'] if tmax is None: tmax = self.settings['tmax'] if freq is None: freq = self.settings["freq"] # simulate model sim = self.simulate(p, tmin, tmax, freq, warmup, return_warmup=False) # Get the oseries calibration series oseries_calib = self.observations(tmin, tmax, freq) # Get simulation at the correct indices if self.interpolate_simulation is None: if oseries_calib.index.difference(sim.index).size != 0: self.interpolate_simulation = True self.logger.info('There are observations between the ' 'simulation timesteps. Linear interpolation ' 'between simulated values is used.') if self.interpolate_simulation: # interpolate simulation to times of observations sim_interpolated = np.interp(oseries_calib.index.asi8, sim.index.asi8, sim.values) else: # all of the observation indexes are in the simulation sim_interpolated = sim.reindex(oseries_calib.index) # Calculate the actual residuals here res = oseries_calib.subtract(sim_interpolated) if res.hasnans: res = res.dropna() self.logger.warning('Nan-values were removed from the residuals.') if self.normalize_residuals: res = res.subtract(res.values.mean()) res.name = "Residuals" return res def noise(self, p=None, tmin=None, tmax=None, freq=None, warmup=None): """Method to simulate the noise when a noisemodel is present. Parameters ---------- p: array_like, optional array_like object with the values as floats representing the model parameters. See Model.get_parameters() for more info if parameters is None. tmin: str, optional String with a start date for the simulation period (E.g. '1980'). If none is provided, the tmin from the oseries is used. tmax: str, optional String with an end date for the simulation period (E.g. '2010'). If none is provided, the tmax from the oseries is used. freq: str, optional String with the frequency the stressmodels are simulated. Must be one of the following: (D, h, m, s, ms, us, ns) or a multiple of that e.g. "7D". warmup: float or int, optional Warmup period (in Days). Returns ------- noise : pandas.Series Pandas series of the noise. Notes ----- The noise are the time series that result when applying a noise model. .. Note:: The noise is sometimes also referred to as the innovations. Warnings -------- This method returns None is no noise model is added to the model. """ if (self.noisemodel is None) or (self.settings["noise"] is False): self.logger.error("Noise cannot be calculated if there is no " "noisemodel present or is not used during " "parameter estimation.") return None # Get parameters if none are provided if p is None: p = self.get_parameters() # Calculate the residuals res = self.residuals(p, tmin, tmax, freq, warmup) p = p[-self.noisemodel.nparam:] # Calculate the noise noise = self.noisemodel.simulate(res, p) return noise def noise_weights(self, p=None, tmin=None, tmax=None, freq=None, warmup=None): """ Internal method to calculate the noise weights.""" # Get parameters if none are provided if p is None: p = self.get_parameters() # Calculate the residuals res = self.residuals(p, tmin, tmax, freq, warmup) # Calculate the weights weights = self.noisemodel.weights(res, p[-self.noisemodel.nparam:]) return weights def observations(self, tmin=None, tmax=None, freq=None, update_observations=False): """Method that returns the observations series used for calibration. Parameters ---------- tmin: str, optional String with a start date for the simulation period (E.g. '1980'). If none is provided, the tmin from the oseries is used. tmax: str, optional String with an end date for the simulation period (E.g. '2010'). If none is provided, the tmax from the oseries is used. freq: str, optional String with the frequency the stressmodels are simulated. Must be one of the following: (D, h, m, s, ms, us, ns) or a multiple of that e.g. "7D". update_observations: bool, optional if True, force recalculation of the observations series, default is False. Returns ------- oseries_calib: pandas.Series pandas series of the oseries used for calibration of the model Notes ----- This method makes sure the simulation is compared to the nearest observation. It finds the index closest to sim_index, and then returns a selection of the oseries. in the residuals method, the simulation is interpolated to the observation-timestamps. """ if tmin is None and self.settings['tmin']: tmin = self.settings['tmin'] else: tmin = self.get_tmin(tmin, use_oseries=False, use_stresses=True) if tmax is None and self.settings['tmax']: tmax = self.settings['tmax'] else: tmax = self.get_tmax(tmax, use_oseries=False, use_stresses=True) if freq is None: freq = self.settings["freq"] for key, setting in zip([tmin, tmax, freq], ["tmin", "tmax", "freq"]): if key != self.settings[setting]: update_observations = True if self.oseries_calib is None or update_observations: oseries_calib = self.oseries.series.loc[tmin:tmax] # sample measurements, so that frequency is not higher than model # keep the original timestamps, as they will be used during # interpolation of the simulation sim_index = self._get_sim_index(tmin, tmax, freq, self.settings["warmup"]) if not oseries_calib.empty: index = get_sample(oseries_calib.index, sim_index) oseries_calib = oseries_calib.loc[index] else: oseries_calib = self.oseries_calib return oseries_calib def initialize(self, tmin=None, tmax=None, freq=None, warmup=None, noise=None, weights=None, initial=True, fit_constant=True): """Method to initialize the model. This method is called by the solve-method, but can also be triggered manually. See the solve-method for a description of the arguments. """ if noise is None and self.noisemodel: noise = True elif noise is True and self.noisemodel is None: self.logger.warning("Warning, solving with noise=True while no " "noisemodel is present. noise set to False") noise = False self.settings["noise"] = noise self.settings["weights"] = weights self.settings["fit_constant"] = fit_constant # Set the frequency & warmup if freq: self.settings["freq"] = frequency_is_supported(freq) if warmup is not None: self.settings["warmup"] = Timedelta(warmup, "D") # Set time offset from the frequency and the series in the stressmodels self.settings["time_offset"] = \ self._get_time_offset(self.settings["freq"]) # Set tmin and tmax self.settings["tmin"] = self.get_tmin(tmin) self.settings["tmax"] = self.get_tmax(tmax) # make sure calibration data is renewed self.sim_index = self._get_sim_index(self.settings["tmin"], self.settings["tmax"], self.settings["freq"], self.settings["warmup"], update_sim_index=True) self.oseries_calib = self.observations(tmin=self.settings["tmin"], tmax=self.settings["tmax"], freq=self.settings["freq"], update_observations=True) self.interpolate_simulation = None # Initialize parameters self.parameters = self.get_init_parameters(noise, initial) # Prepare model if not fitting the constant as a parameter if self.settings["fit_constant"] is False: self.parameters.loc["constant_d", "vary"] = False self.parameters.loc["constant_d", "initial"] = 0.0 self.normalize_residuals = True def solve(self, tmin=None, tmax=None, freq=None, warmup=None, noise=True, solver=None, report=True, initial=True, weights=None, fit_constant=True, **kwargs): """Method to solve the time series model. Parameters ---------- tmin: str, optional String with a start date for the simulation period (E.g. '1980'). If none is provided, the tmin from the oseries is used. tmax: str, optional String with an end date for the simulation period (E.g. '2010'). If none is provided, the tmax from the oseries is used. freq: str, optional String with the frequency the stressmodels are simulated. Must be one of the following (D, h, m, s, ms, us, ns) or a multiple of that e.g. "7D". warmup: float or int, optional Warmup period (in Days) for which the simulation is calculated, but not used for the calibration period. noise: bool, optional Argument that determines if a noisemodel is used (only if present). The default is noise=True. solver: pastas.solver.BaseSolver class, optional Class used to solve the model. Options are: ps.LeastSquares (default) or ps.LmfitSolve. A class is needed, not an instance of the class! report: bool, optional Print a report to the screen after optimization finished. This can also be manually triggered after optimization by calling print(ml.fit_report()) on the Pastas model instance. initial: bool, optional Reset initial parameters from the individual stress models. Default is True. If False, the optimal values from an earlier optimization are used. weights: pandas.Series, optional Pandas Series with values by which the residuals are multiplied, index-based. Must have the same indices as the oseries. fit_constant: bool, optional Argument that determines if the constant is fitted as a parameter. If it is set to False, the constant is set equal to the mean of the residuals. **kwargs: dict, optional All keyword arguments will be passed onto minimization method from the solver. It depends on the solver used which arguments can be used. Notes ----- - The solver object including some results are stored as ml.fit. From here one can access the covariance (ml.fit.pcov) and correlation matrix (ml.fit.pcor). - Each solver return a number of results after optimization. These solver specific results are stored in ml.fit.result and can be accessed from there. See Also -------- pastas.solver Different solver objects are available to estimate parameters. """ # Initialize the model self.initialize(tmin, tmax, freq, warmup, noise, weights, initial, fit_constant) if self.oseries_calib.empty: raise ValueError("Calibration series 'oseries_calib' is empty! " "Check 'tmin' or 'tmax'.") # Store the solve instance if solver is None: if self.fit is None: self.fit = LeastSquares(ml=self) elif not issubclass(solver, self.fit.__class__): self.fit = solver(ml=self) self.settings["solver"] = self.fit._name # Solve model success, optimal, stderr = self.fit.solve(noise=self.settings["noise"], weights=weights, **kwargs) if not success: self.logger.warning("Model parameters could not be estimated " "well.") if self.settings['fit_constant'] is False: # Determine the residuals and set the constant to their mean self.normalize_residuals = False res = self.residuals(optimal).mean() optimal[self.parameters.name == self.constant.name] = res self.parameters.optimal = optimal self.parameters.stderr = stderr if report: if isinstance(report, str): output = report else: output = "full" print(self.fit_report(output=output)) def set_initial(self, name, value, move_bounds=False): """Method to set the initial value of any parameter. Parameters ---------- name: str name of the parameter to update. value: float parameters value to use as initial estimate. move_bounds: bool, optional Reset pmin/pmax based on new initial value. Examples -------- >>> ml.set_initial("constant_d", 10) """ msg = "Deprecation warning: method is deprecated and will be removed" \ " in version 0.17.0. Use ml.set_parameter instead." self.logger.warning(msg) def set_vary(self, name, value): """Method to set if the parameter is allowed to vary. Parameters ---------- name: str name of the parameter to update. value: bool boolean to vary a parameter (True) or not (False). Examples -------- >>> ml.set_vary("constant_d", False) """ msg = "Deprecation warning: method is deprecated and will be removed" \ " in version 0.17.0. Use ml.set_parameter instead." self.logger.error(msg) def set_pmin(self, name, value): """Method to set the minimum value of a parameter. Parameters ---------- name: str name of the parameter to update. value: float minimum value for the parameter. Examples -------- >>> ml.set_pmin("constant_d", -10) """ msg = "Deprecation warning: method is deprecated and will be removed" \ " in version 0.17.0. Use ml.set_parameter instead." self.logger.error(msg) def set_pmax(self, name, value): """Method to set the maximum values of a parameter. Parameters ---------- name: str name of the parameter to update. value: float maximum value for the parameter. Examples -------- >>> ml.set_pmax("constant_d", 10) """ msg = "Deprecation warning: method is deprecated and will be removed" \ " in version 0.17.0. Use ml.set_parameter instead." self.logger.error(msg) def set_parameter(self, name, initial=None, vary=None, pmin=None, pmax=None, move_bounds=False): """ Method to change the parameter properties. Parameters ---------- name: str name of the parameter to update. This has to be a single variable. initial: float, optional parameters value to use as initial estimate. vary: bool, optional boolean to vary a parameter (True) or not (False). pmin: float, optional minimum value for the parameter. pmax: float, optional maximum value for the parameter. move_bounds: bool, optional Reset pmin/pmax based on new initial value. Of move_bounds=True, pmin and pmax must be None. Examples -------- >>> ml.set_parameter(name="constant_d", initial=10, vary=True, >>> pmin=-10, pmax=20) Note ---- It is highly recommended to use this method to set parameter properties. Changing the parameter properties directly in the parameter `DataFrame` may not work as expected. """ if name not in self.parameters.index: msg = "parameter {} is not present in the model".format(name) self.logger.error(msg) raise KeyError(msg) # Because either of the following is not necessarily present noisemodel = self.noisemodel.name if self.noisemodel else "NotPresent" constant = self.constant.name if self.constant else "NotPresent" transform = self.transform.name if self.transform else "NotPresent" # Get the model component for the parameter cat = self.parameters.loc[name, "name"] if cat in self.stressmodels.keys(): obj = self.stressmodels[cat] elif cat == noisemodel: obj = self.noisemodel elif cat == constant: obj = self.constant elif cat == transform: obj = self.transform # Move pmin and pmax based on the initial if move_bounds and initial: if pmin or pmax: raise KeyError("Either pmin/pmax or move_bounds must " "be provided, but not both.") factor = initial / self.parameters.loc[name, 'initial'] pmin = self.parameters.loc[name, 'pmin'] * factor pmax = self.parameters.loc[name, 'pmax'] * factor # Set the parameter properties if initial is not None: obj._set_initial(name, initial) self.parameters.loc[name, "initial"] = initial if vary is not None: obj._set_vary(name, vary) self.parameters.loc[name, "vary"] = bool(vary) if pmin is not None: obj._set_pmin(name, pmin) self.parameters.loc[name, "pmin"] = pmin if pmax is not None: obj._set_pmax(name, pmax) self.parameters.loc[name, "pmax"] = pmax def _set_freq(self): """Internal method to set the frequency in the settings. This is method is not yet applied and is for future development. """ freqs = set() if self.oseries.freq: # when the oseries has a constant frequency, us this freqs.add(self.oseries.freq) else: # otherwise determine frequency from the stressmodels for stressmodel in self.stressmodels.values(): if stressmodel.stress: for stress in stressmodel.stress: if stress.settings['freq']: # first check the frequency, and use this freqs.add(stress.settings['freq']) elif stress.freq_original: # if this is not available, and the original # frequency is, take the original frequency freqs.add(stress.freq_original) if len(freqs) == 1: # if there is only one frequency, use this frequency self.settings["freq"] = next(iter(freqs)) elif len(freqs) > 1: # if there are more frequencies, take the highest (lowest dt) freqs = list(freqs) dt = np.array([_get_dt(f) for f in freqs]) self.settings["freq"] = freqs[np.argmin(dt)] else: self.logger.info("Frequency of model cannot be determined. " "Frequency is set to daily") self.settings["freq"] = "D" def _get_time_offset(self, freq): """Internal method to get the time offsets from the stressmodels. Parameters ---------- freq: str string with the frequency used for simulation. Notes ----- Method to check if the StressModel timestamps match (e.g. similar hours) """ time_offsets = set() for stressmodel in self.stressmodels.values(): for st in stressmodel.stress: if st.freq_original: # calculate the offset from the default frequency t = st.series_original.index base = t.min().ceil(freq) mask = t >= base if np.any(mask): time_offsets.add(_get_time_offset(t[mask][0], freq)) if len(time_offsets) > 1: msg = ("The time-offset with the frequency is not the same " "for all stresses.") self.logger.error(msg) raise (Exception(msg)) if len(time_offsets) == 1: return next(iter(time_offsets)) else: return Timedelta(0) def _get_sim_index(self, tmin, tmax, freq, warmup, update_sim_index=False): """Internal method to get the simulation index, including the warmup. Parameters ---------- tmin: pandas.Timestamp String with a start date for the simulation period (E.g. '1980'). If none is provided, the tmin from the oseries is used. tmax: pandas.Timestamp String with an end date for the simulation period (E.g. '2010'). If none is provided, the tmax from the oseries is used. freq: str String with the frequency the stressmodels are simulated. Must be one of the following: (D, h, m, s, ms, us, ns) or a multiple of that e.g. "7D". warmup: pandas.Timedelta Warmup period (in Days). update_sim_index : bool, optional if True, force recalculation of sim_index, default is False Returns ------- sim_index: pandas.DatetimeIndex Pandas DatetimeIndex instance with the datetimes values for which the model is simulated. """ # Check if any of the settings are updated for key, setting in zip([tmin, tmax, freq, warmup], ["tmin", "tmax", "freq", "warmup"]): if key != self.settings[setting]: update_sim_index = True break if self.sim_index is None or update_sim_index: tmin = (tmin - warmup).floor(freq) + self.settings["time_offset"] sim_index = date_range(tmin, tmax, freq=freq) else: sim_index = self.sim_index return sim_index def get_tmin(self, tmin=None, use_oseries=True, use_stresses=False): """Method that checks and returns valid values for tmin. Parameters ---------- tmin: str, optional string with a year or date that can be turned into a pandas Timestamp (e.g. pd.Timestamp(tmin)). use_oseries: bool, optional Obtain the tmin and tmax from the oseries. Default is True. use_stresses: bool, optional Obtain the tmin and tmax from the stresses. The minimum/maximum time from all stresses is taken. Returns ------- tmin: pandas.Timestamp returns pandas timestamps for tmin. Notes ----- The parameters tmin and tmax are leading, unless use_oseries is True, then these are checked against the oseries index. The tmin and tmax are checked and returned according to the following rules: A. If no value for tmin is provided: 1. If use_oseries is True, tmin is based on the oseries 2. If use_stresses is True, tmin is based on the stressmodels. B. If a values for tmin is provided: 1. A pandas timestamp is made from the string 2. if use_oseries is True, tmin is checked against oseries. """ # Get tmin from the oseries if use_oseries: ts_tmin = self.oseries.series.index.min() # Get tmin from the stressmodels elif use_stresses: ts_tmin = Timestamp.max for stressmodel in self.stressmodels.values(): if stressmodel.tmin < ts_tmin: ts_tmin = stressmodel.tmin # Get tmin and tmax from user provided values else: ts_tmin =
Timestamp(tmin)
pandas.Timestamp
#!/usr/bin/env python # coding: utf-8 # # >>>>>>>>>>>>>>>>>>>>Tarea número 3 <<<<<<<<<<<<<<<<<<<<<<<< # # Estudiante: <NAME> # # Ejercicio #1 # In[2]: import os import pandas as pd import numpy as np from math import pi from sklearn.datasets import make_blobs import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram, ward, single, complete,average,linkage, fcluster import scipy.cluster.hierarchy as sch from scipy.spatial.distance import pdist from sklearn.preprocessing import StandardScaler # In[3]: # Función para calcular los centroides de cada cluster¶ def centroide(num_cluster, datos, clusters): ind = clusters == num_cluster return(pd.DataFrame(datos[ind].mean()).T) # In[4]: # Función para graficar los gráficos de Barras para la interpretación de clústeres def bar_plot(centros, labels, cluster = None, var = None): from math import ceil, floor from seaborn import color_palette colores = color_palette() minimo = floor(centros.min()) if floor(centros.min()) < 0 else 0 def inside_plot(valores, labels, titulo): plt.barh(range(len(valores)), valores, 1/1.5, color = colores) plt.xlim(minimo, ceil(centros.max())) plt.title(titulo) if var is not None: centros = np.array([n[[x in var for x in labels]] for n in centros]) colores = [colores[x % len(colores)] for x, i in enumerate(labels) if i in var] labels = labels[[x in var for x in labels]] if cluster is None: for i in range(centros.shape[0]): plt.subplot(1, centros.shape[0], i + 1) inside_plot(centros[i].tolist(), labels, ('Cluster ' + str(i))) plt.yticks(range(len(labels)), labels) if i == 0 else plt.yticks([]) else: pos = 1 for i in cluster: plt.subplot(1, len(cluster), pos) inside_plot(centros[i].tolist(), labels, ('Cluster ' + str(i))) plt.yticks(range(len(labels)), labels) if pos == 1 else plt.yticks([]) pos += 1 # In[5]: # Función para graficar los gráficos tipo Radar para la interpretación de clústeres def radar_plot(centros, labels): from math import pi centros = np.array([((n - min(n)) / (max(n) - min(n)) * 100) if max(n) != min(n) else (n/n * 50) for n in centros.T]) angulos = [n / float(len(labels)) * 2 * pi for n in range(len(labels))] angulos += angulos[:1] ax = plt.subplot(111, polar = True) ax.set_theta_offset(pi / 2) ax.set_theta_direction(-1) plt.xticks(angulos[:-1], labels) ax.set_rlabel_position(0) plt.yticks([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], ["10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%", "100%"], color = "grey", size = 8) plt.ylim(-10, 100) for i in range(centros.shape[1]): valores = centros[:, i].tolist() valores += valores[:1] ax.plot(angulos, valores, linewidth = 1, linestyle = 'solid', label = 'Cluster ' + str(i)) ax.fill(angulos, valores, alpha = 0.3) plt.legend(loc='upper right', bbox_to_anchor = (0.1, 0.1)) # ### a) Cargue la tabla de datos SpotifyTop2018 40 V2.csv # In[7]: os.chdir("/Users/heinerleivagmail.com") print(os.getcwd()) data = pd.read_csv('SpotifyTop2018_40_V2.csv',delimiter=',',decimal=".") print(data) # In[8]: # Normalizando y centrando la tabla from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_values = scaler.fit_transform(data) data.loc[:,:] = scaled_values print(data) datos = data # In[9]: ward_res = ward(datos) #Ward single_res = single(datos) #Salto mínimo complete_res = complete(datos) #Salto Máxim average_res = average(datos) #Promedio # ### b) Ejecute un Clustering Jerarquico con la agregacion del Salto Maximo, Salto Mınimo, Promedio y Ward. Grafique el dendograma con cortes para dos y tres clusteres. # In[10]: dendrogram(average_res,labels= datos.index.tolist()) plt.figure(figsize=(13,10)) dendrogram(complete_res,labels= datos.index.tolist()) plt.figure(figsize=(13,10)) dendrogram(single_res,labels= datos.index.tolist()) plt.figure(figsize=(13,10)) dendrogram(ward_res,labels= datos.index.tolist()) # Agrega cortes con 2 y 3 clústeres con agregación de Ward ax = plt.gca() limites = ax.get_xbound() ax.plot(limites, [11, 11], '--', c='k') ax.plot(limites, [9.4, 9.4], '--', c='k') ax.text(limites[1], 11, ' dos clústeres', va='center', fontdict={'size': 15}) ax.text(limites[1], 9.4, ' tres clústeres', va='center', fontdict={'size': 15}) plt.xlabel("Orden en el eje X./nPor hacer la normalizacion de los datos el cluster 3 quedo muy cerca del 2") plt.ylabel("Distancia o Agregación") # ### c) Usando tres clusteres interprete los resultados del ejercicio anterior para el caso de agregacion de Ward usando graficos de barras y graficos tipo Radar. # In[11]: grupos = fcluster(linkage(pdist(datos), method = 'ward', metric='euclidean'), 3, criterion = 'maxclust') grupos = grupos-1 # Se resta 1 para que los clústeres se enumeren de 0 a (K-1), como usualmente lo hace Python # El siguiente print es para ver en qué cluster quedó cada individuo print(grupos) centros = np.array(pd.concat([centroide(0, datos, grupos), centroide(1, datos, grupos), centroide(2, datos, grupos)])) print(centros) plt.figure(1, figsize = (20, 8)) bar_plot(centros, datos.columns) # In[12]: # Interpretación 3 Clústeres - Gráfico Radar plot con Ward grupos = fcluster(linkage(pdist(datos), method = 'ward', metric='euclidean'), 3, criterion = 'maxclust') grupos = grupos-1 print(grupos) centros = np.array(pd.concat([centroide(0, datos, grupos), centroide(1, datos, grupos), centroide(2, datos, grupos)])) print(centros) plt.figure(1, figsize = (10, 10)) radar_plot(centros, datos.columns) # ### Interpretacion # In[31]: # Analisis: # Cluster 1 (azul), este cluster se caracteriza por tener los niveles mas altos (100) en accousticness, es decir, las # canciones en este cluster son las mas acusticas, tambien, tiene el mayor speechiness, es decir, hay muchas palabras # en las canciones que estan en este cluster, ademas cuenta con el mayor numero en liveness (es decir hay publico en # la cancion), tambien tiene los niveles mas altos de valence (mucha postitividad en las canciones), el time_signature # que representa la cantidad de beats que hay en cada barra de medida y por ultimo danceability, que son las canciones # que tienen mayor potencial para ser bailable, a modo general en este cluster se agrupan las canciones quee son mas # positivas, mas aptas para bailar, con mayor sonido, mayor presencia de publico, es decir, son las canciones mas "alegres", # por otro lado este cluster se caracteriza por tener canciones que tienen niveles 0 de instrumentalidad, su duracion en # milisegundos es baja, su energy es moderada baja al igual que su loudness, es decir su sonoridad en la pista es baja. # Cluster 2 (naranja): este se representa por tener las canciones que tienen mayor duracion en milisegundos, asi como # las canciones que se encuentran en este cluster cuentan con tempo son las que tienen mayores beats por minuto (variable # tempo). Ademas su acousticness es moderado, es decir estas canciones presentan algo de acustica y su speechiness, que # es la presencia de palabras en las canciones tiende a ser bajo. En las demas variables este cluster presenta bajos niveles # entonces se puede decir que este cluster se caracteriza por tener las canciones con mayor duracion, con mas beats por # minuto y son canciones que combinan acustica y letras en sus estrofas. #Cluster 3 (verde): en este caso las canciones que pertenecen a este cluster se caracterizan por tener los mas altos # beats por minuto, presentan mucha instrumentalidad, su time_signature es alto, lo que representa altos beats en cada # barra o medida, su intensidad es bastante alta (energy) y su sonoridad en decibiles tambien es bastante alta. Las # canciones en este grupo se caracterizan por altamente instrumentales con nula cantidad de voces en sus piezas, y son # canciones bastante intensas y con los beats mas altos por minuto, son canciones que son relativamente bailables, y su # positividad musical es moderada y no presenta publico en sus piezas. Son canciones por asi decirlo, meramente instrumen- # tales con poco o nulo registro de voz por parte de tun cantante. # ### d) Grafique usando colores sobre las dos primeras componentes del plano principal en el Analisis en Componentes Principales los clusteres obtenidos segun la clasificacion Jerarquica (usando tres clusteres). # In[13]: # Importando datos campo = pd.read_csv('SpotifyTop2018_40_V2.csv',delimiter=',',decimal=".") # Normalizando y centrando la tabla from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_values = scaler.fit_transform(campo) campo.loc[:,:] = scaled_values datosx = campo #Asignando variables cal = datosx.iloc[:,[0,1,2,3,4,5,6,7,8,9,10]].values # In[14]: # Definiendo parametros de dendrograma clustering_jerarquico = linkage(cal, 'ward') # In[15]: # Ploteando dendrograma dendrogram = sch.dendrogram(clustering_jerarquico) # In[16]: # Asignando cluster a cada variable clusters = fcluster(clustering_jerarquico, t=9.4, criterion = 'distance') #t corresponde al corte para obtener los 3 # clusters clusters # In[17]: # Creando clusters en cada fila datosx['target'] = clusters # In[18]: # Guardando nueva variable generada campo.to_csv("/Users/heinerleivagmail.com/SpotifyTop2018_40_V3.csv") # In[19]: # Llamando DF creado con la asignacion de cada cluster (tabla ya esta normalizada) df = pd.read_csv('SpotifyTop2018_40_V3.csv',delimiter=',',decimal=".") # Separando variables numericas x = df.iloc[:,[0,1,2,3,4,5,6,7,8,9,10]].values # Separando los clusters obtenidos y = df.iloc[:,[11]].values # In[20]: # Definiendo parametros del nuevo PCA a partir del Dendrograma from sklearn.decomposition import PCA pca = PCA(n_components=2) principalComponents = pca.fit_transform(datosx) principalDf = pd.DataFrame(data = principalComponents , columns = ['Componente 0', 'Componente 1']) finalDf = pd.concat([principalDf, df.iloc[:,[12]]], axis = 1) finalDf.head(10) # In[21]: # Definicion de la estructura del PCA con colores respectivos fig = plt.figure(figsize = (8,8)) ax = fig.add_subplot(1,1,1) ax.set_xlabel('Componente 0', fontsize = 15) ax.set_ylabel('Componente 1', fontsize = 15) ax.set_title('Plano Principal', fontsize = 20) targets = [1, 2, 3] colors = ['g', 'r', 'b'] for target, color in zip(targets,colors): indicesToKeep = finalDf['target'] == target ax.scatter(finalDf.loc[indicesToKeep, 'Componente 0'] , finalDf.loc[indicesToKeep, 'Componente 1'] , c = color , s = 50) ax.legend(targets) ax.grid() # # Ejercicio 2 # ### a) Efectue un Clustering Jerarquico usando solo las variables numericas y de una interpretacion usando 3 clusteres. # In[6]: os.chdir("/Users/heinerleivagmail.com") print(os.getcwd()) corazon = pd.read_csv('SAheart.csv',delimiter=';',decimal=".") print(corazon.head()) print(corazon.shape) # In[7]: corazon2 = pd.DataFrame(data=corazon, columns=['sbp', 'tobacco', 'ldl', 'adiposity','typea','obesity','alcohol','age']) print(corazon2) print(corazon2.shape) corazon2.describe() # In[8]: # Normalizando y centrando la tabla from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_values = scaler.fit_transform(corazon2) corazon2.loc[:,:] = scaled_values print(corazon2) datos = corazon2 # In[9]: ward_res = ward(datos) #Ward single_res = single(datos) #Salto mínimo complete_res = complete(datos) #Salto Máximo average_res = average(datos) #Promedio # In[10]: dendrogram(average_res,labels= datos.index.tolist()) plt.figure(figsize=(13,10)) dendrogram(complete_res,labels= datos.index.tolist()) plt.figure(figsize=(13,10)) dendrogram(single_res,labels= datos.index.tolist()) plt.figure(figsize=(13,10)) dendrogram(ward_res,labels= datos.index.tolist()) # Agrega cortes solo en 3 clústeres con agregación de Ward ax = plt.gca() limites = ax.get_xbound() ax.plot(limites, [20.7, 20.7], '--', c='k') ax.text(limites[1], 20.7, ' tres clústeres', va='center', fontdict={'size': 15}) plt.xlabel("Orden en el eje X") plt.ylabel("Distancia o Agregación") # In[11]: # Graficos de barras con Ward grupos = fcluster(linkage(pdist(datos), method = 'ward', metric='euclidean'), 3, criterion = 'maxclust') grupos = grupos-1 # Se resta 1 para que los clústeres se enumeren de 0 a (K-1), como usualmente lo hace Python # El siguiente print es para ver en qué cluster quedó cada individuo print(grupos) centros = np.array(pd.concat([centroide(0, datos, grupos), centroide(1, datos, grupos), centroide(2, datos, grupos)])) print(centros) plt.figure(1, figsize = (30, 10)) bar_plot(centros, datos.columns) # In[12]: grupos = fcluster(linkage(pdist(datos), method = 'ward', metric='euclidean'), 3, criterion = 'maxclust') grupos = grupos-1 # Se resta 1 para que los clústeres se enumeren de 0 a (K-1), como usualmente lo hace Python # El siguiente print es para ver en qué cluster quedó cada individuo print(grupos) centros = np.array(pd.concat([centroide(0, datos, grupos), centroide(1, datos, grupos), centroide(2, datos, grupos)])) print(centros) plt.figure(1, figsize = (10, 10)) radar_plot(centros, datos.columns) # ### Interpretacion # In[32]: # Para este segundo caso se puede ver como el cluster 1 (azul): son los individuos que estan sanos, ya que solo presentan # un comportamiento tipo A alto muy alto, que los hace mas competitivos, orientados al trabajo, etc., en lo demas # no presentan ninguna otra caracteristica. # Cluster 2 (naranja): se caracteriza por tener a los individuos que tienen las edades mas altas, asi como la presion # cardiaca, adiposidad y obesidad mas altas, asi como el colesterol, mientras que en otros parametros como el comporta- # miento del tipo A (menos de 40%) y los niveles de alcohol estan bajos, es decir, no son consumidores de alcohol. # En este cluster se pueden agrupar a todas aquellas personas que ya son avanzadas de edad y que presentan altos # grados de obesidad y con ello colesterol y una presion cardiaca mas alta, y que ademas tienen una ligera tendencia # a ser del comportamiento tipo A. # En el cluster 3 (verde) se puede ver como los individuos de este grupo son los que tienen mas vicios (consumen mayores # indices de alcohol y fuman mucho) ademas, presentan las edades altas de igual forma y su adiposidad tambien alcanza # casi el 90%, por otro lado, presentan mas de un 60% de obesidad, y mas de un 40% de colesterol, ademas su presion # cardiaca tambien es muy alta, pero su comportamiento tipo A es muy bajo, al parecer en este grupo estan las personas # que son mayores tienen vicios, y ademas cuentan con presiones sanguineas altas. # ### b) Efectue un Clustering Jerarquico usando las variables numericas y las variables categoricas. Luego de una interpretacion usando 3 clusteres. # In[13]: os.chdir("/Users/heinerleivagmail.com") print(os.getcwd()) datos2 = pd.read_csv('SAheart.csv',delimiter=';',decimal=".") print(datos.head()) print(datos.shape) # In[14]: def recodificar(col, nuevo_codigo): col_cod =
pd.Series(col, copy=True)
pandas.Series
import pytest import sys, os import pandas as pd import pyDSlib def test_count_subgroups_in_group(): df = {} df['subgroup'] = [] df['group'] = [] for color in ['R','G','B']: slice_ = [i for i in range(3)] df['subgroup'] = df['subgroup']+ slice_+slice_ df['group'] = df['group'] + [color for vale in slice_+slice_] df =
pd.DataFrame.from_dict(df)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd import datetime as dt import time import matplotlib.pyplot as plt import seaborn as sns import vnpy.analyze.data.data_prepare as dp from jqdatasdk import * from vnpy.trader.database import database_manager from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes import matplotlib.dates as dates from matplotlib import ticker import math from vnpy.analyze.util.cal_returns import CalReturns def step1_draw_close(data, show=False): """画出收盘价的价格曲线""" df = data.copy() if show: fig, ax = plt.subplots(1, figsize=(16, 9)) df.close.plot(ax=ax, figsize=(16, 9), colormap='coolwarm') plt.show() def step2_pe_pb(data, show=False): """画出PE、PB之间的关系""" df = data.copy() print('PE\PB的相关系数如下:\n %s' % (df[['pe', 'pb']].corr())) if show: sns.jointplot(df['pe'], df['pe'], kind='reg', height=9) fig, ax = plt.subplots(1, figsize=(16, 9)) df[['pe', 'pb']].plot(ax=ax, secondary_y=['pb'], figsize=(16, 9), colormap='coolwarm') plt.show() def step3_close_pe(data, pe_percentile_blow=0.4, pe_percentile_upper=0.6, show=False): """close与PE之间关系""" df = data.copy() print('CLOSE\PE的相关系数如下:\n %s' % (df[['close', 'pe']].corr())) percentile_blow = df['pe'].quantile(pe_percentile_blow) # 4分位 percentile_upper = df['pe'].quantile(pe_percentile_upper) # 6分位 print('下分为使用%s,PE值:%s, 上分为使用%s,PE值:%s' % ( pe_percentile_blow, percentile_upper, pe_percentile_upper, percentile_upper)) if show: sns.jointplot(df['close'], df['pe'], kind='reg', height=9) fig, ax = plt.subplots(1, figsize=(16, 9)) df[['close', 'pe']].plot(ax=ax, secondary_y=['pe'], figsize=(16, 9), colormap='coolwarm') plt.axhline(y=percentile_blow, color='g', linestyle='-') plt.axhline(y=percentile_upper, color='r', linestyle='-') plt.show() def step4_close_percentile_pe(data, n=7, show=False, show_p_hist=False): """ close与PE百分位之间关系 不同时期之间的PE对比已经发生巨大变化,根据一个周期内百分位对比更有价值 """ df = data.copy() # 这里的计算按一年244个交易日计算 windows = int(n * 244) # 将时间取整数 if len(data) < windows: print('当前数据小于滚动窗口设置,无法完成滚动分为计算') return column = 'percentile_' + str(n) + 'Y' df[column] = df['pe'].rolling(windows).apply(lambda x: pd.Series(x).rank().iloc[-1] / pd.Series(x).shape[0], raw=True) if show: fig, ax = plt.subplots(1, figsize=(16, 9)) df[['close', column]].plot(ax=ax, secondary_y=[column], figsize=(16, 9), colormap='coolwarm') plt.show() if show_p_hist: """动态百分位分布,直方图""" fig, ax = plt.subplots(1, figsize=(16, 9)) df[column].hist(ax=ax, figsize=(16, 9)) plt.show() return df def first_trade_date_in_month(df): """找到每个月第一个交易日""" month_first_date = set() pre_year, pre_month = 0, 0 for index, row in df.iterrows(): if pre_year != index.year or pre_month != index.month: month_first_date.add(index) pre_year = index.year pre_month = index.month return month_first_date def trade_model(data, column='percentile_7Y', show=False, show_annual_invest=True): """ 交易模型: 1、低估:买入、适中:保持不变、高估:卖出 """ df = data.copy() # 去除无滚动百分位数据 df.dropna(inplace=True) # 找每个月第一个交易日 month_first_date = first_trade_date_in_month(df) # 假设每个月第一个交易日增加5000元可支配 month_invest_const = 5000 available_cash = 0 # 可用资金 stock_q = 0 # 股票数量(为计算方便,可以使用小数表示) # 图形展示数据:累计投入、当前持有股票资产、变现回报 trade_date = [] invest_cash = [] stock_assets = [] return_cash = [] # 买入记录 trades = {} df_return = pd.DataFrame(columns=('date', 'invest', 'stock', 'return')) for index, row in df.iterrows(): # 首先还是遵守标准定投思想,投还是不投,不考虑投多少问题。卖出的资产直接入袋为安,不参与定投 trade_date.append(index) if month_first_date.__contains__(index): # available_cash = available_cash + month_invest_const # 当月不投下月自动清空 available_cash = month_invest_const if row[column] < 0.4 and available_cash > 0: # 较低估值区间, 买入 afford_q = available_cash / row['close'] stock_q += afford_q invest_cash.append(available_cash) trades[index] = available_cash # 加入买入记录 available_cash = 0 return_cash.append(0) elif row[column] > 0.6 and stock_q > 0: # 过高估值区间, 卖出 selled_p = month_invest_const / row['close'] # 卖掉份数 stock_q = stock_q - selled_p invest_cash.append(0) return_cash.append(month_invest_const) else: # 不做任何操作 invest_cash.append(0) return_cash.append(0) stock_assets.append(stock_q * row['close']) df_return['date'] = trade_date df_return['invest'] = invest_cash df_return['stock'] = stock_assets df_return['return'] = return_cash df_return['invest_cumsum'] = df_return['invest'].cumsum() df_return['return_cumsum'] = df_return['return'].cumsum() df_return['hold'] = df_return['return_cumsum'] + df_return['stock'] # 设置data为index df_return['date'] = pd.to_datetime(df_return['date']) # 转换时间类型 df_return.set_index(['date'], inplace=True) df_return.index.name = None # 去掉索引列名 df_return['close'] = df['close'] print(df_return.head()) # 计算年化收益 earings = CalReturns.annual_returns(trades, df_return.index[-1], df_return['hold'][-1]) print('年化收益率:%s' % earings) if show: fig, ax = plt.subplots(1, figsize=(16, 9)) df_return[['invest_cumsum', 'hold', 'close']].plot(ax=ax, secondary_y=['close'], figsize=(16, 9), colormap='coolwarm') plt.show() if show_annual_invest: """展示年度投入与收益, 📊柱状图 (年度投入、年度剩余))""" trade_year = [date.year for date in trade_date] df_g =
pd.DataFrame(columns=('date', 'invest'))
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import FinanceDataReader as fdr from pykrx import stock import datetime import requests # from datetime import timedelta # 마이크로초 전, 마이크로초 후 를 구하고 싶다면 timedelta from dateutil.relativedelta import relativedelta # 몇달 전, 몇달 후, 몇년 전, 몇년 후 를 구하고 싶다면 relativedelta from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models from pypfopt import expected_returns from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices from pypfopt import plotting import warnings warnings.filterwarnings(action='ignore') from Class_Strategies import Strategies import csv stock_dual = Strategies.getHoldingsList('KOSPI') prices = Strategies.getCloseDatafromList(stock_dual, '2021-01-01') dualmomentumlist = Strategies.DualMomentum(prices, lookback_period = 20, n_selection = len(stock_dual)//2) # # print(dualmomentumlist) # # with open('dualmomentumlist.csv','w') as file: # write = csv.writer(file) # write.writerow(dualmomentumlist) def Dual_sharpe(): # 종목 이름 및 코드 kospi_temp = fdr.StockListing('KOSPI')[['Symbol', 'Name']] kosdaq_temp = fdr.StockListing('KOSDAQ')[['Symbol', 'Name']] code_name_dict = pd.concat([kospi_temp, kosdaq_temp]) code_name_dict = code_name_dict.set_index('Symbol').to_dict().get('Name') # {'095570': 'AJ네트웍스', # assets = pd.read_csv('dualmomentumlist.csv') #np.array(dualmomentumlist) # print(assets) start_date = datetime.datetime.today() - relativedelta(years=3) start_date = start_date.strftime('%Y%m%d') today = datetime.datetime.today().strftime("%Y%m%d") end_date = today df = pd.DataFrame() ##################### 여기 추가됐습니다 : 관리종목 제거 ###################### # 관리종목 제거하기 위한 코드 # temp_assets = pd.read_csv('dualmomentumlist.csv') temp_assets = np.array(dualmomentumlist) # print(temp_assets) krx_adm = fdr.StockListing('KRX-ADMINISTRATIVE') # print(krx_adm) # KRX 관리종목의 종목코드 under_ctrl = krx_adm['Symbol'].values # print(under_ctrl) assets = np.setdiff1d(temp_assets, under_ctrl) # print(assets) for s in assets: df[s] = fdr.DataReader(s, start_date, end_date)['Close'] # drop null dfnull = df.dropna(axis=1) # 수익률의 공분산 mu = expected_returns.mean_historical_return(dfnull) S = risk_models.sample_cov(dfnull) # print(plotting.plot_covariance(S)) # 포폴 최적화 (Max sharp ratio) - 급등주 ef = EfficientFrontier(mu, S, solver="SCS") weights = ef.max_sharpe() cleaned_weights = ef.clean_weights() print(ef.portfolio_performance(verbose=True)) one_million = 1000000 portfolio_val = 15 * one_million latest_prices = get_latest_prices(dfnull) weights = cleaned_weights da = DiscreteAllocation(weights, latest_prices, total_portfolio_value=portfolio_val) allocation, leftover = da.lp_portfolio(verbose=False) rmse = da._allocation_rmse_error(verbose=False) # 각 종목별 실제 투자 금액 inv_total_price = {} for i in allocation.keys(): inv_total_price[i] = latest_prices.loc[i] * allocation[i] inv_total_price # 총 투자금액 investment = 0 for i in inv_total_price.values(): investment += i print(investment) # 각 종목별 실제 투자 비중 inv_total_weight = {} for i in allocation.keys(): inv_total_weight[i] = inv_total_price[i] / investment inv_total_weight # 투자비중의 합계 investment_w = 0 for i in inv_total_weight.values(): investment_w += i print(investment_w) # 결과값으로 불러올 값을 리스트로 저장 name_list = [] # 종목명(회사이름) total_price_stock = [] # 각 종목별 실제 투자 금액 total_weight_stock = [] # 각 종목별 실제 투자 비중 for i in allocation.keys(): # i = 포트폴리오에 할당된 종목의 종목코드 name_list.append(code_name_dict.get(i)) total_price_stock.append(inv_total_price.get(i)) total_weight_stock.append(inv_total_weight.get(i)) # Get the discrete allocation values discrete_allocation_list = [] for symbol in allocation: discrete_allocation_list.append(allocation.get(symbol)) print(discrete_allocation_list) portfolio_df =
pd.DataFrame(columns=['종목명', '종목코드', '수량(주)', '투자금액(원)', '투자비중'])
pandas.DataFrame
import pandas as pd import os os.chdir('db') from pathlib import Path import sys #Package to pre process import gensim from gensim.utils import simple_preprocess from gensim.models import ldamodel from gensim.test.utils import datapath import numpy as np from gensim.models import Word2Vec from shorttext.utils import standard_text_preprocessor_1 pre = standard_text_preprocessor_1() train = pd.read_csv('train_set.csv') test = pd.read_csv('test_set.csv') # df_test = pd.DataFrame('test_set.csv') def get_process_data_frame(data_frame): # Preprocessing data_frame['processed'] = data_frame['response_text'].apply(pre) corpus = data_frame['processed'].apply(lambda x: x.split(' ')) return corpus train_corpus = get_process_data_frame(train) test_corpus = get_process_data_frame(test) def get_word_2_vec_df(corpus, dim = 100): # train word2vec model # Default dimensions is 100 # sg: (default 0 or CBOW) The training algorithm, either CBOW (0) or skip gram (1). model = Word2Vec(corpus, min_count=1) # summarize the loaded model # print(model) # summarize vocabulary # words = list(model.wv.vocab) # print(words) # access vector for one word # print(model['think']) mean_corpus = pd.DataFrame(corpus.apply(lambda x: np.mean(model[x], axis=0))) return pd.DataFrame(mean_corpus['processed'].values.tolist(), index = mean_corpus.index) dir = os.getcwd() for dim in range(100, 501, 50): train_set = get_word_2_vec_df(train_corpus, dim) test_set = get_word_2_vec_df(test_corpus, dim) train_set = pd.concat([train_set, train['response_round_score']], axis=1) test_set = pd.concat([test_set, test['response_round_score']], axis=1) train_file = "word_2_vec_train{}.csv".format(dim) test_file = "word_2_vec_test{}.csv".format(dim) train_set.to_csv(os.path.join(dir, 'word2vecmodels', train_file)) test_set.to_csv(os.path.join(dir, 'word2vecmodels', test_file)) for dim in range(10, 91, 20): train_set = get_word_2_vec_df(train_corpus, dim) test_set = get_word_2_vec_df(test_corpus, dim) train_set = pd.concat([train_set, train['response_round_score']], axis=1) test_set =
pd.concat([test_set, test['response_round_score']], axis=1)
pandas.concat
# The script is used to perform analysis of XRF spectra measured by # Olympus Delta XRF (https://www.olympus-ims.com/en/xrf-xrd/delta-handheld/delta-prof/). # The measurement is done for powder samples which are fixed on the XRF # device using a custom 3D printed plastic holder(s). Several holders can be used in one # series of measurements, which should be specified in the command line arguments. # The analysis is based on calculating calibration for a certain element, # and calculating the amount of element in the samples with unknown amount. import argparse import chardet import json import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import sys from datetime import datetime from glob import glob from scipy import stats from scipy.optimize import curve_fit from scipy.signal import savgol_filter from element_data import get_elements ########## ### Section with common vairables related to spectra file and measurements ########## # CSV contains first column which has titles of rows TITLE_COL = 1 # number of beams in the XRF measurement. 3 for Olympus Delta XRF NUM_BEAMS = 3 # number of measurement repeats. Usually 3 is done NUM_REPEATS = 3 # row for number of beams = ExposureNum ROW_NUM_BEAMS = 0 # row for number of data points in spectrum ROW_NUM_DATA = 4 # row for time of measurement, to calculate cps instead of cumulative counts ROW_NUM_TIME = 7 # seconds def get_spectrum(spectra: pd.DataFrame, # dataframe with all spectra (loaded CSV file) spectrum_num: int, # zero based index of sample spectrum to take repeat_num: int, # zero based measurement repeat number for the sample spectrum beam_num: int, # zero based measurent beam number for the sample spectrum num_repeats=NUM_REPEATS, # total number of repeats for each sample num_beams=NUM_BEAMS, # total number of beams for each sample title_col=TITLE_COL, # indicated if title column (first one) is present in CSV skip_XRF_calibration=True) -> np.ndarray: # to skip first spectrum in CSV which is usually mandatory calibration for device # calculate column index which is for spectrum to get spectrum_num = title_col + int(skip_XRF_calibration) + num_repeats * spectrum_num * num_beams + repeat_num * num_repeats + beam_num # print('Selected spectrum number:', spectrum_num) # get number of data points in spectrum measured num_points = int(spectra.iloc[ROW_NUM_DATA, spectrum_num]) # get measurement time to caluclate cps meas_time = float(spectra.iloc[ROW_NUM_TIME, spectrum_num]) y_spectrum = spectra.iloc[-num_points:, spectrum_num].to_numpy() / meas_time return y_spectrum def fit_gauss(peak_spectrum: np.array) -> np.array: '''Fit XRF peak with gaussian.''' def gauss(x: np.array, *params) -> np.array: # Gaussian function with params = [baseline, A, mu, sigma] parameters baseline, A, mu, sigma = params return baseline + A * np.exp(-(x - mu)**2 / (2. * sigma**2)) # inital params guess p0 = [0., 1, 0., 1] x = peak_spectrum[0] / np.max(peak_spectrum[0]) y = peak_spectrum[1] / np.max(peak_spectrum[1]) params, cov = curve_fit(gauss, x, y, p0) peak_fit = gauss(x, *params) * np.max(peak_spectrum[1]) return np.array([peak_spectrum[0], peak_fit]) def calc_peak_ints(args: argparse.Namespace, element: str, spectrum_num: int) -> np.ndarray: '''Calculate peak integrals for element for certain spetrum number.''' # select beam number from the element data element = args.elements_data[element] repeat_ints = [] for rep_num in range(args.repeats): spectrum = get_spectrum(args.spectra, spectrum_num, rep_num, element.beam, num_repeats=args.repeats, num_beams=args.num_beams, title_col=TITLE_COL, skip_XRF_calibration=args.skip_XRF_calibration) spectrum = savgol_filter(spectrum, element.filter_window, 2) # integrals for each peak peak_ints = [] for peak_coords in element.int_limits: # get indices from x coordinate peak_mask = np.logical_and(args.x_keV >= peak_coords[0], args.x_keV <= peak_coords[1]) peak = np.array([args.x_keV[peak_mask], spectrum[peak_mask]]) # print(peak) try: fit = fit_gauss(peak) peak_ints.append(np.sum(fit[1])) '''if spectrum_num == 6 and rep_num == 1: plt.plot(args.x_keV, spectrum) plt.plot(peak[0], peak[1]) plt.plot(fit[0], fit[1]) plt.show()''' except RuntimeError: print('Gauss fit failed for spectrum', spectrum_num) peak_ints.append(np.sum(peak[1])) # print(peak_ints) repeat_ints.append(peak_ints) # calculate average and std for each peak for all repeats repeat_ints = np.array(repeat_ints) avgs = np.mean(repeat_ints, axis=0) # / weight, not used, see python element_content.py --help stds = np.std(repeat_ints, axis=0) # / weight # print('averages for', element.name, 'for spectrum', spectrum_num, avgs) return avgs, stds def calc_background(args: argparse.Namespace, element: str) -> np.ndarray: '''Calculates background for holders which are at the beginning of spectra csv file.''' if args.skip_background: return np.array([]), np.array([]) else: bg_avs = [] bg_stds = [] for i in range(args.num_holders): av, std = calc_peak_ints(args, element, i) bg_avs.append(av) bg_stds.append(std) # print('bg averages', np.array(bg_avs), 'bg stds', np.array(bg_stds)) return np.array(bg_avs), np.array(bg_stds) def analyze_element(args: argparse.Namespace, element: str) -> np.ndarray: '''Analyze one element to get integrals of peaks.''' bg_avs, bg_stds = calc_background(args, element) # element = args.elements_data[element] int_avs = [] int_stds = [] for sp_num in range(args.num_holders, args.num_spectra): # weight = args.powder_weights[sp_num - args.num_holders] holder = args.holders[sp_num] avs, stds = calc_peak_ints(args, element, sp_num) # print('averages for sample', sp_num, 'for element', element, avs) if not args.skip_background: avs = avs - bg_avs[holder] stds = np.sqrt(stds**2 + bg_stds[holder]**2) # print('averages after bg for sample', sp_num, 'for element', element, avs) # print('stds after bg for sample', sp_num, 'for element', element, stds) int_avs.append(avs) int_stds.append(stds) return np.array(int_avs), np.array(int_stds) def lin_int(x, a, b): # linear function with intercept to fit return a * x + b def lin(x, a): # linear function without intercept to fit return a * x def calibrate(args: argparse.Namespace) -> dict: # first deal with the powder element # powder_avs, powder_stds = analyze_element(args, args.powder_element) # get mask for samples that are meant for calibration cal_samples_mask = np.array(args.element_amounts) != '' # get x axis for samples that are meant for calibration args.powder_weights = args.powder_weights[cal_samples_mask] # calcualte the total number of Au (in umol) that are placed # on holder for measurement x_umol = np.array([float(x) for x in args.element_amounts if x != '']) # umol from agrs x_umol = x_umol / args.calib_weight * args.powder_weights x_umol = np.reshape(x_umol, (-1, )) x_perc = x_umol # to be converted to percent for each element as each element has molar mass # Figure # plots integrals with errors foreach element in row # if there is more than one peak for each element, then plots those peaks separately peak_nums = [(args.elements_data[el].int_limits.shape[0]) for el in [args.powder_element] + args.elements] # print('number of peaks for each element', peak_nums) plt.rcParams["figure.figsize"] = [args.fig_size * i for i in plt.rcParams["figure.figsize"]] fig, axs = plt.subplots(len([args.powder_element] + args.elements), max(peak_nums)) # fitting results to be saved as JSON fitting_results = {} # peak integrals for powder element powder_avs, powder_stds = analyze_element(args, args.powder_element) powder_avs = powder_avs[cal_samples_mask, :] powder_stds = powder_stds[cal_samples_mask, :] for j, el in enumerate([args.powder_element] + args.elements): fitting_results[el] = [] # umol to percent conversion coefficient umol_to_perc = args.elements_data[el].molar_weight / (args.calib_weight) * 1e3 / 1e4 # x_ppm = x_umol * args.elements_data[el].molar_weight / (args.calib_weight) * 1e3 el_avs, el_stds = analyze_element(args, el) # get rid of samples that are not meant for calibration el_avs = el_avs[cal_samples_mask, :] el_stds = el_stds[cal_samples_mask, :] # fitting for each peak on an element for i in range(el_avs.shape[1]): el_avs[:, i] = el_avs[:, i] el_stds[:, i] = el_stds[:, i] if j > 0: # j == 0 is powder element, needed to calculate calibrations # divide by the first peak integral for the powder element # because it is usually the case for soils and powders to analyze el_avs[:, i] = el_avs[:, i] / powder_avs[:, 0] el_stds[:, i] = np.sqrt((el_stds[:, i] / powder_avs[:, 0])**2 + \ (el_avs[:, i] / powder_avs[:, 0] ** 2 * powder_stds[:, 0])**2) x_perc = x_umol * umol_to_perc # perform linear fitting for element (i.e. skipping args.powder_element) # res = stats.linregress(x_perc, el_avs[:, i].T) slope = 0; slope_err = 0; intercept = 0; intercept_err = 0 y_ampl = el_avs[:, i].T fit_func = lin_int if args.skip_intercept: fit_func = lin params, cov = curve_fit(fit_func, x_perc, y_ampl) # calculate errors errs = np.sqrt(np.diag(cov)) # get values and errors slope = params[0] slope_err = errs[0] if not args.skip_intercept: intercept = params[1] intercept_err = errs[1] # calculate r2 ss_res = np.sum((y_ampl - fit_func(x_perc, *params)) ** 2) ss_tot = np.sum((y_ampl - np.mean(y_ampl)) ** 2) r2 = 1 - (ss_res / ss_tot) fitting_results[el].append({ 'peak': args.elements_data[el].int_limits[i].tolist(), 'intercept': intercept, 'intercept err': intercept_err, 'slope': slope, 'slope err': slope_err, # 'r2': res.rvalue**2, 'r2': r2, 'x perc': x_perc.tolist(), 'umol to perc': umol_to_perc, 'y peak area': el_avs[:, i].tolist(), 'y peak area err': el_stds[:, i].tolist(), 'calib weights': args.powder_weights.tolist() }) # plotting axs[j, i].errorbar(x_perc, el_avs[:, i], yerr=el_stds[:, i], fmt='o') # axs[j, i].plot(x_perc, res.intercept + res.slope * x_perc) axs[j, i].plot(x_perc, fit_func(x_perc, *params)) axs[j, i].set_title(el + ' peak [' + \ ', '.join(map(str, args.elements_data[el].int_limits[i])) + \ '] keV; r2 = ' + f'{r2:.4f}') axs[j, i].set_ylabel(el + ' peak area (a.u.)') axs[j, i].set_xlabel(el + ' amount (percent)') axs[j, i].legend([el, f'({slope:.3f}+/-{slope_err:.3f})*x + ({intercept:.3f}+/-{intercept_err:.3f})']) fig.tight_layout() # print(fitting_results) plt.show() # save calibrations for el in fitting_results.keys(): if el != args.powder_element: # no need to save calibration for powder element as there is no such with open(os.path.join(args.calib_path, el + '_calib_' + args.calib_label + '.json'), 'w') as calib_file: json.dump({el: fitting_results[el]}, calib_file) return fitting_results def analyze_content(args: argparse.Namespace) -> pd.DataFrame: # peak integrals for powder element powder_avs, powder_stds = analyze_element(args, args.powder_element) res_df = pd.DataFrame(columns=['Element'] + args.labels) for j, el in enumerate(args.elements): print(f'{el} calibration: {args.calib_files[el]}') el_avs, el_stds = analyze_element(args, el) with open(args.calib_files[el], 'r') as cfile: calib = json.load(cfile) el_res = [] el_res_std = [] for i in range(el_avs.shape[1]): # loop through peaks for each element # calibration for peak i calib_peak = calib[el][i] # calculate peaks el_avs[:, i] = el_avs[:, i] / powder_avs[:, 0] el_stds[:, i] = np.sqrt((el_stds[:, i] / powder_avs[:, 0])**2 + \ (el_avs[:, i] / powder_avs[:, 0] ** 2 * powder_stds[:, 0])**2) # calculate element percentage for each peak intercept = calib_peak['intercept'] intercept_err = calib_peak['intercept err'] if args.skip_intercept: # Note: it is much better to use different calibration where fit # was done without intercept at all intercept = 0 intercept_err = 0 el_perc = (el_avs[:, i] - intercept) / calib_peak['slope'] el_perc_std = np.sqrt((el_stds[:, i] / calib_peak['slope'])**2 + \ (intercept_err / calib_peak['slope'])**2 + \ ((el_avs[:, i] - intercept) / calib_peak['slope']**2 * calib_peak['slope err'])**2) el_res.append(el_perc) el_res_std.append(el_perc_std) el_res = np.array(el_res) el_res_std = np.array(el_res_std) el_res = np.mean(el_res, axis=0) el_res_std = np.mean(el_res_std, axis=0) res_df.loc[4*j] = [el + ' perc'] + el_res.tolist() res_df.loc[4*j + 1] = [el + ' perc err'] + el_res_std.tolist() # el_res = el_res / calib[el][0]['umol to perc'] # el_res_std = el_res_std / calib[el][0]['umol to perc'] el_res = el_res * args.powder_weights * 10 / args.elements_data[el].molar_weight el_res_std = el_res_std * args.powder_weights * 10 / args.elements_data[el].molar_weight res_df.loc[4*j + 2] = [el + ' umol'] + el_res.tolist() res_df.loc[4*j + 3] = [el + ' umol err'] + el_res_std.tolist() print(res_df.head()) res_df.to_csv(os.path.join(args.results_path, 'Result_' + \ os.path.splitext(os.path.basename(args.spectra_path))[0] + '.csv'), index=False) return res_df class MetalContentParser(argparse.ArgumentParser): '''Class to perform parsing the input arguments and do additional checks of the input data.''' def error(self, message): super().error(message) def parse_args(self) -> argparse.Namespace: args = super().parse_args() # load spectra file args.spectra_path = args.spectra # get file encoding if args.encoding == '': with open(args.spectra_path, 'rb') as raw: encoding = chardet.detect(raw.read()) args.encoding = encoding['encoding'] args.spectra = pd.read_csv(args.spectra_path, encoding=args.encoding, delimiter='\t') if args.spectra.shape[1] == 1: # something is wrong with delimiter args.spectra =
pd.read_csv(args.spectra_path, encoding=args.encoding, delimiter=',')
pandas.read_csv
# -*- coding: utf-8 -*- """CICID1.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1q-T0VLplhSabpHZXApgXDZsoW7aG3Hnw """ import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import time from sklearn.metrics import accuracy_score # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os #for dirname, _, filenames in os.walk('/content/drive/My Drive/Colab Notebooks/kshield_project/dataset'): # for filename in filenames: # print(filename) #print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. #/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv pd.set_option('display.float_format', '{:.5f}'.format) df1=pd.read_csv("/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv") df2=pd.read_csv("/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv") df3=pd.read_csv("/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Friday-WorkingHours-Morning.pcap_ISCX.csv") df4=pd.read_csv("/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Monday-WorkingHours.pcap_ISCX.csv") df5=pd.read_csv("/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Thursday-WorkingHours-Afternoon-Infilteration.pcap_ISCX.csv") df6=pd.read_csv("/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv") df7=
pd.read_csv("/content/drive/My Drive/Colab Notebooks/kshield_project/dataset/cicids2017/MachineLearningCSV/MachineLearningCVE/Tuesday-WorkingHours.pcap_ISCX.csv")
pandas.read_csv
#!/usr/bin/env python3 # See the README.md file import json import logging import sys import os from datetime import datetime import numpy from PIL import Image import pandas as pd import requests from skimage import exposure # The site file, of the format: site_tag,latitude,longitude,start_date,end_date,kmAboveBelow,kmLeftRight CSV = "sites.csv" URL = "https://modis.ornl.gov/rst/api/v1/" ORDURL = "https://modis.ornl.gov/subsetdata" HEADER = {'Accept': 'application/json'} BANDS = ['sur_refl_b01', 'sur_refl_b04', 'sur_refl_b03', 'sur_refl_qc_500m'] PROD = ['MYD09A1', 'MOD09A1'] # MXD09A1 QC, this runs parallel to BANDS, defs at https://lpdaac.usgs.gov/documents/925/MOD09_User_Guide_V61.pdf BANDS_QC = [ 60, # 111100, band 1 245760, # 111100000000000000, band 4 15360 # 11110000000000, band 3 ] SR_MAX = 16000 SR_MIN = -100 GAMMA = 0.4 IMG_DIR= 'site-imgs' # The % of the image that should be of "high quality" PRCNT_GOOD = .90 # Needs to be ~90% good def json_sr_2_channel(band_name, band_idx, data, qc_band): nsubs = len(data[band_name]['subset']) if nsubs > 1: logging.warning("using the first subset for %s ...", band_name) scale = float(data[band_name]['scale']) arr = numpy.array(data[band_name]['subset'][0]['data']).astype('f4') arr = numpy.ma.masked_where(arr > SR_MAX, arr, copy=False) arr = numpy.ma.masked_where(arr < SR_MIN, arr, copy=False) arr *= scale sr_min, sr_max = SR_MIN * scale, SR_MAX * scale dat = ((arr - sr_min) * (1/(sr_max - sr_min) * 255)).astype('uint8') qc_bnd = qc_band & BANDS_QC[band_idx] dat = numpy.ma.masked_where(qc_bnd != 0, dat, copy=False) return dat #json_sr_2_channel def post_m09a1(data): logging.info("Building rgb image for MODIS Terra/Aqua Surface Reflectance (SREF) 8-Day L3 Global 500 %s", data['name']) qc = numpy.array(data['sur_refl_qc_500m']['subset'][0]['data'], dtype='u4') redish = json_sr_2_channel('sur_refl_b01', 0, data, qc) greenish = json_sr_2_channel('sur_refl_b04', 1, data, qc) blueish = json_sr_2_channel('sur_refl_b03', 2, data, qc) msk = redish.mask | greenish.mask | blueish.mask pgood = numpy.count_nonzero(msk == 0) / msk.shape[0] logging.debug("Quality pixels ~ %f %%", pgood) if pgood <= PRCNT_GOOD: logging.warning("Skipping %s due to poor quality image", data['name']) return alpha = numpy.where(msk == True, 0, 255).astype('uint8') shp = data['sur_refl_b01']['nrows'], data['sur_refl_b01']['ncols'], 4 try: rgba = numpy.dstack((redish, greenish, blueish, alpha)).reshape(shp) gcorrect = exposure.adjust_gamma(rgba, GAMMA) img = Image.fromarray(gcorrect,'RGBA') img.save(data['name']) except ValueError as valerr: logging.error("%s for %s, image not created", str(valerr), data['name']) #post_m09a1 def subset_site_data(csv, prod): coordinates =
pd.read_csv(csv)
pandas.read_csv
import pandas as pd import mdtraj as md __all__ = ["load_dataframe", "load_trajectory", "plumed_to_pandas"] def is_plumed_file(filename): """ Check if given file is in PLUMED format. Parameters ---------- filename : string, optional PLUMED output file Returns ------- bool wheter is a plumed output file """ headers = pd.read_csv(filename, sep=" ", skipinitialspace=True, nrows=0) is_plumed = True if " ".join(headers.columns[:2]) == "#! FIELDS" else False return is_plumed def plumed_to_pandas(filename="./COLVAR"): """ Load a PLUMED file and save it to a dataframe. Parameters ---------- filename : string, optional PLUMED output file Returns ------- df : DataFrame Collective variables dataframe """ skip_rows = 1 # Read header headers =
pd.read_csv(filename, sep=" ", skipinitialspace=True, nrows=0)
pandas.read_csv
import matplotlib.pyplot as plt import matplotlib import scipy.stats as stats from statsmodels.graphics.mosaicplot import mosaic import statsmodels.api as sm from statsmodels.formula.api import ols import pandas as pd import numpy as np import scipy class InteractionAnalytics(): @staticmethod def rank_associations(df, conf_dict, col1, col2, col3): try: col2 = int(col2) col3 = int(col3) except: pass # Passed Variable is Numerical if (col1 in conf_dict['NumericalColumns']) : if len(conf_dict['NumericalColumns'])>1: # Interaction with numerical variables df2 = df[conf_dict['NumericalColumns']] corrdf = df2.corr() corrdf = abs(corrdf) # get the absolute values of correlations since negative correlations also matter corrdf2 = corrdf[corrdf.index==col1].reset_index()[[each for each in corrdf.columns \ if col1 not in each]].unstack().sort_values(kind="quicksort", ascending=False).head(col2) corrdf2 = corrdf2.reset_index() corrdf2.columns = ['Variable','level1', 'Correlation'] metric_num = "R-squared" # Interaction with categorical variables etasquared_dict = {} if len(conf_dict['CategoricalColumns']) >= 1: for each in conf_dict['CategoricalColumns']: mod = ols('{} ~ C({})'.format(col1, each),data=df[[col1,each]],missing='drop').fit() aov_table = sm.stats.anova_lm(mod, typ=1) esq_sm = aov_table['sum_sq'][0]/(aov_table['sum_sq'][0]+aov_table['sum_sq'][1]) etasquared_dict[each] = esq_sm topk_esq = pd.DataFrame.from_dict(etasquared_dict, orient='index').unstack().sort_values(\ kind = 'quicksort', ascending=False).head(col3).reset_index() topk_esq.columns = ['level_0', 'Variable', 'Correlation'] metric_cat = 'Eta-Squared' return corrdf2, metric_num, topk_esq, metric_cat # Passed Variable is Categorical else: #Interaction with numerical variables if len(conf_dict['NumericalColumns']) >= 1: etasquared_dict = {} for each in conf_dict['NumericalColumns']: mod = ols('{} ~ C({})'.format(each, col1), data = df[[col1,each]]).fit() aov_table = sm.stats.anova_lm(mod, typ=1) esq_sm = aov_table['sum_sq'][0]/(aov_table['sum_sq'][0]+aov_table['sum_sq'][1]) etasquared_dict[each] = esq_sm topk_esq = pd.DataFrame.from_dict(etasquared_dict, orient='index').unstack().sort_values(\ kind = 'quicksort', ascending=False).head(col2).reset_index() topk_esq.columns = ['level_0', 'Variable', 'Correlation'] metric_num = 'Eta-Squared' # Interaction with categorical variables cramer_dict = {} if len(conf_dict['CategoricalColumns'])>1: for each in conf_dict['CategoricalColumns']: if each !=col1: tbl = pd.crosstab(df[col1], df[each]) chisq = stats.chi2_contingency(tbl, correction=False)[0] try: cramer = np.sqrt(chisq/sum(tbl)) except: cramer = np.sqrt(chisq/tbl.values.sum()) pass cramer_dict[each] = cramer topk_cramer =
pd.DataFrame.from_dict(cramer_dict, orient='index')
pandas.DataFrame.from_dict
#%% import os from pyteomics import mzid, mzml import pandas as pd import numpy as np import glob """ Files are downloaded and manually randomly divided into different folders the following code is repeated but has the same effect, it is applied to various folders to generate pandas data frames and to store all the data in a single hdf5 file """ #%% os.chdir('./files/train') mzid_files=glob.glob('*.mzid') indexed_mzid = mzid.chain.from_iterable(mzid_files, use_index=True) def _parse_mzid_entry(entry): spectrum_id = str(entry['spectrumID']) seq = str(entry['SpectrumIdentificationItem'][0]['PeptideSequence']) try: mods = entry['SpectrumIdentificationItem'][0]['Modification'] except: mods = None rank = int(entry['SpectrumIdentificationItem'][0]['rank']) file_location = str(entry['name']) return file_location,spectrum_id,seq,mods,rank all_mzid = [] for entry in(indexed_mzid): all_mzid.append(_parse_mzid_entry(entry)) file_location,spectrum_ids,seq,mods,rank = zip(*all_mzid) mzid_df = pd.DataFrame({'file':file_location,'id':spectrum_ids,'seq':seq}) def _parse_mzml_entry(entry): ID = str(entry['id']) mz = np.array(entry['m/z array']) intensities = np.array(entry['intensity array']) return ID, mz, intensities all_spectra = [] for file in np.unique(file_location): print(file) indexed = mzml.MzML(file) for i,entry in enumerate(indexed.map(_parse_mzml_entry)): tupl = (file,)+entry all_spectra.append(tupl) mzml_location, ids, mz, intensities = zip(*all_spectra) spectra_df = pd.DataFrame({'file':mzml_location,'id':ids,'mz':mz,'intensities':intensities}) #### MERGE: mzid + mzml merged_df = pd.merge(mzid_df,spectra_df,how='left',on=['file','id']) merged_df = merged_df[['id','seq','mz','intensities']] #%% hdf = pd.HDFStore('/home/ubuntu/data/jiahao/files/train.hdf5', mode="w") hdf.put(value=merged_df, key="df") #%% os.chdir('./train_1') mzid_files_1=glob.glob('*.mzid') indexed_mzid_1 = mzid.chain.from_iterable(mzid_files_1, use_index=True) def _parse_mzid_entry(entry): spectrum_id = str(entry['spectrumID']) seq = str(entry['SpectrumIdentificationItem'][0]['PeptideSequence']) try: mods = entry['SpectrumIdentificationItem'][0]['Modification'] except: mods = None rank = int(entry['SpectrumIdentificationItem'][0]['rank']) file_location = str(entry['name']) return file_location,spectrum_id,seq,mods,rank all_mzid_1 = [] for entry in(indexed_mzid_1): all_mzid_1.append(_parse_mzid_entry(entry)) file_location,spectrum_ids,seq,mods,rank = zip(*all_mzid_1) mzid_df_1 = pd.DataFrame({'file':file_location,'id':spectrum_ids,'seq':seq}) def _parse_mzml_entry(entry): ID = str(entry['id']) mz = np.array(entry['m/z array']) intensities = np.array(entry['intensity array']) return ID, mz, intensities all_spectra_1 = [] for file in np.unique(file_location): print(file) indexed = mzml.MzML(file) for i,entry in enumerate(indexed.map(_parse_mzml_entry)): tupl = (file,)+entry all_spectra_1.append(tupl) mzml_location, ids, mz, intensities = zip(*all_spectra_1) spectra_df_1 = pd.DataFrame({'file':mzml_location,'id':ids,'mz':mz,'intensities':intensities}) #### MERGE: mzid + mzml merged_df_1 = pd.merge(mzid_df_1,spectra_df_1,how='left',on=['file','id']) merged_df_1 = merged_df_1[['id','seq','mz','intensities']] #%% hdf.put(value=merged_df_1, key="df1") # %% os.chdir('./train_2') mzid_files_2=glob.glob('*.mzid') indexed_mzid_2 = mzid.chain.from_iterable(mzid_files_2, use_index=True) def _parse_mzid_entry(entry): spectrum_id = str(entry['spectrumID']) seq = str(entry['SpectrumIdentificationItem'][0]['PeptideSequence']) try: mods = entry['SpectrumIdentificationItem'][0]['Modification'] except: mods = None rank = int(entry['SpectrumIdentificationItem'][0]['rank']) file_location = str(entry['name']) return file_location,spectrum_id,seq,mods,rank all_mzid_2 = [] for entry in(indexed_mzid_2): all_mzid_2.append(_parse_mzid_entry(entry)) file_location,spectrum_ids,seq,mods,rank = zip(*all_mzid_2) mzid_df_2 = pd.DataFrame({'file':file_location,'id':spectrum_ids,'seq':seq}) def _parse_mzml_entry(entry): ID = str(entry['id']) mz = np.array(entry['m/z array']) intensities = np.array(entry['intensity array']) return ID, mz, intensities all_spectra_2 = [] for file in np.unique(file_location): print(file) indexed = mzml.MzML(file) for i,entry in enumerate(indexed.map(_parse_mzml_entry)): tupl = (file,)+entry all_spectra_2.append(tupl) mzml_location, ids, mz, intensities = zip(*all_spectra_2) spectra_df_2 = pd.DataFrame({'file':mzml_location,'id':ids,'mz':mz,'intensities':intensities}) #### MERGE: mzid + mzml merged_df_2 = pd.merge(mzid_df_2,spectra_df_2,how='left',on=['file','id']) merged_df_2 = merged_df_2[['id','seq','mz','intensities']] #%% hdf.put(value=merged_df_2, key="df2") #%% os.chdir('./train_3') mzid_files_3 = glob.glob('*.mzid') indexed_mzid_3 = mzid.chain.from_iterable(mzid_files_3, use_index=True) def _parse_mzid_entry(entry): spectrum_id = str(entry['spectrumID']) seq = str(entry['SpectrumIdentificationItem'][0]['PeptideSequence']) try: mods = entry['SpectrumIdentificationItem'][0]['Modification'] except: mods = None rank = int(entry['SpectrumIdentificationItem'][0]['rank']) file_location = str(entry['name']) return file_location,spectrum_id,seq,mods,rank all_mzid_3 = [] for entry in(indexed_mzid_3): all_mzid_3.append(_parse_mzid_entry(entry)) file_location,spectrum_ids,seq,mods,rank = zip(*all_mzid_3) mzid_df_3 = pd.DataFrame({'file':file_location,'id':spectrum_ids,'seq':seq}) def _parse_mzml_entry(entry): ID = str(entry['id']) mz = np.array(entry['m/z array']) intensities = np.array(entry['intensity array']) return ID, mz, intensities all_spectra_3 = [] for file in np.unique(file_location): print(file) indexed = mzml.MzML(file) for i,entry in enumerate(indexed.map(_parse_mzml_entry)): tupl = (file,)+entry all_spectra_3.append(tupl) mzml_location, ids, mz, intensities = zip(*all_spectra_3) spectra_df_3 = pd.DataFrame({'file':mzml_location,'id':ids,'mz':mz,'intensities':intensities}) #### MERGE: mzid + mzml merged_df_3 = pd.merge(mzid_df_3,spectra_df_3,how='left',on=['file','id']) merged_df_3 = merged_df_3[['id','seq','mz','intensities']] #%% hdf.put(value=merged_df_3, key="df3") #%% os.chdir('./train_4') mzid_files_4 = glob.glob('*.mzid') indexed_mzid_4 = mzid.chain.from_iterable(mzid_files_4, use_index=True) def _parse_mzid_entry(entry): spectrum_id = str(entry['spectrumID']) seq = str(entry['SpectrumIdentificationItem'][0]['PeptideSequence']) try: mods = entry['SpectrumIdentificationItem'][0]['Modification'] except: mods = None rank = int(entry['SpectrumIdentificationItem'][0]['rank']) file_location = str(entry['name']) return file_location,spectrum_id,seq,mods,rank all_mzid_4 = [] for entry in(indexed_mzid_4): all_mzid_4.append(_parse_mzid_entry(entry)) file_location,spectrum_ids,seq,mods,rank = zip(*all_mzid_4) mzid_df_4 =
pd.DataFrame({'file':file_location,'id':spectrum_ids,'seq':seq})
pandas.DataFrame
# load import pandas as pd # import lightgbm data = pd.read_csv("X_train.csv", index_col=0) data["mark"] =
pd.read_csv("y_train.csv", index_col=0)
pandas.read_csv
import pandas as pd import numpy as np import re pd.options.mode.chained_assignment = None class Validate: def Member(self, data, current_org, missing_output, output_ID = None, personIDs = None): key = 'Member' bad_data_count = 0 bad_data_locations= [] last_row = 0 for row in data[key].values: val = row[0] # exit when the last row has been reached if val == '' or pd.isna(val): break else: # check for missing birthdates and log if True if data[key]['Fødselsdato'][last_row] == '': print(f'{current_org}: Bad Birthdate at {last_row}, {data[key]["Fødselsdato"][last_row]}') bad_data_count += 1 bad_data_locations.append('Fødselsdato') # Check if the member is missing membership onboarding date, or if this is set as an invalid value reg_date = data[key]['Medlemskap registreringsdato'][last_row] if type(reg_date) != pd._libs.tslibs.timestamps.Timestamp: print(f'{current_org}: Missing membership onboarding date, or invalid data type at {last_row} for {str(reg_date)} with type {type(reg_date)}!') bad_data_count += 1 bad_data_locations.append('Medlemskap registreringsdato') # check if the member is missing training fee onboarding date reg_date_tf = data[key]['Treningsavgift registreringsdato'][last_row] if type(reg_date) != pd._libs.tslibs.timestamps.Timestamp: print(f'{current_org}: Missing Training Fee onboarding date, or invalid data type at {last_row} for {str(reg_date_tf)} with type {type(reg_date_tf)}!') bad_data_count += 1 bad_data_locations.append('Treningsavgift registreringsdato') # check if new membership and Training fee has valid product names mem = data[key]['Kontingent navn'][last_row] mem_list = list(data['Membership']['Navn på kontigent'].values) if mem not in mem_list: found_mem_match = False for m_product in mem_list: if mem.lower().replace(' ', '') == m_product.lower().replace(' ', ''): data[key]['Kontingent navn'][last_row] = m_product found_mem_match = True #print(f'{current_org}: Bad Membership at {last_row}, old product: "{mem}", new product: "{data[key]["Kontingent navn"][last_row]}"') bad_data_count += 1 bad_data_locations.append('Kontingent navn - OK') break if not found_mem_match: print(f'{current_org}: Non existent Membership at {last_row}! Product: "{mem}"') bad_data_count += 1 bad_data_locations.append('Kontingent navn - BAD') tf = data[key]['Treningsavgift navn'][last_row] tf_list = list(data['Training fee']['Navn på Treningsvgift'].values) if tf not in tf_list: found_tf_match = False for t_product in tf_list: if tf.lower().replace(' ', '') == t_product.lower().replace(' ', ''): data[key]['Treningsavgift navn'][last_row] = t_product #print(f'{current_org}: Bad Training Fee at {last_row}, old product: "{tf}", new product: "{data[key]["Treningsavgift navn"][last_row]}"') bad_data_count += 1 bad_data_locations.append('Treningsavgift - OK') found_tf_match = True break if not found_tf_match: print(f'{current_org}: Non existent Training fee at {last_row}! Product "{tf}"') bad_data_count += 1 bad_data_locations.append('Treningsavgift - BAD') # check for missing address data and copy for street if so if data[key]['Adresse 1'][last_row] == "": data[key]['Adresse 1'][last_row] = data[key]['Gatenavn'][last_row] if output_ID != None: # check for existance of output data for current org if current_org in list(output_ID.keys()): oid = output_ID[current_org] if oid in list(personIDs.keys()): org_data = personIDs[oid] num_pid= len(org_data) # set PersonID for member if available in output file if last_row < num_pid: data[key]['NIF ID'][last_row] = org_data[last_row][0] #check for erronious last names, and attempt correction (based upon rules for last name in Folkereg.) lastname = data[key].Etternavn.values[last_row] lastname_count = len(lastname.split()) real_lastname = org_data[last_row][2] real_firstname = org_data[last_row][1] if lastname_count > 1 and lastname != real_lastname: print(f'{current_org}: Bad name at {last_row}, old: {lastname}, new: {real_lastname}') data[key]['Fornavn- og middelnavn'].values[last_row] = real_firstname data[key].Etternavn.values[last_row] = real_lastname bad_data_count += 1 bad_data_locations.append('Navn') # log clubs without indentifiable output from KA else: missing_output.update({current_org: last_row}) last_row += 1 if last_row == 0: print(f'{current_org}: NO MEMBERSHIPS CONFIGURED') return data, last_row, bad_data_count, bad_data_locations, missing_output def Training_Fee(self, data, current_org): key = 'Training fee' bad_data_count = 0 bad_data_locations= [] last_row = 0 for row in data[key].values: val = row[0] # exit when the last row has been reached if val == '' or
pd.isna(val)
pandas.isna
# python 2/3 compatibility from __future__ import division, print_function import sys import os.path import numpy import pandas import copy import json import jxmlease import xml.etree.ElementTree as ET import csv from sbtab import SBtab # package imports import rba from .data_block import DataBlock class RBA_SimulationData(object): """ Class holding information on simulations with the model. Attributes ---------- StructuralInformation : rbatools.rba_ModelStructure RBA_ModelStructure object. Model description SessionName : str Name of simulation session ProteinData : rbatools.data_block DataBlock object. Simulated protein levels ReactionData : rbatools.data_block DataBlock object. Simulated reaction data EnzymeData : rbatools.data_block DataBlock object. Simulated enzyme data ProcessData : rbatools.data_block DataBlock object. Simulated process machinery data MetaboliteConstraintData : rbatools.data_block DataBlock object. Simulation information on mass-balance constraints DensityConstraintData : rbatools.data_block DataBlock object. Simulation information on compartment-density constraints ProcessConstraintData : rbatools.data_block DataBlock object. Simulation information on process-capacity constraints EnzymeConstraintData : rbatools.data_block DataBlock object. Simulation information on enzyme-efficiency constraints Methods ---------- __init__(StaticData) Initiates Simulation data object fromSimulationResults(Controller, session_name) Imports data from rbatools.RBA_Controler object fromJSON(inputString) Imports data from JSON string object toXML() Exports xml-file toJSON() Returns simulation data as JSON string exportSBtab() Exports SBtab files exportSBtab_OneFile() Exports simulation data in one single sbtab file exportCSV(deleteZerosRows=True) Exports simulation data as csv files exportEscherMap(type='fluxes') Exports input file for generation of Escher maps. exportProteoMap() Exports input file for the generation of Proteo maps from simulation data. """ def __init__(self, StaticData): """ Initiates Simulation data object Parameters ---------- StaticData : rbatools.RBA_ModelStructure """ self.StructuralInformation = copy.deepcopy(StaticData) self.ProteinData = DataBlock() self.ProtoProteinData = DataBlock() self.ReactionData = DataBlock() self.ExchangeData = DataBlock() self.uniqueReactionData = DataBlock() self.EnzymeData = DataBlock() self.ProcessData = DataBlock() self.MetaboliteConstraintData = DataBlock() self.DensityConstraintData = DataBlock() self.EnzymeConstraintData = DataBlock() self.ProcessConstraintData = DataBlock() self.GeneralRunInfo = DataBlock() self.ObjectiveFunctionInfo = DataBlock() self.SessionName = '' self.ProteinData.fromDict({}) self.ProtoProteinData.fromDict({}) self.ReactionData.fromDict({}) self.ExchangeData.fromDict({}) self.uniqueReactionData.fromDict({}) self.EnzymeData.fromDict({}) self.ProcessData.fromDict({}) self.MetaboliteConstraintData.fromDict({}) self.DensityConstraintData.fromDict({}) self.EnzymeConstraintData.fromDict({}) self.ProcessConstraintData.fromDict({}) self.GeneralRunInfo.fromDict({}) self.ObjectiveFunctionInfo.fromDict({}) def fromSimulationResults(self, Controller, session_name=''): """ Imports data from rbatools.RBA_Controler object Parameters ---------- Controller : rbatools.RBA_newControler Defines from which object to extract the data from session_name: str Defines the name of the session Is appended to the filenames generated by export methods. """ self.SessionName = session_name self.run_names = list(Controller.Results['ObjectiveValue']) ObjDict = {} for run in list(Controller.Results['ObjectiveValue']): ObjDict.update({run: Controller.Results['ObjectiveValue'].loc['ObjectiveValue', run]}) SolutionType_Dict = {} for run in list(Controller.Results['SolutionType']): SolutionType_Dict.update( {run: Controller.Results['SolutionType'].loc['SolutionType', run]}) MuDict = {} for run in list(Controller.Results['Mu']): MuDict.update({run: Controller.Results['Mu'].loc['Mu', run]}) self.GeneralRunInfo.addEntries({'ProblemType': SolutionType_Dict}) self.GeneralRunInfo.addEntries({'Mu': MuDict}) self.GeneralRunInfo.addEntries({'Obj_Val': ObjDict}) for var in list(Controller.Results['ObjectiveFunction'].index): if var not in self.ObjectiveFunctionInfo.Elements: self.ObjectiveFunctionInfo.Elements.update({var: {}}) for run in list(Controller.Results['ObjectiveFunction']): self.ObjectiveFunctionInfo.Elements[var].update( {run: Controller.Results['ObjectiveFunction'].loc[var, run]}) for exchange in list(Controller.Results['ExchangeFluxes'].index): if exchange not in self.ExchangeData.Elements: self.ExchangeData.Elements.update({exchange: {}}) # self.ExchangeData.Elements[exchange].update({'ID': exchange}) for run in list(Controller.Results['ExchangeFluxes']): self.ExchangeData.Elements[exchange].update( {run: Controller.Results['ExchangeFluxes'].loc[exchange, run]}) for reaction in list(Controller.Results['Reactions'].index): if reaction not in self.ReactionData.Elements: self.ReactionData.Elements.update({reaction: {}}) # self.ReactionData.Elements[reaction].update({'ID': reaction}) for run in list(Controller.Results['Reactions']): self.ReactionData.Elements[reaction].update( {run: Controller.Results['Reactions'].loc[reaction, run]}) for reaction in list(Controller.Results['uniqueReactions'].index): if reaction not in self.uniqueReactionData.Elements: self.uniqueReactionData.Elements.update({reaction: {}}) # self.uniqueReactionData.Elements[reaction].update({'ID': reaction}) for run in list(Controller.Results['uniqueReactions']): self.uniqueReactionData.Elements[reaction].update( {run: Controller.Results['uniqueReactions'].loc[reaction, run]}) for enzyme in list(Controller.Results['Enzymes'].index): if enzyme not in self.EnzymeData.Elements: self.EnzymeData.Elements.update({enzyme: {}}) # self.EnzymeData.Elements[enzyme].update({'ID': enzyme}) for run in list(Controller.Results['Enzymes']): self.EnzymeData.Elements[enzyme].update( {run: Controller.Results['Enzymes'].loc[enzyme, run]}) for process in list(Controller.Results['Processes'].index): if process not in self.ProcessData.Elements: self.ProcessData.Elements.update({process: {}}) # self.ProcessData.Elements[process].update({'ID': process}) for run in list(Controller.Results['Processes']): self.ProcessData.Elements[process].update( {run: Controller.Results['Processes'].loc[process, run]}) for protein in list(Controller.Results['Proteins'].index): if protein not in self.ProteinData.Elements: self.ProteinData.Elements.update({protein: {}}) # self.ProteinData.Elements[protein].update({'ID': protein}) for run in list(Controller.Results['Proteins']): self.ProteinData.Elements[protein].update( {run: Controller.Results['Proteins'].loc[protein, run]}) for protoprotein in list(Controller.Results['ProtoProteins'].index): if protoprotein not in self.ProtoProteinData.Elements: self.ProtoProteinData.Elements.update({protoprotein: {}}) # self.ProtoProteinData.Elements[protoprotein].update({'ID': protoprotein}) for run in list(Controller.Results['ProtoProteins']): self.ProtoProteinData.Elements[protoprotein].update( {run: Controller.Results['ProtoProteins'].loc[protoprotein, run]}) for constr in list(Controller.Results['Constraints'].index): if constr in list(self.StructuralInformation.MetaboliteConstraintsInfo.Elements.keys()): if constr not in self.MetaboliteConstraintData.Elements: self.MetaboliteConstraintData.Elements.update({constr: {}}) # self.MetaboliteConstraintData.Elements[constr].update({'ID': constr}) for run in list(Controller.Results['Constraints']): self.MetaboliteConstraintData.Elements[constr].update( {run: Controller.Results['Constraints'].loc[constr, run]}) if constr in list(self.StructuralInformation.DensityConstraintsInfo.Elements.keys()): if constr not in self.DensityConstraintData.Elements: self.DensityConstraintData.Elements.update({constr: {}}) # self.DensityConstraintData.Elements[constr].update({'ID': constr}) for run in list(Controller.Results['Constraints']): self.DensityConstraintData.Elements[constr].update( {run: Controller.Results['Constraints'].loc[constr, run]}) if constr in list(self.StructuralInformation.EnzymeConstraintsInfo.Elements.keys()): if constr not in self.EnzymeConstraintData.Elements: self.EnzymeConstraintData.Elements.update({constr: {}}) # self.EnzymeConstraintData.Elements[constr].update({'ID': constr}) for run in list(Controller.Results['Constraints']): self.EnzymeConstraintData.Elements[constr].update( {run: Controller.Results['Constraints'].loc[constr, run]}) if constr in list(self.StructuralInformation.ProcessConstraintsInfo.Elements.keys()): if constr not in self.ProcessConstraintData.Elements: self.ProcessConstraintData.Elements.update({constr: {}}) # self.ProcessConstraintData.Elements[constr].update({'ID': constr}) for run in list(Controller.Results['Constraints']): self.ProcessConstraintData.Elements[constr].update( {run: Controller.Results['Constraints'].loc[constr, run]}) def fromJSON(self, inputString): """ Imports data from JSON string object Parameters ---------- inputString: json-string """ Block = json.loads(inputString) self.ReactionData = DataBlock() self.ProteinData = DataBlock() self.EnzymeData = DataBlock() self.ProcessData = DataBlock() self.MetaboliteConstraintData = DataBlock() self.DensityConstraintData = DataBlock() self.EnzymeConstraintData = DataBlock() self.ProcessConstraintData = DataBlock() self.ReactionData.fromDict(Block['ReactionData']) self.ProteinData.fromDict(Block['ProteinData']) self.EnzymeData.fromDict(Block['EnzymeData']) self.ProcessData.fromDict(Block['ProcessData']) self.MetaboliteConstraintData.fromDict(Block['MetaboliteConstraintData']) self.DensityConstraintData.fromDict(Block['DensityConstraintData']) self.EnzymeConstraintData.fromDict(Block['EnzymeConstraintData']) self.ProcessConstraintData.fromDict(Block['ProcessConstraintData']) def exportXML(self): """ Exports xml-file """ x = htmlStyle(self) root = ET.fromstring(jxmlease.emit_xml(x, encoding='utf-8')) m = ET.tostring(root, 'utf-8') return(m) def exportSBtab(self, filename=None, add_links=False, rba=False): """ Exports simulation data in one single sbtab file """ GeneralRunInfoTable = self.GeneralRunInfo.toSBtab( table_id='run_information', table_type='QuantityMatrix', table_name='Run information') GeneralRunInfoTable.filename = 'RunInfo.tsv' GeneralRunInfoTable.change_attribute( 'Text', 'Growth rates mu and cellular objective values (by default: minimisation of total enzyme concentration).') #GeneralRunInfoTable.unset_attribute('Date') GeneralRunInfoTable.unset_attribute('SBtabVersion') ObjectiveFunctionDataTable = self.ObjectiveFunctionInfo.toSBtab( table_id='objective_coefficients', table_type='QuantityMatrix', table_name='Linear objective') ObjectiveFunctionDataTable.filename = 'ObjectiveFunctionData.tsv' ObjectiveFunctionDataTable.change_attribute('Unit', '') ObjectiveFunctionDataTable.change_attribute('QuantityType', 'objective_coefficient') ObjectiveFunctionDataTable.change_attribute( 'Text', 'Coefficients in objective function (<0 : maximisation , >0 : minimisation)') #ObjectiveFunctionDataTable.unset_attribute('Date') ObjectiveFunctionDataTable.unset_attribute('SBtabVersion') ReactionDataTable = self.ReactionData.toSBtab( table_id='reaction_flux', table_type='QuantityMatrix', table_name='Reaction fluxes') ReactionDataTable.filename = 'ReactionData.tsv' ReactionDataTable.change_attribute('Unit', 'mmol/(h*gDW)') ReactionDataTable.change_attribute('QuantityType', 'reaction_flux') ReactionDataTable.change_attribute( 'Text', 'Reaction fluxes obtained in the simulation runs (table columns).') #ReactionDataTable.unset_attribute('Date') ReactionDataTable.unset_attribute('SBtabVersion') EnzymeDataTable = self.EnzymeData.toSBtab( table_id='enzyme_concentration', table_type='QuantityMatrix', table_name='Enzyme concentrations') EnzymeDataTable.filename = 'EnzymeData.tsv' EnzymeDataTable.change_attribute('Unit', 'mmol/gDW') EnzymeDataTable.change_attribute('QuantityType', 'enzyme_concentration') EnzymeDataTable.change_attribute( 'Text', 'Enzyme concentrations obtained in the simulation runs (table columns).') #EnzymeDataTable.unset_attribute('Date') EnzymeDataTable.unset_attribute('SBtabVersion') ProcessDataTable = self.ProcessData.toSBtab( table_id='machine_concentration', table_type='QuantityMatrix', table_name='Machine concentrations') ProcessDataTable.filename = 'ProcessData.tsv' ProcessDataTable.change_attribute('Unit', 'mmol/gDW') ProcessDataTable.change_attribute('QuantityType', 'machine_concentration') ProcessDataTable.change_attribute( 'Text', 'Macromolecular machine concentrations obtained in the simulation runs (table columns).') #ProcessDataTable.unset_attribute('Date') ProcessDataTable.unset_attribute('SBtabVersion') ProteinDataTable = self.ProteinData.toSBtab( table_id='protein_concentration', table_type='QuantityMatrix', table_name='Protein concentrations') ProteinDataTable.filename = 'ProteinData.tsv' ProteinDataTable.change_attribute('Unit', 'mmol/gDW') ProteinDataTable.change_attribute('QuantityType', 'protein_concentration') ProteinDataTable.change_attribute( 'Text', 'Protein concentrations obtained in the simulation runs (table columns).') #ProteinDataTable.unset_attribute('Date') ProteinDataTable.unset_attribute('SBtabVersion') MetaboliteConstraintDataTable = self.MetaboliteConstraintData.toSBtab( table_id='metabolite_mass_balance_dual', table_type='QuantityMatrix', table_name='Metabolite mass-balance dual values') MetaboliteConstraintDataTable.filename = 'MetaboliteConstraintData.tsv' MetaboliteConstraintDataTable.change_attribute('Unit', '') MetaboliteConstraintDataTable.change_attribute('QuantityType', 'lagrange_multiplier') MetaboliteConstraintDataTable.change_attribute( 'Text', 'Shadow prices of the metabolite mass-balance constraints obtained in the simulation runs (table columns). The measurement units of shadow prices are given by the measurement unit of objective function, divided by the measurement units of the respective constraints') #MetaboliteConstraintDataTable.unset_attribute('Date') MetaboliteConstraintDataTable.unset_attribute('SBtabVersion') DensityConstraintDataTable = self.DensityConstraintData.toSBtab( table_id='density_constraint_dual', table_type='QuantityMatrix', table_name='Compartment density dual values') DensityConstraintDataTable.filename = 'DensityConstraintData.tsv' DensityConstraintDataTable.change_attribute('QuantityType', 'lagrange_multiplier') DensityConstraintDataTable.change_attribute('Unit', '') DensityConstraintDataTable.change_attribute( 'Text', 'Shadow prices of the density constraints obtained in the simulation runs (table columns). The measurement units of shadow prices are given by the measurement unit of objective function, divided by the measurement units of the respective constraints') #DensityConstraintDataTable.unset_attribute('Date') DensityConstraintDataTable.unset_attribute('SBtabVersion') EnzymeConstraintDataTable = self.EnzymeConstraintData.toSBtab( table_id='enzyme_capacity_dual', table_type='QuantityMatrix', table_name='Enzyme capacity dual values') EnzymeConstraintDataTable.filename = 'EnzymeConstraintData.tsv' EnzymeConstraintDataTable.change_attribute('QuantityType', 'lagrange_multiplier') EnzymeConstraintDataTable.change_attribute('Unit', '') EnzymeConstraintDataTable.change_attribute( 'Text', 'Shadow prices of the enzyme-capacity constraints obtained in the simulation runs (table columns). The measurement units of shadow prices are given by the measurement unit of objective function, divided by the measurement units of the respective constraints') #EnzymeConstraintDataTable.unset_attribute('Date') EnzymeConstraintDataTable.unset_attribute('SBtabVersion') ProcessConstraintDataTable = self.ProcessConstraintData.toSBtab( table_id='machine_capacity_dual', table_type='QuantityMatrix', table_name='Machine capacity dual values') ProcessConstraintDataTable.filename = 'ProcessConstraintData.tsv' ProcessConstraintDataTable.change_attribute('Unit', '') ProcessConstraintDataTable.change_attribute('QuantityType', 'lagrange_multiplier') ProcessConstraintDataTable.change_attribute( 'Text', 'Shadow prices of the machine-capacity constraints obtained in the simulation runs (table columns). The measurement units of shadow prices are given by the measurement unit of objective function, divided by the measurement units of the respective constraints') #ProcessConstraintDataTable.unset_attribute('Date') ProcessConstraintDataTable.unset_attribute('SBtabVersion') if filename is not None: filename_SBtab = filename else: filename_SBtab = 'RBA_results' if add_links: ReactionDataTable.add_column(column_list=['!ElementID']+[str('(!'+'Reaction/'+entry+'!)') for entry in list(ReactionDataTable.to_data_frame()['ID'])], position=1) ProcessDataTable.add_column(column_list=['!ElementID']+[str('(!'+'Process/'+entry+'!)') for entry in list(ProcessDataTable.to_data_frame()['ID'])], position=1) EnzymeDataTable.add_column(column_list=['!ElementID']+[str('(!'+'Enzyme/'+entry+'!)') for entry in list(EnzymeDataTable.to_data_frame()['ID'])], position=1) ProteinDataTable.add_column(column_list=['!ElementID']+[str('(!'+'Protein/'+entry+'!)') for entry in list(ProteinDataTable.to_data_frame()['ID'])], position=1) MetaboliteConstraintDataTable.add_column(column_list=['!ElementID']+[str( '(!'+'Compound/'+entry+'!)') for entry in list(MetaboliteConstraintDataTable.to_data_frame()['ID'])], position=1) DensityConstraintDataTable.add_column(column_list=['!ElementID']+[str( '(!'+'Compartment/'+entry+'!)') for entry in list(DensityConstraintDataTable.to_data_frame()['ID'])], position=1) ProcessConstraintDataTable.add_column(column_list=['!ElementID']+[str( '(!'+'Process/'+entry+'!)') for entry in list(ProcessConstraintDataTable.to_data_frame()['ID'])], position=1) EnzymeConstraintDataTable.add_column(column_list=['!ElementID']+[str( '(!'+'Enzyme/'+entry+'!)') for entry in list(EnzymeConstraintDataTable.to_data_frame()['ID'])], position=1) filename_SBtab += '_HTML' else: ReactionDataTable.add_column( column_list=['!ElementID']+list(ReactionDataTable.to_data_frame(rba=rba)['ID']), position=1) ProcessDataTable.add_column( column_list=['!ElementID']+list(ProcessDataTable.to_data_frame(rba=rba)['ID']), position=1) EnzymeDataTable.add_column( column_list=['!ElementID']+list(EnzymeDataTable.to_data_frame(rba=rba)['ID']), position=1) ProteinDataTable.add_column( column_list=['!ElementID']+list(ProteinDataTable.to_data_frame(rba=rba)['ID']), position=1) MetaboliteConstraintDataTable.add_column( column_list=['!ElementID']+list(MetaboliteConstraintDataTable.to_data_frame(rba=rba)['ID']), position=1) DensityConstraintDataTable.add_column( column_list=['!ElementID']+list(DensityConstraintDataTable.to_data_frame(rba=rba)['ID']), position=1) ProcessConstraintDataTable.add_column( column_list=['!ElementID']+list(ProcessConstraintDataTable.to_data_frame(rba=rba)['ID']), position=1) EnzymeConstraintDataTable.add_column( column_list=['!ElementID']+list(EnzymeConstraintDataTable.to_data_frame(rba=rba)['ID']), position=1) ReactionDataTable.remove_column(position=2) ProcessDataTable.remove_column(position=2) EnzymeDataTable.remove_column(position=2) ProteinDataTable.remove_column(position=2) MetaboliteConstraintDataTable.remove_column(position=2) DensityConstraintDataTable.remove_column(position=2) ProcessConstraintDataTable.remove_column(position=2) EnzymeConstraintDataTable.remove_column(position=2) self.Out = SBtab.SBtabDocument(name='rbatools_SimulationData_withLinks', sbtab_init=None, filename=str(filename_SBtab+'.tsv')) self.Out.add_sbtab(GeneralRunInfoTable) self.Out.add_sbtab(ObjectiveFunctionDataTable) self.Out.add_sbtab(ReactionDataTable) self.Out.add_sbtab(EnzymeDataTable) self.Out.add_sbtab(ProcessDataTable) self.Out.add_sbtab(ProteinDataTable) self.Out.add_sbtab(MetaboliteConstraintDataTable) self.Out.add_sbtab(DensityConstraintDataTable) self.Out.add_sbtab(EnzymeConstraintDataTable) self.Out.add_sbtab(ProcessConstraintDataTable) self.Out.change_attribute('DocumentName', 'RBA data') self.Out.name = filename self.Out.change_attribute('DocumentType', 'rba-simulation-data') self.Out.write() def getSBtabDoc(self): return self.Out def exportJSON(self): """ Returns simulation data as JSON string Returns ------- JSON string """ Block = {'ReactionData': self.ReactionData.Elements, 'ProteinData': self.ProteinData.Elements, 'EnzymeData': self.EnzymeData.Elements, 'ProcessData': self.ProcessData.Elements, 'MetaboliteConstraintData': self.MetaboliteConstraintData.Elements, 'DensityConstraintData': self.DensityConstraintData.Elements, 'EnzymeConstraintData': self.EnzymeConstraintData.Elements, 'ProcessConstraintData': self.ProcessConstraintData.Elements} return(json.dumps(Block)) def exportCSV(self, deleteZerosRows=True): """ Exports simulation data as csv files Parameters ---------- deleteZerosRows: bool Boolean wheter to remove rows which have only zero entries. (e.g. reactions which never carry flux in all runs) Default: True """ self.csvs = {} exchange_data_csv = '' if len(self.SessionName) > 0: filename = self.SessionName+'_ExchangeData.csv' else: filename = 'ExchangeData.csv' with open(filename, "w", newline='') as fp: wr = csv.writer(fp, dialect='excel') IDs = list(self.ExchangeData.Elements.keys()) exchange_data_csv += ','.join(['']+list(self.ExchangeData.Elements[IDs[0]].keys()))+'\n' wr.writerow([None]+list(self.ExchangeData.Elements[IDs[0]].keys())) for i in list(IDs): valuerow = list(self.ExchangeData.Elements[i].values()) valuerow2 = [] for j in valuerow: if
pandas.isna(j)
pandas.isna
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import ast import pandas as pd import numpy as np import scipy from brightics.common.utils import get_default_from_parameters_if_required from brightics.common.utils import check_required_parameters from brightics.common.exception import BrighticsFunctionException as BFE from dtaidistance import dtw def timeseries_distance(table, **params): params = get_default_from_parameters_if_required(params, _timeseries_distance) check_required_parameters(_timeseries_distance, params, ['table']) return _timeseries_distance(table, **params) def _timeseries_distance(table, input_col_1, input_col_2, distance_type, alphabet=26, hold_cols=[]): temp_table = table.copy() if len(hold_cols) > 0: out_table = temp_table[hold_cols] else: out_table = table.copy() if table[input_col_1].dtype != table[input_col_2].dtype: raise BFE.from_errors([{'0100': 'Data types of two input timeseries must be the same.'}]) if distance_type == 'Sax': if alphabet < 3 or alphabet > 26: raise BFE.from_errors( [{'0100': 'Alphabet must be between 3 and 26 if distance_type is Sax.'}]) if not isinstance(table[input_col_1].loc[0], str): raise BFE.from_errors( [{'0100': 'Data types of input timeseries must be String if distance_type is Sax.'}]) sax_obj = SAX(alphabetSize=alphabet) else: sax_obj = None if isinstance(table[input_col_1].loc[0], str): raise BFE.from_errors( [{'0100': 'Data types of input timeseries must be Array (Double) if distance_type is NOT Sax.'}]) func = lambda x: ast.literal_eval(x) try: temp_table[input_col_1] = temp_table[input_col_1].apply(func) temp_table[input_col_2] = temp_table[input_col_2].apply(func) except: pass arr_1 = temp_table[input_col_1].values arr_2 = temp_table[input_col_2].values distance_list = compute_distance(arr_1, arr_2, distance_type, sax_obj) out_table['distance'] = distance_list return {'out_table':out_table} def compute_distance(arr_1, arr_2, distance_type, sax_obj): if distance_type == 'Sax': distance_func = sax_obj.compare_strings elif distance_type == 'Dtw': distance_func = _dtw elif distance_type == 'Euclidean' or distance_type == 'EuclideanWithInterpolation': distance_func = _euclidean elif distance_type == 'Correlation': distance_func = _corr elif distance_type == 'L1Distance' or distance_type == 'L1DistanceWithInterpolation': distance_func = _l1 distance_list = [] for ind in range(len(arr_1)): temp_1 = np.array(arr_1[ind]) temp_2 = np.array(arr_2[ind]) if 'Interpolation' in distance_type: temp_1 = _interpolate(temp_1) temp_2 = _interpolate(temp_2) try: distance_list.append(distance_func(temp_1, temp_2)) except: distance_list.append(np.nan) return distance_list def _dtw(in_1, in_2): sim = dtw.distance(in_1, in_2) return sim def _euclidean(in_1, in_2): return np.linalg.norm((in_1 - in_2), ord=2) def _corr(in_1, in_2): return np.corrcoef(in_1, in_2)[0, 1] def _interpolate(arr): return
pd.Series(arr)
pandas.Series
import glob from datetime import datetime, timezone import pytz from tzlocal import get_localzone import pandas as pd import streamlit as st from google.oauth2 import service_account from gspread_pandas import Spread, Client from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from lightgbm import LGBMClassifier from joblib import dump, load class DataMerger(): def __init__(self): scopes=[ "https://www.googleapis.com/auth/spreadsheets", ] credentials = service_account.Credentials.from_service_account_info( st.secrets["gcp_service_account"], scopes=scopes, ) client = Client(scope=scopes, creds=credentials) self.spread = Spread(st.secrets["private_gsheets_url"], client=client, sheet='book') self.columns = ['Transaction date', 'Description', 'Amount', 'Booked balance', 'Account', 'User', 'Category'] def cast(self, df): df[self.columns[0]] = pd.to_datetime(df[self.columns[0]], format='%Y-%m-%d').astype(str) df[self.columns[1]] = df[self.columns[1]].astype(str) df[self.columns[2:4]] = df[self.columns[2:4]].astype(float) df[self.columns[4:]] = df[self.columns[4:]].astype(str) return df def merge(self, tmp_df): master_df = self.spread.sheet_to_df(header_rows=1, index=None) master_df = self.cast(master_df) merged_df =
pd.concat([master_df, tmp_df], ignore_index=True)
pandas.concat
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np import random from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_print_temp_data(): target = mock.MagicMock() target.temp={} target.temp['selected'] = ['c1','c2'] target.temp['weights'] = [0.5,0.5] algo = algos.PrintTempData() assert algo( target ) algo = algos.PrintTempData( 'Selected: {selected}') assert algo( target ) def test_print_info(): target = bt.Strategy('s', []) target.temp={} algo = algos.PrintInfo() assert algo( target ) algo = algos.PrintInfo( '{now}: {name}') assert algo( target ) def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_run_if_out_of_bounds(): algo = algos.RunIfOutOfBounds(0.5) dts = pd.date_range('2010-01-01', periods=3) s = bt.Strategy('s') data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.temp['selected'] = ['c1', 'c2'] s.temp['weights'] = {'c1': .5, 'c2':.5} s.update(dts[0]) s.children['c1'] = bt.core.SecurityBase('c1') s.children['c2'] = bt.core.SecurityBase('c2') s.children['c1']._weight = 0.5 s.children['c2']._weight = 0.5 assert not algo(s) s.children['c1']._weight = 0.25 s.children['c2']._weight = 0.75 assert not algo(s) s.children['c1']._weight = 0.24 s.children['c2']._weight = 0.76 assert algo(s) s.children['c1']._weight = 0.75 s.children['c2']._weight = 0.25 assert not algo(s) s.children['c1']._weight = 0.76 s.children['c2']._weight = 0.24 assert algo(s) def test_run_after_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDate('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert algo(target) def test_run_after_days(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDays(3) assert not algo(target) assert not algo(target) assert not algo(target) assert algo(target) def test_set_notional(): algo = algos.SetNotional('notional') s = bt.FixedIncomeStrategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) notional = pd.Series(index=dts[:2], data=[1e6, 5e6]) s.setup( data, notional = notional ) s.update(dts[0]) assert algo(s) assert s.temp['notional_value'] == 1e6 s.update(dts[1]) assert algo(s) assert s.temp['notional_value'] == 5e6 s.update(dts[2]) assert not algo(s) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_rebalance_updatecount(): algo = algos.Rebalance() s = bt.Strategy('s') s.use_integer_positions(False) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4','c5'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) assert s.value == 1000 assert s.capital == 0 # Update is called once when each weighted security is created (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[1]) s.temp['weights'] = {'c1': 0.5, 'c2':0.5} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[2]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (2) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 6 def test_rebalance_fixedincome(): algo = algos.Rebalance() c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') s = bt.FixedIncomeStrategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) coupons = pd.DataFrame(index=dts, columns=['c2'], data=0) s.setup(data, coupons=coupons) s.update(dts[0]) s.temp['notional_value'] = 1000 s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000 c1 = s['c1'] assert c1.value == 1000 assert c1.notional_value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000*100 c2 = s['c2'] assert c1.value == 0 assert c1.notional_value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000*100 assert c2.notional_value == 1000 assert c2.position == 1000 assert c2.weight == 1. def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectAll(include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectAll(include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly_n_none(): algo = algos.SelectRandomly(n=None) # Behaves like SelectAll s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectRandomly(n=None, include_no_data=True) assert algo2(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectRandomly(n=None, include_negative=True) assert algo3(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[0]] = np.nan data['c2'][dts[0]] = 95 data['c3'][dts[0]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectRandomly(n=1) assert algo(s) assert s.temp.pop('selected') == ['c2'] random.seed(1000) algo = algos.SelectRandomly(n=1, include_negative=True) assert algo(s) assert s.temp.pop('selected') == ['c3'] random.seed(1009) algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c1'] random.seed(1009) # If selected already set, it will further filter it s.temp['selected'] = ['c2'] algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c2'] def test_select_these(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected algo = algos.SelectThese( ['c1']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectThese( ['c1', 'c2'], include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectThese(['c1', 'c2'], include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where_all(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) s.setup(data, where = where) s.update(dts[0]) algo = algos.SelectWhere('where') assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectWhere('where', include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectWhere('where', include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere('where') s.setup(data, where=where) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_where_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere(where) s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_regex(): s = bt.Strategy('s') algo = algos.SelectRegex( 'c1' ) s.temp['selected'] = ['a1', 'c1', 'c2', 'c11', 'cc1'] assert algo( s ) assert s.temp['selected'] == ['c1', 'c11', 'cc1'] algo = algos.SelectRegex( '^c1$' ) assert algo( s ) assert s.temp['selected'] == ['c1'] def test_resolve_on_the_run(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'b1'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c2'][dts[2]] = -5 on_the_run = pd.DataFrame(index=dts, columns=['c'], data='c1') on_the_run.loc[dts[2], 'c'] = 'c2' s.setup(data, on_the_run = on_the_run) s.update(dts[0]) s.temp['selected'] = ['c', 'b1'] algo = algos.ResolveOnTheRun( 'on_the_run' ) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # make sure don't keep nan s.update(dts[1]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected # if specify include_no_data then 2 algo2 = algos.ResolveOnTheRun('on_the_run', include_no_data=True) s.temp['selected'] = ['c', 'b1'] assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # behavior on negative prices s.update(dts[2]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected algo3 = algos.ResolveOnTheRun('on_the_run', include_negative=True) s.temp['selected'] = ['c', 'b1'] assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c2' in selected assert 'b1' in selected def test_select_types(): c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') c3 = bt.HedgeSecurity('c3') c4 = bt.CouponPayingHedgeSecurity('c4') c5 = bt.FixedIncomeSecurity('c5') s = bt.Strategy('p', children = [c1, c2, c3, c4, c5]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4', 'c5'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) algo = algos.SelectTypes(include_types=(bt.Security, bt.HedgeSecurity), exclude_types=()) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3']) algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,), exclude_types=(bt.CouponPayingSecurity,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3', 'c5']) s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c2', 'c3']) def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_scale_weights(): s = bt.Strategy('s') algo = algos.ScaleWeights( -0.5 ) s.temp['weights'] = {'c1': 0.5, 'c2': -0.4, 'c3':0 } assert algo( s ) assert s.temp['weights'] == {'c1':-0.25, 'c2':0.2, 'c3':0} def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 @mock.patch('ffn.calc_erc_weights') def test_weigh_erc(mock_erc): algo = algos.WeighERC(lookback=pd.DateOffset(days=5)) mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_erc.called rets = mock_erc.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_target(): algo = algos.WeighTarget('target') s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) target = pd.DataFrame(index=dts[:2], columns=['c1', 'c2'], data=0.5) target['c1'].loc[dts[1]] = 1.0 target['c2'].loc[dts[1]] = 0.0 s.setup( data, target = target ) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.5 assert weights['c2'] == 0.5 s.update(dts[1]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 1.0 assert weights['c2'] == 0.0 s.update(dts[2]) assert not algo(s) def test_weigh_inv_vol(): algo = algos.WeighInvVol(lookback=pd.DateOffset(days=5)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data['c1'].loc[dts[1]] = 105 data['c1'].loc[dts[2]] = 95 data['c1'].loc[dts[3]] = 105 data['c1'].loc[dts[4]] = 95 # low vol c2 data['c2'].loc[dts[1]] = 100.1 data['c2'].loc[dts[2]] = 99.9 data['c2'].loc[dts[3]] = 100.1 data['c2'].loc[dts[4]] = 99.9 s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c2'] > weights['c1'] aae(weights['c1'], 0.020, 3) aae(weights['c2'], 0.980, 3) @mock.patch('ffn.calc_mean_var_weights') def test_weigh_mean_var(mock_mv): algo = algos.WeighMeanVar(lookback=pd.DateOffset(days=5)) mock_mv.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_mv.called rets = mock_mv.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_randomly(): s = bt.Strategy('s') s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.WeighRandomly() assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 assert sum( weights.values() ) == 1. algo = algos.WeighRandomly( (0.3,0.5), 0.95) assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 aae( sum( weights.values() ), 0.95 ) for c in s.temp['selected']: assert weights[c] <= 0.5 assert weights[c] >= 0.3 def test_set_stat(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( 'test_stat' ) s.setup(data, test_stat = stat) s.update(dts[0]) print() print(s.get_data('test_stat')) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_set_stat_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( stat ) s.setup(data) s.update(dts[0]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_stat_total_return(): algo = algos.StatTotalReturn(lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) stat = s.temp['stat'] assert len(stat) == 2 assert stat['c1'] == 105.0 / 100 - 1 assert stat['c2'] == 95.0 / 100 - 1 def test_select_n(): algo = algos.SelectN(n=1, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected algo = algos.SelectN(n=1, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # return 2 we have if all_or_none false algo = algos.SelectN(n=3, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # return 0 we have if all_or_none true algo = algos.SelectN(n=3, sort_descending=False, all_or_none=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 def test_select_n_perc(): algo = algos.SelectN(n=0.5, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected def test_select_momentum(): algo = algos.SelectMomentum(n=1, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) actual = s.temp['selected'] assert len(actual) == 1 assert 'c1' in actual def test_limit_weights(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 0.6, 'c2':0.2, 'c3':0.2} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.5 assert w['c2'] == 0.25 assert w['c3'] == 0.25 algo = algos.LimitWeights(0.3) assert algo(s) w = s.temp['weights'] assert w == {} s.temp['weights'] = {'c1': 0.4, 'c2':0.3, 'c3':0.3} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.4 assert w['c2'] == 0.3 assert w['c3'] == 0.3 def test_limit_deltas(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 1} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.1 s.temp['weights'] = {'c1': 0.05} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.05 s.temp['weights'] = {'c1': 0.5, 'c2': 0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == 0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.5 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1, 'c2': 0.3}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.3 # set exisitng weight s.children['c1'] = bt.core.SecurityBase('c1') s.children['c1']._weight = 0.3 s.children['c2'] = bt.core.SecurityBase('c2') s.children['c2']._weight = -0.7 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.4 assert w['c2'] == -0.6 def test_rebalance_over_time(): target = mock.MagicMock() rb = mock.MagicMock() algo = algos.RebalanceOverTime(n=2) # patch in rb function algo._rb = rb target.temp = {} target.temp['weights'] = {'a': 1, 'b': 0} a = mock.MagicMock() a.weight = 0. b = mock.MagicMock() b.weight = 1. target.children = {'a': a, 'b': b} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 0.5 assert w['b'] == 0.5 assert rb.called called_tgt = rb.call_args[0][0] called_tgt_w = called_tgt.temp['weights'] assert len(called_tgt_w) == 2 assert called_tgt_w['a'] == 0.5 assert called_tgt_w['b'] == 0.5 # update weights for next call a.weight = 0.5 b.weight = 0.5 # clear out temp - same as would Strategy target.temp = {} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 1. assert w['b'] == 0. assert rb.call_count == 2 # update weights for next call # should do nothing now a.weight = 1 b.weight = 0 # clear out temp - same as would Strategy target.temp = {} assert algo(target) # no diff in call_count since last time assert rb.call_count == 2 def test_require(): target = mock.MagicMock() target.temp = {} algo = algos.Require(lambda x: len(x) > 0, 'selected') assert not algo(target) target.temp['selected'] = [] assert not algo(target) target.temp['selected'] = ['a', 'b'] assert algo(target) def test_run_every_n_periods(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=0) target.now = pd.to_datetime('2010-01-01') assert algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert algo(target) target.now = pd.to_datetime('2010-01-05') assert not algo(target) def test_run_every_n_periods_offset(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=1) target.now = pd.to_datetime('2010-01-01') assert not algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert not algo(target) target.now = pd.to_datetime('2010-01-05') assert algo(target) def test_not(): target = mock.MagicMock() target.temp = {} #run except on the 1/2/18 runOnDateAlgo = algos.RunOnDate(pd.to_datetime('2018-01-02')) notAlgo = algos.Not(runOnDateAlgo) target.now = pd.to_datetime('2018-01-01') assert notAlgo(target) target.now = pd.to_datetime('2018-01-02') assert not notAlgo(target) def test_or(): target = mock.MagicMock() target.temp = {} #run on the 1/2/18 runOnDateAlgo = algos.RunOnDate(pd.to_datetime('2018-01-02')) runOnDateAlgo2 = algos.RunOnDate(pd.to_datetime('2018-01-03')) runOnDateAlgo3 = algos.RunOnDate(pd.to_datetime('2018-01-04')) runOnDateAlgo4 = algos.RunOnDate(pd.to_datetime('2018-01-04')) orAlgo = algos.Or([runOnDateAlgo, runOnDateAlgo2, runOnDateAlgo3, runOnDateAlgo4]) #verify it returns false when neither is true target.now = pd.to_datetime('2018-01-01') assert not orAlgo(target) # verify it returns true when the first is true target.now = pd.to_datetime('2018-01-02') assert orAlgo(target) # verify it returns true when the second is true target.now = pd.to_datetime('2018-01-03') assert orAlgo(target) # verify it returns true when both algos return true target.now = pd.to_datetime('2018-01-04') assert orAlgo(target) def test_TargetVol(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=7) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data.loc[dts[0],'c1'] = 95 data.loc[dts[1],'c1'] = 105 data.loc[dts[2],'c1'] = 95 data.loc[dts[3],'c1'] = 105 data.loc[dts[4],'c1'] = 95 data.loc[dts[5],'c1'] = 105 data.loc[dts[6],'c1'] = 95 # low vol c2 data.loc[dts[0], 'c2'] = 99 data.loc[dts[1], 'c2'] = 101 data.loc[dts[2], 'c2'] = 99 data.loc[dts[3], 'c2'] = 101 data.loc[dts[4], 'c2'] = 99 data.loc[dts[5], 'c2'] = 101 data.loc[dts[6], 'c2'] = 99 targetVolAlgo = algos.TargetVol( 0.1, lookback=pd.DateOffset(days=5), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=1 ) s.setup(data) s.update(dts[6]) s.temp['weights'] = {'c1':0.5, 'c2':0.5} assert targetVolAlgo(s) weights = s.temp['weights'] assert len(weights) == 2 assert np.isclose(weights['c2'],weights['c1']) unannualized_c2_weight = weights['c1'] targetVolAlgo = algos.TargetVol( 0.1*np.sqrt(252), lookback=pd.DateOffset(days=5), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=252 ) s.setup(data) s.update(dts[6]) s.temp['weights'] = {'c1': 0.5, 'c2': 0.5} assert targetVolAlgo(s) weights = s.temp['weights'] assert len(weights) == 2 assert np.isclose(weights['c2'], weights['c1']) assert np.isclose(unannualized_c2_weight, weights['c2']) def test_PTE_Rebalance(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=30*4) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 # low vol c2 for i,dt in enumerate(dts[:-2]): if i % 2 == 0: data.loc[dt,'c1'] = 95 data.loc[dt,'c2'] = 101 else: data.loc[dt, 'c1'] = 105 data.loc[dt, 'c2'] = 99 dt = dts[-2] data.loc[dt,'c1'] = 115 data.loc[dt,'c2'] = 97 s.setup(data) s.update(dts[-2]) s.adjust(1000000) s.rebalance(0.4,'c1') s.rebalance(0.6,'c2') wdf = pd.DataFrame( np.zeros(data.shape), columns=data.columns, index=data.index ) wdf['c1'] = 0.5 wdf['c2'] = 0.5 PTE_rebalance_Algo = bt.algos.PTE_Rebalance( 0.01, wdf, lookback=pd.DateOffset(months=3), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=252 ) assert PTE_rebalance_Algo(s) s.rebalance(0.5, 'c1') s.rebalance(0.5, 'c2') assert not PTE_rebalance_Algo(s) def test_close_positions_after_date(): c1 = bt.Security('c1') c2 = bt.Security('c2') c3 = bt.Security('c3') s = bt.Strategy('s', children = [c1, c2, c3]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) c1 = s['c1'] c2 = s['c2'] c3 = s['c3'] cutoffs= pd.DataFrame( { 'date' : [ dts[1], dts[2] ] }, index = ['c1','c2'] ) algo = algos.ClosePositionsAfterDates( 'cutoffs' ) s.setup(data, cutoffs=cutoffs) s.update(dts[0]) s.transact( 100, 'c1') s.transact( 100, 'c2') s.transact( 100, 'c3') algo(s) assert c1.position == 100 assert c2.position == 100 assert c3.position == 100 # Don't run anything on dts[1], even though that's when c1 closes s.update( dts[2]) algo(s) assert c1.position == 0 assert c2.position == 0 assert c3.position == 100 assert s.perm['closed'] == set(['c1', 'c2']) def test_roll_positions_after_date(): c1 = bt.Security('c1') c2 = bt.Security('c2') c3 = bt.Security('c3') s = bt.Strategy('s', children = [c1, c2, c3]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) c1 = s['c1'] c2 = s['c2'] c3 = s['c3'] roll = pd.DataFrame( { 'date' : [ dts[1], dts[2] ], 'target' : [ 'c3', 'c1' ], 'factor' : [ 0.5, 2.0 ] }, index = ['c1','c2'] ) algo = algos.RollPositionsAfterDates( 'roll' ) s.setup(data, roll=roll) s.update(dts[0]) s.transact( 100, 'c1') s.transact( 100, 'c2') s.transact( 100, 'c3') algo(s) assert c1.position == 100 assert c2.position == 100 assert c3.position == 100 # Don't run anything on dts[1], even though that's when c1 closes s.update( dts[2]) algo(s) assert c1.position == 200 # From c2 assert c2.position == 0 assert c3.position == 100 + 50 assert s.perm['rolled'] == set(['c1', 'c2']) def test_replay_transactions(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) c1 = s['c1'] c2 = s['c2'] transactions = pd.DataFrame( [ ( pd.Timestamp( '2009-12-01 00'), 'c1', 100, 99.5), ( pd.Timestamp( '2010-01-01 10'), 'c1', -100, 101), ( pd.Timestamp( '2010-01-02 00'), 'c2', 50, 103) ], columns = ['Date', 'Security', 'quantity', 'price']) transactions = transactions.set_index( ['Date','Security']) algo = algos.ReplayTransactions( 'transactions' ) s.setup(data, bidoffer={}, transactions=transactions) # Pass bidoffer so it will track bidoffer paid s.adjust(1000) s.update(dts[0]) algo(s) assert c1.position == 100 assert c2.position == 0 assert c1.bidoffer_paid == -50 s.update(dts[1]) algo(s) assert c1.position == 0 assert c2.position == 50 assert c1.bidoffer_paid == -100 assert c2.bidoffer_paid == 150 def test_replay_transactions_consistency(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) transactions = pd.DataFrame( [ ( pd.Timestamp( '2010-01-01 00'), 'c1', -100., 101.), ( pd.Timestamp( '2010-01-02 00'), 'c2', 50., 103.) ], columns = ['Date', 'Security', 'quantity', 'price']) transactions = transactions.set_index( ['Date','Security']) algo = algos.ReplayTransactions( 'transactions' ) strategy = bt.Strategy('strategy', algos = [ algo ], children = [c1, c2]) backtest = bt.backtest.Backtest(strategy, data, name='Test', additional_data={'bidoffer':{}, 'transactions':transactions}) out = bt.run(backtest) t1 = transactions.sort_index(axis=1) t2 = out.get_transactions().sort_index(axis=1) assert t1.equals( t2 ) def test_simulate_rfq_transactions(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) c1 = s['c1'] c2 = s['c2'] rfqs = pd.DataFrame( [ ( 'A', pd.Timestamp( '2009-12-01 00'), 'c1', 100), ( 'B', pd.Timestamp( '2010-01-01 10'), 'c1', -100), ( 'C', pd.Timestamp( '2010-01-01 12'), 'c1', 75), ( 'D', pd.Timestamp( '2010-01-02 00'), 'c2', 50) ], columns = ['id', 'Date', 'Security', 'quantity']) rfqs = rfqs.set_index(['Date','Security']) def model( rfqs, target ): # Dummy model - in practice this model would rely on positions and values in target transactions = rfqs[ ['quantity']] prices = {'A' : 99.5, 'B' : 101, 'D':103} transactions[ 'price' ] = rfqs.id.apply( lambda x : prices.get(x) ) return transactions.dropna() algo = algos.SimulateRFQTransactions( 'rfqs', model ) s.setup(data, bidoffer={}, rfqs=rfqs) # Pass bidoffer so it will track bidoffer paid s.adjust(1000) s.update(dts[0]) algo(s) assert c1.position == 100 assert c2.position == 0 assert c1.bidoffer_paid == -50 s.update(dts[1]) algo(s) assert c1.position == 0 assert c2.position == 50 assert c1.bidoffer_paid == -100 assert c2.bidoffer_paid == 150 def test_update_risk(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 c1 = s['c1'] c2 = s['c2'] algo = algos.UpdateRisk('Test', history=False) s.setup(data, unit_risk={'Test':data}) s.adjust(1000) s.update(dts[0]) assert algo( s ) assert s.risk['Test'] == 0 assert c1.risk['Test'] == 0 assert c2.risk['Test'] == 0 s.transact( 1, 'c1') s.transact( 5, 'c2') assert algo( s ) assert s.risk['Test'] == 600 assert c1.risk['Test'] == 100 assert c2.risk['Test'] == 500 s.update(dts[1]) assert algo( s ) assert s.risk['Test'] == 105 + 5*95 assert c1.risk['Test'] == 105 assert c2.risk['Test'] == 5*95 assert not hasattr( s, 'risks' ) assert not hasattr( c1, 'risks' ) assert not hasattr( c2, 'risks' ) def test_update_risk_history_1(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 c1 = s['c1'] c2 = s['c2'] algo = algos.UpdateRisk('Test', history=1) s.setup(data, unit_risk={'Test':data}) s.adjust(1000) s.update(dts[0]) assert algo( s ) assert s.risks['Test'][0] == 0 s.transact( 1, 'c1') s.transact( 5, 'c2') assert algo( s ) assert s.risks['Test'][0] == 600 s.update(dts[1]) assert algo( s ) assert s.risks['Test'][0] == 600 assert s.risks['Test'][1] == 105 + 5*95 assert not hasattr( c1, 'risks' ) assert not hasattr( c2, 'risks' ) def test_update_risk_history_2(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts =
pd.date_range('2010-01-01', periods=3)
pandas.date_range
import pandas as pd from loguru import logger import arrow import time import json import requests import tqdm from retrying import retry headers = {'Accept': 'application/json', 'Content-Type': 'application/json', 'Cookie': 'G_zj_gsid=08890c40500a4a8ab21e0b2b9e9e47b1-gsid-', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'} index = 1 df = pd.DataFrame() while True: reqBody = {"pageNum": index, "pageSize": 20, "createTimeFrom": 1609430400000, "createTimeTo": 1623227340000, "channelList": [], "areaList": ["ff8080815d551320015d589cc1da0014", "ff8080815d551320015d589cc1da0014$0", "ff8080815df350d4015df3d64603057a", "ff8080815df350d4015df4333f0006cb", "ff8080815df350d4015df44090fd06f5", "ff8080815df350d4015df44e7d100706", "ff8080815de36663015de3e0d0380000", "ff8080815de36663015de3ef492c0015", "ff8080815df45323015df461a0e6000b", "ff8080815df482ba015df7dceec40326", "ff8080815df45323015df46e7610001d", "ff8080815df482ba015df7eb3a8c0367", "<KEY>6", "<KEY>", "<KEY>", "<KEY>", "<KEY>", "ff8080816f12372d016f1d5959bb7545"], "statusList": []} res = json.loads(requests.post(url = 'https://opt.zjzwfw.gov.cn/rest/api/evaluation/case/historyForHandle/list?ctoken=<PASSWORD>', json=reqBody, headers = headers).text) # print(res) if not res['data']['list']: break df = df.append(
pd.DataFrame(res['data']['list'])
pandas.DataFrame
''' This sample shows how to set Column Format with DataFrame and from_df, to_df functions. Make sure you've installed pandas. To install the module, open the Script Window (Shift+Alt+3), type the following and press Enter: pip install pandas The following will check and install: pip -chk pandas ''' import originpro as op import pandas as pd # Create a dataframe to fill the sheet df = pd.DataFrame({ 'Date': ['10/25/2018','02/21/2019','04/01/2020'], 'Gender':['Male','Male','Female'], 'Score': [75.5, 86.7, 91], }) df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 5 23:37:07 2019 @author: manuel """ # Exercise 12 # Implement k-means soft clustering with online update, adopting the Euclidean # distance as dissimilarity metric. Given the dataset data3.csv, apply the # algorithm using $k = 3$ and $\eta = 0.1$ until the algorithm converges. As # initial centroids use $x_{32}, x_{33}, x_{123}$, where the subscripts define # the indexes of the points in the dataset. After convergence of the algorithm, # compute the membership of $x_{10}$ with respect to each centroid and also # plot the dataset using different colors for $x_{10}, x_{32}, x_{33}, x_{123}$. import pandas as pd import matplotlib.pyplot as plt import math def euclidean_distance(s1,s2): """ Compute the Euclidean distance between two n-dimensional objects. """ tmpsum = 0 for index,value in enumerate(s1): tmpsum += (s1[index]-s2[index])**2 return math.sqrt(tmpsum) def points_difference(point1,point2): """ Compute the difference between two n-dimensional objects and save it in a pandas Series. """ tmplist = [] for index,value in enumerate(point1): tmplist.append(point1[index] - point2[index]) return
pd.Series(tmplist)
pandas.Series
#!/usr/bin/env python3 # Author:: <NAME> (mailto:<EMAIL>) """ Python Class Check Yellowstone Campground Booking API for Availability """ from datetime import datetime, timedelta from json import loads import logging from random import choice from typing import List, Optional from urllib import parse from pandas import DataFrame, to_datetime from pytz import timezone import requests import tenacity from camply.config import STANDARD_HEADERS, USER_AGENTS, YellowstoneConfig from camply.containers import AvailableCampsite from camply.providers.base_provider import BaseProvider from camply.utils import logging_utils logger = logging.getLogger(__name__) class YellowstoneLodging(BaseProvider): """ Scanner for Lodging in Yellowstone """ def __repr__(self): """ String Representation Returns ------- str """ return "<YellowstoneLodging>" def _get_monthly_availability(self, month: datetime, nights: int = None) -> dict: """ Check All Lodging in Yellowstone for Campground Data Returns ------- data_availability: dict Data Availability Dictionary """ query_dict = dict(date=self._ensure_current_month(month=month), limit=31, rate_code=YellowstoneConfig.RATE_CODE) if nights is not None: query_dict.update(dict(nights=nights)) api_endpoint = self._get_api_endpoint(url_path=YellowstoneConfig.YELLOWSTONE_LODGING_PATH, query=None) logger.info(f"Searching for Yellowstone Lodging Availability: {month.strftime('%B, %Y')}") all_resort_availability_data = self.make_yellowstone_request(endpoint=api_endpoint, params=query_dict) return all_resort_availability_data @staticmethod @tenacity.retry(wait=tenacity.wait_random_exponential(multiplier=3, max=1800), stop=tenacity.stop.stop_after_delay(6000)) def _try_retry_get_data(endpoint: str, params: Optional[dict] = None): """ Try and Retry Fetching Data from the Yellowstone API. Unfortunately this is a required method to request the data since the Yellowstone API doesn't always return data. Parameters ---------- endpoint: str API Endpoint params Returns ------- """ yellowstone_headers = choice(USER_AGENTS) yellowstone_headers.update(STANDARD_HEADERS) yellowstone_headers.update(YellowstoneConfig.API_REFERRERS) response = requests.get(url=endpoint, headers=yellowstone_headers, params=params, timeout=30) if response.status_code == 200 and response.text.strip() != "": return loads(response.content) else: error_message = ("Something went wrong with checking the " "Yellowstone Booking API. Will continue retrying.") logger.warning(error_message) raise RuntimeError(error_message) @staticmethod def make_yellowstone_request(endpoint: str, params: Optional[dict] = None): """ Try and Retry Fetching Data from the Yellowstone API. Unfortunately this is a required method to request the data since the Yellowstone API doesn't always return data. Parameters ---------- endpoint: str API Endpoint params Returns ------- """ try: content = YellowstoneLodging._try_retry_get_data(endpoint=endpoint, params=params) except RuntimeError as re: raise RuntimeError(f"error_message: {re}") return content @classmethod def _get_api_endpoint(cls, url_path: str, query: Optional[dict] = None) -> str: """ Build the API Endpoint for All Yellowstone Lodging """ if query is not None: query_string = parse.urlencode(query=query) else: query_string = "" url_components = dict(scheme=YellowstoneConfig.API_SCHEME, netloc=YellowstoneConfig.API_BASE_ENDPOINT, url=url_path, params="", query=query_string, fragment="") api_endpoint = parse.urlunparse(tuple(url_components.values())) return api_endpoint @classmethod def _return_lodging_url(cls, lodging_code: str, month: datetime, params: Optional[dict] = "") -> str: """ Return a Browser Loadable URL to book from Parameters ---------- lodging_code: str Lodging Code from API month: datetime Month to return bookings filtered to params: Optional[dict] Optional URL Parameters Returns ------- str URL String """ query = dict(dateFrom=month.strftime("%m-%d-%Y")) if params is not None: query.update(params) query_string = parse.urlencode(query=query) url_components = dict(scheme=YellowstoneConfig.API_SCHEME, netloc=YellowstoneConfig.WEBUI_BASE_ENDPOINT, url=f"{YellowstoneConfig.WEBUI_BOOKING_PATH}/{lodging_code}", params="", query=query_string, fragment="") webui_endpoint = parse.urlunparse(tuple(url_components.values())) return webui_endpoint @classmethod def _compile_campground_availabilities(cls, availability: dict) -> List[dict]: """ Gather Data about campground availabilities within a JSON Availability Objet Parameters ---------- availability: dict JSON Availability Object Returns ------- available_campsites: List[dict] List of Availabilities as JSON """ available_campsites = list() for date_string in availability.keys(): booking_date = datetime.strptime(date_string, "%m/%d/%Y") daily_data = availability[date_string] camping_keys = [key for key in daily_data.keys() if YellowstoneConfig.LODGING_CAMPGROUND_QUALIFIER in key] for hotel_code in camping_keys: hotel_data = daily_data[hotel_code] try: hotel_title = hotel_data[YellowstoneConfig.LODGING_RATES][ YellowstoneConfig.RATE_CODE][ YellowstoneConfig.LODGING_TITLE] hotel_rate_mins = hotel_data[YellowstoneConfig.LODGING_RATES][ YellowstoneConfig.RATE_CODE][ YellowstoneConfig.LODGING_BASE_PRICES] if hotel_rate_mins != {"1": 0}: min_capacity = int(min(hotel_rate_mins.keys())) max_capacity = int(max(hotel_rate_mins.keys())) capacity = (min_capacity, max_capacity) campsite = dict( campsite_id=None, booking_date=booking_date, campsite_occupancy=capacity, recreation_area=YellowstoneConfig.YELLOWSTONE_RECREATION_AREA_NAME, recreation_area_id=YellowstoneConfig.YELLOWSTONE_RECREATION_AREA_ID, facility_name=hotel_title.replace( *YellowstoneConfig.YELLOWSTONE_CAMPGROUND_NAME_REPLACE), facility_id=hotel_code) available_campsites.append(campsite) except (KeyError, TypeError): _ = hotel_data[YellowstoneConfig.LODGING_ERROR_MESSAGE] logger.info(f"\t{logging_utils.get_emoji(available_campsites)}\t" f"{len(available_campsites)} sites found.") return available_campsites def _gather_campsite_specific_availability(self, available_campsites: List[dict], month: datetime, nights: Optional[int] = None) -> List[dict]: """ Given a DataFrame of campsite availability, return updated Data with details about the actual campsites that are available (i.e Tent Size, RV Length, Etc) Parameters ---------- available_campsites: List[dict] List of Available Campsites as JSON objects month: datetime Month object Returns ------- List[dict] """ available_room_array = list() availability_df = DataFrame(data=available_campsites) if availability_df.empty is True: return available_room_array for facility_id, facility_df in availability_df.groupby(YellowstoneConfig.FACILITY_ID): api_endpoint = self._get_api_endpoint( url_path=YellowstoneConfig.YELLOWSTONE_CAMPSITE_AVAILABILITY, query=None) params = dict(date=self._ensure_current_month(month=month), limit=31) if nights is not None: params.update(dict(nights=nights)) campsite_data = self.make_yellowstone_request(endpoint=f"{api_endpoint}/{facility_id}", params=params) campsite_availability = campsite_data[YellowstoneConfig.BOOKING_AVAILABILITY] booking_dates = campsite_availability.keys() availabilities = self._process_daily_availability( booking_dates=booking_dates, campsite_availability=campsite_availability, facility_id=facility_id) available_room_array += availabilities return available_room_array @classmethod def _process_daily_availability(cls, booking_dates: List[str], campsite_availability: dict, facility_id: str) -> List[dict]: """ Process Monthly Availability Parameters ---------- booking_dates: List[str] List of booking dates to process campsite_availability: dict Campsite availability dict facility_id: str Identification of the Facility Returns ------- List[dict] """ daily_availabilities = list() for booking_date_str in booking_dates: daily_availability = campsite_availability[booking_date_str] if daily_availability[YellowstoneConfig.FACILITY_STATUS] == \ YellowstoneConfig.FACILITY_STATUS_QUALIFIER: available_rooms = daily_availability[YellowstoneConfig.FACILITY_ROOMS] for room in available_rooms: if room[YellowstoneConfig.FACILITY_AVAILABLE_QUALIFIER] > 0: daily_availabilities.append(dict( booking_date=booking_date_str, facility_id=facility_id, campsite_code=room[YellowstoneConfig.FACILITY_ROOM_CODE], available=room[YellowstoneConfig.FACILITY_AVAILABLE_QUALIFIER], price=room[YellowstoneConfig.FACILITY_PRICE])) return daily_availabilities def _get_property_information(self, available_rooms: List[dict]) -> List[dict]: """ Gather Information About All Campgrounds / Hotels within Yellowstone Parameters ---------- available_rooms: List[dict] Returns ------- List[dict] """ property_info_array = list() availability_df =
DataFrame(data=available_rooms)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Jun 11 13:38:13 2020 @author: zhanghai """ ''' Input parameters: ticker,interval, test start date, test end date, model name Output : dataframe: initial deposit, gross profit,gross loss, total net profit,profit factor, expected payoff, absolute drawdown, maximal drawdown, relative drawdown, profit trades%, loss trades Entry strategy: -1: close long position and wait; 0: keep current position; 1: create Exit strategy: reverse signal appears; reach stop loss entry-ATR position size control: ATR based,ATR period = 20; ATR multiplier = 1; 2% risk tolerance, nomal value is average of ATR ''' import pandas as pd pd.set_option('mode.chained_assignment', None) import numpy as np import datetime import matplotlib.pyplot as plt import stockstats import sys sys.path.append('../') from uis.calculate_ama import calculate_ama from data_processing.load_data import load_rawdata class AMABackTest(): def __init__(self, etf, start_date, end_date, model_name='AMA',initial_deposit=100000, price_type='open',er_window = 9, slow_window = 20, fast_window = 4): self.ticker = etf self.start_date = start_date self.end_date = end_date self.model_name = model_name self.init_deposit = initial_deposit self.price_type = price_type self.er_window = er_window self.slow_window = slow_window self.fast_window = fast_window self.raw_data = load_rawdata(etf, 'weekly') print("Self.raw",self.raw_data) self.indicators = stockstats.StockDataFrame.retype(self.raw_data.copy()) ama, _, _ = calculate_ama(self.raw_data, self.indicators, self.price_type, self.er_window, self.slow_window, self.fast_window) self.raw_data['ama'] = ama self.report = pd.DataFrame(columns=['position size','total','profit']) def predict(self,cur_date): if self.raw_data.loc[cur_date]['open'] > self.raw_data.loc[cur_date]['ama'] and self.raw_data.loc[cur_date]['close'] > \ self.raw_data.loc[cur_date]['ama']: signal = 1 elif self.raw_data.loc[cur_date]['open'] < self.raw_data.loc[cur_date]['ama'] and self.raw_data.loc[cur_date]['close'] < \ self.raw_data.loc[cur_date]['ama']: signal = -1 else: signal = 0 return signal def up_action(self,cur_date): if self.position == 'empty': self.entry_price = self.raw_data['close'][cur_date] self.entyr_atr = self.indicators['atr'].loc[cur_date] self.position_size = int(self.total_value*0.05/self.entyr_atr) if self.position_size*self.entry_price > self.total_value: self.position_size = int(self.total_value/self.entry_price) df = pd.DataFrame({'position size':self.position_size,'total':self.total_value,'profit':0},index=[cur_date]) self.report = self.report.append(df) self.position = 'long' else: stop_price = self.entry_price - 0.1*self.entyr_atr target_price = self.entry_price * 1.3 if self.raw_data['low'][cur_date] < stop_price < self.raw_data['high'][cur_date]: #sell at stop price profit = round((self.raw_data['high'][cur_date] - self.entry_price)*self.position_size, 2) self.total_value += profit df = pd.DataFrame({'position size':0,'total':self.total_value,'profit':profit},index=[cur_date]) self.report = self.report.append(df) self.position = 'empty' elif self.raw_data['low'][cur_date] < target_price < self.raw_data['high'][cur_date]: #sell at target price profit = round((self.raw_data['low'][cur_date]-self.entry_price)*self.position_size, 2) self.total_value += profit df = pd.DataFrame({'position size':0,'total':self.total_value,'profit':profit},index=[cur_date]) self.report = self.report.append(df) self.position = 'empty' else: #hold the position profit = round((self.raw_data['close'][cur_date]-self.entry_price)*self.position_size, 2) current_value = self.total_value + profit df = pd.DataFrame({'position size':self.position_size,'total':current_value,'profit':0},index=[cur_date]) self.report = self.report.append(df) def down_action(self,cur_date): if self.position == 'long': #sell long position sell_price = self.raw_data['close'][cur_date] profit = round((sell_price-self.entry_price)*self.position_size, 2) self.total_value += profit df =
pd.DataFrame({'position size':0,'total':self.total_value,'profit':profit},index=[cur_date])
pandas.DataFrame
#!/usr/bin/env python3 from logFormat import C from util import Cred from typing import List import lxml.html, lxml.cssselect, os, pandas, requests csssel = lxml.cssselect.CSSSelector listText = lxml.etree.XPath('text()') # [Using XPath to find text](https://lxml.de/tutorial.html#using-xpath-to-find-text) headers = { # [https://httpbin.org/headers] # [How to fake and rotate User Agents using Python 3](https://www.scrapehero.com/how-to-fake-and-rotate-user-agents-using-python-3/) "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "en-US,en;q=0.9,es;q=0.8,es-419;q=0.7,fr;q=0.6,ru;q=0.5", "Dnt": "1", "Referer": "https://www.google.com/", "User-Agent":os.environ['USERAGENT'] } def eTreeGet(url:str) -> lxml.html.HtmlElement: '''Get HTML request and return as eTree element.''' resp = requests.get(url=url, headers=headers).content return lxml.html.fromstring(resp) def lastfmNeighbors(user:str=Cred.user) -> pandas.DataFrame: '''Parse lastFM neighbors page for {user}.''' eTree = eTreeGet(f'https://www.last.fm/user/{user}/neighbours') users = [user.text for user in csssel('a.user-list-link')(eTree)] artists = [[artist.text for artist in csssel('a')(user)] for user in csssel('p.user-list-shared-artists')(eTree)] return
pandas.DataFrame({'user':users,'artistsInCommon':artists})
pandas.DataFrame
""" function to read data from dwd server """ from itertools import zip_longest, groupby from pathlib import Path from typing import List, Tuple, Optional, Union import re from io import BytesIO import pandas as pd from python_dwd.additionals.functions import retrieve_parameter_from_filename, retrieve_period_type_from_filename, \ retrieve_time_resolution_from_filename, cast_to_list from python_dwd.additionals.helpers import create_stationdata_dtype_mapping from python_dwd.constants.column_name_mapping import GERMAN_TO_ENGLISH_COLUMNS_MAPPING from python_dwd.constants.metadata import NA_STRING, STATIONDATA_SEP, STATID_REGEX, H5_FORMAT, STATIONDATA_NAME from python_dwd.constants.access_credentials import DWD_FOLDER_MAIN from python_dwd.file_path_handling.path_handling import create_folder def parse_dwd_data(filenames_and_files: Optional[Union[List[str], List[Tuple[str, BytesIO]]]] = None, write_file: bool = False, prefer_local: bool = False, folder: str = DWD_FOLDER_MAIN, **kwargs) -> pd.DataFrame: """ This function is used to read the stationdata for which the local zip link is provided by the 'download_dwd' function. It checks the zipfile from the link for its parameters, opens every zipfile in the list of files and reads in the containing product file, and if there's an error or it's wanted the zipfile is removed afterwards. Args: filenames_and_files: list of local stored files that should be read write_file: if true, the raw zip file will not be deleted, default is false. prefer_local: define if preferably data is loaded from local file folder: the folder where data either should be written to or loaded from **kwargs: used for alternative input, as a set of station ids, parameter, timeresolution, periodtype Returns: pandas.DataFrame with requested data, for different station ids the data is still put into one DataFrame """ # Unpack values try: filenames = [] files = [] for filename, file in filenames_and_files: filenames.append(filename) files.append(file) except ValueError: filenames = filenames_and_files files = None except TypeError: filenames = None files = None finally: filenames = cast_to_list(filenames) files = cast_to_list(files) try: sample_file = filenames[0] station_ids = [str(int(re.findall(STATID_REGEX, filename).pop(0))) for filename in filenames] time_res = retrieve_time_resolution_from_filename(sample_file) parameter = retrieve_parameter_from_filename(sample_file, time_resolution=time_res) period = retrieve_period_type_from_filename(sample_file) except (IndexError, TypeError): try: station_ids = cast_to_list(kwargs["station_ids"]) time_res = kwargs["time_resolution"] parameter = kwargs["parameter"] period = kwargs["period_type"] except (KeyError, ValueError): raise ValueError(f"Error: Could neither parse parameters from filename nor from kwargs (station_ids, " f"parameter, time_resolution, period_type).") finally: station_ids = cast_to_list(station_ids) data = [] for statid, group in groupby(zip_longest(station_ids, filenames, files), key=lambda x: x[0]): request_string = f"{parameter.value}/{time_res.value}/{period.value}/{statid}" data.append( _parse_dwd_data(group, prefer_local, folder, write_file, request_string) ) try: data = pd.concat(data).reset_index(drop=True) except ValueError: data =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/1/26 13:10 Desc: 申万指数-申万一级、二级和三级 http://www.swsindex.com/IdxMain.aspx https://legulegu.com/stockdata/index-composition?industryCode=851921.SI """ import time import json import pandas as pd from akshare.utils import demjson import requests from bs4 import BeautifulSoup from akshare.index.cons import sw_headers, sw_payload, sw_url def sw_index_representation_spot() -> pd.DataFrame: """ 申万-市场表征实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8831 :return: 市场表征实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" params = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801001','801002','801003','801005','801300','801901','801903','801905','801250','801260','801270','801280','802613')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "9", "timed": "1632300641756", } r = requests.get(url, params=params) data_json = demjson.decode(r.text) temp_df = pd.DataFrame(data_json["root"]) temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_spot() -> pd.DataFrame: """ 申万一级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8832 :return: 申万一级行业实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" result = [] for i in range(1, 3): payload = sw_payload.copy() payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_second_spot() -> pd.DataFrame: """ 申万二级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnId=8833 :return: 申万二级行业-实时行情数据 :rtype: pandas.DataFrame """ result = [] for i in range(1, 6): payload = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801011','801012','801013','801014','801015','801016','801021','801022','801023','801032','801033','801034','801035','801036','801037','801041','801051','801072','801073','801074','801075','801081','801082','801083','801084','801092','801093','801094','801101','801102','801111','801112','801123','801131','801132','801141','801142','801143','801151','801152','801153','801154','801155','801156','801161','801162','801163','801164','801171','801172','801173','801174','801175','801176','801177','801178','801181','801182','801191','801192','801193','801194','801202','801211','801212','801213','801214','801222','801223','801053','801054','801055','801076','801203','801204','801205','801711','801712','801713','801721','801722','801723','801724','801725','801731','801732','801733','801734','801741','801742','801743','801744','801751','801752','801761','801881','801017','801018')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "98", "timed": "", } payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(sw_url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_cons(symbol: str = "801011") -> pd.DataFrame: """ 申万指数成份信息-包括一级和二级行业都可以查询 http://www.swsindex.com/idx0210.aspx?swindexcode=801010 :param symbol: 指数代码 :type symbol: str :return: 申万指数成份信息 :rtype: pandas.DataFrame """ url = f"http://www.swsindex.com/downfile.aspx?code={symbol}" r = requests.get(url) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 4: stock_code = cols[0].text stock_name = cols[1].text weight = cols[2].text start_date = cols[3].text data.append( { "stock_code": stock_code, "stock_name": stock_name, "start_date": start_date, "weight": weight, } ) temp_df = pd.DataFrame(data) temp_df["start_date"] = pd.to_datetime(temp_df["start_date"]).dt.date temp_df["weight"] = pd.to_numeric(temp_df["weight"]) return temp_df def sw_index_daily( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20201207", ) -> pd.DataFrame: """ 申万指数一级和二级日频率行情数据 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 申万指数日频率行情数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel2.aspx" params = { "ctable": "swindexhistory", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 10: symbol = cols[0].text index_name = cols[1].text date = cols[2].text open_ = cols[3].text high = cols[4].text low = cols[5].text close = cols[6].text vol = cols[7].text amount = cols[8].text change_pct = cols[9].text data.append( { "index_code": symbol.replace(",", ""), "index_name": index_name.replace(",", ""), "date": date.replace(",", ""), "open": open_.replace(",", ""), "high": high.replace(",", ""), "low": low.replace(",", ""), "close": close.replace(",", ""), "vol": vol.replace(",", ""), "amount": amount.replace(",", ""), "change_pct": change_pct.replace(",", ""), } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["vol"] = pd.to_numeric(temp_df["vol"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) temp_df["change_pct"] = pd.to_numeric(temp_df["change_pct"]) return temp_df def sw_index_daily_indicator( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20210907", data_type: str = "Day", ) -> pd.DataFrame: """ 申万一级和二级行业历史行情指标 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param data_type: choice of {"Day": 日报表, "Week": 周报表} :type data_type: str :return: 申万指数不同频率数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel.aspx" params = { "ctable": "V_Report", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}' and type='{data_type}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 14: symbol = cols[0].text index_name = cols[1].text date = cols[2].text close = cols[3].text volume = cols[4].text chg_pct = cols[5].text turn_rate = cols[6].text pe = cols[7].text pb = cols[8].text v_wap = cols[9].text turnover_pct = cols[10].text float_mv = cols[11].text avg_float_mv = cols[12].text dividend_yield_ratio = cols[13].text data.append( { "index_code": symbol, "index_name": index_name, "date": date, "close": close, "volume": volume, "chg_pct": chg_pct, "turn_rate": turn_rate, "pe": pe, "pb": pb, "vwap": v_wap, "float_mv": float_mv, "avg_float_mv": avg_float_mv, "dividend_yield_ratio": dividend_yield_ratio, "turnover_pct": turnover_pct, } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = temp_df["volume"].apply(lambda x: x.replace(",", "")) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["chg_pct"] = pd.to_numeric(temp_df["chg_pct"]) temp_df["turn_rate"] = pd.to_numeric(temp_df["turn_rate"]) temp_df["pe"] = pd.to_numeric(temp_df["pe"]) temp_df["pb"] = pd.to_numeric(temp_df["pb"]) temp_df["vwap"] = pd.to_numeric(temp_df["vwap"]) temp_df["float_mv"] = temp_df["float_mv"].apply(lambda x: x.replace(",", "")) temp_df["float_mv"] = pd.to_numeric( temp_df["float_mv"], ) temp_df["avg_float_mv"] = temp_df["avg_float_mv"].apply( lambda x: x.replace(",", "") ) temp_df["avg_float_mv"] = pd.to_numeric(temp_df["avg_float_mv"]) temp_df["dividend_yield_ratio"] = pd.to_numeric(temp_df["dividend_yield_ratio"]) temp_df["turnover_pct"] = pd.to_numeric(temp_df["turnover_pct"]) return temp_df def sw_index_third_info() -> pd.DataFrame: """ 乐咕乐股-申万三级-分类 https://legulegu.com/stockdata/sw-industry-overview#level1 :return: 分类 :rtype: pandas.DataFrame """ url = "https://legulegu.com/stockdata/sw-industry-overview" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") code_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-industries-item-chinese-title"} ) name_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-industries-item-number"} ) value_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-sw-industries-item-value"} ) code = [item.get_text() for item in code_raw] name = [item.get_text().split("(")[0] for item in name_raw] num = [item.get_text().split("(")[1].split(")")[0] for item in name_raw] num_1 = [ item.find_all("span", attrs={"class": "value"})[0].get_text().strip() for item in value_raw ] num_2 = [ item.find_all("span", attrs={"class": "value"})[1].get_text().strip() for item in value_raw ] num_3 = [ item.find_all("span", attrs={"class": "value"})[2].get_text().strip() for item in value_raw ] num_4 = [ item.find_all("span", attrs={"class": "value"})[3].get_text().strip() for item in value_raw ] temp_df = pd.DataFrame([code, name, num, num_1, num_2, num_3, num_4]).T temp_df.columns = [ "行业代码", "行业名称", "成份个数", "静态市盈率", "TTM(滚动)市盈率", "市净率", "静态股息率", ] temp_df["成份个数"] = pd.to_numeric(temp_df["成份个数"]) temp_df["静态市盈率"] = pd.to_numeric(temp_df["静态市盈率"]) temp_df["TTM(滚动)市盈率"] = pd.to_numeric(temp_df["TTM(滚动)市盈率"]) temp_df["市净率"] = pd.to_numeric(temp_df["市净率"]) temp_df["静态股息率"] = pd.to_numeric(temp_df["静态股息率"]) return temp_df def sw_index_third_cons(symbol: str = "851921.SI") -> pd.DataFrame: """ 乐咕乐股-申万三级-行业成份 https://legulegu.com/stockdata/index-composition?industryCode=851921.SI :param symbol: 三级行业的行业代码 :type symbol: str :return: 行业成份 :rtype: pandas.DataFrame """ url = f"https://legulegu.com/stockdata/index-composition?industryCode={symbol}" temp_df = pd.read_html(url)[0] temp_df.columns = [ "序号", "股票代码", "股票简称", "纳入时间", "申万1级", "申万2级", "申万3级", "价格", "市盈率", "市盈率ttm", "市净率", "股息率", "市值", ] temp_df["价格"] = pd.to_numeric(temp_df["价格"], errors="coerce") temp_df["市盈率"] = pd.to_numeric(temp_df["市盈率"], errors="coerce") temp_df["市盈率ttm"] = pd.to_numeric(temp_df["市盈率ttm"], errors="coerce") temp_df["市净率"] = pd.to_
numeric(temp_df["市净率"], errors="coerce")
pandas.to_numeric
#!/usr/bin/env python # coding: utf-8 # In[1]: import csv import pandas as pd # In[2]: df =
pd.read_csv("C:\\Users\\user\\Downloads\\moreno_highschool\\out.moreno_highschool_highschool", sep=" ", header=None, skiprows=2, names=["ndidfr", "ndidto", "weight"])
pandas.read_csv
######## # LocusExtractor # Created by <NAME> for the Meningitis lab in the CDC, under contract with IHRC. Inc. # Version 0.8, 20 Mar 2015 # # The organization of this script is horrible. Sorry. - ACR #pylint: disable=global-statement, broad-except script_version = 1.5 script_subversion = 7 ##Added notes about composite coverage import os import sys import re import pandas as pd import numpy as np import utilities import seq_utilities import genomeOrganizer ##Note. This should be replaced with NGS_data_utilities at some point. from BLASThelpers import BLASTheaders as bh import BLASThelpers from SequenceExporter import SequenceExporter import AmpliconExtractor # import SRST2_controller from AlleleReferenceManager import AlleleReferenceManager, referenceSubdirectory from LookupTableManager import LookupTableManager from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq from Bio.Blast.Applications import NcbiblastnCommandline, NcbitblastnCommandline from Bio import SeqIO from shlex import quote as sq import shutil import getpass import time import traceback _debug = False # import traceback import warnings # import sys def warn_with_traceback(message, category, filename, lineno, file=None, line=None): print("Start Warning:") traceback.print_stack() # log = file if hasattr(file,'write') else sys.stderr print(warnings.formatwarning(message, category, filename, lineno, line)) print("End warning.") warnings.showwarning = warn_with_traceback pep_messages = { 'yes_locus': 'Peptide not found even though DNA locus was identified', 'no_locus' : 'Peptide not found; locus not present', 'stop' : '-AfterStopCodon', 'out' : '-OutOfFrame' } notFound = 'Not found' warn_edge = '-AtEdge' warn_frameshift = '-Frameshift' warn_insertion = '-Insertion' warn_disruption = '-Disruption' key_additional = 'Additional' multiple = 'multiple' def vprint(text): if _debug: print(text) ### Similarity requirement for identifying locus by imperfect match to known allele: don't want to hit homologs. I have no good way of setting this ####abcZ has two alleles in the reference file with < 75% identity initial_table_columns = ['Filename','Unique_ID','Analysis_Version','Analysis_User','Analysis_Time','Lab_ID'] _min_identity = 0.7 _min_coverage = 0.8 _warning_distance_edge = 1000 ## set format for BLAST tabular output _BLASTheaderList = ['qseqid','sseqid','length','qcovhsp','qstart','qend','qlen','sstart','send','slen','qcovs', 'evalue','bitscore','pident','nident','mismatch','gapopen','gaps','qframe','sframe','sstrand','positive'] # _outfmt_str = '\'{}\''.format(' '.join(['6']+_BLASTheaderList)) # _outfmt_head = [bh[h] for h in _BLASTheaderList] _outfmt_str, _outfmt_head = BLASThelpers.BLASTtableCommandAndHeaders(_BLASTheaderList) LE_version='%(prog)s {}.{}'.format(script_version,script_subversion) ### other global variables # _genes_to_query = set() ####Start organizing the files and reading in all the settings class PrimaryExporter: MLST_headers = ['ST','clonal_complex'] ##Setup export file; define header that are independent of the allele reference files headers = {} headers['ID'] = 'Lab_ID' headers['Nm_ST'] = 'Nm_MLST_ST' headers['Nm_clonal_complex'] = 'Nm_MLST_cc' headers['Hi_ST'] = 'Hi_MLST_ST' headers['PorA_type'] = 'PorA_type' def __init__(self,parent,export_template_file,export_reference_file,lookupDir): ##TODO: these other variables can be drawn from the parent ##Location for writing output and intermediate files self.reference_manager = parent.reference_manager ## the LocusExtractor object self.lookupDir = lookupDir #Get headers if os.path.isfile(export_template_file): self.export_template = pd.read_csv(export_template_file,header=0) else: raise IOError("Need to supply an export table file: {}".format(export_template_file)) #Merge with list of files in genome_frame -- use filename as index (unique identifier) if parent.genomeFrame is not None: self.allele_table = parent.genomeFrame[initial_table_columns].copy() # self.export_table = pd.merge(self.allele_table,export_template,how='left') #inclusive of all columns and rows else: ##Record all alleles, separate from standardized output self.allele_table = pd.DataFrame() # self.export_table = export_template #Map genes to headers if os.path.isfile(export_reference_file): with open(export_reference_file) as headers_in: for line in headers_in: #should be two items; tab delimited if not re.match(r'\s*#',line): #comment line fields = line.split() self.headers[fields[0]] = fields[1] if len(fields) > 2: print("Warning: A line in {} has more than two items in it: {}".format(export_reference_file,line)) else: raise IOError("Need to supply a key linking genes to export table fields: {}".format(export_reference_file)) #Confirm consistancy of headers and the reference file: There may be fields in the table that are not connected to anything for (value, header) in self.headers.items(): if header not in self.export_template.columns: print("Warning: cannot find header for {}. Should be {}".format(value,header)) ## ToDo: guess at header and change to warning #MLST self.MLST_schemes = dict() def save_lookup(self,filename,text_dir): ##Make a dict of data frames -- one for each gene with lookup table. Return them so they are accessible to the mol sheet ## Load lookup tables if os.path.isdir(self.lookupDir): lookupTables = LookupTableManager(self.lookupDir,set(self.reference_manager.getLoci())) ###Create blank tables lookup_tables_export = {x : pd.DataFrame() for x in lookupTables.lookupGeneList()} ##Iterate over each genome for _, row in self.allele_table.iterrows(): for gene in lookupTables.lookupGeneList(): assert gene in lookup_tables_export, 'lookup tables and export must be synchronized' ##First, establish identifier export_series = pd.Series({'Filename':row['Filename'],'Unique_ID':row['Unique_ID'],'Lab_ID':row['Lab_ID']}) allele = row[gene] export_series = export_series.append(lookupTables.lookupRow(gene,allele)) lookup_tables_export[gene] = lookup_tables_export[gene].append(export_series,ignore_index=True) ##save to directory of csv csv_dir = os.path.join(text_dir,os.path.splitext(filename)[0]) utilities.safeMakeDir(csv_dir) for gene, table in lookup_tables_export.items(): csv_file = os.path.join(csv_dir,'{}_lookup.csv'.format(gene)) try: utilities.safeOverwriteCSV(csv_file,table,index=False) except IOError: print("Failed to export lookup data to "+csv_file) ##save to multi-tab excel xlsx_file = utilities.setExt(filename,'.xlsx') try: writer = pd.ExcelWriter(xlsx_file) for gene, table in lookup_tables_export.items(): table.to_excel(writer,gene,index=False) writer.save() except Exception as e: print("Unable to save Excel file {}. Use the CSV version. Warning: Excel will try to convert some values to dates unless you tell it not to during import.".format(filename)) print(format(e)) print("at line:") traceback.print_tb(sys.exc_info()[2]) return lookup_tables_export ##This makes changes to the allele table that will not be saved if save_allele happens first def save_mol(self,filename,text_dir): ## Load lookup tables if os.path.isdir(self.lookupDir): lookupTables = LookupTableManager(self.lookupDir,set(self.reference_manager.getLoci())) ##Get some identifiers for writing to table ST_head = self.headers['Nm_ST'] CC_head = self.headers['Nm_clonal_complex'] ###Create blank table export_table = pd.DataFrame() ##Iterate over each genome for i, row in self.allele_table.iterrows(): try: ##First, establish identifier export_series = row[initial_table_columns].copy() # export_series = pd.Series({'Filename':row['Filename'],'Unique_ID':row['Unique_ID'],'Lab_ID':row['Lab_ID']}) ##Then transfer all the relevant genes, translating the header column for header, value in row.iteritems(): if header in self.headers: export_series[self.headers[header]] = value ##Record MLST information ST_ID, CC_ID = self.findST('Nm',row) self.allele_table.loc[i,ST_head] = ST_ID if ST_ID.startswith('New'): ST_ID = 'New' export_series.loc[ST_head] = ST_ID export_series.loc[CC_head] = CC_ID ##Record Hi MLST Hi_ST, _ = self.findST('Hi',row) self.allele_table.loc[i,'Hi_ST'] = Hi_ST if Hi_ST.startswith('New'): Hi_ST = 'New' export_series.loc[self.headers['Hi_ST']] = Hi_ST ## Make PorA nomenclature PorA_ID = self.exportPorAType(row) export_series['PorA_type'] = PorA_ID ##Fill in antigen nomenclature from lookup table # simple transfers for gene in lookupTables.lookupGeneList(): allele = row[gene] #For export table for dest, source in lookupTables.transferHeaders(gene): if pd.notnull(allele) and allele.isdigit(): value = lookupTables.lookup(gene,allele,source) else: value = 'Allele not identified for {}. Cannot lookup {}'.format(gene,source) export_series[dest] = value # #For the massive dump file # for header in lookupTables.transferRawData(gene): # if header.lower().startswith(gene.lower()): # allele_header = header # else: # allele_header = gene + '_' + header # if pd.notnull(allele) and allele.isdigit(): # value = lookupTables.lookup(gene,allele,header) # if value == '': # value = 'No lookup value' # else: # value = "Allele not identified" # self.allele_table.loc[idx,allele_header] = value #### Do validations and recodings for each gene sucessively fHbp = 'fHbp' fHbp_allele = row[fHbp] try: if str(fHbp_allele).isdigit(): ##Validation of peptide pep_lookup = lookupTables.lookup(fHbp,fHbp_allele,'peptide_id') if pep_lookup.startswith('no peptide_id value'):#blank ##See LookupTableManager.lookup pep_lookup = lookupTables.lookup(fHbp,fHbp_allele,'flags') if pep_lookup.startswith('no flags value'): ##See LookupTableManager.lookup pep_lookup = 'no information' if not isinstance(pep_lookup,str): ##This preceeds an exception print("Error (not fatal): pep_lookup is a {} valued at {}".format(type(pep_lookup),pep_lookup)) FHbp = 'FHbp_pep' pep_BLAST = row[FHbp] if pd.isnull(pep_BLAST) or not pep_BLAST.isdigit(): if not pep_lookup.isdigit(): #Lookup table provided information that BLAST had no access to pep_BLAST += ';' + pep_lookup export_series[self.headers[FHbp]] = pep_BLAST pep_lookup = pep_BLAST ##Just so the next step doesn't fail; already added lookup to BLAST if pep_lookup != pep_BLAST: print("Warning: Conflicting fHbp peptide assignments...") print("Sequence search: {}".format(pep_BLAST)) print("Allele lookup: {}".format(pep_lookup)) print("Lookup tables will be queried using the sequence search result") except AttributeError: print(str(fHbp_allele)) ## Add to table export_series.loc['NhbA_Protein_subvariant_Novartis'] = Nov_format(row['NhbA_pep']) ## nadA nadA_allele = row['nadA'] NadA_pep = row['NadA_pep'] Nov_nadA = 'Error. See alleles output for details. Contact developer.' if pd.notnull(NadA_pep) and NadA_pep.isdigit(): NadA_var = lookupTables.lookup('NadA_pep',NadA_pep,'NadA_variant') if not (NadA_var.startswith('no ') or NadA_var.startswith('allele ')): ##See LookupTableManager.lookup Nov_nadA = '{}.{}'.format(NadA_var,NadA_pep) else: Nov_nadA = 'peptide {}; family unknown'.format(NadA_pep) if pd.notnull(nadA_allele) and nadA_allele.isdigit(): ##Just check for consistancy NadA_pep_lookup = lookupTables.lookup('nadA',nadA_allele,'NadA_peptide') if (NadA_pep_lookup.isdigit()) and (int(NadA_pep) != int(NadA_pep_lookup)): print("Warning: Conflicting nadA peptide assignments...") print("Sequence search: {}".format(NadA_pep)) print("Allele lookup: {}".format(NadA_pep_lookup)) print("Lookup tables will be queried using the peptide sequence search result, rather than the DNA allele") elif pd.notnull(nadA_allele) and nadA_allele.isdigit(): #This really should not happen print("NadA peptide is not available for {}, but DNA allele is. The peptide variant value will be queried using the nucleotide sequence search result".format(row['Unique_ID'])) NadA_var = lookupTables.lookup('nadA',nadA_allele,'NadA_variant') NadA_flag = lookupTables.lookup('nadA',nadA_allele,'flags') if NadA_var.startswith('no '): ##See LookupTableManager.lookup if not NadA_flag.startswith('no '): ##See LookupTableManager.lookup Nov_nadA = '{}'.format(NadA_flag) else: if NadA_flag.startswith('no '):##See LookupTableManager.lookup Nov_nadA = '{} (peptide ID unavailable)'.format(NadA_var) else: Nov_nadA = '{} {}'.format(NadA_var,NadA_flag) elif NadA_pep in [pep_messages['yes_locus'],pep_messages['no_locus']]: ##Presence of DNA locus not really relevant, since there is often amplification of the deletion Nov_nadA = notFound elif warn_edge in NadA_pep: Nov_nadA = 'Incomplete ORF. Possible transposon insertion.' ###TODO: see warn_edge source for how to provide more info elif pd.notnull(NadA_pep): Nov_nadA = NadA_pep export_series.loc['NadA_Protein_subvariant_Novartis'] = Nov_nadA # export_table = export_table.append(export_series,ignore_index=True) except Exception as e: print("Failed to format molecular data for {}".format(row['Unique_ID'])) print(str(e)) print("at line:") traceback.print_tb(sys.exc_info()[2]) export_table = export_table.append(export_series,ignore_index=True) ##Add all columns from the template, and re-order according to template while avoiding any duplications export_table = export_table.append(self.export_template) export_table_headers = [x for x in initial_table_columns if x not in self.export_template.columns.tolist()] + self.export_template.columns.tolist() export_table = export_table[export_table_headers] assert self.allele_table['Unique_ID'].tolist() == export_table['Unique_ID'].tolist(),"Export tables are out of order" csv_base = filename if not isinstance(text_dir,str) else os.path.join(text_dir,os.path.basename(filename)) csv_file = utilities.setExt(csv_base,'.csv') utilities.safeOverwriteCSV(csv_file,export_table,index=False) xlsx_file = utilities.setExt(filename,'.xlsx') if not utilities.safeOverwriteTable(xlsx_file,export_table,'excel',index=False): print("Unable to save Excel file {}. Use the CSV version. Warning: Excel will try to convert some values to dates unless you tell it not to during import.".format(filename)) json_file = utilities.setExt(filename,'.json') utilities.safeOverwriteTable(json_file,export_table,'json') def save_alleles(self,filename,column_order=None,text_dir=None): if column_order is None: column_order = [] new_column_order = [x for x in column_order if x in self.allele_table.columns] if len(new_column_order) != len(column_order): new_set = set(new_column_order) old_set = set(column_order) print("#################") print("Warning: allele data table is missing the following columns:") print("\t"+",".join(old_set.difference(new_set))) ### Report if any of the alleles have an internal stop codon for idx, row in self.allele_table.iterrows(): #for each genome stop_list = [] # record internal stops for item in row.index:#evaluate each gene, allele_frame = self.reference_manager.getAlleleDataFrame(item) #Returns None if not existant if allele_frame is not None: allele_ID = row.loc[item] if isinstance(allele_ID, str) and allele_ID.isdigit(): try: if allele_frame.loc[allele_ID,'InternalStop']: # == 'True' stop_list.append(item) except KeyError: print("Allele {} is not in lookup list. Contact developer.".format(allele_ID)) self.allele_table.loc[idx,'InternalStopsInKnownAlleles'] = ','.join(stop_list) if len(stop_list) > 0 else 'No internal stops' ### Need to be careful to do save_mol first since it updates the allele_table by adding information from lookup tables self.allele_table['nhbA_Novartis_format'] = self.allele_table['NhbA_pep'].apply(Nov_format) ## Arrange columns according to parameter -- any unspecified columns get sorted alphabetically cols = [x for x in initial_table_columns if x not in column_order] + [c.strip() for c in column_order if c in self.allele_table.columns] remainder = [c.strip() for c in self.allele_table.columns.tolist() if c not in cols] remainder.sort(key=lambda s: s.lower()) cols += remainder try: if text_dir is None: csv_file = filename else: csv_file = os.path.join(text_dir,os.path.basename(filename)) utilities.safeOverwriteCSV(csv_file,self.allele_table[cols],index=False) except IOError: print("Unable to save final allele table to CSV.") xlsx_file = utilities.setExt(filename,'.xlsx') try: utilities.safeOverwriteTable(xlsx_file,self.allele_table[cols],'excel',index=False) except IOError: print("Unable to save Excel file {}. Use the CSV version. Warning: Excel will try to convert some values to dates unless you tell it not to during import.".format(filename)) # def save_temp_alleles(self,filename,column_order=None): # try: # utilities.safeOverwriteCSV(filename,self.allele_table[cols],index=False) # except IOError: # print("Unable to save temporary allele table to CSV.") #~ ##Designate an index for this isolate. The only unique idetifier is the filename itself #~ def establishIndex(filename): #~ #~ def loadMLSTscheme(self,Identifier,MLST_profile_file): assert os.path.isfile(MLST_profile_file) profile_table = pd.read_table(MLST_profile_file,header=0,dtype=str) cc_list = profile_table['clonal_complex'].unique() vprint("Loading profile table for {}. Has {} profiles in {} clonal complexes".format(Identifier,len(profile_table),len(cc_list))) MLST_genes = [] locus_list = self.reference_manager.getLoci() for header in profile_table.columns: SpeciesLocus = '{}_{}'.format(Identifier,header) if (SpeciesLocus in locus_list) or (header in locus_list): MLST_genes.append(header) elif header not in self.MLST_headers: print("Notice: MLST header \"{}\" is not in the list of genes to search for.".format(header)) this_scheme = dict() this_scheme['genes'] = MLST_genes this_scheme['profile_table'] = profile_table self.MLST_schemes[Identifier] = this_scheme def exportAlleleID(self,genomeName,genomeFile, gene,allele_ID): if allele_ID is None: allele_ID = notFound self.addItemToAlleles(genomeName,genomeFile,gene,allele_ID) def addItemToAlleles(self,genomeName,genomeFile,header,value): i = self.getIndex(genomeName,genomeFile) self.allele_table.loc[i,header] = value def noteDuplicateRegion(self,genomeName,genomeFile,gene): dups = 'Duplicates' if dups not in self.allele_table: self.allele_table[dups] = '' i = self.getIndex(genomeName,genomeFile) n = self.allele_table.loc[i,dups] if isinstance(n,str) and len(n) > 0: n += ' {}'.format(gene) else: n = gene self.allele_table.loc[i,dups] = n ##Pass * to match all def getIndex(self,genomeName,genomeFile): at = self.allele_table if genomeName == '*': nameMatch = at['Unique_ID'] != '' else: nameMatch = at['Unique_ID'] == genomeName if genomeFile == '*': fileMatch = at['Filename'] != '' else: fileMatch = at['Filename'] == genomeFile match = at[ nameMatch & fileMatch] idx = match.index.tolist() if len(idx) != 1: print("Error finding genome: {}".format(genomeName)) print("\tMatching names: {}".format(sum(nameMatch))) print("\tMatching files: {}".format(sum(fileMatch))) raise IOError("Failure to find index of genome") result = idx[0] # assert self.export_table.ix[result,'Lab_ID'] == genomeName, 'Genome name: {}'.format(genomeName) # assert self.export_table.ix[result,'Filename'] == genomeFile, 'Genome file: {}'.format(genomeFile) return result ## Finds ST if it is the profile table and genes have already been identified ## Identifier is species ## allele_series is the row of allele data ### New STs will be added to the profile table with the "uniqueID" from this batch. def findST(self,Identifier,allele_series): ##get index for genome # file_index = self.getIndex(genomeInfo['name'],genomeInfo['original']) this_scheme = self.MLST_schemes[Identifier] MLST_genes = this_scheme['genes'] ## Filter profiles based on results for each gene profile_table = this_scheme['profile_table'] profile_filtered = profile_table.copy() #Search for each locus thisST = {'clonal_complex':None} ##Failure to set this results in a spurious match between thisSt and table STs with no Clonal Complex. I don't know why ###TODO: figure out why omitting "clonal_complex" results in matches CC_ID = 'None identified' try: for gene in MLST_genes: SpeciesLocus = '{}_{}'.format(Identifier,gene) ##Need this because both Hi and Nm use the same gene name if SpeciesLocus in allele_series: allele_ID = allele_series.loc[SpeciesLocus] elif gene in allele_series: allele_ID = allele_series.loc[gene] else: allele_ID = None print("Error: MLST scheme for {} does not include locus {}".format(Identifier,gene)) ##Narrow down potential profiles if isinstance(allele_ID,int): filter_ID = str(allele_ID) elif isinstance(allele_ID,str): if allele_ID.isdigit(): filter_ID = allele_ID elif allele_ID == notFound: filter_ID = '0' elif allele_ID.startswith('New'): filter_ID = '-1' else: raise ValueError('Illegal MLST allele: {}'.format(allele_ID)) else: raise ValueError('Illegal MLST allele: {}'.format(allele_ID)) # if not pd.isnull(allele_ID) and allele_ID not in ['New','Not found']: # filter_ID = str(allele_ID) # else: # filter_ID = '0' # Value of 0 should eliminate all STs ##Assure that there is no confusion from assigning "None" to 0 # if (filter_ID < 1 and allele_ID is not None): # print("Warning: Invalid allele value for gene {} in genome {}: {}".format(gene,genomeInfo['name'],allele_ID)) # profile_filtered = profile_filtered[profile_filtered[gene] == filter_ID] thisST[gene] = filter_ID except ValueError: ST_ID = 'Error: Illegal MLST allele' else: ##Check for valid ST result_set = set() for g in MLST_genes: result_set.add(thisST[g]) null_set = set('0') if result_set == null_set: ST_ID = 'Not applicable' elif result_set > null_set: ST_ID = 'Error: Not all loci present' else: ST_ID = 'New' profile_filtered['matches'] = np.sum(profile_filtered == pd.Series(thisST),axis=1) # pylint: disable=no-member profile_filtered = profile_filtered.sort_values(by=['matches'],ascending=False) best_profile = profile_filtered.iloc[0] most_matches = best_profile['matches'] profile_filtered = profile_filtered[profile_filtered['matches'] >= most_matches] count = len(profile_filtered.index) if most_matches == len(MLST_genes): ST_ID = best_profile.loc['ST'] CC_ID = best_profile.loc['clonal_complex'] if count > 1: raise Exception("Corruption of MLST profile table -- multiple ST with same alleles") elif ST_ID == 'New': ##No match print('Unable to find {} MLST for {}. Best match is {} alleles'.format(Identifier,allele_series['Unique_ID'],most_matches)) max_mismatch = 3 max_in_list = 10 mismatch = len(MLST_genes) - most_matches in_list = len(profile_filtered) if (mismatch <= max_mismatch) or (in_list < max_in_list): for _, row in profile_filtered.iterrows(): try: this_ST = row.loc['ST'] this_CC = row.loc['clonal_complex'] except Exception: this_ST = None this_CC = None if pd.isnull(this_CC): this_CC = 'unassigned' print('\tClose match to {} ST {} from CC {}'.format(Identifier,this_ST,this_CC)) else: print("There are {} {} STs with {} mismatches. Not printing list".format(in_list,Identifier,mismatch)) unique_CC = profile_filtered['clonal_complex'].unique() if most_matches >= len(MLST_genes) - max_mismatch: unique_goodCC = [x for x in unique_CC if pd.notnull(x)] if len(unique_goodCC) == 1: if pd.notnull(unique_goodCC[0]): ##TODO: find better way to deal with MLST schemes lacking clonal complexes print('Single CC among best matches: {}'.format(unique_goodCC[0])) #CC_ID = "Most similar to {} ({}/{} matches)".format(unique_goodCC[0],most_matches,len(MLST_genes)) CC_ID = 'N/A' ##Record this ST in the table if all alleles are defined defined = True for gene in MLST_genes: if not str(thisST[gene]).isdigit(): ##CC and ST are givn non-numeric values defined = False if defined: ST_ID = "New_ST-"+allele_series['Unique_ID'] thisST['ST'] = ST_ID thisST['clonal_complex'] = CC_ID this_scheme['profile_table'] = profile_table.append(thisST,ignore_index=True) elif ST_ID.startswith('Error'): print("Error identifying {} ST. Some loci are present, others absent".format(Identifier)) return ST_ID, CC_ID # ST_head = self.headers['ST'] # CC_head = self.headers['clonal_complex'] # self.export_table.loc[file_index,ST_head] = ST_ID # self.export_table.loc[file_index,CC_head] = CC_ID def exportPorAType(self,allele_series): PorA_ID = None if 'porA' in allele_series.index: #find index - allele_table and export_table share indicies # i = self.getIndex(genomeName,genomeFile) allele_ID = allele_series.loc['porA'] ##Note: whether PorA is out of frame is not relevant for typing, but it is for vaccine interpretation ##TODO: confirm if this "is null" test is still relevant. VR1_ID = allele_series.loc['PorA_VR1_pep'] VR2_ID = allele_series.loc['PorA_VR2_pep'] if (VR1_ID == notFound) or (VR2_ID == notFound) or VR1_ID.startswith('New') or VR2_ID.startswith('New'): if (allele_ID == notFound): PorA_ID = notFound elif allele_ID.startswith('New'): PorA_ID = 'New' print("Need to extract variable regions from PorA allele") else: PorA_ID = 'New' print("Error: PorA allele was found in reference file but VR sequences were not. Contact developer.") elif (VR1_ID == VR2_ID) and VR1_ID in pep_messages.values(): PorA_ID = VR1_ID ##This is only if both VRs are missing else: PorA_ID = "P1.{},{}".format(VR1_ID,VR2_ID) else: print("Error:PorA has not been analyzed. Notify developer") return PorA_ID #Takes a string representation of an integer, and gives it the Novartis format for nhbA allels def Nov_format(allele): if str(allele).isdigit(): out = "p{:04}".format(int(allele)) else: out = allele return out def ConditionalInsert(pid,tempname): return utilities.appendToFilename(tempname, "_"+pid) if pid else tempname class LocusExtractor: def __init__(self,gd,args,ref_man,setting_dir,output_dir): self.outDir = output_dir self.textDir = os.path.join(self.outDir,'Results_text') utilities.safeMakeDir(self.textDir) self.settingDir = setting_dir self.blast_tempDir = os.path.join(self.outDir,'blast_temp_files/')## clean this up at the end utilities.safeMakeDir(self.blast_tempDir) self.DNA_dump_file = ConditionalInsert(args.projectID,os.path.join(self.outDir,'mismatched_DNA.fasta')) self.pep_dump_file = ConditionalInsert(args.projectID,os.path.join(self.outDir,'mismatched_peptides.fasta')) self.primary_export_file = ConditionalInsert(args.projectID,os.path.join(self.outDir,'molecular_data.csv')) self.lookup_export_file = ConditionalInsert(args.projectID,os.path.join(self.outDir,'lookup_data.csv')) self.allele_export_file = ConditionalInsert(args.projectID,os.path.join(self.outDir,'allele_data.csv')) self.sequence_export_file = ConditionalInsert(args.projectID,os.path.join(self.outDir,'sequence_data.csv')) self.blast_summary_file = ConditionalInsert(args.projectID,os.path.join(self.outDir,'blast_summaries.tab')) self.export_table_file = os.path.join(self.settingDir,'molecular_export_template.csv') self.export_reference_file = os.path.join(self.settingDir,"locus2molecular_export_headers.txt") self.export_sequences_file = os.path.join(self.settingDir,'sequence_export_template.csv') self.sequence_export_list = os.path.join(self.settingDir,"locus4sequence_export.txt") self.primer_file = os.path.join(self.settingDir,"locus2primers.csv") self.genomeFrame = gd self.genomeFrame['Analysis_Version'] = 'LocusExtractor.py {}.{}'.format(script_version,script_subversion) self.genomeFrame['Analysis_User'] = getpass.getuser() self.genomeFrame['Analysis_Time'] = time.ctime()#strftime("%c") self.reference_manager = ref_man self.export_best_match = args.export_best_match self.preserve_BLAST_hits = args.preserve_BLAST_hits # if args.is_reads: # print("Not implemented. Not planning on it...") # # # gd = convertPairedReadsToSingles(gd) # # for _,row in gd.iterrows(): # # queryOptions, _ = SRST2_controller.constructQueryOptions(row,self.outDir) # # ref_list = self.reference_manager.getAllRefFiles() # # full_command = SRST2_controller.constructFullCommand(queryOptions, ref_list) # # SRST2_controller.run_SRST2(full_command) # # # gd = S RST2_controller.convertPairedReadsToSingles(readFrame) # else: self.loadSettings(args) for _,row in gd.iterrows(): try: filename = row.loc['Filename'] uniqueid = row.loc['Unique_ID'] except KeyError: print("Error") else: if (not isinstance(filename,str)) or (not os.path.exists(filename)): print("Error: cannot locate file for {}: {}".format(uniqueid,filename)) else: try: (file_format,compressed) = utilities.guessFileFormat(filename) self.evaluateGenome(uniqueid,filename,file_format,compressed) except Exception as e: print("Failed to evaluate genome file {}. Contact developer".format(filename)) print(format(e)) print("at line:") traceback.print_tb(sys.exc_info()[2]) # if _debug: # raise try: self.primary_exporter.allele_table.to_csv(os.path.join(self.outDir,'incremental_alleles.tab'),sep='\t') except IOError: print("Failed to save incremental allele table.") self.finish() def loadSettings(self,args): ##This is the main setting manager (reference files for alleles) print('## Begin Loading Settings ##') self.reference_manager.loadReferences(utilities.safeMakeOutputFolder(os.path.join(self.outDir,'References'))) #Check some files self.DNA_dump_file = utilities.checkForOverwrite(self.DNA_dump_file) self.pep_dump_file = utilities.checkForOverwrite(self.pep_dump_file) ## Load template file, bind alleles to fields, and load MLST information lookupDir = os.path.join(self.settingDir,'lookupTables/') self.primary_exporter = PrimaryExporter(self,self.export_table_file,self.export_reference_file,lookupDir) for identifier, filename in self.reference_manager.getMLSTschemes().items(): assert os.path.isfile(filename), "MLST scheme {} does not have a file: {}".format(identifier,filename) self.primary_exporter.loadMLSTscheme(identifier,filename) ##Load the other export file template, along with gene bindings self.sequence_exporter = SequenceExporter(self.export_sequences_file,self.sequence_export_list,self.genomeFrame) ##Read in primer file self.amp_extractor = AmpliconExtractor.AmpliconExtractor(self.primer_file,working_dir=self.outDir,generate_output=self.preserve_BLAST_hits) self.blast_summary_frame = pd.DataFrame() print('## Finished Loading Settings ##') print('') #####Start processing the genome #####Functions#######3 ##Returns a Pandas Series object representing the allele with the best hit from BLAST #Gene: name #Query_file: FASTA file with named alleles of locus being searched for #genome_info: dict from AmpliconExtractor.setupGenomeForBlastBasedExtraction; includes 'db' for BLAST db to search against ##DNA searches try to do full length match of a similar, long sequence (i.e. megablast, with high reward for matches) ##Protein searches try to do exact match of short sequence (i.e. tblastn) ###Issue: this has no way to report multiple hits to the allele table. Should it return None? A list? def bestAlleleByBlast(self,gene,query_file,genome_info,is_DNA=True, is_subregion=False): if not isinstance(query_file,str) and not os.path.isfile(query_file): raise ValueError("Invalid query filename: {}".format(query_file)) db_name = genome_info['db'] if not isinstance(db_name,str): raise ValueError("Invalid BLAST database name: {}".format(db_name)) db_base = os.path.basename(db_name) (db_base,_) = os.path.splitext(db_base) outfile = os.path.join(self.blast_tempDir,gene+'.'+db_base+'.blast.txt') if is_DNA: ##Try to force full-length alignment by increasing relative value of rewards blast_cline = NcbiblastnCommandline(query=sq(query_file),db=sq(db_name),outfmt=_outfmt_str,out=sq(outfile),evalue=0.1,reward=2,penalty=-2,gapopen=4,gapextend=2) else: blast_cline = NcbitblastnCommandline(query=sq(query_file),db=sq(db_name),outfmt=_outfmt_str,out=sq(outfile),evalue=0.1,window_size=15,matrix='BLOSUM80',seg='no') #A very strict matirx (PAM30) may be best...but I'm not seeing any performance problem even with default BLOSUM65. Seg was a major problem stdout = stderr = None try: stdout, stderr = blast_cline() except Exception as e: print("Blast failed on {} with {}...output below...".format(gene,query_file)) print("\t{}".format(stdout)) print("\t{}".format(stderr)) print(format(e)) print("at line:") traceback.print_tb(sys.exc_info()[2]) results =
pd.read_table(outfile,names=_outfmt_head)
pandas.read_table
from datetime import datetime import warnings import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Index, Series import pandas._testing as tm from pandas.core.window.common import flex_binary_moment from pandas.tests.window.common import ( moments_consistency_cov_data, moments_consistency_is_constant, moments_consistency_mock_mean, moments_consistency_series_data, moments_consistency_std_data, moments_consistency_var_data, moments_consistency_var_debiasing_factors, ) def _rolling_consistency_cases(): for window in [1, 2, 3, 10, 20]: for min_periods in {0, 1, 2, 3, 4, window}: if min_periods and (min_periods > window): continue for center in [False, True]: yield window, min_periods, center # binary moments def test_rolling_cov(series): A = series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).cov(B) tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1]) def test_rolling_corr(series): A = series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).corr(B) tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) # test for correct bias correction a = tm.makeTimeSeries() b = tm.makeTimeSeries() a[:5] = np.nan b[:10] = np.nan result = a.rolling(window=len(a), min_periods=1).corr(b) tm.assert_almost_equal(result[-1], a.corr(b)) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_rolling_pairwise_cov_corr(func, frame): result = getattr(frame.rolling(window=10, min_periods=5), func)() result = result.loc[(slice(None), 1), 5] result.index = result.index.droplevel(1) expected = getattr(frame[1].rolling(window=10, min_periods=5), func)(frame[5]) expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected, check_names=False) @pytest.mark.parametrize("method", ["corr", "cov"]) def test_flex_binary_frame(method, frame): series = frame[1] res = getattr(series.rolling(window=10), method)(frame) res2 = getattr(frame.rolling(window=10), method)(series) exp = frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(frame.rolling(window=10), method)(frame2) exp = DataFrame( {k: getattr(frame[k].rolling(window=10), method)(frame2[k]) for k in frame} ) tm.assert_frame_equal(res3, exp) @pytest.mark.slow @pytest.mark.parametrize( "window,min_periods,center", list(_rolling_consistency_cases()) ) def test_rolling_apply_consistency( consistency_data, base_functions, no_nan_functions, window, min_periods, center ): x, is_constant, no_nans = consistency_data with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning ) # test consistency between rolling_xyz() and either (a) # rolling_apply of Series.xyz(), or (b) rolling_apply of # np.nanxyz() functions = base_functions # GH 8269 if no_nans: functions = no_nan_functions + base_functions for (f, require_min_periods, name) in functions: rolling_f = getattr( x.rolling(window=window, center=center, min_periods=min_periods), name ) if ( require_min_periods and (min_periods is not None) and (min_periods < require_min_periods) ): continue if name == "count": rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) else: if name in ["cov", "corr"]: rolling_f_result = rolling_f(pairwise=False) else: rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) # GH 9422 if name in ["sum", "prod"]: tm.assert_equal(rolling_f_result, rolling_apply_f_result) @pytest.mark.parametrize("window", range(7)) def test_rolling_corr_with_zero_variance(window): # GH 18430 s = Series(np.zeros(20)) other = Series(np.arange(20)) assert s.rolling(window=window).corr(other=other).isna().all() def test_flex_binary_moment(): # GH3155 # don't blow the stack msg = "arguments to moment function must be of type np.ndarray/Series/DataFrame" with pytest.raises(TypeError, match=msg): flex_binary_moment(5, 6, None) def test_corr_sanity(): # GH 3155 df = DataFrame( np.array( [ [0.87024726, 0.18505595], [0.64355431, 0.3091617], [0.92372966, 0.50552513], [0.00203756, 0.04520709], [0.84780328, 0.33394331], [0.78369152, 0.63919667], ] ) ) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) # and some fuzzing for _ in range(10): df = DataFrame(np.random.rand(30, 2)) res = df[0].rolling(5, center=True).corr(df[1]) try: assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) except AssertionError: print(res) def test_rolling_cov_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2a) tm.assert_series_equal(result, expected) def test_rolling_corr_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2) expected = Series([None, None, 1.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2a) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(quantile=0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), ], ) @td.skip_if_no_scipy def test_rolling_functions_window_non_shrinkage(f): # GH 7764 s = Series(range(4)) s_expected = Series(np.nan, index=s.index) df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=["A", "B"]) df_expected = DataFrame(np.nan, index=df.index, columns=df.columns) s_result = f(s) tm.assert_series_equal(s_result, s_expected) df_result = f(df) tm.assert_frame_equal(df_result, df_expected) def test_rolling_functions_window_non_shrinkage_binary(): # corr/cov return a MI DataFrame df = DataFrame( [[1, 5], [3, 2], [3, 9], [-1, 0]], columns=Index(["A", "B"], name="foo"), index=Index(range(4), name="bar"), ) df_expected = DataFrame( columns=Index(["A", "B"], name="foo"), index=pd.MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]), dtype="float64", ) functions = [ lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), ] for f in functions: df_result = f(df) tm.assert_frame_equal(df_result, df_expected) def test_rolling_skew_edge_cases(): all_nan = Series([np.NaN] * 5) # yields all NaN (0 variance) d = Series([1] * 5) x = d.rolling(window=5).skew() tm.assert_series_equal(all_nan, x) # yields all NaN (window too small) d = Series(np.random.randn(5)) x = d.rolling(window=2).skew() tm.assert_series_equal(all_nan, x) # yields [NaN, NaN, NaN, 0.177994, 1.548824] d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401]) expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824]) x = d.rolling(window=4).skew() tm.assert_series_equal(expected, x) def test_rolling_kurt_edge_cases(): all_nan = Series([np.NaN] * 5) # yields all NaN (0 variance) d = Series([1] * 5) x = d.rolling(window=5).kurt() tm.assert_series_equal(all_nan, x) # yields all NaN (window too small) d = Series(np.random.randn(5)) x = d.rolling(window=3).kurt() tm.assert_series_equal(all_nan, x) # yields [NaN, NaN, NaN, 1.224307, 2.671499] d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401]) expected = Series([np.NaN, np.NaN, np.NaN, 1.224307, 2.671499]) x = d.rolling(window=4).kurt() tm.assert_series_equal(expected, x) def test_rolling_skew_eq_value_fperr(): # #18804 all rolling skew for all equal values should return Nan a = Series([1.1] * 15).rolling(window=10).skew() assert np.isnan(a).all() def test_rolling_kurt_eq_value_fperr(): # #18804 all rolling kurt for all equal values should return Nan a = Series([1.1] * 15).rolling(window=10).kurt() assert np.isnan(a).all() def test_rolling_max_gh6297(): """Replicate result expected in GH #6297""" indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 2 datapoints on one of the days indices.append(datetime(1975, 1, 3, 6, 0)) series = Series(range(1, 7), index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() expected = Series( [1.0, 2.0, 6.0, 4.0, 5.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) def test_rolling_max_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be max expected = Series( [0.0, 1.0, 2.0, 3.0, 20.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) # Now specify median (10.0) expected = Series( [0.0, 1.0, 2.0, 3.0, 10.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").median().rolling(window=1).max() tm.assert_series_equal(expected, x) # Now specify mean (4+10+20)/3 v = (4.0 + 10.0 + 20.0) / 3.0 expected = Series( [0.0, 1.0, 2.0, 3.0, v], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").mean().rolling(window=1).max() tm.assert_series_equal(expected, x) def test_rolling_min_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be min expected = Series( [0.0, 1.0, 2.0, 3.0, 4.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) r = series.resample("D").min().rolling(window=1) tm.assert_series_equal(expected, r.min()) def test_rolling_median_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be median expected = Series( [0.0, 1.0, 2.0, 3.0, 10], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").median().rolling(window=1).median() tm.assert_series_equal(expected, x) def test_rolling_median_memory_error(): # GH11722 n = 20000 Series(np.random.randn(n)).rolling(window=2, center=False).median() Series(np.random.randn(n)).rolling(window=2, center=False).median() def test_rolling_min_max_numeric_types(): # GH12373 types_test = [np.dtype(f"f{width}") for width in [4, 8]] types_test.extend( [np.dtype(f"{sign}{width}") for width in [1, 2, 4, 8] for sign in "ui"] ) for data_type in types_test: # Just testing that these don't throw exceptions and that # the return type is float64. Other tests will cover quantitative # correctness result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).max() assert result.dtypes[0] == np.dtype("f8") result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).min() assert result.dtypes[0] == np.dtype("f8") def test_moment_functions_zero_length(): # GH 8056 s = Series(dtype=np.float64) s_expected = s df1 = DataFrame() df1_expected = df1 df2 = DataFrame(columns=["a"]) df2["a"] = df2["a"].astype("float64") df2_expected = df2 functions = [ lambda x: x.rolling(window=10, min_periods=0).count(), lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), ] for f in functions: try: s_result = f(s) tm.assert_series_equal(s_result, s_expected) df1_result = f(df1) tm.assert_frame_equal(df1_result, df1_expected) df2_result = f(df2) tm.assert_frame_equal(df2_result, df2_expected) except (ImportError): # scipy needed for rolling_window continue def test_moment_functions_zero_length_pairwise(): df1 =
DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 ''' FILE: nav_manager.py DESCRIPTION: Contains the various classes used by the r2rNavManagerPy programs. BUGS: NOTES: AUTHOR: <NAME> COMPANY: OceanDataTools VERSION: 0.3 CREATED: 2021-04-15 REVISION: 2021-05-11 LICENSE INFO: This code is licensed under MIT license (see LICENSE.txt for details) Copyright (C) OceanDataTools 2021 ''' import sys import json import logging from io import StringIO from datetime import datetime, timedelta from os.path import dirname, realpath, basename sys.path.append(dirname(dirname(realpath(__file__)))) import numpy as np import pandas as pd from rdp import rdp from geopy import Point from geopy.distance import great_circle from lib.utils import calculate_bearing, read_r2rnavfile from lib.geocsv_templates import bestres_header, onemin_header, control_header R2RNAV_COLS = ['iso_time','ship_longitude','ship_latitude','nmea_quality','nsv','hdop','antenna_height','valid_cksum','valid_parse','sensor_time','deltaT','sensor_deltaT','valid_order','distance','speed_made_good','course_made_good','acceleration'] parse_cols = ['iso_time','ship_longitude','ship_latitude','nmea_quality','nsv','hdop','antenna_height','valid_cksum','valid_parse','sensor_time'] bestres_cols = ['iso_time','ship_longitude','ship_latitude','nmea_quality','nsv','hdop','antenna_height','speed_made_good','course_made_good'] onemin_cols = ['iso_time','ship_longitude','ship_latitude','speed_made_good','course_made_good'] control_cols = ['iso_time','ship_longitude','ship_latitude'] MAX_SPEED = 8.7 # m/s MAX_ACCEL = 1 # m/s^2 MAX_DELTA_T = 300 # seconds RDP_EPSILON = 0.001 rounding = { 'ship_longitude': 8, 'ship_latitude': 8, 'speed_made_good': 2, 'course_made_good': 3 } class NpEncoder(json.JSONEncoder): """ Custom JSON string encoder used to deal with NumPy arrays """ def default(self, obj): # pylint: disable=arguments-differ if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, datetime): return obj.strftime("%Y-%m-%dT%H:%M:%S.%fZ") return super().default(obj) class NavInfoReport(): """ Class for building navinfo reports """ def __init__(self, filename): self._filename = filename self._start_ts = None self._end_ts = None self._start_coord = [None, None] self._end_coord = [None, None] self._bbox = [ None, None, None, None] self._parse_errors = None self._total_lines = None @property def filename(self): ''' Getter function for self._filename ''' return self._filename @property def start_ts(self): ''' Getter function for self._start_ts ''' return self._start_ts @property def end_ts(self): ''' Getter function for self._end_ts ''' return self._end_ts @property def start_coord(self): ''' Getter function for self._start_coord ''' return self._start_coord @property def end_coord(self): ''' Getter function for self._end_coord ''' return self._end_coord @property def bbox(self): ''' Getter function for self._bbox ''' return self._bbox @property def parse_errors(self): ''' Getter function for self._parse_errors ''' return self._parse_errors @property def total_lines(self): ''' Getter function for self._total_lines ''' return self._total_lines def build_report(self, dataframe): """ Build the NavInfo report """ self._parse_errors = len(dataframe[(dataframe['valid_parse'] == 0)]) self._total_lines = len(dataframe.index) first_valid_row = dataframe[dataframe['valid_parse'] == 1].iloc[0] idx = dataframe.query('valid_parse.eq(1)').index.max() last_valid_row = dataframe.iloc[idx] self._start_ts = first_valid_row['iso_time'] self._end_ts = last_valid_row['iso_time'] self._start_coord = [first_valid_row['ship_longitude'],first_valid_row['ship_latitude']] self._end_coord = [last_valid_row['ship_longitude'],last_valid_row['ship_latitude']] self._bbox = [dataframe['ship_longitude'].max(),dataframe['ship_latitude'].max(),dataframe['ship_longitude'].min(),dataframe['ship_latitude'].min()] def __str__(self): return "NavInfo Report: %s\n\ Navigation Start/End Info:\n\ \tStart Date: %s\n\ \tEnd Date: %s\n\ \tStart Lat/Lon: [%f,%f]\n\ \tEnd Lat/Lon: [%f,%f]\n\ Navigation Bounding Box Info:\n\ \tMinimum Longitude: %f\n\ \tMaximum Longitude: %f\n\ \tMinimum Latitude: %f\n\ \tMaximum Latitude: %f\n\ Parsing Errors: %d\n\ Total Lines of Data: %s\ " % (basename(self._filename), self._start_ts.strftime("%Y-%m-%dT%H:%M:%S.%fZ"), self._end_ts.strftime("%Y-%m-%dT%H:%M:%S.%fZ"), self._start_coord[1], self._start_coord[0], self._end_coord[1], self._end_coord[0], self._bbox[2], self._bbox[0], self._bbox[3], self._bbox[1], self._parse_errors, self._total_lines) def to_json(self): """ Return test data as json object """ return {"filename": self._filename, "startTS": self._start_ts.strftime("%Y-%m-%dT%H:%M:%S.%fZ"), "endTS": self._end_ts.strftime("%Y-%m-%dT%H:%M:%S.%fZ"), "startCoord": self._start_coord, "endCoord": self._end_coord, "bbox": self._bbox, "parseErrors": self._parse_errors, "totalLines": self._total_lines} class NavQAReport(): # pylint: disable=too-many-instance-attributes """ Class for a navqa reports """ def __init__(self, filename, delta_t_threshold = MAX_DELTA_T, speed_threshold = MAX_SPEED, acceleration_threshold = MAX_ACCEL): # The filename self._filename = filename # Total data rows self._total_lines = None # The QA thresholds self._delta_t_threshold = pd.Timedelta("{} seconds".format(delta_t_threshold)) self._horizontal_speed_threshold = speed_threshold self._horzontal_acceleration_threshold = acceleration_threshold # The QA min/max self._antenna_altitude = [ None, None ] self._horizontal_speed = [ None, None ] self._horizontal_acceleration = [ None, None ] self._horizontal_speed = [ None, None ] self._distance_from_port = [ None, None ] self._timestamps = [ None, None ] self._nsv = [ None, None ] self._hdop = [ None, None ] self._delta_t = [ None, None ] # The QA errors self._delta_t_errors = None self._out_of_sequence_errors = None self._nmea_qualty_errors = None self._horizontal_speed_errors = None self._horizontal_acceleration_errors = None self._parse_errors = None self._cksum_errors = None def build_report(self, dataframe): ''' Build the navqa report. ''' self._total_lines = len(dataframe.index) self._antenna_altitude = [ dataframe['antenna_height'].min(), dataframe['antenna_height'].max() ] self._horizontal_speed = [ dataframe['speed_made_good'].min(), dataframe['speed_made_good'].max() ] self._horizontal_acceleration = [ dataframe['acceleration'].min(), dataframe['acceleration'].max() ] self._distance_from_port = [ 0, 0 ] self._timestamps = [ dataframe['iso_time'].iloc[0], dataframe['iso_time'].iloc[-1] ] self._nsv = [ int(dataframe['nsv'].min()), int(dataframe['nsv'].max()) ] self._hdop = [ dataframe['hdop'].min(), dataframe['hdop'].max() ] self._delta_t = [ dataframe['deltaT'].min(), dataframe['deltaT'].max() ] self._delta_t_errors = len(dataframe[(dataframe['deltaT'] > self._delta_t_threshold)]) self._out_of_sequence_errors = len(dataframe[(dataframe['valid_order'] == 0)]) self._nmea_qualty_errors = self._total_lines - len(dataframe[dataframe['nmea_quality'].between(1,3)]) self._horizontal_speed_errors = len(dataframe[(dataframe['speed_made_good'] > self._horizontal_speed_threshold)]) self._horizontal_acceleration_errors = len(dataframe[(dataframe['acceleration'] > self._horzontal_acceleration_threshold)]) self._parse_errors = len(dataframe[(dataframe['valid_parse'] == 0)]) self._cksum_errors = len(dataframe[(dataframe['valid_cksum'] == 0)]) def __str__(self): return "NavQA Report: %s\n\ Duration and range of values:\n\ Maximum Antenna Altitude: %0.3f m\n\ Minimum Antenna Altitude: %0.3f m\n\ Maximum Horizontal Speed: %0.3f m/s\n\ Minimum Horizontal Speed: %0.3f m/s\n\ Maximum Horizontal Acceleration: %0.3f m/s^2\n\ Minimum Horizontal Acceleration: %0.3f m/s^2\n\ Distance from Port Start: %0.2f m\n\ Distance from Port End: %0.2f m\n\ First epoch: %s\n\ Last epoch: %s\n\ Possible Number of Epochs with Observations:\n\ Actual Number of Epochs with Observations:\n\ Actual Countable Number of Epoch with Observations:\n\ Absent Number of Epochs with Observations:\n\ Flagged Number of Epochs with Observations:\n\ Number of satellites:\n\ Maximum Number of Satellites: %d\n\ Minimum Number of Satellites: %d\n\ Maximum HDOP: %0.1f\n\ Minimum HDOP: %0.1f\n\n\ Qualtiy Assessment:\n\ Longest epoch gap: %s\n\ Number of Gaps Longer than Threshold: %d\n\ Percentage of Gaps Longer than Threshold: %0.3f %%\n\ Number of Epochs Out of Sequence: %d\n\ Percent records out of sequence: %0.3f %%\n\ Number of Epochs with Bad GPS Quality Indicator: %d\n\ Percent records with Bad GPS Quality Indicator: %0.3f %%\n\ Number of Horizontal Speeds Exceeding Threshold: %d\n\ Percent Unreasonable Horizontal Speeds: %0.3f %%\n\ Number of Horizontal Accelerations Exceeding Threshold: %d\n\ Percent Unreasonable Horizontal Accelerations: %0.3f %%\n\ " % (basename(self._filename), self._antenna_altitude[1], self._antenna_altitude[0], self._horizontal_speed[1], self._horizontal_speed[0], self._horizontal_acceleration[1], self._horizontal_acceleration[0], self._distance_from_port[0], self._distance_from_port[1], self._timestamps[0].strftime("%Y-%m-%dT%H:%M:%S.%fZ"), self._timestamps[1].strftime("%Y-%m-%dT%H:%M:%S.%fZ"), self._nsv[1], self._nsv[0], self._hdop[1], self._hdop[0], str(self._delta_t[1]), self._delta_t_errors, 100 * self._delta_t_errors/self._total_lines, self._out_of_sequence_errors, 100 * self._out_of_sequence_errors/self._total_lines, self._nmea_qualty_errors, 100 * self._nmea_qualty_errors/self._total_lines, self._horizontal_speed_errors, 100 * self._horizontal_speed_errors/self._total_lines, self._horizontal_acceleration_errors, 100 * self._horizontal_acceleration_errors/self._total_lines, ) def to_json(self): """ Return test data json object """ return { "filename": self._filename, "antennaAltitudeMax": self._antenna_altitude[1], "antennaAltitudeMin": self._antenna_altitude[0], "horizontalSpeedMax": self._horizontal_speed[1], "horizontalSpeedMin": self._horizontal_speed[0], "horizontalAccelerationMax": self._horizontal_acceleration[1], "horizontalAccelerationMin": self._horizontal_acceleration[0], "distanceFromStartPort": self._distance_from_port[0], "distanceFromEndPort": self._distance_from_port[1], "firstEpoch": self._timestamps[0].strftime("%Y-%m-%dT%H:%M:%S.%fZ"), "lastEpoch": self._timestamps[1].strftime("%Y-%m-%dT%H:%M:%S.%fZ"), "satellitesMax": self._nsv[1], "satellitesMin": self._nsv[0], "hdopMax": self._hdop[1], "hdopMin": self._hdop[0], "deltaTMax": str(self._delta_t[1]), "deltaTErrorPercentage": round(self._delta_t_errors/self._total_lines, 2) * 100, "outOfSequenceErrors": self._out_of_sequence_errors, "outOfSequenceErrorPercentage": round(self._out_of_sequence_errors/self._total_lines, 2) * 100, "nmeaQualtyErrors": self._nmea_qualty_errors, "nmeaQualtyErrorPercentage": round(self._nmea_qualty_errors/self._total_lines, 2) * 100, "horizontalSpeedErrors": self._horizontal_speed_errors, "horizontalSpeedErrorPercentage": round(self._horizontal_speed_errors/self._total_lines, 2) * 100, "horizontalAccelerationErrors": self._horizontal_acceleration_errors, "horizontalAccelerationErrorPercentage": round(self._horizontal_acceleration_errors/self._total_lines, 2) * 100 } class NavExport(): """ Class for build navexport products """ def __init__(self, filename, delta_t_threshold = MAX_DELTA_T, speed_threshold = MAX_SPEED, acceleration_threshold = MAX_ACCEL): # The filename self._filename = filename # The QA thresholds self._delta_t_threshold = pd.Timedelta("{} seconds".format(delta_t_threshold)) self._horizontal_speed_threshold = speed_threshold self._horzontal_acceleration_threshold = acceleration_threshold self._geocsv_header = None self._data = None @property def data(self): ''' Getter function for self. ''' return self._data @staticmethod def _round_data(data_frame, precision=None): """ Round the data in the data_frame to the specified precision """ if precision is None or bool(precision): try: decimals = pd.Series(precision.values(), index=precision.keys()) return data_frame.round(decimals) except Exception as err: logging.error("Could not round data") logging.error(str(err)) raise err return data_frame def read_r2rnavfile(self, file_format='csv'): """ Build the NavExport dataframe from the NavExport filename """ self._data = read_r2rnavfile(self._filename, file_format) # remove bad parse rows logging.debug("Culling bad parses") self._data = self._data[self._data['valid_parse'] == 1] def crop_data(self, start_ts=None, end_ts=None): """ Crop the NavExport dataframe to the start/end timestamps specified. """ try: if start_ts is not None: logging.debug(" start_dt: %s", start_ts) self._data = self._data[(self._data['iso_time'] >= start_ts)] if end_ts is not None: logging.debug(" stop_dt: %s", end_ts) self._data = self._data[(self._data['iso_time'] <= end_ts)] except Exception as err: logging.error("Could not crop data") logging.error(str(err)) raise err def apply_qc(self): """ Apply the QC rules to the NavExport dataframe """ # remove bad gps fixes logging.debug("Culling bad NMEA fixes") self._data = self._data[self._data['nmea_quality'].between(1,3)] # remove bad cksums logging.debug("Culling bad cksums") self._data = self._data[self._data['valid_cksum'] == 1] # remove bad sequence data points logging.debug("Culling out-of-sequence data") self._data = self._data[self._data['valid_order'] == 1] # remove bad speeds logging.debug("Culling data exceeding speed threshold") self._data = self._data[self._data['speed_made_good'] <= self._horizontal_speed_threshold] # remove bad accelerations logging.debug("Culling data exceeding acceleration threshold") self._data = self._data[self._data['acceleration'] <= self._horzontal_acceleration_threshold] def build_bestres(self): """ Build the bestres dataset from the NavExport dataframe """ drop_columns = [x for x in list(self._data.columns) if x not in bestres_cols] logging.debug("Dropping columns: %s", drop_columns) self._data = self._data.drop(drop_columns, axis = 1) logging.debug("Rounding data: %s", rounding) self._data = self._round_data(self._data, rounding) # Update geocsv header self._geocsv_header = bestres_header def build_1min(self): """ Build the 1min dataset from the NavExport dataframe """ drop_columns = [x for x in list(self._data.columns) if x not in onemin_cols] logging.debug("Dropping columns: %s", drop_columns) self._data = self._data.drop(drop_columns, axis = 1) logging.debug('Subsampling data...') self._data.set_index('iso_time',inplace=True) self._data = self._data.resample('1T', label='left', closed='left').first() self._data.reset_index(inplace=True) self._data.dropna(inplace=True, thresh=4) # Calculate deltaT column logging.debug('Building deltaT column...') self._data = self._data.join(self._data['iso_time'].diff().to_frame(name='deltaT')) # Calculate distance column logging.debug("Building distance column...") self._data['point'] = self._data.apply(lambda row: Point(latitude=row['ship_latitude'], longitude=row['ship_longitude']), axis=1) self._data['point_next'] = self._data['point'].shift(1) self._data.loc[self._data['point_next'].isna(), 'point_next'] = None self._data['distance'] = self._data.apply(lambda row: great_circle(row['point'], row['point_next']).km if row['point_next'] is not None else float('nan'), axis=1) # Calculate speed_made_good column logging.debug("Building speed_made_good column...") self._data['speed_made_good'] = (self._data['distance'] * 1000) / self._data.deltaT.dt.total_seconds() # Calculate course_made_good column logging.debug("Building course_made_good column...") self._data['course_made_good'] = self._data.apply(lambda row: calculate_bearing(tuple(row['point']), tuple(row['point_next'])) if row['point_next'] is not None else float('nan'), axis=1) self._data = self._data.drop('point_next', axis=1) self._data = self._data.drop('point', axis=1) self._data = self._data.drop('distance', axis=1) self._data = self._data.drop('deltaT', axis=1) logging.debug("Rounding data: %s", rounding) self._data = self._round_data(self._data, rounding) # Update geocsv header self._geocsv_header = onemin_header def build_control(self): """ Build the control dataset from the NavExport dataframe """ drop_columns = [x for x in list(self._data.columns) if x not in control_cols] logging.debug("Dropping columns: %s", drop_columns) self._data = self._data.drop(drop_columns, axis = 1) # run rdp algorithim logging.debug("Building control coordinates using RDP algorithim") coords = self._data.filter(['ship_longitude','ship_latitude'], axis=1).to_numpy() control = rdp(coords, epsilon=RDP_EPSILON) logging.debug("Length of full-res coordinates: %d", len(self._data.index)) logging.debug("Length of control coordinates: %d", control.shape[0]) control_df = pd.DataFrame(control, columns = ['ship_longitude','ship_latitude']) self._data = pd.merge(control_df, self._data, on=['ship_longitude','ship_latitude'], how='left') self._data = self._data[control_cols] logging.debug("Rounding data: %s", rounding) self._data = self._round_data(self._data, rounding) # Update geocsv header self._geocsv_header = control_header def geocsv_header(self, custom_meta = None): """ Build the geocsv header, apply any custom metadata and return it as a string. """ geocsv_header = "" for key, _ in self._geocsv_header.items(): if custom_meta and key in custom_meta: geocsv_header += "#{}: {}\n".format(key, custom_meta[key]) else: geocsv_header += "#{}: {}\n".format(key, self._geocsv_header[key]) return geocsv_header def to_csv(self): ''' Output self._data in csv format. ''' output = StringIO() self._data.to_csv(output, index=False, na_rep='NAN') output.seek(0) print(output.read()) class NavParser(): """ Root Class for a nav parsers """ def __init__(self, name, description=None, example_data=None): self._name = name self._description = description self._example_data = example_data self._parse_cols = parse_cols self._file_report = [] self._df_proc = pd.DataFrame() @property def name(self): ''' Getter function for self._name ''' return self._name @property def description(self): ''' Getter function for self._description ''' return self._description @property def example_data(self): ''' Getter function for self._example_data ''' return self._example_data @property def parse_cols(self): ''' Getter function for self._parse_cols ''' return self._parse_cols @property def file_report(self): ''' Getter function for self._file_report ''' return self._file_report @property def dataframe(self): ''' Getter function for self._df_proc ''' return self._df_proc def parse_file(self, filepath): """ Process the given file. This function must be overrided by subclasses """ raise NotImplementedError('process_file must be implemented by subclass') def add_file_report(self, file_report): """ Append the file_report to the NavParser's array of file reports. """ self._file_report.append(file_report) def add_dateframe(self, data): """ Add the dataframe data to the NavParser's _df_proc dataframe """ if self._df_proc.empty: self._df_proc = data else: self._df_proc = pd.concat([self._df_proc, data], ignore_index=True) def proc_dataframe(self): """ Process the dataframe to calculate deltaT, distance, bearing, velocity, and acceleration """ # Calculate deltaT column logging.debug('Building deltaT column...') self._df_proc = self._df_proc.join(self._df_proc['iso_time'].diff().to_frame(name='deltaT')) # Calculate sensor deltaT column logging.debug('Building sensor deltaT column...') self._df_proc = self._df_proc.join(self._df_proc['sensor_time'].diff().to_frame(name='sensor_deltaT')) # If sensor_time does not have a date (i.e. GGA/GLL), set day offset to # 0, this gets around files spanning multiple days self._df_proc['sensor_deltaT'] = self._df_proc.apply(lambda row: row['sensor_deltaT'] + timedelta(days=1) if row['sensor_time'].year == 1900 and row['sensor_deltaT'].days == -1 else row['sensor_deltaT'], axis=1) # If iso_time or sensor_time is negative flag as bad logging.debug("Flagging rows that may be out-of-sequence...") self._df_proc['valid_order'] = self._df_proc.apply(lambda row: 1 if
pd.isnull(row['deltaT'])
pandas.isnull
from sklearn.svm import SVR import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.externals import joblib from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score ''' this file is to use 10 fold cross-validation to select best kernal function that give best performence in SVR model. after establishing our SVR model, we will use cross-validation to evaluate our model by get average MSE, RSS, R^2 ''' # this functon is used to read data set into Dataframe. def svr_data(): X1 = pd.read_csv('kratosbat/Data/DataForSVR/GC_PCA.csv') y1 = pd.read_csv('kratosbat/Data/NEWTrainingData_StandardScaler.csv').loc[:, ['Gravimetric Capacity (units)']] X2 =
pd.read_csv('kratosbat/Data/DataForSVR/VC_PCA.csv')
pandas.read_csv
import pandas as pd import variables import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import sys import matplotlib.ticker as mtick import numpy as np from matplotlib.patches import Patch from matplotlib.lines import Line2D from matplotlib import collections as matcoll from textwrap import wrap def create_long_df( df, pivot_list, section_name="_section", subsection_name="_subsection" ): columns = list(df.columns) drop_columns = [ col for col in columns if (section_name in col) or (subsection_name in col) ] question_sections, question_subsections = generate_question_list( columns, section_name, subsection_name ) df = df.drop(columns=drop_columns) long_df = pd.melt(df, id_vars=pivot_list, var_name="question", value_name="answer") long_df["section"] = long_df["question"].map(question_sections) long_df["sub_section"] = long_df["question"].map(question_subsections) long_df["sub_section"] = long_df["sub_section"].fillna(long_df["section"]) return long_df def generate_question_list(columns, section_name, subsection_name): question_sections = {} question_subsections = {} for index, value in enumerate(columns): if section_name in value: section = value i = index + 1 while i < len(columns) and section_name not in columns[i]: if subsection_name in columns[i]: subsection = columns[i] y = i + 1 while y < len(columns) and subsection_name not in columns[y]: if section_name in columns[y]: break else: question_subsections[columns[y]] = subsection y += 1 else: question_sections[columns[i]] = section i += 1 return question_sections, question_subsections def determine_notable_questions_list(df, groupings, perent_threshold, n_threshold): notable_divergencies = [] for question in variables.question_columns: for grouping in groupings: _group = pd.crosstab( df[grouping], df[question], normalize="index", margins=True ) _group_all = _group[_group.index == "All"] _group.drop("All", inplace=True) _group_count = pd.crosstab(df[grouping], df[question]) # for i in range(2): # if i == 1: # kind = "promoter" # else: # kind = "detractor" amount_above = _group[1].max() - _group_all[1].values[0] amount_below = _group_all[1].values[0] - _group[1].min() max_index = _group[_group[1] == _group[1].max()].index.values[0] max_count = _group_count[_group_count.index == max_index][1].values[0] min_index = _group[_group[1] == _group[1].min()].index.values[0] min_count = _group_count[_group_count.index == min_index][1].values[0] if (amount_above >= perent_threshold) & (max_count >= n_threshold): notable_divergencies.append( { "grouping": grouping, "question": question, # "kind": kind, "type": "above_average", "delta": amount_above, "value": _group[1].max(), "count": max_count, "index": max_index, } ) elif (amount_below >= perent_threshold) & (min_count >= n_threshold): notable_divergencies.append( { "grouping": grouping, "question": question, # "kind": kind, "type": "below_average", "delta": amount_below, "value": _group[1].min(), "count": min_count, "index": min_index, } ) notable_divergencies_df =
pd.DataFrame(notable_divergencies)
pandas.DataFrame
''' Created on Jul 5, 2018 @author: cef ''' import os, sys, copy, logging, time #weakref from collections import OrderedDict from weakref import WeakValueDictionary as wdict import pandas as pd import numpy as np import model.sofda.hp.basic as hp_basic import model.sofda.hp.pd as hp_pd #import hp.plot import model.sofda.hp.oop as hp_oop import model.sofda.hp.sim as hp_sim import model.sofda.hp.sel as hp_sel from model.sofda.hp.pd import view mod_logger = logging.getLogger(__name__) mod_logger.debug('initilized') """doesnt seem worth it class Outputme_wrap(object): #wrapper for object on which Outputrs are applied pass """ class Outputr(hp_sel.Sel_usr_wrap, hp_sim.Sim_o, hp_oop.Child): #Standalone outputr worker #=========================================================================== # program pars #=========================================================================== 'changed this so outputrs run every time step' upd_sim_lvl = 2 #control when this is run # object handling overrides """ raise_kids_f = False load_data_f = False""" db_f = True #override to perform db_f on writer (False could improve speed) #=========================================================================== # user provided pars #=========================================================================== #sel_n = None #selector name custom_exe = None #custom outputter string sim_stats_exe = None #numpy stats to perform for each siulation dt_n = None #Tstep name for time slice outputrs out_attn = None #attribute name selected for outputting #pclass_n = None #oject class name selected for outputting post_exe = None ses_plot = None #type of plot to generate for simulation summary data #out_attn_sfx = None desc = None #=========================================================================== # calculation pars #=========================================================================== #pick_d = None otype = None #type of outputer data = None #holds the data for this outputr dtype = None #data type for outputr data detected from out_attn suffix def __init__(self, *args, **kwargs): logger = mod_logger.getChild('Outputr') #have to use this as our own logger hasnt loaded yet logger.debug('start __init__') super(Outputr, self).__init__(*args, **kwargs) #======================================================================= #unique setup #======================================================================= self.codename = self.get_codename() if not self.dt_n is None: self.dt_n = self.get_dt_n(self.dt_n) logger.debug('\n') logger.debug('set_dtype \n') self.set_dtype() logger.debug('make_pick \n') self.pick_d = self.make_pick() logger.debug('set_otype()') self.set_otype() logger.debug('set_dimensions \n') self.set_dimensions() logger.debug('set_outf \n') self.set_outf() #======================================================================= # checking #======================================================================= if self.db_f: logger.debug('db_f=TRUE \n') self.check_outputr() logger.debug('__init__ finished with pclass_n = \'%s\' \n'%self.pclass_n) return def get_codename(self): #generate a codename from the attribute values logger = self.logger.getChild('get_codename') codename = '%s'%self.name for attn in ['pclass_n', 'out_attn', 'sel_n', 'dt_n']: v = getattr(self, attn) #should have all of these if not v is None: codename = codename +'.%s'%v logger.debug('got codename \'%s\''%codename) return codename def check_outputr(self): logger = self.logger.getChild('check_outputr') timeline_df = self.session.pars_df_d['timeline'] if not self.dt_n is None: if not self.dt_n in timeline_df.loc[:,'name'].values.tolist(): logger.error('my dt_n \'%s\' is not in the timeline'%self.dt_n) raise IOError if len(timeline_df) < 2: logger.error('can not provide time sliced data when there is only 1 time step') raise IOError #======================================================================= # selector checks #======================================================================= if not self.sel_n is None: #check the validity of this Selecto if not self.sel_o.pclass_n == self.pclass_n: logger.error('the Selelctors (%s) pclass_n (%s) must match the Outputrs pclass_n (%s)' %(self.sel_o.name, self.sel_o.pclass_n, self.pclass_n )) raise IOError """ if not self.sel_o.upd_sim_lvl == 0: 'see note in headers' logger.error('passed Selector \'%s\' has mid-Session updates (%s)' %(self.sel_o.name, self.sel_o.upd_sim_lvl)) raise IOError""" if not self.picko_p_f: raise IOError #not allowing this... too complicated with data structure def set_dtype(self): #detect teh data type by the out_attn suffix if not self.out_attn is None: if self.out_attn.endswith('_f'): self.dtype = np.bool else: self.dtype = np.dtype(object) def set_otype(self): #determine the outputer type logger = self.logger.getChild('set_otype') if (self.custom_exe is None) & (self.post_exe is None): self.otype = 'simple' elif (self.custom_exe is None) & (not self.post_exe is None): self.otype = 'post' elif (not self.custom_exe is None) & (self.post_exe is None): self.otype = 'obj' else: raise IOError logger.debug('set as \'%s\''%self.otype) return def set_dimensions(self): #set the outputtr function logger = self.logger.getChild('set_dimensions') #======================================================================= # logic by outputter type #======================================================================= #post exes if self.otype == 'post_exe': 'todo: allow multiple dimensions' time_d, space_d = 0, 0 else: #======================================================================= #set time dimension #======================================================================= #time slices 'todo: allow lists' if not self.dt_n is None: time_d = 0 else: time_d = 1 #=================================================================== # set space dimension #=================================================================== space_d = 1 #======================================================================= # wrap up #======================================================================= if (time_d + space_d) >3: raise IOError self.total_d = space_d + time_d self.space_d, self.time_d = space_d, time_d logger.debug('got space_d = %s, time_d = %s'%(space_d, time_d)) def set_outf(self): #assign the approriate writer function """ TODO: add pandas functionality so the user can returns tats on the childmeta_df """ logger = self.logger.getChild('set_outf') #=================================================================== # get shortcuts #=================================================================== ce_str = self.custom_exe pick_d = self.pick_d if self.db_f: if pick_d is None: raise IOError """allowign this now if len(pick_d) == 0: raise IOError""" #=================================================================== # data based writers #=================================================================== if self.otype == 'simple': #=================================================================== # snap shots #=================================================================== if self.time_d == 0: if self.space_d == 0: #one value for the simulation data = np.nan outf = self.time0_space0 elif self.space_d == 1: #a list of attributes constant for the simulation (or at th eend) data = pd.Series(name = self.codename, index = list(pick_d.keys()), dtype = np.object).sort_index() outf = self.time0_space1 else: raise IOError #======================================================================= # time series #======================================================================= elif self.time_d == 1: #get the time series dt_l = self.session.pars_df_d['timeline'].loc[:,'name'].tolist() if self.space_d == 0: #one object attribute with a time series data = pd.Series(name = self.codename, index = dt_l, dtype = np.object).sort_index() outf = self.time1_space0 elif self.space_d == 1: #an array of attributes recorded at each time """just add new entries? data = pd.DataFrame(columns = dt_l, index = pick_d.keys(), dtype = np.object)""" data = pd.DataFrame(columns = dt_l, dtype = np.object).sort_index() outf = self.time1_space1 else: raise IOError #=================================================================== # custom outputr commands #=================================================================== elif self.otype == 'obj': 'todo: allow a list of commands' #=============================================================== # pre checks #=============================================================== """no? if not self.out_attn is None: logger.error('out_attn must be blank for custom_exes (got \'%s\''%self.out_attn) raise IOError""" """no! allow some stats for custom funcs if not self.sim_stats_exe is None: logger.error('expected something for ') raise IOError""" """ OK with this now if not ce_str.endswith(')'): logger.error('for custom_exe calls, the string must end with \')\'') raise IOError""" logger.debug('user provided custom output functions \'%s\''%(ce_str)) outf = self.custom_exe_call #attach this as the writer func #data = np.nan #=================================================================== # set data container #=================================================================== if not self.time_d == 1: raise IOError dt_l = self.session.pars_df_d['timeline'].loc[:,'name'].tolist() if self.space_d == 0: #one object attribute with a time series data = pd.Series(name = self.codename, index = dt_l, dtype = np.object).sort_index() elif self.space_d == 1: #an array of attributes recorded at each time data = pd.DataFrame(columns = dt_l, dtype = np.object).sort_index() else: raise IOError #======================================================================= # post_exe s #======================================================================= elif self.otype == 'post': outf = self.post_exe_call data = np.nan logger.debug('post_exe provided: \'%s\''%self.post_exe) else: raise IOError self.outf = outf self.data = data self.reset_d['data'] = copy.copy(data) #set blank data container for reseting logger.debug('finished with outf: \'%s\' and data: \'%s\''%(outf, data)) #======================================================================= # post checks #======================================================================= if self.db_f: if not self.session.state == 'init': raise IOError if data is None: raise IOError if not callable(outf): raise IOError return def time0_space0(self, obj, att_value): logger = self.logger.getChild('time0_space0') self.data = att_value logger.debug('for %s updated with \'%s\' = %s'%(obj.name, self.out_attn, att_value)) return def time0_space1(self, obj, att_value): """ This type could be a series from a single object or a string of object scould be passed """ logger = self.logger.getChild('time0_space1') if not hp_pd.isser(self.data): raise IOError #======================================================================= # for data series #======================================================================= if hp_pd.isser(att_value): 'just make a reference ot this series' self.data = att_value.copy() #======================================================================= # for a gorup of objects, passed one at a time #======================================================================= else: if not obj.gid in self.data.index: raise IOError self.data[obj.gid] = att_value logger.debug('for %s updated ser %i with \'%s\' = %s'% (obj.name, len(self.data), self.out_attn, att_value)) return def time1_space0(self, obj, att_value): logger = self.logger.getChild('time1_space0') ser = self.data time = self.session.tstep_o.name logger.debug('for obj.name \'%s\' time \'%s\' out_attn \'%s\''%(obj.name, time, self.out_attn)) #======================================================================= # checsk #======================================================================= if self.db_f: if not hp_pd.isser(ser):raise IOError if not time in ser.index: raise IOError if hasattr(att_value, 'values'): """ type(att_value) att_value.shape """ raise IOError if not self.chk_old_val(ser[time], att_value): raise IOError self.data[time] = att_value logger.debug('for %s updated ser %i with \'%s\' = %s'% (obj.name, len(self.data), self.out_attn, att_value)) return def time1_space1(self, obj, att_value): 'TODO: evaluate the boolean again' #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('time1_space1') time = self.session.tstep_o.name logger.debug('for obj.name \'%s\' time \'%s\' out_attn \'%s\''%(obj.name, time, self.out_attn)) #======================================================================= # check that this entry hasnt been written yet #======================================================================= if self.db_f: df = self.data if not hp_pd.isdf(df): raise IOError if not time in df.columns: raise IOError """allowing d ynamic selection if not obj.gid in df.index: raise IOError if not self.chk_old_val(df.loc[obj.gid, time], att_value): raise IOError""" #if this object is in already, is the value blank? if obj.gid in df.index: if not self.chk_old_val(df.loc[obj.gid, time], att_value): raise IOError #======================================================================= # do the updating #======================================================================= #write this value by name and time self.data.loc[obj.gid, time] = att_value logger.debug('for %s updated df %s with \'%s\' = %s'% (obj.gid, str(self.data.shape), self.out_attn, att_value)) return def custom_exe_call(self, obj, att_value): #object method call logger = self.logger.getChild('custom_exe_call') logger.debug("for eval_str: \'%s\'"%self.custom_exe) try: result = eval(self.custom_exe) except: raise IOError #======================================================================= # store the result #======================================================================= if not result is None: time = self.session.tstep_o.name if self.space_d == 0: self.data[time] = result elif self.space_d == 1: self.data.loc[obj.gid, time] = result else: raise IOError return def post_exe_call(self, obj, att_value): logger = self.logger.getChild('post_exe_call') #======================================================================= # make variables local #======================================================================= outs_od = self.session.outs_od 'only setup for uni-dimensional data types' try: data = eval(self.post_exe) except: logger.error('failed to evaluate \'%s\''%self.post_exe) raise IOError try: self.data = float(data) except: logger.error('got unexpected type on data: \'%s\': %s'%(type(data), data)) raise IOError logger.debug('got post_exe result: %.2f from cmd \'%s\''%(self.data, self.post_exe)) if self.db_f: if np.any(
pd.isnull(self.data)
pandas.isnull
# importing numpy, pandas, and matplotlib import numpy as np import pandas as pd import matplotlib import multiprocessing matplotlib.use('agg') import matplotlib.pyplot as plt # importing sklearn from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.decomposition import PCA from sklearn.random_projection import GaussianRandomProjection from sklearn import cluster from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score # importing keras import keras import keras.backend as K from keras.wrappers.scikit_learn import KerasClassifier from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback from keras.models import Model, load_model # importing util libraries import datetime import time import math import os import importlib # importing custom library import DNN_models import exception_handle #fix np.random.seed for reproducibility in numpy processing np.random.seed(7) class DeepMicrobiome(object): def __init__(self, data, seed, data_dir): self.t_start = time.time() self.filename = str(data) self.data = self.filename.split('.')[0] self.seed = seed self.data_dir = data_dir self.prefix = '' self.representation_only = False def loadData(self, feature_string, label_string, label_dict, dtype=None): # read file filename = self.data_dir + "data/" + self.filename if os.path.isfile(filename): raw = pd.read_csv(filename, sep='\t', index_col=0, header=None) else: print("FileNotFoundError: File {} does not exist".format(filename)) exit() # select rows having feature index identifier string X = raw.loc[raw.index.str.contains(feature_string, regex=False)].T self.X = X # get class labels Y = raw.loc[label_string] #'disease' self.Y = Y.replace(label_dict) # indices self.sample_ids = raw.iloc[1] # train and test split self.X_train, self.X_test, self.y_train, self.y_test, self.train_indices, self.test_indices = train_test_split(self.X.values.astype(dtype), self.Y.values.astype('int'), self.sample_ids, test_size=0.2, random_state=self.seed, stratify=Y.values) self.printDataShapes() def setIndices(self, train_indices, test_indices): self.X_train = self.X.iloc[train_indices] self.X_test = self.X.iloc[test_indices] self.y_train = self.Y.iloc[train_indices] self.y_test = self.Y.iloc[test_indices] self.train_indices = self.sample_ids.iloc[train_indices] self.test_indices = self.sample_ids.iloc[test_indices] def loadCustomData(self, dtype=None): # read file filename = self.data_dir + "data/" + self.filename if os.path.isfile(filename): raw = pd.read_csv(filename, sep=',', index_col=False, header=None) else: print("FileNotFoundError: File {} does not exist".format(filename)) exit() # load data self.X_train = raw.values.astype(dtype) # put nothing or zeros for y_train, y_test, and X_test self.y_train = np.zeros(shape=(self.X_train.shape[0])).astype(dtype) self.X_test = np.zeros(shape=(1,self.X_train.shape[1])).astype(dtype) self.y_test = np.zeros(shape=(1,)).astype(dtype) self.printDataShapes(train_only=True) def loadCustomDataWithLabels(self, label_data, dtype=None): # read file filename = self.data_dir + "data/" + self.filename label_filename = self.data_dir + "data/" + label_data if os.path.isfile(filename) and os.path.isfile(label_filename): raw = pd.read_csv(filename, sep=',', index_col=0, header=None) label = pd.read_csv(label_filename, sep=',', index_col=0, header=None) assert (raw.index == label.index).all() else: if not os.path.isfile(filename): print("FileNotFoundError: File {} does not exist".format(filename)) if not os.path.isfile(label_filename): print("FileNotFoundError: File {} does not exist".format(label_filename)) exit() # label data validity check if not label.values.shape[1] > 1: pass #label = label.values.reshape((label.values.shape[0])) else: print('FileSpecificationError: The label file contains more than 1 column.') exit() # train and test split self.X = raw.astype(dtype) self.sample_ids = raw.index.to_series() self.Y = label.astype(int) self.X_train, self.X_test, self.y_train, self.y_test, self.train_indices, self.test_indices = train_test_split(raw.values.astype(dtype), label.astype('int'), self.sample_ids, test_size=0.2, random_state=self.seed, stratify=label) self.printDataShapes() #Principal Component Analysis def pca(self, ratio=0.99): # manipulating an experiment identifier in the output file self.prefix = self.prefix + 'PCA_' # PCA pca = PCA() pca.fit(self.X_train) n_comp = 0 ratio_sum = 0.0 for comp in pca.explained_variance_ratio_: ratio_sum += comp n_comp += 1 if ratio_sum >= ratio: # Selecting components explaining 99% of variance break pca = PCA(n_components=n_comp) pca.fit(self.X_train) X_train = pca.transform(self.X_train) X_test = pca.transform(self.X_test) # applying the eigenvectors to the whole training and the test set. self.X_train = X_train self.X_test = X_test self.printDataShapes() #Gausian Random Projection def rp(self): # manipulating an experiment identifier in the output file self.prefix = self.prefix + 'RandP_' # GRP rf = GaussianRandomProjection(eps=0.5) rf.fit(self.X_train) # applying GRP to the whole training and the test set. self.X_train = rf.transform(self.X_train) self.X_test = rf.transform(self.X_test) self.printDataShapes() #Shallow Autoencoder & Deep Autoencoder def ae(self, dims = [50], epochs= 2000, batch_size=100, verbose=2, loss='mean_squared_error', latent_act=False, output_act=False, act='relu', patience=20, val_rate=0.2, no_trn=False): # manipulating an experiment identifier in the output file if patience != 20: self.prefix += 'p' + str(patience) + '_' if len(dims) == 1: self.prefix += 'AE' else: self.prefix += 'DAE' if loss == 'binary_crossentropy': self.prefix += 'b' if latent_act: self.prefix += 't' if output_act: self.prefix += 'T' self.prefix += str(dims).replace(", ", "-") + '_' if act == 'sigmoid': self.prefix = self.prefix + 's' # filename for temporary model checkpoint modelName = self.prefix + self.data + '.h5' # clean up model checkpoint before use if os.path.isfile(modelName): os.remove(modelName) # callbacks for each epoch callbacks = [EarlyStopping(monitor='val_loss', patience=patience, mode='min', verbose=1), ModelCheckpoint(modelName, monitor='val_loss', mode='min', verbose=1, save_best_only=True)] # spliting the training set into the inner-train and the inner-test set (validation set) X_inner_train, X_inner_test, y_inner_train, y_inner_test = train_test_split(self.X_train, self.y_train, test_size=val_rate, random_state=self.seed, stratify=self.y_train) # insert input shape into dimension list dims.insert(0, X_inner_train.shape[1]) # create autoencoder model self.autoencoder, self.encoder = DNN_models.autoencoder(dims, act=act, latent_act=latent_act, output_act=output_act) self.autoencoder.summary() if no_trn: return # compile model self.autoencoder.compile(optimizer='adam', loss=loss) # fit model self.history = self.autoencoder.fit(X_inner_train, X_inner_train, epochs=epochs, batch_size=batch_size, callbacks=callbacks, verbose=verbose, validation_data=(X_inner_test, X_inner_test)) # save loss progress self.saveLossProgress() # load best model self.autoencoder = load_model(modelName) layer_idx = int((len(self.autoencoder.layers) - 1) / 2) self.encoder = Model(self.autoencoder.layers[0].input, self.autoencoder.layers[layer_idx].output) # applying the learned encoder into the whole training and the test set. self.X_train = self.encoder.predict(self.X_train) self.X_test = self.encoder.predict(self.X_test) # Variational Autoencoder def vae(self, dims = [10], epochs=2000, batch_size=100, verbose=2, loss='mse', output_act=False, act='relu', patience=25, beta=1.0, warmup=True, warmup_rate=0.01, val_rate=0.2, no_trn=False): # manipulating an experiment identifier in the output file if patience != 25: self.prefix += 'p' + str(patience) + '_' if warmup: self.prefix += 'w' + str(warmup_rate) + '_' self.prefix += 'VAE' if loss == 'binary_crossentropy': self.prefix += 'b' if output_act: self.prefix += 'T' if beta != 1: self.prefix += 'B' + str(beta) self.prefix += str(dims).replace(", ", "-") + '_' if act == 'sigmoid': self.prefix += 'sig_' # filename for temporary model checkpoint modelName = self.prefix + self.data + '.h5' # clean up model checkpoint before use if os.path.isfile(modelName): os.remove(modelName) # callbacks for each epoch callbacks = [EarlyStopping(monitor='val_loss', patience=patience, mode='min', verbose=1), ModelCheckpoint(modelName, monitor='val_loss', mode='min', verbose=1, save_best_only=True,save_weights_only=True)] # warm-up callback warm_up_cb = LambdaCallback(on_epoch_end=lambda epoch, logs: [warm_up(epoch)]) # , print(epoch), print(K.get_value(beta))]) # warm-up implementation def warm_up(epoch): val = epoch * warmup_rate if val <= 1.0: K.set_value(beta, val) # add warm-up callback if requested if warmup: beta = K.variable(value=0.0) callbacks.append(warm_up_cb) # spliting the training set into the inner-train and the inner-test set (validation set) X_inner_train, X_inner_test, y_inner_train, y_inner_test = train_test_split(self.X_train, self.y_train, test_size=val_rate, random_state=self.seed, stratify=self.y_train) # insert input shape into dimension list dims.insert(0, X_inner_train.shape[1]) # create vae model self.vae, self.encoder, self.decoder = DNN_models.variational_AE(dims, act=act, recon_loss=loss, output_act=output_act, beta=beta) self.vae.summary() if no_trn: return # fit self.history = self.vae.fit(X_inner_train, epochs=epochs, batch_size=batch_size, callbacks=callbacks, verbose=verbose, validation_data=(X_inner_test, None)) # save loss progress self.saveLossProgress() # load best model self.vae.load_weights(modelName) self.encoder = self.vae.layers[1] # applying the learned encoder into the whole training and the test set. _, _, self.X_train = self.encoder.predict(self.X_train) _, _, self.X_test = self.encoder.predict(self.X_test) # Convolutional Autoencoder def cae(self, dims = [32], epochs=2000, batch_size=100, verbose=2, loss='mse', output_act=False, act='relu', patience=25, val_rate=0.2, rf_rate = 0.1, st_rate = 0.25, no_trn=False): # manipulating an experiment identifier in the output file self.prefix += 'CAE' if loss == 'binary_crossentropy': self.prefix += 'b' if output_act: self.prefix += 'T' self.prefix += str(dims).replace(", ", "-") + '_' if act == 'sigmoid': self.prefix += 'sig_' # filename for temporary model checkpoint modelName = self.prefix + self.data + '.h5' # clean up model checkpoint before use if os.path.isfile(modelName): os.remove(modelName) # callbacks for each epoch callbacks = [EarlyStopping(monitor='val_loss', patience=patience, mode='min', verbose=1), ModelCheckpoint(modelName, monitor='val_loss', mode='min', verbose=1, save_best_only=True,save_weights_only=True)] # fill out blank onesideDim = int(math.sqrt(self.X_train.shape[1])) + 1 enlargedDim = onesideDim ** 2 self.X_train = np.column_stack((self.X_train, np.zeros((self.X_train.shape[0], enlargedDim - self.X_train.shape[1])))) self.X_test = np.column_stack((self.X_test, np.zeros((self.X_test.shape[0], enlargedDim - self.X_test.shape[1])))) # reshape self.X_train = np.reshape(self.X_train, (len(self.X_train), onesideDim, onesideDim, 1)) self.X_test = np.reshape(self.X_test, (len(self.X_test), onesideDim, onesideDim, 1)) self.printDataShapes() # spliting the training set into the inner-train and the inner-test set (validation set) X_inner_train, X_inner_test, y_inner_train, y_inner_test = train_test_split(self.X_train, self.y_train, test_size=val_rate, random_state=self.seed, stratify=self.y_train) # insert input shape into dimension list dims.insert(0, (onesideDim, onesideDim, 1)) # create cae model self.cae, self.encoder = DNN_models.conv_autoencoder(dims, act=act, output_act=output_act, rf_rate = rf_rate, st_rate = st_rate) self.cae.summary() if no_trn: return # compile self.cae.compile(optimizer='adam', loss=loss) # fit self.history = self.cae.fit(X_inner_train, X_inner_train, epochs=epochs, batch_size=batch_size, callbacks=callbacks, verbose=verbose, validation_data=(X_inner_test, X_inner_test, None)) # save loss progress self.saveLossProgress() # load best model self.cae.load_weights(modelName) if len(self.cae.layers) % 2 == 0: layer_idx = int((len(self.cae.layers) - 2) / 2) else: layer_idx = int((len(self.cae.layers) - 1) / 2) self.encoder = Model(self.cae.layers[0].input, self.cae.layers[layer_idx].output) # applying the learned encoder into the whole training and the test set. self.X_train = self.encoder.predict(self.X_train) self.X_test = self.encoder.predict(self.X_test) self.printDataShapes() # Classification def classification(self, hyper_parameters, method='svm', cv=5, scoring='roc_auc', n_jobs=1, cache_size=10000): clf_start_time = time.time() print("# Tuning hyper-parameters") print(self.X_train.shape, self.y_train.shape) # Support Vector Machine if method == 'svm': clf = GridSearchCV(SVC(probability=True, cache_size=cache_size), hyper_parameters, cv=StratifiedKFold(cv, shuffle=True), scoring=scoring, n_jobs=n_jobs, verbose=100, ) clf.fit(self.X_train, self.y_train) # Random Forest if method == 'rf': clf = GridSearchCV(RandomForestClassifier(n_jobs=-1, random_state=0), hyper_parameters, cv=StratifiedKFold(cv, shuffle=True), scoring=scoring, n_jobs=n_jobs, verbose=100) clf.fit(self.X_train, self.y_train) # Multi-layer Perceptron if method == 'mlp': model = KerasClassifier(build_fn=DNN_models.mlp_model, input_dim=self.X_train.shape[1], verbose=0, ) clf = GridSearchCV(estimator=model, param_grid=hyper_parameters, cv=StratifiedKFold(cv, shuffle=True), scoring=scoring, n_jobs=n_jobs, verbose=100) clf.fit(self.X_train, self.y_train, batch_size=32) print("Best parameters set found on development set:") print() print(clf.best_params_) # Evaluate performance of the best model on test set y_true, y_pred = self.y_test, clf.predict(self.X_test) y_prob = clf.predict_proba(self.X_test) # Performance Metrics: AUC, ACC, Recall, Precision, F1_score metrics = [round(roc_auc_score(y_true, y_prob[:, 1]), 4), round(accuracy_score(y_true, y_pred), 4), round(recall_score(y_true, y_pred), 4), round(precision_score(y_true, y_pred), 4), round(f1_score(y_true, y_pred), 4), ] # time stamp metrics.append(str(datetime.datetime.now())) # running time metrics.append(round( (time.time() - self.t_start), 2)) # classification time metrics.append(round( (time.time() - clf_start_time), 2)) # best hyper-parameter append metrics.append(str(clf.best_params_)) # Write performance metrics as a file res = pd.DataFrame([metrics], index=[self.prefix + method]) with open(self.data_dir + "results/" + self.data + "_result.txt", 'a') as f: res.to_csv(f, header=None) print('Accuracy metrics') print('AUC, ACC, Recall, Precision, F1_score, time-end, runtime(sec), classfication time(sec), best hyper-parameter') print(metrics) def printDataShapes(self, train_only=False): print("X_train.shape: ", self.X_train.shape) if not train_only: print("y_train.shape: ", self.y_train.shape) print("X_test.shape: ", self.X_test.shape) print("y_test.shape: ", self.y_test.shape) # ploting loss progress over epochs def saveLossProgress(self): #print(self.history.history.keys()) #print(type(self.history.history['loss'])) #print(min(self.history.history['loss'])) loss_collector, loss_max_atTheEnd = self.saveLossProgress_ylim() # save loss progress - train and val loss only figureName = self.prefix + self.data + '_' + str(self.seed) plt.ylim(min(loss_collector)*0.9, loss_max_atTheEnd * 2.0) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train loss', 'val loss'], loc='upper right') plt.savefig(self.data_dir + "results/" + figureName + '.png') plt.close() if 'recon_loss' in self.history.history: figureName = self.prefix + self.data + '_' + str(self.seed) + '_detailed' plt.ylim(min(loss_collector) * 0.9, loss_max_atTheEnd * 2.0) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.plot(self.history.history['recon_loss']) plt.plot(self.history.history['val_recon_loss']) plt.plot(self.history.history['kl_loss']) plt.plot(self.history.history['val_kl_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train loss', 'val loss', 'recon_loss', 'val recon_loss', 'kl_loss', 'val kl_loss'], loc='upper right') plt.savefig(self.data_dir + "results/" + figureName + '.png') plt.close() # supporting loss plot def saveLossProgress_ylim(self): loss_collector = [] loss_max_atTheEnd = 0.0 for hist in self.history.history: current = self.history.history[hist] loss_collector += current if current[-1] >= loss_max_atTheEnd: loss_max_atTheEnd = current[-1] return loss_collector, loss_max_atTheEnd if __name__ == '__main__': # argparse import argparse parser = argparse.ArgumentParser() parser._action_groups.pop() # load data load_data = parser.add_argument_group('Loading data') load_data.add_argument("-d", "--data", help="prefix of dataset to open (e.g. abundance_Cirrhosis)", type=str, choices=["abundance_Cirrhosis", "abundance_Colorectal", "abundance_IBD", "abundance_Obesity", "abundance_T2D", "abundance_WT2D", "marker_Cirrhosis", "marker_Colorectal", "marker_IBD", "marker_Obesity", "marker_T2D", "marker_WT2D", ]) load_data.add_argument("-cd", "--custom_data", help="filename for custom input data under the 'data' folder", type=str,) load_data.add_argument("-cl", "--custom_data_labels", help="filename for custom input labels under the 'data' folder", type=str,) load_data.add_argument("-p", "--data_dir", help="custom path for both '/data' and '/results' folders", default="") load_data.add_argument("-dt", "--dataType", help="Specify data type for numerical values (float16, float32, float64)", default="float64", type=str, choices=["float16", "float32", "float64"]) dtypeDict = {"float16": np.float16, "float32": np.float32, "float64": np.float64} # experiment design exp_design = parser.add_argument_group('Experiment design') exp_design.add_argument("-s", "--seed", help="random seed for train and test split", type=int, default=0) exp_design.add_argument("-k", "--kfold", help="Number of stratified folds to perform", type=int, default=5) exp_design.add_argument("-r", "--repeat", help="repeat experiment x times by changing random seed for splitting data", default=5, type=int) # classification classification = parser.add_argument_group('Classification') classification.add_argument("-f", "--numFolds", help="The number of folds for cross-validation in the tranining set", default=5, type=int) classification.add_argument("-m", "--method", help="classifier(s) to use", type=str, default="all", choices=["all", "svm", "rf", "mlp", "svm_rf"]) classification.add_argument("-sc", "--svm_cache", help="cache size for svm run", type=int, default=1000) classification.add_argument("-t", "--numJobs", help="The number of jobs used in parallel GridSearch. (-1: utilize all possible cores; -2: utilize all possible cores except one.)", default=-2, type=int) parser.add_argument("--scoring", help="Metrics used to optimize method", type=str, default='roc_auc', choices=['roc_auc', 'accuracy', 'f1', 'recall', 'precision']) # representation learning & dimensionality reduction algorithms rl = parser.add_argument_group('Representation learning') rl.add_argument("--pca", help="run PCA", action='store_true') rl.add_argument("--rp", help="run Random Projection", action='store_true') rl.add_argument("--ae", help="run Autoencoder or Deep Autoencoder", action='store_true') rl.add_argument("--vae", help="run Variational Autoencoder", action='store_true') rl.add_argument("--cae", help="run Convolutional Autoencoder", action='store_true') rl.add_argument("--save_rep", help="write the learned representation of the training set as a file", action='store_true') # detailed options for representation learning ## common options common = parser.add_argument_group('Common options for representation learning (SAE,DAE,VAE,CAE)') common.add_argument("--aeloss", help="set autoencoder reconstruction loss function", type=str, choices=['mse', 'binary_crossentropy'], default='mse') common.add_argument("--ae_oact", help="output layer sigmoid activation function on/off", action='store_true') common.add_argument("-a", "--act", help="activation function for hidden layers", type=str, default='relu', choices=['relu', 'sigmoid']) common.add_argument("-dm", "--dims", help="Comma-separated dimensions for deep representation learning e.g. (-dm 50,30,20)", type=str, default='50') common.add_argument("-e", "--max_epochs", help="Maximum epochs when training autoencoder", type=int, default=2000) common.add_argument("-pt", "--patience", help="The number of epochs which can be executed without the improvement in validation loss, right after the last improvement.", type=int, default=20) ## AE & DAE only AE = parser.add_argument_group('SAE & DAE-specific arguments') AE.add_argument("--ae_lact", help="latent layer activation function on/off", action='store_true') ## VAE only VAE = parser.add_argument_group('VAE-specific arguments') VAE.add_argument("--vae_beta", help="weight of KL term", type=float, default=1.0) VAE.add_argument("--vae_warmup", help="turn on warm up", action='store_true') VAE.add_argument("--vae_warmup_rate", help="warm-up rate which will be multiplied by current epoch to calculate current beta", default=0.01, type=float) ## CAE only CAE = parser.add_argument_group('CAE-specific arguments') CAE.add_argument("--rf_rate", help="What percentage of input size will be the receptive field (kernel) size? [0,1]", type=float, default=0.1) CAE.add_argument("--st_rate", help="What percentage of receptive field (kernel) size will be the stride size? [0,1]", type=float, default=0.25) # other options others = parser.add_argument_group('other optional arguments') others.add_argument("--no_trn", help="stop before learning representation to see specified autoencoder structure", action='store_true') others.add_argument("--no_clf", help="skip classification tasks", action='store_true') args = parser.parse_args() print(args) # set labels for diseases and controls label_dict = { # Controls 'n': 0, # Chirrhosis 'cirrhosis': 1, # Colorectal Cancer 'cancer': 1, 'small_adenoma': 0, # IBD 'ibd_ulcerative_colitis': 1, 'ibd_crohn_disease': 1, # T2D and WT2D 't2d': 1, # Obesity 'leaness': 0, 'obesity': 1, } # hyper-parameter grids for classifiers rf_hyper_parameters = [{'n_estimators': [s for s in range(100, 1001, 200)], 'max_features': ['sqrt', 'log2'], 'min_samples_leaf': [1, 2, 3, 4, 5], 'criterion': ['gini', 'entropy'] }, ] #svm_hyper_parameters_pasolli = [{'C': [2 ** s for s in range(-5, 16, 2)], 'kernel': ['linear']}, # {'C': [2 ** s for s in range(-5, 16, 2)], 'gamma': [2 ** s for s in range(3, -15, -2)], # 'kernel': ['rbf']}] svm_hyper_parameters = [{'C': [2 ** s for s in range(-5, 6, 2)], 'kernel': ['linear']}, {'C': [2 ** s for s in range(-5, 6, 2)], 'gamma': [2 ** s for s in range(3, -15, -2)],'kernel': ['rbf']}] mlp_hyper_parameters = [{'numHiddenLayers': [1, 2, 3], 'epochs': [30, 50, 100, 200, 300], 'numUnits': [10, 30, 50, 100], 'dropout_rate': [0.1, 0.3], },] def loadData(): dm = None if args.data == None and args.custom_data == None: print("[Error] Please specify an input file. (use -h option for help)") exit() ## provided data elif args.data != None: dm = DeepMicrobiome(data=args.data + '.txt', seed=args.seed, data_dir=args.data_dir) ## specify feature string feature_string = '' data_string = str(args.data) if data_string.split('_')[0] == 'abundance': feature_string = "k__" if data_string.split('_')[0] == 'marker': feature_string = "gi|" ## load data into the object dm.loadData(feature_string=feature_string, label_string='disease', label_dict=label_dict, dtype=dtypeDict[args.dataType]) ## user data elif args.custom_data != None: ### without labels - only conducting representation learning if args.custom_data_labels == None: dm = DeepMicrobiome(data=args.custom_data, seed=args.seed, data_dir=args.data_dir) dm.loadCustomData(dtype=dtypeDict[args.dataType]) ### with labels - conducting representation learning + classification else: dm = DeepMicrobiome(data=args.custom_data, seed=args.seed, data_dir=args.data_dir) dm.loadCustomDataWithLabels(label_data=args.custom_data_labels, dtype=dtypeDict[args.dataType]) else: exit() return dm # run exp function def run_exp(seed): # create an object and load data ## no argument founded def run_fold(train_indices, test_indices, k: int = 1): dm = loadData() numRLrequired = args.pca + args.ae + args.rp + args.vae + args.cae if numRLrequired > 1: raise ValueError('No multiple dimensionality Reduction') # time check after data has been loaded dm.t_start = time.time() # Representation learning (Dimensionality reduction) dm.setIndices(train_indices, test_indices) if args.pca: dm.pca() if args.ae: dm.ae(dims=[int(i) for i in args.dims.split(',')], act=args.act, epochs=args.max_epochs, loss=args.aeloss, latent_act=args.ae_lact, output_act=args.ae_oact, patience=args.patience, no_trn=args.no_trn) if args.vae: dm.vae(dims=[int(i) for i in args.dims.split(',')], act=args.act, epochs=args.max_epochs, loss=args.aeloss, output_act=args.ae_oact, patience=25 if args.patience == 20 else args.patience, beta=args.vae_beta, warmup=args.vae_warmup, warmup_rate=args.vae_warmup_rate, no_trn=args.no_trn) if args.cae: dm.cae(dims=[int(i) for i in args.dims.split(',')], act=args.act, epochs=args.max_epochs, loss=args.aeloss, output_act=args.ae_oact, patience=args.patience, rf_rate=args.rf_rate, st_rate=args.st_rate, no_trn=args.no_trn) if args.rp: dm.rp() # write the learned representation of the training set as a file if args.save_rep: if numRLrequired == 1: fold_dir = os.path.join(dm.data_dir, dm.data, "results", str(k)) if not os.path.isdir(fold_dir): os.makedirs(fold_dir) rep_file = os.path.join(fold_dir, dm.prefix + dm.data + f".train.csv")
pd.DataFrame(dm.X_train, index=dm.train_indices)
pandas.DataFrame
"""Loader of raw data into deepchem dataset after featurization. Qest loader creates datasets of featurized molecules. QesTS loader creates datasets of featurized reactions. Double loader creates dataset of featurized reactants and products, makes a prediction with Qest, and uses this to produce a dataset of featurized reactions. """ from typing import Union, Type, Iterable, List, Iterator from pathlib import Path import logging import time import os import ase import deepchem.data import numpy import pandas as pd import quickq.structure import quickq.featurizers logger = logging.getLogger(__name__) class QestLoader: """Loads molecules and their Q values from raw data files. Data must be stored in a folder alone as: -XXX.extxyz -XXX.csv For each molecule XXX. csv must contain column "T". Data is featurized and saved as a deepchem dataset. Parameters ---------- featurizer : quickq.featurizers.MolFeaturizer Featurizer to apply to each molecule """ def __init__( self, featurizer: quickq.featurizers.MolFeaturizer = None ): self.featurizer = featurizer return def _get_shards( self, files_dir: str, shard_size: int, num_shards: int ) -> Iterator: """Shardize the files_dir directory and return a generator for the shards. Parameters ---------- files_dir : str directory containing the data. See class docs for details. shard_size : int Number of structures to load per shard num_shards : int number of shards from total to load. Returns ------- generator of shards """ # iterate through shards shard_num = 1 # get a big list of the reactions data_paths = [files_dir+str(path) for path in os.listdir(files_dir) if path.endswith('.extxyz')] logger.info(f'Total shards: {int(len(data_paths)/shard_size)}') for shard_indexes in range(0, len(data_paths), shard_size): # if we haven't reached out shard limit, open the shard if num_shards is None or shard_num <= num_shards: shardpaths = data_paths[shard_indexes:shard_indexes+shard_size] logger.info(f'Loading shard {shard_num}') shard_num += 1 yield self._open_shard(shardpaths) else: break def _open_shard(self, shardpaths: List[str]): """Open a single list of files into structures. Parameters ---------- shardpaths : list of str The paths to structures in this shard Returns ------- structures : list of Structure objects ind : list of structure indexes """ structures = [] ind = [] for path in shardpaths: no_extension = path[:-7] idx = path.split('/')[-1][:-7] struc = quickq.structure.Structure.load_properties( path, csv_filename = no_extension+'.csv' ) structures.append(struc) ind.append(idx) return structures, ind def load_data(self, files_dir: str, shard_size: int = 500, num_shards: int = None ): """Load the data into pandas dataframes. Parameters ---------- files_dir : str directory containing the data. See class docs for details. shard_size : int Number of structures to load per shard num_shards : int, number of shards from total to load. Returns ------- generator of dataframes """ logger.info("Loading raw samples now.") logger.info("shard_size: %s" % str(shard_size)) if not files_dir.endswith('/'): files_dir += '/' def shard_generator(): for shard_num, shard in enumerate(self._get_shards(files_dir, shard_size, num_shards)): time1 = time.time() structures, ind = shard # featurize the molprops if self.featurizer is not None: feats = self.featurizer.featurize(structures) dfs = [] for i, struc in enumerate(structures): # we need to expand each mol on the temperature and # Q vector df = pd.DataFrame({'T':list(struc.T.flatten())}) if struc.log_qpart is not None: df['logQ'] = list(struc.log_qpart.flatten()) # try featurization if present if self.featurizer is not None: df[self.featurizer.name] = list(numpy.tile(feats[i], (len(df), 1))) df['ids'] = df.apply(lambda row: ind[i]+'_'+str(int(row.name)), axis=1) dfs.append(df) df = pd.concat(dfs) time2 = time.time() logger.info("TIMING: featurizing shard %d took %0.3f s" % (shard_num, time2 - time1)) yield df return shard_generator() def create_dataset(self, files_dir: str, data_dir: str, shard_size: int = 500, num_shards: int = None ) -> deepchem.data.DiskDataset: """Featurize raw data into deepchem dataset. Parameters ---------- files_dir : str directory containing the data. See class docs for details. data_dir : str directory name to store deepchem disk dataset shard_size : int Number of structures to load per shard num_shards : int number of shards from total to load. """ def shard_generator(): for df in self.load_data(files_dir=files_dir, shard_size=shard_size, num_shards=num_shards): # add temperature to whatever feature vector was computed feats = numpy.vstack(df[self.featurizer.name].values) T = df['T'].values.reshape(-1,1) X = numpy.append(feats, 1/T, axis=1) if 'logQ' in df.columns: y = df['logQ'].values.reshape(-1,1) else: y= numpy.empty(len(X)) w = numpy.ones(len(X)) ids = numpy.array(df['ids']).reshape(-1,1) yield X, y, w, ids return deepchem.data.DiskDataset.create_dataset(shard_generator(), data_dir, ['logQ']) class QesTSLoader: """Loads structures from reactions from raw data files. Data for each reaction must be stored in a folder as: rxnXXX/ -rXXX.extxyz -rXXX.csv -pXXX.extxyz -pXXX.csv For each reaction XXX. csvs must contain column temperature "T" as first columns and "log_qpart" as the reactants/products logged Q values. T values must match. Data is featurized and saved as a deepchem dataset. Parameters ---------- featurizer : quickq.featurizers.MolFeaturizer Featurizer to apply to each molecule """ def __init__( self, featurizer: quickq.featurizers.MolFeaturizer = None ): self.featurizer = featurizer return def _get_shards( self, files_dir: str, shard_size: int, num_shards: int ) -> Iterator: """Shardize the files_dir directory and return a generator for the shards. Parameters ---------- files_dir : str directory containing the data. See class docs for details. shard_size : int Number of reactions to load per shard num_shards : int number of shards from total to load. Returns ------- generator of shards """ # iterate through shards shard_num = 1 # get a big list of the reactions rxn_paths = [files_dir+str(path) for path in os.listdir(files_dir)] logger.info(f'Total shards: {int(len(rxn_paths)/shard_size)}') for shard_indexes in range(0, len(rxn_paths), shard_size): # if we haven't reached out shard limit, open the shard if num_shards is None or shard_num <= num_shards: shardpaths = rxn_paths[shard_indexes:shard_indexes+shard_size] logger.info(f'Loading shard {shard_num}') shard_num += 1 yield self._open_shard(shardpaths) else: break def _open_shard(self, shardpaths: List[str]): """Open a single list of reaction directories into structures. Parameters ---------- shardpaths : list of str The paths to reactions in this shard Returns ------- structures : list of list of Structure objects rxns : list of reaction indexes """ rxns = [] structures = [] for rxn_path in shardpaths: rxn = rxn_path.split('/')[-1][3:] # reactant, product, ts r = quickq.structure.Structure.load_properties( rxn_path+'/r'+rxn+'.extxyz', csv_filename = rxn_path+'/r'+rxn+'.csv' ) p = quickq.structure.Structure.load_properties( rxn_path+'/p'+rxn+'.extxyz', csv_filename = rxn_path+'/p'+rxn+'.csv' ) try: ts = quickq.structure.Structure.load_properties( rxn_path+'/ts'+rxn+'.extxyz', csv_filename = rxn_path+'/ts'+rxn+'.csv' ) except: ts = None structures.append([r, p, ts]) rxns.append(rxn) # if we cannot produce a scaffold just continue return structures, rxns def load_data(self, files_dir: str, shard_size: int = 500, num_shards: int = None ): """Load the data into pandas dataframes. Parameters ---------- files_dir : str directory containing the data. See class docs for details. shard_size : int Number of reactions to load per shard num_shards : int number of shards from total to load. Returns ------- generator of dataframes """ logger.info("Loading raw samples now.") logger.info("shard_size: %s" % str(shard_size)) def shard_generator(): for shard_num, shard in enumerate(self._get_shards(files_dir, shard_size, num_shards)): time1 = time.time() structures, rxns = shard # loop through each reaction, NOT each molecule dfs=[] for i, rxn in enumerate(rxns): structure_set = structures[i] # check we haev the expected sizes assert len(structure_set) == 3, 'rxn should have 3 systems' assert len(numpy.unique([len(mp.atoms) for mp in structure_set if mp is not None])) == 1, 'all systems not the same size' # create dataframe of T dependant quantities if structure_set[0].log_qpart is None or structure_set[1].log_qpart is None: raise ValueError('Cannot use QesTS predictor without R and P partition function') df = pd.DataFrame({'T':list(structure_set[0].T.flatten()), 'logQr':list(structure_set[0].log_qpart.flatten()), 'logQp':list(structure_set[1].log_qpart.flatten()), }) if structure_set[2] is not None and structure_set[2].log_qpart is not None: df['logQts'] = list(structure_set[2].log_qpart.flatten()) # get the features difference if self.featurizer is not None: rfeats = self.featurizer.featurize(structure_set[0]) pfeats = self.featurizer.featurize(structure_set[1]) feats = pfeats - rfeats # add it the the df, all rows have the same value because these features on not # temperature dependant df[self.featurizer.name] = list(numpy.tile(feats, (len(df), 1))) # set a row of ids df['ids'] = df.apply(lambda row: rxns[i]+'_'+str(int(row.name)), axis=1) dfs.append(df) # combine all reactions in this shard df = pd.concat(dfs) time2 = time.time() logger.info("TIMING: featurizing shard %d took %0.3f s" % (shard_num, time2 - time1)) yield df return shard_generator() def create_dataset(self, files_dir: str, data_dir: str, shard_size: int = 500, num_shards: int = None ) -> deepchem.data.DiskDataset: """Featurize raw data into deepchem dataset. Parameters ---------- files_dir : str directory containing the data. See class docs for details. data_dir : str directory name to store deepchem disk dataset shard_size : int Number of reactions to load per shard num_shards : int number of shards from total to load. """ if not files_dir.endswith('/'): files_dir +='/' def shard_generator(): for df in self.load_data(files_dir=files_dir, shard_size=shard_size, num_shards=num_shards): # add temperature to whatever feature vector was computed feats = numpy.vstack(df[self.featurizer.name].values) qr = df['logQr'].values.reshape(-1,1) qp = df['logQp'].values.reshape(-1,1) Tinv = 1/df['T'].values.reshape(-1,1) X = numpy.concatenate([feats, qr, qp, Tinv], axis=1) if 'logQts' in df.columns: y = df['logQts'].values.reshape(-1,1) else: y= numpy.empty(len(X)) w = numpy.ones(len(X)) ids = numpy.array(df['ids']).reshape(-1,1) yield X, y, w, ids return deepchem.data.DiskDataset.create_dataset(shard_generator(), data_dir, ['logQts']) class DoubleLoader: """Loads structures from reactions from raw data files. Data for each reaction must be stored in a folder as: rxnXXX/ -rXXX.extxyz -rXXX.csv -pXXX.extxyz -pXXX.csv For each reaction XXX. csvs must contain column temperature "T" as first columns. T values must match. Data is featurized and saved as a deepchem dataset. Parameters ---------- featurizer : quickq.featurizers.MolFeaturizer Featurizer to apply to each molecule """ def __init__( self, featurizer: quickq.featurizers.MolFeaturizer = None ): self.featurizer = featurizer import quickq.pipeline return def _get_shards( self, files_dir: str, shard_size: int, num_shards: int ) -> Iterator: """Shardize the files_dir directory and return a generator for the shards. Parameters ---------- files_dir : str directory containing the data. See class docs for details. shard_size : int Number of reactions to load per shard num_shards : int number of shards from total to load. Returns ------- generator of shards """ # iterate through shards shard_num = 1 # get a big list of the reactions rxn_paths = [files_dir+str(path) for path in os.listdir(files_dir)] logger.info(f'Total shards: {int(len(rxn_paths)/shard_size)}') for shard_indexes in range(0, len(rxn_paths), shard_size): # if we haven't reached out shard limit, open the shard if num_shards is None or shard_num <= num_shards: shardpaths = rxn_paths[shard_indexes:shard_indexes+shard_size] logger.info(f'Loading shard {shard_num}') shard_num += 1 yield self._open_shard(shardpaths) else: break def _open_shard(self, shardpaths: List[str]): """Open a single list of reaction directories into structures. Parameters ---------- shardpaths : list of str The paths to reactions in this shard Returns ------- structures : list of list of Structure objects rxns : list of reaction indexes """ rxns = [] structures = [] for rxn_path in shardpaths: rxn = rxn_path.split('/')[-1][3:] # reactant, product, ts r = quickq.structure.Structure.load_properties( rxn_path+'/r'+rxn+'.extxyz', csv_filename = rxn_path+'/r'+rxn+'.csv' ) p = quickq.structure.Structure.load_properties( rxn_path+'/p'+rxn+'.extxyz', csv_filename = rxn_path+'/p'+rxn+'.csv' ) try: ts = quickq.structure.Structure.load_properties( rxn_path+'/ts'+rxn+'.extxyz', csv_filename = rxn_path+'/ts'+rxn+'.csv' ) except: ts = None structures.append([r, p, ts]) rxns.append(rxn) # if we cannot produce a scaffold just continue return structures, rxns def load_data(self, files_dir: str, shard_size: int = 500, num_shards: int = None ): """Load the reactant and product data, make predictions, then give dataframes Parameters ---------- files_dir : str directory containing the data. See class docs for details. shard_size : int Number of reactions to load per shard num_shards : int number of shards from total to load. Returns ------- generator of dataframes """ logger.info("Loading raw samples now.") logger.info("shard_size: %s" % str(shard_size)) def shard_generator(): for shard_num, shard in enumerate(self._get_shards(files_dir, shard_size, num_shards)): time1 = time.time() structures, rxns = shard # loop through each reaction, NOT each molecule dfs=[] for i, rxn in enumerate(rxns): structure_set = structures[i] # check we haev the expected sizes assert len(structure_set) == 3, 'rxn should have 3 systems' assert len(numpy.unique([len(mp.atoms) for mp in structure_set if mp is not None])) == 1, 'all systems not the same size' # create dataframe of T dependant quantities df = pd.DataFrame({'T':list(structure_set[0].T.flatten()), }) if structure_set[2] is not None and structure_set[2].log_qpart is not None: df['logQts'] = list(structure_set[2].log_qpart.flatten()) # get the features difference if self.featurizer is not None: rfeats = self.featurizer.featurize(structure_set[0]) pfeats = self.featurizer.featurize(structure_set[1]) feats = pfeats - rfeats # add it the the df, all rows have the same value because these features on not # temperature dependant df[self.featurizer.name] = list(numpy.tile(feats, (len(df), 1))) # predict the Qs with qest rfeats = numpy.concatenate([numpy.tile(rfeats, (len(df), 1)), (1/df['T'].values).reshape(-1,1)], axis=1) r_dataset = deepchem.data.NumpyDataset(rfeats) logQr = quickq.pipeline.predict_qest(r_dataset) pfeats = numpy.concatenate([numpy.tile(pfeats, (len(df), 1)), (1/df['T'].values).reshape(-1,1)], axis=1) p_dataset = deepchem.data.NumpyDataset(pfeats) logQp = quickq.pipeline.predict_qest(p_dataset) df['logQr'] = logQr df['logQp'] = logQp # set a row of ids df['ids'] = df.apply(lambda row: rxns[i]+'_'+str(int(row.name)), axis=1) dfs.append(df) # combine all reactions in this shard df =
pd.concat(dfs)
pandas.concat
#!/usr/bin/env python3 # author : <NAME> # date : 10.01.2019 # license : BSD-3 # ============================================================================== import os.path import sys import time import argparse import numpy as np import pandas as pd import sqlite3 as sql from collections import defaultdict from pmapper.pharmacophore import Pharmacophore def create_parser(): parser = argparse.ArgumentParser( description='Iteratively create ligand-based pharmacophore models.') parser.add_argument('-adb', '--in_active_database', metavar='active.db', required=True, help='input SQL database file with active compounds') parser.add_argument('-idb', '--in_inactive_database', metavar='inactive.db', required=True, help='input SQL database file with active compounds') parser.add_argument('-ats', '--in_active_trainset', metavar='active_training_set.txt', required=True, help='txt file with information about active models: ' 'model, hash, stereo, nact, ninact, nact/ninact, conf_id, feature_ids') parser.add_argument('-its', '--in_inactive_trainset', metavar='inactive_training_set.txt', required=True, help='txt file with information about active models: ' 'model, hash, stereo, nact, ninact, nact/ninact, conf_id, feature_ids') parser.add_argument('-o', '--output_path', metavar='output/path', required=False, default=None, help='output path to the models of pharmacophores. ' 'If None, the path will be generated automatically.') parser.add_argument('-tol', '--tolerance', default=0, help='tolerance volume for the calculation of the stereo sign. If the volume of the ' 'tetrahedron created by four points less than tolerance then those points are considered ' 'lying on the same plane (flat; stereo sign is 0).') parser.add_argument('-l', '--lower', default=4, help='number of features of input models') return parser def _keep_best_models(df, df_sub_act, df_sub_inact, df_ph_act, df_ph_inact, save_files): df_sub_act = pd.merge(df_sub_act, df[['hash']], on='hash', how='inner').reset_index(drop=True) df_ph_act = pd.merge(df_ph_act, df_sub_act[['conf_id']].drop_duplicates(subset=['conf_id']), on='conf_id', how='inner').reset_index(drop=True) if not df_ph_inact.empty: df_sub_inact = pd.merge(df_sub_inact, df[['hash']], on='hash', how='inner').reset_index(drop=True) df_ph_inact = pd.merge(df_ph_inact, df_sub_inact[['conf_id']].drop_duplicates(subset=['conf_id']), on='conf_id', how='inner').reset_index(drop=True) if save_files: path_internal = os.path.join(save_files[0], 'internal_statistics_{}_pharm{}.txt'.format(save_files[1], save_files[2])) path_sub_act = os.path.join(save_files[0], 'ph_active_{}_pharm{}.txt'.format(save_files[1], save_files[2])) df.to_csv(path_internal, index=None, sep='\t') df_sub_act.to_csv(path_sub_act, index=None, sep='\t') if not df_sub_inact.empty: path_sub_inact = os.path.join(save_files[0], 'ph_inactive_{}_pharm{}.txt'.format(save_files[1], save_files[2])) df_sub_inact.to_csv(path_sub_inact, index=None, sep='\t') return df_sub_act, df_sub_inact, df_ph_act, df_ph_inact # generator return mol_name, conf_id, hash, labels def _gen_quadruplets(df_ph, lower, tol): for mol_name, conf_id, pharm in zip(df_ph['mol_name'], df_ph['conf_id'], df_ph['pharm']): if pharm: for hash, labels in pharm.iterate_pharm(lower, lower, tol): yield mol_name, conf_id, hash, labels # generator return mol_name, conf_id, hash, labels def _plus_one_feature(df_ph, df_sub): for mol_name, conf_id, pharm in zip(df_ph['mol_name'], df_ph['conf_id'], df_ph['pharm']): list_ids = df_sub[df_sub['conf_id'] == conf_id] list_ids = [tuple(map(int, l.split(','))) for l in list_ids['feature_ids']] if pharm: for hash, labels in pharm.iterate_pharm1(list_ids): yield mol_name, conf_id, hash, labels # return type DataFrame: columns=['hash', 'count', 'mol_name', 'conf_id', 'feature_ids'] def gen_models(def_generator, df_0): dct = defaultdict(list) for mol_name, conf_id, hash, labels in def_generator: dct['hash'].append(hash) dct['mol_name'].append(mol_name) dct['conf_id'].append(conf_id) dct['feature_ids'].append(','.join(map(str, labels))) df = pd.DataFrame(dct) if df.empty: return df_0, df count_df = df.drop_duplicates(subset=['mol_name', 'hash']) count_df = count_df.groupby(['hash'], sort=True).size().reset_index(name='count') df = pd.merge(df, count_df, on='hash', how='right') df = df.sort_values(by=['count', 'hash'], ascending=False) return df_0, df[['hash', 'count', 'mol_name', 'conf_id', 'feature_ids']] # return DataFrame of pharmacophore representation molecules: columns=['mol_name', 'conf_id', 'pharm'] def load_pharmacophores(in_db, in_training_set): mol_names = [name.strip().split('\t')[1] for name in open(in_training_set).readlines()] confs_pharm = defaultdict(list) with sql.connect(in_db) as con: cur = con.cursor() cur.execute("SELECT bin_step FROM settings") db_bin_step = cur.fetchone()[0] for mol_name in mol_names: cur.execute("SELECT conf_id, feature_label, x, y, z FROM feature_coords WHERE conf_id IN " "(SELECT conf_id from conformers WHERE mol_name = ?)", (mol_name,)) res = cur.fetchall() confs = defaultdict(list) for r in res: confs[r[0]].append((r[1], tuple(r[2:]))) # dict(conf_id: (feature_label, x, y, z)) for conf_id, coord in confs.items(): p = Pharmacophore(bin_step=db_bin_step, cached=True) p.load_from_feature_coords(coord) confs_pharm['mol_name'].append(mol_name) confs_pharm['conf_id'].append(conf_id) confs_pharm['pharm'].append(p) return pd.DataFrame(confs_pharm) # return type DataFrame def strategy_extract_trainset(df, clust_strategy): if clust_strategy == 2: df = df.sort_values(by=['recall', 'F2', 'F05'], ascending=False) df = df.reset_index(drop=True) if df['F2'].iloc[0] == 1.0: df = df[(df['recall'] == 1.0) & (df['F2'] == 1.0)] elif df[df['F2'] >= 0.8].shape[0] <= 100: df = df[(df['recall'] == 1) & (df['F2'] >= 0.8)] else: df = df[(df['recall'] == 1) & (df['F2'] >= df['F2'].loc[100])] elif clust_strategy == 1: df = df.sort_values(by=['recall', 'F05', 'F2'], ascending=False) df = df.reset_index(drop=True) if df[df['F05'] >= 0.8].shape[0] <= 100: df = df[df['F05'] >= 0.8] else: df = df[df['F05'] >= df['F05'].loc[100]] return df # return type DataFrame: columns=['hash', 'TP', 'FP', 'precision', 'recall', 'F2', 'F05'] def calc_internal_stat(df_act, df_inact, act_trainset, clust_strategy): df_act = df_act.rename(columns={'count': 'TP'}) if not df_inact.empty: df_inact = df_inact[['hash', 'count']].drop_duplicates(subset=['hash']) df_inact = df_inact.rename(columns={'count': 'FP'}) df = pd.merge(df_act, df_inact, on=['hash'], how='left') df.loc[df['FP'].isnull(), 'FP'] = 0 else: df = df_act df['FP'] = [0 for x in range(df.shape[0])] df['precision'] = round(df['TP'] / (df['TP'] + df['FP']), 3) df['recall'] = round(df['TP'] / (len(open(act_trainset).readlines())), 3) df['F2'] = round(5 * ((df['precision'] * df['recall']) / (4 * df['precision'] + df['recall'])), 3) df['F05'] = round(1.25 * ((df['precision'] * df['recall']) / (0.25 * df['precision'] + df['recall'])), 3) df['FP'] = df['FP'].astype(np.int64) df = df.sort_values(by=['recall', 'F2', 'F05'], ascending=False) df = df[['hash', 'TP', 'FP', 'precision', 'recall', 'F2', 'F05']] # difference ways to check out the best models df = strategy_extract_trainset(df, clust_strategy) return df # return None def save_models_pma(df_ph, df_sub_act, path_pma, cluster_num, num_ids): time_start = time.time() df_sub_act = df_sub_act.drop_duplicates(subset=['hash']) df_ph =
pd.merge(df_sub_act, df_ph, on=['mol_name', 'conf_id'], how='inner')
pandas.merge
# -*- coding: utf-8 -*- """ Created on Thu Apr 18 13:54:04 2019 @author: Tobias """ import os import pickle import numpy as np import datetime as dt import pandas as pd import pandas_datareader as web import sys import pdb import gensim import gensim.corpora as corpora from gensim.utils import simple_preprocess from gensim.models import CoherenceModel #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Import train_test_split function from sklearn.model_selection import train_test_split #Import Random Forest Model from sklearn.ensemble import RandomForestClassifier class predictor: ''' ''' # Class attributes # Return data data = [] # Publishing dates dates = [] # Publishing dates, 10-K dates_k = [] # Publishing dates, 10-Q dates_q = [] # Company name name = '' # Date directory date_dir = '' # Company ticker ticker = '' # Start date 10-K start_k = [] # Start date 10-Q start_q = [] # Similarity data sim_data = [] # Path for LDA models mod_path = '' # Years years = [] # Years quarterly years_q = [] # Years annualy years_k = [] # First valid period with a previous 10-K to use as a benchmark first_valid = [] # Number of topics num_top = [] # Data matrix X = [] # Response matrix y = pd.DataFrame() # Days delayed for returns days = [] # Accuracy accuarcy = [] # Score score = [] # Return data matrix X_ret = [] def __init__(self,name=None,ticker=None,date_dir=None,f_type=None, algorithm=None, mod_path=None, num_top=None,days=None): ''' Class constructor. Optional inputs: - name : The EDGAR name of the company. Default is empty. - ticker : The company ticker. Default is empty - date_dir : The directory for the publishing dates. Default is empty. - algorithm : The type of model algorithm. Default is empty. * Supported algorithms: random forest {'rf'}. - f_type : The filing type. Default is 10-K - num_top : The number of topics for the LDA model Output: - obj: An object of class predictor. Examples: name = '<NAME>' ticker = 'BRK-A' date_dir = 'C:\\Users\\Tobias\\Dropbox\\Master\\U.S. Data\\Dates Reports U.S' mod_path = 'C:\\Users\\Tobias\\Dropbox\\Master\\U.S. Data\\Model U.S' num_top = 40 days = 7 ''' if name: self.name = name if f_type: self.f_type = f_type if date_dir: self.date_dir = date_dir if ticker: self.ticker = ticker if mod_path: self.mod_path = mod_path if num_top: self.num_top = num_top if days: self.days = days def get_return_data(self): ''' A method for fetching return data from yahoo Input: - self : An object of class predictor Output: - self : -"- ''' start ='1996-01-01' end ='2019-31-05' mes=('Checking for existing return data...') sys.stdout.write('\r'+mes) print('Fetching return data') if not self.ticker or not self.name: print('Object cannot be empty') return if self.days: delta = self.days else: delta=0 ticker = self.ticker name = self.name directory_q = self.date_dir + '\\10-Q\\'+ name os.chdir(directory_q) start = dt.datetime(1994,1, 1) end = dt.datetime(2019,4,16) prices = web.get_data_yahoo(ticker,start=start,end=end)[['Open','Close']] with open(os.listdir()[0],'rb') as file: dates_q = pickle.load(file) directory_k = self.date_dir + '\\10-K\\' + name os.chdir(directory_k) with open(os.listdir()[0],'rb') as file: dates_a = pickle.load(file) dates = dates_q + dates_a publishingdates = [dt.datetime.strptime(date, '%Y-%m-%d').date() for date in dates] stockdates = [index.strftime('%Y-%m-%d') for index in prices.index] stockdates = [dt.datetime.strptime(date, '%Y-%m-%d').date() for date in stockdates] # Find all indicies where there is a report published allDates = stockdates pOp = prices.Open pCl = prices.Close dataOut = np.zeros(shape=(len(publishingdates),2)) publishingdates.sort() p_delta = [d+dt.timedelta(days=delta) for d in publishingdates] l = 0 if delta>0: for idx, (t_1,t_2) in enumerate(zip(publishingdates,p_delta)): f_1 = [date-t_1 for date in allDates] f_2 = [date-t_2 for date in allDates] arr = [] arr_2 = [] for diff_1,diff_2 in zip(f_1,f_2): arr = np.append(arr,diff_1.days) arr_2 = np.append(arr_2,diff_2.days) zeroInd = np.where(arr == 0)[0] zeroInd_2 = np.where(arr_2 == 0)[0] if not zeroInd.size > 0: l = l + 1 continue if not zeroInd_2.size > 0: l = l + 1 continue ret = np.log(pCl[zeroInd_2]/pOp[zeroInd][0]) dataOut[idx,0] = ret if ret[0]>-1E-8: dataOut[idx,1] = 1 else: dataOut[idx,1] = -1 else: for idx, tempDate in enumerate(publishingdates): f = [date-tempDate for date in allDates] arr = [] for diff in f: arr = np.append(arr,diff.days) zeroInd = np.where(arr == 0)[0] if not zeroInd.size > 0: l = l + 1 continue ret = np.log(pCl[zeroInd]/pOp[zeroInd]) dataOut[idx,0] = ret if ret[0]>-1E-8: dataOut[idx,1] = 1 else: dataOut[idx,1] = -1 years = [y.split('-')[0] for y in dates] years_q = [y.split('-')[0] for y in dates_q] years_k = [y.split('-')[0] for y in dates_a] dates.sort() dates_a.sort() dates_q.sort() years_k.sort() years_q.sort() years.sort() self.data = dataOut self.dates = dates self.dates_k = dates_a self.dates_q = dates_q self.start_k = dates_a[0] self.start_q = dates_q[0] self.years = years self.years_q = years_q self.years_k = years_k resp = pd.DataFrame(dataOut) resp['Datetime'] = publishingdates resp = resp.set_index('Datetime') self.y = resp return def get_similarity(self,numWords=None): ''' ''' if not numWords: numWords = 50 # Set numTop = 40 # Set resT = np.empty((0,numTop)) res = np.empty((0,numTop)) dates = self.dates y_q = self.years_q y_k = self.years_k d_k = self.dates_k # Identify the first valid year to start estimation for t in y_k[1:]: num_inds = len([i for i,year in enumerate(y_q) if year in t]) if num_inds == 3: break # Identify the last valid year to end estimation last_ind = 4*(int(y_k[-2])-int(t)+1) # t now yields the first valid year to start estimation. Find the # corresponding index start_ind = y_q.index(t) dates = dates[1+start_ind:start_ind+last_ind+1] temp = self.y temp = temp.iloc[1+start_ind:start_ind+last_ind+1] self.y = temp # Find appropriate starting point for 10-K start_y_ind = y_k.index(str(int(t)-1)) year_dates = d_k[start_y_ind:] if numTop: mod_path_k = self.mod_path+'\\10-K_'+ str(numTop) +'\\'+self.name mod_path_q = self.mod_path+'\\10-Q_'+ str(numTop) +'\\'+self.name else: mod_path_k = self.mod_path+'\\10-K_40\\'+self.name mod_path_q = self.mod_path+'\\10-K_40\\'+self.name for idx, year in enumerate(y_k[:-1]): os.chdir(mod_path_k) #self.mod_path+'\\10-K_40\\'+self.name #modelpath_10K # ann_mod = gensim.models.ldamodel.LdaModel.load(ann[0]) ann_mod_bench=gensim.models.ldamodel.LdaModel.load(year_dates[idx]) d = [d for d in dates if str(int(year)+1) in d] for quart in d: if quart in year_dates: os.chdir(mod_path_k)#self.mod_path+'\\10-K_40\\'+self.name lda_model_q = gensim.models.ldamodel.LdaModel.load(quart) else: os.chdir(mod_path_q)#self.mod_path+'\\10-Q_40\\'+self.name lda_model_q = gensim.models.ldamodel.LdaModel.load(quart) mdiff, annotation = lda_model_q.diff(ann_mod_bench, distance='jaccard', num_words=numWords) resT = np.empty((0,numTop)) for ii in range(numTop): g = mdiff[:,ii].tolist() min_value = min(g) min_index = g.index(min_value) # Assign score resT = np.append(resT, numTop-min_index) res = np.append(res,resT) del resT length = len(dates) resOut = np.reshape(res,(length,numTop)) X =
pd.DataFrame(resOut)
pandas.DataFrame
# coding: utf-8 # ### Import # In[5]: import numpy as np import pandas as pd import xgboost import xgboost as xgb from xgboost.sklearn import XGBClassifier from sklearn.metrics import * from IPython.core.display import Image from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix from sklearn.tree import export_graphviz import io from sklearn.preprocessing import Imputer import pydot from sklearn import preprocessing import lightgbm as lgb from scipy.stats import mode import re from datetime import datetime from lightgbm import plot_importance import warnings warnings.filterwarnings('ignore') # --- # ### Date read # In[7]: age_gender_bkts = pd.read_csv("age_gender_bkts.csv") countries = pd.read_csv("countries.csv") sessions = pd.read_csv("sessions.csv") test_users = pd.read_csv("test_users.csv") train_users_2 = pd.read_csv("train_users_2.csv") sample_submission_NDF = pd.read_csv("sample_submission_NDF.csv") # --- # ### Date setting # In[8]: def pre_age_set_data(train_users_2, test_users): check = pd.concat([train_users_2, test_users], ignore_index=True) check["first_affiliate_tracked"] = check["first_affiliate_tracked"].replace(np.nan, "untracked") check["date_account_created"] = pd.to_datetime(check["date_account_created"], format = "%Y-%m-%d") check["timestamp_first_active"] = pd.to_datetime(check["timestamp_first_active"], format="%Y%m%d%H%M%S") s_lag = check["timestamp_first_active"] - check["date_account_created"] check["lag_days"] = s_lag.apply(lambda x : -1 * x.days) check["lag_seconds"] = s_lag.apply(lambda x : x.seconds) s_all_check = (check['age'] < 120) & (check['gender'] != '-unknown-') check['faithless_sign'] = s_all_check.apply(lambda x : 0 if x == True else 1) pre_age = check.drop("date_first_booking",axis = 1) pre_age['date_account_created_y'] = pre_age["date_account_created"].apply(lambda x : x.year) pre_age['date_account_created_m'] = pre_age["date_account_created"].apply(lambda x : x.month) pre_age['date_account_created_d'] = pre_age["date_account_created"].apply(lambda x : x.day) pre_age['timestamp_first_active_y'] = pre_age["timestamp_first_active"].apply(lambda x : x.year) pre_age['timestamp_first_active_m'] = pre_age["timestamp_first_active"].apply(lambda x : x.month) pre_age['timestamp_first_active_d'] = pre_age["timestamp_first_active"].apply(lambda x : x.day) pre_age = pre_age.drop("date_account_created" , axis=1) pre_age = pre_age.drop("timestamp_first_active" , axis=1) return check, pre_age # --- # # Gender # ### Gender predict data set # In[11]: def pre_gen_predict_data(pre_age): pre_gen_sub = pre_age.filter(items = ['age', 'country_destination', 'id', 'gender']) pre_gen_dum = pre_age.filter(items = ['affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'first_browser', 'first_device_type', 'language', 'signup_app', 'signup_flow', 'signup_method', 'date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d',"lag_days","lag_seconds", "faithless_sign"]) pre_gen_dum = pd.get_dummies(pre_gen_dum) pre_gen_dum_con = pd.concat([pre_gen_dum, pre_gen_sub], axis=1) pre_gen_dum_con["gender"] = pre_gen_dum_con["gender"].replace(['-unknown-', 'OTHER'], np.nan) pre_gen_mission = pre_gen_dum_con[pre_gen_dum_con["gender"].isna()].reset_index() pre_gen_train = pre_gen_dum_con[pre_gen_dum_con["gender"].notna()].reset_index() pre_gen_mission_test = pre_gen_mission.drop("index", axis=1) pre_gen_train_test = pre_gen_train.drop("index", axis=1) pre_gen_mission_test_drop = pre_gen_mission_test.drop(['id', 'age', 'country_destination', "gender"], axis=1) pre_gen_train_test_drop = pre_gen_train_test.drop(['id', 'age', 'country_destination', "gender"], axis=1) return pre_gen_mission_test, pre_gen_train_test, pre_gen_mission, pre_gen_train, pre_gen_mission_test_drop, pre_gen_train_test_drop # ### Gender predict LightGBM # In[12]: def predict_gen_LightGBM(pre_gen_train_test_drop, pre_gen_train_test, pre_gen_mission_test_drop): X = pre_gen_train_test_drop y = pre_gen_train_test["gender"] model_gen_lgb = lgb.LGBMClassifier(nthread=3) model_gen_lgb.fit(X,y) print(classification_report(y, model_gen_lgb.predict(pre_gen_train_test_drop))) model_gen_lgb = model_gen_lgb.predict(pre_gen_mission_test_drop) model_gen_lgb = pd.DataFrame(model_gen_lgb) return model_gen_lgb # ### Gender predict data make CSV # --- # # Age # ### Age predict data set # In[13]: def pre_age_predict_data(pre_age): pre_age['age'] = pre_age['age'].fillna(-1) pre_age_sub = pre_age.filter(items = ['age', 'country_destination','id']) pre_age_dum = pre_age.filter(items = ['affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'first_browser', 'first_device_type', 'language', 'signup_app', 'signup_flow', 'signup_method', 'date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d',"lag_days","lag_seconds", "faithless_sign"]) pre_age_dum = pd.get_dummies(pre_age_dum) pre_age_dum_con =
pd.concat([pre_age_dum, pre_age_sub], axis=1)
pandas.concat
from abc import ABC, abstractmethod from pclima.http_util import PClimaURL import json import pandas as pd import requests import io import xarray as xr import numpy as np class RequestFactory: def get_order(self, type_of_order,token,json): if type_of_order == "NetCDF": return Netcdf(token, json) if type_of_order == "CSV": return Csv(token, json) if type_of_order == "CSVPontos": return CSVPontos(token, json) if type_of_order == "CSVPontosT": return CSVPontosT(token, json) if type_of_order == "JSON": return JSON(token, json) def save(self, type_of_order,content,file): if type_of_order == "NetCDF": saveNetcdf(content,file) if type_of_order == "CSV": saveCSV(content,file) if type_of_order == "CSVPontos": saveCSV(content,file) if type_of_order == "CSVPontosT": saveCSV(content,file) if type_of_order == "JSON": saveJSON(content,file) class Product(ABC): @abstractmethod def download(self): pass class Netcdf(Product): def __init__(self, token, json): self.token = token self.json = json def download(self): c1 = PClimaURL() url = c1.get_url(self.json) (anoInicial,anoFinal)=verificaIntervaloAnos(self.json) if (anoInicial and anoFinal): return (download_toNetCDFInterval(url, self.token,anoInicial,anoFinal)) else: return (download_toNetCDF(url, self.token)) def __str__(self): return self.token+" ["+str(self.json)+"] " class Csv(Product): def __init__(self, token, json): self.token = token self.json = json def download(self): c1 = PClimaURL() url = c1.get_url(self.json) (anoInicial,anoFinal)=verificaIntervaloAnos(self.json) if (anoInicial and anoFinal): return (download_toCSVInterval(url, self.token,anoInicial,anoFinal)) else: return (download_toCSV(url, self.token)) class JSON(Product): def __init__(self, token, json): self.token = token self.json = json def download(self): c1 = PClimaURL() url = c1.get_url(self.json) (anoInicial,anoFinal)=verificaIntervaloAnos(self.json) if (anoInicial and anoFinal): return (download_toCSVInterval(url, self.token,anoInicial,anoFinal)) else: return (download_toJSON(url, self.token)) class CSVPontos(Product): def __init__(self, token, json): self.token = token self.json = json def download(self): c1 = PClimaURL() url = c1.get_url(self.json) (anoInicial,anoFinal)=verificaIntervaloAnos(self.json) if (anoInicial and anoFinal): return (download_toCSVPontosInterval(url, self.token,anoInicial,anoFinal)) else: print("download_toCSVPontos") return (download_toCSVPontos(url, self.token)) class CSVPontosT(Product): def __init__(self, token, json): self.token = token self.json = json def download(self): c1 = PClimaURL() url = c1.get_url(self.json) (anoInicial,anoFinal)=verificaIntervaloAnos(self.json) if (anoInicial and anoFinal): return (download_toCSVPontosTInterval(url, self.token,anoInicial,anoFinal)) else: return (download_toCSVPontosT(url, self.token)) def __str__(self): return self.token+" ["+str(self.json)+"]" def download_toCSV( url, token): r=downloadData(url, token) rawData = pd.read_csv(io.StringIO(r.content.decode('utf-8'))) return rawData def download_toJSON( url, token): r=downloadData(url, token) rawData = pd.read_json(io.StringIO(r.content.decode('utf-8'))) return rawData def download_toCSVPontos( url, token): r=downloadData(url, token) rawData = pd.read_csv(io.StringIO(r.content.decode('utf-8'))) return rawData def download_toCSVPontosT( url, token): r=downloadData(url, token) rawData = pd.read_csv(io.StringIO(r.content.decode('utf-8'))) return rawData def download_toNetCDF(url, token): r=downloadData(url, token) return xr.open_dataset(r.content) def saveNetcdf(content,file): content.to_netcdf(file) def saveCSV(content,file): print("save CSV") content.to_csv(file) def saveJSON(content,file): print("save JSON") content.to_json(file) def downloadData(url, token): headers = { 'Authorization' : 'Token ' + token } r = requests.get(url, headers=headers, verify=False) if (r.status_code != requests.codes.ok): print("Arquivo ou URL não encontrado. Favor verificar JSON de entrada") raise SystemExit return r def verificaIntervaloAnos(json): anoInicial="" anoFinal="" try: (anoInicial, anoFinal) = json["ano"].split("-") except: pass return (anoInicial, anoFinal) def download_toNetCDFInterval(url,token,anoInicial,anoFinal): mergedAno=0 ds=download_toNetCDF(url[:-9]+str(anoInicial), token) for ano in range(int(anoInicial)+1, int(anoFinal)+1): ds1=download_toNetCDF(url[:-9]+str(ano), token) if (mergedAno==0): dsmerged = xr.merge([ds,ds1]) else: dsmerged = xr.merge([dsmerged,ds1]) mergedAno=1 if (ano==int(anoFinal)): print("ano sair for return") return (dsmerged) def download_toCSVInterval(url,token,anoInicial,anoFinal): df = pd.DataFrame() for ano in range(int(anoInicial), int(anoFinal)+1): print(ano) df1=(download_toCSV(url[:-9]+str(ano), token)) frames = [df, df1] df = pd.concat(frames) df.reset_index(drop=True, inplace=True) return (df) def download_toJSONInterval(url,token,anoInicial,anoFinal): df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from cabi.cabi import _get_station_dataframe if __name__ == "__main__": df = _get_station_dataframe() datalist = df.iloc[0, 0] df =
pd.DataFrame(datalist)
pandas.DataFrame
import multiprocessing.dummy as mp import time from exceptions import TestException from functools import wraps from sys import stdout, stderr import numpy as np import pandas as pd import tweepy from sqlalchemy.exc import IntegrityError, ProgrammingError from database_handler import DataBaseHandler from helpers import friends_details_dtypes from setup import FileImport # mp.set_start_method('spawn') def get_latest_tweets(user_id, connection, fields=['lang', 'full_text']): statuses = connection.api.user_timeline(user_id=user_id, count=200, tweet_mode='extended') result = pd.DataFrame(columns=fields) for status in statuses: result = result.append({field: getattr(status, field) for field in fields}, ignore_index=True) return result def get_fraction_of_tweets_in_language(tweets): """Returns fraction of languages in a tweet dataframe as a dictionary Args: tweets (pandas.DataFrame): Tweet DataFrame as returned by `get_latest_tweets` Returns: language_fractions (dict): {languagecode (str): fraction (float)} """ language_fractions = tweets['lang'].value_counts(normalize=True) language_fractions = language_fractions.to_dict() return language_fractions # TODO: there might be a better way to drop columns that we don't want than flatten everything # and removing the columns thereafter. def flatten_json(y: dict, columns: list, sep: str = "_", nonetype: dict = {'date': None, 'num': None, 'str': None, 'bool': None}): ''' Flattens nested dictionaries. adapted from: https://medium.com/@amirziai/flattening-json-objects-in-python-f5343c794b10 Attributes: y (dict): Nested dictionary to be flattened. columns (list of str): Dictionary keys that should not be flattened. sep (str): Separator for new dictionary keys of nested structures. nonetype (Value): specify the value that should be used if a key's value is None ''' out = {} def flatten(x, name=''): if type(x) is dict and str(name[:-1]) not in columns: # don't flatten nested fields for a in x: flatten(x[a], name + a + sep) elif type(x) is list and str(name[:-1]) not in columns: # same i = 0 for a in x: flatten(a, name + str(i) + sep) i += 1 elif type(x) is list and str(name[:-1]) in columns: out[str(name[:-1])] = str(x) # Must be str so that nested lists are written to db elif type(x) is dict and str(name[:-1]) in columns: out[str(name[:-1])] = str(x) # Same here elif type(x) is bool and str(name[:-1]) in columns: out[str(name[:-1])] = int(x) # Same here elif x is None and str(name[:-1]) in columns: if friends_details_dtypes[str(name[:-1])] == np.datetime64: out[str(name[:-1])] = nonetype["date"] elif friends_details_dtypes[str(name[:-1])] == np.int64: out[str(name[:-1])] = nonetype["num"] elif friends_details_dtypes[str(name[:-1])] == str: out[str(name[:-1])] = nonetype["str"] elif friends_details_dtypes[str(name[:-1])] == np.int8: out[str(name[:-1])] = nonetype["bool"] else: raise NotImplementedError("twitter user_detail does not have a supported" "corresponding data type") else: out[str(name[:-1])] = x flatten(y) return out # Decorator function for re-executing x times (with exponentially developing # waiting times) def retry_x_times(x): def retry_decorator(func): @wraps(func) def func_wrapper(*args, **kwargs): try: if kwargs['fail'] is True: # if we're testing fails: return func(*args, **kwargs) except KeyError: try: if kwargs['test_fail'] is True: return func(*args, **kwargs) except KeyError: pass i = 0 if 'restart' in kwargs: restart = kwargs['restart'] if 'retries' in kwargs: retries = kwargs['retries'] else: retries = x for i in range(retries - 1): try: if 'restart' in kwargs: kwargs['restart'] = restart return func(*args, **kwargs) except Exception as e: restart = True waiting_time = 2**i stdout.write(f"Encountered exception in {func.__name__}{args, kwargs}.\n{e}") stdout.write(f"Retrying in {waiting_time}.\n") stdout.flush() time.sleep(waiting_time) i += 1 return func(*args, **kwargs) return func_wrapper return retry_decorator class MyProcess(mp.Process): def run(self): try: mp.Process.run(self) except Exception as err: self.err = err raise self.err else: self.err = None class Connection(object): """Class that handles the connection to Twitter Attributes: token_file_name (str): Path to file with user tokens """ def __init__(self, token_file_name="tokens.csv", token_queue=None): self.credentials = FileImport().read_app_key_file() self.ctoken = self.credentials[0] self.csecret = self.credentials[1] if token_queue is None: self.tokens = FileImport().read_token_file(token_file_name) self.token_queue = mp.Queue() for token, secret in self.tokens.values: self.token_queue.put((token, secret, {}, {})) else: self.token_queue = token_queue self.token, self.secret, self.reset_time_dict, self.calls_dict = self.token_queue.get() self.auth = tweepy.OAuthHandler(self.ctoken, self.csecret) self.auth.set_access_token(self.token, self.secret) self.api = tweepy.API(self.auth, wait_on_rate_limit=False, wait_on_rate_limit_notify=False) def next_token(self): self.token_queue.put((self.token, self.secret, self.reset_time_dict, self.calls_dict)) (self.token, self.secret, self.reset_time_dict, self.calls_dict) = self.token_queue.get() self.auth = tweepy.OAuthHandler(self.ctoken, self.csecret) self.auth.set_access_token(self.token, self.secret) self.api = tweepy.API(self.auth) def remaining_calls(self, endpoint='/friends/ids'): """Returns the number of remaining calls until reset time. Args: endpoint (str): API endpoint. Defaults to '/friends/ids' Returns: remaining calls (int) """ rate_limits = self.api.rate_limit_status() path = endpoint.split('/') path = path[1:] rate_limits = rate_limits['resources'][path[0]] key = "/" + path[0] for item in path[1:]: key = key + '/' + item rate_limits = rate_limits[key] rate_limits = rate_limits['remaining'] return rate_limits def reset_time(self, endpoint='/friends/ids'): """Returns the time until reset time. Args: endpoint (str): API endpoint. Defaults to '/friends/ids' Returns: remaining time in seconds (int) """ reset_time = self.api.rate_limit_status() path = endpoint.split('/') path = path[1:] reset_time = reset_time['resources'][path[0]] key = "/" + path[0] for item in path[1:]: key = key + '/' + item reset_time = reset_time[key] reset_time = reset_time['reset'] - int(time.time()) return reset_time class Collector(object): """Does the collecting of friends. Attributes: connection (Connection object): Connection object with actually active credentials seed (int): Twitter id of seed user """ def __init__(self, connection, seed, following_pages_limit=0): self.seed = seed self.connection = connection self.token_blacklist = {} self.following_pages_limit = following_pages_limit class Decorators(object): @staticmethod def retry_with_next_token_on_rate_limit_error(func): def wrapper(*args, **kwargs): collector = args[0] old_token = collector.connection.token while True: try: try: if kwargs['force_retry_token'] is True: print('Forced retry with token.') return func(*args, **kwargs) except KeyError: pass try: if collector.token_blacklist[old_token] <= time.time(): print(f'Token starting with {old_token[:4]} should work again.') return func(*args, **kwargs) else: print(f'Token starting with {old_token[:4]} not ready yet.') collector.connection.next_token() time.sleep(10) continue except KeyError: print(f'Token starting with {old_token[:4]} not tried yet. Trying.') return func(*args, **kwargs) except tweepy.RateLimitError: collector.token_blacklist[old_token] = time.time() + 150 print(f'Token starting with {old_token[:4]} hit rate limit.') print("Retrying with next available token.") print(f"Blacklisted until {collector.token_blacklist[old_token]}") collector.connection.next_token() continue break return wrapper @Decorators.retry_with_next_token_on_rate_limit_error def check_API_calls_and_update_if_necessary(self, endpoint, check_calls=True): """Checks for an endpoint how many calls are left (optional), gets the reset time and updates token if necessary. If called with check_calls = False, it will assume that the actual token calls for the specified endpoint are depleted and return None for remaining calls Args: endpoint (str): API endpoint, e.g. '/friends/ids' check_calls (boolean): Default True Returns: if check_calls=True: remaining_calls (int) else: None """ def try_remaining_calls_except_invalid_token(): try: remaining_calls = self.connection.remaining_calls(endpoint=endpoint) except tweepy.error.TweepError as invalid_error: if "'code': 89" in invalid_error.reason: print(f"Token starting with {self.connection.token[:5]} seems to have expired or\ it has been revoked.") print(invalid_error) self.connection.next_token() remaining_calls = self.connection.remaining_calls(endpoint=endpoint) else: raise invalid_error print("REMAINING CALLS FOR {} WITH TOKEN STARTING WITH {}: ".format( endpoint, self.connection.token[:4]), remaining_calls) return remaining_calls if check_calls is True: self.connection.calls_dict[endpoint] = try_remaining_calls_except_invalid_token() reset_time = self.connection.reset_time(endpoint=endpoint) self.connection.reset_time_dict[endpoint] = time.time() + reset_time while self.connection.calls_dict[endpoint] == 0: stdout.write("Attempt with next available token.\n") self.connection.next_token() try: next_reset_at = self.connection.reset_time_dict[endpoint] if time.time() >= next_reset_at: self.connection.calls_dict[endpoint] = \ self.connection.remaining_calls(endpoint=endpoint) else: time.sleep(10) continue except KeyError: self.connection.calls_dict[endpoint] = \ try_remaining_calls_except_invalid_token() reset_time = self.connection.reset_time(endpoint=endpoint) self.connection.reset_time_dict[endpoint] = time.time() + reset_time print("REMAINING CALLS FOR {} WITH TOKEN STARTING WITH {}: ".format( endpoint, self.connection.token[:4]), self.connection.calls_dict[endpoint]) print(f"{time.strftime('%c')}: new reset of token {self.connection.token[:4]} for \ {endpoint} in {int(self.connection.reset_time_dict[endpoint] - time.time())} seconds.") return self.connection.calls_dict[endpoint] else: self.connection.calls_dict[endpoint] = 0 if endpoint not in self.connection.reset_time_dict \ or self.connection.reset_time_dict[endpoint] <= time.time(): reset_time = self.connection.reset_time(endpoint=endpoint) self.connection.reset_time_dict[endpoint] = time.time() + reset_time print("REMAINING CALLS FOR {} WITH TOKEN STARTING WITH {}: ".format( endpoint, self.connection.token[:4]), self.connection.calls_dict[endpoint]) print(f"{time.strftime('%c')}: new reset of token {self.connection.token[:4]} for \ {endpoint} in {int(self.connection.reset_time_dict[endpoint] - time.time())} seconds.") while (endpoint in self.connection.reset_time_dict and self.connection.reset_time_dict[endpoint] >= time.time() and self.connection.calls_dict[endpoint] == 0): self.connection.next_token() time.sleep(1) return None def get_friend_list(self, twitter_id=None, follower=False): """Gets the friend list of an account. Args: twitter_id (int): Twitter Id of account, if None defaults to seed account of Collector object. Returns: list with friends of user. """ if twitter_id is None: twitter_id = self.seed result = [] cursor = -1 following_page = 0 while self.following_pages_limit == 0 or following_page < self.following_pages_limit: while True: try: if follower is False: page = self.connection.api.friends_ids(user_id=twitter_id, cursor=cursor) self.connection.calls_dict['/friends/ids'] = 1 else: page = self.connection.api.followers_ids(user_id=twitter_id, cursor=cursor) self.connection.calls_dict['/followers/ids'] = 1 break except tweepy.RateLimitError: if follower is False: self.check_API_calls_and_update_if_necessary(endpoint='/friends/ids', check_calls=False) else: self.check_API_calls_and_update_if_necessary(endpoint='/followers/ids', check_calls=False) if len(page[0]) > 0: result += page[0] else: break cursor = page[1][1] following_page += 1 return result def get_details(self, friends): """Collects details from friends of an account. Args: friends (list of int): list of Twitter user ids Returns: list of Tweepy user objects """ i = 0 user_details = [] while i < len(friends): if i + 100 <= len(friends): j = i + 100 else: j = len(friends) while True: try: try: user_details += self.connection.api.lookup_users(user_ids=friends[i:j], tweet_mode='extended') except tweepy.error.TweepError as e: if "No user matches for specified terms." in e.reason: stdout.write(f"No user matches for {friends[i:j]}") stdout.flush() else: raise e self.connection.calls_dict['/users/lookup'] = 1 break except tweepy.RateLimitError: self.check_API_calls_and_update_if_necessary(endpoint='/users/lookup', check_calls=False) i += 100 return user_details @staticmethod def make_friend_df(friends_details, select=["id", "followers_count", "status_lang", "created_at", "statuses_count"], provide_jsons: bool = False, replace_nonetype: bool = True, nonetype: dict = {'date': '1970-01-01', 'num': -1, 'str': '-1', 'bool': -1}): """Transforms list of user details to pandas.DataFrame Args: friends_details (list of Tweepy user objects) select (list of str): columns to keep in DataFrame provide_jsons (boolean): If true, will treat friends_details as list of jsons. This allows creating a user details dataframe without having to download the details first. Note that the jsons must have the same format as the _json attribute of a user node of the Twitter API. replace_nonetype (boolean): Whether or not to replace values in the user_details that are None. Setting this to False is experimental, since code to avoid errors resulting from it has not yet been implemented. By default, missing dates will be replaced by 1970/01/01, missing numericals by -1, missing strs by '-1', and missing booleans by -1. Use the 'nonetype' param to change the default. nonetype (dict): Contains the defaults for nonetype replacement (see docs for 'replace_nonetype' param). {'date': 'yyyy-mm-dd', 'num': int, 'str': 'str', 'bool': int} Returns: pandas.DataFrame with these columns or selected as by `select`: ['contributors_enabled', 'created_at', 'default_profile', 'default_profile_image', 'description', 'entities_description_urls', 'entities_url_urls', 'favourites_count', 'follow_request_sent', 'followers_count', 'following', 'friends_count', 'geo_enabled', 'has_extended_profile', 'id', 'id_str', 'is_translation_enabled', 'is_translator', 'lang', 'listed_count', 'location', 'name', 'needs_phone_verification', 'notifications', 'profile_background_color', 'profile_background_image_url', 'profile_background_image_url_https', 'profile_background_tile', 'profile_banner_url', 'profile_image_url', 'profile_image_url_https', 'profile_link_color', 'profile_sidebar_border_color', 'profile_sidebar_fill_color', 'profile_text_color', 'profile_use_background_image', 'protected', 'screen_name', 'status_contributors', 'status_coordinates', 'status_coordinates_coordinates', 'status_coordinates_type', 'status_created_at', 'status_entities_hashtags', 'status_entities_media', 'status_entities_symbols', 'status_entities_urls', 'status_entities_user_mentions', 'status_extended_entities_media', 'status_favorite_count', 'status_favorited', 'status_geo', 'status_geo_coordinates', 'status_geo_type', 'status_id', 'status_id_str', 'status_in_reply_to_screen_name', 'status_in_reply_to_status_id', 'status_in_reply_to_status_id_str', 'status_in_reply_to_user_id', 'status_in_reply_to_user_id_str', 'status_is_quote_status', 'status_lang', 'status_place', 'status_place_bounding_box_coordinates', 'status_place_bounding_box_type', 'status_place_contained_within', 'status_place_country', 'status_place_country_code', 'status_place_full_name', 'status_place_id', 'status_place_name', 'status_place_place_type', 'status_place_url', 'status_possibly_sensitive', 'status_quoted_status_id', 'status_quoted_status_id_str', 'status_retweet_count', 'status_retweeted', 'status_retweeted_status_contributors', 'status_retweeted_status_coordinates', 'status_retweeted_status_created_at', 'status_retweeted_status_entities_hashtags', 'status_retweeted_status_entities_media', 'status_retweeted_status_entities_symbols', 'status_retweeted_status_entities_urls', 'status_retweeted_status_entities_user_mentions', 'status_retweeted_status_extended_entities_media', 'status_retweeted_status_favorite_count', 'status_retweeted_status_favorited', 'status_retweeted_status_geo', 'status_retweeted_status_id', 'status_retweeted_status_id_str', 'status_retweeted_status_in_reply_to_screen_name', 'status_retweeted_status_in_reply_to_status_id', 'status_retweeted_status_in_reply_to_status_id_str', 'status_retweeted_status_in_reply_to_user_id', 'status_retweeted_status_in_reply_to_user_id_str', 'status_retweeted_status_is_quote_status', 'status_retweeted_status_lang', 'status_retweeted_status_place', 'status_retweeted_status_possibly_sensitive', 'status_retweeted_status_quoted_status_id', 'status_retweeted_status_quoted_status_id_str', 'status_retweeted_status_retweet_count', 'status_retweeted_status_retweeted', 'status_retweeted_status_source', 'status_retweeted_status_full_text', 'status_retweeted_status_truncated', 'status_source', 'status_full_text', 'status_truncated', 'statuses_count', 'suspended', 'time_zone', 'translator_type', 'url', 'verified' 'utc_offset'], """ if not provide_jsons: json_list_raw = [friend._json for friend in friends_details] else: json_list_raw = friends_details json_list = [] dtypes = {key: value for (key, value) in friends_details_dtypes.items() if key in select} for j in json_list_raw: flat = flatten_json(j, sep="_", columns=select, nonetype=nonetype) # In case that there are keys in the user_details json that are not in select newflat = {key: value for (key, value) in flat.items() if key in select} json_list.append(newflat) df = pd.json_normalize(json_list) for var in select: if var not in df.columns: if dtypes[var] == np.datetime64: df[var] = pd.to_datetime(nonetype["date"]) elif dtypes[var] == np.int64: df[var] = nonetype["num"] elif dtypes[var] == str: df[var] = nonetype["str"] elif dtypes[var] == np.int8: df[var] = nonetype["bool"] else: df[var] = np.nan else: if dtypes[var] == np.datetime64: df[var] = df[var].fillna(pd.to_datetime(nonetype["date"])) elif dtypes[var] == np.int64: df[var] = df[var].fillna(nonetype["num"]) elif dtypes[var] == str: df[var] = df[var].fillna(nonetype["str"]) elif dtypes[var] == np.int8: df[var] = df[var].fillna(nonetype["bool"]) df[var] = df[var].astype(dtypes[var]) df.sort_index(axis=1, inplace=True) return df def check_follows(self, source, target): """Checks Twitter API whether `source` account follows `target` account. Args: source (int): user id target (int): user id Returns: - `True` if `source` follows `target` - `False` if `source` does not follow `target` """ # TODO: check remaining API calls friendship = self.connection.api.show_friendship( source_id=source, target_id=target) following = friendship[0].following return following class Coordinator(object): """Selects a queue of seeds and coordinates the collection with collectors and a queue of tokens. """ def __init__(self, seeds=2, token_file_name="tokens.csv", seed_list=None, following_pages_limit=0): # Get seeds from seeds.csv self.seed_pool = FileImport().read_seed_file() # Create seed_list if none is given by sampling from the seed_pool if seed_list is None: self.number_of_seeds = seeds try: self.seeds = self.seed_pool.sample(n=self.number_of_seeds) except ValueError: # seed pool too small stderr.write("WARNING: Seed pool smaller than number of seeds.\n") self.seeds = self.seed_pool.sample(n=self.number_of_seeds, replace=True) self.seeds = self.seeds[0].values else: self.number_of_seeds = len(seed_list) self.seeds = seed_list self.seed_queue = mp.Queue() for seed in self.seeds: self.seed_queue.put(seed) # Get authorized user tokens for app from tokens.csv self.tokens = FileImport().read_token_file(token_file_name) # and put them in a queue self.token_queue = mp.Queue() for token, secret in self.tokens.values: self.token_queue.put((token, secret, {}, {})) # Initialize DataBaseHandler for DB communication self.dbh = DataBaseHandler() self.following_pages_limit = following_pages_limit def bootstrap_seed_pool(self, after_timestamp=0): """Adds all collected user details, i.e. friends with the desired properties (e.g. language) of previously found seeds to the seed pool. Args: after_timestamp (int): filter for friends added after this timestamp. Default: 0 Returns: None """ seed_pool_size = len(self.seed_pool) stdout.write("Bootstrapping seeds.\n") stdout.write(f"Old size: {seed_pool_size}. Adding after {after_timestamp} ") stdout.flush() query = f"SELECT id FROM user_details WHERE UNIX_TIMESTAMP(timestamp) >= {after_timestamp}" more_seeds = pd.read_sql(query, self.dbh.engine) more_seeds.columns = [0] # rename from id to 0 for proper append self.seed_pool = self.seed_pool.merge(more_seeds, how='outer', on=[0]) seed_pool_size = len(self.seed_pool) stdout.write(f"New size: {seed_pool_size}\n") stdout.flush() def lookup_accounts_friend_details(self, account_id, db_connection=None, select="*"): """Looks up and retrieves details from friends of `account_id` via database. Args: account_id (int) db_connection (database connection/engine object) select (str): comma separated list of required fields, defaults to all available ("*") Returns: None, if no friends found. Otherwise DataFrame with all details. Might be empty if language filter is on. """ if db_connection is None: db_connection = self.dbh.engine query = f"SELECT target from friends WHERE source = {account_id} AND burned = 0" friends = pd.read_sql(query, db_connection) if len(friends) == 0: return None else: friends = friends['target'].values friends = tuple(friends) if len(friends) == 1: friends = str(friends).replace(',', '') query = f"SELECT {select} from user_details WHERE id IN {friends}" friend_detail =
pd.read_sql(query, db_connection)
pandas.read_sql
# -*- coding: utf-8 -*- """ Created on Fri Jan 8 08:56:36 2016 @author: davidangeles """ # -*- coding: utf-8 -*- import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import tissue_enrichment_analysis as tea import os import mpl_toolkits.mplot3d import pyrnaseq_graphics as rsq from sklearn.preprocessing import StandardScaler # Package to perform PCA import sklearn.datasets import sklearn.decomposition sns.set_context("notebook") mag = 2 # value of beta from regression qval = .1 # qvalue from regression qvalEn = 0.05 # q value for enrichment analysis (tissues) dirLists = '../output/Gene_lists_for_analysis' if not os.path.exists(dirLists): os.makedirs(dirLists) dirGraphs = '../output/Graphs' if not os.path.exists(dirLists): os.makedirs(dirGraphs) os.chdir('./') # gene_lists from sleuth # tpm vals for PCA dfTPM = pd.read_csv("../input/tpm_table.csv") dfTPM.dropna(inplace=True) # pos beta means high old adults dfBetaA = pd.read_csv("../input/agebeta_wt.csv") dfBetaA.dropna(inplace=True) # pos beta means high in fog2 dfBetaG = pd.read_csv("../input/genotypebeta_wt.csv") dfBetaG.dropna(inplace=True) # pos beta means high in fog2-aged dfBetaAG = pd.read_csv("../input/genotypecrossagebeta_wt.csv") dfBetaAG.dropna(inplace=True) # likelihood ratio test results dfLRT = pd.read_csv("../input/lrt.csv") dfLRT.dropna(inplace=True) # sort by target_id dfBetaA.sort_values('target_id', inplace=True) dfBetaG.sort_values('target_id', inplace=True) dfBetaAG.sort_values('target_id', inplace=True) dfLRT.sort_values('target_id', inplace=True) # gold standard datasets dfDaf12 = pd.read_csv('../input/daf12genes.csv') dfDaf16 = pd.read_csv('../input/daf16genes.csv') dfLund = pd.read_csv('../input/lund_data.csv', header=None, names=['gene']) dfEckley = pd.read_csv('../input/eckley_data.csv', header=None, names=['gene']) dfMurphyUp = pd.read_csv('../input/murphy_data_lifespan_extension.csv') dfMurphyDown = pd.read_csv('../input/murphy_data_lifespan_decrease.csv') dfHalaschek = pd.read_csv('../input/Halaschek-Wiener_data.csv') # gpcrs dfGPCR = pd.read_csv('../input/all_gpcrs.csv') dfICh = pd.read_csv('../input/select_ion_transport_genes.csv') dfAxon = pd.read_csv('../input/axonogenesis_genes.csv') dfNP =
pd.read_csv('../input/neuropeptides.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Tue Feb 20 12:46:41 2018 @author: MichaelEK """ import numpy as np from os import path import pandas as pd from pdsql.mssql import rd_sql import seaborn as sns import matplotlib.pyplot as plt import matplotlib.dates as mdates from datetime import datetime import matplotlib.ticker as plticker import lowflows as lf plt.ioff() loc = plticker.MaxNLocator(integer=True) datetime1 = pd.Timestamp.today() #date1 = pd.Timestamp(datetime1.date()) pd.options.display.max_columns = 10 ##################################### ### Parameters usm_server = 'sql02prod' usm_database = 'usm' site_table = 'Site' site_attr_table = 'SiteAttribute' bad_sites = {'66101': '14240260', '65104': '165104', '69650': '696501'} irr_mons1 = [10, 11, 12] irr_mons2 = [1, 2, 3, 4] include_flow_methods = ['Correlated from Telem', 'Gauged', 'Telemetered', 'Visually Gauged', 'GW manual'] ##color palettes full_color = sns.color_palette('Blues') partial_color = sns.color_palette('Greens') no_color = sns.color_palette('Greys') base_dir = path.split(path.realpath(path.dirname(__file__)))[0] export_path = path.join(base_dir, 'lowflow_plots') #export_sel2 = 'lowflow_restr_2017-10-01.csv' #################################### ### Set up time ranges mon_now = datetime1.month - 1 year_now = datetime1.year if mon_now in irr_mons1: from_date = '{year}-10-01'.format(year=year_now) elif mon_now in irr_mons2: from_date = '{year}-10-01'.format(year=year_now - 1) else: from_date = '{year}-05-01'.format(year=year_now) end_mon_now = datetime1 - pd.DateOffset(months=1) + pd.tseries.offsets.MonthEnd(0) to_date = str(end_mon_now.date()) #to_date = '2019-02-12' export_name_fancy = '{start}_{end}_restrictions_fancy.png'.format(start=from_date, end=to_date) export_name = '{start}_{end}_restrictions.png'.format(start=from_date, end=to_date) export_man_calc_sites = '{start}_{end}_lowflow_sites.csv'.format(start=from_date, end=to_date) #################################### ### extract data lf_sites1 = lf.sites().reset_index() lowflow1 = lf.site_summary_ts(from_date, to_date).reset_index() lowflow2 = lowflow1[lowflow1.SourceSystem.isin(['Hydrotel', 'Gauging'])].copy() lowflow2.rename(columns={'ExtSiteID': 'site', 'RestrDate': 'date', 'RestrCategory': 'restr_category', 'MeasurementMethod': 'flow_method'}, inplace=True) sites1 = lowflow2.site.unique().tolist() sites1.extend(list(bad_sites.keys())) sites2 = rd_sql(usm_server, usm_database, site_table, ['ID', 'UpstreamSiteID'], where_in={'UpstreamSiteID': sites1}) sites_attr1 = rd_sql(usm_server, usm_database, site_attr_table, ['SiteID', 'CwmsName']) sites_attr1.rename(columns={'SiteID': 'ID'}, inplace=True) sites = pd.merge(sites2, sites_attr1, on='ID').drop('ID', axis=1) sites.rename(columns={'UpstreamSiteID': 'site', 'CwmsName': 'cwms'}, inplace=True) bad_ones = sites[sites.site.isin(list(bad_sites.keys()))].copy() bad_ones.replace({'site': bad_sites}, inplace=True) sites2 = pd.concat([sites, bad_ones]) ## Other - unused for now - but might later #site_restr1 = lowflow2.groupby(['site', 'restr_category'])['crc_count'].count() #site_restr1.name = 'count' #max_days = (pd.to_datetime(to_date) - pd.to_datetime(from_date)).days + 1 #max_days1 = site_restr1.groupby(level=['site']).transform('sum') #site_restr2 = (site_restr1/max_days1).round(3).unstack('restr_category') ## ## Combine cwms with lowflow sites lowflow3 = pd.merge(sites2, lowflow2, on='site') sites_zone_count = lowflow3[['site', 'cwms']].drop_duplicates().groupby('cwms').site.count() sites_zone_count['All Canterbury'] = sites_zone_count.sum() sites_zone_count_plot = ((sites_zone_count*0.1).apply(np.ceil) * 10).astype(int) restr_all = lowflow3.groupby(['restr_category', 'flow_method', 'date'])[['site']].count() restr_all['cwms'] = 'All Canterbury' restr_all1 = restr_all.reset_index().set_index(['cwms', 'restr_category', 'flow_method', 'date']).site restr1 = lowflow3.groupby(['cwms', 'restr_category', 'flow_method', 'date'])['site'].count() restr2 =
pd.concat([restr_all1, restr1])
pandas.concat
import os from pyspark.sql import SparkSession import pyspark import multiprocessing import pretty_midi from legacy.transcription import encode import pandas as pd # Functions for transcripting dataset stored in midi files using spark # Load midi from 'processed_dir' # Save resulted transcriptions to 'processed_dir' # Names of particular midi files in given directory def get_filenames(dataset_path=r'D:\ВКР\dataset\big midi\Lakh MIDI\lmd_full', ext=None): # count = 0 filenames = [] # dirs = [ name for name in os.listdir(dataset_path) if os.path.isdir(os.path.join(dataset_path, name))] for file_group in os.listdir(dataset_path): item_name = os.path.join(dataset_path, file_group) # for filename in os.listdir(group_path): # item_name = os.path.join(group_path, filename) if os.path.isdir(item_name): filenames += get_filenames(item_name, ext) else: if ext: for e in ext: if item_name.endswith(e): filenames.append(item_name) break else: filenames.append(item_name) print(len(filenames), "midi files in", dataset_path) return filenames # Read midi from file, make transcription and write result to 'processed_dir' def file_preproccess(data): filename, processed_dir, texts_dir = data try: pm = pretty_midi.PrettyMIDI(filename) encoded, OG_res, OG_tempo = encode(pm) if processed_dir: procesed_file = processed_dir + "\\" + filename.split("\\")[-1].split('.')[0] + '.txt' with open(procesed_file, "w") as text_file: text_file.write(str([encoded, OG_res, OG_tempo])) if texts_dir: procesed_file = texts_dir + "\\" + filename.split("\\")[-1].split('.')[0] + '.txt' with open(procesed_file, "w") as text_file: text_file.write(str(encoded)) return True except: return False # str(list()) # Write transcripted files to 'processed_dir' def preproccess_files(filenames, processed_dir, texts_dir, spark, n=-1, cpu_count=4, return_value=False): num = len(filenames) if n == -1 else n files = list(filenames[:num]) files = list([(f, processed_dir, texts_dir) for f in files]) print('cpu_count',cpu_count) rdd = spark.sparkContext.parallelize(files, cpu_count) if return_value: return rdd.map(file_preproccess).collect() rdd.map(file_preproccess).collect() def spark_preprocess(num=-1, dataset_dir=r'D:\ВКР\dataset\big midi\Lakh MIDI\lmd_full', processed_dir=r"D:\ВКР\dataset\big midi\ProcessedLakh", texts_dir=r'D:\ВКР\dataset\big midi\ProcessedLakh'): cpu_count = multiprocessing.cpu_count() spark = SparkSession.builder\ .master("local[8]")\ .appName("SparkApp")\ .getOrCreate() sc = spark.sparkContext conf = pyspark.SparkConf().setAll([ ('spark.executor.cores', str(cpu_count)), ('spark.cores.max', str(cpu_count))]) spark.sparkContext.stop() spark = SparkSession.builder.config(conf=conf).getOrCreate() sc = spark.sparkContext print(sc.getConf().getAll()) filenames = get_filenames(dataset_path=dataset_dir, ext=[".mid", ".midi"]) # filenames += get_filenames(dataset_path=dataset_dir, ext=) preproccess_files(filenames, processed_dir, texts_dir, spark, num, cpu_count) # Save DataFrames with processed midi to csv files def to_csv(csv_dir=r"D:\ВКР\dataset\big midi\pdLakh" + "\\", processed_dir=r'D:\ВКР\dataset\big midi\ProcessedLakh', df_size=10 * 1000): count = 0 file_num = 0 filenames_processed = get_filenames(dataset_path=processed_dir) for i, filename in enumerate(filenames_processed): if count == 0: df = pd.DataFrame({'title':
pd.Series([], dtype='str')
pandas.Series
from reframed import CBModel, Compartment, Metabolite, CBReaction, save_cbmodel from reframed.io.sbml import parse_gpr_rule from ..reconstruction.utils import to_rdf_annotation import pandas as pd import requests import sys UNIVERSE_URL = 'http://bigg.ucsd.edu/static/namespace/universal_model.json' COMPARTMENTS_URL = 'http://bigg.ucsd.edu/api/v2/compartments' METABOLITES_URL = 'http://bigg.ucsd.edu/api/v2/universal/metabolites/' REACTIONS_URL = 'http://bigg.ucsd.edu/api/v2/universal/reactions/' MODELS_URL = 'http://bigg.ucsd.edu/api/v2/models' MAX_GPR_TOKENS = 50 def progress(i, n): p = int((i+1)*100.0 / n) sys.stdout.write(f"\r{p}%") sys.stdout.flush() def get_request(url, max_tries=10): """ Get JSON data from BiGG RESTful API. Args: url (str): url request max_tries (int): maximum number of communication attempts (default: 10) Returns: dict: json data """ resp, data = None, None for i in range(max_tries): try: resp = requests.get(url) except: pass if resp is not None: data = resp.json() break if data is None: print('max number of attempts exceeded:', max_tries) print('try again? [y]/n') resp = input() if resp.lower() != 'n': data = get_request(url) return data def extract_annotation(elem, data): annotation = to_rdf_annotation(elem.id, [x[1] for x in data]) elem.metadata['XMLAnnotation'] = annotation def load_compartments(model): compartments = get_request(COMPARTMENTS_URL) compartments = sorted(compartments['compartments'], key=lambda x: x['bigg_id']) for entry in compartments: c_id = 'C_' + entry['bigg_id'] comp = Compartment(c_id, entry['name'], external=(c_id == 'C_e')) comp.metadata['SBOTerm'] = 'SBO:0000290' model.add_compartment(comp) def load_metabolites(json_model, model, cpds): metabolites = sorted(json_model['metabolites'], key=lambda x: x['id']) for entry in metabolites: c_id = 'C_' + entry['id'].split('_')[-1] m_id = 'M_' + entry['id'] met = Metabolite(m_id, str(entry['name']), c_id) met.metadata['SBOTerm'] = 'SBO:0000247' extract_annotation(met, entry['annotation']) if m_id[2:-2] in cpds.index: met.metadata['FORMULA'] = cpds.loc[m_id[2:-2], "formula"] met.metadata['CHARGE'] = str(int(cpds.loc[m_id[2:-2], "charge"])) model.add_metabolite(met) def is_pseudo(rxn): prefix = rxn.split('_', 1)[0].upper() return prefix in ['ATPM', 'BIOMASS', 'DM', 'EX', 'SK'] def load_reactions(json_model, model): reactions = sorted(json_model['reactions'], key=lambda x: x['id']) for entry in reactions: if is_pseudo(entry['id']): continue r_id = 'R_' + entry['id'] stoichiometry = {'M_' + met: coeff for met, coeff in entry['metabolites'].items()} rxn = CBReaction(r_id, str(entry['name']), stoichiometry=stoichiometry) extract_annotation(rxn, entry['annotation']) model.add_reaction(rxn) if len(model.get_reaction_compartments(r_id)) > 1: rxn.metadata['SBOTerm'] = 'SBO:0000185' else: rxn.metadata['SBOTerm'] = 'SBO:0000176' def download_universal_model(outputfile, cpd_annotation): print("Downloading BiGG universe...") cpds =
pd.read_csv(cpd_annotation, sep="\t", index_col=0)
pandas.read_csv
import numpy as np import pandas as pd from rdt import HyperTransformer from rdt.transformers import OneHotEncodingTransformer def get_input_data_with_nan(): data = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1], 'float': [0.1, 0.2, 0.1, np.nan, 0.1], 'categorical': ['a', 'b', np.nan, 'b', 'a'], 'bool': [False, np.nan, False, True, False], 'datetime': [ np.nan, '2010-02-01', '2010-01-01', '2010-02-01', '2010-01-01' ], 'names': ['Jon', 'Arya', 'Sansa', 'Jon', 'Robb'], }) data['datetime'] = pd.to_datetime(data['datetime']) return data def get_input_data_without_nan(): data = pd.DataFrame({ 'integer': [1, 2, 1, 3], 'float': [0.1, 0.2, 0.1, 0.1], 'categorical': ['a', 'b', 'b', 'a'], 'bool': [False, False, True, False], 'datetime': [ '2010-02-01', '2010-01-01', '2010-02-01', '2010-01-01' ], 'names': ['Jon', 'Arya', 'Sansa', 'Jon'], }) data['datetime'] = pd.to_datetime(data['datetime']) data['bool'] = data['bool'].astype('O') # boolean transformer returns O instead of bool return data def get_transformed_data(): return pd.DataFrame({ 'integer': [1, 2, 1, 3], 'float': [0.1, 0.2, 0.1, 0.1], 'categorical': [0.75, 0.25, 0.25, 0.75], 'bool': [0.0, 0.0, 1.0, 0.0], 'datetime': [ 1.2649824e+18, 1.262304e+18, 1.2649824e+18, 1.262304e+18 ], 'names': [0.25, 0.875, 0.625, 0.25] }) def get_transformed_nan_data(): return pd.DataFrame({ 'integer': [1, 2, 1, 3, 1], 'float': [0.1, 0.2, 0.1, 0.125, 0.1], 'float#1': [0.0, 0.0, 0.0, 1.0, 0.0], 'categorical': [0.6, 0.2, 0.9, 0.2, 0.6], 'bool': [0.0, -1.0, 0.0, 1.0, 0.0], 'bool#1': [0.0, 1.0, 0.0, 0.0, 0.0], 'datetime': [ 1.2636432e+18, 1.2649824e+18, 1.262304e+18, 1.2649824e+18, 1.262304e+18 ], 'datetime#1': [1.0, 0.0, 0.0, 0.0, 0.0], 'names': [0.2, 0.9, 0.5, 0.2, 0.7], }) def get_transformers(): return { 'integer': { 'class': 'NumericalTransformer', 'kwargs': { 'dtype': np.int64, } }, 'float': { 'class': 'NumericalTransformer', 'kwargs': { 'dtype': np.float64, } }, 'categorical': { 'class': 'CategoricalTransformer' }, 'bool': { 'class': 'BooleanTransformer' }, 'datetime': { 'class': 'DatetimeTransformer' }, 'names': { 'class': 'CategoricalTransformer', }, } def test_hypertransformer_with_transformers(): data = get_input_data_without_nan() transformers = get_transformers() ht = HyperTransformer(transformers) ht.fit(data) transformed = ht.transform(data) expected = get_transformed_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_hypertransformer_with_transformers_nan_data(): data = get_input_data_with_nan() transformers = get_transformers() ht = HyperTransformer(transformers) ht.fit(data) transformed = ht.transform(data) expected = get_transformed_nan_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_hypertransformer_without_transformers(): data = get_input_data_without_nan() ht = HyperTransformer() ht.fit(data) transformed = ht.transform(data) expected = get_transformed_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_hypertransformer_without_transformers_nan_data(): data = get_input_data_with_nan() ht = HyperTransformer() ht.fit(data) transformed = ht.transform(data) expected = get_transformed_nan_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_single_category(): ht = HyperTransformer(transformers={ 'a': OneHotEncodingTransformer() }) data = pd.DataFrame({ 'a': ['a', 'a', 'a'] }) ht.fit(data) transformed = ht.transform(data) reverse = ht.reverse_transform(transformed) pd.testing.assert_frame_equal(data, reverse) def test_dtype_category(): df = pd.DataFrame({'a': ['a', 'b', 'c']}, dtype='category') ht = HyperTransformer() ht.fit(df) trans = ht.transform(df) rever = ht.reverse_transform(trans)
pd.testing.assert_frame_equal(df, rever)
pandas.testing.assert_frame_equal
""" Functions to add a model version to the ModMon database. Run this script once, the first time an analyst submits a model file (including for a new version of a model) """ import argparse import json import os import sys import pandas as pd from ..db.connect import get_session from ..db.utils import get_unique_id from ..db.schema import ( Team, Dataset, Metric, ResearchQuestion, Model, ModelVersion, Score, ) from .store import copy_model_to_storage from .check import check_submission from ..utils.utils import ask_for_confirmation def setup_model( model_path, check_first=True, confirm=True, force=False, warnings_ok=True, create_envs=True, repro_check=True, set_old_inactive=True, session=None, ): """Add a model version to the ModMon monitoring system. Includes copying the directory model_path to the ModMon storage area and creating database entries. Parameters ---------- model_path : str Path to model version directory check_first : bool, optional Run model checks before attempting model version setup, by default True confirm : bool, optional Ask for user whether its ok to contitnue after performing model checks, by default True force : bool, optional Continue with model setup even if checks fail. Only applies if confirm is False. By default False warnings_ok : bool, optional Continue with model setup if warnings encountered during checks. Only applies if confirm is False. By default True create_envs : bool, optional Check environment creation if performing model checks, by default True repro_check : bool, optional Check running the model and reproducing its results if performing model checks, by default True set_old_inactive : bool , optional If True, set all previous versions of this model to be inactive, by default True """ if not os.path.exists(model_path): raise FileNotFoundError(f"{model_path} does not exist") if check_first: check_result = check_submission( model_path, create_envs=create_envs, repro_check=repro_check ) if confirm: message = "Add this model to the database?" if check_result["error"] > 0: message += " NOT RECOMMENDED WITH ERRORS ABOVE!" confirmed = ask_for_confirmation(message) if not confirmed: print("Aborting model setup.") return elif not force: if check_result["error"] > 0: print("Model checks failed. Aborting model setup.") return elif check_result["warning"] > 0 and not warnings_ok: print("Warnings during model checks. Aborting model setup.") return print("-" * 30) print(f"Adding model {model_path}...") # Set up SQLAlchemy session if session is None: session = get_session() ############# # Files ### ############# metadata_json = model_path + "/metadata.json" training_metrics_csv = model_path + "/training_scores.csv" prediction_metrics_csv = model_path + "/scores.csv" ##################### # Load metadata ### ##################### with open(metadata_json, "r") as f: metadata = json.load(f) ################# # Load data ### ################# # Load model run reference metrics metrics = pd.read_csv(prediction_metrics_csv) # Load model train metrics, if included try: training_metrics =
pd.read_csv(training_metrics_csv)
pandas.read_csv
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super().teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas_nosetest" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @pytest.fixture(autouse=True, scope="class") def setup_class(cls): cls.setup_import() cls.setup_driver() conn = cls.connect() conn.connect() def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip("SQLAlchemy not installed") @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): self._to_sql(method="multi") def test_to_sql_method_callable(self): self._to_sql_method_callable() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") pandasSQL.drop_table("temp_frame") assert not temp_conn.has_table("temp_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, np.object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2 ** 62]}) df.to_sql("test_bigint", self.conn, index=False) result = sql.read_sql_table("test_bigint", self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp("2000-01-01 08:00:00") # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp("2000-06-01 07:00:00") elif is_datetime64tz_dtype(col.dtype): assert str(col.dt.tz) == "UTC" # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [ Timestamp("2000-01-01 08:00:00", tz="UTC"), Timestamp("2000-06-01 07:00:00", tz="UTC"), ] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError( f"DateCol loaded with incorrect type -> {col.dtype}" ) # GH11216 df = pd.read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgresql server version difference col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) df = pd.read_sql_query( "select * from types_test_data", self.conn, parse_dates=["DateColWithTz"] ) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" check(df.DateColWithTz) df = pd.concat( list( pd.read_sql_query( "select * from types_test_data", self.conn, chunksize=1 ) ), ignore_index=True, ) col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" expected = sql.read_sql_table("types_test_data", self.conn) col = expected.DateColWithTz assert is_datetime64tz_dtype(col.dtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_datetime_with_timezone_roundtrip(self): # GH 9086 # Write datetimetz data to a db and read it back # For dbs that support timestamps with timezones, should get back UTC # otherwise naive data should be returned expected = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} ) expected.to_sql("test_datetime_tz", self.conn, index=False) if self.flavor == "postgresql": # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC expected["A"] = expected["A"].dt.tz_convert("UTC") else: # Otherwise, timestamps are returned as local, naive expected["A"] = expected["A"].dt.tz_localize(None) result = sql.read_sql_table("test_datetime_tz", self.conn) tm.assert_frame_equal(result, expected) result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn) if self.flavor == "sqlite": # read_sql_query does not return datetime type like read_sql_table assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, expected) def test_naive_datetimeindex_roundtrip(self): # GH 23510 # Ensure that a naive DatetimeIndex isn't converted to UTC dates = date_range("2018-01-01", periods=5, freq="6H") expected = DataFrame({"nums": range(5)}, index=dates) expected.to_sql("foo_table", self.conn, index_label="info_date") result = sql.read_sql_table("foo_table", self.conn, index_col="info_date") # result index with gain a name from a set_index operation; expected tm.assert_frame_equal(result, expected, check_names=False) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) expected_type = object if self.flavor == "sqlite" else np.datetime64 assert issubclass(df.DateCol.dtype.type, expected_type) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=["DateCol"]) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"} ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": {"unit": "s"}} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.to_sql("test_datetime", self.conn) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) result = result.drop("index", axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) result = result.drop("index", axis=1) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.loc[1, "A"] = np.nan df.to_sql("test_datetime", self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"], errors="coerce") tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_table("test_date", self.conn) result = res["a"] expected = to_datetime(df["a"]) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_table("test_time", self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = TestSQLiteFallback.connect() sql.to_sql(df, "test_time2", sqlite_conn, index=False) res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter sql.to_sql(df, "test_time3", self.conn, index=False) if self.flavor == "sqlite": res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2 ** 25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({"s1": s1, "s2": s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df["B"] = df["B"].astype("object") df["B"] = None result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) df.to_sql("test_nan", self.conn, index=False) # NaNs are coming back as None df.loc[2, "B"] = None # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i["column_names"] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = "test_get_schema_create_table" create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl) def test_dtype(self): cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables["dtype_test2"].columns["B"].type assert isinstance(sqltype, sqlalchemy.TEXT) msg = "The type of B is not a SQLAlchemy type" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": str}) # GH9083 df.to_sql("dtype_test3", self.conn, dtype={"B": sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables["dtype_test3"].columns["B"].type assert isinstance(sqltype, sqlalchemy.String) assert sqltype.length == 10 # single dtype df.to_sql("single_dtype_test", self.conn, dtype=sqlalchemy.TEXT) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltypea = meta.tables["single_dtype_test"].columns["A"].type sqltypeb = meta.tables["single_dtype_test"].columns["B"].type assert isinstance(sqltypea, sqlalchemy.TEXT) assert isinstance(sqltypeb, sqlalchemy.TEXT) def test_notna_dtype(self): cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) # noqa meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == "mysql": my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns assert isinstance(col_dict["Bool"].type, my_type) assert isinstance(col_dict["Date"].type, sqltypes.DateTime) assert isinstance(col_dict["Int"].type, sqltypes.Integer) assert isinstance(col_dict["Float"].type, sqltypes.Float) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame( { "f32": Series([V], dtype="float32"), "f64": Series([V], dtype="float64"), "f64_as_f32": Series([V], dtype="float64"), "i32": Series([5], dtype="int32"), "i64": Series([5], dtype="int64"), } ) df.to_sql( "test_dtypes", self.conn, index=False, if_exists="replace", dtype={"f64_as_f32": sqlalchemy.Float(precision=23)}, ) res = sql.read_sql_table("test_dtypes", self.conn) # check precision of float64 assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables["test_dtypes"].columns assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) assert isinstance(col_dict["f32"].type, sqltypes.Float) assert isinstance(col_dict["f64"].type, sqltypes.Float) assert isinstance(col_dict["i32"].type, sqltypes.Integer) assert isinstance(col_dict["i64"].type, sqltypes.BigInteger) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 def foo(connection): query = "SELECT test_foo_data FROM test_foo_data" return sql.read_sql_query(query, con=connection) def bar(connection, data): data.to_sql(name="test_foo_data", con=connection, if_exists="append") def main(connectable): with connectable.connect() as conn: with conn.begin(): foo_data = conn.run_callable(foo) conn.run_callable(bar, foo_data) DataFrame({"test_foo_data": [0, 1, 2]}).to_sql("test_foo_data", self.conn) main(self.conn) def test_temporary_table(self): test_data = "Hello, World!" expected = DataFrame({"spam": [test_data]}) Base = declarative.declarative_base() class Temporary(Base): __tablename__ = "temp_test" __table_args__ = {"prefixes": ["TEMPORARY"]} id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) spam = sqlalchemy.Column(sqlalchemy.Unicode(30), nullable=False) Session = sa_session.sessionmaker(bind=self.conn) session = Session() with session.transaction: conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query(sql=sqlalchemy.select([Temporary.spam]), con=conn) tm.assert_frame_equal(df, expected) class _TestSQLAlchemyConn(_EngineToConnMixin, _TestSQLAlchemy): def test_transactions(self): pytest.skip("Nested transactions rollbacks don't work with Pandas") class _TestSQLiteAlchemy: """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlalchemy.create_engine("sqlite:///:memory:") @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # sqlite has no boolean type, so integer type is returned assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Non-native Bool column with NA values stays as float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but assert not issubclass(df.DateCol.dtype.type, np.datetime64) def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({"a": [1, 2]}, dtype="int64") df.to_sql("test_bigintwarning", self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table("test_bigintwarning", self.conn) assert len(w) == 0 class _TestMySQLAlchemy: """ Test the sqlalchemy backend against an MySQL database. """ flavor = "mysql" @classmethod def connect(cls): url = "mysql+{driver}://root@localhost/pandas_nosetest" return sqlalchemy.create_engine( url.format(driver=cls.driver), connect_args=cls.connect_args ) @classmethod def setup_driver(cls): pymysql = pytest.importorskip("pymysql") cls.driver = "pymysql" cls.connect_args = {"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS} def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # MySQL has no real BOOL type (it's an alias for TINYINT) assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA = int column with NA values => becomes float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_read_procedure(self): import pymysql # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) df.to_sql("test_procedure", self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) # noqa trans.commit() except pymysql.Error: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class _TestPostgreSQLAlchemy: """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = "postgresql" @classmethod def connect(cls): url = "postgresql+{driver}://postgres@localhost/pandas_nosetest" return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): pytest.importorskip("psycopg2") cls.driver = "psycopg2" def test_schema_support(self): # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql("test_schema_public", self.conn, index=False) df.to_sql( "test_schema_public_explicit", self.conn, index=False, schema="public" ) df.to_sql("test_schema_other", self.conn, index=False, schema="other") # read dataframes back in res1 = sql.read_sql_table("test_schema_public", self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table("test_schema_public_explicit", self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table( "test_schema_public_explicit", self.conn, schema="public" ) tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(df, res4) msg = "Table test_schema_other not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("test_schema_other", self.conn, schema="public") # different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql("test_schema_other", self.conn, schema="other", index=False) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="replace", ) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="append", ) res = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, sqlalchemy.engine.Engine): engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema="other") pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, "test_schema_other2", index=False) pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="replace") pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="append") res1 = sql.read_sql_table("test_schema_other2", self.conn, schema="other") res2 = pdsql.read_table("test_schema_other2") tm.assert_frame_equal(res1, res2) def test_copy_from_callable_insertion_method(self): # GH 8953 # Example in io.rst found under _io.sql.method # not available in sqlite, mysql def psql_insert_copy(table, conn, keys, data_iter): # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ", ".join(f'"{k}"' for k in keys) if table.schema: table_name = f"{table.schema}.{table.name}" else: table_name = table.name sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" cur.copy_expert(sql=sql_query, file=s_buf) expected =
DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]})
pandas.DataFrame
# # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # import numpy as np import pandas as pd from mlos.Logger import create_logger from mlos.Optimizers.ExperimentDesigner.UtilityFunctions.UtilityFunction import UtilityFunction from mlos.Optimizers.ParetoFrontier import ParetoFrontier from mlos.Optimizers.RegressionModels.MultiObjectiveRegressionModel import MultiObjectiveRegressionModel from mlos.Optimizers.RegressionModels.Prediction import Prediction from mlos.Optimizers.RegressionModels.MultiObjectivePrediction import MultiObjectivePrediction from mlos.Spaces import SimpleHypergrid, DiscreteDimension, Point from mlos.Spaces.Configs.ComponentConfigStore import ComponentConfigStore from mlos.Tracer import trace multi_objective_probability_of_improvement_utility_function_config_store = ComponentConfigStore( parameter_space=SimpleHypergrid( name="multi_objective_probability_of_improvement_config", dimensions=[ DiscreteDimension(name="num_monte_carlo_samples", min=100, max=1000) ] ), default=Point( num_monte_carlo_samples=100 ) ) class MultiObjectiveProbabilityOfImprovementUtilityFunction(UtilityFunction): """Computes the probability of improvement (POI) of a set of configurations over the existing pareto frontier. We are up against several requirements here: we need to be able to predict the probability of improvement in a multi-dimensional objective space. Our assumptions (see below) make each distribution a multi-dimensional blob that's cut in two by a nearly arbitrarily complex surface of the pareto frontier. This precludes any closed form solution to the POI question. Thus, we take a Monte Carlo approach: we generate a bunch of points from the predictive distribution, compute the proportion of these that are dominated by the existing pareto frontier, and use that proportion as an estimator for the probability of improvement. Assuming Prediction Error Independence: We assume that we can sample independently from the distributions described by the multi-objective prediction object. That is to say that if we assume: P(objective_2 = y2 | objective_1 = y1) == P(objective_2 = y2) In practice I do not know how often this assumption is true. On the one hand, correlations between objective_1 and objective_2 should have been picked up by the model doing the predictions so by the time we get here, assuming that prediction errors are uncorrelated seems at least partly defensible. On the other hand, if for example predictions came from leaves at the edge of the parameter space then the predictions can effectively be extrapolations. In such a case, the prediction errors are correlated and our Monte Carlo sampling is biased. I don't know how important this is in practice so I propose going forward with this simple solution, and treating it as as a baseline that more sophisticated approaches can improve upon in the future. """ def __init__( self, function_config: Point, pareto_frontier: ParetoFrontier, surrogate_model: MultiObjectiveRegressionModel, logger=None ): if logger is None: logger = create_logger(self.__class__.__name__) self.logger = logger self.config = function_config self.pareto_frontier = pareto_frontier self.surrogate_model: MultiObjectiveRegressionModel = surrogate_model @trace() def __call__(self, feature_values_pandas_frame: pd.DataFrame): self.logger.debug(f"Computing utility values for {len(feature_values_pandas_frame.index)} points.") if self.pareto_frontier.empty or not self.surrogate_model.trained: # All of the configs are equally likely to improve upon a non-existing solution. # return pd.DataFrame(columns=['utility'], dtype='float') feature_values_pandas_frame = self.surrogate_model.input_space.filter_out_invalid_rows(original_dataframe=feature_values_pandas_frame) multi_objective_predictions: MultiObjectivePrediction = self.surrogate_model.predict(features_df=feature_values_pandas_frame) # Now that we have predictions for all of the features_df rows, we need to sample random points from the distribution # described by each prediction and then we want to check how many of those random points are dominated by the existing # pareto frontier. The proportion of non-dominated to all points is our estimator for the probability of improvement. # Note that we could compute the confidence intervals on the POI, and we could in theory keep sampling more intelligently. # That is, we could reject really dominated configurations after only a few samples, but if there are any close contenders, # we could sample more aggressively from their distributions until we reach a statistically significant difference between # their POI esitmates (and then sample a bit more, to fortify our conclusions). valid_predictions_index = feature_values_pandas_frame.index for _, prediction in multi_objective_predictions: prediction_df = prediction.get_dataframe() valid_predictions_index = valid_predictions_index.intersection(prediction_df.index) # Let's make sure all predictions have a standard deviation available. # for _, objective_prediction in multi_objective_predictions: std_dev_column_name = objective_prediction.add_standard_deviation_column() batched_poi_df = self._batched_probability_of_improvement( multi_objective_predictions=multi_objective_predictions, valid_predictions_index=valid_predictions_index, std_dev_column_name=std_dev_column_name ) batched_poi_df['utility'] =
pd.to_numeric(arg=batched_poi_df['utility'], errors='raise')
pandas.to_numeric
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from django.db.models import Q from django_pandas.io import read_frame from shuup.core.models import OrderLine, OrderStatus from shuup_recommender.models import ProductView from ._base import BaseRecommender from ._consts import EVERYTHING def distance(x, y): return np.sqrt(np.power(x, 2) + np.power(y, 2)) class MostSoldProducts(BaseRecommender): """ Most sold products recommender Recommend the most sold products To filter orders or shops, use the kwargs param when instantiating the recommender: kwargs: base_orders (queryset of shuup.Order): calculates the most sold products from this queryset. shop (shuup.Shop): filters orders based on this shop. shops (iterator[shuup.Shop]): filters orders based on these shops. Usage example: ``` most_sold_products = MostSoldProducts(shop=my_shop).recommend(20) ``` """ def _get_order_lines(self): orders = self.kwargs.get("base_orders") if orders: order_lines = OrderLine.objects.filter(order__in=orders).products() else: filters = Q(order__status=OrderStatus.objects.get_default_complete()) shop = self.kwargs.get("shop") shops = self.kwargs.get("shops") if shop: filters &= Q(order__shop=shop) elif shops: filters &= Q(order__shop__in=shops) order_lines = OrderLine.objects.products().filter(filters) return order_lines def recommend(self, n=10, **kwargs): """ :returns: DataFrame of [product_id, rank] sorted by rank DESC product_id (int): ID of the product sold_rank (float): rank of the product (from 0 to 1) """ order_lines = self._get_order_lines() # read order lines into DataFrame items_df = read_frame(order_lines, fieldnames=["product_id", "quantity"], verbose=False) # group by product ID and sum quantities sold_items = items_df.groupby(["product_id"]).sum() # get the max value of quantity max_value = sold_items["quantity"].max() # normalize the values sold_items["sold_rank"] = (sold_items["quantity"] / max_value).apply(pd.to_numeric) # sort the products and remove auxiliar columns ranked_products = sold_items[["sold_rank"]].sort_values("sold_rank", ascending=False) # if `n` is 0 or None, return everything return ranked_products.head(n) if n else ranked_products class MostViewedProducts(BaseRecommender): """ Most viwed products recommender Recommend the most viwed products This recommender works by using then shuup_recommender.ProductView model instances. Thus, it is your responsability to create instances of that model everytime one actually view the product. All ProductView will be used by this recommender by defaut. To use a custom set of views, you should use the `views` kwargs key when instantiating the recommender: ``` most_viewed_products = MostViewedProducts( views=ProductView.objects.filter(user__isnull=True) ).recommend() ``` """ def _get_views(self): if self.kwargs.get("views"): return self.kwargs["views"] return ProductView.objects.all() def recommend(self, n=10, **kwargs): """ :returns: DataFrame of [product_id, rank] sorted by rank DESC product_id (int): ID of the product view_rank (float): rank of the product (from 0 to 1) """ product_views_df = read_frame(self._get_views(), fieldnames=["product_id"], verbose=False) product_views_df["views"] = 1 # group by product ID and sum views viewed_products = product_views_df.groupby(["product_id"]).sum() # get the max value of views max_value = viewed_products["views"].max() # normalize the values - this way we can easily plot them later viewed_products["view_rank"] = (viewed_products["views"] / max_value).apply(pd.to_numeric) # sort the products and remove auxiliar columns ranked_products = viewed_products[["view_rank"]].sort_values("view_rank", ascending=False) # if `n` is 0 or None, return everything return ranked_products.head(n) if n else ranked_products class PopularProducts(object): """Popular products recommender Recommend the popular products This is the mix of most sold and most viewed products recommenders. All kwargs parameters from `MostViewedProducts` and `MostSoldProducts` can be used. """ def recommend(self, n=10, **kwargs): """ :returns: DataFrame of [product_id, rank] sorted by rank DESC product_id (int): ID of the product rank (float): rank of the product (from 0 to 1) """ viewed_products_rank = MostViewedProducts(**kwargs).recommend(EVERYTHING) sold_items_rank = MostSoldProducts(**kwargs).recommend(EVERYTHING) products_rank =
pd.merge(sold_items_rank, viewed_products_rank, how="outer", left_index=True, right_index=True)
pandas.merge
import math import pandas as pd from scipy import stats import streamlit as st st.title("Udacity A/B Testing Final Project") """ I recently completed Google and Udacity's introduction to A/B testing, which was pretty interesting! This is my take on the final project. The problem definition below comes almost verbatim from the instructions found [here](https://docs.google.com/document/u/1/d/1aCquhIqsUApgsxQ8-SQBAigFDcfWVVohLEXcV6jWbdI/pub?embedded=True). *At the time of this experiment, Udacity courses currently have two options on the course overview page: "start free trial", and "access course materials". If the student clicks "start free trial", they will be asked to enter their credit card information, and then they will be enrolled in a free trial for the paid version of the course. After 14 days, they will automatically be charged unless they cancel first. If the student clicks "access course materials", they will be able to view the videos and take the quizzes for free, but they will not receive coaching support or a verified certificate, and they will not submit their final project for feedback.* *In the experiment, Udacity tested a change where if the student clicked "start free trial", they were asked how much time they had available to devote to the course. If the student indicated 5 or more hours per week, they would be taken through the checkout process as usual. If they indicated fewer than 5 hours per week, a message would appear indicating that Udacity courses usually require a greater time commitment for successful completion, and suggesting that the student might like to access the course materials for free. At this point, the student would have the option to continue enrolling in the free trial, or access the course materials for free instead. The screenshot below shows what the experiment looks like.* """ from PIL import Image image = Image.open("screenshot.png") st.image(image, caption="The experimental pop-up", use_column_width=True) """ *The hypothesis was that this might set clearer expectations for students upfront, thus reducing the number of frustrated students who left the free trial because they didn't have enough time—without significantly reducing the number of students to continue past the free trial and eventually complete the course. If this hypothesis held true, Udacity could improve the overall student experience and improve coaches' capacity to support students who are likely to complete the course.* *The unit of diversion is a cookie, although if the student enrolls in the free trial, they are tracked by user-id from that point forward. The same user-id cannot enroll in the free trial twice. For users that do not enroll, their user-id is not tracked in the experiment, even if they were signed in when they visited the course overview page.* ## Metric choice As evaluation metrics, I chose: * Gross conversion, that is number of users to enroll in the free trial divided by number of users to click on "start free trial" ($d_{min}=0.01$) * Net conversion, that is number of users to make at least one payment divided by number of users to click on "start free trial" ($d_{min}=0.0075$) If the experiment has an effect, then we would expect gross conversion to decrease, and hope for net conversion not to significantly decrease. The invariant metrics I used are: * Number of cookies visiting the course overview page * Number of clicks on the “start free trial” button This makes sense because all of these activities occur before the user is even shown the modified page, which is only shown after the button is clicked. Therefore, any change in these metrics after the experiments should be treated as suspicious, and investigated further. ## Measuring variability The next step is estimating the baseline variability of each evaluation metric. This allows us to later calculate a suitable sample size for the experiment, and verify that the experiment is feasible. Below are the rough estimates of the baseline values for each metric. """ baseline_values = pd.read_csv("baseline.csv", names=["Metric", "Value"]) baseline_values r""" I use pageviews from here onwards as short-hand for the number of unique cookies viewing the course overview page (in the given data, it shows as cookies). The exercise calls for making an analytical estimate of the standard deviation based on a $N_{pageviews}=5000$. However, for both metrics, the standard deviation is based on the number of users who clicked the "start free trial" button, not the number of pageviews. The above data allows us to estimate this number for our given sample size, knowing the proportion of people who do click the button. The resulting standard deviations are shown in the following table. """ n = 5000 sd_gross_conversion = math.sqrt( (baseline_values.loc[4, "Value"] * (1 - baseline_values.loc[4, "Value"])) / (n * (baseline_values.loc[3, "Value"])) ) sd_net_conversion = math.sqrt( (baseline_values.loc[6, "Value"] * (1 - baseline_values.loc[6, "Value"])) / (n * (baseline_values.loc[3, "Value"])) ) sd_all = pd.DataFrame( [[sd_gross_conversion, sd_net_conversion]], columns=["Sd. Gross conversion", "Sd. Net conversion"], ) sd_all """ Since both metrics are probabilities, they should approximately follow a binomial distribution. Because of this, I would say we can expect the analytical estimates to be accurate. There should be no need to try and collect empirical estimates for either. """ r""" ## Experiment sizing ### Sample size The sample size is calculated on a metric-wise basis with the help of Evan Miller's [sample size calculator](https://www.evanmiller.org/ab-testing/sample-size.html), which I have reimplemented here. Since we have two evaluation metrics, we use the maximum of the two calculated sample sizes as the final sample size, in order to ensure enough power for each metric. We also need to keep in mind that the sample sizes we calculated refer to number of clicks needed, and needs to be converted to a sample size in pageviews. With this in mind the results are given below. The significance level and power used are standard picks, with $\alpha=.05$ and $\beta=.2$. """ from sample_size import sample_size alpha = 0.05 beta = 0.2 d_min_gross_diff = 0.01 d_min_net_diff = 0.0075 gross_sample_size = ( sample_size( alpha, 1 - beta, baseline_values.loc[4, "Value"], d_min_gross_diff, ) * 2 / baseline_values.loc[3, "Value"] ) net_sample_size = ( sample_size( alpha, 1 - beta, baseline_values.loc[6, "Value"], d_min_net_diff, ) * 2 / baseline_values.loc[3, "Value"] ) # Index: metric columns: d_min, sample size sample_sizes = pd.DataFrame( [ [ baseline_values.loc[4, "Value"], d_min_gross_diff, gross_sample_size, ], [baseline_values.loc[6, "Value"], d_min_net_diff, net_sample_size], ], columns=["Baseline value", "Minimum detectable difference", "Sample size"], index=["Gross conversion", "Net conversion"], ) sample_sizes total_sample_size = math.ceil(max(gross_sample_size, net_sample_size)) """ The resulting sample size is $N_{pageviews}=""" + str( total_sample_size ) + """$. Due to implementation difference this number differs slightly from the original sample size calculator.""" experiment_duration = math.ceil( total_sample_size / baseline_values.loc[0, "Value"] ) """ ### Duration vs. exposure I decided to run the experiment on 100% of traffic, for a couple of reasons: * No other running or anticipated future test is mentioned in the project instructions, so I assumed there would be enough bandwidth for full traffic to be split 50/50. * The potential harm in showing the feature to many users even if it ends up being taken away is very low. The main disadvantage I identified for this approach is that there might be a bug in the feature that makes it harder for users to actually complete their enrollment. However, this risk seemed minor, considering the feature is simply a pop-up. A possible approach would be to run a smaller test on a tiny group of users beforehand, just to make sure the feature works as expected before rolling it out to a larger experimental group. When running the experiment on all traffic, the duration comes down to $n_{days}=""" + str( experiment_duration ) + """$. Since this time interval covers at least two weekends, we can expect the results not to be significantly biased by weekly seasonalities. ## Analysis After running the mock experiment for the chosen number of days, we can analyze the results. The first step, before we evaluate the significance of the results, is running sanity checks on the invariant metrics. If, and only if, the sanity checks pass, we calculate statistical and practical significance, and run a sign test for additional confirmation. **Note:** This is where the calculations started getting confusing for me, and perhaps for you too, if you are working on the project yourself. First, In the Excel file we are given, enrollments and payments are missing after November 2 for some reason. Moreover, the results Udacity expects you to find are not related to how many days your decided to run your experiment. How many days you have to include (if you want your calculations to be marked as correct) even varies between the sanity checks and the effect size and sign test calculations, which I found strange. I consider the correct calculations to be based on the $n_{days}$ I calculated, so you will see my numbers based on that. However, if you adjust the number of days on the slider, you can match Udacity's results. The tables will update immediately. """ max_days = len(pd.read_csv("control.csv")) number_of_days = st.slider( label="Number of days to run the experiment", min_value=1, max_value=max_days, value=experiment_duration, ) control_data =
pd.read_csv("control.csv")
pandas.read_csv
# -*- coding:utf-8 -*- import pandas as pd import numpy as np import warnings def test(x): print('类型:\n{}\n'.format(type(x))) if isinstance(x, pd.Series): print('竖标:\n{}\n'.format(x.index)) else: print('竖标:\n{}\n'.format(x.index)) print('横标:\n{}\n'.format(x.columns)) # print('内容:\n{}\n'.format(x.values)) print('------------------------------------\n') def func_pdf(x, a, u, o): return a * (1 / (2 * np.pi * o ** 2) ** 0.5) * np.exp(-(x - u) ** 2 / (2 * o ** 2)) def choose_right(x, u): if x < u: x = u return x warnings.filterwarnings("ignore") pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # ----------- 连接 ----------- # excel 内只能包含表格,要把表格外的东西删掉(比如 数据来源:wind) addr = r'C:\Users\Administrator\Desktop\ANA' addr_in = addr + '\原始表.xlsx' addr_out = addr + '\函数拟合表.xlsx' addr_final = addr + '\概率计算表.xlsx' df_origin = pd.read_excel(addr_in, sheet_name='对数') stata_list = ['均值', '标准差'] result_list = [] for i in stata_list: df_stata = pd.read_excel(addr_out, sheet_name=i) df_stata.rename(columns={'Unnamed: 0': '三级行业'}, inplace=True) result = pd.merge(df_origin, df_stata, on='三级行业', how='left') num = len(df_stata.columns) + 3 b = result[result.columns[num:]] b.columns = [item.strip('_y') for item in b.columns] result_list.append(b) a = df_origin[df_origin.columns[4:]] b = result_list[0] a[a < b] = -100000000000 # 计算指标 c = func_pdf(a, 1, result_list[0], result_list[1]) c = c[df_stata.columns[2:]] c.to_csv(addr_final, encoding='utf-8-sig') c.replace(0, inplace=True) product = [] for i, v in c.iterrows(): trans = v.sort_values().tolist() product_trans = trans[0] * trans[1] * trans[2] product.append(product_trans) product_trans = pd.DataFrame(product) c =
pd.concat([c, product_trans], axis=1)
pandas.concat
# Recurrent Neural Network # Part 1 - Data Preprocessing # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the training set dataset_train = pd.read_csv('Google_Stock_Price_Train.csv') training_set = dataset_train.iloc[:,1:2].values # Feature Scaling from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range = (0, 1)) training_set_scaled = sc.fit_transform(training_set) # Creating a data structure with 60 timesteps and 1 output X_train = [] y_train = [] for i in range(60, 1258): X_train.append(training_set_scaled[i-60:i, 0]) y_train.append(training_set_scaled[i, 0]) X_train, y_train = np.array(X_train), np.array(y_train) # Reshaping X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) # Part 2 - Building the RNN # Importing the Keras libraries and packages from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout # Initialising the RNN regressor = Sequential() # Adding the first LSTM layer and some Dropout regularisation regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1))) regressor.add(Dropout(0.2)) # Adding a second LSTM layer and some Dropout regularisation regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) # Adding a third LSTM layer and some Dropout regularisation regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) # Adding a fourth LSTM layer and some Dropout regularisation regressor.add(LSTM(units = 50)) regressor.add(Dropout(0.2)) # Adding the output layer regressor.add(Dense(units = 1)) # Compiling the RNN regressor.compile(optimizer = 'adam', loss = 'mean_squared_error') # Fitting the RNN to the Training set regressor.fit(X_train, y_train, epochs = 100, batch_size = 32) # Part 3 - Making the predictions and visualising the results # Getting the real stock price of 2017 dataset_test =
pd.read_csv('Google_Stock_Price_Test.csv')
pandas.read_csv
import copy import time from functools import partial import matplotlib import pint import os from pint.quantity import _Quantity from eam_core.YamlLoader import YamlLoader matplotlib.use('Agg') import matplotlib.pyplot as plt from eam_core import Q_, FormulaProcess, collect_process_variables, SimulationControl import csv import inspect import logging import subprocess from operator import itemgetter from typing import Dict, Any, Optional, Tuple import numpy as np import pandas as pd import pypandoc import simplejson from networkx.drawing.nx_pydot import to_pydot from tabulate import tabulate import networkx as nx from networkx.drawing.nx_agraph import graphviz_layout, write_dot import errno logger = logging.getLogger(__name__) def find_node_by_name(model, name) -> FormulaProcess: return [node for node in model.process_graph.nodes() if node.name == name][0] def store_trace_data(model, trace_data: Dict[str, Dict[str, pd.Series]], simulation_control=None, average=True): """ :param simulation_control: :type simulation_control: :param trace_data: takes traces from :function:`ngmodel.collect_calculation_traces` :return: """ if not os.path.exists(f'{simulation_control.output_directory}/traces/'): os.makedirs(f'{simulation_control.output_directory}/traces/') metadata = {} for var, df in trace_data.items(): if isinstance(df, Q_): metadata[var] = {'unit': df.units} df = df.m if average: logger.warning(f'takign average of {var}') if isinstance(df.index, pd.core.index.MultiIndex): df = df.mean(level='time') # h5store(f'{simulation_control.output_directory}/traces/{var}.h5', df, **metadata) df.to_pickle(f'{simulation_control.output_directory}/traces/{var}.pdpkl') def load_trace_data(output_directory, variable: str, base_dir='.') -> pd.DataFrame: return pd.read_pickle(f'{base_dir}/{output_directory}/traces/{variable}.pdpkl') def store_calculation_debug_info(model, simulation_control, store_input_vars=True, average=True, target_units=None, result_variables=None): """ Store :param model: :param simulation_control: :param store_input_vars: :return: """ # store calculation traces traces = model.collect_calculation_traces() store_trace_data(model, traces, simulation_control=simulation_control, average=average) if store_input_vars: "calculate sensitivity for all variables" all_vars = model.collect_input_variables() flattened_vars = {} with open(f'{simulation_control.output_directory}/input_vars.csv', 'w') as f: writer = csv.writer(f) for proc_name, vars in sorted(all_vars.items()): for var_name, var in sorted(vars.items()): val = to_target_dimension(var_name, var.mean(), target_units) mean = val writer.writerow((proc_name, var_name, mean.m, str(mean.units))) flattened_vars[f'{proc_name}.{var_name}'] = mean df = pd.DataFrame.from_dict(flattened_vars, orient='index') df = df if not os.path.exists(f'{simulation_control.output_directory}/pd_pickles/'): os.makedirs(f'{simulation_control.output_directory}/pd_pickles/') h5store(f'{simulation_control.output_directory}/pd_pickles/input_variables.hd5', df, **metadata) df.to_pickle(f'{simulation_control.output_directory}/pd_pickles/input_variables.pdpkl') def h5store(filename, df, **kwargs): store = pd.HDFStore(filename) store.put('model_data', df) store.get_storer('model_data').attrs.metadata = kwargs store.close() def h5load(filename): store = pd.HDFStore(filename) data = store['model_data'] metadata = store.get_storer('model_data').attrs.metadata store.close() return data, metadata def store_dataframe(q_dict: Dict[str, pd.Series], simulation_control=None, target_units=None, variable_name=None, subdirectory=''): storage_df, metadata = pandas_series_dict_to_dataframe(q_dict, target_units=target_units, var_name=variable_name, simulation_control=simulation_control) logger.info(f'metadata is {metadata}') filename = f'{simulation_control.output_directory}/{subdirectory}/result_data_{variable_name}.hdf5' if not os.path.exists(f'{simulation_control.output_directory}/{subdirectory}'): os.mkdir(f'{simulation_control.output_directory}/{subdirectory}') h5store(filename, storage_df.pint.dequantify(), **metadata) def load_as_qantity_dict(filename) -> Dict[str, _Quantity]: val, metadata = h5load(filename) result_dict = {k: Q_(val[k], metadata[k]['unit']) for k in val.columns} return result_dict def load_as_df_qantity(filename) -> _Quantity: val, metadata = h5load(filename) # check all units are the same # logger.debug(metadata.items()) # assert len({v['unit'] for _, v in metadata.items()}) == 1 return val.pint.quantify(level=-1), metadata # return Q_(val, list(metadata.values())[0]['unit']) def load_as_plain_df(filename): data, metadata = load_as_df_qantity(filename) units = {v[0]: v[1] for v in data.pint.dequantify().columns.values} df = data.pint.dequantify() df.columns = df.columns.droplevel(1) return df, units def load_as_df(filename) -> Tuple[pd.DataFrame, Dict[str, Dict[str, str]]]: val, metadata = h5load(filename) return val, metadata def pandas_series_dict_to_dataframe(data: Dict[str, pd.Series], target_units=None, var_name=None, simulation_control: SimulationControl = None): """ input dict of process keys with result pd.Series output pd.DataFrame with with result pd.Series for columns of process keys """ metadata = {} if simulation_control.with_group: results_df = pd.DataFrame(index=simulation_control.group_df_multi_index) else: results_df = pd.DataFrame(index=simulation_control._df_multi_index) for process, variable in data.items(): logger.debug(f'converting results for process {process}') if target_units: variable = to_target_dimension(var_name, variable, target_units) results_df[process] = variable metadata[process] = variable.pint.units return results_df, metadata def quantity_dict_to_dataframe(q_data: Dict[str, _Quantity], target_units=None, var_name=None, simulation_control: SimulationControl = None) \ -> Tuple[pd.DataFrame, Dict[str, str]]: data = None metadata = {} logger.debug(f'result data has the following processes {q_data.keys()}') for process, results in q_data.items(): logger.debug(f'Converting <Quantity> back to <Pandas DF> {process}') if isinstance(results, Q_): if target_units: results = to_target_dimension(var_name, results, target_units) d = results.m metadata[process] = {'unit': str(results.units)} results_df = pd.DataFrame(data=d) results_df.columns = [process] if not isinstance(results_df.index, pd.MultiIndex): results_df.index = simulation_control._df_multi_index if data is None: data = results_df else: data[process] = results_df # print(data) return data, metadata def generate_model_definition_markdown(model, in_docker=False, output_directory=None): """ Generate markdown file with model code. :param model: :return: """ H = nx.relabel_nodes(model.process_graph, lambda n: n.name) # write_dot(H, 'models/graphs/baseline.dot') pydot = to_pydot(H) input_vars = model.collect_input_variables() traces = model.collect_calculation_traces() df = load_df(model.name, 'all', output_directory=output_directory) logger.debug("Building model documentation markdown") with open(f'{output_directory}/{model.name}_model_documentation.md', 'w') as f: f.write("# Model\n\n") for node in pydot.get_node_list(): name = node.get_name().strip('"') process_node = find_node_by_name(model, name) # method = process_node.formulaModel.formula # write_formula(f, method, name, 'energy_footprint') # # method = process_node.embodied_carbon_footprint # write_method(f, method, name, 'embodied_carbon_footprint') # # if hasattr(process_node, 'get_allocation_coefficient'): # method = process_node.get_allocation_coefficient # write_method(f, method, name, 'get_allocation_coefficient') items = [] logger.debug(f"Processing process {name}") for item in input_vars[name].items(): logger.debug(f"Processing variable {item[0]}") dataa = item[1] if isinstance(dataa, Q_): dataa = dataa.m metadata[item[0]] = {'unit': dataa.units} if dataa.index.nlevels == 2: item__mean = dataa.mean(level='time').mean() else: item__mean = dataa.mean() items.append((item[0], item__mean)) # collect all the traces of this process process_traces = {key: traces[key][name] for key in traces.keys() if name in traces[key]} for item in process_traces.items(): if item[1].index.nlevels == 2: item__mean = item[1].mean(level='time').mean() else: item__mean = item[1].mean() items.append((item[0], item__mean)) f.writelines(tabulate(items, ['variable', 'value'], tablefmt='simple')) f.write('\n\n') items = [] for metric, unit in zip(['use_phase_energy', 'use_phase_carbon', 'embodied_carbon'], ['J', 'gCO2e', 'gCO2e']): if name + '_' + metric in df.columns: v = df[name + '_' + metric].mean() items.append([metric, v, unit]) f.writelines(tabulate(items, ['variable', 'value', 'unit'], tablefmt='simple')) f.write('\n\n') logger.info("writing pandoc") # if in_docker: # ps = subprocess.Popen(( # f"docker run -v `pwd`:/source jagregory/pandoc -f markdown -t latex {simulation_control.output_directory}/{model.name}_model_documentation.md -o {simulation_control.output_directory}/{model.name}_model_documentation.pdf -V geometry:margin=0.2in, landscape"), # shell=True) # else: logger.info(f'converting model doc at {output_directory}/{model.name}_model_documentation.md') output = pypandoc.convert_file(f'{output_directory}/{model.name}_model_documentation.md', 'pdf', outputfile=f'{output_directory}/{model.name}_model_documentation.pdf', extra_args=['-V', 'geometry:margin=0.2in, landscape']) def write_method(f, method, name, suffix=None): f.writelines(["## Process {} - {}\n".format(name, suffix), "\n", "```python\n"]) f.writelines(inspect.getsource(method)) f.writelines(["```\n", "\n"]) def get_unit(name, process_node=None): unit = None if process_node: # try resolving the unit from the process documentation logger.debug(f'searching for unit for var {name} in process {process_node.name}') try: units = [info.unit for info in process_node.variable_infos() if info.property_name == name] except: units = None unit = units[0] if units else '' if not unit: # if that fails, use these defaults unit_dict = {'data_volume': 'b', 'use_phase_energy': 'J', 'use_phase_carbon': 'tCO2e', 'on_energy': 'J', 'active_standby_energy': 'J', 'viewing_time_minutes_monthly': 'minutes/month'} if name in unit_dict.keys(): return unit_dict[name] return unit def convert_for_graph(val, unit): if unit == 'b': return val * 1.25e-16, 'PB' if unit == 'J': return val * 2.77778e-13, 'GWh' if unit == 'hours/month': return val * 3.61984E-12, 'viewer-years/sec' if unit == 'minutes/month': return val * 2.60628E-09, 'viewer-years/h' return val, unit def get_unit_by_name(name): if name == 'data_volume': return 'b' def draw_graph_from_dotfile(model, file_type='pdf', show_variables=True, metric=None, start_date=None, end_date=None, colour_def=None, show_histograms=True, in_docker=False, output_directory=None, edge_labels=False, target_units=None): if show_histograms: generate_graph_node_barcharts(model.name, metric, start_date=start_date, end_date=end_date, base_directory=output_directory) project_dir = os.getcwd() # '/Users/csxds/workspaces/ngmodel' H = nx.relabel_nodes(model.process_graph, lambda n: n.name) ref_period = 'monthly' H.graph['graph'] = {'label': f'{model.name} ({ref_period})', 'labelloc': 't', 'nodesep': 1, 'ranksep': 1} # write_dot(H, 'models/graphs/baseline.dot') pydot = to_pydot(H) for node in pydot.get_node_list(): node.set_shape('box') node_name = node.get_name().strip('"') process_node = find_node_by_name(model, node_name) # attributes = '\n'.join(keys) logger.debug(f'drawing node {process_node.name}') node_colour = colour_def.get('colours', {}).get( process_node.metadata.get(colour_def.get('category_name', ""), None), '#EB0EAA') lable_txt = f'<<TABLE BORDER="0" CELLBORDER="0" CELLSPACING="0"><TR><TD BGCOLOR="{node_colour}"></TD></TR>' \ + f'<TR><TD><FONT FACE="times bold italic">{node_name}</FONT></TD></TR>' if show_variables: import_vars, input_vars = collect_process_variables(process_node) lable_txt += '<TR><TD ALIGN="CENTER" BORDER="1">INPUT VARS</TD></TR>' for var_name, var_value in sorted(input_vars.items()): val = to_target_dimension(var_name, var_value, target_units) lable_txt = append_quantity_value_to_label(var_name, lable_txt, val.pint.m.mean(), val.pint.units) lable_txt += '<TR><TD ALIGN="CENTER" BORDER="1">IMPORT VARS</TD></TR>' for var_name, var_value in sorted(import_vars.items()): val = to_target_dimension(var_name, var_value, target_units) lable_txt = append_quantity_value_to_label(var_name, lable_txt, val.pint.m.mean(), val.pint.units) if process_node._DSL.result is not None: lable_txt += '<TR><TD ALIGN="CENTER" BORDER="1">RESULT</TD></TR>' val = process_node._DSL.result var_name = 'result' val = to_target_dimension(var_name, val, target_units) lable_txt = append_quantity_value_to_label(var_name, lable_txt, val.pint.m.mean(), val.pint.units) img_file = process_node.name.replace(' ', '_') img_filename = f'{project_dir}/{output_directory}/subgraphs/{img_file}.png' if os.path.isfile(img_filename): lable_txt += f'<tr><td><IMG SCALE="TRUE" SRC="{img_filename}" /></td></tr>' lable_txt += '</TABLE>>' # lable_txt= "<<div><h1>{}</h1>{}</div>>".format(name, attributes) node.set_label(lable_txt) # node.set_tooltip("test") node.set_tooltip(process_node.formulaModel.formula.text) logger.info(f"Labelling edges to processes.") for dot_edge in pydot.get_edge_list(): logger.debug(f"processing {dot_edge.obj_dict['points']}.") source_name = dot_edge.get_source() destination_name = dot_edge.get_destination() # @todo - why are some processes wrapped in double quotes?... def strip_quotes(string): if string.startswith('"') and string.endswith('"'): return string[1:-1] else: return string source_name = strip_quotes(source_name) destination_name = strip_quotes(destination_name) source_node = find_node_by_name(model, source_name) destination_node = find_node_by_name(model, destination_name) # import_variable_names = defaultdict(list) if edge_labels: logger.debug(f'processing edge: {source_name} -> {destination_name}') # find the edge object in for graph_edge in model.process_graph.in_edges(destination_node, data=True): # print(graph_edge) if graph_edge[0] == source_node: # logger.debug(f'processing edge: {source_name} -> {destination_name}') label = "" for key, var in graph_edge[2].items(): if key == 'processed': continue # pass logger.debug(f'adding label for variable {var.name}') val = var.data_source.get_value(None, None, ) val = to_target_dimension(var.name, val, target_units) # val_m = val.m.mean() # unit = val.units val_m = val.pint.m.mean() val_unit = val.pint.units if abs(val_m) > 0.01 and abs(val_m) < 100000: label += '{} = {:.02f} {}\n'.format(var.name, val_m, val_unit) else: label += '{} = {:.2E} {}\n'.format(var.name, val_m, val_unit) # dot_edge.set_label("this is a test ") dot_edge.set_label(label) # dot_edge.set_labeltooltip(label) # for k, v in edge_variables.items(): # import_variable_names[k].append(v) # @todo check model name does not allow code execution dot_file = f'{output_directory}/{model.name}.dot' pydot.write_dot(dot_file) cmd = r'perl -p -i.regexp_bak -e \'s/lp="\d+\.?\d*,\d*\.?\d*",\n?//\' "' + dot_file + '"' # l_cmd = ["perl", "-p", "-i.regexp_bak", "-e", '\'s/lp="\d+\.?\d*,\d*\.?\d*",\n?//\'', "{dot_file}"] import shlex l_cmd = shlex.split(cmd) logger.info(f'removing "lp" statements from {dot_file}') with subprocess.Popen(l_cmd, stdout=subprocess.PIPE) as proc: logger.info('output from shell process: ' + str(proc.stdout.read())) # time.sleep(2) dot_render_filename = f'{output_directory}/{model.name}_graph.{file_type}' logger.info('generating new graph plot from dot file at %s' % dot_render_filename) if in_docker: cwd = os.getcwd() cmd = f"docker run -v {cwd}:{project_dir} -w {project_dir} markfletcher/graphviz dot '{dot_file}' -T{file_type} -Gsplines=ortho -Grankdir=LR -Gnodesep=0.1 -Gratio=compress" logger.info(f'running docker cmd {cmd}') l_cmd = shlex.split(cmd) logger.info(f'running docker cmd {l_cmd}') with open(dot_render_filename, 'w') as output: with subprocess.Popen(l_cmd, stdout=output) as proc: pass else: cmd = f"dot '{dot_file}' -T{file_type} -Gsplines=ortho -Grankdir=BT > '{dot_render_filename}'" logger.info(f'running local cmd {cmd}') ps = subprocess.Popen((cmd), shell=True) def to_target_dimension(name: str, q, target_units: Dict[str, str]): for target in target_units: func_name = list({v for v in target.keys() if v != 'to_unit'})[0] method_to_call = getattr(name, func_name) # @todo this is a security risk... result = method_to_call(target[func_name]) if result: logger.debug(f"converting {name} to {target['to_unit']}") if isinstance(q, Q_): return q.to(target['to_unit']) if isinstance(q, pd.Series): return q.pint.to(target['to_unit']) return q def append_quantity_value_to_label(att, lable_txt, val, unit): if abs(val) > 0.01 and abs(val) < 100000: lable_txt += '<TR><TD ALIGN="LEFT" >{} = {:.02f} {}</TD></TR>'.format(att, val, unit) else: lable_txt += '<TR><TD ALIGN="LEFT" >{} = {:.2E} {}</TD></TR>'.format(att, val, unit) return lable_txt def get_unit_and_convert(att, process_node, val): if not isinstance(val, (float, int)): val = val.mean() if att in process_node.variables: var = process_node.variables[att] unit = get_unit(att, process_node) val, unit = convert_for_graph(val, unit) return unit, val def generate_graph_node_barcharts(model_name, metric, start_date=None, end_date=None, base_directory=None): logger.info('generating graph node barcharts') filename = f'{base_directory}/result_data_{metric}.hdf5' df, units = load_as_plain_df(filename) if not start_date: start_date = df.index[0][0].date() if not end_date: end_date = df.index[-1][0].date() df = df.loc[start_date:end_date] s = [*df.mean(level='time').sum().items()] labels, values = zip(*sorted(s, key=itemgetter(1))) indexes = np.arange(len(labels)) width = 1 if not os.path.exists(f'{base_directory}/subgraphs/'): os.mkdir(f'{base_directory}/subgraphs/') for k, v in df.mean(level='time').sum().items(): logger.debug(f'writing subgraph for {k}') fig, ax = plt.subplots(figsize=(3, 1)) plt.bar(indexes, values, width, alpha=0.2) plt.bar(labels.index(k), values[labels.index(k)], width, color='red', alpha=0.7) plt.gca().annotate(k, xy=(labels.index(k), values[labels.index(k)]), xycoords='data', xytext=(-30, 20), textcoords='offset points', arrowprops=dict(arrowstyle="->", connectionstyle="angle3,angleA=0,angleB=-90")) plt.xticks(indexes + width * 0.5, labels) plt.gca().get_xaxis().set_visible(False) plt.savefig(f'{base_directory}/subgraphs/%s.png' % k.replace(' ', '_')) plt.close() def store_results(process_footprint_dict, model, simulation_control=None, ): if not os.path.exists(f'{simulation_control.output_directory}/pd_pickles/'): os.makedirs(f'{simulation_control.output_directory}/pd_pickles/') raw = {k: v.m for k, v in process_footprint_dict['use_phase_energy'].items()} dfm =
pd.DataFrame.from_dict(raw)
pandas.DataFrame.from_dict
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 2 12:49:47 2021 @author: madeline """ import argparse import pandas as pd import os def parse_args(): parser = argparse.ArgumentParser( description='Creates two dataframes from a surveillance report TSV') parser.add_argument('--tsv', type=str, default=None, help='Path to surveillance report TSV file') parser.add_argument('--functions_table', type=str, default=None, help='TSV file containing Pokay category:NML category mappings') parser.add_argument('--frequency_threshold', type=float, default=0.2, help='Alternate frequency threshold cutoff for inclusion in report') return parser.parse_args() def make_functions_df(tsv, functions_df_template): #load functions_df template functions_df = pd.read_csv(functions_df_template, sep='\t', header=0) #populate the Mutations column row by row for row in functions_df['Sub-categories from POKAY']: row_mutations_set = set() category_list = row.split(',') #get list of Pokay categories for category in category_list: category = category.rstrip() #remove trailing spaces to enable matching #find mutation names that match that category and add them to the set cat_mutations = tsv[tsv['function_category']==category]['name'] cat_mutations_set = set(cat_mutations) #add category mutations set to row mutations set row_mutations_set.update(cat_mutations_set) #save row mutations set in the 'Mutations' column, sorted alphabetically row_list = sorted(list(row_mutations_set)) row_str = ', '.join(str(e) for e in row_list) mask = functions_df['Sub-categories from POKAY']==row functions_df.loc[mask, 'Mutations'] = row_str return functions_df def make_mutations_df(tsv, functions_dataframe): named_mutations = functions_dataframe['Mutations'].values.tolist() named_mutations = ', '.join(str(e) for e in named_mutations).split(', ') named_mutations = set(named_mutations) named_mutations.remove('') #tsv columns to use tsv_df_cols = ['name', 'function_category', 'function_description', 'viral_clade_defining', 'citation', 'ao', 'dp', 'Frequency (Variant)'] #create empty dataframe mutations_df = pd.DataFrame(columns=tsv_df_cols) for mutation in named_mutations: #get rows of the tsv for that mutation tsv_rows = tsv[tsv['name']==mutation] #keep certain columns of the tsv rows tsv_rows = tsv_rows[tsv_df_cols] #concatenate dfs mutations_df = pd.concat((mutations_df, tsv_rows)) #remove clade-defining values from strains column mutations_df['viral_clade_defining'] = mutations_df['viral_clade_defining'].str.replace(r"=.*?;",",", regex=True) #remove trailing commas mutations_df['viral_clade_defining'] = mutations_df['viral_clade_defining'].str.rstrip(' ').str.rstrip(',') #rename mutations_df columns final_mutations_df_cols = ['Mutations', 'Sub-category', 'Function', 'Lineages', 'Citation', 'ao', 'dp', 'Frequency (Variant)'] renaming_dict = dict(zip(tsv_df_cols, final_mutations_df_cols)) mutations_df = mutations_df.rename(columns=renaming_dict) #add 'Frequency (Functional)' column mutations_df['Frequency (Functional)'] = mutations_df['ao'] / mutations_df['dp'] # ao / dp #reorder mutations_df columns mutations_df_cols = ['Mutations', 'Frequency (Variant)', 'Frequency (Functional)', 'Sub-category', 'Function', 'Lineages', 'Citation'] mutations_df = mutations_df[mutations_df_cols] return mutations_df if __name__ == '__main__': args = parse_args() functions_table = args.functions_table report_tsv = args.tsv #load tsv and remove all rows that don't meet the frequency cutoff tsv_df =
pd.read_csv(args.tsv, sep='\t', header=0)
pandas.read_csv
import logging import os import numpy as np from torch_geometric.graphgym.config import cfg from torch_geometric.graphgym.utils.io import (dict_list_to_json, dict_list_to_tb, dict_to_json, json_to_dict_list, makedirs_rm_exist, string_to_python) try: from tensorboardX import SummaryWriter except ImportError: SummaryWriter = None def is_seed(s): try: int(s) return True except Exception: return False def is_split(s): if s in ['train', 'val', 'test']: return True else: return False def join_list(l1, l2): assert len(l1) == len(l2), \ 'Results with different seeds must have the save format' for i in range(len(l1)): l1[i] += l2[i] return l1 def agg_dict_list(dict_list): """ Aggregate a list of dictionaries: mean + std Args: dict_list: list of dictionaries """ dict_agg = {'epoch': dict_list[0]['epoch']} for key in dict_list[0]: if key != 'epoch': value = np.array([dict[key] for dict in dict_list]) dict_agg[key] = np.mean(value).round(cfg.round) dict_agg['{}_std'.format(key)] = np.std(value).round(cfg.round) return dict_agg def name_to_dict(run): cols = run.split('-')[1:] keys, vals = [], [] for col in cols: try: key, val = col.split('=') except Exception: print(col) keys.append(key) vals.append(string_to_python(val)) return dict(zip(keys, vals)) def rm_keys(dict, keys): for key in keys: dict.pop(key, None) def agg_runs(dir, metric_best='auto'): r''' Aggregate over different random seeds of a single experiment Args: dir (str): Directory of the results, containing 1 experiment metric_best (str, optional): The metric for selecting the best validation performance. Options: auto, accuracy, auc. ''' results = {'train': None, 'val': None, 'test': None} results_best = {'train': None, 'val': None, 'test': None} for seed in os.listdir(dir): if is_seed(seed): dir_seed = os.path.join(dir, seed) split = 'val' if split in os.listdir(dir_seed): dir_split = os.path.join(dir_seed, split) fname_stats = os.path.join(dir_split, 'stats.json') stats_list = json_to_dict_list(fname_stats) if metric_best == 'auto': metric = 'auc' if 'auc' in stats_list[0] else 'accuracy' else: metric = metric_best performance_np = np.array( # noqa [stats[metric] for stats in stats_list]) best_epoch = \ stats_list[ eval("performance_np.{}()".format(cfg.metric_agg))][ 'epoch'] print(best_epoch) for split in os.listdir(dir_seed): if is_split(split): dir_split = os.path.join(dir_seed, split) fname_stats = os.path.join(dir_split, 'stats.json') stats_list = json_to_dict_list(fname_stats) stats_best = [ stats for stats in stats_list if stats['epoch'] == best_epoch ][0] print(stats_best) stats_list = [[stats] for stats in stats_list] if results[split] is None: results[split] = stats_list else: results[split] = join_list(results[split], stats_list) if results_best[split] is None: results_best[split] = [stats_best] else: results_best[split] += [stats_best] results = {k: v for k, v in results.items() if v is not None} # rm None results_best = {k: v for k, v in results_best.items() if v is not None} # rm None for key in results: for i in range(len(results[key])): results[key][i] = agg_dict_list(results[key][i]) for key in results_best: results_best[key] = agg_dict_list(results_best[key]) # save aggregated results for key, value in results.items(): dir_out = os.path.join(dir, 'agg', key) makedirs_rm_exist(dir_out) fname = os.path.join(dir_out, 'stats.json') dict_list_to_json(value, fname) if cfg.tensorboard_agg: if SummaryWriter is None: raise ImportError( 'Tensorboard support requires `tensorboardX`.') writer = SummaryWriter(dir_out) dict_list_to_tb(value, writer) writer.close() for key, value in results_best.items(): dir_out = os.path.join(dir, 'agg', key) fname = os.path.join(dir_out, 'best.json') dict_to_json(value, fname) logging.info('Results aggregated across runs saved in {}'.format( os.path.join(dir, 'agg'))) def agg_batch(dir, metric_best='auto'): r''' Aggregate across results from multiple experiments via grid search Args: dir (str): Directory of the results, containing multiple experiments metric_best (str, optional): The metric for selecting the best validation performance. Options: auto, accuracy, auc. ''' import pandas as pd results = {'train': [], 'val': [], 'test': []} for run in os.listdir(dir): if run != 'agg': dict_name = name_to_dict(run) dir_run = os.path.join(dir, run, 'agg') if os.path.isdir(dir_run): for split in os.listdir(dir_run): dir_split = os.path.join(dir_run, split) fname_stats = os.path.join(dir_split, 'best.json') dict_stats = json_to_dict_list(fname_stats)[ -1] # get best val epoch rm_keys(dict_stats, ['lr', 'lr_std', 'eta', 'eta_std', 'params_std']) results[split].append({**dict_name, **dict_stats}) dir_out = os.path.join(dir, 'agg') makedirs_rm_exist(dir_out) for key in results: if len(results[key]) > 0: results[key] = pd.DataFrame(results[key]) results[key] = results[key].sort_values( list(dict_name.keys()), ascending=[True] * len(dict_name)) fname = os.path.join(dir_out, '{}_best.csv'.format(key)) results[key].to_csv(fname, index=False) results = {'train': [], 'val': [], 'test': []} for run in os.listdir(dir): if run != 'agg': dict_name = name_to_dict(run) dir_run = os.path.join(dir, run, 'agg') if os.path.isdir(dir_run): for split in os.listdir(dir_run): dir_split = os.path.join(dir_run, split) fname_stats = os.path.join(dir_split, 'stats.json') dict_stats = json_to_dict_list(fname_stats)[ -1] # get last epoch rm_keys(dict_stats, ['lr', 'lr_std', 'eta', 'eta_std', 'params_std']) results[split].append({**dict_name, **dict_stats}) dir_out = os.path.join(dir, 'agg') for key in results: if len(results[key]) > 0: results[key] =
pd.DataFrame(results[key])
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(
Timestamp('20130104')
pandas.tseries.index.Timestamp
import kaggle import argparse import pandas as pd import os import json import requests import traceback from requests.exceptions import ConnectionError, ChunkedEncodingError import errno from multiprocessing import Pool, cpu_count, Queue from bs4 import BeautifulSoup from urllib.parse import urlparse, parse_qs from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.options import Options from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import TimeoutException from selenium.common.exceptions import NoSuchElementException from tqdm import tqdm from pathlib import Path from utils import make_sure_path_exists import logging logpath = "./scraper.log" logger = logging.getLogger('log') logger.setLevel(logging.INFO) ch = logging.FileHandler(logpath) # ch.setFormatter(logging.Formatter('%(message)s')) logger.addHandler(ch) from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) def list_datasets(page=1, all_pages = False, out_path =None, min_size = None, max_size = None, sort_by = None): results = [] current_page = page get_next_page = True while get_next_page: dataset_page = kaggle.api.datasets_list(page=current_page, min_size= min_size, max_size= max_size, sort_by=sort_by) results = results + dataset_page if not dataset_page or not all_pages: get_next_page = False else: current_page += 1 # print("Page:{}, N_Datasets:{}".format(current_page,len(results))) if out_path: result_df = pd.DataFrame(results) result_df.to_csv(out_path) return results def get_kaggle_cookie_str(cookie_dict): keys = ["ka_sessionid", "CSRF-TOKEN","GCLB", "XSRF-TOKEN"] values = [cookie_dict.get(k) for k in keys] cookie_str_template = "{key}={value}" cookie_str = "; ".join(cookie_str_template.format(key=k, value=v) for k,v in zip(keys, values)) return cookie_str def get_kaggle_header(): get_response = requests.get("https://www.kaggle.com") cookie_dict = requests.utils.dict_from_cookiejar(get_response.cookies) header = { 'authority': 'www.kaggle.com', 'accept': 'application/json', 'sec-fetch-dest': 'empty', 'x-xsrf-token': cookie_dict.get("XSRF-TOKEN"), '__requestverificationtoken': cookie_dict.get("XSRF-TOKEN"), 'content-type': 'application/json', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'cors', 'accept-language': 'en-US,en;q=0.9', 'cookie': get_kaggle_cookie_str(cookie_dict) } return header def get_tasks_for_dataset(datasetId): header = get_kaggle_header() data = '{"datasetId":' + str(datasetId) + '}' response = requests.post('https://www.kaggle.com/requests/GetDatasetTasksRequest', headers=header, data=data) if response: result = response.json().get("result") if result: tasks = result["tasks"] return tasks else: print("No response!") def get_task_metadata(taskId): header = get_kaggle_header() data = '{{"taskId":{0}}}'.format(taskId) response = requests.post('https://www.kaggle.com/requests/GetTaskRequest', headers=header, data=data) if response: return response.json() def get_task_submissions(taskId,offset=0,limit=1000): data = '{{"taskId":{0},"offset":{1},"limit":{2}}}'.format(taskId,offset,limit) header = get_kaggle_header() response = requests.post('https://www.kaggle.com/requests/GetTaskSubmissionsRequest', headers=header, data=data) if response: results = response.json()["result"] submissions = results["taskSubmissions"] total_count = results["totalCount"] if total_count > (offset + 1) * limit: submissions = submissions + get_task_submissions(taskId,offset=offset+1,limit=limit) return submissions def download_task_submissions(taskId,out_path): print("Downloading submissions...") submissions = get_task_submissions(taskId) if submissions is None: return for sub in submissions: print(" {}".format(sub["url"])) try: download_kernel_from_path(sub["url"],out_path) except kaggle.rest.ApiException as e: print(" Not Found!") def scrape_all_task_submissions(out_dir,max_gap_size=40): # Kaggle uses sequential indices for its tasks. # If we pass by more than gap_size indices without getting a result, # assume we're at the end of the task taskId = 1 get_next_task = True gap_size = 0 while get_next_task: print("Checking for task {}....".format(taskId)) task_metadata = get_task_metadata(taskId) if "errors" in task_metadata: print(task_metadata["errors"]) gap_size = gap_size + 1 if gap_size == max_gap_size: break else: gap_size = 0 task_dir = os.path.join(out_dir,"taskId={}".format(taskId)) make_sure_path_exists(task_dir) download_task_submissions(taskId,task_dir) taskId = taskId + 1 #Assumes that there are not more than max_results datasets of the same size def get_datasets_in_size_range(min_size,max_size,max_results=10000,out_path=None): boundary = min_size + (max_size - min_size)//4 lower = list_datasets(all_pages=True,min_size = min_size, max_size = boundary) upper = list_datasets(all_pages=True,min_size= boundary, max_size= max_size) print("Got {} results in range ({},{})".format(len(lower),min_size, boundary)) if len(lower) >= max_results: lower = get_datasets_in_size_range(min_size = min_size, max_size = boundary, max_results = max_results) print("Got {} results in range ({},{})".format(len(upper), boundary, max_size)) if len(upper) >= max_results: upper = get_datasets_in_size_range(min_size = boundary, max_size = max_size, max_results = max_results) result = lower + upper if out_path: result_df = pd.DataFrame(result) result_df.to_csv(out_path) return result def get_kernel_metadata(competition, page_limit = None, save_kernel_metadata = True): to_return = [] response = kaggle.api.kernels_list_with_http_info(search = competition) i = 0 while len(response[0]) > 0: i = i+1 response = kaggle.api.kernels_list_with_http_info(search = competition, page = i) to_return = to_return + response[0] return to_return def get_version_metadata_for_kernel(author,slug,driver): try: kernel_url = "https://www.kaggle.com/{author}/{slug}".format(author=author,slug=slug) driver.get(kernel_url) version_box_xpath = "//*[starts-with(@class, 'VersionsInfoBox_VersionTitle') and not(contains(@class,'ForkInfo'))]" versions_box_present = EC.presence_of_element_located((By.XPATH, version_box_xpath)) versions_box_clickable = EC.element_to_be_clickable((By.XPATH, version_box_xpath)) WebDriverWait(driver, 5).until(versions_box_present) version_info = driver.find_element_by_xpath(version_box_xpath) # driver.save_screenshot("screenshot.png") version_info.click() versions_table_xpath = "//table[starts-with(@class,'VersionsPaneContent')]" versions_table_present = EC.element_to_be_clickable((By.XPATH,versions_table_xpath)) WebDriverWait(driver, 5).until(versions_table_present) version_table = driver.find_element_by_xpath(versions_table_xpath) version_metadata = process_versions_table(version_table) return version_metadata except TimeoutException: return [] def process_versions_table(table_elem): version_rows = table_elem.find_elements_by_xpath(".//div") results = [] for row in version_rows: row_result = {"script_completed":False, "version_id":None} status_icon = row.find_element_by_xpath(".//a/*[local-name() = 'svg']") if status_icon.get_attribute("data-icon") == "check-circle": row_result["script_completed"] = True try: version_href = row.find_element_by_xpath(".//a[contains(@href, 'scriptVersionId=')]").get_attribute("href") except NoSuchElementException: continue version_id = parse_qs(urlparse(version_href).query).get("scriptVersionId",[None])[0] row_result["version_id"] = version_id results.append(row_result) return results def get_all_competitions(sort_by = "numberOfTeams",start = 1): results = [] i = start page = kaggle.api.competitions_list(page = i, sort_by = sort_by) while page: results = results + page page = kaggle.api.competitions_list(page = i, sort_by = sort_by) i = i+1 return results def process_download_mapper(kernel_key): global process_driver driver = process_driver return download_versions(*kernel_key, driver=driver) def look_for_global_driver(): global driver return driver def fetch_kernels_for_competition(competition, competitions_path, save_kernel_metadata = True, progress_bar=False, driver=None, fetch_versions=True): """Download all submissions for a competition. Creates the following directory structure: -- <competitions_path> - <competition> - submission_a.json - submission_b.json - .... - submission_z.json - metadata.csv If fetch_versions = true, then this st """ out_path = os.path.join(competitions_path,competition) Path(out_path).mkdir(parents=True, exist_ok=True) kernel_metadata = get_kernel_metadata(competition,save_kernel_metadata) kernel_keys = [(*kernel["ref"].split("/"),out_path) for kernel in kernel_metadata] n = len(kernel_metadata) if fetch_versions: if driver is None: #Look for global driver in process: try: driver = look_for_global_driver() except NameError: driver = get_driver() if progress_bar: kernel_metadata = list(tqdm([download_versions(*k,driver = driver) for k in kernel_keys],total =n)) else: kernel_metadata = [download_versions(*k,driver = driver) for k in kernel_keys] else: raise NotImplementedError if save_kernel_metadata: metadata_out_path = os.path.join(out_path,"metadata.csv") pd.DataFrame(kernel_metadata).to_csv(metadata_out_path) def download_versions(author,slug,out_path,driver = None): if driver is None: driver = get_driver() version_metadata = get_version_metadata_for_kernel(author,slug,driver) author_path = os.path.join(out_path,author) make_sure_path_exists(author_path) for version in version_metadata: vid = version["version_id"] version_filename = "{vid}.json".format(vid = vid) download_kernel_with_version_id(vid,author_path, filename = version_filename)
pd.DataFrame(version_metadata)
pandas.DataFrame
import math import warnings from typing import List, Union import matplotlib import numpy as np import pandas as pd matplotlib.rcParams["text.usetex"] = True from pykelihood import kernels from pykelihood.distributions import Exponential, MixtureExponentialModel from pykelihood.stats_utils import Profiler try: from hawkeslib import UnivariateExpHawkesProcess as UEHP except ImportError: UEHP = None from pykelihood.distributions import Distribution, opposite_log_likelihood from pykelihood.parameters import Parameter from pykelihood.visualisation.utils import ( get_quantiles_and_confidence_intervals, get_quantiles_and_confidence_intervals_uniform_scale, ) warnings.filterwarnings("ignore") import matplotlib.pyplot as plt def qq_plot_gpd( data: pd.DataFrame, gpd_fit: Distribution, path_to_figure: str, threshold: Union[List, float, int, str] = "", ci_confidence=0.99, figure_name="qq_plot_gpd", ): id_obs = True if len(gpd_fit.flattened_params) != len(gpd_fit.params): id_obs = False theoretical, empirical, lower_bound, upper_bound = ( get_quantiles_and_confidence_intervals(gpd_fit, data, ci_confidence) if id_obs else get_quantiles_and_confidence_intervals_uniform_scale( gpd_fit, data, ci_confidence ) ) n = len(data) text_title = "" if type(gpd_fit.loc()) is not Parameter: loc = { r"$\mu_{}$".format(a): round(gpd_fit.loc.param_dict[a], 2) for a in gpd_fit.loc.param_dict } for k in loc: text_title += f"{k} = {loc[k]}, " else: loc = round(gpd_fit.loc(), 2) text_title += r"$\mu$=" + str(loc) + ", " text_title += "\n" if type(gpd_fit.scale()) is not Parameter: scale = { r"$\sigma_{}$".format(a): round(gpd_fit.scale.param_dict[a], 2) for a in gpd_fit.scale.param_dict } for k in scale: text_title += f"{k} = {scale[k]}, " else: scale = round(gpd_fit.scale(), 2) text_title += r"$\sigma$=" + str(scale) + ", " text_title += "\n" if type(gpd_fit.shape()) is not Parameter: shape = { r"$\xi_{}$".format(a): round(gpd_fit.shape.param_dict[a], 2) for a in gpd_fit.shape.param_dict } for k in shape: text_title += f"{k} = {shape[k]}, " else: shape = round(gpd_fit.shape(), 2) text_title += r"$\xi$=" + str(shape) if text_title.endswith(", "): text_title = text_title[:-2] threshold_text = ( str(tuple(threshold)) if hasattr(threshold, "__len__") else str(threshold) ) plt.scatter(theoretical, empirical, s=5, marker="x", color="navy") plt.plot(theoretical, theoretical, label=f"$x=y$", color="navy") if id_obs: plt.fill_betweenx( y=empirical, x1=lower_bound, x2=upper_bound, alpha=0.2, color="navy" ) else: plt.fill_between(theoretical, lower_bound, upper_bound, alpha=0.2, color="navy") plt.legend() plt.title( "QQ Plot of Exceedances over threshold " + threshold_text + " vs GPD distribution with parameters:\n" + text_title ) plt.xlabel(f"Theoretical quantiles ({n} observations)") plt.ylabel("Empirical quantiles") plt.tight_layout() plt.savefig(f"{path_to_figure}/{figure_name}.png") plt.clf() to_concat = pd.DataFrame( [theoretical, lower_bound, upper_bound], columns=empirical.index, index=["theoretical", "lower_bound", "upper_bound"], ).T return pd.concat([empirical.rename("realized"), to_concat], axis=1) def qq_plot_gev( data: pd.DataFrame, gev_fit: Distribution, path_to_figure: str, ci_confidence=0.99, figure_name="qq_plot_gev", ): id_obs = True if len(gev_fit.flattened_params) != len(gev_fit.params): id_obs = False theoretical, empirical, lower_bound, upper_bound = ( get_quantiles_and_confidence_intervals(gev_fit, data, ci_confidence) if id_obs else get_quantiles_and_confidence_intervals_uniform_scale( gev_fit, data, ci_confidence ) ) n = len(data) text_title = "" if type(gev_fit.loc()) is not Parameter: loc = { r"$\mu_{}$".format(a): round(gev_fit.loc.param_dict[a], 2) for a in gev_fit.loc.param_dict } for k in loc: text_title += f"{k} = {loc[k]}, " else: loc = round(gev_fit.loc(), 2) text_title += r"$\mu$=" + str(loc) + ", " text_title += "\n" if type(gev_fit.scale()) is not Parameter: scale = { r"$\sigma_{}$".format(a): round(gev_fit.scale.param_dict[a], 2) for a in gev_fit.scale.param_dict } for k in scale: text_title += f"{k} = {scale[k]}, " else: scale = round(gev_fit.scale(), 2) text_title += r"$\sigma$=" + str(scale) + ", " text_title += "\n" if type(gev_fit.shape()) is not Parameter: shape = { r"$\xi_{}$".format(a): round(gev_fit.shape.param_dict[a], 2) for a in gev_fit.shape.param_dict } for k in shape: text_title += f"{k} = {shape[k]}, " else: shape = round(gev_fit.shape(), 2) text_title += r"$\xi$=" + str(shape) if text_title.endswith(", "): text_title = text_title[:-2] plt.scatter(theoretical, empirical, s=5, marker="x", color="navy") plt.plot(theoretical, theoretical, label=f"$x=y$", color="navy") if id_obs: plt.fill_betweenx( y=empirical, x1=lower_bound, x2=upper_bound, alpha=0.2, color="navy" ) else: plt.fill_between(theoretical, lower_bound, upper_bound, alpha=0.2, color="navy") plt.title("QQ Plot of Maxima vs GEV distribution with parameters:\n" + text_title) plt.ylabel(f"Empirical ({n} observations)") plt.xlabel("GEV distribution") plt.tight_layout() plt.savefig(f"{path_to_figure}/{figure_name}.png") plt.clf() to_concat = pd.DataFrame( [theoretical, lower_bound, upper_bound], columns=empirical.index, index=["theoretical", "lower_bound", "upper_bound"], ).T return pd.concat([empirical.rename("realized"), to_concat], axis=1) def consecutive_days_above_value_plot( data: pd.DataFrame, value: float, path_to_figure: str ): above_value = data[data["data"] >= value].assign( timedelta=lambda x: x["days_since_start"].diff() ) consecutive = ( above_value[above_value["timedelta"] == 1] .assign(timedelta=lambda x: x["days_since_start"].diff()) .fillna(0.0) .assign(subgroup=lambda x: (x["timedelta"] != x["timedelta"].shift(1)).cumsum()) .groupby(["year", "subgroup"]) .agg({"data": "count"}) ) consecutive = consecutive + 1 consecutive_mean_per_year = consecutive.groupby(level="year").agg("mean") quantile_inf = consecutive.groupby(level="year").agg(lambda x: np.quantile(x, 0.05)) quantile_sup = consecutive.groupby(level="year").agg(lambda x: np.quantile(x, 0.95)) plt.scatter( consecutive_mean_per_year.index, consecutive_mean_per_year, label="Mean", color="salmon", s=7, ) plt.vlines( consecutive_mean_per_year.index, quantile_inf, quantile_sup, label=r"5\% Quantiles", alpha=0.6, color="salmon", ) plt.legend() plt.title(f"Mean Number of Consecutive Days Above {value} per Year.") plt.savefig(f"{path_to_figure}/mean_nb_days_cons_above_{value}_year.png") plt.clf() def consecutive_days_under_value_plot( data: pd.DataFrame, value: float, path_to_figure: str ): under_value = data[data["data"] <= value].assign( timedelta=lambda x: x["days_since_start"].diff() ) consecutive = ( under_value[under_value["timedelta"] == 1] .assign(timedelta=lambda x: x["days_since_start"].diff()) .fillna(0.0) .assign(subgroup=lambda x: (x["timedelta"] != x["timedelta"].shift(1)).cumsum()) .groupby(["year", "subgroup"]) .agg({"data": "count"}) ) consecutive = consecutive + 1 consecutive_mean_per_year = consecutive.groupby(level="year").agg("mean") quantile_inf = consecutive.groupby(level="year").agg(lambda x: np.quantile(x, 0.05)) quantile_sup = consecutive.groupby(level="year").agg(lambda x: np.quantile(x, 0.95)) plt.scatter( consecutive_mean_per_year.index, consecutive_mean_per_year, label="Mean", color="salmon", s=7, ) plt.vlines( consecutive_mean_per_year.index, quantile_inf, quantile_sup, label=r"5\% Quantiles", alpha=0.6, color="salmon", ) plt.legend() plt.title(f"Mean Number of Consecutive Days Under {value} per Year.") plt.savefig(f"{path_to_figure}/mean_nb_days_cons_under_{value}_year.png") plt.clf() ### INTER EXCEEDANCES DIAGNOSTIC PLOTS, CLUSTERING ### def mean_inter_exceedance_time_per_year(data: pd.DataFrame, path_to_figure: str): """ Plots the observed inter-exceedance times per year, useful to visualize an increase or decrease in the distance between two extreme events. :param data: Dataframe pandas with columns "data", "threshold" (possibly seasonal or periodical), "days_since_start" (of the full period) and "year". :param path_to_figure: Path to save the figure. :return: Plots diagnostic graphs. """ data = data.dropna().reset_index() empty_years = [] mean_year = [] quantile_sup_year = [] quantile_inf_year = [] for year in data["year"].unique(): try: iat_days = ( data[(data["year"] == year) & (data["data"] >= data["threshold"])][ "days_since_start" ] .diff() .dropna() ) quantile_sup_year.append(np.quantile(iat_days, q=0.99)) quantile_inf_year.append(np.quantile(iat_days, q=0.01)) mean_year.append(iat_days.mean()) except: empty_years.append(year) not_y = [y for y in data["year"].unique() if y not in empty_years] plt.scatter(not_y, mean_year, s=7, color="salmon", label="Mean") plt.vlines( not_y, quantile_inf_year, quantile_sup_year, alpha=0.6, color="salmon", label=r"10\% Quantiles", ) plt.title("Inter-exceedance time per year") plt.legend() plt.savefig(f"{path_to_figure}/inter_exceedances_per_year.png") plt.clf() def qq_plot_exponential( data: Union[pd.Series, np.array], exp_fit: Distribution, path_to_figure: str, ci_confidence=0.99, figure_name="qq_plot_exponential", ): id_obs = True if len(exp_fit.flattened_params) != len(exp_fit.params): id_obs = False theoretical, empirical, lower_bound, upper_bound = ( get_quantiles_and_confidence_intervals(exp_fit, data, ci_confidence) if id_obs else get_quantiles_and_confidence_intervals_uniform_scale( exp_fit, data, ci_confidence ) ) plt.scatter(theoretical, empirical, s=5, marker="x", color="navy") plt.plot(theoretical, theoretical, label=f"$x=y$", color="navy") plt.legend() if id_obs: plt.fill_betweenx( y=empirical, x1=lower_bound, x2=upper_bound, alpha=0.2, color="navy" ) else: plt.fill_between(theoretical, lower_bound, upper_bound, alpha=0.2, color="navy") plt.title("QQ Plot of positive spacing vs Exponential distribution") plt.xlabel("Empirical") plt.ylabel( r"Exponential with parameter $\lambda$" + f"= {round(exp_fit.rate(), 2)}" ) plt.savefig(f"{path_to_figure}/{figure_name}.png") plt.clf() to_concat = pd.DataFrame( [theoretical, lower_bound, upper_bound], columns=empirical.index, index=["theoretical", "lower_bound", "upper_bound"], ).T return pd.concat([empirical.rename("realized"), to_concat], axis=1) def extremogram_plot( data: pd.DataFrame, h_range: Union[List, np.array], path_to_figure: str, compare_to_hawkes=False, figure_name="extremogram", ): """ Plots the observed extremogram (ie proba of the observation in t+h to be an exceedance knowing that the observation in t was one. Compares the estimate using an homogeneous poisson process vs a Hawkes process. :param data: Dataframe pandas containing the columns "data" for the variable of interest, "threshold" for the (possibly seasonal) threshold(s) and "days_since_start" which is a non-normalized version of the time in days unit. :param h_range: Range for the h parameter to vary through. :param path_to_figure: Path to plot the extremogram. :return: Plots diagnostic graphs. """ def extremogram_loop(h_range, indices_exceedances): counts = [] indices_exceedances = np.array(indices_exceedances) for h in h_range: mat1 = np.tile(indices_exceedances, (len(indices_exceedances), 1)) mat2 = np.tile(indices_exceedances + h, (len(indices_exceedances), 1)) diff = mat2.T - mat1 diff = diff[np.abs(diff) < 0.5] counts.append(len(diff) / len(indices_exceedances)) return counts # empirical data_extremogram = data[["data", "days_since_start", "threshold"]] data_extremogram = ( data_extremogram[data_extremogram["data"] >= data["threshold"]] .assign(iat=lambda x: x["days_since_start"].diff()) .fillna(0.0) ) indices_exceedances = [ int(round(e, 0)) for e in list(data_extremogram["days_since_start"]) ] extremogram_realized = extremogram_loop(h_range, indices_exceedances) extremogram_realized = pd.Series(extremogram_realized, index=h_range) # Simulated Poisson process exp_fit = Exponential.fit( data_extremogram["iat"], loc=0.0, x0=[len(data_extremogram) / len(data)] ) exceedances_pp = [] for i in range(1000): exceedances_pp.append(exp_fit.rvs(len(data_extremogram)).cumsum()) count_pp = [] for i in range(len(exceedances_pp)): # PP ex_pp = exceedances_pp[i].copy() indices_exceedances = [e for e in ex_pp] local_count_pp = extremogram_loop(h_range, indices_exceedances) local_count_pp = pd.Series(local_count_pp, index=h_range) count_pp.append(local_count_pp) count_pp = pd.concat(count_pp, axis=1) mean_pp = count_pp.mean(axis=1) quantile_inf_pp = np.quantile(count_pp, q=0.001, axis=1) quantile_sup_pp = np.quantile(count_pp, q=0.999, axis=1) to_return = pd.concat( [ extremogram_realized.rename("realized"), mean_pp.rename("mean_pp"), pd.DataFrame( [quantile_inf_pp, quantile_sup_pp], index=["pp_lb", "pp_ub"], columns=h_range, ).T, ], axis=1, ) plt.bar( x=h_range, height=extremogram_realized, label="Empirical", width=0.8, color="slategrey", alpha=0.6, ) plt.plot(h_range, mean_pp, label="Poisson Process Simulated", color="salmon") plt.fill_between( x=h_range, y1=quantile_inf_pp, y2=quantile_sup_pp, alpha=0.2, color="salmon" ) # Simulated Hawkes process if compare_to_hawkes: if UEHP is not None: uv = UEHP() uv.fit(np.array(data_extremogram["days_since_start"])) exceedances_hp = [] for _ in range(1000): exceedances_hp.append(uv.sample(data["days_since_start"].max())) else: from pykelihood.samplers import HawkesByThinningModified mu = 1 / (len(data_extremogram) / len(data)) alpha = 0 theta = 0 def score(dist, data): if dist.rate.alpha >= 1.0: return 10 ** 10 else: return opposite_log_likelihood(dist, data) hawkes_fit = Exponential.fit( data_extremogram["iat"], x0=(mu, alpha, theta), loc=0.0, rate=kernels.hawkes_with_exp_kernel( np.array(data_extremogram["days_since_start"]) ), score=score, ) mu, alpha, theta = hawkes_fit.optimisation_params exceedances_hp = [] for _ in range(1000): exceedances_hp.append( HawkesByThinningModified( data["days_since_start"].max(), mu, alpha, theta ) ) count_hp = [] for i in range(len(exceedances_hp)): # HP ex_hp = exceedances_hp[i] indices_exceedances = [e for e in ex_hp] local_count_hp = extremogram_loop(h_range, indices_exceedances) local_count_hp =
pd.Series(local_count_hp, index=h_range)
pandas.Series
import matplotlib.image as mpimg import matplotlib.style as style import matplotlib.pyplot as plt from matplotlib import rcParams from simtk.openmm.app import * from simtk.openmm import * from simtk.unit import * from sys import stdout import seaborn as sns from math import exp import pandas as pd import mdtraj as md import pickle as pk import numpy as np import statistics import itertools import fileinput import fnmatch import shutil import random import math import os import re def fix_cap_remove_ace(pdb_file): """ Removes the H atoms of the capped ACE residue. """ remove_words = [ "H1 ACE", "H2 ACE", "H3 ACE", "H31 ACE", "H32 ACE", "H33 ACE", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_ace(pdb_file): """ Replaces the alpha carbon atom of the capped ACE residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA ACE", "CH3 ACE") data = data.replace("C ACE", "CH3 ACE") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def fix_cap_remove_nme(pdb_file): """ Removes the H atoms of the capped NME residue. """ remove_words = [ "H1 NME", "H2 NME", "H3 NME", "H31 NME", "H32 NME", "H33 NME", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_nme(pdb_file): """ Replaces the alpha carbon atom of the capped NME residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA NME", "CH3 NME") data = data.replace("C NME", "CH3 NME") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def prepare_alanine_dipeptide(): """ Prepares the alanine dipeptide system for Gaussian Accelerated Molecular Dynamics (GaMD) simulations. Downloads the pdb structure from https://markovmodel.github.io/mdshare/ALA2/ and parameterizes it using General Amber Force Field (GAFF). """ os.system( "curl -O http://ftp.imp.fu-berlin.de/pub/cmb-data/alanine-dipeptide-nowater.pdb" ) os.system( "rm -rf system_inputs" ) # Removes any existing directory named system_inputs os.system("mkdir system_inputs") # Creates a directory named system_inputs cwd = os.getcwd() target_dir = cwd + "/" + "system_inputs" os.system("pdb4amber -i alanine-dipeptide-nowater.pdb -o intermediate.pdb") # Delete HH31, HH32 and HH33 from the ACE residue (tleap adds them later) remove_words = ["HH31 ACE", "HH32 ACE", "HH33 ACE"] with open("intermediate.pdb") as oldfile, open( "system.pdb", "w" ) as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) os.system("rm -rf intermediate*") # save the tleap script to file with open("input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system.pdb solvateBox pdb TIP3PBOX 15 saveamberparm pdb system_TIP3P.prmtop system_TIP3P.inpcrd saveamberparm pdb system_TIP3P.parm7 system_TIP3P.rst7 savepdb pdb system_TIP3P.pdb quit """ ) os.system("tleap -f input_TIP3P.leap") os.system("rm -rf leap.log") shutil.copy( cwd + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb" ) shutil.copy( cwd + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7" ) shutil.copy(cwd + "/" + "system.pdb", target_dir + "/" + "system.pdb") shutil.copy( cwd + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap" ) os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf input_TIP3P.leap") os.system("rm -rf alanine-dipeptide-nowater.pdb") def create_vectors(x): """ Extracts peridic box information from the given line. """ x = str(x) x = x.replace("Vec3", "") x = re.findall("\d*\.?\d+", x) for i in range(0, len(x)): x[i] = float(x[i]) x = tuple(x) n = int(len(x) / 3) x = [x[i * n : (i + 1) * n] for i in range((len(x) + n - 1) // n)] return x def simulated_annealing( parm="system_TIP3P.prmtop", rst="system_TIP3P.inpcrd", annealing_output_pdb="system_annealing_output.pdb", annealing_steps=100000, pdb_freq=100000, starting_temp=0, target_temp=300, temp_incr=3, ): """ Performs simulated annealing of the system from 0K to 300 K (default) using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file rst: str System's coordinate file annealing_output_pdb: str System's output trajectory file annealing_steps: int Aneealing steps at each temperatrure jump pdb_freq: int Trajectory to be saved after every pdb_freq steps starting_temp: int Initial temperature of Simulated Annealing target_temp: int Final temperature of Simulated Annealing temp_incr: int Temmperature increase for every step """ prmtop = AmberPrmtopFile(parm) inpcrd = AmberInpcrdFile(rst) annealing_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) annealing_integrator = LangevinIntegrator( 0 * kelvin, 1 / picosecond, 2 * femtoseconds ) total_steps = ((target_temp / temp_incr) + 1) * annealing_steps annealing_temp_range = int((target_temp / temp_incr) + 1) annealing_platform = Platform.getPlatformByName("CUDA") annealing_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} annealing_simulation = Simulation( prmtop.topology, annealing_system, annealing_integrator, annealing_platform, annealing_properties, ) annealing_simulation.context.setPositions(inpcrd.positions) if inpcrd.boxVectors is not None: annealing_simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors) annealing_simulation.minimizeEnergy() annealing_simulation.reporters.append( PDBReporter(annealing_output_pdb, pdb_freq) ) simulated_annealing_last_frame = ( annealing_output_pdb[:-4] + "_last_frame.pdb" ) annealing_simulation.reporters.append( PDBReporter(simulated_annealing_last_frame, total_steps) ) annealing_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=total_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) temp = starting_temp while temp <= target_temp: annealing_integrator.setTemperature(temp * kelvin) if temp == starting_temp: annealing_simulation.step(annealing_steps) annealing_simulation.saveState("annealing.state") else: annealing_simulation.loadState("annealing.state") annealing_simulation.step(annealing_steps) temp += temp_incr state = annealing_simulation.context.getState() print(state.getPeriodicBoxVectors()) annealing_simulation_box_vectors = state.getPeriodicBoxVectors() print(annealing_simulation_box_vectors) with open("annealing_simulation_box_vectors.pkl", "wb") as f: pk.dump(annealing_simulation_box_vectors, f) print("Finshed NVT Simulated Annealing Simulation") def npt_equilibration( parm="system_TIP3P.prmtop", npt_output_pdb="system_npt_output.pdb", pdb_freq=500000, npt_steps=5000000, target_temp=300, npt_pdb="system_annealing_output_last_frame.pdb", ): """ Performs NPT equilibration MD of the system using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file npt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps npt_steps: int NPT simulation steps target_temp: int Temperature for MD simulation npt_pdb: str Last frame of the simulation """ npt_init_pdb = PDBFile(npt_pdb) prmtop = AmberPrmtopFile(parm) npt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) barostat = MonteCarloBarostat(25.0 * bar, target_temp * kelvin, 25) npt_system.addForce(barostat) npt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) npt_platform = Platform.getPlatformByName("CUDA") npt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} npt_simulation = Simulation( prmtop.topology, npt_system, npt_integrator, npt_platform, npt_properties, ) npt_simulation.context.setPositions(npt_init_pdb.positions) npt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("annealing_simulation_box_vectors.pkl", "rb") as f: annealing_simulation_box_vectors = pk.load(f) annealing_simulation_box_vectors = create_vectors( annealing_simulation_box_vectors ) npt_simulation.context.setPeriodicBoxVectors( annealing_simulation_box_vectors[0], annealing_simulation_box_vectors[1], annealing_simulation_box_vectors[2], ) npt_last_frame = npt_output_pdb[:-4] + "_last_frame.pdb" npt_simulation.reporters.append(PDBReporter(npt_output_pdb, pdb_freq)) npt_simulation.reporters.append(PDBReporter(npt_last_frame, npt_steps)) npt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=npt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) npt_simulation.minimizeEnergy() npt_simulation.step(npt_steps) npt_simulation.saveState("npt_simulation.state") state = npt_simulation.context.getState() print(state.getPeriodicBoxVectors()) npt_simulation_box_vectors = state.getPeriodicBoxVectors() print(npt_simulation_box_vectors) with open("npt_simulation_box_vectors.pkl", "wb") as f: pk.dump(npt_simulation_box_vectors, f) print("Finished NPT Simulation") def nvt_equilibration( parm="system_TIP3P.prmtop", nvt_output_pdb="system_nvt_output.pdb", pdb_freq=500000, nvt_steps=5000000, target_temp=300, nvt_pdb="system_npt_output_last_frame.pdb", ): """ Performs NVT equilibration MD of the system using OpenMM MD engine saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file nvt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps nvt_steps: int NVT simulation steps target_temp: int Temperature for MD simulation nvt_pdb: str Last frame of the simulation """ nvt_init_pdb = PDBFile(nvt_pdb) prmtop = AmberPrmtopFile(parm) nvt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) nvt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) nvt_platform = Platform.getPlatformByName("CUDA") nvt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} nvt_simulation = Simulation( prmtop.topology, nvt_system, nvt_integrator, nvt_platform, nvt_properties, ) nvt_simulation.context.setPositions(nvt_init_pdb.positions) nvt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("npt_simulation_box_vectors.pkl", "rb") as f: npt_simulation_box_vectors = pk.load(f) npt_simulation_box_vectors = create_vectors(npt_simulation_box_vectors) nvt_simulation.context.setPeriodicBoxVectors( npt_simulation_box_vectors[0], npt_simulation_box_vectors[1], npt_simulation_box_vectors[2], ) nvt_last_frame = nvt_output_pdb[:-4] + "_last_frame.pdb" nvt_simulation.reporters.append(PDBReporter(nvt_output_pdb, pdb_freq)) nvt_simulation.reporters.append(PDBReporter(nvt_last_frame, nvt_steps)) nvt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=nvt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) nvt_simulation.minimizeEnergy() nvt_simulation.step(nvt_steps) nvt_simulation.saveState("nvt_simulation.state") state = nvt_simulation.context.getState() print(state.getPeriodicBoxVectors()) nvt_simulation_box_vectors = state.getPeriodicBoxVectors() print(nvt_simulation_box_vectors) with open("nvt_simulation_box_vectors.pkl", "wb") as f: pk.dump(nvt_simulation_box_vectors, f) print("Finished NVT Simulation") def run_equilibration(): """ Runs systematic simulated annealing followed by NPT and NVT equilibration MD simulation. """ cwd = os.getcwd() target_dir = cwd + "/" + "equilibration" os.system("rm -rf equilibration") os.system("mkdir equilibration") shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system.pdb", target_dir + "/" + "system.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap", ) os.chdir(target_dir) simulated_annealing() npt_equilibration() nvt_equilibration() os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf alanine-dipeptide-nowater.pdb") os.system("rm -rf input_TIP3P.leap") os.chdir(cwd) def create_starting_structures(): """ Prepares starting structures for Amber GaMD simulations. All input files required to run Amber GaMD simulations are placed in the starting_structures directory. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" os.system("rm -rf starting_structures") os.system("mkdir starting_structures") shutil.copy( cwd + "/" + "equilibration" + "/" + "system_nvt_output_last_frame.pdb", target_dir + "/" + "system_nvt_output_last_frame.pdb", ) os.chdir(target_dir) fix_cap_remove_nme("system_nvt_output_last_frame.pdb") fix_cap_replace_nme("system_nvt_output_last_frame.pdb") # Save the tleap script to file with open("final_input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system_nvt_output_last_frame.pdb saveamberparm pdb system_final.prmtop system_final.inpcrd saveamberparm pdb system_final.parm7 system_final.rst7 savepdb pdb system_final.pdb quit """ ) os.system("tleap -f final_input_TIP3P.leap") os.system("rm -rf leap.log") os.system("rm -rf system_nvt_output_last_frame.pdb") os.chdir(cwd) def add_vec_inpcrd(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the inpcrd file. Only to be used when the box dimensions are not present in the inpcrd file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( (nvt_simulation_box_vectors[0][0]) * 10, (nvt_simulation_box_vectors[1][1]) * 10, (nvt_simulation_box_vectors[2][2]) * 10, ) vectors = ( round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7), ) last_line = ( " " + str(vectors[0]) + " " + str(vectors[1]) + " " + str(vectors[2]) + " 90.0000000" + " 90.0000000" + " 90.0000000" ) with open("system_final.inpcrd", "a+") as f: f.write(last_line) os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def add_vec_prmtop(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the prmtop file. Only to be used when the box dimensions are not present in the prmtop file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( nvt_simulation_box_vectors[0][0], nvt_simulation_box_vectors[1][1], nvt_simulation_box_vectors[2][2], ) vectors = round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7) oldbeta = "9.00000000E+01" x = str(vectors[0]) + str(0) + "E+" + "01" y = str(vectors[1]) + str(0) + "E+" + "01" z = str(vectors[2]) + str(0) + "E+" + "01" line1 = "%FLAG BOX_DIMENSIONS" line2 = "%FORMAT(5E16.8)" line3 = " " + oldbeta + " " + x + " " + y + " " + z with open("system_final.prmtop") as i, open( "system_intermediate_final.prmtop", "w" ) as f: for line in i: if line.startswith("%FLAG RADIUS_SET"): line = line1 + "\n" + line2 + "\n" + line3 + "\n" + line f.write(line) os.system("rm -rf system_final.prmtop") os.system("mv system_intermediate_final.prmtop system_final.prmtop") os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def create_filetree( nst_lim=26000000, ntw_x=1000, nt_cmd=1000000, n_teb=1000000, n_tave=50000, ntcmd_prep=200000, nteb_prep=200000, ): """ Creates a directory named gamd_simulations. Inside this directory, there are subdirectories for dihedral, dual and total potential-boosted GaMD with upper and lower threshold boosts separately. Parameters ---------- nst_lim: int Total simulation time including preparatory simulation. For example, if nst_lim = 26000000, then, we may have 2 ns of preparatory simulation i.e. 1000000 preparation steps and 50 ns of GaMD simulation i.e. 25000000 simulation steps ntw_x: int Saving coordinates of the simulation every ntw_x timesteps. For example, 2 ps implies 1000 timesteps nt_cmd: int Number of initial MD simulation step, 2 ns of preparatory simulation requires 1000000 preparation timesteps n_teb: int Number of biasing MD simulation steps n_tave: int Number of simulation steps used to calculate the average and standard deviation of potential energies ntcmd_prep: int Number of preparation conventional molecular dynamics steps.This is used for system equilibration and potential energies are not collected for statistics nteb_prep: int Number of preparation biasing molecular dynamics simulation steps. This is used for system equilibration """ cwd = os.getcwd() os.system("rm -rf gamd_simulations") os.system("mkdir gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations") source_dir = cwd + "/" + "starting_structures" target_dir = cwd + "/" + "gamd_simulations" dir_list = [ "dihedral_threshold_lower", "dihedral_threshold_upper", "dual_threshold_lower", "dual_threshold_upper", "total_threshold_lower", "total_threshold_upper", ] for i in range(len(dir_list)): os.mkdir(dir_list[i]) os.chdir(target_dir + "/" + dir_list[i]) shutil.copy( source_dir + "/" + "system_final.inpcrd", target_dir + "/" + dir_list[i] + "/" + "system_final.inpcrd", ) shutil.copy( source_dir + "/" + "system_final.prmtop", target_dir + "/" + dir_list[i] + "/" + "system_final.prmtop", ) if "lower" in dir_list[i]: i_E = 1 if "upper" in dir_list[i]: i_E = 2 if "total" in dir_list[i]: i_gamd = 1 if "dihedral" in dir_list[i]: i_gamd = 2 if "dual" in dir_list[i]: i_gamd = 3 with open("md.in", "w") as f: f.write("&cntrl" + "\n") f.write(" imin = 0, irest = 0, ntx = 1," + "\n") f.write(" nstlim = " + str(nst_lim) + ", dt = 0.002," + "\n") f.write(" ntc = 2, ntf = 2, tol = 0.000001," + "\n") f.write(" iwrap = 1, ntb = 1, cut = 8.0," + "\n") f.write(" ntt = 3, temp0 = 300.0, gamma_ln = 1.0, " + "\n") f.write( " ntpr = 500, ntwx = " + str(ntw_x) + ", ntwr = 500," + "\n" ) f.write(" ntxo = 2, ioutfm = 1, ig = -1, ntwprt = 0," + "\n") f.write( " igamd = " + str(i_gamd) + ", iE = " + str(i_E) + ", irest_gamd = 0," + "\n" ) f.write( " ntcmd = " + str(nt_cmd) + ", nteb = " + str(n_teb) + ", ntave = " + str(n_tave) + "," + "\n" ) f.write( " ntcmdprep = " + str(ntcmd_prep) + ", ntebprep = " + str(nteb_prep) + "," + "\n" ) f.write(" sigma0D = 6.0, sigma0P = 6.0" + " \n") f.write("&end" + "\n") os.chdir(target_dir) os.chdir(cwd) def run_simulations(): """ Runs GaMD simulations for each of the dihedral, dual and total potential boosts for both thresholds i.e. upper and lower potential thresholds. (Remember to check md.in files for further details and flag information). """ cwd = os.getcwd() os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd) def create_data_files( jump=10, traj="system_final.nc", topology="system_final.prmtop", T=300, ): """ Extracts data from GaMD log files and saves them as weights.dat, Psi.dat and Phi_Psi.dat. gamd.log file contains data excluding the initial equilibration MD simulation steps but trajectory output file has all the trajectories including the initial equilibration MD steps. This part has ben taken care to make the data consistent. Parameters ---------- jump: int Every nth frame to be considered for reweighting traj: str System's trajectory file topology: str System's topology file T: int MD simulation temperature """ # To make data consistent with gamd.log and .nc file factor = 0.001987 * T with open("md.in") as f: lines = f.readlines() for i in lines: if "nstlim =" in i: nstlim_line = i if "ntcmd =" in i: ntcmd_line = i if "ntwx =" in i: ntwx_line = i x = re.findall(r"\b\d+\b", ntcmd_line) ntcmd = int(x[0]) x = re.findall(r"\b\d+\b", nstlim_line) nstlim = int(x[0]) x = re.findall(r"\b\d+\b", ntwx_line) ntwx = int(x[1]) # From the .nc trajectory files, we will not consider ntcmd trajectories leave_frames = int(ntcmd / ntwx) no_frames = int(nstlim / ntwx) # Recheck conditions file = open("gamd.log", "r") number_of_lines = 0 for line in file: line = line.strip("\n") number_of_lines += 1 file.close() f = open("gamd.log") fourth_line = f.readlines()[3] if str(ntcmd) in fourth_line: datapoints = number_of_lines - 4 if not str(ntcmd) in fourth_line: datapoints = number_of_lines - 3 print(datapoints == int((nstlim - ntcmd) / ntwx)) # Creating Psi.dat and Phi_Psi.dat traj = md.load(traj, top=topology) traj = traj[leave_frames:no_frames:jump] phi = md.compute_phi(traj) phi = phi[1] # 0:indices, 1:phi angles phi = np.array([math.degrees(i) for i in phi]) # radians to degrees psi = md.compute_psi(traj) psi = psi[1] # 0:indices, 1:psi angles psi = np.array([math.degrees(i) for i in psi]) # radians to degrees df_psi = pd.DataFrame(phi, columns=["Psi"]) df_psi = df_psi.tail(int(datapoints)) df_psi.to_csv("Psi.dat", sep="\t", index=False, header=False) df_phi = pd.DataFrame(psi, columns=["Phi"]) df_phi = df_phi.tail(int(datapoints)) df_phi_psi = pd.concat([df_phi, df_psi], axis=1) df_phi_psi.to_csv("Phi_Psi.dat", sep="\t", index=False, header=False) # Creating weights.dat with open("gamd.log") as f: lines = f.readlines() column_names = lines[2] column_names = column_names.replace("#", "") column_names = column_names.replace("\n", "") column_names = column_names.replace(" ", "") column_names = column_names.split(",") list_words = ["#"] with open("gamd.log") as oldfile, open("data.log", "w") as newfile: for line in oldfile: if not any(word in line for word in list_words): newfile.write(line) df = pd.read_csv("data.log", delim_whitespace=True, header=None) df.columns = column_names df["dV(kcal/mol)"] = ( df["Boost-Energy-Potential"] + df["Boost-Energy-Dihedral"] ) df["dV(kbT)"] = df["dV(kcal/mol)"] / factor df_ = df[["dV(kbT)", "total_nstep", "dV(kcal/mol)"]] df_ = df_[::jump] df_.to_csv("weights.dat", sep="\t", index=False, header=False) os.system("rm -rf data.log") print(df_phi_psi.shape) print(df_phi.shape) print(df_.shape) def create_bins(lower_bound, width, upper_bound): """ Creates bin if given the lower and upper bound with the wirdth information. """ bins = [] for low in range(lower_bound, upper_bound, width): bins.append([low, low + width]) return bins def find_bin(value, bins): """ Finds which value belongs to which bin. """ for i in range(0, len(bins)): if bins[i][0] <= value < bins[i][1]: return i return -1 def reweight_1d( binspace=10, n_structures=4, Xdim=[-180, 180], T=300.0, min_prob=0.000001 ): """ Reweights boosted potential energies in one-dimension based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Psi = pd.read_csv("Psi.dat", delim_whitespace=True, header=None) df_Psi.columns = ["Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) hist, hist_edges = np.histogram(df_Psi[["Psi"]], bins=binsX, weights=None) pstarA = [i / sum_total for i in list(hist)] bins = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) data = df_Psi["Psi"].values.tolist() binned_weights = [] for value in data: bin_index = find_bin(value, bins) binned_weights.append(bin_index) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df = pd.concat([df_index, df_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 = pd.DataFrame(data_c1, columns=["bins", "pA_c1"]) df_c12 = pd.DataFrame(data_c12, columns=["bins", "pA_c12"]) df_c123 = pd.DataFrame(data_c123, columns=["bins", "pA_c123"]) ####c1 df_c1.to_csv("c1_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c1_1d.txt", "r") as f1, open("pA_c1_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_1d.txt") ####c12 df_c12.to_csv("c12_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c12_1d.txt", "r") as f1, open("pA_c12_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_1d.txt") ####c123 df_c123.to_csv("c123_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c123_1d.txt", "r") as f1, open("pA_c123_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_1d.txt") ####c1_arranged df_c1_arranged = df_c1.sort_values(by="pA_c1", ascending=False) df_c1_arranged = df_c1_arranged[df_c1_arranged.pA_c1 > min_prob] df_c1_arranged.to_csv( "c1_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_arranged_1d.txt", "r") as f1, open( "pA_c1_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_arranged_1d.txt") ####c12_arranged df_c12_arranged = df_c12.sort_values(by="pA_c12", ascending=False) df_c12_arranged = df_c12_arranged[df_c12_arranged.pA_c12 > min_prob] df_c12_arranged.to_csv( "c12_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_arranged_1d.txt", "r") as f1, open( "pA_c12_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_arranged_1d.txt") ####c123_arranged df_c123_arranged = df_c123.sort_values(by="pA_c123", ascending=False) df_c123_arranged = df_c123_arranged[df_c123_arranged.pA_c123 > min_prob] df_c123_arranged.to_csv( "c123_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_arranged_1d.txt", "r") as f1, open( "pA_c123_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_arranged_1d.txt") ####c1_arranged df_c1_arranged["index"] = df_c1_arranged.index index_list_c1 = df_c1_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c1 = [] index_indces_c1 = [] for i in index_list_c1: df_index_list_c1 = df_frame_index.loc[df_frame_index["index"] == i] frame_c1 = df_index_list_c1["frame_index"].tolist() frame_indices_c1.append(frame_c1) index_c1 = [i] * len(frame_c1) index_indces_c1.append(index_c1) frame_indices_c1 = [item for elem in frame_indices_c1 for item in elem] index_indces_c1 = [item for elem in index_indces_c1 for item in elem] df_c1_frame = pd.DataFrame(frame_indices_c1, columns=["frame_index"]) df_c1_index = pd.DataFrame(index_indces_c1, columns=["index"]) df_c1_frame_index = pd.concat([df_c1_frame, df_c1_index], axis=1) df_c1_frame_index = df_c1_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c1_frame_index.to_csv( "c1_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_frame_index_1d.txt", "r") as f1, open( "c1_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_frame_index_1d.txt") ####c12_arranged df_c12_arranged["index"] = df_c12_arranged.index index_list_c12 = df_c12_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c12 = [] index_indces_c12 = [] for i in index_list_c12: df_index_list_c12 = df_frame_index.loc[df_frame_index["index"] == i] frame_c12 = df_index_list_c12["frame_index"].tolist() frame_indices_c12.append(frame_c12) index_c12 = [i] * len(frame_c12) index_indces_c12.append(index_c12) frame_indices_c12 = [item for elem in frame_indices_c12 for item in elem] index_indces_c12 = [item for elem in index_indces_c12 for item in elem] df_c12_frame = pd.DataFrame(frame_indices_c12, columns=["frame_index"]) df_c12_index = pd.DataFrame(index_indces_c12, columns=["index"]) df_c12_frame_index = pd.concat([df_c12_frame, df_c12_index], axis=1) df_c12_frame_index = df_c12_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c12_frame_index.to_csv( "c12_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_frame_index_1d.txt", "r") as f1, open( "c12_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_frame_index_1d.txt") ####c123_arranged df_c123_arranged["index"] = df_c123_arranged.index index_list_c123 = df_c123_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c123 = [] index_indces_c123 = [] for i in index_list_c123: df_index_list_c123 = df_frame_index.loc[df_frame_index["index"] == i] frame_c123 = df_index_list_c123["frame_index"].tolist() frame_indices_c123.append(frame_c123) index_c123 = [i] * len(frame_c123) index_indces_c123.append(index_c123) frame_indices_c123 = [item for elem in frame_indices_c123 for item in elem] index_indces_c123 = [item for elem in index_indces_c123 for item in elem] df_c123_frame = pd.DataFrame(frame_indices_c123, columns=["frame_index"]) df_c123_index = pd.DataFrame(index_indces_c123, columns=["index"]) df_c123_frame_index = pd.concat([df_c123_frame, df_c123_index], axis=1) df_c123_frame_index = df_c123_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c123_frame_index.to_csv( "c123_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_frame_index_1d.txt", "r") as f1, open( "c123_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_frame_index_1d.txt") ####c1 indices_c1_1d = df_c1_frame_index["index"].unique() frames_c1 = [] for i in indices_c1_1d: x = df_c1_frame_index.loc[df_c1_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c1.append(z) frames_c1_1d = [item for elem in frames_c1 for item in elem] with open("frames_c1_1d.pickle", "wb") as f: pk.dump(frames_c1_1d, f) with open("indices_c1_1d.pickle", "wb") as f: pk.dump(indices_c1_1d, f) ####c12 indices_c12_1d = df_c12_frame_index["index"].unique() frames_c12 = [] for i in indices_c12_1d: x = df_c12_frame_index.loc[df_c12_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c12.append(z) frames_c12_1d = [item for elem in frames_c12 for item in elem] with open("frames_c12_1d.pickle", "wb") as f: pk.dump(frames_c12_1d, f) with open("indices_c12_1d.pickle", "wb") as f: pk.dump(indices_c12_1d, f) ####c123 indices_c123_1d = df_c123_frame_index["index"].unique() frames_c123 = [] for i in indices_c123_1d: x = df_c123_frame_index.loc[df_c123_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c123.append(z) frames_c123_1d = [item for elem in frames_c123 for item in elem] with open("frames_c123_1d.pickle", "wb") as f: pk.dump(frames_c123_1d, f) with open("indices_c123_1d.pickle", "wb") as f: pk.dump(indices_c123_1d, f) ##saving probabilities for each selected frame ####c1 prob_c1_1d_list = [] for i in indices_c1_1d: prob_c1_1d_list.append(df_c1["pA_c1"][i]) prob_c1_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c1_1d_list ) ) prob_c1_1d_list = [x / n_structures for x in prob_c1_1d_list] with open("prob_c1_1d_list.pickle", "wb") as f: pk.dump(prob_c1_1d_list, f) ####c12 prob_c12_1d_list = [] for i in indices_c12_1d: prob_c12_1d_list.append(df_c12["pA_c12"][i]) prob_c12_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c12_1d_list ) ) prob_c12_1d_list = [x / n_structures for x in prob_c12_1d_list] with open("prob_c12_1d_list.pickle", "wb") as f: pk.dump(prob_c12_1d_list, f) ####c123 prob_c123_1d_list = [] for i in indices_c123_1d: prob_c123_1d_list.append(df_c123["pA_c123"][i]) prob_c123_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c123_1d_list ) ) prob_c123_1d_list = [x / n_structures for x in prob_c123_1d_list] with open("prob_c123_1d_list.pickle", "wb") as f: pk.dump(prob_c123_1d_list, f) ref_df_1d = pd.DataFrame(bins, columns=["dim0", "dim1"]) ref_df_1d["bins"] = ref_df_1d.agg( lambda x: f"[{x['dim0']} , {x['dim1']}]", axis=1 ) ref_df_1d = ref_df_1d[["bins"]] index_ref_1d = [] for i in range(len(bins)): index_ref_1d.append(i) index_ref_df_1d = pd.DataFrame(index_ref_1d, columns=["index"]) df_ref_1d = pd.concat([ref_df_1d, index_ref_df_1d], axis=1) df_ref_1d.to_csv("ref_1d.txt", header=True, index=None, sep=" ", mode="w") df.to_csv("df_1d.csv", index=False) os.system("rm -rf __pycache__") print("Successfully Completed Reweighing") def reweight_2d( binspace=10, n_structures=4, Xdim=[-180, 180], Ydim=[-180, 180], T=300.0, min_prob=0.000001, ): """ Reweights boosted potential energies in two-dimensions based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles (1st dimension) Ydim: list Range of dihedral angles (2nd dimension) T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Phi_Psi = pd.read_csv("Phi_Psi.dat", delim_whitespace=True, header=None) df_Phi_Psi.columns = ["Phi", "Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Phi_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) binsY = np.arange(float(Ydim[0]), (float(Ydim[1]) + binspace), binspace) hist2D, hist_edgesX, hist_edgesY = np.histogram2d( df_Phi_Psi["Phi"].values.tolist(), df_Phi_Psi["Psi"].values.tolist(), bins=(binsX, binsY), weights=None, ) pstarA_2D = [i / sum_total for i in list(hist2D)] bins_tuple_X = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) bins_tuple_Y = create_bins( lower_bound=int(Ydim[0]), width=binspace, upper_bound=int(Ydim[1]) ) bins = [] for i in range(len(bins_tuple_X)): for j in range(len(bins_tuple_Y)): bins.append([bins_tuple_X[i], bins_tuple_Y[j]]) pstarA = [item for elem in pstarA_2D for item in elem] hist = [item for elem in hist2D for item in elem] hist = [int(i) for i in hist] data_X = df_Phi_Psi["Phi"].values.tolist() binned_weights_X = [] for value in data_X: bin_index_X = find_bin(value, bins_tuple_X) binned_weights_X.append(bin_index_X) data_Y = df_Phi_Psi["Psi"].values.tolist() binned_weights_Y = [] for value in data_Y: bin_index_Y = find_bin(value, bins_tuple_Y) binned_weights_Y.append(bin_index_Y) binned_weights_2D = [] for i in range(len(binned_weights_X)): binned_weights_2D.append([binned_weights_X[i], binned_weights_Y[i]]) binned_weights = [] for i in range(len(binned_weights_2D)): binned_weights.append( (binned_weights_2D[i][0] * len(bins_tuple_Y)) + (binned_weights_2D[i][1] + 1) ) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df_index["index"] = df_index["index"] - 1 df = pd.concat([df_index, df_Phi_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 = pd.DataFrame(data_c1, columns=["bins", "pA_c1"]) df_c12 = pd.DataFrame(data_c12, columns=["bins", "pA_c12"]) df_c123 = pd.DataFrame(data_c123, columns=["bins", "pA_c123"]) df_c1.to_csv("c1_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c1_2d.txt", "r") as f1, open("pA_c1_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_2d.txt") ####c12 df_c12.to_csv("c12_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c12_2d.txt", "r") as f1, open("pA_c12_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_2d.txt") ####c123 df_c123.to_csv("c123_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c123_2d.txt", "r") as f1, open("pA_c123_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_2d.txt") ####c1_arranged df_c1_arranged = df_c1.sort_values(by="pA_c1", ascending=False) df_c1_arranged = df_c1_arranged[df_c1_arranged.pA_c1 > min_prob] df_c1_arranged.to_csv( "c1_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_arranged_2d.txt", "r") as f1, open( "pA_c1_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_arranged_2d.txt") ####c12_arranged df_c12_arranged = df_c12.sort_values(by="pA_c12", ascending=False) df_c12_arranged = df_c12_arranged[df_c12_arranged.pA_c12 > min_prob] df_c12_arranged.to_csv( "c12_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_arranged_2d.txt", "r") as f1, open( "pA_c12_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_arranged_2d.txt") ####c123_arranged df_c123_arranged = df_c123.sort_values(by="pA_c123", ascending=False) df_c123_arranged = df_c123_arranged[df_c123_arranged.pA_c123 > min_prob] df_c123_arranged.to_csv( "c123_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_arranged_2d.txt", "r") as f1, open( "pA_c123_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_arranged_2d.txt") ####c1_arranged df_c1_arranged["index"] = df_c1_arranged.index index_list_c1 = df_c1_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c1 = [] index_indces_c1 = [] for i in index_list_c1: df_index_list_c1 = df_frame_index.loc[df_frame_index["index"] == i] frame_c1 = df_index_list_c1["frame_index"].tolist() frame_indices_c1.append(frame_c1) index_c1 = [i] * len(frame_c1) index_indces_c1.append(index_c1) frame_indices_c1 = [item for elem in frame_indices_c1 for item in elem] index_indces_c1 = [item for elem in index_indces_c1 for item in elem] df_c1_frame = pd.DataFrame(frame_indices_c1, columns=["frame_index"]) df_c1_index =
pd.DataFrame(index_indces_c1, columns=["index"])
pandas.DataFrame
import sys import numpy as np import pandas as pd from scipy.stats import mannwhitneyu, norm, rankdata, tiecorrect from statsmodels.stats.multitest import multipletests from tqdm import tqdm_notebook as tqdm from . import config from .utils import precheck_align try: import cupy as cp from cupyx.scipy.special import ndtr except ModuleNotFoundError: cupy = None ndtr = None def melt_mwu(effects, pvals, pos_ns, neg_ns, effect): """ Flatten matrix-form outputs to column-form. Parameters ---------- effects: Pandas DataFrame effect sizes matrix pvals: Pandas DataFrame p-values matrix pos_ns neg_ns: Pandas DataFrames sample group counts a_num_cols: int number of columns in first observations matrix b_num_cols: int number of columns in second observations matrix effect: "mean", "median", or "rank_biserial" the effect statistic Returns ------- series form statistics """ melted = pd.DataFrame() melted[effect] = effects.unstack() melted["pval"] = pvals.unstack() melted["qval"] = multipletests( 10 ** (-melted["pval"]), alpha=config.MULTIPLETESTS_ALPHA, method=config.MULTIPLETESTS_METHOD, )[1] melted["qval"] = -np.log10(melted["qval"]) melted["pos_n"] = pos_ns.unstack() melted["neg_n"] = neg_ns.unstack() melted = melted.sort_values(by="pval", ascending=False) melted.index.set_names(["b_col", "a_col"], inplace=True) melted.index = melted.index.swaplevel(0, 1) return melted def mat_mwu_naive( a_mat, b_mat, melt: bool, effect: str, use_continuity=True, pbar=False, ): """ Compute rank-biserial correlations and Mann-Whitney statistics between every column-column pair of a_mat (continuous) and b_mat (binary) using a double for loop. In the case that a_mat or b_mat has a single column, the results are re-formatted with the multiple hypothesis-adjusted q-value also returned. Parameters ---------- a_mat: Pandas DataFrame Continuous set of observations, with rows as samples and columns as labels. b_mat: Pandas DataFrame Binary set of observations, with rows as samples and columns as labels. Required to be castable to boolean datatype. melt: boolean Whether or not to melt the outputs into columns. use_continuity: bool Whether or not to use a continuity correction. True by default. pbar: Boolean Whether or not to show a progress bar. effect: "mean", "median", or "rank_biserial" The effect statistic. Returns ------- effects: rank-biserial correlations pvals: -log10 p-values of correlations """ if effect not in ["mean", "median", "rank_biserial"]: raise ValueError("effect must be 'mean', 'median', or 'rank_biserial'") a_mat, b_mat = precheck_align(a_mat, b_mat, np.float64, np.float64) a_names = a_mat.columns b_names = b_mat.columns a_num_cols = a_mat.shape[1] # number of variables in A b_num_cols = b_mat.shape[1] # number of variables in B effects = np.zeros((a_num_cols, b_num_cols)) # null value of r = 0 pvals = np.zeros((a_num_cols, b_num_cols)) + 1 # null value of p=1 pos_ns = np.zeros((a_num_cols, b_num_cols)) neg_ns = np.zeros((a_num_cols, b_num_cols)) if pbar: sys.stderr.flush() progress = tqdm(total=a_num_cols * b_num_cols) for a_col_idx, a_col_name in enumerate(a_names): for b_col_idx, b_col_name in enumerate(b_names): a_col = a_mat[a_col_name].dropna() b_col = b_mat[b_col_name].dropna() a_col, b_col = a_col.align(b_col, join="inner") b_pos = b_col == 1 b_neg = b_col == 0 pos_n = b_pos.sum() neg_n = b_neg.sum() pos_ns[a_col_idx][b_col_idx] = pos_n neg_ns[a_col_idx][b_col_idx] = neg_n if pos_n >= 1 and neg_n >= 1: a_pos = a_col[b_pos] a_neg = a_col[b_neg] # handle identical values cases if np.std(np.concatenate([a_pos, a_neg])) == 0: pvals[a_col_idx][b_col_idx] = 1 else: U2, pval = mannwhitneyu( a_pos, a_neg, use_continuity=use_continuity, alternative="two-sided", ) if effect == "rank_biserial": effects[a_col_idx][b_col_idx] = ( 2 * U2 / (len(a_pos) * len(a_neg)) - 1 ) elif effect == "median": pos_med = a_pos.median() neg_med = a_neg.median() effects[a_col_idx][b_col_idx] = pos_med - neg_med elif effect == "mean": pos_mean = a_pos.mean() neg_mean = a_neg.mean() effects[a_col_idx][b_col_idx] = pos_mean - neg_mean pvals[a_col_idx][b_col_idx] = pval if pbar: progress.update(1) if pbar: progress.close() # account for small p-values rounding to 0 pvals[pvals == 0] = np.finfo(np.float64).tiny effects = pd.DataFrame(effects, index=a_names, columns=b_names) pvals =
pd.DataFrame(pvals, index=a_names, columns=b_names)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')])
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import datetime from dateutil.relativedelta import * from fuzzywuzzy import fuzz import argparse import glob import numpy as np import pandas as pd from scipy.stats import ttest_1samp import sys import xarray as xr from paths_bra import * sys.path.append('./..') from refuelplot import * setup() from utils import * gen_path = bra_path + '/generation' # get GWA version parser = argparse.ArgumentParser(description='Insert optionally GWA') parser.add_argument('-GWA') args = parser.parse_args() if(args.GWA == None): GWA = "3" else: GWA = args.GWA if GWA == "2": results_path2 = results_path results_path = results_path + '/results_GWA2' # load generation data print('load generation data') # load usinas hourly if gen_path + '/hourly/usinas.pkl' not in glob.glob(gen_path + '/hourly/*.pkl'): USIh = pd.read_csv(gen_path + '/hourly/Comparativo_Geração_de_Energia_Semana_data_usinas.csv', sep = ';', index_col = 0, parse_dates = True, dayfirst = True).iloc[1:,[6,8]].sort_index() # remove missing values USIh = USIh.loc[USIh.index.notnull()].dropna() USIh.columns = ['usina','prod_GWh'] # in RIO DO FOGO there is one duplicate hour after one missing hour -> change timestamps of those hours idxUSIh = USIh.index.values midxUSIh = USIh.reset_index().set_index(['usina','Data Escala de Tempo 1 GE Comp 3']).index idxUSIh[midxUSIh.duplicated(keep='last')] = idxUSIh[midxUSIh.duplicated(keep='first')] - np.timedelta64(1,'h') USIh.index = pd.DatetimeIndex(idxUSIh) USIhs = USIh.reset_index().set_index(['usina','index']).unstack(level=0).prod_GWh USIhs.to_csv(gen_path + '/hourly/usinas.csv') USIhs.to_pickle(gen_path + '/hourly/usinas.pkl') wpUSIhs = pd.read_pickle(gen_path + '/hourly/usinas.pkl') # load and match aneel and ons windparks def get_cap_df(cap,comdate): com = pd.DataFrame({'capacity': cap}).groupby(comdate).sum() cap_cum = com.capacity.cumsum() # if only years given for commissioning dates -> gradual capacity increase over year, full capacity at end of year if type(cap_cum.index.values[0]) == np.int64: cap_cum.index = [np.datetime64(str(int(year))+"-12-31 23:00:00") for year in cap_cum.index.values] # create yearly dates at yearends drcc = pd.date_range(np.datetime64('2005-12-31 23:00:00'), np.datetime64('2019-12-31 23:00:00'),freq= 'y') cap_cum = pd.Series(drcc.map(cap_cum),index = drcc) # if first year emtpy: either year before or 0 if nothing before if(sum(com.index<2000) > 0): cap_cum[0] = com.cumsum()[com.index<2000].max() else: cap_cum[0] = 0 # if missing years -> put capacity of year before cap_cum = cap_cum.ffill() dr = pd.date_range('1/1/2006','31/12/2019 23:00:00',freq = 'h') cap_ts = pd.Series(dr.map(cap_cum),index = dr) cap_ts[0] = cap_cum[cap_cum.index<=pd.Timestamp('2006-01-01')].max() if type(comdate[0]) == np.int64: return(cap_ts.interpolate(method='linear')) else: return(cap_ts.fillna(method='ffill')) def matchWords(word, statements): # function to match a word to different statements # output: ratio of matching (0-100) for all provided statements results = [] for s in statements: r = fuzz.ratio(word, s) results.append(r) return results def match_string(string, array): # function for matching casefolded strings Slc = string.strip().casefold() Alc = [arr.casefold() for arr in array.str.strip().unique()] scores = matchWords(Slc, Alc) mscore = max(scores) strarr = array.unique()[np.where(np.array(scores)==mscore)][0] return(string,strarr,mscore) def match_anl(string): # function to match ONS to ANL windparks return(match_string(string,ANL2.name)) print('match wind parks') # load ANEEL and ONS windparks ONS = pd.read_csv(bra_path + '/ONS_windparks.csv', index_col = 0) # remove those with CONJUNTO EOLICO - they're there twice and capacities don't match with ANEEL data ONS = ONS[~ONS.usina.str.contains('CONJUNTO EOLICO')] # remove some other duplicate windparks ONS = ONS[[d not in [' CANOA QUEBRADA (E-RV-ACEP)',' PV DO NORDESTE',' SM (SANTA MARIA)',' SÃO BENTO NORTE II'] for d in ONS.usina]] ANL = pd.read_csv(bra_path + '/turbine_data.csv', index_col = 0) # characters and strings to replace for better matching letters = {'õ':'õ', 'ó':'o', 'ã':'a', 'á':'a', 'â':'a', 'é':'e', 'Ã':'A', 'Á':'A', 'Â':'A', 'Ó':'O', 'É':'E', 'ú':'u', 'ô':'o', 'Ô':'O', 'ú':'u', 'Ú':'U', 'ç':'c', 'Ç':'C', 'í':'i', 'Í':'I', 'Ê':'E'} remove = {' 2LER':'', ' 2LFA':'', ' LFA':'', 'EOL ':'', ' 3LER':'', 'Usina Eolica ':'', 'Eólica ':'', ' ENERGIAS RENOVAVEIS':'', # ' CONJUNTO EOLICO':'', '\(E-BV-ACEP\)':'', '\(E-RV-ACEP\)':'', '\(BELA BISTA\)':'', '\(ENERGEN\)':'', '\(Antiga Ventos Maranhenses 05\)':'', 'PARQUE EOLICO ':'', ' - N HORIZ':'', 'ENERGETICA S/A':'', '\(ILHEUS\)':'', ' EOLOS':'', 'S\.A\.':''} replace = {'LAG DO':'LAGOA DO', 'VENTOS S VICENTE':'VENTOS DE SAO VICENTE', 'SERRA BABILONIA':'SERRA DA BABILONIA', 'CORREDOR SENANDES':'CORREDOR DO SENANDES', 'SAO BENTO NORTE':'SAO BENTO DO NORTE', 'GAMELEIRAS':'GAMELERIAS', 'Lagoinha':'Lagoinh', 'PAPAGAIOS':'PAPAGAIO', 'VENTOS DE SAO ABRAAO':'VENTOS DO SANTO ABRAAO', 'VENTOS DO SAO MARIO':'VENTOS DE SAO MARIO', 'DAGUA':'D AGUA', 'B VEN':'BONS VENTOS', 'NOVA BURITI':'BURITI', 'NOVA CAJUCOCO':'CAJUCOCO', 'PALMAS':'DE PALMAS', 'DE PALMARES':'PALMARES', 'PV DO NORDESTE':'VENTOS DO NORDESTE', 'Aura Lagoa do Barro':'Lagoa do Barro', 'AURA LAGOA DO BARRO':'LAGOA DO BARRO', 'LAGOA BARRO':'LAGOA DO BARRO', 'GRAVATA':'GRAVATA FRUITRADE', 'FAZENDA DO ROSARIO':'FAZENDA ROSARIO', 'Parque Eolico do Horizonte':'Ventos de Horizonte', 'S BENTO':'SAO BENTO', 'SANTO ANTONIO (BTG PACTUAL)':'SANTO ANTONIO DE PADUA', 'SM \(SANTA MARIA\)':'SANTA MARIA', 'SAO JORGE CE':'SAO JORGE', 'VENT DA ST ESPERANCA':'VENTOS DA SANTA ESPERANCA', 'VENTOS DA STA DULCE':'VENTOS DA SANTA DULCE', 'ESPERANCA NORDESTE':'ESPERANCA DO NORDESTE', 'Eolica Delta':'Delta', 'Eolica Serra das Vacas':'Serra das Vacas', 'Ventos de Santo Augusto':'Santo Augusto', 'Ventos do Sao Gabriel':'Sao Gabriel', 'GE <NAME>':'<NAME>'} numbers = {'10':'X', '11':'XI', '12':'XII', '13':'XIII', '14':'XIV', '15':'XV', '17':'XVII', '19':'XIX', '21':'XXI', '23':'XXIII', '24':'XXIV', '25':'XXV', '26':'XXVI', '27':'XXVII', '28':'XXVIII', '29':'XXIX', '31':'XXXI', '34':'XXXIV', '35':'XXXV', '36':'XXXVI', '01':'I', '02':'II', '03':'III', '04':'IV', '05':'V', '06':'VI', '07':'VII', '08':'VIII', '09':'IX', '1':'I', '2':'II', '3':'III', '4':'IV', '5':'V', '6':'VI', '7':'VII', '8':'VIII', '9':'IX'} # replace characters ONS2 = ONS.copy(deep=True) ANL2 = ANL.copy(deep=True) for i in letters: ONS2.usina = ONS2.usina.str.replace(i,letters.get(i)) ANL2.name = ANL2.name.str.replace(i,letters.get(i)) for i in replace: ONS2.usina = ONS2.usina.str.replace(i,replace.get(i)) ANL2.name = ANL2.name.str.replace(i,replace.get(i)) for i in remove: ONS2.usina = ONS2.usina.str.replace(i,remove.get(i)) for i in numbers: ONS2.usina = ONS2.usina.str.replace(i,numbers.get(i)) ANL2.name = ANL2.name.str.replace(i,numbers.get(i)) # match windparks matches = ONS2.usina.apply(match_anl).apply(pd.Series) matches.columns = ['ONS_name','ANL_name','score'] ONSd = pd.Series(ONS.usina.values,index=ONS2.usina.values) ANLd = pd.Series(ANL.name.values,index=ANL2.name.values) ONSd.columns = ['simpl','orig'] ANLd.columns = ['simpl','orig'] # load simulated data print('load simulated data') # prepare simulated data as dataframe if (results_path + '/wpUSI_MER.pkl' not in glob.glob(results_path + '/*.pkl')): if GWA == "2": wpERAxr = xr.open_dataset(results_path2 + '/windpower_stat_ERA5.nc',chunks={'time':80}) wpMERxr = xr.open_dataset(results_path2 + '/windpower_stat_MERRA2.nc',chunks={'time':80}) else: wpERAxr = xr.open_dataset(results_path + '/windpower_stat_ERA5.nc',chunks={'time':80}) wpMERxr = xr.open_dataset(results_path + '/windpower_stat_MERRA2.nc',chunks={'time':80}) wpERAgxr = xr.open_mfdataset(results_path +'/windpower_??_ERA5_GWA.nc',chunks={'time':80}) wpMERgxr = xr.open_mfdataset(results_path +'/windpower_??_MERRA2_GWA.nc',chunks={'time':80}) turb_mer = pd.read_csv(bra_path + '/turbine_data_mer.csv',index_col=0) turb_era = pd.read_csv(bra_path + '/turbine_data_era.csv',index_col=0) turb_merg = pd.read_csv(bra_path + '/turbine_data_mer_gwa' + GWA + '.csv',index_col=0) turb_erag = pd.read_csv(bra_path + '/turbine_data_era_gwa' + GWA + '.csv',index_col=0) lbl =
pd.read_csv(bra_path+ '/labels_turbine_data_gwa' + GWA + '.csv',index_col=0)
pandas.read_csv
import pandas as pd import numpy as np def btk_data_decoy_old(): df = pd.read_csv('btk_active_decoy/BTK_2810_old.csv') df_decoy = pd.read_csv('btk_active_decoy/btk_finddecoy.csv') df_decoy = pd.DataFrame(df_decoy['smile']) df_decoy['label'] = 0 df_active = df[df['target2']<300] df_active['target2'] = 1 df_ic_decoy = df[df['target2']>9000] df_ic_decoy['target2'] = 0 del df_active['target1'],df_ic_decoy['target1'] df_active.columns = df_ic_decoy.columns = df_decoy.columns = ['smiles','label'] df_all = pd.concat([df_active,df_ic_decoy]) df_all = pd.concat([df_all,df_decoy]) df_all.to_csv('btk_active_decoy/btk_2810_add_decoy_old.csv',index=None) def btk_data_cut_decoy(): df = pd.read_csv('btk_active_decoy/BTK_2810_old.csv') df_decoy = pd.read_csv('btk_active_decoy/btk_finddecoy.csv') df_cut_decoy = pd.read_csv('btk_active_decoy/similarity_active_decoy.csv') df_cut_decoy = df_cut_decoy.head(1139)#1139是根据正样本1393个,乘以10比例13930,原先数据decoy总量为15069,15069-13930=1139 df_decoy = pd.DataFrame(df_decoy['smile']) df_decoy['label'] = 0 df_active = df[df['target2']<300] df_active['target2'] = 1 df_ic_decoy = df[df['target2']>9000] df_ic_decoy['target2'] = 0 del df_active['target1'],df_ic_decoy['target1'] df_active.columns = df_ic_decoy.columns = df_decoy.columns = ['smiles','label'] df_all = pd.concat([df_active,df_ic_decoy]) df_all = pd.concat([df_all,df_decoy]) df_all_filter = df_all[~ df_all['smiles'].isin(df_cut_decoy['train_smiles'])] df_all_filter.to_csv('btk_active_decoy/btk_2810_cut_decoy.csv',index=None) def btk_data_decoy(): df = pd.read_csv('btk_active_decoy/BTK_2810.csv') df_decoy = pd.read_csv('btk_active_decoy/btk_finddecoy.csv') df_decoy = df_decoy.sample(frac=0.5, random_state=123) df_decoy = pd.DataFrame(df_decoy['smile']) df_decoy['label'] = 0 df_active = df[df['target2']<300] df_active['target2'] = 1 df_ic_decoy = df[df['target2']>9000] df_ic_decoy['target2'] = 0 del df_active['target1'],df_ic_decoy['target1'] df_active.columns = df_ic_decoy.columns = df_decoy.columns = ['smiles','label'] df_all = pd.concat([df_active,df_ic_decoy]) df_all = pd.concat([df_all,df_decoy]) df_all.to_csv('btk_active_decoy/btk_2810_add_decoy.csv',index=None) def btk_2810_ic50(): df = pd.read_csv('btk_active_decoy/BTK_2810_old.csv') df_decoy = pd.read_csv('btk_active_decoy/btk_finddecoy.csv') df_decoy = pd.DataFrame(df_decoy['smile']) df_decoy['label'] = 2 df_active = df[df['target2']<300] df_ic_decoy = df[df['target2']>9000] del df_active['target1'],df_ic_decoy['target1'] df_active.columns = df_ic_decoy.columns = df_decoy.columns = ['smiles','label'] df_all = pd.concat([df_active,df_ic_decoy]) df_all = pd.concat([df_all,df_decoy]) df_all.to_csv('btk_active_decoy/btk_2810_ic50.csv',index=None) def btk_2610_data(): df = pd.read_csv('btk_active_decoy/BTK_2610.csv') df_decoy = pd.read_csv('btk_active_decoy/btk_2610_find_decoy.csv') df_decoy = pd.DataFrame(df_decoy['smile']) df_decoy['label'] = 0 df_active = df[df['ic50']<100] df_active['ic50'] = 1 df_ic_decoy = df[df['ic50']>=1000] df_ic_decoy['ic50'] = 0 del df_active['chemblid'],df_ic_decoy['chemblid'] df_active.columns = df_ic_decoy.columns = df_decoy.columns = ['smiles','label'] df_all = pd.concat([df_active,df_ic_decoy]) df_all = pd.concat([df_all,df_decoy]) df_all.to_csv('btk_active_decoy/btk_2610_add_decoy.csv',index=None) def btk_our_data(): df = pd.read_csv('btk_active_decoy/chembl_train_add_decoy.csv') df_decoy =
pd.read_csv('btk_active_decoy/btk_our_decoy.csv')
pandas.read_csv
from matplotlib import pyplot as plt from matplotlib.ticker import FormatStrFormatter import math import numpy as np import pandas as pd from matplotlib import colors from matplotlib.pyplot import cm import sys try: # case = int(sys.argv[1]) infile = str(sys.argv[1]) except IndexError as err: print("Not enough arguments: {0}".format(err)) sys.exit(1) except ValueError as err: print("Illegal value in argument: {0}".format(err)) sys.exit(1) min_density = 50 from functools import reduce plt.rcParams["font.family"] = "Times New Roman" plt.rcParams['font.size'] = 20 plt.rc('text', usetex=True) allfiles = open(infile, 'r') allfiles = allfiles.readlines() df = pd.read_csv(allfiles[0].strip(), header=0, index_col=0) for i in range(1,len(allfiles)): nextdf = pd.read_csv(allfiles[i].strip(), header=0, index_col=0) df = pd.concat([df, nextdf], ignore_index=True) # samp0 = df['samples'].unique()[0] # samp1 = df['samples'].unique()[1] # samp2 = df['samples'].unique()[2] # tempdf = df[df['samples'] == samp2]['iterate rate'] # print("val range = ", tempdf.max() - tempdf.min()) # tempdf = df[df['samples'] == samp2]['grad rate'] # print("grd range = ", tempdf.max() - tempdf.min()) ###### filter out small densitites # print("*** Filtering out densities < ", min_density) df = df[df['density'] > min_density] df = df.reset_index() # print("Available sample sizes: ", df['samples'].unique()) # print("Available densities: ", df['density'].unique()) # slurmid = str(allfiles[0][3:9]) funcname = str(df['function name'][0]) dimen = str(df['dim of intput'][0]) logbase = str(df['log base'][0]) # lb = str(df['left bound'][0]) # rb = str(df['right bound'][0]) tbscale = str(np.round(df['test grid scale'][0],2)) fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(6,12)) fig.suptitle('Rates for '+funcname+', dim='+dimen+', b='+logbase, fontsize=20) df['charL'] = df['right bound'] - df['left bound'] df['avg samp spacing'] = df['charL']/(np.power(df['samples'],1.0/float(dimen))) # print("Available spacings: ", df['avg samp spacing'].unique()) ###### compute zoom breaks md = df['density'].unique().max() zoom_breaks = df[df['density'] == md]['avg samp spacing'].unique() for i in range(2): if i == 0: rate_to_plot = 'iterate rate' else: rate_to_plot = 'grad rate' dfsub = df[[rate_to_plot, 'avg samp spacing']] ir_mean =dfsub.groupby('avg samp spacing').mean().rename(columns={"iterate rate norm inside": "ir_mean"}) ir_25per =dfsub.groupby('avg samp spacing').quantile(q=.25).rename(columns={"iterate rate norm inside": "ir_25per"}) ir_75per =dfsub.groupby('avg samp spacing').quantile(q=.75).rename(columns={"iterate rate norm inside": "ir_75per"}) ir_max =dfsub.groupby('avg samp spacing').max().rename(columns={"iterate rate norm inside": "ir_max"}) ir_min =dfsub.groupby('avg samp spacing').min().rename(columns={"iterate rate norm inside": "ir_min"}) ir_10per =dfsub.groupby('avg samp spacing').quantile(q=.10).rename(columns={"iterate rate norm inside": "ir_10per"}) ir_90per =dfsub.groupby('avg samp spacing').quantile(q=.90).rename(columns={"iterate rate norm inside": "ir_90per"}) # ir_5per =dfsub.groupby('avg samp spacing').quantile(q=.05).rename(columns={"iterate rate norm inside": "ir_5per"}) # ir_95per =dfsub.groupby('avg samp spacing').quantile(q=.95).rename(columns={"iterate rate norm inside": "ir_95per"}) groupP=dfsub.groupby('avg samp spacing') #groupby attributes ir_mean =groupP.mean().rename(columns={rate_to_plot: "ir_mean"}) ir_25per =groupP.quantile(q=.25).rename(columns={rate_to_plot: "ir_25per"}) ir_75per =groupP.quantile(q=.75).rename(columns={rate_to_plot: "ir_75per"}) ir_max =groupP.max().rename(columns={rate_to_plot: "ir_max"}) ir_min =groupP.min().rename(columns={rate_to_plot: "ir_min"}) ir_10per =groupP.quantile(q=.10).rename(columns={rate_to_plot: "ir_10per"}) ir_90per =groupP.quantile(q=.90).rename(columns={rate_to_plot: "ir_90per"}) # ir_5per =groupP.quantile(q=.05).rename(columns={rate_to_plot: "ir_5per"}) # ir_95per =groupP.quantile(q=.95).rename(columns={rate_to_plot: "ir_95per"}) by_sample_count=groupP.count().rename(columns={rate_to_plot:"by_sample_count"}) # Make a list of the dataframes data_frames = [ir_mean, ir_25per, ir_75per, ir_max, ir_min, ir_10per, ir_90per, by_sample_count] # Merge them all at once merged_df =
pd.concat(data_frames, join='outer', axis=1)
pandas.concat
''' CIS 419/519 project: Using decision tree ensembles to infer the pathological cause of age-related neurodegenerative changes based on clinical assessment nadfahors: <NAME>, <NAME>, & <NAME> This file contains code for preparing NACC data for analysis, including: * synthesis of pathology data to create pathology class outcomes * dropping uninformative variables from predictor set * identifying and merging/resolving redundant clusters of variables * identifying missing data codes and replacing with NaNs as appropriate * creating change variables from longitudinal data * imputation of missing data * categorizing retained variables as interval/ratio, ordinal, or nominal * creation of dummy variables for nominal variables * standardizing interval/ratio and ordinal variables * creating date variables, then converting these to useful ages or intervals * quadratic expansion for interval/ratio variables? ''' # Module imports import pandas as pd import numpy as np import datetime # Read in full dataset. Warning: this is about 340 MB. fulldf = pd.read_csv('investigator_nacc48.csv') # List of Uniform Data Set (UDS) values that will serve as potential # predictors. Those with a "False" next to them will be excluded after data # preparation; those with a True will be kept. xvar = pd.read_csv('xvar.csv') # Variables from the NACC neuropathology table that will be used to group # individuals by pathology class: # 1) Alzheimer's disease (AD); # 2) frontotemporal lobar degeneration due to tauopathy (FTLD-tau) # 3) frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP) # 4) Lewy body disease due to alpha synuclein (including Lewy body dementia and Parkinson's disease) # 5) vascular disease # Path classes: AD (ABC criteria); FTLD-tau; FTLD-TDP, including ALS; Lewy body disease (are PD patients captured here?); vascular npvar = pd.DataFrame(np.array(["NPPMIH",0, # Postmortem interval--keep in as a potential confound variable? "NPFIX",0, "NPFIXX",0, "NPWBRWT",0, "NPWBRF",0, "NACCBRNN",0, "NPGRCCA",0, "NPGRLA",0, "NPGRHA",0, "NPGRSNH",0, "NPGRLCH",0, "NACCAVAS",0, "NPTAN",False, "NPTANX",False, "NPABAN",False, "NPABANX",False, "NPASAN",False, "NPASANX",False, "NPTDPAN",False, "NPTDPANX",False, "NPHISMB",False, "NPHISG",False, "NPHISSS",False, "NPHIST",False, "NPHISO",False, "NPHISOX",False, "NPTHAL",False,# Use for ABC scoring to create ordinal measure of AD change "NACCBRAA",False,# Use for ABC scoring to create ordinal measure of AD change "NACCNEUR",False,# Use for ABC scoring to create ordinal measure of AD change "NPADNC",False,# Use for ABC scoring to create ordinal measure of AD change "NACCDIFF",False, "NACCVASC",False,# Vasc presence/absence "NACCAMY",False, "NPLINF",False, "NPLAC",False, "NPINF",False,# Derived variable summarizing several assessments of infarcts and lacunes "NPINF1A",False, "NPINF1B",False, "NPINF1D",False, "NPINF1F",False, "NPINF2A",False, "NPINF2B",False, "NPINF2D",False, "NPINF2F",False, "NPINF3A",False, "NPINF3B",False, "NPINF3D",False, "NPINF3F",False, "NPINF4A",False, "NPINF4B",False, "NPINF4D",False, "NPINF4F",False, "NACCINF",False, "NPHEM",False, "NPHEMO",False, "NPHEMO1",False, "NPHEMO2",False, "NPHEMO3",False, "NPMICRO",False, "NPOLD",False, "NPOLD1",False, "NPOLD2",False, "NPOLD3",False, "NPOLD4",False, "NACCMICR",False,# Derived variable for microinfarcts "NPOLDD",False, "NPOLDD1",False, "NPOLDD2",False, "NPOLDD3",False, "NPOLDD4",False, "NACCHEM",False,# Derived variables for microbleeds and hemorrhages "NACCARTE",False, "NPWMR",False, "NPPATH",False,# Other ischemic/vascular pathology "NACCNEC",False, "NPPATH2",False, "NPPATH3",False, "NPPATH4",False, "NPPATH5",False, "NPPATH6",False, "NPPATH7",False, "NPPATH8",False, "NPPATH9",False, "NPPATH10",False, "NPPATH11",False, "NPPATHO",False, "NPPATHOX",False, "NPART",False, "NPOANG",False, "NACCLEWY",False,# Note that limbic/transitional and amygdala-predominant are not differentiated "NPLBOD",False,# But here they are differentiated! "NPNLOSS",False, "NPHIPSCL",False, "NPSCL",False, "NPFTDTAU",False,# FTLD-tau "NACCPICK",False,# FTLD-tau "NPFTDT2",False,# FTLD-tau "NACCCBD",False,# FTLD-tau "NACCPROG",False,# FTLD-tau "NPFTDT5",False,# FTLD-tau "NPFTDT6",False,# FTLD-tau "NPFTDT7",False,# FTLD-tau "NPFTDT8",False,# This is FTLD-tau but associated with ALS/parkinsonism--wut? "NPFTDT9",False,# tangle-dominant disease--is this PART? Maybe exclude cases who have this as only path type. "NPFTDT10",False,# FTLD-tau: other 3R+4R tauopathy. What is this if not AD? Maybe exclude. How many cases? "NPFRONT",False,# FTLD-tau "NPTAU",False,# FTLD-tau "NPFTD",False,# FTLD-TDP "NPFTDTDP",False,# FTLD-TDP "NPALSMND",False,# FTLD-TDP (but exclude FUS and SOD1) "NPOFTD",False, "NPOFTD1",False, "NPOFTD2",False, "NPOFTD3",False, "NPOFTD4",False, "NPOFTD5",False, "NPFTDNO",False, "NPFTDSPC",False, "NPTDPA",False,# In second pass, use anatomical distribution to stage "NPTDPB",False,# In second pass, use anatomical distribution to stage "NPTDPC",False,# In second pass, use anatomical distribution to stage "NPTDPD",False,# In second pass, use anatomical distribution to stage "NPTDPE",False,# In second pass, use anatomical distribution to stage "NPPDXA",False,# Exclude? "NPPDXB",False,# Exclude "NACCPRIO",False,# Exclude "NPPDXD",False,# Exclude "NPPDXE",False, "NPPDXF",False, "NPPDXG",False, "NPPDXH",False, "NPPDXI",False, "NPPDXJ",False, "NPPDXK",False, "NPPDXL",False, "NPPDXM",False, "NPPDXN",False, "NACCDOWN",False, "NACCOTHP",False,# Survey for exclusion criteria "NACCWRI1",False,# Survey for exclusion criteria "NACCWRI2",False,# Survey for exclusion criteria "NACCWRI3",False,# Survey for exclusion criteria "NACCBNKF",False, "NPBNKB",False, "NACCFORM",False, "NACCPARA",False, "NACCCSFP",False, "NPBNKF",False, "NPFAUT",False, "NPFAUT1",False, "NPFAUT2",False, "NPFAUT3",False, "NPFAUT4",False, "NACCINT",False, "NPNIT",False, "NPCERAD",False,# What sort of variable? "NPADRDA",False, "NPOCRIT",False, "NPVOTH",False, "NPLEWYCS",False, "NPGENE",True,# Family history--include in predictors? "NPFHSPEC",False,# Code as dummy variables if useful. "NPCHROM",False,# Exclusion factor? Genetic/chromosomal abnormalities "NPPNORM",False,# Check all the following variables for redundancy with the ones above. "NPCNORM",False, "NPPADP",False, "NPCADP",False, "NPPAD",False, "NPCAD",False, "NPPLEWY",False, "NPCLEWY",False, "NPPVASC",False, "NPCVASC",False, "NPPFTLD",False, "NPCFTLD",False, "NPPHIPP",False, "NPCHIPP",False, "NPPPRION",False, "NPCPRION",False, "NPPOTH1",False, "NPCOTH1",False, "NPOTH1X",False, "NPPOTH2",False, "NPCOTH2",False, "NPOTH2X",False, "NPPOTH3",False, "NPCOTH3",False, "NPOTH3X",0]).reshape((-1,2))) npvar.columns = ['Variable','Keep'] ## Case selection process. # Include only those with autopsy data. aut = fulldf[fulldf.NACCAUTP == 1] del fulldf def table(a,b): print(pd.crosstab(aut[a],aut[b],dropna=False,margins=True)) # Exclude for Down's, Huntington's, and other conditions. aut = aut.loc[aut.DOWNS != 1] aut = aut.loc[aut.HUNT != 1] aut = aut.loc[aut.PRION != 1] aut = aut.loc[~aut.MSAIF.isin([1,2,3])] aut = aut.loc[~aut.NEOPIF.isin([1,2,3])] aut = aut.loc[~aut.SCHIZOIF.isin([1,2,3])] aut.index = list(range(aut.shape[0])) # How many unique IDs? # For now, keep in follow-up visits to increase our training data. uids = aut.NACCID[~aut.NACCID.duplicated()] #aut = aut[~aut.NACCID.duplicated()] ## Coding of pathology class outcomes. # Create binary variables for the presence of each pathology class of interest. # Code Alzheimer's disease pathology based on NPADNC, which implements # ABC scoring based on Montine et al. (2012). aut = aut.assign(ADPath = 0) aut.loc[aut.NPADNC.isin((2,3)),'ADPath'] = 1 aut.loc[aut.NPPAD == 1,'ADPath'] = 1 # The following two commands make the ADPath variable false if the AD path # diagnosis is as contributing, not as primary. aut.loc[aut.NPPAD == 2,'ADPath'] = 0 aut.loc[aut.NPCAD == 1,'ADPath'] = 0 aut.loc[aut.NPPVASC == 1,'ADPath'] = 0 aut.loc[aut.NPPLEWY == 1,'ADPath'] = 0 aut.loc[aut.NPPFTLD == 1,'ADPath'] = 0 # Several variables pertain to FTLD tauopathies. aut = aut.assign(TauPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPFTDTAU == 1,'TauPath'] = 1 aut.loc[aut.NACCPICK == 1,'TauPath'] = 1 aut.loc[aut.NACCCBD == 1,'TauPath'] = 1 aut.loc[aut.NACCPROG == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT2 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT5 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT6 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT7 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT9 == 1,'TauPath'] = 1 aut.loc[aut.NPFRONT == 1,'TauPath'] = 1 aut.loc[aut.NPTAU == 1,'TauPath'] = 1 aut.loc[aut.ADPath == 1, 'TauPath'] = 0 aut.loc[aut.NPCFTLD == 1, 'TauPath'] = 0 # Code Lewy body disease based on NPLBOD variable. Do not include amygdala- # predominant, brainstem-predominant, or olfactory-only cases. # See Toledo et al. (2016, Acta Neuropathol) and Irwin et al. (2018, Nat Rev # Neuro). aut = aut.assign(LBPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPLBOD.isin((2,3)),'LBPath'] = 1 aut.loc[aut.NPPLEWY == 1,'LBPath'] = 1 aut.loc[aut.NPPLEWY == 2,'LBPath'] = 0 aut.loc[aut.NPCLEWY == 1,'LBPath'] = 0 aut.loc[aut.ADPath == 1 & (aut.NPPLEWY != 1), 'LBPath'] = 0 aut.loc[aut.TauPath == 1 & (aut.NPPLEWY != 1),'LBPath'] = 0 # Code TDP-43 pathology based on NPFTDTDP and NPALSMND, excluding FUS and SOD1 # cases. aut = aut.assign(TDPPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPFTD == 1,'TDPPath'] = 1 aut.loc[aut.NPFTDTDP == 1,'TDPPath'] = 1 aut.loc[aut.NPALSMND == 1,'TDPPath'] = 1 aut.loc[aut.ADPath == 1, 'TDPPath'] = 0 aut.loc[aut.LBPath == 1, 'TDPPath'] = 0 aut.loc[aut.TauPath == 1, 'TDPPath'] = 0 # Code vascular disease based on relevant derived variables: aut = aut.assign(VPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPINF == 1,'VPath'] = 1 aut.loc[aut.NACCMICR == 1,'VPath'] = 1 aut.loc[aut.NACCHEM == 1,'VPath'] = 1 aut.loc[aut.NPPATH == 1,'VPath'] = 1 aut.loc[aut.NPPVASC == 1,'VPath'] = 1 aut.loc[aut.NPPVASC == 2,'VPath'] = 0 aut.loc[aut.NPCVASC == 1,'VPath'] = 0 aut.loc[aut.ADPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut.loc[aut.LBPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut.loc[aut.NPPFTLD == 1 & (aut.NPPVASC != 1),'VPath'] = 0 aut.loc[aut.TDPPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut.loc[aut.TauPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut = aut.assign(Class = aut.ADPath) aut.loc[aut.TauPath == 1,'Class'] = 2 aut.loc[aut.TDPPath == 1,'Class'] = 3 aut.loc[aut.LBPath == 1,'Class'] = 4 aut.loc[aut.VPath == 1,'Class'] = 5 aut = aut.loc[aut.Class != 0] aut.index = list(range(aut.shape[0])) ## Predictor variable preparation: one-hot-encoding, date/age/interval operations, # consolidating redundant variables, consolidating free-text variables. aut = aut.assign(DOB = aut.BIRTHYR) aut = aut.assign(DOD = aut.NACCYOD) aut = aut.assign(VISITDATE = aut.VISITYR) for i in range(aut.shape[0]): aut.loc[i,'DOB'] = datetime.datetime.strptime('-'.join([str(aut.BIRTHYR.loc[i]),str(aut.BIRTHMO.loc[i]),'01']),'%Y-%m-%d') aut.loc[i,'DOD'] = datetime.datetime.strptime('-'.join([str(aut.NACCYOD.loc[i]),str(aut.NACCMOD.loc[i]),'01']),'%Y-%m-%d') aut.loc[i,'VISITDATE'] = datetime.datetime.strptime('-'.join([str(aut.VISITYR.loc[i]),str(aut.VISITMO.loc[i]),str(aut.VISITDAY.loc[i])]),'%Y-%m-%d') # Some time/interval variables aut = aut.assign(SinceQUITSMOK = aut.NACCAGE - aut.QUITSMOK) # Years since quitting smoking aut = aut.assign(AgeStroke = aut.NACCSTYR - aut.BIRTHYR) aut = aut.assign(AgeTIA = aut.NACCTIYR - aut.BIRTHYR) aut = aut.assign(AgePD = aut.PDYR - aut.BIRTHYR) aut = aut.assign(AgePDOTHR = aut.PDOTHRYR - aut.BIRTHYR) aut = aut.assign(AgeTBI = aut.TBIYEAR - aut.BIRTHYR) aut = aut.assign(Duration = aut.NACCAGE - aut.DECAGE) # Hispanic origin aut.HISPORX = aut.HISPORX.str.lower() aut.loc[aut.HISPORX == 'spanish','HISPORX'] = 'spain' # Race. RACESECX and RACETERX have too few values to be useful. aut.RACEX = aut.RACEX.str.lower().str.replace(' ','').str.replace('-','') aut.loc[aut.RACEX.isin(['hispanic','puerto rican']),'RACEX'] = 'latino' aut.loc[aut.RACEX.isin(['guam - chamorro']),'RACEX'] = 'chamorro' aut.loc[aut.RACEX.isin(['multi racial']),'RACEX'] = 'multiracial' # Other language. But actually, let's just drop this and code as English/non-English. #aut.PRIMLANX = aut.PRIMLANX.str.lower().str.replace(' ','').str.replace('-','') # Drug list. First get a list of all the unique drug names, then code as dummy variables. # Update as of 04/01/2020: drugs alone are going to be a huge amount of work. # For now, just rely on the NACC derived variables for diabetes meds, cardiac drugs, etc. drugcols = ['DRUG' + str(i) for i in range(1,41)] drugs = aut[drugcols].stack() # Several varieties of insulin--important to distinguish? # drop "*not-codable" # drop "diphtheria/hepb/pertussis,acel/polio/tetanus" drugs = drugs.unique() drugs = [eachdrug.lower() for eachdrug in drugs.tolist()] drugs = pd.Series(drugs) drug_corrections = [("multivitamin with minerals","multivitamin"), ("multivitamin, prenatal","multivitamin"), ("omega 3-6-9","omega369"), ("omega-3","omega3"), ("vitamin-d","vitamin d"), ("acetyl-l-carnitine","acetyl l carnitine"), ("levodopa","levadopa"), ("pro-stat","prostat"), ("alpha-d-galactosidase","alpha d galactosidase"), ("indium pentetate in-111","indium pentetate in111"), ("fludeoxyglucose f-18","fludeoxyglucose f18"), ("calcium with vitamins d and k", "calcium-vitamin d-vitamin k"), ("aloe vera topical", "aloe vera"), ("ammonium lactate topical", "ammonium lactate")] for i in range(len(drug_corrections)): oldval = drug_corrections[i][0] newval = drug_corrections[i][1] drugs = drugs.str.replace(pat = oldval, repl = newval) drugs = drugs.loc[drugs != "*not codable*"] drugs = drugs.loc[drugs != "diphtheria/hepb/pertussis,acel/polio/tetanus"] drugs = np.unique([ss for eachdrug in drugs for ss in eachdrug.split('-')]) drugs = np.unique([ss for eachdrug in drugs for ss in eachdrug.split('/')]) drugs.sort() ## Combining redundant variables. Often this reflects a change in form or # variable name between UDS version 2 & 3. aut.loc[(aut.CVPACE == -4) & (aut.CVPACDEF == 0),'CVPACE'] = 0 aut.loc[(aut.CVPACE == -4) & (aut.CVPACDEF == 1),'CVPACE'] = 1 xvar.loc[xvar.Variable == 'CVPACDEF','Keep'] = False # Combine TBIBRIEF and TRAUMBRF. aut.loc[(aut.TBIBRIEF == -4) & (aut.TRAUMBRF.isin([0])),'TBIBRIEF'] = 0 aut.loc[(aut.TBIBRIEF == -4) & (aut.TRAUMBRF.isin([1,2])),'TBIBRIEF'] = 1 xvar.loc[xvar.Variable == 'TRAUMBRF','Keep'] = False # More data cleaning aut.ABRUPT = aut.ABRUPT.replace(to_replace = 2, value = 1) aut.FOCLSYM = aut.FOCLSYM.replace(to_replace = 2, value = 1) aut.FOCLSIGN = aut.FOCLSIGN.replace(to_replace = 2, value = 1) # Convert language to a binary variable (English/non-English) aut = aut.assign(English = 0) aut.loc[aut.PRIMLANG == 1,'English'] = 1 xvar.loc[xvar.Variable == 'PRIMLANG','Keep'] = False # Some dummy coding vv = xvar.Variable.loc[(xvar.Keep) & (xvar.Comments == "Dummy coding for (95,96,97,98)")] for v in vv: aut[v + '_couldnt'] = 0 aut.loc[aut[v].isin([95,96,97,98]),v + '_couldnt'] = 1 vv = xvar.Variable.loc[xvar.Comments == "Dummy coding for (995,996,997,998)"] for v in vv: aut[v + '_couldnt'] = 0 aut.loc[aut[v].isin([995,996,997,998]),v + '_couldnt'] = 1 # Drop all columns where xvar.Keep == False. aut2 = aut xvar.loc[xvar.Variable == 'NACCID','Keep'] = True xvar.loc[xvar.Variable == 'NACCID','Type'] = "ID" xvar.loc[xvar.Variable == 'VISITDATE','Keep'] = True xvar.loc[xvar.Variable == 'VISITDATE','Type'] = "ID" aut = aut.drop(columns = xvar.Variable[~xvar.Keep]) # Fill with NA values xvar = xvar.loc[xvar.Keep] xvar.index = range(xvar.shape[0]) for i in range(xvar.shape[0]): if not xvar.NaNValues.isna()[i]: v = xvar.Variable[i] badval = eval(xvar.NaNValues[i]) #print(v,badval) if isinstance(badval,int): badval = [badval] aut[v].mask(aut[v].isin(badval),inplace = True) # Get rid of variables with very few meaningful observations. valcounts = aut.describe().iloc[0] aut = aut.drop(columns = valcounts.loc[valcounts < 100].index) #aut = aut[valcounts.loc[valcounts >= 100].index] # Find correlated variables and drop. ac = aut.corr() acs = ac.unstack(level = 0) acs = acs.loc[abs(acs)>0.8] acsind = list(acs.index) diagnames = [ind for ind in acsind if ind[0] == ind[1]] acs = acs.drop(labels=diagnames) acs = pd.DataFrame(acs) acs.columns = ['r'] acs['v1'] = acs.index acs[['v1','v2']] = pd.DataFrame(acs['v1'].tolist(),index = acs.index) y = aut.Class X = aut.drop(columns = npvar.Variable.loc[npvar.Variable.isin(aut.columns)]) X = X.drop(columns = ['Class','ADPath','TauPath','TDPPath','LBPath','VPath']) xd = X.describe().iloc[0] # Impute numeric variables with the mean. from sklearn.impute import SimpleImputer numvar = X.columns.intersection(xvar.Variable.loc[xvar.Type == "Numeric"]) imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') imp_mean.fit(X[numvar]) Xnumimp = imp_mean.transform(X[numvar]) Xnumimp = pd.DataFrame(Xnumimp) Xnumimp.columns = X[numvar].columns # Impute ordinal variables with the median. ordvar = X.columns.intersection(xvar.Variable.loc[xvar.Type == "Ordinal"]) imp_med = SimpleImputer(missing_values=np.nan, strategy='median') imp_med.fit(X[ordvar]) Xordimp = imp_med.transform(X[ordvar]) Xordimp = pd.DataFrame(Xordimp) Xordimp.columns = X[ordvar].columns # Impute boolean variables with zero. boolvar = X.columns.intersection(xvar.Variable.loc[xvar.Type == "Boolean"]) boolenc = SimpleImputer(missing_values = np.nan, strategy = 'constant', fill_value = 0) boolenc.fit(X[boolvar]) Xbool = boolenc.transform(X[boolvar]) Xbool =
pd.DataFrame(Xbool)
pandas.DataFrame
import hvplot.pandas import pandas as pd import panel as pn def _get_chart_data() -> pd.DataFrame: """## Chart Data Returns: pd.DataFrame -- A DataFrame with dummy data and columns=["Day", "Orders"] """ chart_data = { "Day": ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",], "Orders": [15539, 21345, 18483, 24003, 23489, 24092, 12034], } return
pd.DataFrame(chart_data)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 11 20:21:34 2020 @author: nickcostanzino """ def NN_structure(layers, perceptrons): A = list() for n in range(layers): A.append(perceptrons) return tuple(A) def NN_structures(layers, perceptrons): A = list() for i in range(1, layers): for j in range(1, perceptrons): A.append(NN_structure(i, j)) A = array(A) A = list(A) return A def MSE(prediction, true): from sklearn.metrics import mean_squared_error mse = mean_squared_error(prediction, true) return mse def process_simulator(f, sigma_X, sigma_e, N): import pandas as pd import numpy as np from scipy.optimize import fsolve from sklearn.linear_model import LinearRegression from sklearn.neural_network import MLPRegressor f = 'np.' + f e = np.random.normal(0,sigma_e,N) X = np.random.normal(0,sigma_X,N) Y = eval(f) + e df = pd.DataFrame() df['X'] = X df['Y'] = Y df['e'] = e return df def performance_analyzer(func, sigma_X, sigma_e, N, number_of_partitions, number_of_simulations, output_folder): import pandas as pd import numpy as np from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, TimeSeriesSplit from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.neural_network import MLPRegressor COLUMNS = ['training_data_points', 'testing_data_points', 'LR_intercept', 'LR_slope', 'NN_layers', 'NN_perceptrons', 'NN_activation', 'NN_alpha', 'LR-In-Sample-R2', 'NN-In-Sample-R2', 'Best-Possible-In-Sample-R2', 'LR-Out-Sample-R2', 'NN-Out-Sample-R2', 'Best-Possible-Out-Sample-R2'] full_results = pd.DataFrame(columns = COLUMNS) for k in range(number_of_simulations): S = process_simulator(func, sigma_X, sigma_e, N) X =
pd.DataFrame(S.X)
pandas.DataFrame
''' Created on Sep 2, 2016 @author: Gully ''' from __future__ import print_function, division import argparse import argparse_config import codecs import os import numpy as np import pandas as pd import warnings from sets import Set import re from sets import Set import re from bokeh.plotting import figure, show, save, output_notebook, output_file from bokeh.models import ColumnDataSource, Range1d # # This function checks to see if there is a boundary condition between clause 1 and clause 2 # Returns a tuple: (True / False, Explanation) # def checkForStartBoundary(clause1, clause2, expt_codes, tsv, c_s_lookup, s_c_lookup): row1 = tsv.loc[clause1] row2 = tsv.loc[clause2] # both clauses are in the same sentence => false if( row1['SentenceId'] == row2['SentenceId'] ): return (False,"Same sentence") # clause 1 is a title paragraph => true elif( "header" in row1['Codes'] ): return (True, "?/header") # # clause 1 is in a sentence where # (A) there are hypotheses/problems/facts # (B) there are results/implications with exLinks present # clause 2 is in a sentence where # (A) there are goals/methods # (B) there are results/implications with no exLinks # sentence1 = c_s_lookup[clause1] sentence2 = c_s_lookup[clause2] go_condition_2 = False for cs2 in s_c_lookup[sentence2]: disc2 = tsv.loc[cs2]['Discourse Type'] inExHead2 = tsv.loc[cs2]['Codes'] if( (disc2 == 'result' or disc2 == 'implication') and "exLink" not in inExHead2): go_condition_2 = True elif( disc2 == 'goal' or disc2 == 'method'): go_condition_2 = True if( go_condition_2 ) : for cs1 in s_c_lookup[sentence1]: disc1 = tsv.loc[cs1]['Discourse Type'] inExHead1 = tsv.loc[cs1]['Codes'] if(disc1 == 'hypothesis' or disc1 == 'problem' or disc1 == 'fact'): #print(tsv.loc[cs2]) return (True, "A:"+disc1+inExHead1+"/"+disc2+inExHead2) elif((disc1 == 'result' or disc1 != 'implication') and "exLink" in inExHead1): #print(tsv.loc[cs2]) return (True, "B:"+disc1+inExHead1+"/"+disc2+inExHead2) es1 = row1['ExperimentValues'] if( es1 == es1 and len(set(expt_codes).intersection(es1.split('|'))) == 0 ): return (True, "|".join(expt_codes) + "!=" + es1 + "(1)") es2 = row2['ExperimentValues'] if( es2 == es2 and len(set(expt_codes).intersection(es2.split('|'))) == 0 ): return (True, "|".join(expt_codes) + "!=" + es2 + "(2)") return (False,"end") # # This function checks to see if there is a boundary condition between clause 1 and clause 2 # Returns a tuple: (True / False, Explanation) # def checkForEndBoundary(clause1, clause2, expt_codes, tsv, c_s_lookup, s_c_lookup): row1 = tsv.loc[clause1] row2 = tsv.loc[clause2] # both clauses are in the same sentence => false if( row1['SentenceId'] == row2['SentenceId'] ): return (False,"Same sentence") # clause 2 is a title paragraph => true elif( "header" in row2['Codes'] ): return (True, "?/header") # # clause 1 is in a sentence where there are results/implications with no exLinks and # clause 2 is in a sentence where # (A) there are goals/methods/hypotheses/problems/facts # (B) there are results/implications with exLinks present # sentence1 = c_s_lookup[clause1] sentence2 = c_s_lookup[clause2] go_condition_1 = False for cs1 in s_c_lookup[sentence1]: disc1 = tsv.loc[cs1]['Discourse Type'] inExHead1 = tsv.loc[cs1]['Codes'] if( (disc1 == 'result' or disc1 == 'implication') and "exLink" not in inExHead1): go_condition_1 = True if( go_condition_1 ) : for cs2 in s_c_lookup[sentence2]: disc2 = tsv.loc[cs2]['Discourse Type'] inExHead2 = tsv.loc[cs2]['Codes'] if(disc1 != 'result' and disc1 != 'implication'): #print(tsv.loc[cs2]) return (True, "C"+disc1+inExHead1+"/"+disc2+inExHead2) elif((disc1 == 'result' or disc1 != 'implication') and "exLink" in inExHead2): #print(tsv.loc[cs2]) return (True, "D"+disc1+inExHead1+"/"+disc2+inExHead2) es1 = row1['ExperimentValues'] if( es1 == es1 and len(set(expt_codes).intersection(es1.split('|'))) == 0 ): return (True, "|".join(expt_codes) + "!=" + es1 + "(1)") es2 = row2['ExperimentValues'] if( es2 == es2 and len(set(expt_codes).intersection(es2.split('|'))) == 0 ): return (True, "|".join(expt_codes) + "!=" + es2 + "(2)") return (False,"end") def add_spans(tsv): c_s_lookup = {} c_p_lookup = {} s_c_lookup = {} p_c_lookup = {} fig_ref_set = Set() expt_code_set = Set() clause_max = -1 clause_min = 1000 for i,row in tsv.iterrows(): es = row['ExperimentValues'] dt = row['Discourse Type'] inExHead = row['Codes'] sid = row['SentenceId'] paragraph = row['Paragraph'] heading = str(row['Headings']) floatingBox = row['FloatingBox?'] #print("i: " + str(i)) #print("refs: " + str(es)) #print("~~~~~~~~~~~~~~~~~~") s = int(sid[1:]) if(paragraph!=paragraph): continue p = 0 if( paragraph == '-'): p = 0 elif( paragraph[0:1] == 'p'): p = int(paragraph[1:]) elif( paragraph[0:5] == 'title'): p = int(paragraph[5:]) c_s_lookup[i] = s c_p_lookup[i] = p if( s_c_lookup.get(s) is None ): s_c_lookup[s] = [i] else: s_c_lookup.get(s).append(i) if( p_c_lookup.get(p) is None ): p_c_lookup[p] = [i] else: p_c_lookup.get(p).append(i) if( heading != heading ): heading = "" if( re.match('^Result', heading) is None or floatingBox): continue if( i > clause_max): clause_max = i if( i < clause_min): clause_min = i if(es!=es): continue try: codes = str(es).split('|') except AttributeError: print(str(es) + " is not a string. Skipping...") continue fig_ref_set.add(i) for c in codes: expt_code_set.add(c) fig_refs = sorted(fig_ref_set) fig_spans = {} for i_fig in fig_refs: row = tsv.loc[i_fig] es = row['ExperimentValues'] dt = row['Discourse Type'] inExHead = row['Codes'] sid = row['SentenceId'] paragraph = row['Paragraph'] heading = str(row['Headings']) floatingBox = row['FloatingBox?'] try: expt_codes = str(es).split('|') except AttributeError: print(str(es) + " is not a string. Skipping...") continue # search backwards for a boundary condition between sentences c1 = i_fig - 1 c2 = i_fig while( checkForStartBoundary(c1, c2, expt_codes, tsv, c_s_lookup, s_c_lookup)[0] is False ): c1 = c1-1 c2 = c2-1 expt_start = c2 # search forwards for a boundary condition between sentences c1 = i_fig c2 = i_fig + 1 while( checkForEndBoundary(c1, c2, expt_codes, tsv, c_s_lookup, s_c_lookup)[0] is False ): c1 = c1+1 c2 = c2+1 expt_end = c1 for c in range(expt_start, expt_end+1): if( fig_spans.get(c) is None ): fig_spans[c] = set(expt_codes) else: fig_spans.get(c).update(set(expt_codes)) #print("Figure Location: " + str(i_fig) ) #print("Experiment Label: " + es ) #print("Expt Start: " + str(expt_start) ) #print("Expt Start Expl: " + str(checkForStartBoundary(expt_start-1, expt_start, expt_codes, tsv, c_s_lookup, s_c_lookup)) ) #print("Expt End: " + str(expt_end) ) #print("Expt End Expl: " + str(checkForEndBoundary(expt_end, expt_end+1, expt_codes, tsv, c_s_lookup, s_c_lookup)) ) #print( "~~~~~~~~~~~~~~~~~~~~" ) for i in fig_spans: fig_spans[i] = "|".join(fig_spans.get(i)) #print(fig_spans[i]) tsv['fig_spans'] = pd.Series(fig_spans, index=fig_spans) return tsv def prepare_and_draw_gannt(filename, title, tsv): gantt_rows = [] gantt_rows2 = [] gantt_rows3 = [] dtypes = ["fact","hypothesis","problem","goal" ,"method","result","implication"] colors = ["Snow" ,"Snow" ,"Snow" ,"LightGray","Gray" ,"LightBlue" ,"LightGreen"] colors_s = pd.Series(colors, index=dtypes) all_codes = Set() clause_max = -1 clause_min = 1000 for i,row in tsv.iterrows(): fig_refs = row['ExperimentValues'] fig_spans = row['fig_spans'] dt = row['Discourse Type'] inExHead = row['Codes'] sid = row['SentenceId'] paragraph = row['Paragraph'] heading = str(row['Headings']) floatingBox = row['FloatingBox?'] #print("i: " + str(i)) #print("refs: " + str(fig_refs)) #print("~~~~~~~~~~~~~~~~~~") if( heading != heading ): heading = "" #if(not floatingBox): # clause_max = i if( re.match('^Result', heading) is None or floatingBox): continue if( i > clause_max): clause_max = i if( i < clause_min): clause_min = i if(fig_spans!=fig_spans): continue if(fig_refs!=fig_refs): fig_refs = "" fig_span_list = fig_spans.split('|') fig_ref_list = fig_refs.split('|') #print("i: " + str(i)) #print("spans: " + fig_spans) #print("refs: " + fig_refs) #print("~~~~~~~~~~~~~~~~~~") for fs in fig_span_list: all_codes.add(fs) if( fs in fig_ref_list ): gantt_rows2.append([fs, i]) if('exLink' in inExHead): gantt_rows3.append([fs, i]) gantt_rows.append([fs, i, dt, heading]) codes_s = pd.Series(range(len(all_codes)), index=sorted(list(all_codes))) gantt_df = pd.DataFrame.from_records(gantt_rows, columns=['fig_span', 'clause_id','discourse_type', 'heading']) gantt_df = gantt_df.sort(columns=['clause_id'], ascending=True) #print(codes_s.loc[gantt_df['expt'].tolist()].tolist()) gantt_df['fig_span_id'] = codes_s.loc[gantt_df['fig_span'].tolist()].tolist() gantt_df['color'] = colors_s.loc[gantt_df['discourse_type'].tolist()].tolist() gantt_df2 =
pd.DataFrame.from_records(gantt_rows2, columns=['fig_ref','clause_id'])
pandas.DataFrame.from_records
import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import os from pandas.core.frame import DataFrame from torch.utils.data import Dataset, DataLoader import torch import pickle import datetime class data_loader(Dataset): def __init__(self, df_feature, df_label, df_label_reg, t=None): assert len(df_feature) == len(df_label) assert len(df_feature) == len(df_label_reg) # df_feature = df_feature.reshape(df_feature.shape[0], df_feature.shape[1] // 6, df_feature.shape[2] * 6) self.df_feature=df_feature self.df_label=df_label self.df_label_reg = df_label_reg self.T=t self.df_feature=torch.tensor( self.df_feature, dtype=torch.float32) self.df_label=torch.tensor( self.df_label, dtype=torch.float32) self.df_label_reg=torch.tensor( self.df_label_reg, dtype=torch.float32) def __getitem__(self, index): sample, target, label_reg =self.df_feature[index], self.df_label[index], self.df_label_reg[index] if self.T: return self.T(sample), target else: return sample, target, label_reg def __len__(self): return len(self.df_feature) def create_dataset(df, station, start_date, end_date, mean=None, std=None): data=df[station] feat, label, label_reg =data[0], data[1], data[2] referece_start_time=datetime.datetime(2013, 3, 1, 0, 0) referece_end_time=datetime.datetime(2017, 2, 28, 0, 0) assert (pd.to_datetime(start_date) - referece_start_time).days >= 0 assert (pd.to_datetime(end_date) - referece_end_time).days <= 0 assert (pd.to_datetime(end_date) - pd.to_datetime(start_date)).days >= 0 index_start=(pd.to_datetime(start_date) - referece_start_time).days index_end=(pd.to_datetime(end_date) - referece_start_time).days feat=feat[index_start: index_end + 1] label=label[index_start: index_end + 1] label_reg=label_reg[index_start: index_end + 1] # ori_shape_1, ori_shape_2=feat.shape[1], feat.shape[2] # feat=feat.reshape(-1, feat.shape[2]) # feat=(feat - mean) / std # feat=feat.reshape(-1, ori_shape_1, ori_shape_2) return data_loader(feat, label, label_reg) def create_dataset_shallow(df, station, start_date, end_date, mean=None, std=None): data=df[station] feat, label, label_reg =data[0], data[1], data[2] referece_start_time=datetime.datetime(2013, 3, 1, 0, 0) referece_end_time=datetime.datetime(2017, 2, 28, 0, 0) assert (pd.to_datetime(start_date) - referece_start_time).days >= 0 assert (pd.to_datetime(end_date) - referece_end_time).days <= 0 assert (pd.to_datetime(end_date) - pd.to_datetime(start_date)).days >= 0 index_start=(pd.to_datetime(start_date) - referece_start_time).days index_end=(pd.to_datetime(end_date) - referece_start_time).days feat=feat[index_start: index_end + 1] label=label[index_start: index_end + 1] label_reg=label_reg[index_start: index_end + 1] # ori_shape_1, ori_shape_2=feat.shape[1], feat.shape[2] # feat=feat.reshape(-1, feat.shape[2]) # feat=(feat - mean) / std # feat=feat.reshape(-1, ori_shape_1, ori_shape_2) return feat, label_reg def get_dataset_statistic(df, station, start_date, end_date): data=df[station] feat, label =data[0], data[1] referece_start_time=datetime.datetime(2013, 3, 1, 0, 0) referece_end_time=datetime.datetime(2017, 2, 28, 0, 0) assert (
pd.to_datetime(start_date)
pandas.to_datetime
#!/usr/bin/env python """Calculate regionprops of segments. """ import sys import argparse # conda install cython # conda install pytest # conda install pandas # pip install ~/workspace/scikit-image/ # scikit-image==0.16.dev0 import os import re import glob import pickle import numpy as np import pandas as pd from scipy import ndimage as ndi from scipy.spatial import distance from stapl3d import Image, LabelImage, wmeMPI from stapl3d.channels import get_bias_field_block from skimage.measure import regionprops, regionprops_table from skimage.morphology import binary_dilation from skimage.segmentation import find_boundaries from stapl3d.segmentation.segment import extract_segments def main(argv): """Calculate regionprops of segments.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( '--seg_paths', nargs='*', help='paths to label volumes (xyz)', ) parser.add_argument( '--seg_names', nargs='*', help='names for (sub)segmentations', ) parser.add_argument( '--data_path', nargs='*', help='paths to data channels', ) parser.add_argument( '--data_names', nargs='*', help='names for channels', ) parser.add_argument( '--aux_data_path', help='path to auxilliary data file (zyxc)', ) parser.add_argument( '--downsample_factors', nargs='*', type=int, default=[], help='the downsample factors applied to the aux_data_path image' ) parser.add_argument( '--csv_path', default='', help='path to output csv file', ) parser.add_argument( '-s', '--blocksize', required=True, nargs='*', type=int, default=[], help='size of the datablock' ) parser.add_argument( '-m', '--blockmargin', nargs='*', type=int, default=[], help='the datablock overlap used' ) parser.add_argument( '--blockrange', nargs=2, type=int, default=[], help='a range of blocks to process' ) parser.add_argument( '--channels', nargs='*', type=int, default=[], help='a list of channel indices to extract intensity features for' ) parser.add_argument( '-f', '--filter_borderlabels', action='store_true', help='save intermediate results' ) parser.add_argument( '--min_labelsize', type=int, default=0, help='minimum labelsize in voxels', ) parser.add_argument( '--split_features', action='store_true', help='save intermediate results' ) parser.add_argument( '--fset_morph', default=['label'], help='morphology feature set', ) parser.add_argument( '--fset_intens', default=['mean_intensity'], help='intensity feature set', ) parser.add_argument( '--fset_addit', default=['com_z', 'com_y', 'com_x'], help='auxilliary feature set', ) args = parser.parse_args() export_regionprops( args.seg_paths, args.seg_names, args.data_path, args.data_names, args.aux_data_path, args.downsample_factors, args.csv_path, args.blocksize, args.blockmargin, args.blockrange, args.channels, args.filter_borderlabels, args.min_labelsize, args.split_features, args.fset_morph, args.fset_intens, args.fset_addit, ) def export_regionprops( seg_paths, seg_names=['full', 'memb', 'nucl'], data_paths=[], data_names=[], aux_data_path=[], downsample_factors=[1, 1, 1], outputstem='', blocksize=[], blockmargin=[], blockrange=[], channels=[], filter_borderlabels=False, min_labelsize=0, split_features=False, fset_morph=['label'], fset_intens=['mean_intensity'], fset_addit=['com_z', 'com_y', 'com_x'], ): # load the segments: ['full'] or ['full', 'memb', 'nucl'] label_ims = {} pfs = seg_names[:len(seg_paths)] for pf, seg_path in zip(pfs, seg_paths): im = LabelImage(seg_path, permission='r') im.load(load_data=False) label_ims[pf] = im comps = label_ims['full'].split_path() # prepare parallel processing mpi_label = wmeMPI(usempi=False) blocksize = blocksize or label_ims['full'].dims mpi_label.set_blocks(label_ims['full'], blocksize, blockmargin, blockrange) mpi_label.scatter_series() # load the data data_ims = {} mpi_data = wmeMPI(usempi=False) for i, data_path in enumerate(data_paths): pf = 'im{:02d}'.format(i) data = Image(data_path, permission='r') data.load(load_data=False) ch_idx = data.axlab.index('c') # FIXME channels for multiple data_paths chs = channels or [ch for ch in range(data.dims[ch_idx])] names = [data_names.pop(0) for _ in range(len(chs))] data_ims[pf] = {'im': data, 'ch': chs, 'names': names} """ TODO try: mpi_data.blocks = [ {'id': split_filename(comps['file'])[0]['postfix'], 'slices': dset_name2slices(comps['file'], axlab=data.axlab, shape=data.dims), 'path': '',}, ] except: """ mpi_data.set_blocks(data, blocksize, blockmargin, blockrange) border_labelset = set([]) # if filter_borderlabels: # outstem = outputstem or label_ims['full'].split_path()['base'] # outstem += '_dataset' # border_labelset |= filter_borders(label_ims['full'], outstem) dfs = [] for i in mpi_label.series: print('processing block {:03d} with id: {}'.format(i, mpi_label.blocks[i]['id'])) dfs.append(process_block( mpi_label.blocks[i], mpi_data.blocks[i], label_ims, split_features, data_ims, min_labelsize, channels, filter_borderlabels, fset_morph, fset_intens, fset_addit, border_labelset, outputstem, aux_data_path, downsample_factors, ) ) return dfs def process_block( block_label, block_data, label_ims, split_features, data_ims, min_labelsize, channels, filter_borderlabels=False, fset_morph=['label'], fset_intens=['mean_intensity'], fset_addit=['com_z', 'com_y', 'com_x'], border_labelset=set([]), outputstem='', aux_data_path='', downsample_factors=[1, 1, 1], ): morph, intens, add = get_feature_set(fset_morph, fset_intens, fset_addit) all_regions = {} for pf, label_im in label_ims.items(): label_im.slices = block_label['slices'][:3] all_regions[pf] = label_im.slice_dataset().astype('int') all_data = {} for dpf, datadict in data_ims.items(): data = datadict['im'] data.slices = block_data['slices'] for ch, name in zip(datadict['ch'], datadict['names']): data.slices[data.axlab.index('c')] = slice(ch, ch + 1, 1) ch_data = data.slice_dataset() all_data[name] = ch_data outstem = outputstem or label_ims['full'].split_path()['base'] outstem += '_{}'.format(block_label['id']) if filter_borderlabels: border_labelset |= filter_borders(label_ims['full'], outstem) if min_labelsize: all_regions = filter_size(all_regions, min_labelsize, outstem) for pf, regions in all_regions.items(): try: rpt = regionprops_table(regions, properties=morph) except IndexError: print('IndexError on MORPH {}: empty labelset'.format(block_label['id'])) df = get_empty_dataframe(morph, add, intens, channels) except ValueError: print('ValueError on MORPH {}'.format(block_label['id'])) df = get_empty_dataframe(morph, add, intens, channels) else: df =
pd.DataFrame(rpt)
pandas.DataFrame
#!/usr/bin/env python3 #SBATCH --partition=mcs.default.q #SBATCH --output=openme.out # coding: utf-8 # In[1]: import pandas as pd import datetime as dt import numpy as np import time from sklearn.feature_extraction.text import CountVectorizer word_vectorizer = CountVectorizer(ngram_range=(1,2), analyzer='word') import numpy as np from nltk import ngrams import nltk from nltk.util import ngrams from nltk.collocations import BigramCollocationFinder from nltk.metrics import BigramAssocMeasures # In[2]: df=pd.read_csv('./rawdata/BPI2016_Clicks_Logged_In.csv', sep=';', encoding='latin-1', keep_default_na=False) # In[3]: df['time'] = pd.to_datetime(df['TIMESTAMP']) df['dates'] = df['time'].dt.date # In[4]: # pd.set_option("display.max_rows", None, "display.max_columns", None) # df.head(100) # In[5]: qns=
pd.read_csv('./rawdata/BPI2016_Questions.csv', sep=';', encoding='latin-1', keep_default_na=False)
pandas.read_csv
from flask import Flask,render_template,request,send_file from flask_sqlalchemy import SQLAlchemy import os import pandas as pd from openpyxl import load_workbook import sqlalchemy as db ######### function####################### def transform(df): #count the number of columns in the data frame col=len(df.columns) if col>3: #Transform a matrix to a vector df=df.set_index(df.columns[0]).stack().reset_index() df[['Date','level_1']]=df[['Date','level_1']].astype(str) df['dtime']=df['Date']+' '+df['level_1'] df['dtime'] = pd.to_datetime(df['dtime']) df=df.drop(['Date', 'level_1'], axis=1) df.columns=['KW','dtime'] df=df[['dtime','KW']] df=df.sort_values(by='dtime',ascending=False) df.reset_index(inplace=True,drop=True) #df.index = pd.to_datetime(df[df.columns[[0,1]]].astype(str).apply('-'.join,1)) else: df.columns =(['dtime','kW']) df['dtime'] = pd.to_datetime(df['dtime']) df['dtime'] = pd.to_datetime(df['dtime']) #find the interval by substracting the second date from the first one a = df.loc[0, 'dtime'] b = df.loc[1, 'dtime'] c = a - b minutes = c.total_seconds() / 60 d=int(minutes) #d can be only 15 ,30 or 60 #This function will create new row to the time series anytime when it finds gaps and will fill it with NaN or leave it blank. #df.drop_duplicates(keep='first') keeps the first value of duplicates if d==15: df.drop_duplicates(keep='first',inplace=True) df= df.set_index('dtime').asfreq('-15T') elif d==30: df.drop_duplicates(keep='first',inplace=True) df= df.set_index('dtime').asfreq('-30T') elif d==60: df.drop_duplicates(keep='first',inplace=True) df= df.set_index('dtime').asfreq('-60T') else: None return df ###########Flask APP###################### app=Flask(__name__) #app.config['Save_File']='C:\Users\......' #db=SQLAlchemy(app) #class FileContents(db.Model): # id=db.Column(db.Integer,primary_key=True) # name=db.Column(db.String(300)) # data=db.Column(db.LargeBinary) @app.route('/') def index(): return render_template('firstpage.html') @app.route('/upload',methods=['Get','POST']) def upload(): file=request.files['inputfile'] xls=
pd.ExcelFile(file)
pandas.ExcelFile
#! /usr/bin/env python3 import os import sys import json import numpy as np import pandas as pd from glob import glob from enum import Enum from dateutil import tz from datetime import datetime, timedelta map_station = { 1:"Castello, <NAME>", 2:"Hotel Carlton", 3:"Via del Podestà", 4:"Corso di P.Reno / Via Ragno" , 5:"Piazza Trento Trieste", 6:"Piazza Stazione" } if __name__ == '__main__': import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument('-sh', '--show', action='store_true') parser.add_argument('-c', '--cfg', help='config file', required=True) parser.add_argument('-d', '--data', help='counters data csv', required=True) parser.add_argument('-tt', '--time_ticks', help='set time spacing between ticks', type=int, default=300) parser.add_argument('-tl', '--time_labels', help='set time spacing between ticks\' labels', type=int, default=3600) args = parser.parse_args() filein = args.data base = filein[:filein.rfind('/')] base_save = os.path.join(os.environ['WORKSPACE'], 'slides', 'work_lavoro', 'ferrara', 'data', 'compare_presence') if not os.path.exists(base_save): os.mkdir(base_save) fname = filein[filein.find('/')+1:filein.rfind('.')].split('_') fine_freq = fname[-2] fine_freq_s = int(fine_freq[:-1]) interp = fname[-1] dt_ticks = args.time_ticks if dt_ticks > fine_freq_s: tus = dt_ticks // fine_freq_s else: tus = 1 dt_ticks = fine_freq_s dt_lbls = args.time_labels if dt_lbls > dt_ticks: lus = dt_lbls // dt_ticks else: lus = 1 dt_lbls = dt_ticks print(f'Data sampling {fine_freq_s}. Ticks sampling {dt_ticks} u {tus}. Labels sampling {dt_lbls} u {lus}') with open(args.cfg) as f: config = json.load(f) base_start_date = config['base_start_date'] base_stop_date = config['base_stop_date'] first_start_date = config['first_start_date'] first_stop_date = config['first_stop_date'] second_start_date = config['second_start_date'] second_stop_date = config['second_stop_date'] build_df = config['build'] conf_name = args.cfg conf_name = conf_name[:conf_name.rfind('.')] b_start_date = f'{conf_name}_{base_start_date}_{base_stop_date}_wifi' b_first_date = f'{conf_name}_{first_start_date}_{first_stop_date}_wifi' b_second_date = f'{conf_name}_{second_start_date}_{second_stop_date}_wifi' file_base_date = f'{b_start_date}/counters_{fine_freq}_lin.csv' file_first_date = f'{b_first_date}/counters_{fine_freq}_lin.csv' file_second_date = f'{b_second_date}/counters_{fine_freq}_lin.csv' def box_centered_kernel(tot_len, box_len): pad_len = tot_len - box_len kern = np.concatenate([ np.zeros((pad_len // 2)), np.ones((box_len)) / box_len, np.zeros((pad_len - pad_len // 2)) ]) return kern def building(filein): base = filein[:filein.rfind('/')] stats =
pd.read_csv(filein, sep=';', parse_dates=['time'], index_col='time')
pandas.read_csv
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(data=data, index=index, columns=columns, dtype='object') if method: result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) else: result = pd.pivot(df, index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) data = {'A': Series([1, 4], index=['one', 'two']), 'B': Series([2, 5], index=['one', 'two']), 'C': Series([3, 6], index=['one', 'two'])} expected = DataFrame(data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tuple_of_values(self, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) with pytest.raises(KeyError): # tuple is seen as a single column name if method: df.pivot(index='zoo', columns='foo', values=('bar', 'baz')) else: pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz')) def test_margins(self): def _check_output(result, values_col, index=['A', 'B'], columns=['C'], margins_col='All'): col_margins = result.loc[result.index[:-1], margins_col] expected_col_margins = self.data.groupby(index)[values_col].mean() tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) assert col_margins.name == margins_col result = result.sort_index() index_margins = result.loc[(margins_col, '')].iloc[:-1] expected_ix_margins = self.data.groupby(columns)[values_col].mean() tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) assert index_margins.name == (margins_col, '') grand_total_margins = result.loc[(margins_col, ''), margins_col] expected_total_margins = self.data[values_col].mean() assert grand_total_margins == expected_total_margins # column specified result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) _check_output(result, 'D') # Set a different margins_name (not 'All') result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean, margins_name='Totals') _check_output(result, 'D', margins_col='Totals') # no column specified table = self.data.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) for value_col in table.columns.levels[0]: _check_output(table[value_col], value_col) # no col # to help with a buglet self.data.columns = [k * 2 for k in self.data.columns] table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc=np.mean) for value_col in table.columns: totals = table.loc[('All', ''), value_col] assert totals == self.data[value_col].mean() # no rows rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True, aggfunc=np.mean) assert isinstance(rtable, Series) table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc='mean') for item in ['DD', 'EE', 'FF']: totals = table.loc[('All', ''), item] assert totals == self.data[item].mean() def test_margins_dtype(self): # GH 17013 df = self.data.copy() df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3) mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [12, 21, 3, 9, 45], 'shiny': [33, 0, 36, 51, 120]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = df.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.sum, fill_value=0) tm.assert_frame_equal(expected, result) @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to ' 'floats)') def test_margins_dtype_len(self): mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [1, 1, 2, 1, 5], 'shiny': [2, 0, 2, 2, 6]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=len, fill_value=0) tm.assert_frame_equal(expected, result) def test_pivot_integer_columns(self): # caused by upstream bug in unstack d = date.min data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'], [d + timedelta(i) for i in range(20)], [1.0])) df = DataFrame(data) table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) df2 = df.rename(columns=str) table2 = df2.pivot_table( values='4', index=['0', '1', '3'], columns=['2']) tm.assert_frame_equal(table, table2, check_names=False) def test_pivot_no_level_overlap(self): # GH #1181 data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2, 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2, 'c': (['foo'] * 4 + ['bar'] * 4) * 2, 'value': np.random.randn(16)}) table = data.pivot_table('value', index='a', columns=['b', 'c']) grouped = data.groupby(['a', 'b', 'c'])['value'].mean() expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all') tm.assert_frame_equal(table, expected) def test_pivot_columns_lexsorted(self): n = 10000 dtype = np.dtype([ ("Index", object), ("Symbol", object), ("Year", int), ("Month", int), ("Day", int), ("Quantity", int), ("Price", float), ]) products = np.array([ ('SP500', 'ADBE'), ('SP500', 'NVDA'), ('SP500', 'ORCL'), ('NDQ100', 'AAPL'), ('NDQ100', 'MSFT'), ('NDQ100', 'GOOG'), ('FTSE', 'DGE.L'), ('FTSE', 'TSCO.L'), ('FTSE', 'GSK.L'), ], dtype=[('Index', object), ('Symbol', object)]) items = np.empty(n, dtype=dtype) iproduct = np.random.randint(0, len(products), n) items['Index'] = products['Index'][iproduct] items['Symbol'] = products['Symbol'][iproduct] dr = pd.date_range(date(2000, 1, 1), date(2010, 12, 31)) dates = dr[np.random.randint(0, len(dr), n)] items['Year'] = dates.year items['Month'] = dates.month items['Day'] = dates.day items['Price'] = np.random.lognormal(4.0, 2.0, n) df = DataFrame(items) pivoted = df.pivot_table('Price', index=['Month', 'Day'], columns=['Index', 'Symbol', 'Year'], aggfunc='mean') assert pivoted.columns.is_monotonic def test_pivot_complex_aggfunc(self): f = OrderedDict([('D', ['std']), ('E', ['sum'])]) expected = self.data.groupby(['A', 'B']).agg(f).unstack('B') result = self.data.pivot_table(index='A', columns='B', aggfunc=f) tm.assert_frame_equal(result, expected) def test_margins_no_values_no_cols(self): # Regression test on pivot table: no values or cols passed. result = self.data[['A', 'B']].pivot_table( index=['A', 'B'], aggfunc=len, margins=True) result_list = result.tolist() assert sum(result_list[:-1]) == result_list[-1] def test_margins_no_values_two_rows(self): # Regression test on pivot table: no values passed but rows are a # multi-index result = self.data[['A', 'B', 'C']].pivot_table( index=['A', 'B'], columns='C', aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_margins_no_values_one_row_one_col(self): # Regression test on pivot table: no values passed but row and col # defined result = self.data[['A', 'B']].pivot_table( index='A', columns='B', aggfunc=len, margins=True) assert result.All.tolist() == [4.0, 7.0, 11.0] def test_margins_no_values_two_row_two_cols(self): # Regression test on pivot table: no values passed but rows and cols # are multi-indexed self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] result = self.data[['A', 'B', 'C', 'D']].pivot_table( index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_pivot_table_with_margins_set_margin_name(self): # see gh-3335 for margin_name in ['foo', 'one', 666, None, ['a', 'b']]: with pytest.raises(ValueError): # multi-index index pivot_table(self.data, values='D', index=['A', 'B'], columns=['C'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # multi-index column pivot_table(self.data, values='D', index=['C'], columns=['A', 'B'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # non-multi-index index/column pivot_table(self.data, values='D', index=['A'], columns=['B'], margins=True, margins_name=margin_name) def test_pivot_timegrouper(self): df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME> <NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 1, 1), datetime(2013, 1, 1), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 12, 2), datetime(2013, 12, 2), ]}).set_index('Date') expected = DataFrame(np.array([10, 18, 3], dtype='int64') .reshape(1, 3), index=[datetime(2013, 12, 31)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan]) .reshape(2, 3), index=[datetime(2013, 1, 1), datetime(2013, 7, 1)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) # passing the name df = df.reset_index() result = pivot_table(df, index=Grouper(freq='6MS', key='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(KeyError, lambda: pivot_table( df, index=Grouper(freq='6MS', key='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(KeyError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', key='foo'), values='Quantity', aggfunc=np.sum)) # passing the level df = df.set_index('Date') result = pivot_table(df, index=Grouper(freq='6MS', level='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', level='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(ValueError, lambda: pivot_table( df, index=Grouper(freq='6MS', level='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(ValueError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', level='foo'), values='Quantity', aggfunc=np.sum)) # double grouper df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 11, 1, 13, 0), datetime(2013, 9, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 11, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 10, 2, 12, 0), datetime(2013, 12, 5, 14, 0)], 'PayDay': [datetime(2013, 10, 4, 0, 0), datetime(2013, 10, 15, 13, 5), datetime(2013, 9, 5, 20, 0), datetime(2013, 11, 2, 10, 0), datetime(2013, 10, 7, 20, 0), datetime(2013, 9, 5, 10, 0), datetime(2013, 12, 30, 12, 0), datetime(2013, 11, 20, 14, 0), ]}) result = pivot_table(df, index=Grouper(freq='M', key='Date'), columns=Grouper(freq='M', key='PayDay'), values='Quantity', aggfunc=np.sum) expected = DataFrame(np.array([np.nan, 3, np.nan, np.nan, 6, np.nan, 1, 9, np.nan, 9, np.nan, np.nan, np.nan, np.nan, 3, np.nan]).reshape(4, 4), index=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)], columns=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)]) expected.index.name = 'Date' expected.columns.name = 'PayDay' tm.assert_frame_equal(result, expected) result = pivot_table(df, index=Grouper(freq='M', key='PayDay'), columns=Grouper(freq='M', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) tuples = [(datetime(2013, 9, 30), datetime(2013, 10, 31)), (datetime(2013, 10, 31), datetime(2013, 9, 30)), (datetime(2013, 10, 31), datetime(2013, 11, 30)), (datetime(2013, 10, 31), datetime(2013, 12, 31)), (datetime(2013, 11, 30), datetime(2013, 10, 31)), (datetime(2013, 12, 31), datetime(2013, 11, 30)), ] idx = MultiIndex.from_tuples(tuples, names=['Date', 'PayDay']) expected = DataFrame(np.array([3, np.nan, 6, np.nan, 1, np.nan, 9, np.nan, 9, np.nan, np.nan, 3]).reshape(6, 2), index=idx, columns=['A', 'B']) expected.columns.name = 'Branch' result = pivot_table( df, index=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], columns=['Branch'], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=['Branch'], columns=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) def test_pivot_datetime_tz(self): dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_idx = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Pacific', name='dt1') exp_col1 = Index(['value1', 'value1']) exp_col2 = Index(['a', 'b'], name='label') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 3], [1, 4], [2, 5]], index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=[ 'label'], values=['value1']) tm.assert_frame_equal(result, expected) exp_col1 = Index(['sum', 'sum', 'sum', 'sum', 'mean', 'mean', 'mean', 'mean']) exp_col2 = Index(['value1', 'value1', 'value2', 'value2'] * 2) exp_col3 = pd.DatetimeIndex(['2013-01-01 15:00:00', '2013-02-01 15:00:00'] * 4, tz='Asia/Tokyo', name='dt2') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2, exp_col3]) expected = DataFrame(np.array([[0, 3, 1, 2, 0, 3, 1, 2], [1, 4, 2, 1, 1, 4, 2, 1], [2, 5, 1, 2, 2, 5, 1, 2]], dtype='int64'), index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=['dt2'], values=['value1', 'value2'], aggfunc=[np.sum, np.mean]) tm.assert_frame_equal(result, expected) def test_pivot_dtaccessor(self): # GH 8103 dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d)) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d)) result = pivot_table(df, index='label', columns=df['dt1'].dt.hour, values='value1') exp_idx = Index(['a', 'b'], name='label') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=exp_idx, columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.month, columns=df['dt1'].dt.hour, values='value1') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=Index([1, 2], name='dt2'), columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.year.values, columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') exp_col = MultiIndex.from_arrays( [[7, 7, 8, 8, 9, 9], [1, 2] * 3], names=['dt1', 'dt2']) expected = DataFrame(np.array([[0, 3, 1, 4, 2, 5]], dtype='int64'), index=[2013], columns=exp_col) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=np.array(['X', 'X', 'X', 'X', 'Y', 'Y']), columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') expected = DataFrame(np.array([[0, 3, 1, np.nan, 2, np.nan], [np.nan, np.nan, np.nan, 4, np.nan, 5]]), index=['X', 'Y'], columns=exp_col) tm.assert_frame_equal(result, expected) def test_daily(self): rng = date_range('1/1/2000', '12/31/2004', freq='D') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(DataFrame(ts), index=ts.index.year, columns=ts.index.dayofyear) annual.columns = annual.columns.droplevel(0) doy = np.asarray(ts.index.dayofyear) for i in range(1, 367): subset = ts[doy == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_monthly(self): rng = date_range('1/1/2000', '12/31/2004', freq='M') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(pd.DataFrame(ts), index=ts.index.year, columns=ts.index.month) annual.columns = annual.columns.droplevel(0) month = ts.index.month for i in range(1, 13): subset = ts[month == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_pivot_table_with_iterator_values(self): # GH 12017 aggs = {'D': 'sum', 'E': 'mean'} pivot_values_list = pd.pivot_table( self.data, index=['A'], values=list(aggs.keys()), aggfunc=aggs, ) pivot_values_keys = pd.pivot_table( self.data, index=['A'], values=aggs.keys(), aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_keys, pivot_values_list) agg_values_gen = (value for value in aggs.keys()) pivot_values_gen = pd.pivot_table( self.data, index=['A'], values=agg_values_gen, aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_gen, pivot_values_list) def test_pivot_table_margins_name_with_aggfunc_list(self): # GH 13354 margins_name = 'Weekly' costs = pd.DataFrame( {'item': ['bacon', 'cheese', 'bacon', 'cheese'], 'cost': [2.5, 4.5, 3.2, 3.3], 'day': ['M', 'M', 'T', 'T']} ) table = costs.pivot_table( index="item", columns="day", margins=True, margins_name=margins_name, aggfunc=[np.mean, max] ) ix = pd.Index( ['bacon', 'cheese', margins_name], dtype='object', name='item' ) tups = [('mean', 'cost', 'M'), ('mean', 'cost', 'T'), ('mean', 'cost', margins_name), ('max', 'cost', 'M'), ('max', 'cost', 'T'), ('max', 'cost', margins_name)] cols = pd.MultiIndex.from_tuples(tups, names=[None, None, 'day']) expected = pd.DataFrame(table.values, index=ix, columns=cols) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins(self, observed): # GH 10989 df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins_category(self, observed): df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') df.y = df.y.astype('category') df.z = df.z.astype('category') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) def test_categorical_aggfunc(self, observed): # GH 9534 df = pd.DataFrame({"C1": ["A", "B", "C", "C"], "C2": ["a", "a", "b", "b"], "V": [1, 2, 3, 4]}) df["C1"] = df["C1"].astype("category") result = df.pivot_table("V", index="C1", columns="C2", dropna=observed, aggfunc="count") expected_index = pd.CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, name='C1') expected_columns = pd.Index(['a', 'b'], name='C2') expected_data = np.array([[1., np.nan], [1., np.nan], [np.nan, 2.]]) expected = pd.DataFrame(expected_data, index=expected_index, columns=expected_columns) tm.assert_frame_equal(result, expected) def test_categorical_pivot_index_ordering(self, observed): # GH 8731 df = pd.DataFrame({'Sales': [100, 120, 220], 'Month': ['January', 'January', 'January'], 'Year': [2013, 2014, 2013]}) months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] df['Month'] = df['Month'].astype('category').cat.set_categories(months) result = df.pivot_table(values='Sales', index='Month', columns='Year', dropna=observed, aggfunc='sum') expected_columns = pd.Int64Index([2013, 2014], name='Year') expected_index = pd.CategoricalIndex(['January'], categories=months, ordered=False, name='Month') expected = pd.DataFrame([[320, 120]], index=expected_index, columns=expected_columns) if not observed: result = result.dropna().astype(np.int64) tm.assert_frame_equal(result, expected) def test_pivot_table_not_series(self): # GH 4386 # pivot_table always returns a DataFrame # when values is not list like and columns is None # and aggfunc is not instance of list df = DataFrame({'col1': [3, 4, 5], 'col2': ['C', 'D', 'E'], 'col3': [1, 3, 9]}) result = df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum) m = MultiIndex.from_arrays([[1, 3, 9], ['C', 'D', 'E']], names=['col3', 'col2']) expected = DataFrame([3, 4, 5], index=m, columns=['col1']) tm.assert_frame_equal(result, expected) result = df.pivot_table( 'col1', index='col3', columns='col2', aggfunc=np.sum ) expected = DataFrame([[3, np.NaN, np.NaN], [np.NaN, 4, np.NaN], [np.NaN, np.NaN, 5]], index=Index([1, 3, 9], name='col3'), columns=Index(['C', 'D', 'E'], name='col2')) tm.assert_frame_equal(result, expected) result = df.pivot_table('col1', index='col3', aggfunc=[np.sum]) m = MultiIndex.from_arrays([['sum'], ['col1']]) expected = DataFrame([3, 4, 5], index=Index([1, 3, 9], name='col3'), columns=m) tm.assert_frame_equal(result, expected) def test_pivot_margins_name_unicode(self): # issue #13292 greek = u'\u0394\u03bf\u03ba\u03b9\u03bc\u03ae' frame = pd.DataFrame({'foo': [1, 2, 3]}) table = pd.pivot_table(frame, index=['foo'], aggfunc=len, margins=True, margins_name=greek) index = pd.Index([1, 2, 3, greek], dtype='object', name='foo') expected = pd.DataFrame(index=index) tm.assert_frame_equal(table, expected) def test_pivot_string_as_func(self): # GH #18713 # for correctness purposes data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': range(11)}) result = pivot_table(data, index='A', columns='B', aggfunc='sum') mi = MultiIndex(levels=[['C'], ['one', 'two']], codes=[[0, 0], [0, 1]], names=[None, 'B']) expected = DataFrame({('C', 'one'): {'bar': 15, 'foo': 13}, ('C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) result = pivot_table(data, index='A', columns='B', aggfunc=['sum', 'mean']) mi = MultiIndex(levels=[['sum', 'mean'], ['C'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 1]], names=[None, None, 'B']) expected = DataFrame({('mean', 'C', 'one'): {'bar': 5.0, 'foo': 3.25}, ('mean', 'C', 'two'): {'bar': 7.0, 'foo': 6.666666666666667}, ('sum', 'C', 'one'): {'bar': 15, 'foo': 13}, ('sum', 'C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('f, f_numpy', [('sum', np.sum), ('mean', np.mean), ('std', np.std), (['sum', 'mean'], [np.sum, np.mean]), (['sum', 'std'], [np.sum, np.std]), (['std', 'mean'], [np.std, np.mean])]) def test_pivot_string_func_vs_func(self, f, f_numpy): # GH #18713 # for consistency purposes result = pivot_table(self.data, index='A', columns='B', aggfunc=f) expected = pivot_table(self.data, index='A', columns='B', aggfunc=f_numpy) tm.assert_frame_equal(result, expected) @pytest.mark.slow def test_pivot_number_of_levels_larger_than_int32(self): # GH 20601 df = DataFrame({'ind1': np.arange(2 ** 16), 'ind2': np.arange(2 ** 16), 'count': 0}) with pytest.raises(ValueError, match='int32 overflow'): df.pivot_table(index='ind1', columns='ind2', values='count', aggfunc='count') class TestCrosstab(object): def setup_method(self, method): df = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) self.df = df.append(df, ignore_index=True) def test_crosstab_single(self): df = self.df result = crosstab(df['A'], df['C']) expected = df.groupby(['A', 'C']).size().unstack() tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64)) def test_crosstab_multiple(self): df = self.df result = crosstab(df['A'], [df['B'], df['C']]) expected = df.groupby(['A', 'B', 'C']).size() expected = expected.unstack( 'B').unstack('C').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) result = crosstab([df['B'], df['C']], df['A']) expected = df.groupby(['B', 'C', 'A']).size() expected = expected.unstack('A').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) def test_crosstab_ndarray(self): a = np.random.randint(0, 5, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 10, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c')) expected = crosstab(df['a'], [df['b'], df['c']]) tm.assert_frame_equal(result, expected) result = crosstab([b, c], a, colnames=['a'], rownames=('b', 'c')) expected = crosstab([df['b'], df['c']], df['a']) tm.assert_frame_equal(result, expected) # assign arbitrary names result = crosstab(self.df['A'].values, self.df['C'].values) assert result.index.name == 'row_0' assert result.columns.name == 'col_0' def test_crosstab_non_aligned(self): # GH 17005 a = pd.Series([0, 1, 1], index=['a', 'b', 'c']) b = pd.Series([3, 4, 3, 4, 3], index=['a', 'b', 'c', 'd', 'f']) c = np.array([3, 4, 3]) expected = pd.DataFrame([[1, 0], [1, 1]], index=Index([0, 1], name='row_0'), columns=Index([3, 4], name='col_0')) result = crosstab(a, b) tm.assert_frame_equal(result, expected) result = crosstab(a, c) tm.assert_frame_equal(result, expected) def test_crosstab_margins(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True) assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['All', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['All'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('All', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['All'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('All', '')])) exp_rows.name = 'All' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) def test_crosstab_margins_set_margin_name(self): # GH 15972 a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name='TOTAL') assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['TOTAL', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['TOTAL'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('TOTAL', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['TOTAL'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('TOTAL', '')])) exp_rows.name = 'TOTAL' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) for margins_name in [666, None, ['a', 'b']]: with pytest.raises(ValueError): crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name=margins_name) def test_crosstab_pass_values(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) values = np.random.randn(100) table = crosstab([a, b], c, values, aggfunc=np.sum, rownames=['foo', 'bar'], colnames=['baz']) df = DataFrame({'foo': a, 'bar': b, 'baz': c, 'values': values}) expected = df.pivot_table('values', index=['foo', 'bar'], columns='baz', aggfunc=np.sum) tm.assert_frame_equal(table, expected) def test_crosstab_dropna(self): # GH 3820 a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object) b = np.array(['one', 'one', 'two', 'one', 'two', 'two', 'two'], dtype=object) c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object) res = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], dropna=False) m = MultiIndex.from_tuples([('one', 'dull'), ('one', 'shiny'), ('two', 'dull'), ('two', 'shiny')], names=['b', 'c']) tm.assert_index_equal(res.columns, m) def test_crosstab_no_overlap(self): # GS 10291 s1 = pd.Series([1, 2, 3], index=[1, 2, 3]) s2 = pd.Series([4, 5, 6], index=[4, 5, 6]) actual = crosstab(s1, s2) expected = pd.DataFrame() tm.assert_frame_equal(actual, expected) def test_margin_dropna(self): # GH 12577 # pivot_table counts null into margin ('All') # when margins=true and dropna=true df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan], 'b': [3, np.nan, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3.0, 4.0, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, np.nan, 2], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) # GH 12642 # _add_margins raises KeyError: Level None not found # when margins=True and dropna=False df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=False) expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 4, 6]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan], 'b': [3, np.nan, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=False) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 4, 6]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3.0, 4.0, 'All'], name='b') tm.assert_frame_equal(actual, expected) a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object) b = np.array(['one', 'one', 'two', 'one', 'two', np.nan, 'two'], dtype=object) c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object) actual = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], margins=True, dropna=False) m = MultiIndex.from_arrays([['one', 'one', 'two', 'two', 'All'], ['dull', 'shiny', 'dull', 'shiny', '']], names=['b', 'c']) expected = DataFrame([[1, 0, 1, 0, 2], [2, 0, 1, 1, 5], [3, 0, 2, 1, 7]], columns=m) expected.index = Index(['bar', 'foo', 'All'], name='a') tm.assert_frame_equal(actual, expected) actual = pd.crosstab([a, b], c, rownames=['a', 'b'], colnames=['c'], margins=True, dropna=False) m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'], ['one', 'two', 'one', 'two', '']], names=['a', 'b']) expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 2, 7]], index=m) expected.columns = Index(['dull', 'shiny', 'All'], name='c') tm.assert_frame_equal(actual, expected) actual = pd.crosstab([a, b], c, rownames=['a', 'b'], colnames=['c'], margins=True, dropna=True) m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'], ['one', 'two', 'one', 'two', '']], names=['a', 'b']) expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 1, 6]], index=m) expected.columns = Index(['dull', 'shiny', 'All'], name='c') tm.assert_frame_equal(actual, expected) def test_crosstab_normalize(self): # Issue 12578 df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4], 'c': [1, 1, np.nan, 1, 1]}) rindex = pd.Index([1, 2], name='a') cindex = pd.Index([3, 4], name='b') full_normal = pd.DataFrame([[0.2, 0], [0.2, 0.6]], index=rindex, columns=cindex) row_normal = pd.DataFrame([[1.0, 0], [0.25, 0.75]], index=rindex, columns=cindex) col_normal = pd.DataFrame([[0.5, 0], [0.5, 1.0]], index=rindex, columns=cindex) # Check all normalize args tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='all'), full_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True), full_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index'), row_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns'), col_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=1), pd.crosstab(df.a, df.b, normalize='columns')) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=0), pd.crosstab(df.a, df.b, normalize='index')) row_normal_margins = pd.DataFrame([[1.0, 0], [0.25, 0.75], [0.4, 0.6]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4], name='b', dtype='object')) col_normal_margins = pd.DataFrame([[0.5, 0, 0.2], [0.5, 1.0, 0.8]], index=pd.Index([1, 2], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b', dtype='object')) all_normal_margins = pd.DataFrame([[0.2, 0, 0.2], [0.2, 0.6, 0.8], [0.4, 0.6, 1]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b', dtype='object')) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index', margins=True), row_normal_margins) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns', margins=True), col_normal_margins) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True, margins=True), all_normal_margins) # Test arrays pd.crosstab([np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])], np.array([1, 2, 1, 2])) # Test with aggfunc norm_counts = pd.DataFrame([[0.25, 0, 0.25], [0.25, 0.5, 0.75], [0.5, 0.5, 1]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b')) test_case = pd.crosstab(df.a, df.b, df.c, aggfunc='count', normalize='all', margins=True) tm.assert_frame_equal(test_case, norm_counts) df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4], 'c': [0, 4, np.nan, 3, 3]}) norm_sum = pd.DataFrame([[0, 0, 0.], [0.4, 0.6, 1], [0.4, 0.6, 1]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b', dtype='object')) test_case = pd.crosstab(df.a, df.b, df.c, aggfunc=np.sum, normalize='all', margins=True)
tm.assert_frame_equal(test_case, norm_sum)
pandas.util.testing.assert_frame_equal
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import check_empty_nwp from Fuzzy_clustering.version2.dataset_manager.common_utils import rescale_mean from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_2d_dense from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d class DatasetCreatorDense: def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False, dates=None): self.projects = projects self.is_for_test = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = njobs self.variables = data_variables self.logger = create_logger(logger_name=__name__, abs_path=self.path_nwp, logger_path=f'log_{self.projects_group}.log', write_type='a') if not self.data is None: self.dates = self.check_dates() elif not dates is None: self.dates = dates def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates are checked. Number of time samples is %s', str(len(dates))) return pd.DatetimeIndex(dates) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def stack_by_sample(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, predictions): timestep = 60 x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: preds = predictions[project['_id']] hor = preds.columns[-1] + timestep p_dates = [t + pd.DateOffset(minutes=hor)] preds = preds.loc[t].to_frame().T dates_pred = [t + pd.DateOffset(minutes=h) for h in preds.columns] pred = pd.DataFrame(preds.values.ravel(), index=dates_pred, columns=[project['_id']]) data_temp = pd.concat([data[project['_id']].iloc[np.where(data.index < t)].to_frame(), pred]) project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: date_nwp = date.round('H').strftime('%d%m%y%H%M') try: nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1))].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2))].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1)), project_id].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2)), project_id].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') for project in projects: if len(x_3d[project['_id']].shape) == 3: x_3d[project['_id']] = x_3d[project['_id']][np.newaxis, :, :, :] return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not self.is_for_test: inp['Obs_lag1'] = inp['Obs_lag1'] + np.random.normal(0, 0.05) * inp['Obs_lag1'] inp['Obs_lag2'] = inp['Obs_lag2'] + np.random.normal(0, 0.05) * inp['Obs_lag2'] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_rabbitmq(self, t, path_nwp, nwp_model, project, variables): x = dict() x_3d = dict() nwps = project['nwp'] p_dates = pd.date_range(t, t + pd.DateOffset(days=3) - pd.DateOffset(hours=1), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_rabbitmq(date, nwp, nwp_prev, nwp_next, project['static_data']['type']) x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) except Exception: continue else: for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_online(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='15min') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp -
pd.DateOffset(hours=1)
pandas.DateOffset
import logging import re import tempfile from os.path import exists, join from unittest.mock import MagicMock, patch import netCDF4 as nc import numpy as np import numpy.testing as npt import packaging.version import pandas as pd import pytest import xarray as xr from scmdata import ScmRun from scmdata.netcdf import _get_xr_dataset_to_write, nc_to_run, run_to_nc from scmdata.testing import assert_scmdf_almost_equal def test_run_to_nc(scm_run): with tempfile.TemporaryDirectory() as tempdir: out_fname = join(tempdir, "out.nc") run_to_nc(scm_run, out_fname, dimensions=("scenario",)) assert exists(out_fname) ds = nc.Dataset(out_fname) assert ds.dimensions["time"].size == len(scm_run.time_points) assert ds.dimensions["scenario"].size == 2 assert ds.variables["scenario"][0] == "a_scenario" assert ds.variables["scenario"][1] == "a_scenario2" npt.assert_allclose( ds.variables["Primary_Energy"][0, :], scm_run.filter(variable="Primary Energy", scenario="a_scenario").values[0], ) npt.assert_allclose( ds.variables["Primary_Energy"][1, :], scm_run.filter(variable="Primary Energy", scenario="a_scenario2").values[0], ) npt.assert_allclose( ds.variables["Primary_Energy__Coal"][0, :], scm_run.filter( variable="Primary Energy|Coal", scenario="a_scenario" ).values[0], ) @pytest.mark.parametrize( "v", ["primary energy", "Primary Energy", "Primary Energy|Coal|Test"], ) def test_run_to_nc_case(scm_run, v): with tempfile.TemporaryDirectory() as tempdir: out_fname = join(tempdir, "out.nc") scm_run = scm_run.filter(variable="Primary Energy") scm_run["variable"] = v run_to_nc(scm_run, out_fname, dimensions=("scenario",)) res = nc_to_run(scm_run.__class__, out_fname) assert res.get_unique_meta("variable", True) == v @pytest.mark.parametrize("ch", "!@#$%^&*()~`+={}]<>,;:'\".") @pytest.mark.parametrize("start_with_weird", (True, False)) def test_run_to_nc_weird_name(scm_run, ch, start_with_weird): with tempfile.TemporaryDirectory() as tempdir: out_fname = join(tempdir, "out.nc") scm_run = scm_run.filter(variable="Primary Energy") variable = scm_run.get_unique_meta("variable", True) if start_with_weird: variable = ch + " " + variable else: variable = variable + " " + ch scm_run["variable"] = variable if start_with_weird: error_msg = re.escape("NetCDF: Name contains illegal characters") with pytest.raises(RuntimeError, match=error_msg): run_to_nc(scm_run, out_fname, dimensions=("scenario",)) else: run_to_nc(scm_run, out_fname, dimensions=("scenario",)) res = nc_to_run(scm_run.__class__, out_fname) assert res.get_unique_meta("variable", True) == variable @pytest.mark.parametrize("ch", ("|", " ", " ")) def test_run_to_nc_special_character_pass(scm_run, ch): with tempfile.TemporaryDirectory() as tempdir: out_fname = join(tempdir, "out.nc") scm_run = scm_run.filter(variable="Primary Energy") variable = scm_run.get_unique_meta("variable", True) variable = ch + variable scm_run["variable"] = variable run_to_nc(scm_run, out_fname, dimensions=("scenario",)) res = nc_to_run(scm_run.__class__, out_fname) assert res.get_unique_meta("variable", True) == variable def test_run_to_nc_4d(scm_run, tmpdir): df = scm_run.timeseries().reset_index() df["climate_model"] = "base_m" df["run_id"] = 1 big_df = [df] for climate_model in ["abc_m", "def_m", "ghi_m"]: for run_id in range(10): new_df = df.copy() new_df["run_id"] = run_id new_df["climate_model"] = climate_model big_df.append(new_df) scm_run = scm_run.__class__(pd.concat(big_df).reset_index(drop=True)) out_fname = join(tmpdir, "out.nc") run_to_nc(scm_run, out_fname, dimensions=("scenario", "climate_model", "run_id")) assert exists(out_fname) ds = nc.Dataset(out_fname) assert ds.dimensions["time"].size == len(scm_run.time_points) assert ds.dimensions["scenario"].size == 2 assert ds.dimensions["climate_model"].size == 4 assert ds.dimensions["run_id"].size == 10 assert ds.variables["scenario"][0] == "a_scenario" assert ds.variables["scenario"][1] == "a_scenario2" assert ds.variables["climate_model"][0] == "abc_m" assert ds.variables["climate_model"][1] == "base_m" assert ds.variables["climate_model"][2] == "def_m" assert ds.variables["climate_model"][3] == "ghi_m" npt.assert_array_equal(ds.variables["run_id"][:], range(10)) # remove as order doesn't really matter unless I misunderstand something? # assert ds.variables["Primary_Energy"].shape == (2, 4, 10, 3) # assert ds.variables["Primary_Energy__Coal"].shape == (2, 4, 10, 3) def test_run_to_nc_nan_dimension_error(scm_run, tmpdir): scm_run["run_id"] = np.nan out_fname = join(tmpdir, "out.nc") with pytest.raises(AssertionError, match="nan in dimension: `run_id`"): run_to_nc(scm_run, out_fname, dimensions=("scenario", "run_id")) @pytest.mark.parametrize( "dimensions", ( ("scenario", "variable"), ("scenario",), ("scenario", "time"), ("scenario", "variable", "time"), ), ) def test_nc_to_run(scm_run, dimensions): with tempfile.TemporaryDirectory() as tempdir: out_fname = join(tempdir, "out.nc") run_to_nc(scm_run, out_fname, dimensions=dimensions) assert exists(out_fname) run_read = nc_to_run(scm_run.__class__, out_fname) assert isinstance(run_read, scm_run.__class__) assert_scmdf_almost_equal(scm_run, run_read, check_ts_names=False) def test_nc_to_run_4d(scm_run): df = scm_run.timeseries() val_cols = df.columns.tolist() df = df.reset_index() df["climate_model"] = "base_m" df["run_id"] = 1 df.loc[:, val_cols] = np.random.rand(df.shape[0], len(val_cols)) big_df = [df] for climate_model in ["abc_m", "def_m", "ghi_m"]: for run_id in range(10): new_df = df.copy() new_df["run_id"] = run_id new_df["climate_model"] = climate_model new_df.loc[:, val_cols] = np.random.rand(df.shape[0], len(val_cols)) big_df.append(new_df) scm_run = scm_run.__class__(pd.concat(big_df).reset_index(drop=True)) with tempfile.TemporaryDirectory() as tempdir: out_fname = join(tempdir, "out.nc") run_to_nc( scm_run, out_fname, dimensions=("scenario", "climate_model", "run_id") ) assert exists(out_fname) run_read = nc_to_run(scm_run.__class__, out_fname) assert isinstance(run_read, scm_run.__class__) assert_scmdf_almost_equal(scm_run, run_read, check_ts_names=False) def test_nc_to_run_with_extras_sparsity(scm_run): df = scm_run.timeseries() val_cols = df.columns.tolist() df = df.reset_index() df["climate_model"] = "base_m" df["run_id"] = 1 df.loc[:, val_cols] = np.random.rand(df.shape[0], len(val_cols)) big_df = [df] for climate_model in ["abc_m", "def_m", "ghi_m"]: for run_id in range(10): new_df = df.copy() new_df["run_id"] = run_id new_df["climate_model"] = climate_model new_df.loc[:, val_cols] = np.random.rand(df.shape[0], len(val_cols)) big_df.append(new_df) scm_run = scm_run.__class__(
pd.concat(big_df)
pandas.concat
import pandas as pd import os def read_file(filename:str,return_type:str='dataframe'): from .file_utils import FileHandler file:FileHandler = FileHandler(filename) return file.get_data(return_type=return_type) # def calculate_top_marginal_roi(data_frame,colname:str,top_n:int=10): # lookup_cols = ['gross','budget'] # lookup_cols.extend(colnames) # missing_cols = set(lookup_cols).intersection(set(data_frame.columns)).difference(lookup_cols) # if(missing_cols != {}): # raise Error(f"Required columns {' '.join(missing_cols)} not in input data") # sub_frame = movies[lookup_cols].groupby(colnames).sum() # sub_frame['marginal_roi'] = (sub_frame['gross'] - sub_frame['budget'])/sub_frame['budget'] # return sub_frame.nlargest(top_n,'marginal_roi') def calculate_top_gross_profit(data_frame,colnames:list,top_n:int=10,metric:str='sum'): lookup_cols = ['gross','budget'] lookup_cols.extend(colnames) if(metric=='sum'): sub_frame = data_frame[lookup_cols].groupby(colnames).sum() sub_frame['gross_profit'] = sub_frame['gross'] - sub_frame['budget'] if(metric=='mean'): data_frame['gross_profit'] = data_frame['gross'] - data_frame['budget'] lookup_cols.append('gross_profit') sub_frame = data_frame[lookup_cols].groupby(colnames).mean() return sub_frame.nlargest(top_n,'gross_profit') def union_actor_columns(movies): sub_frame = movies[['actor_1_name','actor_2_name','actor_3_name','budget','gross']] actor_1 = sub_frame[['actor_1_name','budget','gross']].rename(columns={'actor_1_name':'actor_name'}) actor_2 = sub_frame[['actor_2_name','budget','gross']].rename(columns={'actor_2_name':'actor_name'}) actor_3 = sub_frame[['actor_3_name','budget','gross']].rename(columns={'actor_3_name':'actor_name'}) return
pd.concat([actor_1,actor_2,actor_3])
pandas.concat
# coding: utf-8 from functools import wraps from fastcache import clru_cache from collections import Iterable from datetime import datetime as pdDateTime from FactorLib.data_source.trade_calendar import tc from xlrd.xldate import xldate_as_datetime import pandas as pd import numpy as np # 日期字符串(20120202)转成datetime(timestamp),如果不是日期字符串,则返回None def DateStr2Datetime(date_str): try: return pdDateTime(int(date_str[0:4]),int(date_str[4:6]),int(date_str[6:8])) except: return None # datetime(timestamp)转成日期字符串(20120202) def Datetime2DateStr(date): Year = date.year Month = date.month Day = date.day if Month<10: Month = '0'+str(Month) else: Month = str(Month) if Day<10: Day = '0'+str(Day) else: Day = str(Day) return str(Year)+Month+Day # datetime(timestamp)转成数字日期(20120202) def Datetime2IntDate(date): Year = date.year Month = date.month Day = date.day return Year * 10000 + Month * 100 + Day @clru_cache() def IntDate2Datetime(date: int): return pd.to_datetime(str(date)) # 日期字符串(20120202)转成datetime(timestamp),如果不是日期字符串,则返回None def DateStr2Datetime(date_str): try: return pdDateTime(int(date_str[0:4]),int(date_str[4:6]),int(date_str[6:8])) except: return None # matlab格式的日期 def Datetime2MatlabDatetime(dates): if isinstance(dates, Iterable): return ((np.array(dates, dtype='datetime64') - np.datetime64('1970-01-01T00:00:00')) / np.timedelta64(1, 'D')).astype('int32') else: return int((np.datetime64(dates) - np.datetime64('1970-01-01T00:00:00')) / np.timedelta64(1, 'D')) # matlab格式转datetime def MatlabDatetime2Datetime(dates): return pd.to_datetime(dates, unit='D') # excel数字格式转成datetime def ExcelDatetime2Datetime(dates): datetimes = [xldate_as_datetime(x, 0) for x in dates] return pd.to_datetime(datetimes) def DateRange2Dates(func): """ 函数装饰器。 把func中的时间参数(start_date, end_date, dates)都转成dates。 """ @wraps(func) def wrapper(*args, **kwargs): start = kwargs.get('start_date') end = kwargs.get('end_date') dates = kwargs.get('dates') d = tc.get_trade_days(start, end, retstr=None) if dates is not None: try: dates = pd.DatetimeIndex(dates) except: dates =
pd.DatetimeIndex([dates])
pandas.DatetimeIndex
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt # import seaborn as sns from aif360.datasets import AdultDataset from aif360.datasets import GermanDataset from aif360.datasets import MEPSDataset19 from torch.utils.data import Dataset from sklearn.model_selection import train_test_split from aif360.datasets import BinaryLabelDataset from aif360.metrics import ClassificationMetric from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score def Adult_dataset(name_prot = 'sex'): dataset_orig = AdultDataset(protected_attribute_names=['sex'], privileged_classes= [['Male']], features_to_keep=['age', 'education-num']) privileged_groups = [{'sex': 1}] unprivileged_groups = [{'sex': 0}] data, _ = dataset_orig.convert_to_dataframe() data.rename(columns={'income-per-year':'labels'}, inplace = True) data.reset_index(inplace = True, drop = True) sensitive = data[name_prot] output = dataset_orig.labels atribute = data.drop('labels', axis = 1, inplace = False) atribute.drop(name_prot, axis = 1, inplace = True) return data, atribute, sensitive, output, privileged_groups, unprivileged_groups def german_dataset_age(name_prot=['age']): dataset_orig = GermanDataset( protected_attribute_names = name_prot, privileged_classes=[lambda x: x >= 25], features_to_drop=['personal_status', 'sex'] ) privileged_groups = [{'age': 1}] unprivileged_groups = [{'age': 0}] data, _ = dataset_orig.convert_to_dataframe() data.rename(columns={'credit':'labels'}, inplace = True) sensitive = data[name_prot] output = data['labels'] output.replace((1,2),(0,1),inplace = True) atribute = data.drop('labels', axis = 1, inplace = False) atribute.drop(name_prot, axis = 1, inplace = True) return data, atribute, sensitive, output, privileged_groups, unprivileged_groups def german_dataset_sex(name_prot=['sex']): dataset_orig = GermanDataset( protected_attribute_names = name_prot, features_to_drop=['personal_status', 'age'] ) privileged_groups = [{'sex': 1}] unprivileged_groups = [{'sex': 0}] data, _ = dataset_orig.convert_to_dataframe() data.rename(columns={'credit':'labels'}, inplace = True) sensitive = data[name_prot] output = data['labels'] output.replace((1,2),(0,1),inplace = True) atribute = data.drop('labels', axis = 1, inplace = False) atribute.drop(name_prot, axis = 1, inplace = True) return data, atribute, sensitive, output, privileged_groups, unprivileged_groups def medical_dataset(name_prot = 'RACE'): dataset_orig = MEPSDataset19() privileged_groups = [{'RACE': 1}] unprivileged_groups = [{'RACE': 0}] data, _ = dataset_orig.convert_to_dataframe() data.reset_index(inplace = True, drop = True) data.rename(columns={'UTILIZATION':'labels'}, inplace = True) sensitive = data[name_prot] atribute = data.drop(name_prot, axis = 1, inplace = False) atribute.drop(['labels'], axis =1, inplace =True) output = data['labels'] return data, atribute, sensitive, output, privileged_groups, unprivileged_groups def Readmission_dataset(): folder_name = os.path.join('datasets_raw','readmission.csv') data = pd.read_csv(folder_name) data.drop(['ID','readmitDAYS'], axis = 1, inplace = True) data.rename(columns={'readmitBIN':'labels'}, inplace = True) sensitive = data['FEMALE'] output = data['labels'] atribute = data.drop(['labels','FEMALE'], axis = 1) pr_gr = [{'FEMALE': 0}] un_gr = [{'FEMALE': 1}] return data, atribute, sensitive, output, pr_gr, un_gr def format_datasets(data, atribute, sensitive, output, out_name = "labels", sens_name = "sex", test_s = 0.15, val_s = 0.15): data_train, data_test_all = train_test_split(data, test_size = test_s + val_s, random_state = 30) data_val, data_test = train_test_split(data_test_all, test_size = test_s/(test_s + val_s), random_state = 30) sensitive_train = data_train[sens_name] sensitive_val = data_val[sens_name] sensitive_test = data_test[sens_name] output_train = data_train[out_name] output_val = data_val[out_name] output_test = data_test[out_name] atribute_train = data_train.drop([out_name, sens_name], axis = 1, inplace=False) atribute_val = data_val.drop([out_name, sens_name], axis = 1, inplace=False) atribute_test = data_test.drop([out_name, sens_name], axis = 1, inplace=False) return data_train, data_test, data_val, atribute_train, atribute_val, atribute_test, sensitive_train, sensitive_val, sensitive_test, output_train, output_val, output_test def test(dataset_val, dataset_test, model, y_val, y_test, A_val, A_test, thresh, model_AIF, k, dataloader_val, dataloader_test, protected, unprivileged_groups, privileged_groups): protected = [protected] bld_val = BinaryLabelDataset(df = dataset_val, label_names = ['labels'], protected_attribute_names=protected) bld_test = BinaryLabelDataset(df = dataset_test, label_names = ['labels'], protected_attribute_names=protected) if np.isin(k ,model_AIF): y_val_pred_prob_val = model.predict_proba(bld_val) A_prob_val = 0 y_val_pred_prob_test = model.predict_proba(bld_test) A_prob_test = 0 else: y_val_pred_prob_val, A_prob_val = model.predict_proba(dataloader_val) y_val_pred_prob_test, A_prob_test = model.predict_proba(dataloader_test) def metrics_form(y_val_pred_prob, y_test, A_prob, A_test, bld, dataset): metric_arrs = np.empty([0,8]) if np.isin(k ,model_AIF): y_val_pred = (y_val_pred_prob > thresh).astype(np.float64) else: y_val_pred = (y_val_pred_prob > thresh).astype(np.float64) # A_pred = (A_prob > thresh).astype(np.float64) metric_arrs = np.append(metric_arrs, roc_auc_score(y_test, y_val_pred_prob)) # print("y {}".format(roc_auc_score(y_test, y_val_pred_prob))) metric_arrs = np.append(metric_arrs, accuracy_score(y_test, y_val_pred)) if np.isin(k,model_AIF): metric_arrs = np.append(metric_arrs, 0) else: # metric_arrs = np.append(metric_arrs, roc_auc_score(A_test, A_prob)) metric_arrs = np.append(metric_arrs, 0) # print("A {}".format(roc_auc_score(A_test, A_prob))) dataset_pred = dataset.copy() dataset_pred.labels = y_val_pred bld2 = BinaryLabelDataset(df = dataset_pred, label_names = ['labels'], protected_attribute_names = protected) metric = ClassificationMetric( bld, bld2, unprivileged_groups = unprivileged_groups, privileged_groups = privileged_groups) metric_arrs = np.append(metric_arrs, ((metric.true_positive_rate() + metric.true_negative_rate()) / 2)) metric_arrs = np.append(metric_arrs, np.abs(metric.average_odds_difference())) metric_arrs = np.append(metric_arrs, metric.disparate_impact()) metric_arrs = np.append(metric_arrs, np.abs(metric.statistical_parity_difference())) metric_arrs = np.append(metric_arrs, np.abs(metric.equal_opportunity_difference())) return metric_arrs metric_val = metrics_form(y_val_pred_prob_val, y_val, A_prob_val, A_val, bld_val, dataset_val) metric_test = metrics_form(y_val_pred_prob_test, y_test, A_prob_test, A_test, bld_test, dataset_test) return metric_val, metric_test class Dataset_format(Dataset): def __init__(self, atribute, sensitive, output): self.atribute = atribute.values self.sensitive = sensitive.values self.output = output.values def __len__(self): return len(self.atribute) def __getitem__(self, idx): return self.atribute[idx], self.output[idx], self.sensitive[idx] def Pareto_optimal(dataset, FAIR = True): def identify_pareto(scores): # Count number of items population_size = scores.shape[0] # Create a NumPy index for scores on the pareto front (zero indexed) population_ids = np.arange(population_size) # Create a starting list of items on the Pareto front # All items start off as being labelled as on the Parteo front pareto_front = np.ones(population_size, dtype=bool) # Loop through each item. This will then be compared with all other items for i in range(population_size): # Loop through all other items for j in range(population_size): # Check if our 'i' pint is dominated by out 'j' point if all(scores[j] >= scores[i]) and any(scores[j] > scores[i]): # j dominates i. Label 'i' point as not on Pareto front pareto_front[i] = 0 # Stop further comparisons with 'i' (no more comparisons needed) break # Return ids of scenarios on pareto front return population_ids[pareto_front] points = pd.DataFrame() for i in dataset.index.unique(): score = dataset[dataset.index == i].values.copy() if FAIR == True: score[:,1] = 100 - score[:,1] population_ids = identify_pareto(score) points = points.append(dataset[dataset.index == i].iloc[population_ids,[2,3]]) score = points.values.copy() if FAIR == True: score[:,1] = 100 - score[:,1] population_ids = identify_pareto(score) pareto_optimal = points.iloc[population_ids,:] return pareto_optimal, points def Pareto_optimal_total(dataset, FAIR = True, name = "proba"): def identify_pareto(scores): # Count number of items population_size = scores.shape[0] # Create a NumPy index for scores on the pareto front (zero indexed) population_ids = np.arange(population_size) # Create a starting list of items on the Pareto front # All items start off as being labelled as on the Parteo front pareto_front = np.ones(population_size, dtype=bool) # Loop through each item. This will then be compared with all other items for i in range(population_size): # Loop through all other items for j in range(population_size): # Check if our 'i' pint is dominated by out 'j' point if all(scores[j] >= scores[i]) and any(scores[j] > scores[i]): # j dominates i. Label 'i' point as not on Pareto front pareto_front[i] = 0 # Stop further comparisons with 'i' (no more comparisons needed) break # Return ids of scenarios on pareto front return population_ids[pareto_front] points = pd.DataFrame() for i in dataset.index.unique(): score = dataset[dataset.index == i].values.copy() if FAIR == True: score[:,1] = 100 - score[:,1] score[:,2] = 100 - score[:,2] score[:,3] = 100 - score[:,3] population_ids = identify_pareto(score) points = points.append(dataset[dataset.index == i].iloc[population_ids,[4,5,6,7]]) score = points.values.copy() if FAIR == True: score[:,1] = 100 - score[:,1] score[:,2] = 100 - score[:,2] score[:,3] = 100 - score[:,3] population_ids = identify_pareto(score) pareto_optimal = points.iloc[population_ids,:] pareto_optimal.to_excel("{}.xlsx".format(name)) return pareto_optimal def plot_Pareto_fronts(PO_points_AOD, PO_points_ASPD, PO_points_AEOD, upper_bound = 0.1, lower_bound = -0.002, name = "Readmission"): dict_marker = {"PR":'o', "DI-NN":'v', "DI-RF":'^', "Reweighing-NN":'>', "Reweighing-RF":'<', "FAD":'8', 'FAD-prob':'s', "FAIR-scalar":'p', 'FAIR-betaREP':'P', "FAIR-Bernoulli":"*", "FAIR-betaSF":"h"} dict_color = {"PR":'b', "DI-NN":'g', "DI-RF":'r', "Reweighing-NN":'c', "Reweighing-RF":'m', "FAD":'y', 'FAD-prob':'k', "FAIR-scalar":'brown', 'FAIR-betaREP':'teal', "FAIR-Bernoulli":"blueviolet", "FAIR-betaSF":"crimson"} size = 100 figure1 = plt.figure(figsize=(9, 12)) PO_points_AOD['labels'] = PO_points_AOD.index ax1 = plt.subplot(311) for k,d in PO_points_AOD.groupby('labels'): if k == "FAD-prob": continue ax1.scatter(d.iloc[:,1], d.iloc[:,0], label=k, c=dict_color[k], marker = dict_marker[k], s=size) # ax1.set_ylim(0.5,1) ax1.set_xlim(lower_bound, upper_bound) # ax1.set_xlim(0,model1.time_control[-1]) ax1.set_ylabel('AUC$_y$', fontweight="bold") ax1.set_xlabel("AOD", fontweight="bold") ax1.grid() ax1.legend(loc = 'lower right') PO_points_ASPD['labels'] = PO_points_ASPD.index ax2 = plt.subplot(312) for k,d in PO_points_ASPD.groupby('labels'): if k == "FAD-prob": continue ax2.scatter(d.iloc[:,1], d.iloc[:,0], label=k, c=dict_color[k], marker = dict_marker[k], s=size) # ax2.set_ylim(0.5,1) ax2.set_xlim(lower_bound, upper_bound) # ax1.set_xlim(0,model1.time_control[-1]) ax2.set_ylabel('AUC$_y$', fontweight="bold") ax2.set_xlabel("ASD", fontweight="bold") ax2.grid() ax2.legend(loc = 'lower right') PO_points_AEOD['labels'] = PO_points_AEOD.index ax3 = plt.subplot(313) for k,d in PO_points_AEOD.groupby('labels'): if k == "FAD-prob": continue ax3.scatter(d.iloc[:,1], d.iloc[:,0], label=k, c=dict_color[k], marker = dict_marker[k], s=size) # ax3.set_ylim(0.5,1) ax3.set_xlim(lower_bound, upper_bound) # ax1.set_xlim(0,model1.time_control[-1]) ax3.set_ylabel('AUC$_y$', fontweight="bold") ax3.set_xlabel("AEOD", fontweight="bold") ax3.grid() ax3.legend(loc = 'lower right') plt.setp([a.get_xticklabels() for a in [ax1, ax2]], visible=False) plt.savefig('{}.png'.format(name)) def plot_AUC_Y_AUC_A(name): figure2 = plt.figure(figsize=(9, 8)) points = pd.read_excel("Results/Ger_age.xls", index_col=0) ax1 = plt.subplot(211) ax1.plot(points[points.index == 'FAIR-scalar']["alpha"], points[points.index == 'FAIR-scalar'].iloc[:,0], label = "AUC$_y$") ax1.plot(points[points.index == 'FAIR-scalar']["alpha"], points[points.index == 'FAIR-scalar'].iloc[:,2], label = "AUC$_s$") plt.xscale("log") ax1.set_ylabel('AUC', fontweight="bold") ax1.set_title("German age", fontweight="bold") # ax1.set_xlabel("alpha", fontweight="bold") ax1.grid() ax1.set_xlim(0, 1000) ax1.legend() points = pd.read_excel("Results/ger_sex.xlsx", index_col=0) ax2 = plt.subplot(212) ax2.plot(points[points.index == 'FAIR-scalar']["alpha"], points[points.index == 'FAIR-scalar'].iloc[:,0], label = "AUC$_y$") ax2.plot(points[points.index == 'FAIR-scalar']["alpha"], points[points.index == 'FAIR-scalar'].iloc[:,2], label = "AUC$_s$") plt.xscale("log") ax2.set_ylabel('AUC', fontweight="bold") ax2.set_title("German sex", fontweight="bold") ax2.set_xlabel(r'$\alpha$', fontweight="bold") ax2.grid() ax2.set_xlim(0, 1000) ax2.legend() plt.setp([a.get_xticklabels() for a in [ax1]], visible=False) plt.savefig('{}.png'.format(name)) if __name__ == "__main__": col_AUC_y_val = 0 col_AUC_A_val = 7 add = 4 aaa = np.logspace(-2, np.log10(5), num = 8) points = pd.read_excel("Results/readmission.xls", index_col=0) po_Read_AOD, po_Read_AOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) po_Read_total = Pareto_optimal_total(points.iloc[:,[0, 4, 5, 6, 7, 11, 12, 13]], FAIR=True, name = "Results/Readmission_PO") points = pd.read_excel("Results/Adult.xls", index_col=0) po_Adult_AOD, po_Adult_AOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) po_Adult_total = Pareto_optimal_total(points.iloc[:,[0, 4, 5, 6, 7, 11, 12, 13]], FAIR=True, name = "Results/Adult_PO") points = pd.read_excel("Results/Ger_age.xls", index_col=0) po_Ger_age_AOD, po_Ger_age_AOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) po_Ger_age_total = Pareto_optimal_total(points.iloc[:,[0, 4, 5, 6, 7, 11, 12, 13]], FAIR=True, name = "Results/Ger_age_PO") points = pd.read_excel("Results/ger_sex.xlsx", index_col=0) po_Ger_sex_AOD, po_Ger_sex_AOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) po_Ger_sex_total = Pareto_optimal_total(points.iloc[:,[0, 4, 5, 6, 7, 11, 12, 13]], FAIR=True, name = "Results/Ger_sex_PO") points = pd.read_excel("Results/MEPS19.xls", index_col=0) po_MEPS19_AOD, po_MEPS19_AOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) po_MEPS19_total = Pareto_optimal_total(points.iloc[:,[0, 4, 5, 6, 7, 11, 12, 13]], FAIR=True, name = "Results/MEPS19_PO") add = 5 points = pd.read_excel("Results/readmission.xls", index_col=0) po_Read_ASPD, po_Read_ASPD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) points = pd.read_excel("Results/Adult.xls", index_col=0) po_Adult_ASPD, po_Adult_ASPD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) points = pd.read_excel("Results/Ger_age.xls", index_col=0) po_Ger_age_ASPD, po_Ger_age_ASPD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) points = pd.read_excel("Results/ger_sex.xlsx", index_col=0) po_Ger_sex_ASPD, po_Ger_sex_ASPD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) points = pd.read_excel("Results/MEPS19.xls", index_col=0) po_MEPS19_ASPD, po_MEPS19_ASPD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) add = 6 points = pd.read_excel("Results/readmission.xls", index_col=0) po_Read_AEOD, po_Read_AEOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) points = pd.read_excel("Results/Adult.xls", index_col=0) po_Adult_AEOD, po_Adult_AEOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) points = pd.read_excel("Results/Ger_age.xls", index_col=0) po_Ger_age_AEOD, po_Ger_age_AEOD_all = Pareto_optimal(points.iloc[:,[col_AUC_y_val,col_AUC_y_val+add,col_AUC_A_val,col_AUC_A_val+add]], FAIR=True) points =
pd.read_excel("Results/ger_sex.xlsx", index_col=0)
pandas.read_excel
# https://projects.datacamp.com/projects/441 # A Visual History of Nobel Prize Winners ## Task 1 # Loading in required libraries import pandas as pd import seaborn as sns import numpy as np import os as os # Reading in the Nobel Prize data fullnobelearly = os.path.abspath(os.path.join('dc','441_nobel_prize_winners','datasets', 'nobel.csv')) nobel =
pd.read_csv(fullnobelearly)
pandas.read_csv
# -*- coding: UTF-8 -*- from __future__ import division import re import matplotlib.pyplot as plt import numpy as np import pandas as pd # 思路分析: # # 问题: 这里是要求各个国家的GDP和Energy Supply之类的情况. # # 数据源: # ## Energy Indicators.xls: 国家及地区名: Energy Supply和Energy Supply每人; # ## world_bank.csv: 国家及地区名: 历年GDP; # ## scimagojr-3.xlsx: 国家及地区名: Citations相关数据; # # 关键点: # # 由于3个数据源之间的主键(Country Name)不一样, 所以需要对其做基本的数据清洗. # # 数据清洗只是需要按题目要求, 实际上, 下列Top 15 Rank的国家最为重要, 因为Question 3~13都是基本围绕Top 15. # # 清洗后, 相join得出最终需要处理的数据源. # Question 1 # ---------------------------------------- # Quiz Question: Load the energy data from the file Energy Indicators.xls, which is a list of indicators # of energy supply and renewable electricity production from the United Nations for the year 2013, # and should be put into a DataFrame with the variable name of energy. # # Keep in mind that this is an Excel file, and not a comma separated values file. Also, # make sure to exclude the footer and header information from the datafile. The first two columns are unneccessary, # so you should get rid of them, and you should change the column labels so that the columns are: # ['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable] # # Convert Energy Supply to gigajoules (there are 1,000,000 gigajoules in a petajoule). # For all countries which have missing data (e.g. data with "...") make sure this is reflected as np.NaN values. # Rename the following list of countries (for use in later questions): # "Republic of Korea": "South Korea", # "United States of America": "United States", # "United Kingdom of Great Britain and Northern Ireland": "United Kingdom", # "China, Hong Kong Special Administrative Region": "Hong Kong" # There are also several countries with parenthesis in their name. Be sure to remove these, # e.g. 'Bolivia (Plurinational State of)' should be 'Bolivia'. # # Next, load the GDP data from the file world_bank.csv, which is a csv containing countries' GDP from 1960 to 2015 # from World Bank. Call this DataFrame GDP. # # Make sure to skip the header, and rename the following list of countries: # "Korea, Rep.": "South Korea", # "Iran, Islamic Rep.": "Iran", # "Hong Kong SAR, China": "Hong Kong" # # Finally, load the Sciamgo Journal and Country Rank data for Energy Engineering and Power Technology from the file # scimagojr-3.xlsx, which ranks countries based on their journal contributions in the aforementioned area. # Call this DataFrame ScimEn. # Join the three datasets: GDP, Energy, and ScimEn into a new dataset (using the intersection of country names). # Use only the last 10 years (2006-2015) of GDP data and only the top 15 countries # by Scimagojr 'Rank' (Rank 1 through 15). # # The index of this DataFrame should be the name of the country, and the columns should be # ['Rank', 'Documents', 'Citable documents', 'Citations', 'Self-citations', 'Citations per document', 'H index', # 'Energy Supply', 'Energy Supply per Capita', '% Renewable', # '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015']. # This function should return a DataFrame with 20 columns and 15 entries. def get_energy(_debug=False): if _debug: print('\nget_energy()') # Load data # 1. skip header and footer; 2. NaN data is '...' df1 = pd.read_excel("data/Energy Indicators.xls", skiprows=17, skipfooter=38, na_values="...") if _debug: print('Type: {}'.format(type(df1))) # dataframe # Correct column names df1 = df1.drop(df1.columns[[0, 1]], axis=1) # remove useless columns df1.rename(columns={df1.columns[0]: 'Country'}, inplace=True) df1.rename(columns={df1.columns[1]: 'Energy Supply'}, inplace=True) df1.rename(columns={df1.columns[2]: 'Energy Supply per Capita'}, inplace=True) df1.rename(columns={df1.columns[3]: '% Renewable'}, inplace=True) if _debug: print('df1 Columns: {}'.format(df1.columns)) # Clean data rename_country1 = { "Republic of Korea": "South Korea", "United States of America": "United States", "United Kingdom of Great Britain and Northern Ireland": "United Kingdom", "China, Hong Kong Special Administrative Region": "Hong Kong"} df1['Energy Supply'] *= 1000000 # 理论上DataFrame不应该做循环处理 -> 用apply, 参考assignment 4, question 1 country = pd.Series(len(df1)) # to set value for i in range(len(df1)): row = df1.loc[i, :] # Rename country name: # Step 1: remove number. e.g. Greenland7 -> Greenland country[i] = re.sub("\d", "", row['Country']) # 正则表达式替换 # Step 2: remove (), break the row and only keep index=0 country[i] = country[i].split(' (')[0] # Step 3: replace name by rename_country if country[i] in rename_country1.keys(): country[i] = rename_country1.get(country[i]) if _debug: print('{} -> {}'.format(row['Country'], country[i])) df1['Country'] = country df1.set_index('Country', inplace=True) if _debug: print('df1 Columns: {}'.format(df1.columns)) print('\nHong Kong:\n{}'.format(df1.loc['Hong Kong'])) # print(list(df1.index)) return df1 def get_gdp(_debug=False): if _debug: print('\nget_gdp()') # Load data df2 = pd.read_csv('data/world_bank.csv', skiprows=4, encoding="utf8") if _debug: print('df2 Columns: {}'.format(df2.columns)) # Only needs country name and last 10 years data df2 = df2[['Country Name', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015']] # Here is [[]] df2.rename(columns={'Country Name': 'Country'}, inplace=True) if _debug: print('df2 Columns: {}'.format(df2.columns)) # Clean data rename_country2 = {"Korea, Rep.": "South Korea", "Iran, Islamic Rep.": "Iran", "Hong Kong SAR, China": "Hong Kong"} country = pd.Series(len(df2)) # to set value for i in range(len(df2)): row = df2.iloc[i, :] # replace name by rename_country country[i] = row['Country'] if country[i] in rename_country2.keys(): country[i] = rename_country2.get(country[i]) if _debug: print('{} -> {}'.format(row['Country'], country[i])) df2['Country'] = country df2.set_index('Country', inplace=True) if _debug: print('df2 Columns: {}'.format(df2.columns)) print('South Korea:\n{}'.format(df2.loc['South Korea'])) # print(list(df2.index)) return df2 def get_rank(_debug=False): if _debug: print('\nget_rank()') # Load data df3 = pd.read_excel("data/scimagojr-3.xlsx") if _debug: print('df3 Columns: {}'.format(df3.columns)) df3.set_index('Country', inplace=True) if _debug: print('df3 Columns: {}'.format(df3.columns)) # print(list(df3.index)) return df3 def answer_one(_debug=False): energy = get_energy(_debug) GDP = get_gdp(_debug) ScimEn = get_rank(_debug) ScimEn = ScimEn[ScimEn['Rank'] < 16] # top 15 # left join by the index df = pd.merge(ScimEn, energy, how='inner', left_index=True, right_index=True) df = pd.merge(df, GDP, how='inner', left_index=True, right_index=True) if _debug: print('\nanswer_one()') print('df Length: {}'.format(len(df))) print('df Columns: {}'.format(df.columns)) print('Compare: {}'.format(df.columns == ['Rank', 'Documents', 'Citable documents', 'Citations', 'Self-citations', 'Citations per document', 'H index', 'Energy Supply', 'Energy Supply per Capita', '% Renewable', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015'])) # print(df) return df print('\nQuestion 1') df = answer_one(True) print('\ncountry:\n{}'.format(df)) print('\ndtypes:\n{}'.format(df.dtypes)) print('\nshape: {}'.format(df.shape)) # shape: (15, 20) # Question 2 # ---------------------------------------- # Quiz Question: The previous question joined three datasets then reduced this to just the top 15 entries. # When you joined the datasets, but before you reduced this to the top 15 items, how many entries did you lose? # This function should return a single number. # 其实这一题和Top 15无关, 直接求全集和子集之间的差便可. def answer_two(): energy = get_energy() GDP = get_gdp() ScimEn = get_rank() print('Length: energy={}, GDP={}, ScimEn={}'.format(len(energy), len(GDP), len(ScimEn))) # Length: energy = 227, GDP = 264, ScimEn = 191 # outer join by index df_inner = pd.merge(energy, GDP, how='inner', left_index=True, right_index=True) df_inner = pd.merge(df_inner, ScimEn, how='inner', left_index=True, right_index=True) df_outer =
pd.merge(energy, GDP, how='outer', left_index=True, right_index=True)
pandas.merge
import pandas as pd import numpy as np from src.configs import * from src.features.transform import categorical_to_ordinal import collections class HousePriceData: ''' Load House Price data for Kaggle competition ''' def __init__(self, train_path, test_path): self.trainset = pd.read_csv(train_path) self.testset = pd.read_csv(test_path) self.target = self.trainset["SalePrice"] self.workset = None self.train_id = self.trainset["Id"] self.test_id = self.testset["Id"] # Keep track of feature to use to train in class # Don'T really like that, but can't find a better way for now self.original_feature_name = list(self.trainset) self.created_feature = list() self.ignored_feature = list() self.usable_feature_name = list() self._create_join_workset() self._replace_significant_nan_values() self._replace_all_nan_values() self._change_col_type() self._apply_feature_engineering() def _replace_significant_nan_values(self, filler="MISSING"): for col in COL_WITH_NAN_SIGNIFICATION: self.workset[col] = self.workset[col].fillna(filler) self.update_train_and_test_set(self.workset) def get_usable_feature_name(self): self.usable_feature_name = self.original_feature_name for feature_name in self.created_feature: self.usable_feature_name.append(feature_name) for feature_name in self.ignored_feature: try: self.usable_feature_name.remove(feature_name) except Exception as e: pass return self.usable_feature_name def add_created_features(self, feature_names): if isinstance(feature_names, str): self.created_feature.append(feature_names) elif isinstance(feature_names, collections.Iterable): for i in feature_names: self.created_feature.append(i) else: raise ValueError('Not valid feature_names type. Should be str or Iterable') def add_ignore_features(self, feature_names): if isinstance(feature_names, str): self.ignored_feature.append(feature_names) elif isinstance(feature_names, collections.Iterable): for i in feature_names: self.ignored_feature.append(i) else: raise ValueError('Not valid feature_names type. Should be str or Iterable') def _replace_all_nan_values(self, filler="NO"): self.workset = self.workset.fillna(filler) self.update_train_and_test_set(self.workset) def _create_join_workset(self): self.workset =
pd.concat([self.trainset[ORIGINAL_FEATURE_COLS], self.testset[ORIGINAL_FEATURE_COLS]], axis=0)
pandas.concat
""" Tasks ------- Search and transform jsonable structures, specifically to make it 'easy' to make tabular/csv output for other consumers. Example ~~~~~~~~~~~~~ *give me a list of all the fields called 'id' in this stupid, gnarly thing* >>> Q('id',gnarly_data) ['id1','id2','id3'] Observations: --------------------- 1) 'simple data structures' exist and are common. They are tedious to search. 2) The DOM is another nested / treeish structure, and jQuery selector is a good tool for that. 3a) R, Numpy, Excel and other analysis tools want 'tabular' data. These analyses are valuable and worth doing. 3b) Dot/Graphviz, NetworkX, and some other analyses *like* treeish/dicty things, and those analyses are also worth doing! 3c) Some analyses are best done using 'one-off' and custom code in C, Python, or another 'real' programming language. 4) Arbitrary transforms are tedious and error prone. SQL is one solution, XSLT is another, 5) the XPATH/XML/XSLT family is.... not universally loved :) They are very complete, and the completeness can make simple cases... gross. 6) For really complicated data structures, we can write one-off code. Getting 80% of the way is mostly okay. There will always have to be programmers in the loop. 7) Re-inventing SQL is probably a failure mode. So is reinventing XPATH, XSLT and the like. Be wary of mission creep! Re-use when possible (e.g., can we put the thing into a DOM using 8) If the interface is good, people can improve performance later. Simplifying --------------- 1) Assuming 'jsonable' structures 2) keys are strings or stringlike. Python allows any hashable to be a key. for now, we pretend that doesn't happen. 3) assumes most dicts are 'well behaved'. DAG, no cycles! 4) assume that if people want really specialized transforms, they can do it themselves. """ from __future__ import print_function from collections import namedtuple import csv import itertools from itertools import product from operator import attrgetter as aget, itemgetter as iget import operator import sys from pandas.compat import map, u, callable, Counter import pandas.compat as compat ## note 'url' appears multiple places and not all extensions have same struct ex1 = { 'name': 'Gregg', 'extensions': [ {'id':'hello', 'url':'url1'}, {'id':'gbye', 'url':'url2', 'more': dict(url='url3')}, ] } ## much longer example ex2 = {u('metadata'): {u('accessibilities'): [{u('name'): u('accessibility.tabfocus'), u('value'): 7}, {u('name'): u('accessibility.mouse_focuses_formcontrol'), u('value'): False}, {u('name'): u('accessibility.browsewithcaret'), u('value'): False}, {u('name'): u('accessibility.win32.force_disabled'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.startlinksonly'), u('value'): False}, {u('name'): u('accessibility.usebrailledisplay'), u('value'): u('')}, {u('name'): u('accessibility.typeaheadfind.timeout'), u('value'): 5000}, {u('name'): u('accessibility.typeaheadfind.enabletimeout'), u('value'): True}, {u('name'): u('accessibility.tabfocus_applies_to_xul'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.flashBar'), u('value'): 1}, {u('name'): u('accessibility.typeaheadfind.autostart'),
u('value')
pandas.compat.u
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for dm_c19_modelling.evaluation.dataset_factory.""" from unittest import mock from absl.testing import absltest from dm_c19_modelling.evaluation import constants from dm_c19_modelling.evaluation import dataset_factory import numpy as np import pandas as pd _DEFAULT_ARGS = {"directory": "", "dataset_name": "", "creation_date": "", "cadence": 1} def _get_raw_dataset(): dates = ["2020-05-01", "2020-05-02", "2020-05-03", "2020-05-04", "2020-05-05", "2020-05-06", "2020-05-07", "2020-05-08", "2020-05-09"] sites = ["site_1", "site_2"] df = pd.DataFrame({ constants.DATE: np.repeat(dates, len(sites)), constants.SITE_ID: np.tile(sites, len(dates)), "new_deceased": np.random.randint(0, 5, len(sites) * len(dates)), "new_confirmed": np.random.randint(0, 9, len(sites) * len(dates)), "feature_1": np.random.rand(len(sites) * len(dates)), "feature_2": np.random.rand(len(sites) * len(dates)), "feature_3": np.random.rand(len(sites) * len(dates)), "feature_4": np.random.rand(len(sites) * len(dates)) }) df[constants.DATE] =
pd.to_datetime(df[constants.DATE])
pandas.to_datetime
from __future__ import absolute_import from __future__ import division from __future__ import print_function import pandas.core.groupby import pandas as pd from pandas.core.dtypes.common import is_list_like import ray from .utils import _map_partitions from .utils import _inherit_docstrings @_inherit_docstrings(pandas.core.groupby.DataFrameGroupBy) class DataFrameGroupBy(object): def __init__(self, df, by, axis, level, as_index, sort, group_keys, squeeze, **kwargs): self._columns = df.columns self._index = df.index self._axis = axis self._row_metadata = df._row_metadata self._col_metadata = df._col_metadata if axis == 0: partitions = [column for column in df._block_partitions.T] self._index_grouped = pd.Series(self._index, index=self._index)\ .groupby(by=by, sort=sort) else: partitions = [row for row in df._block_partitions] self._index_grouped = pd.Series(self._columns, index=self._index)\ .groupby(by=by, sort=sort) self._keys_and_values = [(k, v) for k, v in self._index_grouped] self._grouped_partitions = \ list(zip(*(groupby._submit(args=(by, axis, level, as_index, sort, group_keys, squeeze) + tuple(part.tolist()), num_return_vals=len(self)) for part in partitions))) @property def _iter(self): from .dataframe import DataFrame if self._axis == 0: return [(self._keys_and_values[i][0], DataFrame(col_partitions=part, columns=self._columns, index=self._keys_and_values[i][1].index, row_metadata=self._row_metadata[ self._keys_and_values[i][1].index], col_metadata=self._col_metadata)) for i, part in enumerate(self._grouped_partitions)] else: return [(self._keys_and_values[i][0], DataFrame(row_partitions=part, columns=self._keys_and_values[i][1].index, index=self._index, row_metadata=self._row_metadata, col_metadata=self._col_metadata[ self._keys_and_values[i][1].index])) for i, part in enumerate(self._grouped_partitions)] @property def ngroups(self): return len(self) def skew(self, **kwargs): return self._apply_agg_function(lambda df: df.skew(**kwargs)) def ffill(self, limit=None): return self._apply_agg_function(lambda df: df.ffill(limit=limit)) def sem(self, ddof=1): return self._apply_agg_function(lambda df: df.sem(ddof=ddof)) def mean(self, *args, **kwargs): return self._apply_agg_function(lambda df: df.mean(*args, **kwargs)) def any(self): return self._apply_agg_function(lambda df: df.any()) @property def plot(self): raise NotImplementedError("Not Yet implemented.") def ohlc(self): raise NotImplementedError("Not Yet implemented.") def __bytes__(self): raise NotImplementedError("Not Yet implemented.") @property def tshift(self): raise NotImplementedError("Not Yet implemented.") @property def groups(self): return {k: pd.Index(v) for k, v in self._keys_and_values} def min(self, **kwargs): return self._apply_agg_function(lambda df: df.min(**kwargs)) def idxmax(self): return self._apply_agg_function(lambda df: df.idxmax()) @property def ndim(self): return self._index_grouped.ndim def shift(self, periods=1, freq=None, axis=0): raise NotImplementedError("Not Yet implemented.") def nth(self, n, dropna=None): raise NotImplementedError("Not Yet implemented.") def cumsum(self, axis=0, *args, **kwargs): return self._apply_agg_function(lambda df: df.cumsum(axis, *args, **kwargs)) @property def indices(self): return dict(self._keys_and_values) def pct_change(self): return self._apply_agg_function(lambda df: df.pct_change()) def filter(self, func, dropna=True, *args, **kwargs): raise NotImplementedError("Not Yet implemented.") def cummax(self, axis=0, **kwargs): return self._apply_agg_function(lambda df: df.cummax(axis=axis, **kwargs)) def apply(self, func, *args, **kwargs): return self._apply_df_function(lambda df: df.apply(func, *args, **kwargs)) \ if is_list_like(func) \ else self._apply_agg_function(lambda df: df.apply(func, *args, **kwargs)) @property def dtypes(self): return self._apply_agg_function(lambda df: df.dtypes) def first(self, **kwargs): return self._apply_agg_function(lambda df: df.first(offset=0, **kwargs)) def backfill(self, limit=None): return self.bfill(limit) def __getitem__(self, key): # This operation requires a SeriesGroupBy Object raise NotImplementedError("Not Yet implemented.") def cummin(self, axis=0, **kwargs): return self._apply_agg_function(lambda df: df.cummin(axis=axis, **kwargs)) def bfill(self, limit=None): return self._apply_agg_function(lambda df: df.bfill(limit=limit)) def idxmin(self): return self._apply_agg_function(lambda df: df.idxmin()) def prod(self, **kwargs): return self._apply_agg_function(lambda df: df.prod(**kwargs)) def std(self, ddof=1, *args, **kwargs): return self._apply_agg_function(lambda df: df.std(ddof=ddof, *args, **kwargs)) def aggregate(self, arg, *args, **kwargs): return self._apply_df_function(lambda df: df.agg(arg, *args, **kwargs)) \ if is_list_like(arg) \ else self._apply_agg_function(lambda df: df.agg(arg, *args, **kwargs)) def last(self, **kwargs): return self._apply_df_function(lambda df: df.last(**kwargs)) def mad(self): return self._apply_agg_function(lambda df: df.mad()) def rank(self): return self._apply_df_function(lambda df: df.rank()) @property def corrwith(self): raise NotImplementedError("Not Yet implemented.") def pad(self, limit=None): raise NotImplementedError("Not Yet implemented.") def max(self, **kwargs): return self._apply_agg_function(lambda df: df.max(**kwargs)) def var(self, ddof=1, *args, **kwargs): return self._apply_agg_function(lambda df: df.var(ddof, *args, **kwargs)) def get_group(self, name, obj=None): raise NotImplementedError("Not Yet implemented.") def __len__(self): return len(self._keys_and_values) def all(self): return self._apply_agg_function(lambda df: df.all()) def size(self): return self._apply_agg_function(lambda df: df.size) def sum(self, **kwargs): return self._apply_agg_function(lambda df: df.sum(axis=self._axis, **kwargs)) def __unicode__(self): raise NotImplementedError("Not Yet implemented.") def describe(self, **kwargs): raise NotImplementedError("Not Yet implemented.") def boxplot(self, grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, **kwds): raise NotImplementedError("Not Yet implemented.") def ngroup(self, ascending=True): return self._index_grouped.ngroup(ascending) def nunique(self, dropna=True): return self._apply_agg_function(lambda df: df.nunique(dropna)) def resample(self, rule, *args, **kwargs): raise NotImplementedError("Not Yet implemented.") def median(self, **kwargs): return self._apply_agg_function(lambda df: df.median(**kwargs)) def head(self, n=5): return self._apply_df_function(lambda df: df.head(n)) def cumprod(self, axis=0, *args, **kwargs): return self._apply_df_function(lambda df: df.cumprod(axis, *args, **kwargs)) def __iter__(self): return self._iter.__iter__() def agg(self, arg, *args, **kwargs): def agg_help(df): if isinstance(df, pd.Series): return
pd.DataFrame(df)
pandas.DataFrame
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parent_dir) from ..trex_exe import Trex test = {} class TestTrex(unittest.TestCase): """ Unit tests for T-Rex model. """ print("trex unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for trex unit tests. :return: """ pass # setup the test as needed # e.g. pandas to open trex qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for trex unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_trex_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty trex object trex_empty = Trex(df_empty, df_empty) return trex_empty def test_app_rate_parsing(self): """ unittest for function app_rate_testing: method extracts 1st and maximum from each list in a series of lists of app rates """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([], dtype="object") result = pd.Series([], dtype="object") expected_results = [[0.34, 0.78, 2.34], [0.34, 3.54, 2.34]] try: trex_empty.app_rates = pd.Series([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]], dtype='object') # trex_empty.app_rates = ([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]]) # parse app_rates Series of lists trex_empty.app_rate_parsing() result = [trex_empty.first_app_rate, trex_empty.max_app_rate] npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial(self): """ unittest for function conc_initial: conc_0 = (app_rate * self.frac_act_ing * food_multiplier) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [12.7160, 9.8280, 11.2320] try: # specify an app_rates Series (that is a series of lists, each list representing # a set of application rates for 'a' model simulation) trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='float') trex_empty.food_multiplier_init_sg = pd.Series([110., 15., 240.], dtype='float') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') for i in range(len(trex_empty.frac_act_ing)): result[i] = trex_empty.conc_initial(i, trex_empty.app_rates[i][0], trex_empty.food_multiplier_init_sg[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ unittest for function conc_timestep: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [6.25e-5, 0.039685, 7.8886e-30] try: trex_empty.foliar_diss_hlife = pd.Series([.25, 0.75, 0.01], dtype='float') conc_0 = pd.Series([0.001, 0.1, 10.0]) for i in range(len(conc_0)): result[i] = trex_empty.conc_timestep(i, conc_0[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_percent_to_frac(self): """ unittest for function percent_to_frac: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([.04556, .1034, .9389], dtype='float') try: trex_empty.percent_incorp = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.percent_to_frac(trex_empty.percent_incorp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_inches_to_feet(self): """ unittest for function inches_to_feet: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([0.37966, 0.86166, 7.82416], dtype='float') try: trex_empty.bandwidth = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.inches_to_feet(trex_empty.bandwidth) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird(self): """ unittest for function at_bird: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([69.17640, 146.8274, 56.00997], dtype='float') try: trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') # following variable is unique to at_bird and is thus sent via arg list trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') for i in range(len(trex_empty.aw_bird_sm)): result[i] = trex_empty.at_bird(i, trex_empty.aw_bird_sm[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird1(self): """ unittest for function at_bird1; alternative approach using more vectorization: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([69.17640, 146.8274, 56.00997], dtype='float') try: trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') # for i in range(len(trex_empty.aw_bird_sm)): # result[i] = trex_empty.at_bird(i, trex_empty.aw_bird_sm[i]) result = trex_empty.at_bird1(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_bird(self): """ unittest for function fi_bird: food_intake = (0.648 * (aw_bird ** 0.651)) / (1 - mf_w_bird) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.19728, 22.7780, 59.31724], dtype='float') try: #?? 'mf_w_bird_1' is a constant (i.e., not an input whose value changes per model simulation run); thus it should #?? be specified here as a constant and not a pd.series -- if this is correct then go ahead and change next line trex_empty.mf_w_bird_1 = pd.Series([0.1, 0.8, 0.9], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.fi_bird(trex_empty.aw_bird_sm, trex_empty.mf_w_bird_1) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_sc_bird(self): """ unittest for function sc_bird: m_s_a_r = ((self.app_rate * self.frac_act_ing) / 128) * self.density * 10000 # maximum seed application rate=application rate*10000 risk_quotient = m_s_a_r / self.noaec_bird """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([6.637969, 77.805, 34.96289, np.nan], dtype='float') try: trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4], [3.]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.frac_act_ing = pd.Series([0.15, 0.20, 0.34, np.nan], dtype='float') trex_empty.density = pd.Series([8.33, 7.98, 6.75, np.nan], dtype='float') trex_empty.noaec_bird = pd.Series([5., 1.25, 12., np.nan], dtype='float') result = trex_empty.sc_bird() npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_sa_bird_1(self): """ # unit test for function sa_bird_1 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm = pd.Series([0.228229, 0.704098, 0.145205], dtype = 'float') expected_results_md = pd.Series([0.126646, 0.540822, 0.052285], dtype = 'float') expected_results_lg = pd.Series([0.037707, 0.269804, 0.01199], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='float') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_bird_md = pd.Series([115., 120., 130.], dtype='float') trex_empty.aw_bird_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_bird_1 = 0.1 trex_empty.nagy_bird_coef_sm = 0.02 trex_empty.nagy_bird_coef_md = 0.1 trex_empty.nagy_bird_coef_lg = 1.0 result_sm = trex_empty.sa_bird_1("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_bird_1("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_bird_1("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_bird_2(self): """ # unit test for function sa_bird_2 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([0.018832, 0.029030, 0.010483], dtype = 'float') expected_results_md = pd.Series([2.774856e-3, 6.945353e-3, 1.453192e-3], dtype = 'float') expected_results_lg =pd.Series([2.001591e-4, 8.602729e-4, 8.66163e-5], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') trex_empty.max_seed_rate = pd.Series([33.19, 20.0, 45.6]) # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_bird_md = pd.Series([115., 120., 130.], dtype='float') trex_empty.aw_bird_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.nagy_bird_coef_sm = 0.02 trex_empty.nagy_bird_coef_md = 0.1 trex_empty.nagy_bird_coef_lg = 1.0 result_sm = trex_empty.sa_bird_2("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_bird_2("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_bird_2("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_mamm_1(self): """ # unit test for function sa_mamm_1 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([0.022593, 0.555799, 0.010178], dtype = 'float') expected_results_md = pd.Series([0.019298, 0.460911, 0.00376], dtype = 'float') expected_results_lg =pd.Series([0.010471, 0.204631, 0.002715], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.ld50_mamm = pd.Series([321., 100., 400.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_bird_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sa_mamm_1("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_mamm_1("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_mamm_1("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_mamm_2(self): """ # unit test for function sa_mamm_2 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([2.46206e-3, 3.103179e-2, 1.03076e-3], dtype = 'float') expected_results_md = pd.Series([1.304116e-3, 1.628829e-2, 4.220702e-4], dtype = 'float') expected_results_lg =pd.Series([1.0592147e-4, 1.24391489e-3, 3.74263186e-5], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') trex_empty.max_seed_rate = pd.Series([33.19, 20.0, 45.6]) # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.ld50_mamm = pd.Series([321., 100., 400.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_mamm_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sa_mamm_2("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_mamm_2("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_mamm_2("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sc_mamm(self): """ # unit test for function sc_mamm """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([2.90089, 15.87995, 8.142130], dtype = 'float') expected_results_md = pd.Series([2.477926, 13.16889, 3.008207], dtype = 'float') expected_results_lg =pd.Series([1.344461, 5.846592, 2.172211], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.noael_mamm = pd.Series([2.5, 3.5, 0.5], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_mamm_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sc_mamm("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sc_mamm("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sc_mamm("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_ld50_rg_bird(self): """ # unit test for function ld50_rg_bird (LD50ft-2 for Row/Band/In-furrow granular birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([346.4856, 25.94132, np.nan], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'max app rate' per model simulation run trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rg_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, equal_nan=True, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rg_bird1(self): """ # unit test for function ld50_rg_bird1 (LD50ft-2 for Row/Band/In-furrow granular birds) this is a duplicate of the 'test_ld50_rg_bird' method using a more vectorized approach to the calculations; if desired other routines could be modified similarly --comparing this method with 'test_ld50_rg_bird' it appears (for this test) that both run in the same time --but I don't think this would be the case when 100's of model simulation runs are executed (and only a small --number of the application_types apply to this method; thus I conclude we continue to use the non-vectorized --approach -- should be revisited when we have a large run to execute """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([346.4856, 25.94132, np.nan], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'max app rate' per model simulation run trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rg_bird1(trex_empty.aw_bird_sm) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, equal_nan=True, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bl_bird(self): """ # unit test for function ld50_bl_bird (LD50ft-2 for broadcast liquid birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([46.19808, 33.77777, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_bird trex_empty.application_type = pd.Series(['Broadcast-Liquid', 'Broadcast-Liquid', 'Non-Broadcast'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bl_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bg_bird(self): """ # unit test for function ld50_bg_bird (LD50ft-2 for broadcast granular) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([46.19808, np.nan, 0.4214033], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Broadcast-Liquid', 'Broadcast-Granular'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bg_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rl_bird(self): """ # unit test for function ld50_rl_bird (LD50ft-2 for Row/Band/In-furrow liquid birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([np.nan, 2.20701, 0.0363297], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Row/Band/In-furrow-Liquid', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rl_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_mamm(self): """ unittest for function at_mamm: adjusted_toxicity = self.ld50_mamm * ((self.tw_mamm / aw_mamm) ** 0.25) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([705.5036, 529.5517, 830.6143], dtype='float') try: trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') for i in range(len(trex_empty.ld50_mamm)): result[i] = trex_empty.at_mamm(i, trex_empty.aw_mamm_sm[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_anoael_mamm(self): """ unittest for function anoael_mamm: adjusted_toxicity = self.noael_mamm * ((self.tw_mamm / aw_mamm) ** 0.25) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([5.49457, 9.62821, 2.403398], dtype='float') try: trex_empty.noael_mamm = pd.Series([2.5, 5.0, 1.25], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.anoael_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_mamm(self): """ unittest for function fi_mamm: food_intake = (0.621 * (aw_mamm ** 0.564)) / (1 - mf_w_mamm) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([3.17807, 16.8206, 42.28516], dtype='float') try: trex_empty.mf_w_mamm_1 = pd.Series([0.1, 0.8, 0.9], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.fi_mamm(trex_empty.aw_mamm_sm, trex_empty.mf_w_mamm_1) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bl_mamm(self): """ # unit test for function ld50_bl_mamm (LD50ft-2 for broadcast liquid) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.52983, 9.36547, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Broadcast-Liquid', 'Broadcast-Liquid', 'Non-Broadcast'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "test_at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bl_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bg_mamm(self): """ # unit test for function ld50_bg_mamm (LD50ft-2 for broadcast granular) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.52983, 9.36547, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Broadcast-Granular', 'Broadcast-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bg_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rl_mamm(self): """ # unit test for function ld50_rl_mamm (LD50ft-2 for Row/Band/In-furrow liquid mammals) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([np.nan, 0.6119317, 0.0024497], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Row/Band/In-furrow-Liquid', 'Row/Band/In-furrow-Liquid',], dtype='object') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') # following parameter values are needed for internal call to "at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') result = trex_empty.ld50_rl_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rg_mamm(self): """ # unit test for function ld50_rg_mamm """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([33.9737, 7.192681, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid',], dtype='object') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rg_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_eec_diet_max(self): """ combined unit test for methods eec_diet_max & eec_diet_timeseries; * this test calls eec_diet_max, which in turn calls eec_diet_timeseries (which produces concentration timeseries), which in turn calls conc_initial and conc_timestep * eec_diet_max processes the timeseries and extracts the maximum values * this test tests both eec_diet_max & eec_diet_timeseries together (ok, so this violates the exact definition * of 'unittest', get over it) * the assertion check is that the maximum values from the timeseries match expectations * this assumes that for the maximums to be 'as expected' then the timeseries are as well * note: the 1st application day ('day_out') for the 2nd model simulation run is set to 0 here * to make sure the timeseries processing works when an application occurs on 1st day of year """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([1.734, 145.3409, 0.702], dtype='float') num_app_days = pd.Series([], dtype='int') try: #specifying 3 different application scenarios of 1, 4, and 2 applications trex_empty.app_rates =
pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object')
pandas.Series