prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import wf_core_data.utils import requests import pandas as pd from collections import OrderedDict # import pickle # import json import datetime import time import logging import os logger = logging.getLogger(__name__) DEFAULT_DELAY = 0.25 DEFAULT_MAX_REQUESTS = 50 DEFAULT_WRITE_CHUNK_SIZE = 10 SCHOOLS_BASE_ID = 'appJBT9a4f3b7hWQ2' DATA_DICT_BASE_ID = 'appJBT9a4f3b7hWQ2' # DATA_DICT_BASE_ID = 'appHMyIWgnHqVJymL' class AirtableClient: def __init__( self, api_key=None, url_base='https://api.airtable.com/v0/' ): self.api_key = api_key self.url_base = url_base if self.api_key is None: self.api_key = os.getenv('AIRTABLE_API_KEY') def fetch_tl_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching TL data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='TLs', params=params ) tl_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('teacher_id_at', record.get('id')), ('teacher_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('teacher_full_name_at', fields.get('Full Name')), ('teacher_first_name_at', fields.get('First Name')), ('teacher_middle_name_at', fields.get('Middle Name')), ('teacher_last_name_at', fields.get('Last Name')), ('teacher_title_at', fields.get('Title')), ('teacher_ethnicity_at', fields.get('Race & Ethnicity')), ('teacher_ethnicity_other_at', fields.get('Race & Ethnicity - Other')), ('teacher_income_background_at', fields.get('Income Background')), ('teacher_email_at', fields.get('Email')), ('teacher_email_2_at', fields.get('Email 2')), ('teacher_email_3_at', fields.get('Email 3')), ('teacher_phone_at', fields.get('Phone Number')), ('teacher_phone_2_at', fields.get('Phone Number 2')), ('teacher_employer_at', fields.get('Employer')), ('hub_at', fields.get('Hub')), ('pod_at', fields.get('Pod')), ('user_id_tc', fields.get('TC User ID')) ]) tl_data.append(datum) if format == 'dataframe': tl_data = convert_tl_data_to_df(tl_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return tl_data def fetch_location_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching location data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Locations', params=params ) location_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('location_id_at', record.get('id')), ('location_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('location_address_at', fields.get('Address')), ('school_id_at', wf_core_data.utils.to_singleton(fields.get('School Name'))), ('school_location_start_at', wf_core_data.utils.to_date(fields.get('Start of time at location'))), ('school_location_end_at', wf_core_data.utils.to_date(fields.get('End of time at location'))) ]) location_data.append(datum) if format == 'dataframe': location_data = convert_location_data_to_df(location_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return location_data def fetch_teacher_school_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching teacher school association data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Teachers x Schools', params=params ) teacher_school_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('teacher_school_id_at', record.get('id')), ('teacher_school_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('teacher_id_at', fields.get('TL')), ('school_id_at', fields.get('School')), ('teacher_school_start_at', wf_core_data.utils.to_date(fields.get('Start Date'))), ('teacher_school_end_at', wf_core_data.utils.to_date(fields.get('End Date'))), ('teacher_school_active_at', wf_core_data.utils.to_boolean(fields.get('Currently Active'))) ]) teacher_school_data.append(datum) if format == 'dataframe': teacher_school_data = convert_teacher_school_data_to_df(teacher_school_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return teacher_school_data def fetch_school_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching school data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Schools', params=params ) school_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('school_id_at', record.get('id')), ('school_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('hub_id_at', fields.get('Hub')), ('pod_id_at', fields.get('Pod')), ('school_name_at', fields.get('Name')), ('school_short_name_at', fields.get('Short Name')), ('school_status_at', fields.get('School Status')), ('school_ssj_stage_at', fields.get('School Startup Stage')), ('school_governance_model_at', fields.get('Governance Model')), ('school_ages_served_at', fields.get('Ages served')), ('school_location_ids_at', fields.get('Locations')), ('school_id_tc', fields.get('TC school ID')) ]) school_data.append(datum) if format == 'dataframe': school_data = convert_school_data_to_df(school_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return school_data def fetch_hub_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching hub data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Hubs', params=params ) hub_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('hub_id_at', record.get('id')), ('hub_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('hub_name_at', fields.get('Name')) ]) hub_data.append(datum) if format == 'dataframe': hub_data = convert_hub_data_to_df(hub_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return hub_data def fetch_pod_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching pod data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Pods', params=params ) pod_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('pod_id_at', record.get('id')), ('pod_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('pod_name_at', fields.get('Name')) ]) pod_data.append(datum) if format == 'dataframe': pod_data = convert_pod_data_to_df(pod_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return pod_data def fetch_ethnicity_lookup(self): ethnicity_categories = self.fetch_ethnicity_categories() ethnicity_mapping = self.fetch_ethnicity_mapping() ethnicity_lookup = ( ethnicity_mapping .join( ethnicity_categories['ethnicity_category'], how='left', on='ethnicity_category_id_at' ) .reindex(columns=[ 'ethnicity_category' ]) .sort_index() ) return ethnicity_lookup def fetch_gender_lookup(self): gender_categories = self.fetch_gender_categories() gender_mapping = self.fetch_gender_mapping() gender_lookup = ( gender_mapping .join( gender_categories['gender_category'], how='left', on='gender_category_id_at' ) .reindex(columns=[ 'gender_category' ]) .sort_index() .sort_values('gender_category') ) return gender_lookup def fetch_household_income_lookup(self): household_income_categories = self.fetch_household_income_categories() household_income_mapping = self.fetch_household_income_mapping() household_income_lookup = ( household_income_mapping .join( household_income_categories['household_income_category'], how='left', on='household_income_category_id_at' ) .reindex(columns=[ 'household_income_category' ]) .sort_index() .sort_values('household_income_category') ) return household_income_lookup def fetch_nps_lookup(self): nps_categories = self.fetch_nps_categories() nps_mapping = self.fetch_nps_mapping() nps_lookup = ( nps_mapping .join( nps_categories['nps_category'], how='left', on='nps_category_id_at' ) .reindex(columns=[ 'nps_category' ]) .sort_index() ) return nps_lookup def fetch_boolean_lookup(self): boolean_categories = self.fetch_boolean_categories() boolean_mapping = self.fetch_boolean_mapping() boolean_lookup = ( boolean_mapping .join( boolean_categories['boolean_category'], how='left', on='boolean_category_id_at' ) .reindex(columns=[ 'boolean_category' ]) .sort_index() .sort_values('boolean_category') ) return boolean_lookup def fetch_ethnicity_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching ethnicity categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Ethnicity categories', params=params ) ethnicity_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('ethnicity_category_id_at', record.get('id')), ('ethnicity_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('ethnicity_category', fields.get('ethnicity_category')), ('ethnicity_display_name_english', fields.get('ethnicity_display_name_english')), ('ethnicity_display_name_spanish', fields.get('ethnicity_display_name_spanish')) ]) ethnicity_categories.append(datum) if format == 'dataframe': ethnicity_categories = convert_ethnicity_categories_to_df(ethnicity_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return ethnicity_categories def fetch_gender_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching gender categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Gender categories', params=params ) gender_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('gender_category_id_at', record.get('id')), ('gender_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('gender_category', fields.get('gender_category')), ('gender_display_name_english', fields.get('gender_display_name_english')), ('gender_display_name_spanish', fields.get('gender_display_name_spanish')) ]) gender_categories.append(datum) if format == 'dataframe': gender_categories = convert_gender_categories_to_df(gender_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return gender_categories def fetch_household_income_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching household income categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Household income categories', params=params ) household_income_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('household_income_category_id_at', record.get('id')), ('household_income_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('household_income_category', fields.get('household_income_category')), ('household_income_display_name_english', fields.get('household_income_display_name_english')), ('household_income_display_name_spanish', fields.get('household_income_display_name_spanish')) ]) household_income_categories.append(datum) if format == 'dataframe': household_income_categories = convert_household_income_categories_to_df(household_income_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return household_income_categories def fetch_nps_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching NPS categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='NPS categories', params=params ) nps_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('nps_category_id_at', record.get('id')), ('nps_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('nps_category', fields.get('nps_category')), ('nps_display_name_english', fields.get('nps_display_name_english')), ('nps_display_name_spanish', fields.get('nps_display_name_spanish')) ]) nps_categories.append(datum) if format == 'dataframe': nps_categories = convert_nps_categories_to_df(nps_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return nps_categories def fetch_boolean_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching boolean categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Boolean categories', params=params ) boolean_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('boolean_category_id_at', record.get('id')), ('boolean_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('boolean_category', wf_core_data.utils.to_boolean(fields.get('boolean_category'))), ('boolean_display_name_english', fields.get('boolean_display_name_english')), ('boolean_display_name_spanish', fields.get('boolean_display_name_spanish')) ]) boolean_categories.append(datum) if format == 'dataframe': boolean_categories = convert_boolean_categories_to_df(boolean_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return boolean_categories def fetch_ethnicity_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching ethnicity mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Ethnicity mapping', params=params ) ethnicity_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('ethnicity_mapping_id_at', record.get('id')), ('ethnicity_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('ethnicity_response', fields.get('ethnicity_response')), ('ethnicity_category_id_at', fields.get('ethnicity_category')) ]) ethnicity_mapping.append(datum) if format == 'dataframe': ethnicity_mapping = convert_ethnicity_mapping_to_df(ethnicity_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return ethnicity_mapping def fetch_gender_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching gender mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Gender mapping', params=params ) gender_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('gender_mapping_id_at', record.get('id')), ('gender_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('gender_response', fields.get('gender_response')), ('gender_category_id_at', fields.get('gender_category')) ]) gender_mapping.append(datum) if format == 'dataframe': gender_mapping = convert_gender_mapping_to_df(gender_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return gender_mapping def fetch_household_income_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching household income mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Household income mapping', params=params ) household_income_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('household_income_mapping_id_at', record.get('id')), ('household_income_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('household_income_response', fields.get('household_income_response')), ('household_income_category_id_at', fields.get('household_income_category')) ]) household_income_mapping.append(datum) if format == 'dataframe': household_income_mapping = convert_household_income_mapping_to_df(household_income_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return household_income_mapping def fetch_nps_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching NPS mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='NPS mapping', params=params ) nps_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('nps_mapping_id_at', record.get('id')), ('nps_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('nps_response', fields.get('nps_response')), ('nps_category_id_at', fields.get('nps_category')) ]) nps_mapping.append(datum) if format == 'dataframe': nps_mapping = convert_nps_mapping_to_df(nps_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return nps_mapping def fetch_boolean_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching boolean mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Boolean mapping', params=params ) boolean_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('boolean_mapping_id_at', record.get('id')), ('boolean_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('boolean_response', fields.get('boolean_response')), ('boolean_category_id_at', fields.get('boolean_category')) ]) boolean_mapping.append(datum) if format == 'dataframe': boolean_mapping = convert_boolean_mapping_to_df(boolean_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return boolean_mapping def write_dataframe( self, df, base_id, endpoint, params=None, delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS, write_chunk_size=DEFAULT_WRITE_CHUNK_SIZE ): num_records = len(df) num_chunks = (num_records // write_chunk_size) + 1 logger.info('Writing {} records in {} chunks'.format( num_records, num_chunks )) for chunk_index in range(num_chunks): start_row_index = chunk_index*write_chunk_size end_row_index = min( (chunk_index + 1)*write_chunk_size, num_records ) chunk_df = df.iloc[start_row_index:end_row_index] chunk_list = chunk_df.to_dict(orient='records') chunk_dict = {'records': [{'fields': row_dict} for row_dict in chunk_list]} logger.info('Writing chunk {}: rows {} to {}'.format( chunk_index, start_row_index, end_row_index )) self.post( base_id=base_id, endpoint=endpoint, data=chunk_dict ) time.sleep(delay) def bulk_get( self, base_id, endpoint, params=None, delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): if params is None: params = dict() num_requests = 0 records = list() while True: data = self.get( base_id=base_id, endpoint=endpoint, params=params ) if 'records' in data.keys(): logging.info('Returned {} records'.format(len(data.get('records')))) records.extend(data.get('records')) num_requests += 1 if num_requests >= max_requests: logger.warning('Reached maximum number of requests ({}). Terminating.'.format( max_requests )) break offset = data.get('offset') if offset is None: break params['offset'] = offset time.sleep(delay) return records def post( self, base_id, endpoint, data ): headers = dict() if self.api_key is not None: headers['Authorization'] = 'Bearer {}'.format(self.api_key) r = requests.post( '{}{}/{}'.format( self.url_base, base_id, endpoint ), headers=headers, json=data ) if r.status_code != 200: error_message = 'Airtable POST request returned status code {}'.format(r.status_code) r.raise_for_status() return r.json() def get( self, base_id, endpoint, params=None ): headers = dict() if self.api_key is not None: headers['Authorization'] = 'Bearer {}'.format(self.api_key) r = requests.get( '{}{}/{}'.format( self.url_base, base_id, endpoint ), params=params, headers=headers ) if r.status_code != 200: error_message = 'Airtable GET request returned status code {}'.format(r.status_code) r.raise_for_status() return r.json() def convert_tl_data_to_df(tl_data): if len(tl_data) == 0: return pd.DataFrame() tl_data_df = pd.DataFrame( tl_data, dtype='object' ) tl_data_df['pull_datetime'] = pd.to_datetime(tl_data_df['pull_datetime']) tl_data_df['teacher_created_datetime_at'] = pd.to_datetime(tl_data_df['teacher_created_datetime_at']) # school_data_df['user_id_tc'] = pd.to_numeric(tl_data_df['user_id_tc']).astype('Int64') tl_data_df = tl_data_df.astype({ 'teacher_full_name_at': 'string', 'teacher_middle_name_at': 'string', 'teacher_last_name_at': 'string', 'teacher_title_at': 'string', 'teacher_ethnicity_at': 'string', 'teacher_ethnicity_other_at': 'string', 'teacher_income_background_at': 'string', 'teacher_email_at': 'string', 'teacher_email_2_at': 'string', 'teacher_email_3_at': 'string', 'teacher_phone_at': 'string', 'teacher_phone_2_at': 'string', 'teacher_employer_at': 'string', 'hub_at': 'string', 'pod_at': 'string', 'user_id_tc': 'string' }) tl_data_df.set_index('teacher_id_at', inplace=True) return tl_data_df def convert_location_data_to_df(location_data): if len(location_data) == 0: return pd.DataFrame() location_data_df = pd.DataFrame( location_data, dtype='object' ) location_data_df['pull_datetime'] = pd.to_datetime(location_data_df['pull_datetime']) location_data_df['location_created_datetime_at'] = pd.to_datetime(location_data_df['location_created_datetime_at']) location_data_df = location_data_df.astype({ 'location_id_at': 'string', 'location_address_at': 'string', 'school_id_at': 'string' }) location_data_df.set_index('location_id_at', inplace=True) return location_data_df def convert_teacher_school_data_to_df(teacher_school_data): if len(teacher_school_data) == 0: return pd.DataFrame() teacher_school_data_df = pd.DataFrame( teacher_school_data, dtype='object' ) teacher_school_data_df['pull_datetime'] = pd.to_datetime(teacher_school_data_df['pull_datetime']) teacher_school_data_df['teacher_school_created_datetime_at'] = pd.to_datetime(teacher_school_data_df['teacher_school_created_datetime_at']) teacher_school_data_df = teacher_school_data_df.astype({ 'teacher_school_active_at': 'bool' }) teacher_school_data_df.set_index('teacher_school_id_at', inplace=True) return teacher_school_data_df def convert_school_data_to_df(school_data): if len(school_data) == 0: return pd.DataFrame() school_data_df = pd.DataFrame( school_data, dtype='object' ) school_data_df['pull_datetime'] = pd.to_datetime(school_data_df['pull_datetime']) school_data_df['school_created_datetime_at'] = pd.to_datetime(school_data_df['school_created_datetime_at']) school_data_df['hub_id_at'] = school_data_df['hub_id_at'].apply(wf_core_data.utils.to_singleton) school_data_df['pod_id_at'] = school_data_df['pod_id_at'].apply(wf_core_data.utils.to_singleton) school_data_df['school_id_tc'] = pd.to_numeric(school_data_df['school_id_tc']).astype('Int64') school_data_df = school_data_df.astype({ 'school_id_at': 'string', 'hub_id_at': 'string', 'pod_id_at': 'string', 'school_name_at': 'string', 'school_short_name_at': 'string', 'school_status_at': 'string', 'school_ssj_stage_at': 'string', 'school_governance_model_at': 'string', }) school_data_df.set_index('school_id_at', inplace=True) return school_data_df def convert_hub_data_to_df(hub_data): if len(hub_data) == 0: return pd.DataFrame() hub_data_df = pd.DataFrame( hub_data, dtype='object' ) hub_data_df['pull_datetime'] =
pd.to_datetime(hub_data_df['pull_datetime'])
pandas.to_datetime
""" Tasks for the serving pipeline """ from pathlib import Path import pickle import pandas as pd from sklearn import datasets def get(product, sample): """Get input data to make predictions """ Path(str(product)).parent.mkdir(parents=True, exist_ok=True) d = datasets.load_iris() df =
pd.DataFrame(d['data'])
pandas.DataFrame
from copy import copy from pandas import DataFrame, concat, notnull, Series from typing import List, Optional from survey.attributes import RespondentAttribute class AttributeContainerMixin(object): _attributes: List[RespondentAttribute] @property def data(self) -> DataFrame: """ Return a DataFrame combining data from all the questions in the group. """ return concat([a.data for a in self._attributes], axis=1) def attribute(self, name: str) -> Optional[RespondentAttribute]: """ Return the Attribute with the given name. :param name: Name of the attribute to return. """ try: return [a for a in self._attributes if a.name == name][0] except IndexError: return None def to_list(self) -> List[RespondentAttribute]: """ Return all the Attributes asked in the Survey. """ return self._attributes def merge(self, name: Optional[str] = '', **kwargs) -> RespondentAttribute: """ Return a new Question combining all the responses of the different questions in the group. N.B. assumes that there is a maximum of one response across all questions for each respondent. :param name: The name for the new merged Question. :param kwargs: Attribute values to override in the new merged Question. """ if len(set([type(q) for q in self._attributes])) != 1: raise TypeError( 'Questions must all be of the same type to merge answers.' ) if self.data.notnull().sum(axis=1).max() > 1: raise ValueError( 'Can only merge when there is a max of one response ' 'across all questions per respondent.' ) data = self.data.loc[self.data.notnull().sum(axis=1) == 1] new_data = [row.loc[
notnull(row)
pandas.notnull
import requests import os import pandas as pd from flask import Flask, render_template, request, redirect #from bokeh.plotting import figure #from bokeh.embed import components from spotipy.oauth2 import SpotifyClientCredentials import spotipy import dill import spotipy.util as util import spotipy.oauth2 as oauth2 import configparser from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.neighbors import NearestNeighbors app = Flask(__name__) def save_pkl(df, filename): with open('static/data/'+filename+'.pkl','wb') as fobj: dill.dump(df,fobj) def load_pkl(filename): with open('static/data/'+filename+'.pkl','rb') as fobj: df = dill.load(fobj) return df def load_credentials(): config = configparser.ConfigParser() config.read('static/keys/tam_creds.nogit') client_id = config.get('SPOTIFY', 'CLIENT_ID') client_secret = config.get('SPOTIFY', 'CLIENT_SECRET') # auth = oauth2.SpotifyClientCredentials( # client_id=client_id, # client_secret=client_secret # ) return client_id, client_secret def get_token(username,client_id,client_secret): scope = 'playlist-modify-public' token = util.prompt_for_user_token(username,scope,client_id=client_id,client_secret=client_secret,redirect_uri='theanythingmixtape://returnafterlogin') return token def create_spotify_playlist(token,username,playlist_name,playlist_description,playlist_ids): if token: sp = spotipy.Spotify(auth=token) sp.trace = False playlist = sp.user_playlist_create(username, playlist_name, public=True, description=playlist_description) # pprint.pprint(playlist) _ = sp.user_playlist_add_tracks(username, playlist['id'], playlist_ids) # print(results) return playlist['id'] else: print("Can't get token for", username) def spotify_from_trackids(username, playlist_name, playlist_description, playlist_ids): client_id, client_secret = load_credentials() token = get_token(username,client_id,client_secret) playlist_id = create_spotify_playlist(token,username,playlist_name,playlist_description,playlist_ids) return playlist_id def classify_text(model, text): print(text) print(model.predict_proba(text)) best_genre = model.predict(text) print(best_genre) return best_genre def create_playlist(genre, data, input_text, vocab, num_tracks=10): genre_data = data.loc[data['genre']==genre[0]] #Select genre tracks tfidf_matrix = vectorize_it(genre_data, input_text, vocab) indices = get_closest_indices(tfidf_matrix,num_tracks) track_list = fetch_track_ids(genre_data,indices) return track_list def vectorize_it(genre_data, input_text, vocab): input_df =
pd.DataFrame(data=[['', input_text, '', '']], columns=['genre', 'lyrics', 'orig_index', 'track_id'])
pandas.DataFrame
""" Python module to do secondary preprocessing Creates processed_train and processed_test .csv files """ import pandas as pd import numpy as np from datetime import datetime from dateutil.parser import parse import os def feature_engineering(df): """ Function to calcualte debt-to-income """ df['dti'] = df['installment'] / (df['annual_inc'] / 12) def convert_date_to_num(date_col): """ Function to convert date variables to number format """ return date_col.apply(lambda x: (parse(x) - datetime(1900, 1, 1)).days) def data_preprocessing(df, ohe=False): """ Function for data pre-processing The parameter ohe lets the user choose whether to do one-hot-encoding or transform those variables to categoricals returns processed DataFrame """ df_new = df.copy() feature_engineering(df_new) # Columns to drop cols_to_drop = ['emp_title', 'zip_code', 'application_type', 'desc', 'funded_amnt', 'funded_amnt_inv', 'grade', 'pymnt_plan', 'title', 'issue_d', ] # Drop columns df_new.drop(labels=cols_to_drop, axis=1, inplace=True) # Transform date column to int df_new['earliest_cr_line'] = convert_date_to_num(df_new['earliest_cr_line']) # Clean employment length feature df_new['emp_length'].replace('10+ years', '10 years', inplace=True) df_new['emp_length'].replace('< 1 year', '0 years', inplace=True) df_new['emp_length'].replace('n/a', np.nan, inplace=True) df_new['emp_length'] = df_new['emp_length'].apply(lambda x: x if pd.isnull(x) else np.int8(x.split()[0])) # Clean home ownership feature df_new['home_ownership'].replace(to_replace=['NONE', 'ANY'], value='OTHER', inplace=True) cat_cols = df_new.select_dtypes(include=['object']).columns # Performs ohe or transforming to categoricals if ohe: dummies =
pd.get_dummies(df_new[cat_cols])
pandas.get_dummies
import pandas as pd import numpy as np import requests from bs4 import BeautifulSoup import re import ast import os import sys from urllib.request import urlopen from datetime import datetime, timedelta, date from traceback import format_exc import json import math import urllib.error from urllib.parse import quote import time from selenium import webdriver from selenium.webdriver.support.ui import Select from selenium.common.exceptions import NoSuchElementException,StaleElementReferenceException import pandas as pd import platform js = """ <script language="javascript" type="text/javascript"> &lt;!-- function MM_reloadPage(init) { //reloads the window if Nav4 resized if (init==true) with (navigator) {if ((appName=="Netscape")&amp;&amp;(parseInt(appVersion)==4)) { document.MM_pgW=innerWidth; document.MM_pgH=innerHeight; onresize=MM_reloadPage; }} else if (innerWidth!=document.MM_pgW || innerHeight!=document.MM_pgH) location.reload(); } MM_reloadPage(true); //--&gt; </script> <link href="/wbi.css" rel="stylesheet" type="text/css"/> """ caption = """ <caption="특별조사기일 style="display:inline !important; visibility:visible !important; width:1px; height:1px; font-size:0px; overflow:hidden; line-height:0; " 공고"="" 관계인집회기일="" 및="" 제2,3회=""> </caption="특별조사기일><table border="0" cellpadding="0" cellspacing="0" height="100%" width="100%"> """ str1 = """<td height="33" style="padding-left:20px"><img alt="로고" src="/img/hpgonggo/logo_scourt.gif"/></td>""" str2 = """<td height="27"><img alt="종료" border="0" onclick="window.close();" src="/img/hpgonggo/btn_close.gif" style="cursor:hand"/><img alt="공백" height="10" src="/img/hpgonggo/blank.gif" width="10"/></td>""" class RescueCrawler: def __init__(self, term=1): self.start_date = datetime.today() - timedelta(1) self.start_date = self.start_date.strftime("%Y.%m.%d") term = -1 * term self.end_date = date.today() + timedelta(weeks=term) self.end_date = self.end_date.strftime("%Y.%m.%d") self.path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) self.rescue_url = 'http://safind.scourt.go.kr/sf/hpbigonggo/whp_gonggo.jsp?org_bub_nm=&amp;theme=#' self.naver_news = 'https://search.naver.com/search.naver?sm=top_hty&fbm=1&ie=utf8&query=' self.naver_news_content = 'https://search.naver.com/search.naver?&where=news&query={}&start=1&sort=sim&field=0&pd=6' self.options = webdriver.ChromeOptions() self.options.add_argument('headless') self.options.add_argument('window-size=1920x1080') self.options.add_argument("disable-gpu") self.options.add_argument("user-agent=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36") if os.path.exists(self.path + '/task_module/backup/') == False: print('backup 생성') os.mkdir(self.path + '/task_module/backup') if os.path.exists(self.path + '/task_module/backup/rescue/') == False: os.mkdir(self.path + '/task_module/backup/rescue') print("collect rescue case {} weeks ago".format(term), self.path) def get_content (self, driver,area,start_date,end_date) : final_result = pd.DataFrame() #for area in area_list : print(area) driver.get(self.rescue_url) driver.implicitly_wait(5) select = Select(driver.find_element_by_xpath("//select[@id='sel_map']")) select.select_by_visible_text('법인회생') driver.implicitly_wait(3) select = Select(driver.find_element_by_xpath("//select[@id='area']")) select.select_by_visible_text(area) driver.implicitly_wait(3) driver.find_element_by_xpath('//*[@id="contants"]/div[2]/div[18]/a').click() driver.implicitly_wait(5) temp = self.get_info(driver,area,start_date,end_date) print(len(temp)) final_result = final_result.append(temp, ignore_index=True) return final_result def get_info(self, driver,area,start_date,end_date): area = area last_date = start_date info = [] i,j = 0,0 while last_date > end_date: i = i+1 driver.implicitly_wait(3) try: driver.find_element_by_xpath('/html/body/div/div[4]/a['+str(i)+']').click() j = j+1 if j == 11 : i,j = 2,1 except NoSuchElementException: last_date = end_date else: driver.implicitly_wait(3) html = driver.page_source ## 페이지의 elements모두 가져오기 soup = BeautifulSoup(html, 'html.parser') ## BeautifulSoup사용하기 contents = soup.select('body > div > table > tbody > tr ') k = 1 for content in contents: date = content.find_all("td")[3].text if date > start_date: k = k+1 else: case_num = content.find_all("td")[0].text court = content.find_all("td")[1].text company = content.find_all("td")[2].text subject = content.find_all("td")[4].text subject = re.sub('[\n\t]', '', subject).strip() driver.find_element_by_xpath('/html/body/div/table/tbody/tr['+str(k)+']/td[6]/a').click() driver.switch_to_window(driver.window_handles[1]) time.sleep(1) html = driver.page_source soup = BeautifulSoup(html, 'html.parser') sub_info = soup.select('font > p') if len(sub_info) == 2 : address = sub_info[0].text # ceo = sub_info[1].text elif len(sub_info) == 1: address = sub_info[0].text # ceo = 'none' else : address = 'none' # ceo = 'none' if(date < end_date): last_date = date break else : info.append({'area':area,'case_num' : case_num,'court' : court,'company' :company,\ 'date':date ,'subject' :subject,'sub_info':sub_info,'html':soup, 'address':address}) driver.switch_to_window(driver.window_handles[0]) k = k+1 dataframe = pd.DataFrame(info) #driver.close() return dataframe def get_news_content_keyword(self, final_result): naver_news_address = [] for i in range(0,len(final_result)): comapny = final_result['company'][i] company_name = comapny.replace("주식회사","").replace("(주)","").replace("분할존속회사","").replace("분할신설회사","").strip() search_keyword = company_name + ' 회생 ' + '"'+company_name+'"' + ' "회생"' encode_search_keyword = urllib.parse.quote(search_keyword) ## 입력한 키워드를 url에 넣을 수 있도록 parsing 변환 url = self.naver_news_content.format(encode_search_keyword) req = requests.get(url) ## HTTP GET Request html = req.text soup = BeautifulSoup(html, 'html.parser') my_titles_sub = soup.select('dl > dt > a') for title in my_titles_sub: if title.get('href') != '#': # html = '<a href = "{}" target="_blank" > {} </a> '.format(title.get('href'),title.get('title')) news_title = title.get('title') news_url = title.get('href') naver_news_address.append({'company': final_result['company'][i], 'news_title': news_title, 'news_url':news_url}) #url 가져오기 if len(naver_news_address) > 0 : break return naver_news_address def get_company_keyword(self, rescue): name=[] category=[] detailed_info=[] for i in range(len(rescue)): encode_search_keyword = urllib.parse.quote(rescue['company'][i]) ## 입력한 키워드를 url에 넣을 수 있도록 parsing 변환 url = self.naver_news + encode_search_keyword req = requests.get(url) ## HTTP GET Request html = req.content soup = BeautifulSoup(html, 'html.parser') try: if soup.find('div',class_ = 'sp_company sc _au_company_search _au_company_answer'): item_list=[] info=[] temp1=soup.find('div',class_ = 'sp_company sc _au_company_search _au_company_answer') category.append(temp1.find('div', class_ = 'company_intro _ellipsis _detail').text.strip()) temp3=temp1.find_all('span', class_ = 'tit ',text=True) temp4=temp1.find_all('span', class_ = 'txt_info ') for j in range(len(temp3)-1): item_list.append(temp3[j].text.strip()) for j in range(len(temp3)-1): info.append(temp4[j].text.strip()) detailed_info.append(dict(zip(item_list, info))) else: temp2=soup.find('div',class_ = 'sp_company sc _au_company_search _company_same_name') d1=[] d2=[] if temp2.find('span', class_ = 'sub_tit'): for k in range(len(temp2.find_all('span', class_ = 'sub_tit'))): d1.append(temp2.find_all('span', class_ = 'sub_tit')[k].text.strip()) d2.append(temp2.find_all('div', class_ = 'item_txt')[k].text.strip()) df=pd.DataFrame({'기업분류':d1,'세부정보':d2}) df_new=df.loc[pd.Series(df['세부정보']).str.contains(rescue['ceo'][i])]['기업분류'] df_new=df_new.reset_index(drop=True) category.append(df_new[0]) detailed_info.append('None') else: for kk in range(len(temp2.find_all('span', class_ = 'info_sub'))): d1.append(temp2.find_all('span', class_ = 'info_sub')[kk].text.strip()) d2.append(temp2.find_all('span', class_ = 'info_txt')[kk].text.strip()) df=pd.DataFrame({'기업분류':d1,'세부정보':d2}) df_new=df.loc[
pd.Series(df['세부정보'])
pandas.Series
import tensorflow as tf import pandas as pd import pickle def predict_model(crim, zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat): # Import variable scaler_x = pickle.load(open('./saved_model/scaler_x.pickle', 'rb')) scaler_y = pickle.load(open('./saved_model/scaler_y.pickle', 'rb')) model = tf.keras.models.load_model('./saved_model/model.h5') # Make data data = { 'CRIM': [crim], 'ZN': [zn], 'INDUS': [indus], 'CHAS': [chas], 'NOX': [nox], 'RM': [rm], 'AGE': [age], 'DIS': [dis], 'RAD': [rad], 'TAX': [tax], 'PTRATIO': [ptratio], 'B': [black], 'LSTAT': [lstat] } predict_df =
pd.DataFrame(data=data)
pandas.DataFrame
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, confusion_matrix, classification_report, roc_curve, auc import xgboost as xgb from pandas import DataFrame, concat from preprocess_helper_functions import * from sklearn.model_selection import StratifiedShuffleSplit import os def pr(y_i, y, x): p = x[y==y_i].sum(0) return (p+1) / ((y==y_i).sum()+1) def get_model(x, y): r = np.log(pr(1,y, x) / pr(0,y,x)) m = LogisticRegression(C=4, dual=True) x_nb = x.multiply(r) return m.fit(x_nb, y), r def call_NB_SVM_algorithm(X_train, y_train, X_test, y_test): m,r = get_model(X_train, y_train) p_test = m.predict_proba(X_test.multiply(r))[:,1] npround = np.vectorize(round) p_test_ints = npround(p_test) f1score = f1_score(y_test, p_test_ints) logloss = log_loss(list(y_test), list(p_test_ints.astype(int))) accuracy = accuracy_score(y_test, p_test_ints) return DataFrame({'pred': p_test, 'truth': y_test}) #---------------------------------------------------------------------------------------- #Logistic Regression def call_logreg_algorithm(X_train, y_train, X_test, y_test): logreg = LogisticRegression() logreg.fit(X_train, y_train) p_test = logreg.predict_proba(X_test)[:,1] npround = np.vectorize(round) p_test_ints = npround(p_test) f1score = f1_score(y_test, p_test_ints) #print("F1-score: ", f1score) logloss = log_loss(list(y_test), list(p_test_ints.astype(int))) #print("Log Loss: ", logloss) accuracy = accuracy_score(y_test, p_test_ints) #print("Accuracy: ", accuracy) return DataFrame({'pred': p_test, 'truth': y_test}) #---------------------------------------------------------------------------------------- #XGBoost def call_xgboost_algorithm(xgb, vectorizer, X_train, y_train, X_test, y_test): #Training on XGBoost d_train = xgb.DMatrix(X_train, label=y_train) #Set our parameters for xgboost params = {} num_round = 500 params['objective'] = 'binary:logistic' params['eval_metric'] = ['logloss'] params['eta'] = 0.01 #Learning rate params['max_depth'] = 6 #Depth of the tree. Default is 6. params['colsample_bytree'] = 0.8 bst = xgb.train(params, d_train, num_round, verbose_eval= True) d_test = xgb.DMatrix(X_test, label=y_test) p_test = bst.predict(d_test) npround = np.vectorize(round) p_test_ints = npround(p_test) f1score = f1_score(y_test, p_test_ints) #print("F1-score: ", f1score) logloss = log_loss(list(y_test), list(p_test_ints.astype(int))) #print("Log Loss: ", logloss) accuracy = accuracy_score(y_test, p_test_ints) #print("Accuracy: ", accuracy) return
DataFrame({'pred': p_test, 'truth': y_test})
pandas.DataFrame
import numpy as np import pandas as pd # Crime data is collected into two separate csv files. The first contains # 40 years of data by state, and 10 years (in 10 xls files) by city # data in this csv contains estimates in instances of no reporting df = pd.read_csv( "http://s3-us-gov-west-1.amazonaws.com/cg-d4b776d0-d898-4153-90c8-8336f86bdfec/estimated_crimes_1979_2018.csv") # replace null values with 'US' df['state_abbr'] = df['state_abbr'].replace(np.nan, 'US') # add violent crime rate (vcr) and property crime rate (pcr) to dataframe df['vcr'] = df['violent_crime'] / df['population'] df['pcr'] = df['property_crime'] / df['population'] # initialize a new dataframe for exporting sand = pd.DataFrame(index=None) sand['state'] = df['state_abbr'] sand['year'] = df['year'] sand['vcr'] = df['vcr'] sand['pcr'] = df['pcr'] # export to csv sand.to_csv('./crime_data/state_crime.csv', index=False) # read in xls files, skipping the headers and footers xl2018 = pd.read_excel( './crime_data/Table_8_Offenses_Known_to_Law_Enforcement_by_State_by_City_2018.xls', skiprows=3, skipfooter=10) xl2017 = pd.read_excel( './crime_data/Table_8_Offenses_Known_to_Law_Enforcement_by_State_by_City_2017.xls', skiprows=3, skipfooter=10) xl2016 = pd.read_excel( './crime_data/Table_6_Offenses_Known_to_Law_Enforcement_by_State_by_City_2016.xls', skiprows=3, skipfooter=11) xl2015 = pd.read_excel( './crime_data/Table_8_Offenses_Known_to_Law_Enforcement_by_State_by_City_2015.xls', skiprows=3, skipfooter=10) xl2014 = pd.read_excel('./crime_data/table-8.xls', skiprows=3, skipfooter=17) xl2013 = pd.read_excel( './crime_data/Table_8_Offenses_Known_to_Law_Enforcement_by_State_by_City_2013.xls', skiprows=3, skipfooter=10) xl2012 = pd.read_excel( './crime_data/Table_8_Offenses_Known_to_Law_Enforcement_by_State_by_City_2012.xls', skiprows=3, skipfooter=7) xl2011 = pd.read_excel( './crime_data/table_8_offenses_known_to_law_enforcement_by_state_by_city_2011.xls', skiprows=3, skipfooter=7) xl2010 = pd.read_excel('./crime_data/10tbl08.xls', skiprows=3, skipfooter=7) xl2009 = pd.read_excel('./crime_data/09tbl08.xls', skiprows=3, skipfooter=7) # build a function to automatically clean the results and add to a new DF for # import to database def cleaner(x, year): """ Takes a dataframe, changes state abbreviations, changes state NaNs, calculates violent crime and property crime rate and returns it as a new DataFrame (city_st, vcr, pcr) for the year passed in """ # create new dataframe df = pd.DataFrame(columns=['city', 'vcr_' + year, 'pcr_' + year]) # clean numbers from state column and put into new df df['city'] = x['State'].str.replace(r'\d+', '') # clean numbers from city column x['City'] = x['City'].str.replace(r'\d+', '') # clean column names if 'Violent\ncrime' in x.columns: x = x.rename(columns={'Violent\ncrime': 'Violent crime', 'Property\ncrime': 'Property crime'}) # remove null values from column if x['City'].isnull().sum() >= 1: x['City'] = x['City'].replace(np.nan, 'None') # replace states with abbreviations df['city'] = df['city'].replace({"ALABAMA": "AL", "ALASKA": "AK", "ARIZONA": "AZ", "ARKANSAS": "AK", "CALIFORNIA": "CA", "COLORADO": "CO", "CONNECTICUT": "CT", "DELAWARE": "DE", "DISTRICT OF COLUMBIA": "DC", "FLORIDA": "FL", "GEORGIA": "GA", "HAWAII": "HI", "IDAHO": "ID", "ILLINOIS": "IL", "INDIANA": "IN", "IOWA": "IA", "KANSAS": "KS", "KENTUCKY": "KY", "LOUISIANA": "LA", "MAINE": "ME", "MARYLAND": "MD", "MASSACHUSETTS": "MA", "MICHIGAN": "MI", "MINNESOTA": "MN", "MISSISSIPPI": "MS", "MISSOURI": "MI", "MONTANA": "MT", "NEBRASKA": "NE", "NEVADA": "NV", "NEW HAMPSHIRE": "NH", "NEW JERSEY": "NJ", "NEW MEXICO": "NM", "NEW YORK": "NY", "NORTH CAROLINA": "NC", "NORTH DAKOTA": "ND", "OHIO": "OH", "OKLAHOMA": "OK", "OREGON": "OR", "PENNSYLVANIA": "PA", "RHODE ISLAND": "RI", "SOUTH CAROLINA": "SC", "SOUTH DAKOTA": "SD", "TENNESSEE": "TN", "TEXAS": "TX", "UTAH": "UT", "VERMONT": "VT", "VIRGINIA": "VA", "WASHINGTON": "WA", "WEST VIRGINIA": "WV", "WISCONSIN": "WI", "WYOMING": "WY"}) # iterate through dataframe, replacing nan values with proper state abbr. state = "" for i in range(len(df)): if pd.notnull(df.at[i, 'city']): if df.at[i, 'city'] != state: state = df.at[i, 'city'] elif pd.isnull(df.at[i, 'city']): df.at[i, 'city'] = state # populate city column 'city, ST' for i in range(len(df['city'])): df['city'][i] = x['City'][i] + ", " + df['city'][i] # populate violent crime rate column df['vcr_' + year][i] = x['Violent crime'][i] / x['Population'][i] # populate property crime rate column df['pcr_' + year][i] = x['Property crime'][i] / x['Population'][i] # set the index for later concatenation df.set_index('city') return df cl18 = cleaner(xl2018, '2018') cl17 = cleaner(xl2017, '2017') cl16 = cleaner(xl2016, '2016') cl15 = cleaner(xl2015, '2015') cl14 = cleaner(xl2014, '2014') cl13 = cleaner(xl2013, '2013') cl12 = cleaner(xl2012, '2012') cl11 = cleaner(xl2011, '2011') cl10 = cleaner(xl2010, '2010') cl09 = cleaner(xl2009, '2009') # merge the dataframes masta = pd.merge(cl18, cl17, how='outer', on='city') masta2 = pd.merge(cl16, cl15, how='outer', on='city') masta3 = pd.merge(cl14, cl13, how='outer', on='city') masta4 = pd.merge(cl12, cl11, how='outer', on='city') masta5 = pd.merge(cl10, cl09, how='outer', on='city') master =
pd.merge(masta, masta2, how='outer', on='city')
pandas.merge
import scipy import numpy import pandas import os import isatools.isatab as isatab import json import inspect import re from ..enumerations import VariableType, DatasetLevel, SampleType, AssayRole from ..utilities.generic import removeDuplicateColumns from .._toolboxPath import toolboxPath from datetime import datetime import copy from ..utilities import removeDuplicateColumns from ..utilities import normalisation from ..utilities.normalisation._normaliserABC import Normaliser import warnings class Dataset: """ Base class for nPYc dataset objects. :param str sop: Load configuration parameters from specified SOP JSON file :param sopPath: By default SOPs are loaded from the :file:`nPYc/StudyDesigns/SOP/` directory, if not ``None`` the directory specified in *sopPath=* will be searched before the builtin SOP directory. """ """ Default timestamp format is :rfc:`3339` """ _timestampFormat = '%Y-%m-%dT%H:%M:%S' def __init__(self, sop='Generic', sopPath=None, **kwargs): """ Bare constructor. """ from .. import __version__ self._intensityData = numpy.array(None) self.featureMetadata = pandas.DataFrame(None, columns=['Feature Name']) """ :math:`m` × :math:`q` pandas dataframe of feature identifiers and metadata The featureMetadata table can include any datatype that can be placed in a pandas cell, However the toolbox assumes certain prerequisites on the following columns in order to function: ================ ========================================= ============ Column dtype Usage ================ ========================================= ============ Feature Name str or float ID of the :term:`feature` measured in this column. Each 'Feature Name' must be unique in the table. If 'Feature Name' is numeric, the columns should be sorted in ascending or descending order. ================ ========================================= ============ """ self.sampleMetadata = pandas.DataFrame(None, columns=['Sample ID', 'AssayRole', 'SampleType', 'Sample File Name', 'Sample Base Name', 'Dilution', 'Batch', 'Correction Batch', 'Acquired Time', 'Run Order', 'Exclusion Details', 'Metadata Available']) """ :math:`n` × :math:`p` dataframe of sample identifiers and metadata. The sampleMetadata table can include any datatype that can be placed in a pandas cell, However the toolbox assumes certain prerequisites on the following columns in order to function: ================== ========================================= ============ Column dtype Usage ================== ========================================= ============ Sample ID str ID of the :term:`sampling event` generating this sample AssayRole :py:class:`~nPYc.enumerations.AssayRole` Defines the role of this assay SampleType :py:class:`~nPYc.enumerations.SampleType` Defines the type of sample acquired Sample File Name str :term:`Unique file name<Sample File Name>` for the analytical data Sample Base Name str :term:`Common identifier<Sample Base Name>` that links analytical data to the *Sample ID* Dilution float Where *AssayRole* is :py:attr:`~nPYc.enumerations.AssayRole.LinearityReference`, the expected abundance is indicated here Batch int Acquisition batch Correction Batch int When detecting and correcting for :term:`batch<Batch Effects>` and :term:`Run-Order<Run-Order Effects>` effects, run-order effects are characterised within samples sharing the same *Correction Batch*, while batch effects are detected between distinct values Acquired Time datetime.datetime Date and time of acquisition of raw data Run order int Order of sample acquisition Exclusion Details str Details of reasoning if marked for exclusion Metadata Available bool Records which samples had metadata provided with the .addSampleInfo() method ================== ========================================= ============ """ self.featureMask = numpy.array(None, dtype=bool) """:math:`m` element vector, with ``True`` representing features to be included in analysis, and ``False`` those to be excluded""" self.sampleMask = numpy.array(None, dtype=bool) """:math:`p` element vector, with ``True`` representing samples to be included in analysis, and ``False`` those to be excluded""" self.Attributes = dict() """ Dictionary of object configuration attributes, including those loaded from :doc:`SOP files<configuration/builtinSOPs>`. Defined attributes are as follows\: ================ ========================================= ============ Key dtype Usage ================ ========================================= ============ 'dpi' positive int Raster resolution when plotting figures 'figureSize' positive (float, float) Size to plot figures 'figureFormat' str Format to save figures in 'histBins' positive int Number of bins to use when drawing histograms 'Feature Names' Column in :py:attr:`featureMetadata` ID of the primary feature name ================ ========================================= ============ """ self.VariableType = None self.AnalyticalPlatform = None """:py:class:`~nPYc.enumerations.VariableType` enum specifying the type of data represented.""" self.Attributes['Log'] = list() self.Attributes['Log'].append([datetime.now(), 'nPYc Toolbox version %s.' % (__version__)]) self._loadParameters(sop, sopPath) self._Normalisation = normalisation.NullNormaliser() # Allow SOP-loaded attributes to be overriden by kwargs self.Attributes = {**self.Attributes, **kwargs} self._name = self.__class__.__name__ @property def intensityData(self): """ :math:`n` × :math:`m` numpy matrix of measurements """ return self.Normalisation.normalise(self._intensityData) @intensityData.setter def intensityData(self, X: numpy.ndarray): self._intensityData = X @property def noSamples(self) -> int: """ :return: Number of samples in the dataset (*n*) :rtype: int """ try: (noSamples, noFeatures) = self._intensityData.shape except: noSamples = 0 return noSamples @property def noFeatures(self) -> int: """ :return: Number of features in the dataset (*m*) :rtype: int """ try: (noSamples, noFeatures) = self._intensityData.shape except: noFeatures = 0 return noFeatures @property def log(self) -> str: """ Return log entries as a string. """ output = "" for (timestamp, item) in self.Attributes['Log']: output = output + timestamp.strftime(self._timestampFormat) output = output + "\t" output = output + item output = output + "\n" return output @property def name(self) -> str: """ Returns or sets the name of the dataset. *name* must be a string """ return self._name @name.setter def name(self, value: str): """ Validates *value* is valid for filenames """ if not isinstance(value, str): raise TypeError('Name must be a string.') self._name = value.strip() @property def Normalisation(self): """ :py:class:`~nPYc.utilities.normalisation._normaliserABC.Normaliser` object that transforms the measurements in :py:attr:`intensityData`. """ return self._Normalisation @Normalisation.setter def Normalisation(self, normaliser): if not isinstance(normaliser, Normaliser): raise TypeError('Normalisation must implement the Normaliser ABC!') else: self._Normalisation = normaliser def __repr__(self): """ Customise printing of instance description. """ return "<%s instance at %s, named %s, with %d samples, %d features>" % ( self.__class__.__name__, id(self), self.name, self.noSamples, self.noFeatures) def validateObject(self, verbose=True, raiseError=False, raiseWarning=True): """ Checks that all the attributes specified in the class definition are present and of the required class and/or values. Checks for attributes existence and type. Check for mandatory columns existence, but does not check the column values (type or uniqueness). If 'sampleMetadataExcluded', 'intensityDataExcluded', 'featureMetadataExcluded' or 'excludedFlag' exist, the existence and number of exclusions (based on 'sampleMetadataExcluded') is checked :param verbose: if True the result of each check is printed (default True) :type verbose: bool :param raiseError: if True an error is raised when a check fails and the validation is interrupted (default False) :type raiseError: bool :param raiseWarning: if True a warning is raised when a check fails :type raiseWarning: bool :return: True if the Object conforms to basic :py:class:`Dataset` :rtype: bool :raises TypeError: if the Object class is wrong :raises AttributeError: if self.Attributes does not exist :raises TypeError: if self.Attributes is not a dict :raises AttributeError: if self.Attributes['Log'] does not exist :raises TypeError: if self.Attributes['Log'] is not a list :raises AttributeError: if self.Attributes['dpi'] does not exist :raises TypeError: if self.Attributes['dpi'] is not an int :raises AttributeError: if self.Attributes['figureSize'] does not exist :raises TypeError: if self.Attributes['figureSize'] is not a list :raises ValueError: if self.Attributes['figureSize'] is not of length 2 :raises TypeError: if self.Attributes['figureSize'][0] is not a int or float :raises TypeError: if self.Attributes['figureSize'][1] is not a int or float :raises AttributeError: if self.Attributes['figureFormat'] does not exist :raises TypeError: if self.Attributes['figureFormat'] is not a str :raises AttributeError: if self.Attributes['histBins'] does not exist :raises TypeError: if self.Attributes['histBins'] is not an int :raises AttributeError: if self.Attributes['noFiles'] does not exist :raises TypeError: if self.Attributes['noFiles'] is not an int :raises AttributeError: if self.Attributes['quantiles'] does not exist :raises TypeError: if self.Attributes['quantiles'] is not a list :raises ValueError: if self.Attributes['quantiles'] is not of length 2 :raises TypeError: if self.Attributes['quantiles'][0] is not a int or float :raises TypeError: if self.Attributes['quantiles'][1] is not a int or float :raises AttributeError: if self.Attributes['sampleMetadataNotExported'] does not exist :raises TypeError: if self.Attributes['sampleMetadataNotExported'] is not a list :raises AttributeError: if self.Attributes['featureMetadataNotExported'] does not exist :raises TypeError: if self.Attributes['featureMetadataNotExported'] is not a list :raises AttributeError: if self.Attributes['analyticalMeasurements'] does not exist :raises TypeError: if self.Attributes['analyticalMeasurements'] is not a dict :raises AttributeError: if self.Attributes['excludeFromPlotting'] does not exist :raises TypeError: if self.Attributes['excludeFromPlotting'] is not a list :raises AttributeError: if self.VariableType does not exist :raises AttributeError: if self._Normalisation does not exist :raises TypeError: if self._Normalisation is not the Normaliser ABC :raises AttributeError: if self._name does not exist :raises TypeError: if self._name is not a str :raises AttributeError: if self._intensityData does not exist :raises TypeError: if self._intensityData is not a numpy.ndarray :raises AttributeError: if self.sampleMetadata does not exist :raises TypeError: if self.sampleMetadata is not a pandas.DataFrame :raises LookupError: if self.sampleMetadata does not have a Sample File Name column :raises LookupError: if self.sampleMetadata does not have an AssayRole column :raises LookupError: if self.sampleMetadata does not have a SampleType column :raises LookupError: if self.sampleMetadata does not have a Dilution column :raises LookupError: if self.sampleMetadata does not have a Batch column :raises LookupError: if self.sampleMetadata does not have a Correction Batch column :raises LookupError: if self.sampleMetadata does not have a Run Order column :raises LookupError: if self.sampleMetadata does not have a Sample ID column :raises LookupError: if self.sampleMetadata does not have a Sample Base Name column :raises LookupError: if self.sampleMetadata does not have an Acquired Time column :raises LookupError: if self.sampleMetadata does not have an Exclusion Details column :raises AttributeError: if self.featureMetadata does not exist :raises TypeError: if self.featureMetadata is not a pandas.DataFrame :raises LookupError: if self.featureMetadata does not have a Feature Name column :raises AttributeError: if self.sampleMask does not exist :raises TypeError: if self.sampleMask is not a numpy.ndarray :raises ValueError: if self.sampleMask are not bool :raises AttributeError: if self.featureMask does not exist :raises TypeError: if self.featureMask is not a numpy.ndarray :raises ValueError: if self.featureMask are not bool :raises AttributeError: if self.sampleMetadataExcluded does not exist :raises TypeError: if self.sampleMetadataExcluded is not a list :raises AttributeError: if self.intensityDataExcluded does not exist :raises TypeError: if self.intensityDataExcluded is not a list :raises ValueError: if self.intensityDataExcluded does not have the same number of exclusions as self.sampleMetadataExcluded :raises AttributeError: if self.featureMetadataExcluded does not exist :raises TypeError: if self.featureMetadataExcluded is not a list :raises ValueError: if self.featureMetadataExcluded does not have the same number of exclusions as self.sampleMetadataExcluded :raises AttributeError: if self.excludedFlag does not exist :raises TypeError: if self.excludedFlag is not a list :raises ValueError: if self.excludedFlag does not have the same number of exclusions as self.sampleMetadataExcluded """ def conditionTest(successCond, successMsg, failureMsg, allFailures, verb, raiseErr, raiseWarn, exception): if not successCond: allFailures.append(failureMsg) msg = failureMsg if raiseWarn: warnings.warn(msg) if raiseErr: raise exception else: msg = successMsg if verb: print(msg) return (allFailures) ## init failureList = [] # reference number of exclusions in list, from sampleMetadataExcluded refNumExcluded = None ## Check object class condition = isinstance(self, Dataset) success = 'Check Object class:\tOK' failure = 'Check Object class:\tFailure, not Dataset, but ' + str(type(self)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) ## self.Attributes # exist condition = hasattr(self, 'Attributes') success = 'Check self.Attributes exists:\tOK' failure = 'Check self.Attributes exists:\tFailure, no attribute \'self.Attributes\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a dict condition = isinstance(self.Attributes, dict) success = 'Check self.Attributes is a dict:\tOK' failure = 'Check self.Attributes is a dict:\tFailure, \'self.Attributes\' is' + str(type(self.Attributes)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: ## self.Attributes keys ## Log # exist condition = 'Log' in self.Attributes success = 'Check self.Attributes[\'Log\'] exists:\tOK' failure = 'Check self.Attributes[\'Log\'] exists:\tFailure, no attribute \'self.Attributes[\'Log\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.Attributes['Log'], list) success = 'Check self.Attributes[\'Log\'] is a list:\tOK' failure = 'Check self.Attributes[\'Log\'] is a list:\tFailure, \'self.Attributes[\'Log\']\' is ' + str( type(self.Attributes['Log'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['Log'] ## dpi # exist condition = 'dpi' in self.Attributes success = 'Check self.Attributes[\'dpi\'] exists:\tOK' failure = 'Check self.Attributes[\'dpi\'] exists:\tFailure, no attribute \'self.Attributes[\'dpi\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is an int condition = isinstance(self.Attributes['dpi'], (int, numpy.integer)) success = 'Check self.Attributes[\'dpi\'] is an int:\tOK' failure = 'Check self.Attributes[\'dpi\'] is an int:\tFailure, \'self.Attributes[\'dpi\']\' is ' + str( type(self.Attributes['dpi'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['dpi'] ## figureSize # exist condition = 'figureSize' in self.Attributes success = 'Check self.Attributes[\'figureSize\'] exists:\tOK' failure = 'Check self.Attributes[\'figureSize\'] exists:\tFailure, no attribute \'self.Attributes[\'figureSize\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.Attributes['figureSize'], list) success = 'Check self.Attributes[\'figureSize\'] is a list:\tOK' failure = 'Check self.Attributes[\'figureSize\'] is a list:\tFailure, \'self.Attributes[\'figureSize\']\' is ' + str( type(self.Attributes['figureSize'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # is of length 2 condition = (len(self.Attributes['figureSize']) == 2) success = 'Check self.Attributes[\'figureSize\'] is of length 2:\tOK' failure = 'Check self.Attributes[\'figureSize\'] is of length 2:\tFailure, \'self.Attributes[\'figureSize\']\' is of length ' + str( len(self.Attributes['figureSize'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=ValueError(failure)) if condition: # figureSize[] are int for i in range(2): condition = isinstance(self.Attributes['figureSize'][i], (int, float, numpy.integer, numpy.floating)) success = 'Check self.Attributes[\'figureSize\'][' + str(i) + '] is int or float:\tOK' failure = 'Check self.Attributes[\'figureSize\'][' + str( i) + '] is int or float:\tFailure, \'self.Attributes[\'figureSize\'][' + str( i) + '] is ' + str(type(self.Attributes['figureSize'][i])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['figureSize'] length 2 # end self.Attributes['figureSize] list # end self.Attributes['figureSize'] ## figureFormat # exist condition = 'figureFormat' in self.Attributes success = 'Check self.Attributes[\'figureFormat\'] exists:\tOK' failure = 'Check self.Attributes[\'figureFormat\'] exists:\tFailure, no attribute \'self.Attributes[\'figureFormat\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a str condition = isinstance(self.Attributes['figureFormat'], str) success = 'Check self.Attributes[\'figureFormat\'] is a str:\tOK' failure = 'Check self.Attributes[\'figureFormat\'] is a str:\tFailure, \'self.Attributes[\'figureFormat\']\' is ' + str( type(self.Attributes['figureFormat'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['figureFormat'] ## histBins # exist condition = 'histBins' in self.Attributes success = 'Check self.Attributes[\'histBins\'] exists:\tOK' failure = 'Check self.Attributes[\'histBins\'] exists:\tFailure, no attribute \'self.Attributes[\'histBins\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is an int condition = isinstance(self.Attributes['histBins'], (int, numpy.integer)) success = 'Check self.Attributes[\'histBins\'] is an int:\tOK' failure = 'Check self.Attributes[\'histBins\'] is an int:\tFailure, \'self.Attributes[\'histBins\']\' is ' + str( type(self.Attributes['histBins'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['histBins'] ## noFiles # exist condition = 'noFiles' in self.Attributes success = 'Check self.Attributes[\'noFiles\'] exists:\tOK' failure = 'Check self.Attributes[\'noFiles\'] exists:\tFailure, no attribute \'self.Attributes[\'noFiles\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is an int condition = isinstance(self.Attributes['noFiles'], (int, numpy.integer)) success = 'Check self.Attributes[\'noFiles\'] is an int:\tOK' failure = 'Check self.Attributes[\'noFiles\'] is an int:\tFailure, \'self.Attributes[\'noFiles\']\' is ' + str( type(self.Attributes['noFiles'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['noFiles'] ## quantiles # exist condition = 'quantiles' in self.Attributes success = 'Check self.Attributes[\'quantiles\'] exists:\tOK' failure = 'Check self.Attributes[\'quantiles\'] exists:\tFailure, no attribute \'self.Attributes[\'quantiles\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.Attributes['quantiles'], list) success = 'Check self.Attributes[\'quantiles\'] is a list:\tOK' failure = 'Check self.Attributes[\'quantiles\'] is a list:\tFailure, \'self.Attributes[\'quantiles\']\' is ' + str( type(self.Attributes['quantiles'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # is of length 2 condition = (len(self.Attributes['quantiles']) == 2) success = 'Check self.Attributes[\'quantiles\'] is of length 2:\tOK' failure = 'Check self.Attributes[\'quantiles\'] is of length 2:\tFailure, \'self.Attributes[\'quantiles\']\' is of length ' + str( len(self.Attributes['quantiles'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=ValueError(failure)) if condition: # quantiles[] are int for i in range(2): condition = isinstance(self.Attributes['quantiles'][i], (int, float, numpy.integer, numpy.floating)) success = 'Check self.Attributes[\'quantiles\'][' + str(i) + '] is int or float:\tOK' failure = 'Check self.Attributes[\'quantiles\'][' + str( i) + '] is int or float:\tFailure, \'self.Attributes[\'quantiles\'][' + str( i) + '] is ' + str(type(self.Attributes['quantiles'][i])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['quantiles'] length 2 # end self.Attributes['quantiles'] list # end self.Attributes['quantiles'] ## sampleMetadataNotExported # exist condition = 'sampleMetadataNotExported' in self.Attributes success = 'Check self.Attributes[\'sampleMetadataNotExported\'] exists:\tOK' failure = 'Check self.Attributes[\'sampleMetadataNotExported\'] exists:\tFailure, no attribute \'self.Attributes[\'sampleMetadataNotExported\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.Attributes['sampleMetadataNotExported'], list) success = 'Check self.Attributes[\'sampleMetadataNotExported\'] is a list:\tOK' failure = 'Check self.Attributes[\'sampleMetadataNotExported\'] is a list:\tFailure, \'self.Attributes[\'sampleMetadataNotExported\']\' is ' + str( type(self.Attributes['sampleMetadataNotExported'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['sampleMetadataNotExported'] ## featureMetadataNotExported # exist condition = 'featureMetadataNotExported' in self.Attributes success = 'Check self.Attributes[\'featureMetadataNotExported\'] exists:\tOK' failure = 'Check self.Attributes[\'featureMetadataNotExported\'] exists:\tFailure, no attribute \'self.Attributes[\'featureMetadataNotExported\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.Attributes['featureMetadataNotExported'], list) success = 'Check self.Attributes[\'featureMetadataNotExported\'] is a list:\tOK' failure = 'Check self.Attributes[\'featureMetadataNotExported\'] is a list:\tFailure, \'self.Attributes[\'featureMetadataNotExported\']\' is ' + str( type(self.Attributes['featureMetadataNotExported'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['featureMetadataNotExported'] ## analyticalMeasurements # exist condition = 'analyticalMeasurements' in self.Attributes success = 'Check self.Attributes[\'analyticalMeasurements\'] exists:\tOK' failure = 'Check self.Attributes[\'analyticalMeasurements\'] exists:\tFailure, no attribute \'self.Attributes[\'analyticalMeasurements\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a dict condition = isinstance(self.Attributes['analyticalMeasurements'], dict) success = 'Check self.Attributes[\'analyticalMeasurements\'] is a dict:\tOK' failure = 'Check self.Attributes[\'analyticalMeasurements\'] is a dict:\tFailure, \'self.Attributes[\'analyticalMeasurements\']\' is ' + str( type(self.Attributes['analyticalMeasurements'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['analyticalMeasurements'] ## excludeFromPlotting # exist condition = 'excludeFromPlotting' in self.Attributes success = 'Check self.Attributes[\'excludeFromPlotting\'] exists:\tOK' failure = 'Check self.Attributes[\'excludeFromPlotting\'] exists:\tFailure, no attribute \'self.Attributes[\'excludeFromPlotting\']\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.Attributes['excludeFromPlotting'], list) success = 'Check self.Attributes[\'excludeFromPlotting\'] is a list:\tOK' failure = 'Check self.Attributes[\'excludeFromPlotting\'] is a list:\tFailure, \'self.Attributes[\'excludeFromPlotting\']\' is ' + str( type(self.Attributes['excludeFromPlotting'])) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self.Attributes['excludeFromPlotting'] # end self.Attributes dictionary # end self.Attributes ## self.VariableType # exist condition = hasattr(self, 'VariableType') success = 'Check self.VariableType exists:\tOK' failure = 'Check self.VariableType exists:\tFailure, no attribute \'self.VariableType\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) # end Variabletype ## self._Normalisation # exist condition = hasattr(self, '_Normalisation') success = 'Check self._Normalisation exists:\tOK' failure = 'Check self._Normalisation exists:\tFailure, no attribute \'self._Normalisation\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is Normaliser ABC condition = isinstance(self._Normalisation, Normaliser) success = 'Check self._Normalisation is Normaliser ABC:\tOK' failure = 'Check self._Normalisation is Normaliser ABC:\tFailure, \'self._Normalisation\' is ' + str( type(self._Normalisation)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self._Normalisation ## self._name # exist condition = hasattr(self, '_name') success = 'Check self._name exists:\tOK' failure = 'Check self._name exists:\tFailure, no attribute \'self._name\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a str condition = isinstance(self._name, str) success = 'Check self._name is a str:\tOK' failure = 'Check self._name is a str:\tFailure, \'self._name\' is ' + str(type(self._name)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self._name ## self._intensityData # exist condition = hasattr(self, '_intensityData') success = 'Check self._intensityData exists:\tOK' failure = 'Check self._intensityData exists:\tFailure, no attribute \'self._intensityData\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a numpy.ndarray condition = isinstance(self._intensityData, numpy.ndarray) success = 'Check self._intensityData is a numpy.ndarray:\tOK' failure = 'Check self._intensityData is a numpy.ndarray:\tFailure, \'self._intensityData\' is ' + str( type(self._intensityData)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) # end self._intensityData numpy.ndarray # end self._intensityData ## self.sampleMetadata # exist condition = hasattr(self, 'sampleMetadata') success = 'Check self.sampleMetadata exists:\tOK' failure = 'Check self.sampleMetadata exists:\tFailure, no attribute \'self.sampleMetadata\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a pandas.DataFrame condition = isinstance(self.sampleMetadata, pandas.DataFrame) success = 'Check self.sampleMetadata is a pandas.DataFrame:\tOK' failure = 'Check self.sampleMetadata is a pandas.DataFrame:\tFailure, \'self.sampleMetadata\' is ' + str( type(self.sampleMetadata)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # ['Sample File Name'] condition = ('Sample File Name' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Sample File Name\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Sample File Name\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Sample File Name\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['AssayRole'] condition = ('AssayRole' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'AssayRole\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'AssayRole\'] exists:\tFailure, \'self.sampleMetadata\' lacks an \'AssayRole\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['SampleType'] condition = ('SampleType' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'SampleType\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'SampleType\'] exists:\tFailure, \'self.sampleMetadata\' lacks an \'SampleType\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Dilution'] condition = ('Dilution' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Dilution\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Dilution\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Dilution\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Batch'] condition = ('Batch' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Batch\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Batch\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Batch\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Correction Batch'] condition = ('Correction Batch' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Correction Batch\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Correction Batch\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Correction Batch\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Run Order'] condition = ('Run Order' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Run Order\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Run Order\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Run Order\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Sample ID'] condition = ('Sample ID' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Sample ID\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Sample ID\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Sample ID\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Sample Base Name'] condition = ('Sample Base Name' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Sample Base Name\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Sample Base Name\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Sample Base Name\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Acquired Time'] condition = ('Acquired Time' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Acquired Time\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Acquired Time\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Acquired Time\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # ['Exclusion Details'] condition = ('Exclusion Details' in self.sampleMetadata.columns) success = 'Check self.sampleMetadata[\'Exclusion Details\'] exists:\tOK' failure = 'Check self.sampleMetadata[\'Exclusion Details\'] exists:\tFailure, \'self.sampleMetadata\' lacks a \'Exclusion Details\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # end self.sampleMetadata pandas.DataFrame # end self.sampleMetadata ## self.featureMetadata # exist condition = hasattr(self, 'featureMetadata') success = 'Check self.featureMetadata exists:\tOK' failure = 'Check self.featureMetadata exists:\tFailure, no attribute \'self.featureMetadata\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a pandas.DataFrame condition = isinstance(self.featureMetadata, pandas.DataFrame) success = 'Check self.featureMetadata is a pandas.DataFrame:\tOK' failure = 'Check self.featureMetadata is a pandas.DataFrame:\tFailure, \'self.featureMetadata\' is ' + str( type(self.featureMetadata)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # ['Feature Name'] condition = ('Feature Name' in self.featureMetadata.columns) success = 'Check self.featureMetadata[\'Feature Name\'] exists:\tOK' failure = 'Check self.featureMetadata[\'Feature Name\'] exists:\tFailure, \'self.featureMetadata\' lacks a \'Feature Name\' column' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=LookupError(failure)) # end self.featureMetadata['Feature Name'] # end self.featureMetadata pandas.DataFrame # end self.featureMetadata ## self.sampleMask # exist condition = hasattr(self, 'sampleMask') success = 'Check self.sampleMask exists:\tOK' failure = 'Check self.sampleMask exists:\tFailure, no attribute \'self.sampleMask\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a numpy.ndarray condition = isinstance(self.sampleMask, numpy.ndarray) success = 'Check self.sampleMask is a numpy.ndarray:\tOK' failure = 'Check self.sampleMask is a numpy.ndarray:\tFailure, \'self.sampleMask\' is ' + str( type(self.sampleMask)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # if (self.sampleMask.all() != numpy.array(False, dtype=bool)): # self.sampleMask is bool condition = (self.sampleMask.dtype == numpy.dtype(bool)) success = 'Check self.sampleMask is bool:\tOK' failure = 'Check self.sampleMask is bool:\tFailure, \'self.sampleMask\' is ' + str( self.sampleMask.dtype) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=ValueError(failure)) # end self.samplemask numpy.ndarray ## end self.sampleMask ## self.featureMask # exist condition = hasattr(self, 'featureMask') success = 'Check self.featureMask exists:\tOK' failure = 'Check self.featureMask exists:\tFailure, no attribute \'self.featureMask\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a numpy.ndarray condition = isinstance(self.featureMask, numpy.ndarray) success = 'Check self.featureMask is a numpy.ndarray:\tOK' failure = 'Check self.featureMask is a numpy.ndarray:\tFailure, \'self.featureMask\' is ' + str( type(self.featureMask)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # if (self.featureMask.all() != numpy.array(False, dtype=bool)): # self.featureMask is bool condition = (self.featureMask.dtype == numpy.dtype(bool)) success = 'Check self.featureMask is bool:\tOK' failure = 'Check self.featureMask is bool:\tFailure, \'self.featureMask\' is ' + str( self.featureMask.dtype) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=ValueError(failure)) # end self.featureMask numpy.ndarray ## end self.featureMask ## Exclusion data # If any exclusion exists if (hasattr(self, 'sampleMetadataExcluded') | hasattr(self, 'intensityDataExcluded') | hasattr(self, 'featureMetadataExcluded') | hasattr( self, 'excludedFlag')): if verbose: print('---- exclusion lists found, check exclusions ----') ## sampleMetadataExcluded # exist condition = hasattr(self, 'sampleMetadataExcluded') success = 'Check self.sampleMetadataExcluded exists:\tOK' failure = 'Check self.sampleMetadataExcluded exists:\tFailure, no attribute \'self.sampleMetadataExcluded\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.sampleMetadataExcluded, list) success = 'Check self.sampleMetadataExcluded is a list:\tOK' failure = 'Check self.sampleMetadataExcluded is a list:\tFailure, \'self.sampleMetadataExcluded\' is ' + str( type(self.sampleMetadataExcluded)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # Use sampleMetadataExcluded as reference number of exclusions refNumExcluded = len(self.sampleMetadataExcluded) if verbose: print('---- self.sampleMetadataExcluded used as reference number of exclusions ----') print('\t' + str(refNumExcluded) + ' exclusions') # end sampleMetadataExcluded is a list # end sampleMetadataExcluded ## intensityDataExcluded # exist condition = hasattr(self, 'intensityDataExcluded') success = 'Check self.intensityDataExcluded exists:\tOK' failure = 'Check self.intensityDataExcluded exists:\tFailure, no attribute \'self.intensityDataExcluded\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.intensityDataExcluded, list) success = 'Check self.intensityDataExcluded is a list:\tOK' failure = 'Check self.intensityDataExcluded is a list:\tFailure, \'self.intensityDataExcluded\' is ' + str( type(self.intensityDataExcluded)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # number of exclusions condition = (len(self.intensityDataExcluded) == refNumExcluded) success = 'Check self.intensityDataExcluded number of exclusions:\tOK' failure = 'Check self.intensityDataExcluded number of exclusions:\tFailure, \'self.intensityDataExcluded\' has ' + str( len(self.intensityDataExcluded)) + ' exclusions, ' + str(refNumExcluded) + ' expected' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=ValueError(failure)) # end intensityDataExcluded is a list # end intensityDataExclude ## featureMetadataExcluded # exist condition = hasattr(self, 'featureMetadataExcluded') success = 'Check self.featureMetadataExcluded exists:\tOK' failure = 'Check self.featureMetadataExcluded exists:\tFailure, no attribute \'self.featureMetadataExcluded\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.featureMetadataExcluded, list) success = 'Check self.featureMetadataExcluded is a list:\tOK' failure = 'Check self.featureMetadataExcluded is a list:\tFailure, \'self.featureMetadataExcluded\' is ' + str( type(self.featureMetadataExcluded)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # number of exclusions condition = (len(self.featureMetadataExcluded) == refNumExcluded) success = 'Check self.featureMetadataExcluded number of exclusions:\tOK' failure = 'Check self.featureMetadataExcluded number of exclusions:\tFailure, \'self.featureMetadataExcluded\' has ' + str( len(self.featureMetadataExcluded)) + ' exclusions, ' + str(refNumExcluded) + ' expected' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=ValueError(failure)) # end featureMetadataExcluded is a list # end featureMetadataExcluded ## excludedFlag # exist condition = hasattr(self, 'excludedFlag') success = 'Check self.excludedFlag exists:\tOK' failure = 'Check self.excludedFlag exists:\tFailure, no attribute \'self.excludedFlag\'' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=AttributeError(failure)) if condition: # is a list condition = isinstance(self.excludedFlag, list) success = 'Check self.excludedFlag is a list:\tOK' failure = 'Check self.excludedFlag is a list:\tFailure, \'self.excludedFlag\' is ' + str( type(self.excludedFlag)) failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=TypeError(failure)) if condition: # number of exclusions condition = (len(self.excludedFlag) == refNumExcluded) success = 'Check self.excludedFlag number of exclusions:\tOK' failure = 'Check self.excludedFlag number of exclusions:\tFailure, \'self.excludedFlag\' has ' + str( len(self.excludedFlag)) + ' exclusions, ' + str(refNumExcluded) + ' expected' failureList = conditionTest(condition, success, failure, failureList, verbose, raiseError, raiseWarning, exception=ValueError(failure)) # end excludedFlag is a list # end excludedFlag # end exclusions are present else: if verbose: print('---- no exclusion lists found, no check ----') # end Exclusion Data ## List additional attributes (print + log) expectedSet = set({'Attributes', 'VariableType', '_Normalisation', '_name', '_intensityData', 'sampleMetadata', 'featureMetadata', 'sampleMask', 'featureMask', 'sampleMetadataExcluded', 'intensityDataExcluded', 'featureMetadataExcluded', 'excludedFlag'}) objectSet = set(self.__dict__.keys()) additionalAttributes = objectSet - expectedSet if len(additionalAttributes) > 0: if verbose: print('--------') print(str(len(additionalAttributes)) + ' additional attributes in the object:') print('\t' + str(list(additionalAttributes))) else: if verbose: print('--------') print('No additional attributes in the object') ## Log and final Output # Basic failure might compromise logging, failure of QC compromises sample meta if len(failureList) == 0: # Log self.Attributes['Log'].append([datetime.now(), 'Conforms to Dataset (0 errors), (%i samples and %i features), with %i additional attributes in the object: %s' % ( self.noSamples, self.noFeatures, len(additionalAttributes), list(additionalAttributes))]) # print results if verbose: print('--------') print('Conforms to Dataset:\t 0 errors found') return True # Try logging to something that might not have a log else: # try logging try: self.Attributes['Log'].append([datetime.now(), 'Failed Dataset validation, with the following %i issues: %s' % ( len(failureList), failureList)]) except (AttributeError, KeyError, TypeError): if verbose: print('--------') print('Logging failed') # print results if verbose: print('--------') print('Does not conform to Dataset:\t %i errors found' % (len(failureList))) # output if raiseWarning: warnings.warn('Does not conform to Dataset:\t %i errors found' % (len(failureList))) return False def _loadParameters(self, sop, sopPath): """ Load assay parameters from JSON SOP files located in sopPath. SOP names should be unique (obviously), but this is not enforced. Duplicate SOP files may cause undefined behaviour. :param sop: the SOP name :type sop: string :param sopPath: the path to sop :type sopPath: string """ import json from collections import ChainMap from ..utilities.extractParams import buildFileList import re # Always load some generic values with open(os.path.join(toolboxPath(), 'StudyDesigns', 'SOP', 'Generic.json')) as data_file: attributes = json.load(data_file) self.Attributes = {**self.Attributes, **attributes} # But if SOP is Generic, skip if sop == 'Generic': return def splitext(path): return {os.path.splitext(os.path.basename(path))[0]: path} pattern = re.compile('.+?\.json$') builtinSOPS = os.path.join(toolboxPath(), 'StudyDesigns', 'SOP') sopPaths = buildFileList(builtinSOPS, pattern) if sopPath is not None: if not os.path.isdir(sopPath): raise ValueError("Path: %s must be a directory." % sopPath) sopPaths.extend(buildFileList(sopPath, pattern)) # Remove empty entries from list sopPathList = [x for x in sopPaths if x != []] sopPaths = dict() for sopPATH in sopPathList: sopPaths.update(splitext(sopPATH)) if not sop in sopPaths: raise ValueError("The SOP '%s' is not present in '%s', or '%s'." % (sop, builtinSOPS, sopPath)) with open(sopPaths[sop]) as data_file: attributes = json.load(data_file) self.Attributes = {**self.Attributes, **attributes} self.Attributes['Log'].append([datetime.now(), 'SOP configuration %s loaded from %s.' % (sop, sopPaths[sop])]) def initialiseMasks(self): """ Re-initialise :py:attr:`featureMask` and :py:attr:`sampleMask` to match the current dimensions of :py:attr:`intensityData`, and include all samples. """ self.featureMask = numpy.squeeze(numpy.ones([self.noFeatures, 1], dtype=bool), axis=1) """*m* element vector, with ``True`` representing features to be included in analysis, and ``False`` those to be excluded""" self.sampleMask = numpy.squeeze(numpy.ones([self.noSamples, 1], dtype=bool), axis=1) """*p* element vector, with ``True`` representing samples to be included in analysis, and ``False`` those to be excluded""" self.Attributes['Log'].append([datetime.now(), "Masks Initialised to True.\n"]) def updateMasks(self, filterSamples=True, filterFeatures=True, sampleTypes=list(SampleType), assayRoles=list(AssayRole), **kwargs): """ Update :py:attr:`~Dataset.sampleMask` and :py:attr:`~Dataset.featureMask` according to parameters. :py:meth:`updateMasks` sets :py:attr:`~Dataset.sampleMask` or :py:attr:`~Dataset.featureMask` to ``False`` for those items failing analytical criteria. .. note:: To avoid reintroducing items manually excluded, this method only ever sets items to ``False``, therefore if you wish to move from more stringent criteria to a less stringent set, you will need to reset the mask to all ``True`` using :py:meth:`~Dataset.initialiseMasks`. :param bool filterSamples: If ``False`` don't modify sampleMask :param bool filterFeatures: If ``False`` don't modify featureMask :param sampleTypes: List of types of samples to retain :type sampleTypes: SampleType :param AssayRole sampleRoles: List of assays roles to retain """ if not isinstance(sampleTypes, list): raise TypeError('sampleTypes must be a list of SampleType enums') if not isinstance(assayRoles, list): raise TypeError('sampleTypes must be a list of AssayRole enums') if not all(isinstance(item, SampleType) for item in sampleTypes): raise TypeError('sampleTypes must be SampleType enums.') if not all(isinstance(item, AssayRole) for item in assayRoles): raise TypeError('assayRoles must be AssayRole enums.') # Feature exclusions if filterFeatures: raise NotImplementedError # Sample Exclusions if filterSamples: sampleMask = self.sampleMetadata['SampleType'].isin(sampleTypes) assayMask = self.sampleMetadata['AssayRole'].isin(assayRoles) sampleMask = numpy.logical_and(sampleMask, assayMask) self.sampleMask = numpy.logical_and(sampleMask, self.sampleMask) self.Attributes['Log'].append([datetime.now(), "Dataset filtered with: filterSamples=%s, filterFeatures=%s, sampleClasses=%s, sampleRoles=%s, %s." % ( filterSamples, filterFeatures, sampleTypes, assayRoles, ', '.join("{!s}={!r}".format(key, val) for (key, val) in kwargs.items()))]) def applyMasks(self): """ Permanently delete elements masked (those set to ``False``) in :py:attr:`sampleMask` and :py:attr:`featureMask`, from :py:attr:`featureMetadata`, :py:attr:`sampleMetadata`, and :py:attr:`intensityData`. """ # Only save to excluded if features or samples masked if (sum(self.sampleMask == False) > 0) | (sum(self.featureMask == False) > 0): # Instantiate lists if first application if not hasattr(self, 'sampleMetadataExcluded'): self.sampleMetadataExcluded = [] self.intensityDataExcluded = [] self.featureMetadataExcluded = [] self.excludedFlag = [] # Samples if sum(self.sampleMask) != len(self.sampleMask): # Account for if self.sampleMask is a pandas.series try: self.sampleMask = self.sampleMask.values except: pass # Save excluded samples self.sampleMetadataExcluded.append(self.sampleMetadata[:][self.sampleMask == False]) self.intensityDataExcluded.append(self._intensityData[self.sampleMask == False, :]) self.featureMetadataExcluded.append(self.featureMetadata) self.excludedFlag.append('Samples') # Delete excluded samples self.sampleMetadata = self.sampleMetadata.loc[self.sampleMask] self.sampleMetadata.reset_index(drop=True, inplace=True) self._intensityData = self._intensityData[self.sampleMask, :] if hasattr(self, 'fit'): self.fit = self.fit[self.sampleMask, :] # Features if sum(self.featureMask) != len(self.featureMask): # Save excluded features # Save excluded features self.featureMetadataExcluded.append(self.featureMetadata[:][self.featureMask == False]) self.intensityDataExcluded.append(self._intensityData[:, self.featureMask == False]) self.sampleMetadataExcluded.append(self.sampleMetadata) self.excludedFlag.append('Features') # Delete excluded features self.featureMetadata = self.featureMetadata.loc[self.featureMask] self.featureMetadata.reset_index(drop=True, inplace=True) self._intensityData = self._intensityData[:, self.featureMask] self.Attributes['Log'].append([datetime.now(), '%i samples and %i features removed from dataset.' % ( sum(self.sampleMask == False), sum(self.featureMask == False))]) # Build new masks self.initialiseMasks() def addSampleInfo(self, descriptionFormat=None, filePath=None, **kwargs): """ Load additional metadata and map it in to the :py:attr:`sampleMetadata` table. Possible options: * **'Basic CSV'** Joins the :py:attr:`sampleMetadata` table with the data in the ``csv`` file at *filePath=*, matching on the 'Sample File Name' column in both (see :doc:`samplemetadata`). * **'Filenames'** Parses sample information out of the filenames, based on the named capture groups in the regex passed in *filenamespec* * **'Raw Data'** Extract analytical parameters from raw data files * **'ISATAB'** ISATAB study designs :param str descriptionFormat: Format of metadata to be added :param str filePath: Path to the additional data to be added :raises NotImplementedError: if the descriptionFormat is not understood """ """ Extra options for internal NPC use: * **'NPC LIMS'** NPC LIMS files mapping files names of raw analytical data to sample IDs * **'NPC Subject Info'** Map subject metadata from a NPC sample manifest file (format defined in 'PCSOP.082') """ if descriptionFormat == 'Basic CSV': self._matchBasicCSV(filePath) elif descriptionFormat == 'NPC LIMS': self._matchDatasetToLIMS(filePath) elif descriptionFormat == 'NPC Subject Info': self._matchDatasetToSubjectInfo(filePath) elif descriptionFormat == 'Raw Data': self._getSampleMetadataFromRawData(filePath) elif descriptionFormat == 'ISATAB': self._matchDatasetToISATAB(filePath, **kwargs) elif descriptionFormat == 'Filenames': self._getSampleMetadataFromFilename(kwargs['filenameSpec']) else: raise NotImplementedError def addFeatureInfo(self, filePath=None, descriptionFormat=None, featureId=None, **kwargs): """ Load additional metadata and map it in to the :py:attr:`featureMetadata` table. Possible options: * **'Reference Ranges'** JSON file specifying upper and lower reference ranges for a feature. :param str filePath: Path to the additional data to be added :param str descriptionFormat: :param str featureId: Unique feature Id field in the metadata file provided to match with internal Feature Name :raises NotImplementedError: if the descriptionFormat is not understood """ if descriptionFormat is None: if featureId is None: raise ValueError('Please provide a valid featureId') # Read new data and copy the current state of featureMetadata csvData = pandas.read_csv(filePath) if not any(csvData[featureId].isin(self.featureMetadata['Feature Name'])): raise ValueError('No matching features found in csv file provided.') currentMetadata = self.featureMetadata.copy() # Overwrite previously existing columns columnsToRemove = csvData.columns if 'Feature Name' in columnsToRemove: columnsToRemove = columnsToRemove.drop(['Feature Name']) for column in columnsToRemove: if column in currentMetadata.columns: currentMetadata.drop(column, axis=1, inplace=True) currentMetadata = currentMetadata.merge(csvData, how='left', left_on='Feature Name', right_on=featureId, sort=False) # Avoid duplicating feature ID field if featureId != 'Feature Name': currentMetadata.drop(featureId, axis=1, inplace=True) self.featureMetadata = currentMetadata elif descriptionFormat.lower() == 'reference ranges': from ..utilities._addReferenceRanges import addReferenceRanges addReferenceRanges(self.featureMetadata, filePath) def _matchBasicCSV(self, filePath): """ Do a basic join of the data in the csv file at filePath to the :py:attr:`sampleMetadata` dataframe on the 'Sample File Name'. """ csvData = pandas.read_csv(filePath, dtype={'Sample File Name':str, 'Sample ID': str}) currentMetadata = self.sampleMetadata.copy() if 'Sample File Name' not in csvData.columns: raise KeyError("No 'Sample File Name' column present, unable to join tables.") # Check if there are any duplicates in the csv file u_ids, u_counts = numpy.unique(csvData['Sample File Name'], return_counts=True) if any(u_counts > 1): warnings.warn('Check and remove duplicates in CSV file') return # Store previous AssayRole and SampleType in case they were parsed using from filename: # oldAssayRole = currentMetadata['AssayRole'] oldSampleType = currentMetadata['SampleType'] oldDilution = currentMetadata['Dilution'] ## # If colums exist in both csv data and dataset.sampleMetadata remove them from sampleMetadata ## columnsToRemove = csvData.columns columnsToRemove = columnsToRemove.drop(['Sample File Name']) for column in columnsToRemove: if column in currentMetadata.columns: currentMetadata.drop(column, axis=1, inplace=True) # If AssayRole or SampleType columns are present parse strings into enums csvData['AssayRole'] = [(x.replace(" ", "")).lower() if type(x) is str else numpy.nan for x in csvData['AssayRole']] csvData['SampleType'] = [(x.replace(" ", "")).lower() if type(x) is str else numpy.nan for x in csvData['SampleType']] if 'AssayRole' in csvData.columns: for role in AssayRole: csvData.loc[csvData['AssayRole'].values == (str(role).replace(" ", "")).lower(), 'AssayRole'] = role if 'SampleType' in csvData.columns: for stype in SampleType: csvData.loc[csvData['SampleType'].values == (str(stype).replace(" ", "")).lower(), 'SampleType'] = stype # If Acquired Time column is in the CSV file, reformat data to allow operations on timestamps and timedeltas, # which are used in some plotting functions if 'Acquired Time' in csvData: csv_datetime = pandas.to_datetime(csvData['Acquired Time'], errors='ignore') # msData.sampleMetadata['Acquired Time'] = z csv_datetime = csv_datetime.dt.strftime('%d-%b-%Y %H:%M:%S') csvData['Acquired Time'] = csv_datetime.apply(lambda x: datetime.strptime(x, '%d-%b-%Y %H:%M:%S')).astype('O') # Left join, without sort, so the intensityData matrix and the sample Masks are kept in order # Preserve information about sample mask alongside merge even on the case of samples missing from CSV file. # Is this required?? Masked field doesn't seem to be used anywhere else currentMetadata['Masked'] = False currentMetadata.loc[(self.sampleMask == False), 'Masked'] = True joinedTable = pandas.merge(currentMetadata, csvData, how='left', left_on='Sample File Name', right_on='Sample File Name', sort=False) merged_samples = pandas.merge(currentMetadata, csvData, how='inner', left_on='Sample File Name', right_on='Sample File Name', sort=False) merged_samples = merged_samples['Sample File Name'] merged_indices = joinedTable[joinedTable['Sample File Name'].isin(merged_samples)].index # Samples in the CSV file but not acquired will go for sampleAbsentMetadata, for consistency with NPC Lims import csv_butnotacq = csvData.loc[csvData['Sample File Name'].isin(currentMetadata['Sample File Name']) == False, :] if csv_butnotacq.shape[0] != 0: sampleAbsentMetadata = csv_butnotacq.copy(deep=True) # Removed normalised index columns # Enum masks describing the data in each row sampleAbsentMetadata.loc[:, 'SampleType'] = SampleType.StudySample sampleAbsentMetadata.loc[sampleAbsentMetadata['SampleType'].str.match('StudyPool', na=False).astype( bool), 'SampleType'] = SampleType.StudyPool sampleAbsentMetadata.loc[sampleAbsentMetadata['SampleType'].str.match('ExternalReference', na=False).astype( bool), 'SampleType'] = SampleType.ExternalReference sampleAbsentMetadata.loc[:, 'AssayRole'] = AssayRole.Assay sampleAbsentMetadata.loc[sampleAbsentMetadata['AssayRole'].str.match('PrecisionReference', na=False).astype( bool), 'AssayRole'] = AssayRole.PrecisionReference sampleAbsentMetadata.loc[sampleAbsentMetadata['AssayRole'].str.match('LinearityReference', na=False).astype( bool), 'AssayRole'] = AssayRole.LinearityReference # Remove duplicate columns (these will be appended with _x or _y) cols = [c for c in sampleAbsentMetadata.columns if c[-2:] != '_y'] sampleAbsentMetadata = sampleAbsentMetadata[cols] sampleAbsentMetadata.rename(columns=lambda x: x.replace('_x', ''), inplace=True) self.sampleAbsentMetadata = sampleAbsentMetadata # By default everything in the CSV has metadata available and samples mentioned there will not be masked # unless Include Sample field was == False joinedTable.loc[merged_indices, 'Metadata Available'] = True # Samples in the folder and processed but not mentioned in the CSV. acquired_butnotcsv = currentMetadata.loc[(currentMetadata['Sample File Name'].isin(csvData['Sample File Name']) == False), :] # Ensure that acquired but no csv only counts samples which 1 are not in CSV and 2 - also have no other kind of # AssayRole information provided (from parsing filenames for example) if acquired_butnotcsv.shape[0] != 0: noMetadataIndex = acquired_butnotcsv.index # Find samples where metadata was there previously and is not on the new CSV previousMetadataAvailable = currentMetadata.loc[(~oldSampleType.isnull()) & (~oldAssayRole.isnull()) & ((currentMetadata['Sample File Name'].isin(csvData['Sample File Name']) == False)), :].index metadataNotAvailable = [x for x in noMetadataIndex if x not in previousMetadataAvailable] # Keep old AssayRoles and SampleTypes for cases not mentioned in CSV for which this information was previously # available joinedTable.loc[previousMetadataAvailable, 'AssayRole'] = oldAssayRole[previousMetadataAvailable] joinedTable.loc[previousMetadataAvailable, 'SampleType'] = oldSampleType[previousMetadataAvailable] joinedTable.loc[previousMetadataAvailable, 'Dilution'] = oldDilution[previousMetadataAvailable] # If not in the new CSV, but previously there, keep it and don't mask if len(metadataNotAvailable) > 0: joinedTable.loc[metadataNotAvailable, 'Metadata Available'] = False # self.sampleMask[metadataNotAvailable] = False # joinedTable.loc[metadataNotAvailable, 'Exclusion Details'] = 'No Metadata in CSV' # 1) ACQ and in "include Sample" - drop and set mask to false # Samples Not ACQ and in "include Sample" set to False - drop and ignore from the dataframe # Remove acquired samples where Include sample column equals false - does not remove, just masks the sample if 'Include Sample' in csvData.columns: which_to_drop = joinedTable[joinedTable['Include Sample'] == False].index #self.intensityData = numpy.delete(self.intensityData, which_to_drop, axis=0) #self.sampleMask = numpy.delete(self.sampleMask, which_to_drop) self.sampleMask[which_to_drop] = False #joinedTable.drop(which_to_drop, axis=0, inplace=True) joinedTable.drop('Include Sample', inplace=True, axis=1) previously_masked = joinedTable[joinedTable['Masked'] == True].index self.sampleMask[previously_masked] = False joinedTable.drop('Masked', inplace=True, axis=1) # Regenerate the dataframe index for joined table joinedTable.reset_index(inplace=True, drop=True) self.sampleMetadata = joinedTable # Commented out as we shouldn't need this here after removing the LIMS, but lets keep it # This should make it work - but its assuming the sample "NAME" is the same as File name as in LIMS. self.sampleMetadata['Sample Base Name'] = self.sampleMetadata['Sample File Name'] # Ensure there is a batch column if 'Batch' not in self.sampleMetadata: self.sampleMetadata['Batch'] = 1 self.Attributes['Log'].append([datetime.now(), 'Basic CSV matched from %s' % (filePath)]) def _getSampleMetadataFromFilename(self, filenameSpec): """ Filename spec is not supported in the empty base class. """ raise NotImplementedError def _getSampleMetadataFromRawData(self, rawDataPath): """ Pull metadata out of raw experiment files. """ raise NotImplementedError def _matchDatasetToLIMS(self, pathToLIMSfile): """ Establish the `Sampling ID` by matching the `Sample Base Name` with the LIMS file information. :param str pathToLIMSfile: Path to LIMS file for map Sampling ID """ # Read in LIMS file self.limsFile = pandas.read_csv(pathToLIMSfile, converters={'Sample ID': str}) if any(self.limsFile.columns.str.match('Sampling ID')) and any(self.limsFile.columns.str.match('Sample ID')): warnings.warn('The LIMS File contains both a Sample ID and Sampling ID Fields') # rename 'sample ID' to 'sampling ID' to match sampleMetadata format if any(self.limsFile.columns.str.match('Sampling ID')): self.limsFile.rename(columns={'Sampling ID': 'Sample ID'}, inplace=True) # Prepare data # Create normalised columns self.sampleMetadata.loc[:, 'Sample Base Name Normalised'] = self.sampleMetadata['Sample Base Name'].str.lower() # if is float, make it a string with 'Assay data location' if isinstance(self.limsFile.loc[0, 'Assay data name'], (int, float, numpy.integer, numpy.floating)): self.limsFile.loc[:, 'Assay data name'] = self.limsFile.loc[:, 'Assay data location'].str.cat( self.limsFile['Assay data name'].astype(str), sep='/') self.limsFile.loc[:, 'Assay data name Normalised'] = self.limsFile['Assay data name'].str.lower() # Match limsFile to sampleMetdata for samples with data PRESENT # Remove already present columns if 'Sampling ID' in self.sampleMetadata.columns: self.sampleMetadata.drop(['Sampling ID'], axis=1, inplace=True) if 'Sample ID' in self.sampleMetadata.columns: self.sampleMetadata.drop(['Sample ID'], axis=1, inplace=True) if 'Subject ID' in self.sampleMetadata.columns: self.sampleMetadata.drop(['Subject ID'], axis=1, inplace=True) merged_samples = pandas.merge(self.sampleMetadata, self.limsFile, how='inner',left_on='Sample Base Name Normalised', right_on='Assay data name Normalised', sort=False) self.sampleMetadata = pandas.merge(self.sampleMetadata, self.limsFile, left_on='Sample Base Name Normalised', right_on='Assay data name Normalised', how='left', sort=False) merged_samples = merged_samples['Sample File Name'] merged_indices = self.sampleMetadata[self.sampleMetadata['Sample File Name'].isin(merged_samples)].index # Complete/create set of boolean columns describing the data in each row for sampleMetadata self.sampleMetadata.loc[:, 'Data Present'] = self.sampleMetadata['Sample File Name'].str.match('.+', na=False) self.sampleMetadata.loc[:, 'LIMS Present'] = self.sampleMetadata['Assay data name'].str.match('.+', na=False, case=False) self.sampleMetadata.loc[:, 'LIMS Marked Missing'] = self.sampleMetadata['Status'].str.match('Missing', na=False) # Remove duplicate columns (these will be appended with _x or _y) cols = [c for c in self.sampleMetadata.columns if c[-2:] != '_y'] self.sampleMetadata = self.sampleMetadata[cols] self.sampleMetadata.rename(columns=lambda x: x.replace('_x', ''), inplace=True) # Find samples present in LIMS but not acquired lims_butnotacq = self.limsFile.loc[self.limsFile['Assay data name Normalised'].isin( self.sampleMetadata['Sample Base Name Normalised']) == False, :] # Removed normalised index coloumns self.sampleMetadata.drop(labels=['Sample Base Name Normalised', 'Assay data name Normalised'], axis=1, inplace=True) self.limsFile.drop(labels=['Assay data name Normalised'], axis=1, inplace=True) # Enforce string type on matched data self.sampleMetadata['Assay data name'] = self.sampleMetadata['Assay data name'].astype(str) self.sampleMetadata['Assay data location'] = self.sampleMetadata['Assay data location'].astype(str) self.sampleMetadata['Sample ID'] = self.sampleMetadata['Sample ID'].astype(str) self.sampleMetadata['Status'] = self.sampleMetadata['Status'].astype(str) if hasattr(self.sampleMetadata, 'Sample batch'): self.sampleMetadata['Sample batch'] = self.sampleMetadata['Sample batch'].astype(str) if hasattr(self.sampleMetadata, 'Assay protocol'): self.sampleMetadata['Assay protocol'] = self.sampleMetadata['Assay protocol'].astype(str) if hasattr(self.sampleMetadata, 'Sample position'): self.sampleMetadata['Sample position'] = self.sampleMetadata['Sample position'].astype(str) if lims_butnotacq.shape[0] != 0: sampleAbsentMetadata = lims_butnotacq.copy(deep=True) # Enum masks describing the data in each row sampleAbsentMetadata.loc[:, 'SampleType'] = SampleType.StudySample sampleAbsentMetadata.loc[sampleAbsentMetadata['Status'].str.match('Study Reference', na=False).astype( bool), 'SampleType'] = SampleType.StudyPool sampleAbsentMetadata.loc[sampleAbsentMetadata['Status'].str.match('Long Term Reference', na=False).astype( bool), 'SampleType'] = SampleType.ExternalReference sampleAbsentMetadata.loc[:, 'AssayRole'] = AssayRole.Assay sampleAbsentMetadata.loc[sampleAbsentMetadata['Status'].str.match('Study Reference', na=False).astype( bool), 'AssayRole'] = AssayRole.PrecisionReference sampleAbsentMetadata.loc[sampleAbsentMetadata['Status'].str.match('Long Term Reference', na=False).astype( bool), 'AssayRole'] = AssayRole.PrecisionReference sampleAbsentMetadata.loc[:, 'LIMS Marked Missing'] = sampleAbsentMetadata['Status'].str.match('Missing', na=False).astype( bool) # Remove duplicate columns (these will be appended with _x or _y) cols = [c for c in sampleAbsentMetadata.columns if c[-2:] != '_y'] sampleAbsentMetadata = sampleAbsentMetadata[cols] sampleAbsentMetadata.rename(columns=lambda x: x.replace('_x', ''), inplace=True) self.sampleAbsentMetadata = sampleAbsentMetadata # Rename values in Sample ID, special case for Study Pool, External Reference and Procedural Blank if 'SampleType' in self.sampleMetadata.columns: self.sampleMetadata.loc[(((self.sampleMetadata['Sample ID'] == 'nan') | ( self.sampleMetadata['Sample ID'] == '')) & (self.sampleMetadata[ 'SampleType'] == SampleType.StudyPool)).tolist(), 'Sample ID'] = 'Study Pool Sample' self.sampleMetadata.loc[(((self.sampleMetadata['Sample ID'] == 'nan') | ( self.sampleMetadata['Sample ID'] == '')) & (self.sampleMetadata[ 'SampleType'] == SampleType.ExternalReference)).tolist(), 'Sample ID'] = 'External Reference Sample' self.sampleMetadata.loc[(((self.sampleMetadata['Sample ID'] == 'nan') | ( self.sampleMetadata['Sample ID'] == '')) & (self.sampleMetadata[ 'SampleType'] == SampleType.ProceduralBlank)).tolist(), 'Sample ID'] = 'Procedural Blank Sample' self.sampleMetadata.loc[(self.sampleMetadata['Sample ID'] == 'nan').tolist(), 'Sample ID'] = 'Not specified' self.sampleMetadata.loc[(self.sampleMetadata[ 'Sample ID'] == '').tolist(), 'Sample ID'] = 'Present but undefined in the LIMS file' # Metadata Available field is set to True self.sampleMetadata.loc[merged_indices, 'Metadata Available'] = True # Log self.Attributes['Log'].append([datetime.now(), 'LIMS sample IDs matched from %s' % (pathToLIMSfile)]) def _matchDatasetToSubjectInfo(self, pathToSubjectInfoFile): """ Match the Sample IDs in :py:attr:`sampleMetadata` to the subject information mapped in the sample manifest file found at *subjectInfoFile*. The column *Sample ID* in :py:attr:`sampleMetadata` is matched to *Sample ID* in the *Sampling Events* sheet :param str pathToSubjectInfoFile: path to subject information file, an Excel file with sheets 'Subject Info' and 'Sampling Events' """ self.subjectInfo = pandas.read_excel(pathToSubjectInfoFile, sheet_name='Subject Info', converters={'Subject ID': str}) cols = [c for c in self.subjectInfo.columns if c[:7] != 'Unnamed'] self.subjectInfo = self.subjectInfo[cols] self.samplingEvents = pandas.read_excel(pathToSubjectInfoFile, sheet_name='Sampling Events', converters={'Subject ID': str, 'Sampling ID': str}) cols = [c for c in self.samplingEvents.columns if c[:7] != 'Unnamed'] self.samplingEvents = self.samplingEvents[cols] self.samplingEvents.rename(columns={'Sampling ID': 'Sample ID'}, inplace=True) # Create one overall samplingInfo sheet - combine subjectInfo and samplingEvents for samples present in samplingEvents self.samplingInfo = pandas.merge(self.samplingEvents, self.subjectInfo, left_on='Subject ID', right_on='Subject ID', how='left', sort=False) self.samplingInfo.rename(columns={'Sampling ID': 'Sample ID'}, inplace=True) # Remove duplicate columns (these will be appended with _x or _y) self.samplingInfo = removeDuplicateColumns(self.samplingInfo) # Remove any rows which are just nans self.samplingInfo = self.samplingInfo.loc[self.samplingInfo['Sample ID'].values != 'nan', :] # Rename 'Sample Type' to 'Biofluid' if hasattr(self.samplingInfo, 'Sample Type'): self.samplingInfo.rename(columns={'Sample Type': 'Biofluid'}, inplace=True) # Check no duplicates in sampleInfo u_ids, u_counts = numpy.unique(self.samplingInfo['Sample ID'], return_counts=True) if any(u_counts > 1): warnings.warn('Check and remove (non-biofluid related) duplicates in sample manifest file') # Match subjectInfo to sampleMetadata for samples with data ABSENT (i.e., samples in sampleAbsentMetadata) if hasattr(self, 'sampleAbsentMetadata'): self.sampleAbsentMetadata = pandas.merge(self.sampleAbsentMetadata, self.samplingInfo, left_on='Sample ID', right_on='Sample ID', how='left', sort=False) # Remove duplicate columns (these will be appended with _x or _y) cols = [c for c in self.sampleAbsentMetadata.columns if c[-2:] != '_y'] self.sampleAbsentMetadata = self.sampleAbsentMetadata[cols] self.sampleAbsentMetadata.rename(columns=lambda x: x.replace('_x', ''), inplace=True) self.sampleAbsentMetadata['SubjectInfoData'] = False self.sampleAbsentMetadata.loc[self.sampleAbsentMetadata['Subject ID'].notnull(), 'SubjectInfoData'] = True # Match subjectInfo to sampleMetdata for samples with data PRESENT self.sampleMetadata = pandas.merge(self.sampleMetadata, self.samplingInfo, left_on='Sample ID', right_on='Sample ID', how='left', sort=False) # Remove duplicate columns (these will be appended with _x or _y) cols = [c for c in self.sampleMetadata.columns if c[-2:] != '_y'] self.sampleMetadata = self.sampleMetadata[cols] self.sampleMetadata.rename(columns=lambda x: x.replace('_x', ''), inplace=True) self.sampleMetadata['SubjectInfoData'] = False self.sampleMetadata.loc[self.sampleMetadata['Subject ID'].notnull(), 'SubjectInfoData'] = True # Find samples present in sampleInfo but not in LIMS info_butnotlims = self.samplingInfo.loc[ self.samplingInfo['Sample ID'].isin(self.limsFile['Sample ID']) == False, :] if info_butnotlims.shape[0] != 0: self.subjectAbsentMetadata = info_butnotlims.copy(deep=True) self.Attributes['Log'].append([datetime.now(), 'Subject information matched from %s' % (pathToSubjectInfoFile)]) def __validateColumns(self, df, assay): if (assay == 'NMR') and set( ['Sample Name', 'NMR Assay Name', 'Date', 'Comment[time]', 'Parameter Value[run order]', 'Parameter Value[sample batch]', 'Parameter Value[acquisition batch]', 'Parameter Value[instrument]']).issubset(df.columns): return True elif (assay == 'MS') and set( ['Sample Name', 'MS Assay Name', 'Date', 'Comment[time]', 'Parameter Value[run order]', 'Parameter Value[sample batch]', 'Parameter Value[instrument]']).issubset(df.columns): return True else: return False def _initialiseFromCSV(self, sampleMetadataPath): """ Initialise the object from the three csv outputs of :py:meth:`~nPYc.Dataset.exportDataset()`. NOTE: This function assumes that the saved dataset was well formed with all the expected columns in the metadata tables. :param str sampleMetadataPath: Path to the *Name_sampleMetadata.csv* table, the file names of the featureMetadata and intensityData tables are inferred from the provided filename. """ ## # Determine object name and paths ## (folderPath, fileName) = os.path.split(sampleMetadataPath) objectName = re.match('(.*?)_sampleMetadata.csv', fileName).groups()[0] intensityDataPath = os.path.join(folderPath, objectName + '_intensityData.csv') featureMetadataPath = os.path.join(folderPath, objectName + '_featureMetadata.csv') ## # Load tables ## intensityData = numpy.loadtxt(intensityDataPath, dtype=float, delimiter=',') featureMetadata = pandas.read_csv(featureMetadataPath, index_col=0) sampleMetadata = pandas.read_csv(sampleMetadataPath, index_col=0) ## # Fix up types ## featureMetadata['Feature Name'] = featureMetadata['Feature Name'].astype(str) sampleMetadata['Sample File Name'] = sampleMetadata['Sample File Name'].astype(str) sampleMetadata['Acquired Time'] = sampleMetadata['Acquired Time'].apply(pandas.to_datetime) sampleMetadata['Acquired Time'] = sampleMetadata['Acquired Time'] # If AssayRole or SampleType columns are present parse strings into enums if 'AssayRole' in sampleMetadata.columns: for role in AssayRole: sampleMetadata.loc[sampleMetadata['AssayRole'].values == str(role), 'AssayRole'] = role if 'SampleType' in sampleMetadata.columns: for stype in SampleType: sampleMetadata.loc[sampleMetadata['SampleType'].values == str(stype), 'SampleType'] = stype return (objectName, intensityData, featureMetadata, sampleMetadata) def _matchDatasetToISATAB(self, pathToISATABFile, filenameSpec=None, studyID = 1, assayID=1, assay='MS'): """ Match the Sample IDs in :py:attr:`sampleMetadata` to the subject and assay information in the ISATAB File. The column *Sampling ID* in :py:attr:`sampleMetadata` is matched to *Sample Name* in the *ISATAB Study* sheet :param str pathToISATABFile: path to the ISATAB File :param int studyID: the Study index in the ISATAB File :param int assayID: the Assay index in the ISATAB File :param str assay: the assay type 'MS' or 'NMR' """ #if 'Dilution' in self.sampleMetadata.columns: # self.sampleMetadata.drop(['Dilution'], axis=1, inplace=True) if not (assay in ['MS','NMR']): raise ValueError('assay should be either \'MS\' or \'NMR\'') # Load ISATAB file with open(os.path.join(pathToISATABFile,'i_Investigation.txt')) as fp: isa_tab_record = isatab.load(fp) # subject info === study # limsFile info === assay study1 = isa_tab_record.studies[studyID - 1] # get the 1st study study_filename = study1.filename subjectInfo = pandas.read_csv(os.path.join(pathToISATABFile, study_filename), sep='\t') # We're only interested in these fields so keep them subjectInfo = subjectInfo[ ['Source Name', 'Characteristics[age]', 'Characteristics[gender]', 'Date', 'Comment[study name]', 'Characteristics[organism]', 'Characteristics[material role]', 'Characteristics[material type]', 'Sample Name']] # rename Characteristics[material role] to Status subjectInfo.rename(columns={'Characteristics[material role]': 'Status'}, inplace=True) # rename these fields to something similar to excel sheet subjectInfo.rename(columns={'Source Name': 'Subject ID'}, inplace=True) subjectInfo.rename(columns={'Characteristics[age]': 'Age'}, inplace=True) subjectInfo.rename(columns={'Characteristics[gender]': 'Gender'}, inplace=True) subjectInfo.rename(columns={'Date': 'Sampling Date'}, inplace=True) subjectInfo.rename(columns={'Characteristics[organism]': 'Organism'}, inplace=True) subjectInfo.rename(columns={'Characteristics[material type]': 'Material Type'}, inplace=True) subjectInfo.rename(columns={'Comment[study name]': 'Study'}, inplace=True) # subjectInfo.rename(columns={'Characteristics[dilution factor]': 'Dilution'}, inplace=True) # Enforce string type on Subject ID and Sampling ID columns subjectInfo['Subject ID'] = subjectInfo['Subject ID'].astype('str') subjectInfo['Sample Name'] = subjectInfo['Sample Name'].astype('str') assay1 = study1.assays[assayID - 1] # get the assay assay_filename = assay1.filename # Read in ISATAB file # The reason it's called limsFile is because this object is used in other modules such as reports limsFile = pandas.read_csv(os.path.join(pathToISATABFile, assay_filename), sep='\t') if not self.__validateColumns(limsFile, assay): warnings.warn("One or more required fields are missing in your Assay table, results maybe unreliable!") # rename Sample Name column to Sampling ID if any(limsFile.columns.str.match('Sample Name')): limsFile.rename(columns={'Sample Name': 'Sampling ID'}, inplace=True) #rename fields according to assay type if assay == 'NMR': with open(os.path.join(toolboxPath(), 'StudyDesigns', 'ISATABFieldMappings','NMRFields.json')) as data_file: nmrFieldDict = json.load(data_file) limsFile.rename(columns = nmrFieldDict, inplace=True) self.Attributes['Log'].append([datetime.now(), 'NMR Assay field names have been mapped into NPC field names' ]) else: with open(os.path.join(toolboxPath(), 'StudyDesigns', 'ISATABFieldMappings','MSFields.json')) as data_file: msFieldDict = json.load(data_file) limsFile.rename(columns=msFieldDict, inplace=True) self.Attributes['Log'].append([datetime.now(), 'MS Assay field names have been mapped into NPC field names' ]) #remove fields inserted by ISATAB and only keep the fields we're interested in if assay == 'MS': limsFile = limsFile[['Sampling ID','Assay data name','Dilution','Run Order','Acquisition Date','Acquisition Time','Instrument','Chromatography','Ionisation','Batch','Sample batch','Plate','Well','Correction Batch','Detector']] else: limsFile = limsFile[['Sampling ID','Assay data name','Run Order','Acquisition Date','Acquisition Time','Instrument','Batch','Sample batch']] #self.Attributes['DataPath'] = limsFile['Data Path'][0] #merge the two fields 'Acquisition Date','Acquisition Time' into one field 'Acquired Time' #a few lines down we make sure 'Acquired Time' is a proper date/time field that pandas is happy with! limsFile['Acquired Time'] = limsFile[['Acquisition Date', 'Acquisition Time']].apply(lambda x: ' '.join(x), axis=1) limsFile.drop(['Acquisition Date', 'Acquisition Time'], axis=1, inplace=True) self.Attributes['Log'].append([datetime.now(), '\'Acquisition Date\', \'Acquisition Time\' read from ISATAB have been merged into \'Acquired Time\' and removed' ]) # retrieve the material role or Sample Type or Status of each sample in the assay # one way to do this is by merging the assay and study based on sample name! self.limsFile = pandas.merge(limsFile, subjectInfo, left_on='Sampling ID', right_on='Sample Name') # Remove duplicate columns (these will be appended with _x or _y) self.limsFile = removeDuplicateColumns(self.limsFile) # this is becuase when NMR metadata is read from raw data, it already contains a field 'Acquired Time' # remove this field so we don't confuse it with the one read from isatab # Log it! if any(self.sampleMetadata.columns.str.match('Acquired Time')): self.sampleMetadata.drop('Acquired Time', axis=1, inplace=True) self.Attributes['Log'].append( [datetime.now(), 'Acquired Time has been read from ISATAB instead of raw data']) # this is becuase when NMR metadata is read from raw data, it already contains a field 'Run Order' # remove this field so we don't confuse it with the one read from isatab if any(self.sampleMetadata.columns.str.match('Run Order')): self.sampleMetadata.drop('Run Order', axis=1, inplace=True) self.Attributes['Log'].append([datetime.now(), 'Run Order has been read from ISATAB instead of raw data']) # Prepare data self.sampleMetadata.loc[:, 'Sample Base Name'] = self.sampleMetadata['Sample File Name'] self.sampleMetadata.loc[:, 'Sample Base Name Normalised'] = self.sampleMetadata['Sample Base Name'].str.lower() # Enforce string type on 'Sampling ID' sampleIDmask = pandas.isnull(self.limsFile['Sampling ID']) == False self.limsFile.loc[sampleIDmask, 'Sampling ID'] = self.limsFile.loc[sampleIDmask, 'Sampling ID'].astype('str') self.limsFile.loc[:, 'Assay data name Normalised'] = self.limsFile['Assay data name'].str.lower() # Match limsFile to sampleMetdata for samples with data PRESENT self.sampleMetadata =
pandas.merge(self.limsFile,self.sampleMetadata, left_on='Assay data name Normalised', right_on='Sample Base Name Normalised', how='right', sort=False)
pandas.merge
from datetime import date from pprint import pprint from typing import List, Any, Union import pandas as pd from pandas import DataFrame import Common.Measures.TradingDateTimes.PyDateTimes as PyDays import Common.Readers.TickerNameList as PyTickers import Common.Readers.YahooTicker as PyTicker from Common.TimeSeries import AlphaVantageManager from Common.WebScrappers import YahooScrapper, FmpScrapper, StockRowScrapper from Common.Readers.YahooTicker import YahooTicker from Common.Readers.Engine import YahooFinancialEngine from Common.Readers.Engine.YahooFinanceEngine import YahooFinanceEngine from Common.Readers.Engine.FinVizEngine import FinVizEngine from Common.Readers import YahooPdrManager from Common.TechnicalIndicators.MovingAverageConvergenceDivergenceManager import MovingAverageConvergenceDivergenceManager from Common.TechnicalIndicators.AverageTrueRangeManager import AverageTrueRangeManager from Common.TechnicalIndicators import BollingerBandsManager from Common.TechnicalIndicators.RelativeStrengthIndexManager import RelativeStrengthIndexManager from Common.TechnicalIndicators.OnBalanceVolumeManager import OnBalanceVolumeManager from Common.TechnicalIndicators import SlopesManager from Common.TechnicalIndicators.RenkoManager import RenkoManager from Common.TechnicalIndicators.AverageDirectionalIndexManager import AverageDirectionalIndexManager from Common.PerformanceIndicators import SortinoRatioIndicator from Common.PerformanceIndicators.SharpeRatioIndicator import SharpeRatioIndicator from Common.PerformanceIndicators import MaximumDrawDownManager from Common.PerformanceIndicators.CumulativeAnnualGrowthRateIndicator import CumulativeAnnualGrowthRateIndicator from Common.PerformanceIndicators.CalmarRatioIndicator import CalmarRatioIndicator to_day: date = PyDays.DateTimeNow() to_day_s: str = to_day.strftime('%Y-%m-%d') ya_day: date = PyDays.DateTime52WeekAgo() ya_day_s: str = ya_day.strftime('%Y-%m-%d') alpha_key = "Data/alphavantage-key.txt" # extracting stock data (historical close price) for the stocks identified ticker_list = PyTickers.PortfolioDjiStocks() # ticker_list = PyTickers.NameList50() counter: int = 0 pdr_adjclose_df: DataFrame = pd.DataFrame() financial_df: DataFrame = pd.DataFrame() alpha_close_df: DataFrame = pd.DataFrame() drop_list: List[Union[str, Any]] = [] py_tickers: List[YahooTicker] = [] new_tickers = ticker_list yTicker = PyTicker.YahooTicker('NYSE', ticker_list[1], 26, 0) financeManager: YahooFinanceEngine = YahooFinanceEngine(yTicker) finVizManager: FinVizEngine = FinVizEngine(yTicker) financialManager: YahooFinancialEngine = YahooFinancialEngine(yTicker) yahooPdrManager: YahooPdrManager = YahooPdrManager(yTicker, ya_day, to_day) print('MACD') macdManager: MovingAverageConvergenceDivergenceManager = MovingAverageConvergenceDivergenceManager(yahooPdrManager.YahooData, ya_day, to_day) pprint(macdManager.IndicatorDf.tail().iloc[:, -5:]) print('ATR') atrManager: AverageTrueRangeManager = AverageTrueRangeManager(yahooPdrManager.YahooData, 20) pprint(atrManager.IndicatorDf.tail().iloc[:, -5:]) print('BollingerBands') babeManager: BollingerBandsManager = BollingerBandsManager(yahooPdrManager.YahooData) pprint(babeManager.IndicatorDf.tail().iloc[:, -5:]) print('RSI') rsiManager: RelativeStrengthIndexManager = RelativeStrengthIndexManager(yahooPdrManager.YahooData) pprint(rsiManager.IndicatorDf.tail().iloc[:, -5:]) print('OBV') obvManager: OnBalanceVolumeManager = OnBalanceVolumeManager(yahooPdrManager.YahooData) pprint(obvManager.IndicatorDf.head().iloc[:, -5:]) print('Slopes') slopesManager: SlopesManager = SlopesManager(yahooPdrManager.YahooData) pprint(slopesManager.IndicatorDf.head().iloc[:, -5:]) print('Renko') renkoManager: RenkoManager = RenkoManager(yahooPdrManager.YahooData) pprint(renkoManager.IndicatorDf.head().iloc[:, -5:]) print('ADX') adxManager: AverageDirectionalIndexManager = AverageDirectionalIndexManager(yahooPdrManager.YahooData) pprint(adxManager.IndicatorDf.tail().iloc[:, -5:]) print('SortinoRatio') sortinoRatioManage: SortinoRatioIndicator = SortinoRatioIndicator(yahooPdrManager.YahooData) print(sortinoRatioManage.KPIdf) print('SharpeRatio') sharpeRatioManager: SharpeRatioIndicator = SharpeRatioIndicator(yahooPdrManager.YahooData) print(sharpeRatioManager.KPIdf) print('MaximumDrawDown') mddManager: MaximumDrawDownManager = MaximumDrawDownManager(yahooPdrManager.YahooData) print(mddManager.KPIdf) print('CumulativeAnnualGrowthRate') cagrManager: CumulativeAnnualGrowthRateIndicator = CumulativeAnnualGrowthRateIndicator(yahooPdrManager.YahooData) print(cagrManager.KPIdf) print('CalmarRatio') crManager: CalmarRatioIndicator = CalmarRatioIndicator(yahooPdrManager.YahooData) print(crManager.KPIdf) avManager: AlphaVantageManager = AlphaVantageManager(alpha_key, yTicker) yahooScrapper: YahooScrapper = YahooScrapper(yTicker) pprint(yahooScrapper.BalanceSheetUrl) pprint(yahooScrapper.CashFlowUrl) pprint(yahooScrapper.FinancialUrl) pprint(yahooScrapper.KeyStatsUrl) fmpScrapper: FmpScrapper = FmpScrapper(yTicker) pprint(fmpScrapper.BalanceSheetUrl) pprint(fmpScrapper.CashFlowUrl) pprint(fmpScrapper.FinancialUrl) pprint(fmpScrapper.KeyStatsUrl) pprint(fmpScrapper.IncomeUrl) stockRowScrapper: StockRowScrapper = StockRowScrapper(yTicker) pprint(stockRowScrapper.BalanceSheetUrl) pprint(stockRowScrapper.BalanceSheetCsv) # removing stocks whose data has been extracted from the ticker list while len(new_tickers) != 0 and counter <= 5: new_tickers = [j for j in new_tickers if j not in drop_list] for new_ticker in new_tickers: try: y_ticker = PyTicker.YahooTicker('NYSE', new_ticker, 52, 0) # pdr # pdr_df = get_data_yahoo(new_ticker, ya_day, to_day) # pdr_df.dropna(inplace=True) # pdr_df = getPdrDataFrame(new_ticker, ya_day, to_day) # pdr_df = y_ticker.PdrDf # pdr_adjclose_df[new_ticker] = pdr_df["Adj Close"] pdr_adjclose_df[new_ticker] = y_ticker.PdrDf["Adj Close"] # yahoo financial # new_financial: YahooFinancials = YahooFinancials(new_ticker) # new_financial: YahooFinancials = getYfDic(new_ticker) # new_financial: YahooFinancials = y_ticker.FinancialDf # new_dic = new_financial.get_historical_price_data(ya_day_s, to_day_s, "daily")[new_ticker] # new_dic = y_ticker.FinancialDf.get_historical_price_data(ya_day_s, to_day_s, "daily")[new_ticker] fm = YahooFinancialEngine(y_ticker) new_dic_field = fm.GetDailyHistoricalDataPrices(ya_day, to_day) new_data_frame =
pd.DataFrame(new_dic_field)
pandas.DataFrame
from collections import OrderedDict import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike import pandas as pd from pandas import Index, MultiIndex, date_range import pandas.util.testing as tm def test_constructor_single_level(): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], codes=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(): msg = "non-zero number of levels/codes" with pytest.raises(ValueError, match=msg): MultiIndex(levels=[], codes=[]) msg = "Must pass both levels and codes" with pytest.raises(TypeError, match=msg): MultiIndex(levels=[]) with pytest.raises(TypeError, match=msg): MultiIndex(codes=[]) def test_constructor_nonhashable_names(): # GH 20527 levels = [[1, 2], ['one', 'two']] codes = [[0, 0, 1, 1], [0, 1, 0, 1]] names = (['foo'], ['bar']) msg = r"MultiIndex\.name must be a hashable type" with pytest.raises(TypeError, match=msg): MultiIndex(levels=levels, codes=codes, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] with pytest.raises(TypeError, match=msg): mi.rename(names=renamed) # With .set_names() with pytest.raises(TypeError, match=msg): mi.set_names(names=renamed) def test_constructor_mismatched_codes_levels(idx): codes = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] msg = "Length of levels and codes must be the same" with pytest.raises(ValueError, match=msg): MultiIndex(levels=levels, codes=codes) length_error = (r"On level 0, code max \(3\) >= length of level \(1\)\." " NOTE: this index is in an inconsistent state") label_error = r"Unequal code lengths: \[4, 2\]" code_value_error = r"On level 0, code value \(-2\) < -1" # important to check that it's looking at the right thing. with pytest.raises(ValueError, match=length_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, 1, 2, 3], [0, 3, 4, 1]]) with pytest.raises(ValueError, match=label_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, 0, 0, 0], [0, 0]]) # external API with pytest.raises(ValueError, match=length_error): idx.copy().set_levels([['a'], ['b']]) with pytest.raises(ValueError, match=label_error): idx.copy().set_codes([[0, 0, 0, 0], [0, 0]]) # test set_codes with verify_integrity=False # the setting should not raise any value error idx.copy().set_codes(codes=[[0, 0, 0, 0], [0, 0]], verify_integrity=False) # code value smaller than -1 with pytest.raises(ValueError, match=code_value_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, -2], [0, 0]]) def test_na_levels(): # GH26408 # test if codes are re-assigned value -1 for levels # with mising values (NaN, NaT, None) result = MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[0, -1, 1, 2, 3, 4]]) expected = MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[-1, -1, -1, -1, 3, 4]]) tm.assert_index_equal(result, expected) result = MultiIndex(levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[0, -1, 1, 2, 3, 4]]) expected = MultiIndex(levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[-1, -1, 1, -1, 3, -1]]) tm.assert_index_equal(result, expected) # verify set_levels and set_codes result = MultiIndex( levels=[[1, 2, 3, 4, 5]], codes=[[0, -1, 1, 2, 3, 4]]).set_levels( [[np.nan, 's', pd.NaT, 128, None]]) tm.assert_index_equal(result, expected) result = MultiIndex( levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[1, 2, 2, 2, 2, 2]]).set_codes( [[0, -1, 1, 2, 3, 4]]) tm.assert_index_equal(result, expected) def test_labels_deprecated(idx): # GH23752 with tm.assert_produces_warning(FutureWarning): MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) with tm.assert_produces_warning(FutureWarning): idx.labels def test_copy_in_constructor(): levels = np.array(["a", "b", "c"]) codes = np.array([1, 1, 2, 0, 0, 1, 1]) val = codes[0] mi = MultiIndex(levels=[levels, levels], codes=[codes, codes], copy=True) assert mi.codes[0][0] == val codes[0] = 15 assert mi.codes[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val # ---------------------------------------------------------------------------- # from_arrays # ---------------------------------------------------------------------------- def test_from_arrays(idx): arrays = [np.asarray(lev).take(level_codes) for lev, level_codes in zip(idx.levels, idx.codes)] # list of arrays as input result = MultiIndex.from_arrays(arrays, names=idx.names) tm.assert_index_equal(result, idx) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(idx): # GH 18434 arrays = [np.asarray(lev).take(level_codes) for lev, level_codes in zip(idx.levels, idx.codes)] # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=idx.names) tm.assert_index_equal(result, idx) # invalid iterator input msg = "Input must be a list / sequence of array-likes." with pytest.raises(TypeError, match=msg): MultiIndex.from_arrays(0) def test_from_arrays_tuples(idx): arrays = tuple(tuple(np.asarray(lev).take(level_codes)) for lev, level_codes in zip(idx.levels, idx.codes)) # tuple of tuples as input result = MultiIndex.from_arrays(arrays, names=idx.names) tm.assert_index_equal(result, idx) def test_from_arrays_index_series_datetimetz(): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2)
tm.assert_index_equal(result, result2)
pandas.util.testing.assert_index_equal
import pandas as pd data =
pd.read_csv("2018_Central_Park_Squirrel_Census_-_Squirrel_Data.csv")
pandas.read_csv
from myutils.utils import getConnection, cronlog import pandas as pd import numpy as np import datetime import requests class TestRequest: def __init__(self, url, method='GET', META=None, postdata=None): self.method = method u = url.split('?') self.path_info = u[0] self.META = META or {} self.GET = {} if len(u)>1: for x in u[1].split('&'): y = x.split('=') if len(y)==1: self.GET[x] = '' else: self.GET[y[0]] = y[1] self.PUT = postdata def get_full_path(self): return url conn, cur = getConnection() if False: s = """ DROP TABLE IF EXISTS price_function; CREATE TABLE price_function ( id smallserial PRIMARY KEY , date DATE NOT NULL , slope FLOAT(8) NOT NULL , intercept FLOAT(8) NOT NULL , r FLOAT(8) NOT NULL , created_on TIMESTAMP NOT NULL ); """ cur.execute(s) conn.commit() if False: s = """ INSERT INTO price_function (date, slope, intercept, r, created_on) VALUES ('2020-07-05', 3, 2.8, 0.9, CURRENT_TIMESTAMP), ('2020-07-04', 2., 2.9, 0.7, CURRENT_TIMESTAMP); """ cur.execute(s) conn.commit() s = 'select * from price_function;' cur.execute(s) list_tables = cur.fetchall() print(list_tables) if False: conn.commit() s = """ DROP TABLE IF EXISTS price_forecast; CREATE TABLE price_forecast ( id serial PRIMARY KEY , datetime TIMESTAMP NOT NULL , demand Float(8) NOT NULL , solar Float(8) NOT NULL , wind Float(8) NOT NULL , price Float(4) NOT NULL , created_on TIMESTAMP NOT NULL ); """ cur.execute(s) conn.commit() if False: s = """ DROP TABLE IF EXISTS testing; CREATE TABLE testing ( id serial PRIMARY KEY , created_on TIMESTAMP NOT NULL ); """ cur.execute(s) conn.commit() if False: conn.commit() s = """ DROP TABLE IF EXISTS sm_periods; CREATE TABLE sm_periods ( period_id serial PRIMARY KEY , period Char(16) not null , local_date Date not null , local_time char(5) not null , timezone_adj smallint not null ); """ cur.execute(s) conn.commit() df_idx = pd.date_range(datetime.datetime(2019,1,1), datetime.datetime(2020,10,1), freq='30min') df_idx_local = df_idx.tz_localize('UTC').tz_convert('Europe/London') df = pd.DataFrame(index=df_idx) df['period'] = df_idx.strftime('%Y-%m-%d %H:%M') df['local_date'] = df_idx_local.strftime('%Y-%m-%d') df['local_time'] = df_idx_local.strftime('%H:%M') df['timezone_adj'] = df_idx_local.strftime('%z').str[0:3].astype(int) df.reset_index(inplace=True) start = """ INSERT INTO sm_periods (period_id, period, local_date, local_time, timezone_adj) VALUES """ s="" for i, j in df.iterrows(): s+= "({},'{}', '{}', '{}', {}),".format(i, j['period'], j['local_date'],j['local_time'], j['timezone_adj']) if (i+1)%1000==0: print('done: {}'.format(i+1)) cur.execute(start + s[:-1] + ';') conn.commit() s="" print('done: {}'.format(i+1)) cur.execute(start + s[:-1] + ';') conn.commit() s="" if False: conn.commit() s = """ DROP TABLE IF EXISTS sm_accounts; CREATE TABLE sm_accounts ( account_id serial PRIMARY KEY , type_id smallint not null , first_period varChar(16) not null , last_period varChar(16) not null , last_updated TIMESTAMP not null , hash varChar(64) not null , region varChar(1) , source_id smallint not null ); """ cur.execute(s) conn.commit() if False: conn.commit() s = """ DROP TABLE IF EXISTS sm_quantity; CREATE TABLE sm_quantity ( id serial PRIMARY KEY , account_id integer not null , period_id integer not null , quantity float(8) not null ); """ cur.execute(s) conn.commit() if False: conn.commit() s = """ DROP TABLE IF EXISTS sm_hh_variables; CREATE TABLE sm_hh_variables ( var_id serial PRIMARY KEY , var_name varchar(32) not null , var_type varchar(32)); """ cur.execute(s) conn.commit() if False: conn.commit() s = """ DROP TABLE IF EXISTS sm_d_variables; CREATE TABLE sm_d_variables ( var_id serial PRIMARY KEY , var_name varchar(32) not null , var_type varchar(32)); """ cur.execute(s) conn.commit() if False: # Creates new hh tariff variables in sm_hh_variables and sm_tariffs product = 'AGILE-OUTGOING-19-05-13' type_id=2 s = f""" delete from sm_hh_variables where var_name like '{product}%'; delete from sm_tariffs where product='{product}'; """ cur.execute(s) conn.commit() for region in ['A','B','C','D','E','F','G','H','J','K','L','M','N','P']: s = f""" INSERT INTO sm_hh_variables (var_name) values ('{product}-{region}'); """ cur.execute(s) conn.commit() s = f"select var_id from sm_hh_variables where var_name='{product}-{region}';" cur.execute(s) var_id = cur.fetchone()[0] conn.commit() s = f""" INSERT INTO sm_tariffs (type_id, product, region, granularity_id, var_id) values ({type_id}, '{product}', '{region}', 0, {var_id}); """ cur.execute(s) conn.commit() START='201901010000' if False: #Inserts initial prices into hh tariff variables import requests idx = pd.date_range(START, '202101010000', freq='30T') df = pd.DataFrame() df['timestamp'] = idx df = pd.DataFrame(idx, columns=['timestamp']) for region in ['B','C','D','E','F','G','H','J','K','L','M','N','P']: tariff = 'AGILE-OUTGOING-19-05-13' url = ('https://api.octopus.energy/v1/products/{}/' + 'electricity-tariffs/E-1R-{}-{}/standard-unit-rates/' + '?period_from={}Z&period_to={}Z&page_size=15000') url = url.format(tariff, tariff, region, df.timestamp.iloc[0].strftime('%Y-%m-%dT%H:%M'), df.timestamp.iloc[-1].strftime('%Y-%m-%dT%H:%M')) r = requests.get(url) dfs = [] dfs.append(pd.DataFrame(r.json()['results'])[['valid_from','value_exc_vat']]) while r.json()['next'] is not None: r = requests.get(r.json()['next']) dfs.append(pd.DataFrame(r.json()['results'])[['valid_from','value_exc_vat']]) if len(dfs)>30: raise Exception dfs = pd.concat(dfs) dfs['timestamp'] = pd.DatetimeIndex(dfs.valid_from.str[:-1]) dfs = df.merge(right=dfs, how='left', on='timestamp') dfs = dfs[dfs.value_exc_vat.notna()] s = f"select var_id from sm_hh_variables where var_name='{tariff}-{region}';" cur.execute(s) var_id = cur.fetchone()[0] conn.commit() print(f'{var_id} {tariff} {region}' ) s = """ delete from sm_hh_variable_vals where var_id={}; """ s = s.format(var_id) cur.execute(s) conn.commit() s = """ INSERT INTO sm_hh_variable_vals (var_id, period_id, value) values """ s = s.format(var_id) for i, j in dfs.iterrows(): s+= " ({}, {}, {}),".format(var_id, i, j.value_exc_vat) s = s[:-1] + ';' cur.execute(s) conn.commit() if False: conn.commit() s = """ DROP TABLE IF EXISTS sm_hh_variable_vals; CREATE TABLE sm_hh_variable_vals ( id serial primary key , var_id integer not null , period_id integer not null , value float(8) not null); """ cur.execute(s) conn.commit() if False: conn.commit() s = """ DROP TABLE IF EXISTS sm_d_variable_vals; CREATE TABLE sm_d_variable_vals ( id serial primary key , var_id integer not null , local_date date not null , value float(8) not null); """ cur.execute(s) conn.commit() from myutils.utils import loadDataFromDb if False: #Creates daily tracker variables product = 'SILVER-2017-1' for region in ['A','B','C','D','E','F','G','H','J','K','L','M','N','P']: s = f""" insert into sm_d_variables (var_name) values ('{product}-{region}') returning var_id; """ var_id = loadDataFromDb(s)[0][0] print(var_id) s = f""" insert into sm_tariffs (product, region, var_id, type_id, granularity_id) values ('{product}', '{region}', {var_id}, 1, 1); """ loadDataFromDb(s) if False: product = 'SILVER-2017-1' for region in ['A','B','C','D','E','F','G','H','J','K','L','M','N','P']: s = f"select var_id from sm_variables where product='{product}' and region='{region}' ;" var_id = loadDataFromDb(s)[0][0] r = requests.get(f'https://octopus.energy/api/v1/tracker/G-1R-SILVER-2017-1-{region}/daily/past/540/1/') dates = [x['date'] for x in r.json()['periods']] prices = [x['unit_rate'] for x in r.json()['periods']] d = pd.Series(prices, index=dates) d = d[:datetime.date.today().strftime('%Y-%m-%d')] d = d/1.05 d = d.round(2) s = 'insert into sm_d_variable_vals (var_id, local_date, value) values ' for i, j in d.iteritems(): s+= f"({var_id}, '{i}', {j})," s = s[:-1]+';' loadDataFromDb(s) print(region) if False: conn.commit() import requests idx = pd.date_range(START, '202101010000', freq='30T') df = pd.DataFrame() df['timestamp'] = idx df =
pd.DataFrame(idx, columns=['timestamp'])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt # four representative days in each season winter_day = '01-15' spring_day = '04-15' summer_day = '07-15' fall_day = '10-15' # define a function to plot household profile and battery storage level def plot_4days(mode, tmy_code, utility, year, c_cost): df = pd.read_csv('/Users/jiajiazheng/Box/Suh\'s lab/GSRs/Jiajia/3-Residential Solar-plus-storage/Results/' 'optimized/minCost_%(mode)s_%(year)s_cc_%(c_cost)s/' 'optimal_minCost_%(tmy_code)s_%(utility)s_%(year)s_cc_%(c_cost)s.csv' % {'year': year, 'mode': mode, 'tmy_code': tmy_code, 'utility': utility, 'c_cost': c_cost}, index_col=0) df.rename(columns={'Time': 'Hour'}, inplace=True) s = df['Hour'].str.split() df['Hour'] = pd.to_datetime(s.str[0], format="%m/%d") + pd.to_timedelta(s.str[1].str.split(':').str[0] + ' hours') df['Hour'] = df['Hour'].dt.strftime('%m-%d %H:%M:%S') df['Hour'] = str(year) + '-' + df['Hour'] df['Hour'] = pd.to_datetime(df['Hour']) df['batt_char_disc'] = np.where(df['p_char'] == 0, df['p_disc'], df['p_char'] + df['e_loss']) # curve of battery charging and discharging year = str(year) # subset the data frame to each of the four representative days df_spring = df[(df['Hour'] >= pd.to_datetime(year + '-' + spring_day + ' ' + '00:00:00')) & (df['Hour'] <= pd.to_datetime(year + '-' + spring_day + ' ' + '23:00:00'))] df_summer = df[(df['Hour'] >= pd.to_datetime(year + '-' + summer_day + ' ' + '00:00:00')) & (df['Hour'] <=
pd.to_datetime(year + '-' + summer_day + ' ' + '23:00:00')
pandas.to_datetime
from numpy import dtype import pandas as pd import logging import json from nestshredder.pyshred_core import _shred_recursive, pad_dict_list from nestshredder.pyshred_util import check_arguments def shred_json(path_or_buf,target_folder_path,object_name,batch_ref=None,orient=None,dtype=None,convert_axes=None,convert_dates=True,keep_default_dates=True,precise_float=False,date_unit=None,encoding=None,encoding_errors='strict',lines=False,chunksize=None,compression='infer',nrows=None,storage_options=None,output_method=None): check_arguments(target_folder_path=target_folder_path,object_name=object_name,batch_ref=batch_ref) try: json_df = pd.read_json(path_or_buf,orient=orient,dtype=dtype,convert_axes=convert_axes,convert_dates=convert_dates,keep_default_dates=keep_default_dates,precise_float=precise_float,date_unit=date_unit,encoding=encoding,encoding_errors=encoding_errors,lines=lines,chunksize=chunksize,compression=compression,nrows=nrows,storage_options=storage_options) shred_outcome = _shred_recursive(json_df,target_folder_path,object_name,object_name,object_name,batch_ref) except Exception as e: if str(e) == 'If using all scalar values, you must pass an index': new_list = [] try: with open(path_or_buf) as json_file: data = json.load(json_file) new_list.append(data) json_df = pd.DataFrame.from_dict(new_list) shred_outcome = _shred_recursive(json_df,target_folder_path,object_name,object_name,object_name,batch_ref,output_method) except Exception as e: if str(e)[0:12] == 'expected str': path_or_buf.seek(0) data = json.loads(path_or_buf.read()) new_list.append(data) json_df = pd.DataFrame.from_dict(new_list) shred_outcome = _shred_recursive(json_df,target_folder_path,object_name,object_name,object_name,batch_ref,output_method) else: shred_outcome = str(e) logging.error(shred_outcome) return elif str(e) == 'All arrays must be of the same length': new_list = [] try: with open(path_or_buf) as json_file: data = json.load(json_file) new_list.append(data) padded_list = pad_dict_list(new_list,'n/a') json_df = pd.DataFrame.from_dict(padded_list) shred_outcome = _shred_recursive(json_df,target_folder_path,object_name,object_name,object_name,batch_ref,output_method) except Exception as e: # logging.info(str(e)[0:12]) if str(e)[0:12] == 'expected str': path_or_buf.seek(0) data = json.loads(path_or_buf.read()) new_list.append(data) json_df =
pd.DataFrame.from_dict(new_list)
pandas.DataFrame.from_dict
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] =
pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce')
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # <b>Python Scraping of Book Information</b> # In[1]: get_ipython().system('pip install bs4') # In[2]: get_ipython().system('pip install splinter') # In[3]: get_ipython().system('pip install webdriver_manager') # In[1]: # Setup splinter from splinter import Browser from bs4 import BeautifulSoup from webdriver_manager.chrome import ChromeDriverManager import time import pandas as pd import requests # In[ ]: # In[42]: # executable_path = {'executable_path': ChromeDriverManager().install()} # browser = Browser('chrome', **executable_path, headless=False) # url = 'http://books.toscrape.com/' # browser.visit(url) # for x in range(50): # html = browser.html # soup = BeautifulSoup(html, 'html.parser') # articles = soup.find_all('article', class_='product_pod') # for article in articles: # h3 = article.find("h3") # link = h3.find("a") # href = link["href"] # title = link["title"] # print("----------") # print(title) # url = "http://books.toscrape.com/" + href # browser.visit(url) # try: # current_page = current_page + 1 # web_page_url = f"https://books.toscrape.com/catalogue/category/books_1/page-{current_page}.html" # browser.visit(web_page_url) # browser.links.find_by_partial_text("next").click() # print('It worked') # except: # print("Scraping Complete") # browser.quit() # In[57]: # executable_path = {'executable_path': ChromeDriverManager().install()} # browser = Browser('chrome', **executable_path, headless=False) # pageNumber= pageNumber + 1 # url = 'http://books.toscrape.com/' # pageUrl = f'http://books.toscrape.com/catalogue/page-{pageNumber}.html' # browser.visit(url) # html = browser.html # soup = BeautifulSoup(html, 'html.parser') # for x in range(20): # html = browser.html # soup = BeautifulSoup(html, 'html.parser') # articles = soup.find_all('article', class_='product_pod') # for article in articles: # h3 = article.find("h3") # link = h3.find("a") # href = link["href"] # title = link["title"] # print("----------") # print(title) # #time.sleep(1) # url = "http://books.toscrape.com/" + href # browser.visit(url) # try: # browser.visit(pageUrl) # browser.links.find_by_partial_text("next").click() # except: # print("Scraping Complete") # browser.quit() # In[2]: #Working through each book and page executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) pageUrl="" for i in range(1,3): if(i == 1): pageUrl = f"https://books.toscrape.com/index.html" else: pageUrl = f'https://books.toscrape.com/catalogue/page-{i}.html' print(pageUrl) browser.visit(pageUrl) html = browser.html soup = BeautifulSoup(html, 'html.parser') articles = soup.find_all('article', class_='product_pod') for article in articles: h3 = article.find("h3") link = h3.find("a") href = link["href"] title = link["title"] print("----------") print(title) #time.sleep(1) url = "http://books.toscrape.com/" + href browser.visit(url) browser.quit() # In[97]: #Proof of concept using books.toscrape.com executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) pageUrl="" for i in range(1,2): if(i == 1): pageUrl = f"https://books.toscrape.com/index.html" else: pageUrl = f'https://books.toscrape.com/catalogue/page-{i}.html' print(pageUrl) browser.visit(pageUrl) html = browser.html soup = BeautifulSoup(html, 'html.parser') articles = soup.find_all('article', class_='product_pod') for article in articles: h3 = article.find("h3") link = h3.find("a") href = link["href"] title = link["title"] print("----------") print(title) #time.sleep(1) url = "http://books.toscrape.com/" + href browser.visit(url) res=requests.get(url) soup = BeautifulSoup(res.content,'lxml') table = soup.find_all('table')[0] df = pd.read_html(str(table))[0] print(df) browser.quit() # In[20]: executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) pageUrl="" table_of_tables = [] for i in list(50,75,100): table_on_page = [] if(i == 25): pageUrl = f"https://books.toscrape.com/index.html" else: pageUrl = f'https://books.toscrape.com/catalogue/page-{i}.html' print(pageUrl) browser.visit(pageUrl) html = browser.html soup = BeautifulSoup(html, 'html.parser') articles = soup.find_all('article', class_='product_pod') for article in articles: h3 = article.find("h3") link = h3.find("a") href = link["href"] title = link["title"] print("----------") print(title) #time.sleep(1) url = "http://books.toscrape.com/" + href browser.visit(url) res=requests.get(url) soup = BeautifulSoup(res.content,'lxml') table = soup.find_all('table')[0] table_on_page.append(table) # table_of_tables.append(table_on_page) df = pd.read_html(str(table))[0] print(df) browser.quit() # In[61]: # In[48]: df = pd.DataFrame(table_on_page) df.to_csv('books2scrape.csv') # In[52]: df_to_clean=pd.read_csv('books2scrape.csv') # In[64]: df_columns_cleaned = df_to_clean.drop(columns=['Unnamed: 0','0','2','4','6','8','10','12','14']) # In[71]: df_columns_cleaned.columns # In[66]: df_columns_cleaned.head() # In[78]: html_chars = ["<tr>","\n","</th>","<th>","<td>","</td>", "</tr>"] for char in html_chars: df_columns_cleaned['1'] = df_columns_cleaned['1'].str.replace(char, ' ') df_columns_cleaned['3'] = df_columns_cleaned['3'].str.replace(char, ' ') df_columns_cleaned['5'] = df_columns_cleaned['5'].str.replace(char, ' ') df_columns_cleaned['7'] = df_columns_cleaned['7'].str.replace(char, ' ') df_columns_cleaned['9'] = df_columns_cleaned['9'].str.replace(char, ' ') df_columns_cleaned['11'] = df_columns_cleaned['11'].str.replace(char, ' ') df_columns_cleaned['13'] = df_columns_cleaned['13'].str.replace(char, ' ') # In[79]: df_columns_cleaned # In[290]: # executable_path = {'executable_path': ChromeDriverManager().install()} # browser = Browser('chrome', **executable_path, headless=False) # pageUrl="" # table_of_tables = [] # for i in range(1): # table_on_page = [] # pageUrl = f'ttps://www.hpb.com/books/best-sellers/784-classics?&size=350&&&' # print(pageUrl) # browser.visit(pageUrl) # html = browser.html # soup = BeautifulSoup(html, 'html.parser') # articles = soup.find_all('article', class_='product_pod') # for article in articles: # time.sleep(randint(1,3)) # section = article.find("section") # link = section.find("a") # href = link["href"] # print(href) # title = link["title"] # print("----------") # print(title) # time.sleep(randint(1,3)) # url = href # browser.visit(url) # res=requests.get(url) # time.sleep(randint(3,5)) # soup = BeautifulSoup(res.content,'lxml') # table = soup.find_all('table')[0] # table_on_page.append(table) # # table_of_tables.append(table_on_page) # df = pd.read_html(str(table))[0] # print(df) # browser.quit() # In[198]: #https://stackoverflow.com/questions/31064981/python3-error-initial-value-must-be-str-or-none-with-stringio import io # In[267]: #grab data from https://citylights.com/greek-roman/ import random executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) table_of_data = [] pageUrl="" for i in range(1,7): data_on_page = [] if(i == 1): pageUrl = f"https://citylights.com/greek-roman/" else: pageUrl = f'https://citylights.com/greek-roman/page/{i}/' print(pageUrl) time.sleep(1) browser.visit(pageUrl) html = browser.html soup = BeautifulSoup(html, 'html.parser') #https://stackoverflow.com/questions/52842778/find-partial-class-names-in-spans-with-beautiful-soup articles = soup.find_all('li', attrs={'class': lambda e: e.startswith('product type-product post') if e else False}) for article in articles: time.sleep(1) link = article.find('a') href = link["href"] print("----------") print(href) url = href browser.visit(url) time.sleep(randint(1,2)) res=requests.get(url) soup = BeautifulSoup(res.content,'lxml') data = soup.find_all('div', attrs={'class': 'detail-text mb-50'})[0].get_text() data_on_page.append(data) table_of_data.append(data_on_page) df = pd.DataFrame(table_of_data)[0] print(data) browser.quit() # In[268]: df.to_csv('greek-roman.csv') # In[269]: df_greek_roman_to_clean=
pd.read_csv('greek-roman.csv')
pandas.read_csv
""" =================================================================================== Train distributed CV search with a logistic regression on the breast cancer dataset =================================================================================== In this example we optimize hyperparameters (C) for a logistic regression on the breast cancer dataset. This is a binary target. We use both grid search and randomized search. Here the core difference between skdist and sklearn is to use the sparkContext variable as an argument to the grid search and randomized search class instantiation. Under the hood, skdist will then broadcast the training data out to the executors for each param set, fit the estimator for each param set, return the cross validation score to the driver for each fit, and finally refit the model with the best param set back on the driver. The final estimators are then nearly identical to a fitted sklearn GridSearchCV or RandomizedSearchCV estimator as shown by looking at some of their methods and attributes. Finally, all spark objects are removed from the fitted skdist estimator objects so that these objects are pickle-able as shown. Here is a sample output run: -- Grid Search -- Best Score: 0.9925297825837328 Best C: 1.0 param_C mean_test_score 0 0.001 0.973818 1 0.01 0.982880 2 0.1 0.989827 3 1 0.992530 4 10 0.992010 5 100 0.990754 DistGridSearchCV(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False), param_grid={'C': [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]}, partitions='auto', preds=False, sc=None) -- Randomized Search -- Best Score: 0.9925297825837328 Best C: 1.0 param_C mean_test_score 3 0.01 0.982880 2 0.1 0.989827 4 1 0.992530 1 10 0.992010 0 100 0.990754 DistRandomizedSearchCV(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False), param_distributions={'C': [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]}, partitions='auto', preds=False, sc=None) """ print(__doc__) import pickle import pandas as pd import numpy as np from skdist.distribute.search import DistGridSearchCV, DistRandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.datasets import load_breast_cancer from pyspark.sql import SparkSession # spark session initialization spark = SparkSession.builder.getOrCreate() sc = spark.sparkContext # sklearn variables Cs = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0] cv = 5 n_iter = 5 scoring = "roc_auc" solver = "liblinear" # load sample data (binary target) data = load_breast_cancer() X = data["data"] y = data["target"] ### distributed grid search model = DistGridSearchCV( LogisticRegression(solver=solver), dict(C=Cs), sc, cv=cv, scoring=scoring ) # distributed fitting with spark model.fit(X, y) # predictions on the driver preds = model.predict(X) probs = model.predict_proba(X) # results print("-- Grid Search --") print("Best Score: {0}".format(model.best_score_)) print("Best C: {0}".format(model.best_estimator_.C)) result_data = pd.DataFrame(model.cv_results_)[["param_C", "mean_test_score"]] print(result_data.sort_values("param_C")) print(pickle.loads(pickle.dumps(model))) ### distributed randomized search param_dist = dict(C=[]) model = DistRandomizedSearchCV( LogisticRegression(solver=solver), dict(C=Cs), sc, cv=cv, scoring=scoring, n_iter=n_iter, ) # distributed fitting with spark model.fit(X, y) # predictions on the driver preds = model.predict(X) probs = model.predict_proba(X) # results print("-- Randomized Search --") print("Best Score: {0}".format(model.best_score_)) print("Best C: {0}".format(model.best_estimator_.C)) result_data =
pd.DataFrame(model.cv_results_)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Folium interact with GeoJSON data Examples: overlay another GeoJSON zipcode map to the original map Author: <NAME> """ import pandas as pd import folium def show_zipcode_map(zipcode_path, data, col): """ Interact zipcode GeoJSON data with other data set (house price or crime) and generate another layer of zipcode map onto the original map Parameters ---------- path : string URL or File path to GeoJSON zipcode data data : pandas dataframe The other data set to interact with (house price or crime) col : string The column name in dataset to bound zipcode with Return ---------- Save map as .html file return folium map """ # Generate original map zipcode = folium.Map(location=[data['lat'].mean(), data['long'].mean()], zoom_start=10) # Add zipcode map layer to orignial map zipcode.choropleth(geo_path=zipcode_path, data=data, columns=['zipcode', col], key_on='feature.properties.ZCTA5CE10', fill_color='OrRd', fill_opacity=0.5, line_opacity=0.2) zipcode.save('zipcode_' + col + '.html') return zipcode if __name__ == "__main__": """ Example of using show_zipcode_map function """ # Load King County house price data house_data = pd.read_csv("../Data/kc_house_data.csv", parse_dates=['date']) house_data['zipcode'] = house_data['zipcode'].astype(str) # Group data by zipcode and calculate the mean value in each zipcode zipcode_data =
pd.groupby(house_data, 'zipcode')
pandas.groupby
#!/usr/local/bin/python # -*- coding: utf-8 -*- # file: main.py import re import pandas as pd from os.path import isfile try: from .remarkuple import helper as h except: from remarkuple import helper as h from IPython.display import HTML try: from .isopsephy import greek_letters as letters from .isopsephy import isopsephy, unicode_isopsephy, to_roman, find_cumulative_indices except: from isopsephy import greek_letters as letters from isopsephy import isopsephy, unicode_isopsephy, to_roman, find_cumulative_indices __version__ = "0.0.1" booknames = { "40N": "Matthew", "41N": "Mark", "42N": "Luke", "43N": "John", "44N": "Acts of the Apostles", "45N": "Romans", "46N": "1 Corinthians", "47N": "2 Corinthians", "48N": "Galatians", "49N": "Ephesians", "50N": "Philippians", "51N": "Colossians", "52N": "1 Thessalonians", "53N": "2 Thessalonians", "54N": "1 Timothy", "55N": "2 Timothy", "56N": "Titus", "57N": "Philemon", "58N": "Hebrews", "59N": "James", "60N": "1 Peter", "61N": "2 Peter", "62N": "1 John", "63N": "2 John", "64N": "3 John", "65N": "Jude", "66N": "Revelation" } # will be transformed to pandas DataFrame textus_vocabulary = {} sletters = ''.join(letters) c = '([%s]+) ([^%s]+)' % (sletters, sletters) #c = "([%s]+.*?.-.{3})" % sletters regex_word_strong_morph = re.compile(c) c = '([%s]+)' % sletters regex_word_isopsephy = re.compile(c) c = '{VAR1: ([%s0-9A-Z\- ]+)}' % sletters regex_variation1 = re.compile(c) c = '{VAR2: ([%s0-9A-Z\- ]+)}' % sletters regex_variation2 = re.compile(c) regex_word_strong_morph_brackets = re.compile('\[(.*)\]') textus_receptus_original_dir = "data_original/textus_receptus/" textus_receptus_processed_dir = "data_processed/textus_receptus/" #letters = "αΑβΒγΓδΔεΕϛϚϜϝζΖηΗθΘιΙυϒYκΚϡϠͲͳλΛωΩμΜτΤνΝξΞοΟσΣϹϲςπΠχΧϙϘϞϟρΡψΨφΦ" #c = '([%s]+) ([^%s]+)' % (letters, letters) #c = "([αΑβΒγΓδΔεΕϛϚϜϝζΖηΗθΘιΙυϒYκΚϡϠͲͳλΛωΩμΜτΤνΝξΞοΟσΣϹϲςπΠχΧϙϘϞϟρΡψΨφΦ]+.*?.-.{3})" #c = u'([Ͱ-ϡ]+) ([A-Z0-9-]+)(?: ([A-Z0-9-]+))? ([A-Z0-9-]+)(?=\\s|$)' def load_dataframe(filename): global textus_vocabulary csvOriginalFileName = textus_receptus_original_dir+filename csvProcessedFileName = textus_receptus_processed_dir+filename if isfile(csvProcessedFileName + ".csv"): print ("Retrieving data from local csv copy...") textus_vocabulary = pd.read_csv(csvProcessedFileName + "_dict.csv") df =
pd.read_csv(csvProcessedFileName + ".csv")
pandas.read_csv
import numpy as np import pandas as pd # If you import here, you can use it. from sklearn.linear_model import LogisticRegression, HuberRegressor, LinearRegression,Ridge,Perceptron from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVC, SVR from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier, GradientBoostingRegressor, AdaBoostRegressor from sklearn.neural_network import MLPRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.gaussian_process import GaussianProcessRegressor class ComplementNa(): def _fillna_X_and_make_X_predict(self, data, col): """Supplement explanatory variables with missing values once with the average value of the column. data : (pandas) input data col : columns having NaN, and this column row predict other columns.""" data_columns = data.columns y = data.loc[:,[col]] X = data.drop(col, axis=1) X.fillna(X.mean(), inplace=True) data_fillna_X = pd.concat([X,y], axis=1) data_fillna_X_for_training = data_fillna_X.loc[:, data_columns] # Sort in original column order y_ = y.iloc[:,0] # reshape # Extract rows with missing values in the objective variable from the newly complemented data row_y_is_na = data_fillna_X[y_.isnull()] X_fillna_for_predict = row_y_is_na.drop(col, axis=1) return data_fillna_X_for_training, X_fillna_for_predict def _X_y_split(self, data, col): """ Divide training data with missing values into explanatory variables and objective variables. data : (pandas) input data col: columns having NaN, and this column row predict other columns. """ y = data.loc[:, col] # The data in the specified column having NaN data_dropna_having_y = data[~y.isnull()] # Data with deleted rows with missing values in specified column X_train = data_dropna_having_y.drop(col, axis = 1) # Data excluding specified columns (candidate variables for training data) y_train = data_dropna_having_y.loc[:, col] # Specified column (objective variable of training data) return X_train, y_train.values # Training data def _X_y_split_dropna_all(self, data, col): """ Of the original data that is not supplemented with missing values, data with no missing values is divided into explanatory variables and objective variables as training data. data : (pandas)input data i : columns having NaN, and this column row predict other columns. """ data_dropna_all = data[~data.isnull().any(axis=1)] # Data with no missing values X_train = data_dropna_all.drop(i, axis = 1) # Data excluding specified columns (candidate variables for training data) y_train = data_dropna_all.iloc[:, i] # Specified column (objective variable of training data) return X_train, y_train.values # Training data def _algorithm_to_same_shape(self, algorithm): """ Regardless of what type of algorithm comes in, change to the pattern 4. 1: 'RandomForest' 2: ['RandomForest',{'n_estimators':1}] 3 : [['RandomForestRegressor'], ['RandomForestClassifier']] 4 : [['RandomForestRegressor',{'n_estimators':1}], ['RandomForestClassifier', {}]] algorithm : (list or str) object of pattern 1~4 """ # Judgment based on the type of np.array if np.array(algorithm).shape==() and np.array(algorithm[1]).shape==(): # For pattern 1 # for making mistake if 'Regressor' in algorithm: algorithm = algorithm.replace('Regressor','') elif 'Classifier' in algorithm: algorithm = algorithm.replace('Classifier','') algorithm_ = [[algorithm+'Regressor',{}],[algorithm+'Classifier',{}]] elif np.array(algorithm).shape==(2,) and np.array(algorithm[1]).shape==(): # For pattern 2 if 'Regressor' in algorithm[0]: algorithm[0] = algorithm[0].replace('Regressor','') elif 'Classifier' in algorithm[0]: algorithm[0] = algorithm[0].replace('Classifier','') algorithm_ = [[algorithm[0]+'Regressor',algorithm[1]],[algorithm[0]+'Classifier',algorithm[1]]] elif np.array(algorithm).shape==(2,1) and np.array(algorithm[1]).shape==(1,): # For pattern 3 # for making mistake to reverse if 'Regressor' in algorithm[1] and 'Classifier' in algorithm[0]: copy_algorithm = algorithm.copy() algorithm[0] = copy_algorithm[1] algorithm[1] = copy_algorithm[0] algorithm_ = [[algorithm[0], {}], algorithm[1],{}] elif np.array(algorithm).shape==(2,2) and np.array(algorithm[1]).shape==(2,): # For pattern 4 # for making mistake to reverse if 'Regressor' in algorithm[1][0] and 'Classifier' in algorithm[0][0]: copy_algorithm = algorithm.copy() algorithm[0] = copy_algorithm[1] algorithm[1] = copy_algorithm[0] algorithm_ = algorithm else: raise ValueError("algorithm shape is incorrect") return algorithm_ def _predict_na(self, X_train, y_train, X_predict, col, category_colnames, algorithm, scale=True): """ Data in nan columns is predicted other rows. if i columns data is category variable, using Classification. It is assumed that dummies variable is dropped all by preprocessing (if dummy variable is NaN, all variable dummied is 0). X_train : explanation variable for training. y_train : objective variable (column having nan). X_predict : nan data raws col : nan data (y) column number category_colnames : All categorical variable number. algorithm : (list) using algorithm shaped by _algorithm_to_same_shape. scale : (bool) Whether StandardScaler is using. """ # Classification if there is an explanatory variable in category_colnames_number, otherwise regression if col in category_colnames: module = algorithm[1][0] param = algorithm[1][1] model = eval(module + "(**param)") if scale: steps = [('scale', StandardScaler()), ('est', model)] model_c = Pipeline(steps=steps) else: model_c = model model_c.fit(X_train, y_train) predict_nan = model_c.predict(X_predict) else: # regression module = algorithm[0][0] param = algorithm[0][1] model = eval(module + "(**param)") if scale: steps = [('scale', StandardScaler()), ('est', model)] model_r = Pipeline(steps=steps) else: model_r = model model_r.fit(X_train, y_train) predict_nan = model_r.predict(X_predict) return predict_nan def complena(self, data, corr=None, category_colnames= 'self', algorithm=['RandomForest',{'n_estimators':100}], scale=True, decision_interpolation = True): """ data : (numpy or pandas) Input data corr : (numpy or pandas) Correlation coefficient of input data category_colnames: (list) Specify column name of categorical variable. algorithm : (list or str) specified using ML algorithm as follows pattern. Specify regressor and classifier. 1: 'RandomForest' 2: ['RandomForest',{'n_estimators':100}] 3 : [['RandomForestRegressor'], ['RandomForestClassifier']] 4 : [['RandomForestRegressor',{'n_estimators':10}], ['RandomForestClassifier', {}]] scale : (bool) True : pipeline of StandardScaler decision_interpolation : (True) Complement all missing values of explanatory variables and use them for all training data (False) Do not use data with missing values for explanatory variables, use only training data with no remaining missing values """ if category_colnames=='self' and hasattr(self, 'category_colnames'): category_colnames= self.category_colnames elif category_colnames=='self' and not hasattr(self, 'category_colnames'): category_colnames= [] # algorithm to same shape algorithm_ = self._algorithm_to_same_shape(algorithm) data = pd.DataFrame(data).copy() data_colnames = data.columns # Original data column order # Missing values and numeric column names for each column n_nan = data.isnull().sum(axis = 0) # Sort by most missing values number_of_nan = pd.DataFrame({"n_nan": n_nan}).T plus_n_nan_data =
pd.concat([data, number_of_nan])
pandas.concat
# Changing the actions in self.actions should automatically change the script to function with the new number of moves. # Developed and improved by past CG4002 TAs and students: <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME> import os import sys import time import traceback import random import socket import threading import base64 import tkinter as tk from tkinter import ttk from tkinter.constants import HORIZONTAL, VERTICAL import pandas as pd from Crypto.Cipher import AES LOG_DIR = os.path.join(os.path.dirname(__file__), 'evaluation_logs') MESSAGE_SIZE = 2 ACTIONS = ["shoot", "shield", "grenade", "reload"] NUM_ACTION_REPEATS = 4 """ Class that will generate randomized list of actions. Actions will be displayed on the evaluation server UI for the players to follow. """ class TurnGenerator(): def __init__(self): self.cur_turn = 0 self.num_actions = len(ACTIONS) # Generate random sequence of actions for Player 1 self.p1_actions = ACTIONS * NUM_ACTION_REPEATS random.shuffle(self.p1_actions) self.p1_actions.insert(0, "none") self.p1_actions.append("logout") print(self.p1_actions) # Generate random sequence of actions for Player 2 self.p2_actions = ACTIONS * NUM_ACTION_REPEATS random.shuffle(self.p2_actions) self.p2_actions.insert(0, "none") self.p2_actions.append("logout") print(self.p2_actions) """ Called at the start of every turn to generate new values for player actions """ def iterate(self): # Return True if we have finished going through all turns if self.cur_turn + 1 >= len(self.p1_actions): return True self.cur_turn += 1 print(f"New P1 Action: {self.p1_actions[self.cur_turn]}") print(f"New P2 Action: {self.p2_actions[self.cur_turn]}") return False """ Return both player expected actions in tuple of tuples: (p1_action,p2_action) """ def get_correct_action(self): return self.p1_actions[self.cur_turn], self.p2_actions[self.cur_turn] class Server(threading.Thread): def __init__(self, ip_addr, port_num, group_id): super(Server, self).__init__() # Setup logger self.log_filename = 'group{}_logs.csv'.format(group_id) if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR) self.log_filepath = os.path.join(LOG_DIR, self.log_filename) self.columns = [ 'timestamp', 'p1_action', 'gt_p1_action', 'p2_action', 'gt_p2_action', 'response_time', 'is_p1_action_correct', 'is_p2_action_correct' ] self.df =
pd.DataFrame(columns=self.columns)
pandas.DataFrame
import os import gzip import random import pickle import yaml import pandas as pd from base64 import b64encode from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sqlalchemy.orm import declarative_base, sessionmaker from sqlalchemy import create_engine, Column, Integer, String, LargeBinary Base = declarative_base() CONFIG_PATH = "" # Create a table for the models class Models(Base): __tablename__ = 'models' model_id = Column(Integer, primary_key=True) model_name = Column(String(30)) blob = Column(LargeBinary) def load_config(config_name): """ Loads the base configurations for the model * Configuration for model from config.yml :param: config_name :return: loaded config dictionary """ with open(os.path.join(CONFIG_PATH, config_name)) as file: config = yaml.safe_load(file) return config def create_data(config): """ Generates data for linear regression * Configuration dictionary :param config: config dict for dataset configurations :return: dataset as a pandas dataframe """ m = config["gradient"] c = config["y_intercept"] data = [] for x in range(config["x_start"], config["x_end"]): # for x from x_start to x_end generate y using y=mx+c with random noise based on range specified in config y = m * x + c + random.uniform(config["noise_range_start"], config["noise_range_end"]) data.append([x, y]) dataframe =
pd.DataFrame(data, columns=['x', 'y'])
pandas.DataFrame
import os import sys sys.path.append("../..") import datetime import pymongo from pandas.io.json import json_normalize import pandas as pd class Test(): """ This page is used to create a Graph in Sqlgraph which include three kinds of node ----Document, Event and Knowledge. """ def __init__(self, coll): host = '10.60.1.140' port = 6080 usr = 'root' pwd = '<PASSWORD>' self.mongoclient = pymongo.MongoClient(host, port) self.admin = self.mongoclient.admin self.admin.authenticate(usr, pwd) self.coll = coll self.document = self.mongoclient["QBData"]["documents_task"] def run(self): doc_list = list(self.document.find({"task_id": self.coll})) if not os.path.exists('./api/fake/fake_data/{}'.format(self.coll)): os.makedirs('./api/fake/fake_data/{}'.format(self.coll)) relation_file = './api/fake/fake_data/{}/set_relation_{}.csv'.format(self.coll, self.coll) document_file = './api/fake/fake_data/{}/set_document_{}.csv'.format(self.coll, self.coll) # 这里存在问题,第一条数据不显示,从第二条数据开始 doc_frame = json_normalize(doc_list) # Write document document = pd.DataFrame(doc_frame, columns=["_id", "raw_id", "channel", "site_name", "title.en", "publish_time", "topic", "entity_list", "meta_type"]) document.rename(columns={"_id": "Entity_id"}, inplace=True) document.rename(columns={"title.en": "title"}, inplace=True) document["Entity_type"] = "document" document.to_csv(document_file, index=False) # Generate relation relation_list = [] # entity 和 doc关系 # for 循环里面的Entity_id是什么意思,没明白,待弄懂 for index, row in doc_frame.iterrows(): entity_dict = [] document_id = row["_id"] for sen in row["entity_list"]: if "Entity_id" in sen: sen["id"] = sen["Entity_id"] if sen["id"] in entity_dict: continue else: entity_dict.append(sen["id"]) relation_id1 = "{}-{}".format(document_id, sen["id"]) relation_list.append([document_id, sen["id"], relation_id1, "include_entity", "include_entity"]) relation_dataframe =
pd.DataFrame(relation_list, columns=["Head_id", "Tail", "id", "relation_id", "type"])
pandas.DataFrame
"""General data-related utilities.""" import functools import operator import pandas as pd def cartesian(ranges, names=None): """Generates a data frame that is a cartesian product of ranges.""" if names is None: names = range(len(ranges)) if not ranges: return pd.DataFrame() if len(ranges) == 1: return
pd.DataFrame({names[0]: ranges[0]})
pandas.DataFrame
import numpy import pyearth import pandas as pd from pyearth import Earth pathToInputData = 'C:\\__DEMO1\\Memory.csv' dateTimeFormat = '%d/%m/%Y %H:%M' pathToOutputData = 'C:\\__DEMO1\\output.txt' # Write array to file def array_to_file(the_array, file_name): the_file = open(file_name, 'w') for item in the_array: the_file.write('%s\n' % item) def buildModel(): # Read our data data = pd.read_csv(pathToInputData,index_col=0) data.head() data.index =
pd.to_datetime(data.index, format=dateTimeFormat)
pandas.to_datetime
import pytest from pigging.connectors import googleBigQueryConnector, googleSheetsConnector import os import warnings import pandas as pd ### Credentials ### CREDENTIALS_PATH = os.environ.get('CREDENTIALS_PATH') ### Google Big Query ### SELECT_QUERY = os.environ.get('SELECT_QUERY') PROEJCT_ID = os.environ.get('PROEJCT_ID') TABLE_DESTINATION = os.environ.get('TABLE_DESTINATION') gbq_connector = googleBigQueryConnector(CREDENTIALS_PATH) class TestGoogleBigQueryConnector(object): def test_connected(self, capsys): gbq_connector = googleBigQueryConnector(CREDENTIALS_PATH) captured = capsys.readouterr() assert captured.out == "Successfully loaded Google BigQuery credentials\n" def test_data_import_successfull(self): df = gbq_connector.import_data(SELECT_QUERY, PROEJCT_ID) assert len(df) > 0, "There should be a df" def test_data_export_successful(self, capsys): df = gbq_connector.import_data(SELECT_QUERY, PROEJCT_ID) gbq_connector.export_data( df, TABLE_DESTINATION, PROEJCT_ID, "EU", 'replace') captured = capsys.readouterr() assert captured.out == "Successfully exported data to Google BigQuery\n" ### Google Sheets ### WORKSHEET_ID = os.environ.get('WORKSHEET_ID') WORKSHEET_NAME = os.environ.get('WORKSHEET_NAME') DF =
pd.DataFrame(["test value"], columns=['Test col'])
pandas.DataFrame
# Copyright (C) 2021 ServiceNow, Inc. import pytest import pandas as pd import numpy as np from nrcan_p2.data_processing.utils import ( produce_updown_df, decide_lang ) def test_produce_updown_df(): df = pd.DataFrame({ 'text': ['a', "b", "c", "d", "e"], 'mycol': [0,1,2,3,4], 'othercol': ['z','y', 'x', 'v', 'w'] }, index=[5,6,7,8,9]) expected = pd.DataFrame({ 'text': ['a', "b", "c", "d", "e"], 'mycol': [0,1,2,3,4], 'othercol': ['z','y', 'x', 'v', 'w'], #'index_up': [None,5,6,7,8], 'mycol_up': [None,0,1,2,3], #'index_down': [6,7,8,9,None], 'mycol_down': [1,2,3,4,None] }, index=[5,6,7,8,9]).fillna(np.nan) expected['mycol'] = expected.mycol.astype('float') expected['mycol_up'] = expected.mycol_up.astype('float') expected['mycol_down'] = expected.mycol_down.astype('float') expected.index = expected.index.astype('float') output = produce_updown_df(df, col='mycol', ) #ol_set=['text', 'mycol', 'othercol']) print(output) print(expected)
pd.testing.assert_frame_equal(output, expected)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 3 16:27:12 2017 @author: xinruyue """ import pandas as pd import numpy as np import xlrd import pickle import os def get_country(): f = open('country.txt','r') country = [] for line in f: line = line.strip('\n') country.append(line) return country #get F matrix def get_f(df,country): size = len(country) f_matrix = np.zeros((size,size)) for index,row in df.iterrows(): imp = row[2] exp = row[4] value = row[8] i = country.index(imp) j = country.index(exp) f_matrix[i][j] = value return f_matrix def processing(file1,y): # get all data df = pd.DataFrame() book = xlrd.open_workbook(file1) for sheet in book.sheets(): f =
pd.read_excel(file1, sheetname=sheet.name)
pandas.read_excel
import sys, os sys.path.insert(0, os.path.abspath('..')) import re from library.utils import StatisticResult, statistic_test from collections import defaultdict import pandas as pd from typing import final from library.RecRunner import NameType, RecRunner from library.constants import METRICS_PRETTY, RECS_PRETTY, experiment_constants, CITIES_PRETTY,DATA,UTIL import argparse import app_utils LATEX_HEADER = r"""\documentclass{article} \usepackage{graphicx} \usepackage[utf8]{inputenc} \usepackage{xcolor} \usepackage{amsmath} \usepackage{amssymb} \usepackage{underscore} \usepackage[margin=0.5in]{geometry} \usepackage{booktabs} \begin{document} """ LATEX_FOOT = r""" \end{document}""" argparser =argparse.ArgumentParser() app_utils.add_cities_arg(argparser) app_utils.add_base_recs_arg(argparser) app_utils.add_final_recs_arg(argparser) args = argparser.parse_args() # cities = ['lasvegas', 'phoenix'] # base_recs = [ 'usg','geosoca','geomf',] # final_recs = ['geodiv'] final_rec_list_size = experiment_constants.K rr=RecRunner(args.base_recs[0],args.final_recs[0],args.cities[0],experiment_constants.N,final_rec_list_size,DATA) metrics_k = experiment_constants.METRICS_K final_recs_metrics= defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict()))) base_recs_metrics= defaultdict(lambda: defaultdict(lambda: defaultdict())) latex_table = "" main_metrics = ['precision','recall','gc','ild','pr','epc'] def get_metrics_renamed_order(METRICS_PRETTY_k): METRICS_PRETTY_k = [METRICS_PRETTY_k[v] for v in main_metrics] return METRICS_PRETTY_k def get_metrics_pretty_k(metric_k:int) -> dict: return {k: v+f'@{metric_k}' for k, v in METRICS_PRETTY.items()} def df_format(df_unf:pd.DataFrame,metric_k): # METRICS_PRETTY_k = {k: v+f'@{metric_k}' for k, v in METRICS_PRETTY.items()} METRICS_PRETTY_k = get_metrics_pretty_k(metric_k) df_unf=df_unf[main_metrics].rename(columns=METRICS_PRETTY_k) # print(df_unf) return df_unf def get_base_name(base_name): return RECS_PRETTY[base_name] def get_final_name(base_name,final_name): return get_base_name(base_name)+'+'+RECS_PRETTY[final_name] for city in args.cities: for base_rec in args.base_recs: rr.city = city rr.base_rec = base_rec metrics = rr.load_metrics( base=True, name_type=NameType.PRETTY, METRICS_KS=metrics_k) for metric_k in metrics_k: base_recs_metrics[city][base_rec][metric_k] = pd.DataFrame( metrics[metric_k]) base_recs_metrics[city][base_rec][metric_k]=df_format(base_recs_metrics[city][base_rec][metric_k],metric_k) for final_rec in args.final_recs: rr.final_rec = final_rec metrics = rr.load_metrics( base=False, name_type=NameType.PRETTY, METRICS_KS=metrics_k) for metric_k in metrics_k: final_recs_metrics[city][base_rec][final_rec][metric_k] = pd.DataFrame( metrics[metric_k]) final_recs_metrics[city][base_rec][final_rec][metric_k] =df_format(final_recs_metrics[city][base_rec][final_rec][metric_k],metric_k) num_metrics = 6 num_columns= num_metrics+1 latex_table_header= """ \\begin{{tabular}}{{{}}} """.format('l'*(num_columns)) latex_table_footer= r""" \end{tabular} """ top_count = defaultdict(lambda:defaultdict(int)) for count1, city in enumerate(args.cities): if count1 == 0: latex_table += '\\toprule\n' latex_table += '\\multicolumn{{{}}}{{l}}{{{}}}\\\\\n'.format((num_columns),CITIES_PRETTY[city]) latex_table += '\\bottomrule\n' for metric_k in metrics_k: dfs = [] names_recs_in_order = [] for base_rec in args.base_recs: current_metrics = {} current_metrics[get_base_name(base_rec)] = base_recs_metrics[city][base_rec][metric_k] names_recs_in_order.append(get_base_name(base_rec)) for final_rec in args.final_recs: current_metrics[get_final_name(base_rec,final_rec)] = final_recs_metrics[city][base_rec][final_rec][metric_k] names_recs_in_order.append(get_final_name(base_rec,final_rec)) df = pd.concat(current_metrics, axis=1) # print(df) dfs.append(df) df =
pd.concat(dfs,axis=1)
pandas.concat
import multiprocessing import pandas as pd import numpy as np from tqdm import tqdm from gensim.models import Doc2Vec from sklearn import utils from gensim.models.doc2vec import TaggedDocument import re import nltk from gensim.test.test_doc2vec import ConcatenatedDoc2Vec nltk.download('punkt') def tokenize_text(text): tokens = [] for sent in nltk.sent_tokenize(text): for word in nltk.word_tokenize(sent): if len(word) < 2: continue tokens.append(word.lower()) return tokens def get_vectors(model, tagged_docs): sents = tagged_docs.values targets, regressors = zip(*[(doc.tags[0], model.infer_vector(doc.words, epochs=20)) for doc in sents]) return targets, regressors cores = multiprocessing.cpu_count() training_set = pd.read_json('../processed_data/train_set.json') test_set = pd.read_json('../processed_data/test_set.json') train_tagged_summary = training_set.apply( lambda r: TaggedDocument(words=tokenize_text(r['summary']), tags=[r.label]), axis=1) train_tagged_document = training_set.apply( lambda r: TaggedDocument(words=tokenize_text(r['document']), tags=[r.label]), axis=1) model_dbow = Doc2Vec(dm=0, vector_size=300, negative=5, hs=0, min_count=2, sample = 0, workers=cores) print("\n> Building model vocab") model_dbow.build_vocab([x for x in tqdm(train_tagged_summary.values)] + [x for x in tqdm(train_tagged_document.values)]) print("\n> Training bag of words model") for epoch in range(30): model_dbow.train(utils.shuffle([x for x in tqdm(train_tagged_summary.values, desc = 'epoch {}'.format(epoch))]), total_examples=len(train_tagged_summary.values), epochs=30) model_dbow.alpha -= 0.002 model_dbow.min_alpha = model_dbow.alpha model_dmm = Doc2Vec(dm=1, dm_mean=1, vector_size=300, window=10, negative=5, min_count=1, workers=cores, alpha=0.065, min_alpha=0.065) print("\n> Building model vocab") model_dmm.build_vocab([x for x in tqdm(train_tagged_summary.values)] + [x for x in tqdm(train_tagged_document.values)]) print("\n> Training Distributed memory model") for epoch in range(30): model_dmm.train(utils.shuffle([x for x in tqdm(train_tagged_summary.values, desc = 'epoch {}'.format(epoch))]), total_examples=len(train_tagged_summary.values), epochs=30) model_dmm.alpha -= 0.002 model_dmm.min_alpha = model_dmm.alpha new_model = ConcatenatedDoc2Vec([model_dbow, model_dmm]) test_tagged_summary = test_set.apply( lambda r: TaggedDocument(words=tokenize_text(r['summary']), tags=[1]), axis=1) test_tagged_document = test_set.apply( lambda r: TaggedDocument(words=tokenize_text(r['document']), tags=[1]), axis=1) print('\n> Generating final vectors') y_train, X_train = get_vectors(new_model, train_tagged_summary) y_test, X_test = get_vectors(new_model, test_tagged_summary) y_train, X_train_document = get_vectors(new_model, train_tagged_document) y_test, X_test_document = get_vectors(new_model, test_tagged_document) print('> Saving result') training_result = pd.DataFrame() training_result.insert(0, "summary_embedding", X_train) training_result.insert(0, "document_embedding", X_train_document) training_result.insert(2, "labels", training_set['label']) testing_result =
pd.DataFrame()
pandas.DataFrame
"""Data Profiling This script runs the routine of applying data profiling metrics using the pydeequ library. github: (https://github.com/awslabs/python-deequ) This function receives configuration parameters, process the analyses and saves the results in a BigQuery table. An way to call this module would be: gcloud dataproc jobs submit pyspark # submit job to dataproc data_quality_pyspark.py # this module --project my-gcp-project # gcp project id --cluster my-spark-cluster # cluster --region us-central1 # region -- gcs # source type (bq | gcs) gs://project-bucket/path/to/file.csv | .parquet DATA_PROFILING.ANALYSIS_RESULTS # Bigquery table where will be saved the results "col1 = 'a' or|and col2 = 'b'" # bq table filter optional, like a sql where clause """ import datetime import logging import os import sys import pandas as pd from pydeequ import analyzers as A from pydeequ import profiles as P from pyspark.sql import SparkSession from pyspark.sql import functions as F def main(argv): """Run Data Profiling on table or file using Deequ library and save results to a bigquery table. Parameters ---------- source_type : str The type of location of the table to be analyzed ('bq' or 'gcs') source_path : str The path to a gcs (cloud storage eg.: gs://path/to/file.parquet|csv) file or a bq (bigquery eg.: bigquery-public-data:samples.shakespeare) table. destination : str The bigquery table where the result will be saved staging_bucket : str The GCS bucket used by BigQuery connector for staging files app_name : str Spark app name table_filter : str, optional The filter applied on bq table (eg.: 'col1 = 'a' and|or col2 = 'b''). (deafult is '' that means no filter) Returns ------- There's no return for this function """ """Configurations""" # Configuration sys.argv parameters logging.info("Configuration sys.argv parameters") source_type = argv[0] # 'bq' or 'gcs' source_path = argv[1] # bq table ('dataset.table') or gcs file (gs://path/to/file.parquet) destination = argv[2] # table in bq staging_bucket = argv[3] app_name = argv[4] table_filter = "" if len(argv) > 5: table_filter = argv[5] # [optional] filter table, e.g.: 'col1 = a and|or col2 = b' # Config Spark Session logging.info("Config Spark Session") spark = SparkSession.builder.master("yarn").appName(app_name).getOrCreate() # Config Temp GCS Bucket logging.info("Config Temp GCS Bucket") spark.conf.set("temporaryGcsBucket", staging_bucket) """Read GCS File or Bigquery Table""" # Getting file extension file_extension = os.path.splitext(source_path)[1] # Read File or Table logging.info("Read File or Table") df = None if source_type == "gcs": logging.info(f"Reading from gcs file: {source_path}") if file_extension == ".parquet": df = spark.read.load(source_path) elif file_extension == ".csv": df = spark.read.options( inferSchema="True", header=True, delimiter="\t" ).csv(source_path) elif source_type == "bq": logging.info(f"Reading from bq table: {source_path}") if table_filter == "": df = ( # Load data from BigQuery. spark.read.format("bigquery") .option('table', source_path) .load() .select("*") ) else: df = ( # Load data from BigQuery. spark.read.format("bigquery") .option('table', source_path) .load() .select("*") .filter(table_filter) ) else: logging.info(f"Unknown value {argv[0]} for source_type parameter") sys.exit(1) df = df.drop("METADATA") # Executing Profile to get Datatype for each column logging.info("Executing Profile to get Datatype for each column") result = P.ColumnProfilerRunner(spark).onData(df).run() # Getting columns names and types d = [] for col, profile in result.profiles.items(): d.append({"instance": col, "datatype": profile.dataType}) df_column_types = spark.createDataFrame(
pd.DataFrame(d)
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(integer_array([1, None, 3])) expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = integer_array([1, 2, None] * 1000) expected = ( "<IntegerArray>\n" "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n" " ...\n" " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected class TestConstructors: def test_uses_pandas_na(self): a = pd.array([1, None], dtype=pd.Int64Dtype()) assert a[1] is pd.NA def test_from_dtype_from_float(self, data): # construct from our dtype & string dtype dtype = data.dtype # from float expected = pd.Series(data) result = pd.Series( data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype) ) tm.assert_series_equal(result, expected) # from int / list expected = pd.Series(data) result = pd.Series(np.array(data).tolist(), dtype=str(dtype)) tm.assert_series_equal(result, expected) # from int / array expected = pd.Series(data).dropna().reset_index(drop=True) dropped = np.array(data.dropna()).astype(np.dtype((dtype.type))) result = pd.Series(dropped, dtype=str(dtype)) tm.assert_series_equal(result, expected) class TestArithmeticOps(BaseOpsUtil): def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) def _check_op(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) result = op(s, other) # compute expected mask = s.isna() # if s is a DataFrame, squeeze to a Series # for comparison if isinstance(s, pd.DataFrame): result = result.squeeze() s = s.squeeze() mask = mask.squeeze() # other array is an Integer if isinstance(other, IntegerArray): omask = getattr(other, "mask", None) mask = getattr(other, "data", other) if omask is not None: mask |= omask # 1 ** na is na, so need to unmask those if op_name == "__pow__": mask = np.where(~s.isna() & (s == 1), False, mask) elif op_name == "__rpow__": other_is_one = other == 1 if isinstance(other_is_one, pd.Series): other_is_one = other_is_one.fillna(False) mask = np.where(other_is_one, False, mask) # float result type or float op if ( is_float_dtype(other) or is_float(other) or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"] ): rs = s.astype("float") expected = op(rs, other) self._check_op_float(result, expected, mask, s, op_name, other) # integer result type else: rs = pd.Series(s.values._data, name=s.name) expected = op(rs, other) self._check_op_integer(result, expected, mask, s, op_name, other) def _check_op_float(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in float dtypes expected[mask] = np.nan if "floordiv" in op_name: # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) mask2 = np.isinf(expected) & np.isnan(result) expected[mask2] = np.nan tm.assert_series_equal(result, expected) def _check_op_integer(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in integer dtypes # to compare properly, we convert the expected # to float, mask to nans and convert infs # if we have uints then we process as uints # then convert to float # and we ultimately want to create a IntArray # for comparisons fill_value = 0 # mod/rmod turn floating 0 into NaN while # integer works as expected (no nan) if op_name in ["__mod__", "__rmod__"]: if is_scalar(other): if other == 0: expected[s.values == 0] = 0 else: expected = expected.fillna(0) else: expected[ (s.values == 0).fillna(False) & ((expected == 0).fillna(False) | expected.isna()) ] = 0 try: expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) except ValueError: expected = expected.astype(float) expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) expected[mask] = pd.NA # assert that the expected astype is ok # (skip for unsigned as they have wrap around) if not s.dtype.is_unsigned_integer: original = pd.Series(original) # we need to fill with 0's to emulate what an astype('int') does # (truncation) for certain ops if op_name in ["__rtruediv__", "__rdiv__"]: mask |= original.isna() original = original.fillna(0).astype("int") original = original.astype("float") original[mask] = np.nan tm.assert_series_equal(original, expected.astype("float")) # assert our expected result tm.assert_series_equal(result, expected) def test_arith_integer_array(self, data, all_arithmetic_operators): # we operate with a rhs of an integer array op = all_arithmetic_operators s = pd.Series(data) rhs = pd.Series([1] * len(data), dtype=data.dtype) rhs.iloc[-1] = np.nan self._check_op(s, op, rhs) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # scalar op = all_arithmetic_operators s = pd.Series(data) self._check_op(s, op, 1, exc=TypeError) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op = all_arithmetic_operators df = pd.DataFrame({"A": data}) self._check_op(df, op, 1, exc=TypeError) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op = all_arithmetic_operators s = pd.Series(data) other = np.ones(len(s), dtype=s.dtype.type) self._check_op(s, op, other, exc=TypeError) def test_arith_coerce_scalar(self, data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) other = 0.01 self._check_op(s, op, other) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(self, all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = self.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype is np.dtype("float") def test_arith_len_mismatch(self, all_arithmetic_operators): # operating with a list-like with non-matching length raises op = self.get_op_from_name(all_arithmetic_operators) other = np.array([1.0]) s = pd.Series([1, 2, 3], dtype="Int64") with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(self, other): arr = integer_array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?IntegerArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) if op != "__rpow__": # TODO(extension) # rpow with a datetimelike coerces the integer array incorrectly msg = ( "can only perform ops with numeric values|" "cannot perform .* with this index type: DatetimeArray|" "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *" ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # 2d result = opa(pd.DataFrame({"A": s})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(self, zero, negative): # https://github.com/pandas-dev/pandas/issues/27398 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = np.array([np.nan, np.inf, -np.inf, np.nan]) if negative: expected *= -1 tm.assert_numpy_array_equal(result, expected) def test_pow_scalar(self): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a ** 0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** 1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** np.nan expected = np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0 ** a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1 ** a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA ** a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan ** a expected = np.array([1, np.nan, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_pow_array(self): a = integer_array([0, 0, 0, 1, 1, 1, None, None, None]) b = integer_array([0, 1, None, 0, 1, None, 0, 1, None]) result = a ** b expected = integer_array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(self): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = integer_array([np.nan, np.nan]) result = np.array([1.0, 2.0]) ** arr expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) class TestComparisonOps(BaseOpsUtil): def _compare_other(self, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) expected = pd.Series(op(data._data, other), dtype="boolean") # fill the nan locations expected[data._mask] = pd.NA tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) expected = op(pd.Series(data._data), other) # fill the nan locations expected[data._mask] = pd.NA expected = expected.astype("boolean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1]) def test_scalar(self, other, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([1, 0, None], dtype="Int64") result = op(a, other) if other is pd.NA: expected = pd.array([None, None, None], dtype="boolean") else: values = op(a._data, other) expected = pd.arrays.BooleanArray(values, a._mask, copy=True) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal(a, pd.array([1, 0, None], dtype="Int64")) def test_array(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([0, 1, 2, None, None, None], dtype="Int64") b = pd.array([0, 1, None, 0, 1, None], dtype="Int64") result = op(a, b) values = op(a._data, b._data) mask = a._mask | b._mask expected = pd.arrays.BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal( a, pd.array([0, 1, 2, None, None, None], dtype="Int64") ) tm.assert_extension_array_equal( b, pd.array([0, 1, None, 0, 1, None], dtype="Int64") ) def test_compare_with_booleanarray(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([True, False, None] * 3, dtype="boolean") b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Int64") other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean") expected = op(a, other) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_no_shared_mask(self, data): result = data + 1 assert np.shares_memory(result._mask, data._mask) is False def test_compare_to_string(self, any_nullable_int_dtype): # GH 28930 s = pd.Series([1, None], dtype=any_nullable_int_dtype) result = s == "a" expected = pd.Series([False, pd.NA], dtype="boolean") self.assert_series_equal(result, expected) def test_compare_to_int(self, any_nullable_int_dtype, all_compare_operators): # GH 28930 s1 = pd.Series([1, None, 3], dtype=any_nullable_int_dtype) s2 = pd.Series([1, None, 3], dtype="float") method = getattr(s1, all_compare_operators) result = method(2) method = getattr(s2, all_compare_operators) expected = method(2).astype("boolean") expected[s2.isna()] = pd.NA self.assert_series_equal(result, expected) class TestCasting: @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(self, all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(self, all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index(np.array(other)) assert isinstance(idx, ABCIndexClass) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(self, all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s = pd.Series(mixed) result = s.astype(dtype) expected = pd.Series(mixed, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - mixed s =
pd.Series(mixed)
pandas.Series
import unittest import tempfile import json import numpy as np import pandas as pd from supervised.preprocessing.label_encoder import LabelEncoder class LabelEncoderTest(unittest.TestCase): def test_fit(self): # training data d = {"col1": ["a", "a", "c"], "col2": ["w", "e", "d"]} df = pd.DataFrame(data=d) le = LabelEncoder() # check first column le.fit(df["col1"]) data_json = le.to_json() # values from column should be in data json self.assertTrue("a" in data_json) self.assertTrue("c" in data_json) self.assertTrue("b" not in data_json) # there is alphabetical order for values self.assertEqual(0, data_json["a"]) self.assertEqual(1, data_json["c"]) # check next column le.fit(df["col2"]) data_json = le.to_json() self.assertEqual(0, data_json["d"]) self.assertEqual(1, data_json["e"]) self.assertEqual(2, data_json["w"]) def test_transform(self): # training data d = {"col1": ["a", "a", "c"]} df = pd.DataFrame(data=d) # fit encoder le = LabelEncoder() le.fit(df["col1"]) # test data d_test = {"col2": ["c", "c", "a"]} df_test = pd.DataFrame(data=d_test) # transform y = le.transform(df_test["col2"]) self.assertEqual(y[0], 1) self.assertEqual(y[1], 1) self.assertEqual(y[2], 0) def test_transform_with_new_values(self): # training data d = {"col1": ["a", "a", "c"]} df =
pd.DataFrame(data=d)
pandas.DataFrame
# -*- coding:utf-8 -*- __author__ = 'boredbird' import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from datetime import datetime from sklearn.svm import l1_min_c from woe.eval import compute_ks import pickle import time """ Search for optimal hyper parametric C in LogisticRegression """ def grid_search_lr_c(X_train,y_train,cs,df_coef_path=False ,pic_coefpath_title='Logistic Regression Path',pic_coefpath=False ,pic_performance_title='Logistic Regression Performance',pic_performance=False): """ grid search optimal hyper parameters c with the best ks performance :param X_train: features dataframe :param y_train: target :param cs: list of regularization parameter c :param df_coef_path: the file path for logistic regression coefficient dataframe :param pic_coefpath_title: the pic title for coefficient path picture :param pic_coefpath: the file path for coefficient path picture :param pic_performance_title: the pic title for ks performance picture :param pic_performance: the file path for ks performance picture :return: a tuple of c and ks value with the best ks performance """ # init a LogisticRegression model clf_l1_LR = LogisticRegression(C=0.1, penalty='l1', tol=0.01,class_weight='balanced') # cs = l1_min_c(X_train, y_train, loss='log') * np.logspace(0, 9,200) print("Computing regularization path ...") start = datetime.now() print(start) coefs_ = [] ks = [] for c in cs: clf_l1_LR.set_params(C=c) clf_l1_LR.fit(X_train, y_train) coefs_.append(clf_l1_LR.coef_.ravel().copy()) proba = clf_l1_LR.predict_proba(X_train)[:,1] ks.append(compute_ks(proba,y_train)) end = datetime.now() print(end) print("This took ", end - start) coef_cv_df = pd.DataFrame(coefs_,columns=X_train.columns) coef_cv_df['ks'] = ks coef_cv_df['c'] = cs if df_coef_path: file_name = df_coef_path if isinstance(df_coef_path, str) else None coef_cv_df.to_csv(file_name) coefs_ = np.array(coefs_) fig1 = plt.figure('fig1') plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title(pic_coefpath_title) plt.axis('tight') if pic_coefpath: file_name = pic_coefpath if isinstance(pic_coefpath, str) else None plt.savefig(file_name) else: plt.show() fig2 = plt.figure('fig2') plt.plot(np.log10(cs), ks) plt.xlabel('log(C)') plt.ylabel('ks score') plt.title(pic_performance_title) plt.axis('tight') if pic_performance: file_name = pic_performance if isinstance(pic_performance, str) else None plt.savefig(file_name) else: plt.show() flag = coefs_<0 idx = np.array(ks)[flag.sum(axis=1) == 0].argmax() return (cs[idx],ks[idx]) def grid_search_lr_c_validation(X_train,y_train,validation_dataset_list,cs=[0.01],df_coef_path=False ,pic_coefpath_title='Logistic Regression Path',pic_coefpath=False ,pic_performance_title='Logistic Regression Performance',pic_performance=False): """ grid search optimal hyper parameters c with the best ks performance :param X_train: features dataframe :param y_train: target :param cs: list of c value :param df_coef_path: the file path for logistic regression coefficient dataframe :param pic_coefpath_title: the pic title for coefficient path picture :param pic_coefpath: the file path for coefficient path picture :param pic_performance_title: the pic title for ks performance picture :param pic_performance: the file path for ks performance picture :return: a tuple of c and ks value with the best ks performance """ # init a LogisticRegression model clf_l1_LR = LogisticRegression(C=0.1, penalty='l1', tol=0.01,class_weight='balanced') print("Computing regularization path ...") start = datetime.now() print(start) coefs_ = [] ks = [] ks_validation1 = [] ks_validation2 = [] counter = 0 for c in cs: print('time: ',time.asctime(time.localtime(time.time())),'counter: ',counter, ' c: ',c) clf_l1_LR.set_params(C=c) clf_l1_LR.fit(X_train, y_train) coefs_.append(clf_l1_LR.coef_.ravel().copy()) proba = clf_l1_LR.predict_proba(X_train)[:,1] validation_proba1 = clf_l1_LR.predict_proba(validation_dataset_list[0][X_train.columns])[:,1] ks.append(compute_ks(proba,y_train)) ks_validation1.append(compute_ks(validation_proba1,validation_dataset_list[0]['target'])) print('ks:\t',ks[-1],'ks_validation1:\t',ks_validation1[-1]) counter += 1 end = datetime.now() print(end) print("This took ", end - start) coef_cv_df = pd.DataFrame(coefs_,columns=X_train.columns) coef_cv_df['ks'] = ks coef_cv_df['ks_validation1'] = ks_validation1 coef_cv_df['c'] = cs if df_coef_path: file_name = df_coef_path if isinstance(df_coef_path, str) else None coef_cv_df.to_csv(file_name) coefs_ = np.array(coefs_) fig1 = plt.figure('fig1') plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title(pic_coefpath_title) plt.axis('tight') if pic_coefpath: file_name = pic_coefpath if isinstance(pic_coefpath, str) else None plt.savefig(file_name) plt.close() else: pass # plt.show() # plt.close() fig2 = plt.figure('fig2') plt.plot(np.log10(cs), ks) plt.xlabel('log(C)') plt.ylabel('ks score') plt.title(pic_performance_title) plt.axis('tight') if pic_performance: file_name = pic_performance if isinstance(pic_performance, str) else None plt.savefig(file_name) plt.close() else: pass # plt.show() # plt.close() flag = coefs_<0 if np.array(ks)[flag.sum(axis=1) == 0].__len__()>0: idx = np.array(ks)[flag.sum(axis=1) == 0].argmax() else: idx = np.array(ks).argmax() return (cs[idx],ks[idx]) def grid_search_lr_c_main(params): print('run into grid_search_lr_c_main:') dataset_path = params['dataset_path'] validation_path = params['validation_path'] config_path = params['config_path'] df_coef_path = params['df_coef_path'] pic_coefpath = params['pic_coefpath'] pic_performance = params['pic_performance'] pic_coefpath_title = params['pic_coefpath_title'] pic_performance_title = params['pic_performance_title'] dataset_train = pd.read_csv(dataset_path) cfg =
pd.read_csv(config_path)
pandas.read_csv
from pathlib import Path import sklearn import numpy as np import pandas as pd from scipy.stats import pearsonr, spearmanr def calc_preds(model, x, y, mltype): """ Calc predictions. """ if mltype == 'cls': def get_pred_fn(model): if hasattr(model, 'predict_proba'): return model.predict_proba if hasattr(model, 'predict'): return model.predict pred_fn = get_pred_fn(model) if (y.ndim > 1) and (y.shape[1] > 1): y_pred = pred_fn(x) y_pred = np.argmax(y_pred, axis=1) y_true = np.argmax(ydata, axis=1) else: y_pred = pred_fn(x) y_true = y elif mltype == 'reg': y_pred = np.squeeze(model.predict(x)) y_true = np.squeeze(y) return y_pred, y_true def dump_preds(y_true, y_pred, meta=None, outpath='./preds.csv'): """ Dump prediction and true values, with optional with metadata. """ y_true = pd.Series(y_true, name='y_true') y_pred =
pd.Series(y_pred, name='y_pred')
pandas.Series
from __future__ import absolute_import, division, print_function from pandas import DataFrame, Series from numpy import zeros from pennies.trading.assets import Swap, Annuity, IborLeg, FixedLeg, VanillaSwap from pennies.market.market import RatesTermStructure from pennies.market.curves import ConstantDiscountRateCurve from multipledispatch import dispatch @dispatch(Annuity, RatesTermStructure, str) def present_value(contract, market, reporting_ccy): """Present Value as sum of discount cash flows. This assumes that one has already computed the rates. For fixed rate annuities, this will be done during construction. For floating rate annuities, this will have to be pre-computed, typically via psuedo-discount factors of other curves.""" a = contract.frame discount_factors = market.discount_factor(a.pay, currency=contract.currency) alive = a.pay >= market.dt_valuation if not alive.any(): return 0.0 pv = (a.rate * a.period * discount_factors * a.notional).loc[alive].sum() if contract.notl_exchange: pv += a.notional.iloc[-1] * discount_factors.iloc[-1] if reporting_ccy != contract.currency: pv *= market.fx(reporting_ccy, contract.currency) return pv @dispatch(Swap, RatesTermStructure, str) def present_value(contract, market, reporting_ccy): """Present Value of a generic Swap.""" return (present_value(contract.leg_receive, market, reporting_ccy) + present_value(contract.leg_pay, market, reporting_ccy)) @dispatch(IborLeg, RatesTermStructure, str) def present_value(contract, market, reporting_ccy): """Present Value as sum of discounted IBOR cash flows. Forward LIBOR rates are calculated, and inserted into contract.frame.rate, for all fixing dates after dt_valuation. For fixing dates in the past, this assumes that contract.frame.rate is populated, and meaningful. """ a = contract.frame forwards = ibor_rate(contract, market) # replace rate with forwards for any fixing date after valuation date a.rate = a.rate.where(a.fixing < market.dt_valuation, forwards) # do not sum past cash flows discount_factors = market.discount_factor(a.pay, currency=contract.currency) alive = a.pay >= market.dt_valuation if not alive.any(): return 0.0 pv = (a.rate * a.period * discount_factors * a.notional).loc[alive].sum() if contract.notl_exchange: pv += a.notional.iloc[-1] * discount_factors.iloc[-1] if reporting_ccy != contract.currency: pv *= market.fx(reporting_ccy, contract.currency) return pv @dispatch(VanillaSwap, RatesTermStructure) def par_rate(contract, market): df_fixed = contract.leg_fixed.frame.copy() df_fixed.rate = 1.0 df_fixed.notional *= -1 annuity = FixedLeg.from_frame(df_fixed, notl_exchange=False) df_float = contract.leg_float.frame.copy() floating_no_xch = IborLeg.from_frame(df_float, notl_exchange=False) ccy = contract.leg_fixed.currency assert ccy == contract.leg_float.currency pv_fix = present_value(annuity, market, ccy) pv_flt = present_value(floating_no_xch, market, ccy) return pv_flt / pv_fix def ibor_rate(contract, market): """ALL the natural (L)IBOR rates implied by the start and end schedules. Returns ------- Series Pandas Series containing Forward IBOR rates This assumes that there is no convexity caused by lags between accrual dates and fixing and payment dates. """ assert isinstance(contract, IborLeg) assert isinstance(market, RatesTermStructure) crv_fwd, key = market.curve(contract.currency, contract.frequency) zcb_pay = crv_fwd.discount_factor(contract.frame.pay) zcb_fix = crv_fwd.discount_factor(contract.frame.fixing) return (zcb_fix / zcb_pay - 1.0) / contract.frame.period def d_price_d_rate(crv): """First derivative of each node in a discount curve to it's discount rates. The crv holds zero coupon bond prices in the form: z_i = exp(-r_i * ttm_i) """ return -1 * crv.sched_maturity * crv.discount_factor(crv.sched_maturity) @dispatch(Annuity, RatesTermStructure, object) def sens_to_zero_price(contract, market, curve_key): """Return Series of sensitivities to the natural ZeroCouponBond prices. By natural, we mean each of the payment dates of the Annuity. Sensitivities are only to the curve specified in the RatesTermStructure. """ if curve_key == 'discount': df = contract.frame alive = df.pay >= market.dt_valuation sens = (df.rate * df.period).loc[alive] if contract.notl_exchange and alive.any(): sens.iloc[-1] += df.notional.iloc[-1] else: return 0 @dispatch(VanillaSwap, RatesTermStructure, object) def sens_to_zero_price(contract, market, curve_key): """Return Series of sensitivities to the natural ZeroCouponBond prices. By natural, we mean each of the payment dates of the Annuity. Sensitivities are only to the curve specified in the RatesTermStructure. """ raise NotImplementedError('For Swaps, call each leg separately.') @dispatch(Annuity, RatesTermStructure, str, object, str) def sens_to_zero_rates(contract, market, curve_ccy, curve_key, reporting_ccy): """Sensitivity of each cashflow to the curve specified by currency and key The fixed rate annuity is only sensitive to the discount curve of the currency in which the cash flows (coupons) are paid. If curve_ccy does not match contract.currency, and curve_key is not 'discount' an empty DataFrame is returned. """ df_sens = DataFrame(columns=['ttm', 'sens', 'ccy', 'curve']) if curve_ccy == contract.currency: if curve_key == 'discount': a = contract.frame alive = a.pay >= market.dt_valuation crv = market.discount_curve(curve_ccy) pay_dates = a.pay[alive] ttm = crv.daycount_fn(market.dt_valuation, pay_dates) zcb = market.discount_factor(pay_dates, currency=contract.currency) sens = -ttm * zcb * (a.rate * a.period * a.notional).loc[alive] if contract.notl_exchange and alive.any(): sens.iloc[-1] += a.notional.iloc[-1] if reporting_ccy != contract.currency: sens *= market.fx(reporting_ccy, contract.currency) df_sens = DataFrame({'ttm': ttm, 'sens': sens, 'ccy': curve_ccy, 'curve': curve_key}) return df_sens @dispatch(IborLeg, RatesTermStructure, str, object, str) def sens_to_zero_rates(contract, market, curve_ccy, rate_key, reporting_ccy): """Sensitivity of each cashflow to the curve specified by currency and key A leg that pays IBOR is sensitive to both the discount and tenor curve of the currency in which the cash flows (coupons) are paid. """ df_sens = DataFrame(columns=['ttm', 'sens', 'ccy', 'curve']) if curve_ccy == contract.currency: forwards = ibor_rate(contract, market) # replace rate with forwards for any fixing date after valuation date a = contract.frame a.rate = a.rate.where(a.fixing < market.dt_valuation, forwards) zcb_pay = market.discount_factor(a.pay, currency=contract.currency) if rate_key == 'discount': unpaid = a.pay >= market.dt_valuation crv = market.discount_curve(curve_ccy) pay_dates = a.pay[unpaid] ttm_pay = crv.daycount_fn(market.dt_valuation, pay_dates) sens = -ttm_pay * (zcb_pay * a.notional * a.rate * a.period).loc[unpaid] if contract.notl_exchange and unpaid.any(): sens.iloc[-1] += a.notional.iloc[-1] if reporting_ccy != contract.currency: sens *= market.fx(reporting_ccy, contract.currency) df_sens = DataFrame({'ttm': ttm_pay, 'sens': sens, 'ccy': curve_ccy, 'curve': 'discount'}) elif rate_key == contract.frequency: # TODO - Review and add comments crv, crv_key = market.curve(contract.currency, contract.frequency) unfixed = a.fixing >= market.dt_valuation pay_dates = a.pay.loc[unfixed] ttm_pay = crv.daycount_fn(market.dt_valuation, pay_dates) zcbi_pay = crv.discount_factor(pay_dates) fix_dates = a.fixing.loc[unfixed] ttm_fix = crv.daycount_fn(market.dt_valuation, fix_dates) zcbi_fix = crv.discount_factor(contract.frame.fixing) scale_factor = zcbi_fix / zcbi_pay * (a.notional * zcb_pay).loc[unfixed] sens_pay = ttm_pay * scale_factor sens_fix = -ttm_fix * scale_factor if reporting_ccy != contract.currency: fx = market.fx(reporting_ccy, contract.currency) sens_pay *= fx sens_fix *= fx df_pay = DataFrame({'ttm': ttm_pay, 'sens': sens_pay}).set_index('ttm') df_fix = DataFrame({'ttm': ttm_fix, 'sens': sens_fix}).set_index('ttm') df_sens = df_pay.add(df_fix, fill_value=0) df_sens['ttm'] = df_sens.index df_sens['ccy'] = curve_ccy df_sens['curve'] = crv_key return df_sens @dispatch(Annuity, RatesTermStructure, str) def sens_to_market_rates(contract, market, reporting_ccy): """Compute sensitivity of contract to each node in the market's curves.""" # 1. Sensitivity of the CONTRACT PV to CONTRACT RATES: dV/dR_k # i.e. rates at contract dates, such as fixing, and maturity # ==> Only sensitive to discount curve ccy = contract.currency df_pv_sens = sens_to_zero_rates(contract, market, ccy, 'discount', reporting_ccy) dv_drk = df_pv_sens.sens.values ttm_k = df_pv_sens.ttm # 2. Sensitivity of CONTRACT RATES to MARKET RATES: dR_k / dR_j # This is a function of the curve's interpolator drk_drj_disc = market.rate_sensitivity(ttm_k, ccy, 'discount') # 3. Sensitivity of the CONTRACT PV to MARKET RATES, dV / dR_j # Multiple 1 and 2, and sum over contract dates dv_drj = zeros(len(market.nodes)) mask_disc = ((market.nodes.ccy == contract.currency) & (market.nodes.curve == 'discount')).values dv_drj[mask_disc] = drk_drj_disc.T.dot(dv_drk) # TODO NEED TO EXAMINE. Should this be: dv_drk.dot(drk_drj_disc) ? # 1d-array of sensitivities to each of the market's nodes. Lots of 0's return dv_drj @dispatch(IborLeg, RatesTermStructure, str) def sens_to_market_rates(contract, market, reporting_ccy): """Compute sensitivity of contract to each node in the market's curves.""" # 1. Sensitivity of the CONTRACT PV to CONTRACT RATES: dV/dR_k # i.e. rates at contract dates, such as fixing, and maturity ccy = contract.currency # 1a. discount curve df_pv_sens = sens_to_zero_rates(contract, market, ccy, 'discount', reporting_ccy) dv_drk_disc = df_pv_sens.sens.values ttm_k_disc = df_pv_sens.ttm # 1b. ibor curve ibor_key = contract.frequency # TODO Rate and frequency should be separate df_pv_sens = sens_to_zero_rates(contract, market, ccy, ibor_key, reporting_ccy) ibor_key = df_pv_sens.curve.iat[0] # May be 'discount', not frequency dv_drk_ibor = df_pv_sens.sens.values ttm_k_ibor = df_pv_sens.ttm # 2. Sensitivity of CONTRACT RATES to MARKET RATES: dR_k / dR_j # This is a function of the curve's interpolator # Sensitivity to the discount curve drk_drj_disc = market.rate_sensitivity(ttm_k_disc, ccy, 'discount') # Sensitivity to the ibor curve drk_drj_ibor = market.rate_sensitivity(ttm_k_ibor, ccy, ibor_key) # 3. Sensitivity of the CONTRACT PV to MARKET RATES # For each curve, multiply 1 and 2, and sum over contract dates dv_drj = zeros(len(market.nodes)) mask_disc = ((market.nodes.ccy == contract.currency) & (market.nodes.curve == 'discount')).values dv_drj[mask_disc] = dv_drj[mask_disc] + drk_drj_disc.T.dot(dv_drk_disc) # TODO NEED TO EXAMINE mask_ibor = ((market.nodes.ccy == contract.currency) & (market.nodes.curve == ibor_key)).values dv_drj[mask_ibor] = dv_drj[mask_ibor] + drk_drj_ibor.T.dot(dv_drk_ibor) # TODO NEED TO EXAMINE !!!!!!!!!!!!!! # 1d-array of sensitivities to each of the market's nodes. # May contain many 0's return dv_drj @dispatch(Swap, RatesTermStructure, str) def sens_to_market_rates(contract, market, reporting_ccy): """Compute sensitivity of contract to each node in the market's curves.""" return (sens_to_market_rates(contract.leg_receive, market, reporting_ccy) + sens_to_market_rates(contract.leg_pay, market, reporting_ccy)) if __name__ == '__main__': import pandas as pd dt_val = pd.to_datetime('today') dt_settle = dt_val -
pd.Timedelta(days=200)
pandas.Timedelta
import pandas as pd from expenses_report.config import config from itertools import product class DataProvider(object): _transactions = list() _columns = None def __init__(self, transactions): self._transactions = transactions self._columns = list(config.import_mapping.keys()) + [config.CATEGORY_MAIN_COL, config.CATEGORY_SUB_COL] @staticmethod def load(transactions): instance = DataProvider(transactions) instance._rebuild_dataframes() return instance def _rebuild_dataframes(self): # creates DataFrames from imported transactions ta_tuples = list(map(lambda ta: ta.as_tuple(), self._transactions)) self._df_all = pd.DataFrame.from_records(data=ta_tuples, columns=self._columns, index=config.DATE_COL) self._df_all[config.ABSAMOUNT_COL] = self._df_all.amount.apply(abs) self._df_all[config.LABEL] = self._df_all[config.PAYMENT_REASON_COL] + '<br>' + self._df_all[config.RECIPIENT_COL] self._df_in = self._df_all[self._df_all.main_category == config.INCOME_CATEGORY] self._df_out = self._df_all[self._df_all.main_category != config.INCOME_CATEGORY] def get_all_transactions(self): if self._df_all is None: self._rebuild_dataframes() return self._df_all def get_in_transactions(self): if self._df_in is None: self._rebuild_dataframes() return self._df_in def get_out_transactions(self): if self._df_out is None: self._rebuild_dataframes() return self._df_out def get_full_date_range(self, aggregation_period='MS'): """ Builds a DataFrame containing the full date range of the specified period :param aggregation_period: {'MS' for month start, 'YS' for year start, ... }, default 'MS' see https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects :return: """ period = DataProvider.as_period(aggregation_period) df_all = self.get_all_transactions() df_all_dates = pd.date_range(df_all.index.min().to_period(period).to_timestamp(), # sets to first day of period to include it in range df_all.index.max(), freq=aggregation_period, normalize=True).to_period().to_frame(name=config.DATE_COL) return df_all_dates def aggregate_by_category_as_tuple(self, df, aggregation_period, category_column, category_root=None): df_agg = self.aggregate_by_category(df, aggregation_period, category_column, category_root) return self.expand_by_categories(df_agg, category_column) def aggregate_by_category(self, df, aggregation_period, category_column, category_root=None) -> pd.DataFrame: df_all_dates = self.get_full_date_range(aggregation_period) categories = self._get_categories_for_level(category_root) # df[category_column].unique() df_prod = pd.DataFrame(list(product(df_all_dates[config.DATE_COL].unique(), categories)), columns=[config.DATE_COL, category_column]) period = DataProvider.as_period(aggregation_period) df_agg = df.groupby([df.index.to_period(period), category_column])[config.ABSAMOUNT_COL].sum().reset_index() df_agg_full_range = df_prod.merge(df_agg, how='left').fillna(0) return df_agg_full_range.set_index(config.DATE_COL) def expand_by_categories(self, df, category_column): x_axis = list(df.index.unique().to_timestamp()) values = dict() categories = df[category_column].unique() for category_name in categories: values[category_name] = df.loc[df[category_column] == category_name, config.ABSAMOUNT_COL].values return x_axis, values def _get_categories_for_level(self, root): categories = None if root is None: categories = list(config.categories.keys()) elif root in config.categories.keys(): sub_categories = config.categories[root] if type(sub_categories) is dict: categories = list(sub_categories.keys()) return categories or [config.MISC_CATEGORY] @staticmethod def build_hierarchical_dataframe(df, root_label, levels, value_column, color_map): """ Build a hierarchy of levels for Sunburst or Treemap charts. Levels are given starting from the bottom to the top of the hierarchy, ie the last level corresponds to the root. """ columns = ['id', 'parent', 'value', 'color'] df_all_trees = pd.DataFrame(columns=columns) for i, level in enumerate(levels): df_tree =
pd.DataFrame(columns=columns)
pandas.DataFrame
import datetime import numpy as np import pandas as pd from poor_trader import chart from poor_trader import utils TRADE_DAYS_PER_YEAR = 244 def SQN(df_trades): """ System Quality Number = (Expectancy / Standard Deviation R) * sqrt(Number of Trades) :param df_trades: :return: """ try: sqn = (df_trades.LastRMultiple.mean() / df_trades.LastRMultiple.std()) * np.sqrt(len(df_trades.index.values)) return np.round(sqn, 2) except: return 0 def drawdown(equities): return -np.round(equities.max() - equities[-1], 4) def drawdown_pct(equities): dd = equities[-1] - equities.max() dd_pct = 100 * dd / equities.max() return np.round(dd_pct, 2) def exposure(open_trades, portfolio_equity): return open_trades['LastValue'].apply(lambda last_value: 100 * last_value / portfolio_equity) def exposure_pct(df_trades, df_backtest, starting_capital): df = pd.DataFrame() def calc(row): date = row.name cur_trades = backtest.update_open_trades_last_value(df_trades[df_trades['StartDate'] <= date], date=date) portfolio_equity = starting_capital + cur_trades['LastPnL'].sum() open_trades = cur_trades[pd.isnull(cur_trades['EndDate'])] return open_trades['LastPnL'].sum() / portfolio_equity df['Exposure'] = df_backtest.apply(calc, axis=1) return df['Exposure'] def avg_expectancy(df_trades): return df_trades['LastPnL'].mean() def avg_expectancy_pct(df_trades): expectancy_pct = 100 * df_trades['LastPnL'] / df_trades['BuyValue'] return expectancy_pct.mean() def avg_bars_held(df_backtest, df_trades): bars_held = df_trades.apply(lambda trade: len(df_backtest.loc[pd.to_datetime(trade['StartDate']):pd.to_datetime(trade['LastRecordDate'])].index.values), axis=1) bars_held = bars_held.dropna() if bars_held.empty: return 0 return np.round(bars_held.mean(), 2) def max_drawdown(df_backtest): return df_backtest['Equity'].expanding().apply(drawdown).min() def max_pct_drawdown(df_backtest): return df_backtest['Equity'].expanding().apply(drawdown_pct).min() def ulcer_index(df_backtest): df_dd = df_backtest['Equity'].expanding().apply(drawdown_pct) squared_dd = df_dd * df_dd return np.sqrt(squared_dd.sum()) / squared_dd.count() def performance_data(starting_capital, df_backtest, df_trades, index='Performance'): df = pd.DataFrame() equities = df_backtest['Equity'].values years = len(equities) / TRADE_DAYS_PER_YEAR ending_capital = df_backtest['Equity'].values[-1] net_profit = ending_capital - starting_capital net_profit_pct = 100 * net_profit / starting_capital annualized_gain = ((ending_capital/starting_capital)**(1/years) - 1) max_system_dd = max_drawdown(df_backtest) max_system_pct_dd = max_pct_drawdown(df_backtest) max_peak = df_backtest.Equity.max() df_winning_trades = df_trades[df_trades['LastPnL'] > 0] df_losing_trades = df_trades[df_trades['LastPnL'] <= 0] ui = ulcer_index(df_backtest) avg_bars_held_value = avg_bars_held(df_backtest, df_trades) avg_expectancy_pct_value = avg_expectancy_pct(df_trades) risk_free_rate = 0.01 df.loc[index, 'Number of Trading Days'] = df_backtest.Equity.count() df.loc[index, 'Starting Capital'] = starting_capital df.loc[index, 'Ending Capital'] = ending_capital df.loc[index, 'Net Profit'] = net_profit df.loc[index, 'Net Profit %'] = net_profit_pct df.loc[index, 'SQN'] = SQN(df_trades) df.loc[index, 'Annualized Gain'] = annualized_gain df.loc[index, 'Max Profit'] = df_trades.LastPnL.max() df.loc[index, 'Max Loss'] = df_trades.LastPnL.min() df.loc[index, 'Number of Trades'] = len(df_trades.index.values) df.loc[index, 'Winning Trades'] = len(df_winning_trades.index.values) df.loc[index, 'Losing Trades'] = len(df_losing_trades.index.values) try: df.loc[index, 'Winning Trades %'] = np.round(100 * (len(df_winning_trades.index.values) / len(df_trades.index.values)), 2) except: df.loc[index, 'Winning Trades %'] = 0 df.loc[index, 'Avg Profit/Loss'] = avg_expectancy(df_trades) df.loc[index, 'Avg Profit'] = avg_expectancy(df_winning_trades) df.loc[index, 'Avg Loss'] = avg_expectancy(df_losing_trades) df.loc[index, 'Avg Profit/Loss %'] = avg_expectancy_pct_value df.loc[index, 'Avg Profit %'] = avg_expectancy_pct(df_winning_trades) df.loc[index, 'Avg Loss %'] = avg_expectancy_pct(df_losing_trades) df.loc[index, 'Avg Bars Held'] = avg_bars_held_value df.loc[index, 'Avg Winning Bars Held'] = avg_bars_held(df_backtest, df_winning_trades) df.loc[index, 'Avg Losing Bars Held'] = avg_bars_held(df_backtest, df_losing_trades) df.loc[index, 'Max System Drawdown'] = max_system_dd df.loc[index, 'Max System % Drawdown'] = max_system_pct_dd df.loc[index, 'Max Peak'] = max_peak df.loc[index, 'Recovery Factor'] = net_profit / abs(max_system_pct_dd) try: df.loc[index, 'Profit Factor'] = df_winning_trades['LastPnL'].sum() / abs(df_losing_trades['LastPnL'].sum()) except: df.loc[index, 'Profit Factor'] = 0.0 df.loc[index, 'Payoff Ratio'] = df_winning_trades['LastPnL'].mean() / abs(df_losing_trades['LastPnL'].mean()) return utils.round_df(df, places=2) def generate_equity_curve(df_trades, starting_balance, historical_data, selling_fees_method=None, start_date=None, end_date=None): df_trades['StartDate'] = pd.to_datetime(df_trades['StartDate']) df_trades['EndDate'] = pd.to_datetime(df_trades['EndDate']) df_trades['LastRecordDate'] = pd.to_datetime(df_trades['LastRecordDate']) if start_date is None: start_date = df_trades.StartDate.min() if end_date is None: end_date = df_trades.LastRecordDate.max() start_date = pd.to_datetime(start_date) df_quotes = historical_data.copy() if start_date: df_quotes = df_quotes.loc[start_date:] if end_date: df_quotes = df_quotes.loc[:end_date] df =
pd.DataFrame()
pandas.DataFrame
from __future__ import division from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from pandas._libs import testing as _testing import pandas.compat as compat from pandas.compat import ( PY2, PY3, Counter, StringIO, callable, filter, httplib, lmap, lrange, lzip, map, raise_with_traceback, range, string_types, u, unichr, zip) from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Series, bdate_range) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import pandas.core.common as com from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option('^display.', silent=True) def round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : pandas object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- round_trip_pickled_object : pandas object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10))) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) def round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .format(path)) else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) try: yield f finally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.Series): return assert_series_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.DataFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (isinstance(left, np.ndarray) or isinstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(left))) if not isinstance(right, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_isinstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.append(str( x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if com._all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) # ----------------------------------------------------------------------------- # Stdout / stderr decorators @contextmanager def set_defaultencoding(encoding): """ Set default encoding (as given by sys.getdefaultencoding()) to the given encoding; restore on exit. Parameters ---------- encoding : str """ if not PY2: raise ValueError("set_defaultencoding context is only available " "in Python 2.") orig = sys.getdefaultencoding() reload(sys) # noqa:F821 sys.setdefaultencoding(encoding) try: yield finally: sys.setdefaultencoding(orig) def capture_stdout(f): r""" Decorator to capture stdout in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stdout. Returns ------- f : callable The decorated test ``f``, which captures stdout. Examples -------- >>> from pandas.util.testing import capture_stdout >>> import sys >>> >>> @capture_stdout ... def test_print_pass(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "foo\n" >>> >>> @capture_stdout ... def test_print_fail(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stdout = StringIO() f(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return wrapper def capture_stderr(f): r""" Decorator to capture stderr in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stderr. Returns ------- f : callable The decorated test ``f``, which captures stderr. Examples -------- >>> from pandas.util.testing import capture_stderr >>> import sys >>> >>> @capture_stderr ... def test_stderr_pass(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "foo\n" >>> >>> @capture_stderr ... def test_stderr_fail(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stderr = StringIO() f(*args, **kwargs) finally: sys.stderr = sys.__stderr__ return wrapper # ----------------------------------------------------------------------------- # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except Exception: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import pytest pytest.skip('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception: print("Couldn't close file descriptor: {fdesc} (file: {fname})" .format(fdesc=fd, fname=filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: {error}".format(error=e)) @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix='') try: yield directory_name finally: try: rmtree(directory_name) except Exception: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True def _check_types(l, r, obj='Index'): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assert r.inferred_type in ('string', 'unicode') else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.codes[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = '{obj} levels are different'.format(obj=obj) msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left) msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right) raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = '{obj} length are different'.format(obj=obj) msg2 = '{length}, {left}'.format(length=len(left), left=left) msg3 = '{length}, {right}'.format(length=len(right), right=right) raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{level}]'.format(level=level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values) .astype(int)) * 100.0 / len(left) msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal('freq', left, right, obj=obj) if (isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex)): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) def assert_class_equal(left, right, exact=True, obj='Input'): """checks classes are equal.""" __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return x.__class__.__name__ except AttributeError: return repr(type(x)) if exact == 'equiv': if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {'Int64Index', 'RangeIndex'}): msg = '{obj} classes are not equivalent'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = '{obj} classes are different'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = 'Attribute "{attr}" are different'.format(attr=attr) raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ("one of 'objs' is not a matplotlib Axes instance, type " "encountered {name!r}").format(name=el.__class__.__name__) assert isinstance(el, (plt.Axes, dict)), msg else: assert isinstance(objs, (plt.Artist, tuple, dict)), ( 'objs is neither an ndarray of Artist instances nor a ' 'single Artist instance, tuple, or dict, "objs" is a {name!r}' .format(name=objs.__class__.__name__)) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions return assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal(left, right, check_dtype=True, check_category_order=True, obj='Categorical'): """Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj='{obj}.categories'.format(obj=obj)) assert_numpy_array_equal(left.codes, right.codes, check_dtype=check_dtype, obj='{obj}.codes'.format(obj=obj)) else: assert_index_equal(left.categories.sort_values(), right.categories.sort_values(), obj='{obj}.categories'.format(obj=obj)) assert_index_equal(left.categories.take(left.codes), right.categories.take(right.codes), obj='{obj}.values'.format(obj=obj)) assert_attr_equal('ordered', left, right, obj=obj) def assert_interval_array_equal(left, right, exact='equiv', obj='IntervalArray'): """Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_index_equal(left.right, right.right, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_attr_equal('closed', left, right, obj=obj) def assert_period_array_equal(left, right, obj='PeriodArray'): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}.values'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def assert_datetime_array_equal(left, right, obj='DatetimeArray'): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) assert_attr_equal('tz', left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj='TimedeltaArray'): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if PY2 and isinstance(left, string_types): # left needs to be printable in native text type in python2 left = left.encode('utf-8') if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) if PY2 and isinstance(right, string_types): # right needs to be printable in native text type in python2 right = right.encode('utf-8') msg = """{obj} are different {message} [left]: {left} [right]: {right}""".format(obj=obj, message=message, left=left, right=right) if diff is not None: msg += "\n[diff]: {diff}".format(diff=diff) raise AssertionError(msg) def assert_numpy_array_equal(left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj='numpy array'): """ Checks that 'np.ndarray' is equivalent Parameters ---------- left : np.ndarray or iterable right : np.ndarray or iterable strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype: bool, default True check dtype if both a and b are np.ndarray err_msg : str, default None If provided, used as assertion message check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, 'base', None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == 'same': if left_base is not right_base: msg = "{left!r} is not {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) elif check_same == 'copy': if left_base is right_base: msg = "{left!r} is {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail(obj, '{obj} shapes are different' .format(obj=obj), left.shape, right.shape) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal('dtype', left, right, obj=obj) return True def assert_extension_array_equal(left, right, check_dtype=True, check_less_precise=False, check_exact=False): """Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), 'left is not an ExtensionArray' assert isinstance(right, ExtensionArray), 'right is not an ExtensionArray' if check_dtype: assert_attr_equal('dtype', left, right, obj='ExtensionArray') left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj='ExtensionArray NA mask') left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj='ExtensionArray') else: _testing.assert_almost_equal(left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj='ExtensionArray') # This could be refactored to use the NDFrame.equals method def assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, obj='Series'): """Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = '{len}, {left}'.format(len=len(left), left=left.index) msg2 = '{len}, {right}'.format(len=len(right), right=right.index) raise_assert_detail(obj, 'Series length are different', msg1, msg2) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if (is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical): pass else: assert_attr_equal('dtype', left, right) if check_exact: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype, obj='{obj}'.format(obj=obj),) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if (is_datetimelike_v_numeric(left, right) or is_datetimelike_v_object(left, right) or needs_i8_conversion(left) or needs_i8_conversion(right)): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(
Index(right.values)
pandas.Index
import logging import math import pandas import numpy from statsmodels.formula.api import OLS from statsmodels.tools import add_constant from fls import FlexibleLeastSquare _LOGGER = logging.getLogger('regression') class RegressionModelFLS(object): def __init__(self, securities, delta, with_constant_term=True): self.with_constant_term = with_constant_term size = len(securities) - 1 if self.with_constant_term: size += 1 initial_state_mean = numpy.zeros(size) initial_state_covariance = numpy.ones((size, size)) observation_covariance = 5E-5 trans_cov = delta / (1. - delta) * numpy.eye(size) self.result = None self.fls = FlexibleLeastSquare(initial_state_mean, initial_state_covariance, observation_covariance, trans_cov) def compute_regression(self, y_value, x_values): independent_values = x_values if self.with_constant_term: independent_values += [1.] self.result = self.fls.estimate(y_value, independent_values) def get_residual_error(self): return math.sqrt(self.result.var_output_error) def get_factors(self): return self.result.beta def get_estimate(self): return self.result.estimated_output def get_weights(self): weights = self.get_factors() if self.with_constant_term: weights = weights[:-1] return numpy.array([-1.] + weights) def get_residual(self): return self.result.error class RegressionModelOLS(object): def __init__(self, securities, with_constant_term=True, lookback_period=200): self._lookback = lookback_period self.current_x = None self.current_y = None self._with_constant_term= with_constant_term self._counter = 0 self._y_values = list() self._x_values = [list() for item in securities[1:]] self.securities = securities self.result = None def add_samples(self, y_value, x_values): self._counter += 1 self._y_values.append(y_value) if self._counter > self._lookback: self._y_values.pop(0) for target_lists in self._x_values: target_lists.pop(0) for target_list, new_item in zip(self._x_values, x_values): target_list.append(new_item) independent_values = x_values if self._with_constant_term: independent_values += [1.] self.current_x = independent_values self.current_y = y_value def compute_regression(self): if len(self._y_values) < len(self.securities) - 1: # not enough values for regression _LOGGER.error('not enough values for regression') dependent =
pandas.DataFrame({self.securities[0]: self._y_values})
pandas.DataFrame
import operator from enum import Enum from typing import Union, Any, Optional, Hashable import numpy as np import pandas as pd import pandas_flavor as pf from pandas.core.construction import extract_array from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_dtype, is_dtype_equal, is_extension_array_dtype, is_numeric_dtype, is_string_dtype, ) from pandas.core.reshape.merge import _MergeOperation from janitor.utils import check, check_column @pf.register_dataframe_method def conditional_join( df: pd.DataFrame, right: Union[pd.DataFrame, pd.Series], *conditions, how: str = "inner", sort_by_appearance: bool = False, df_columns: Optional[Any] = None, right_columns: Optional[Any] = None, ) -> pd.DataFrame: """ This is a convenience function that operates similarly to `pd.merge`, but allows joins on inequality operators, or a combination of equi and non-equi joins. Join solely on equality are not supported. If the join is solely on equality, `pd.merge` function covers that; if you are interested in nearest joins, or rolling joins, or the first match (lowest or highest) - `pd.merge_asof` covers that. There is also the IntervalIndex, which is usually more efficient for range joins, especially if the intervals do not overlap. Column selection in `df_columns` and `right_columns` is possible using the [`select_columns`][janitor.functions.select_columns.select_columns] syntax. This function returns rows, if any, where values from `df` meet the condition(s) for values from `right`. The conditions are passed in as a variable argument of tuples, where the tuple is of the form `(left_on, right_on, op)`; `left_on` is the column label from `df`, `right_on` is the column label from `right`, while `op` is the operator. For multiple conditions, the and(`&`) operator is used to combine the results of the individual conditions. The operator can be any of `==`, `!=`, `<=`, `<`, `>=`, `>`. A binary search is used to get the relevant rows for non-equi joins; this avoids a cartesian join, and makes the process less memory intensive. For equi-joins, Pandas internal merge function is used. The join is done only on the columns. MultiIndex columns are not supported. For non-equi joins, only numeric and date columns are supported. Only `inner`, `left`, and `right` joins are supported. If the columns from `df` and `right` have nothing in common, a single index column is returned; else, a MultiIndex column is returned. Example: >>> import pandas as pd >>> import janitor >>> df1 = pd.DataFrame({"value_1": [2, 5, 7, 1, 3, 4]}) >>> df2 = pd.DataFrame({"value_2A": [0, 3, 7, 12, 0, 2, 3, 1], ... "value_2B": [1, 5, 9, 15, 1, 4, 6, 3], ... }) >>> df1 value_1 0 2 1 5 2 7 3 1 4 3 5 4 >>> df2 value_2A value_2B 0 0 1 1 3 5 2 7 9 3 12 15 4 0 1 5 2 4 6 3 6 7 1 3 >>> df1.conditional_join( ... df2, ... ("value_1", "value_2A", ">="), ... ("value_1", "value_2B", "<=") ... ) value_1 value_2A value_2B 0 2 1 3 1 2 2 4 2 5 3 5 3 5 3 6 4 7 7 9 5 1 0 1 6 1 0 1 7 1 1 3 8 3 1 3 9 3 2 4 10 3 3 5 11 3 3 6 12 4 2 4 13 4 3 5 14 4 3 6 :param df: A pandas DataFrame. :param right: Named Series or DataFrame to join to. :param conditions: Variable argument of tuple(s) of the form `(left_on, right_on, op)`, where `left_on` is the column label from `df`, `right_on` is the column label from `right`, while `op` is the operator. The operator can be any of `==`, `!=`, `<=`, `<`, `>=`, `>`. For multiple conditions, the and(`&`) operator is used to combine the results of the individual conditions. :param how: Indicates the type of join to be performed. It can be one of `inner`, `left`, `right`. Full join is not supported. Defaults to `inner`. :param sort_by_appearance: Default is `False`. This is useful for strictly non-equi joins, where the user wants the original order maintained. If True, values from `df` and `right` that meet the join condition will be returned in the final dataframe in the same order that they were before the join. :param df_columns: Columns to select from `df`. It can be a single column or a list of columns. It is also possible to rename the output columns via a dictionary. :param right_columns: Columns to select from `right`. It can be a single column or a list of columns. It is also possible to rename the output columns via a dictionary. :returns: A pandas DataFrame of the two merged Pandas objects. """ return _conditional_join_compute( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) class _JoinOperator(Enum): """ List of operators used in conditional_join. """ GREATER_THAN = ">" LESS_THAN = "<" GREATER_THAN_OR_EQUAL = ">=" LESS_THAN_OR_EQUAL = "<=" STRICTLY_EQUAL = "==" NOT_EQUAL = "!=" class _JoinTypes(Enum): """ List of join types for conditional_join. """ INNER = "inner" LEFT = "left" RIGHT = "right" operator_map = { _JoinOperator.STRICTLY_EQUAL.value: operator.eq, _JoinOperator.LESS_THAN.value: operator.lt, _JoinOperator.LESS_THAN_OR_EQUAL.value: operator.le, _JoinOperator.GREATER_THAN.value: operator.gt, _JoinOperator.GREATER_THAN_OR_EQUAL.value: operator.ge, _JoinOperator.NOT_EQUAL.value: operator.ne, } less_than_join_types = { _JoinOperator.LESS_THAN.value, _JoinOperator.LESS_THAN_OR_EQUAL.value, } greater_than_join_types = { _JoinOperator.GREATER_THAN.value, _JoinOperator.GREATER_THAN_OR_EQUAL.value, } def _check_operator(op: str): """ Check that operator is one of `>`, `>=`, `==`, `!=`, `<`, `<=`. Used in `conditional_join`. """ sequence_of_operators = {op.value for op in _JoinOperator} if op not in sequence_of_operators: raise ValueError( "The conditional join operator " f"should be one of {sequence_of_operators}" ) def _conditional_join_preliminary_checks( df: pd.DataFrame, right: Union[pd.DataFrame, pd.Series], conditions: tuple, how: str, sort_by_appearance: bool, df_columns: Any, right_columns: Any, ) -> tuple: """ Preliminary checks for conditional_join are conducted here. Checks include differences in number of column levels, length of conditions, existence of columns in dataframe, etc. """ check("right", right, [pd.DataFrame, pd.Series]) df = df.copy() right = right.copy() if isinstance(right, pd.Series): if not right.name: raise ValueError( "Unnamed Series are not supported for conditional_join." ) right = right.to_frame() if df.columns.nlevels != right.columns.nlevels: raise ValueError( "The number of column levels " "from the left and right frames must match. " "The number of column levels from the left dataframe " f"is {df.columns.nlevels}, while the number of column levels " f"from the right dataframe is {right.columns.nlevels}." ) if not conditions: raise ValueError("Kindly provide at least one join condition.") for condition in conditions: check("condition", condition, [tuple]) len_condition = len(condition) if len_condition != 3: raise ValueError( "condition should have only three elements; " f"{condition} however is of length {len_condition}." ) for left_on, right_on, op in conditions: check("left_on", left_on, [Hashable]) check("right_on", right_on, [Hashable]) check("operator", op, [str]) check_column(df, [left_on]) check_column(right, [right_on]) _check_operator(op) if all( (op == _JoinOperator.STRICTLY_EQUAL.value for *_, op in conditions) ): raise ValueError("Equality only joins are not supported.") check("how", how, [str]) checker = {jointype.value for jointype in _JoinTypes} if how not in checker: raise ValueError(f"'how' should be one of {checker}.") check("sort_by_appearance", sort_by_appearance, [bool]) if (df.columns.nlevels > 1) and ( isinstance(df_columns, dict) or isinstance(right_columns, dict) ): raise ValueError( "Column renaming with a dictionary is not supported " "for MultiIndex columns." ) return ( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) def _conditional_join_type_check( left_column: pd.Series, right_column: pd.Series, op: str ) -> None: """ Raise error if column type is not any of numeric or datetime or string. """ permitted_types = { is_datetime64_dtype, is_numeric_dtype, is_string_dtype, is_categorical_dtype, } for func in permitted_types: if func(left_column): break else: raise ValueError( "conditional_join only supports " "string, category, numeric, or date dtypes (without timezone) - " f"'{left_column.name} is of type {left_column.dtype}." ) lk_is_cat = is_categorical_dtype(left_column) rk_is_cat = is_categorical_dtype(right_column) if lk_is_cat & rk_is_cat: if not left_column.array._categories_match_up_to_permutation( right_column.array ): raise ValueError( f"'{left_column.name}' and '{right_column.name}' " "should have the same categories, and the same order." ) elif not is_dtype_equal(left_column, right_column): raise ValueError( f"Both columns should have the same type - " f"'{left_column.name}' has {left_column.dtype} type;" f"'{right_column.name}' has {right_column.dtype} type." ) if (op in less_than_join_types.union(greater_than_join_types)) & ( (is_string_dtype(left_column) | is_categorical_dtype(left_column)) ): raise ValueError( "non-equi joins are supported " "only for datetime and numeric dtypes. " f"{left_column.name} in condition " f"({left_column.name}, {right_column.name}, {op}) " f"has a dtype {left_column.dtype}." ) return None def _conditional_join_compute( df: pd.DataFrame, right: pd.DataFrame, conditions: list, how: str, sort_by_appearance: bool, df_columns: Any, right_columns: Any, ) -> pd.DataFrame: """ This is where the actual computation for the conditional join takes place. A pandas DataFrame is returned. """ ( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) = _conditional_join_preliminary_checks( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) eq_check = False le_lt_check = False for condition in conditions: left_on, right_on, op = condition _conditional_join_type_check(df[left_on], right[right_on], op) if op == _JoinOperator.STRICTLY_EQUAL.value: eq_check = True elif op in less_than_join_types.union(greater_than_join_types): le_lt_check = True df.index = range(len(df)) right.index = range(len(right)) multiple_conditions = len(conditions) > 1 if not multiple_conditions: left_on, right_on, op = conditions[0] result = _generic_func_cond_join( df[left_on], right[right_on], op, multiple_conditions ) if result is None: return _create_conditional_join_empty_frame( df, right, how, df_columns, right_columns ) return _create_conditional_join_frame( df, right, *result, how, sort_by_appearance, df_columns, right_columns, ) if eq_check: result = _multiple_conditional_join_eq(df, right, conditions) elif le_lt_check: result = _multiple_conditional_join_le_lt(df, right, conditions) else: result = _multiple_conditional_join_ne(df, right, conditions) if result is None: return _create_conditional_join_empty_frame( df, right, how, df_columns, right_columns ) return _create_conditional_join_frame( df, right, *result, how, sort_by_appearance, df_columns, right_columns ) def _less_than_indices( left_c: pd.Series, right_c: pd.Series, strict: bool, ) -> tuple: """ Use binary search to get indices where left_c is less than or equal to right_c. If strict is True, then only indices where `left_c` is less than (but not equal to) `right_c` are returned. A tuple of integer indexes for left_c and right_c is returned. """ # no point going through all the hassle if left_c.min() > right_c.max(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c = extract_array(left_c, extract_numpy=True) right_index = right_c.index.to_numpy(dtype=int, copy=False) right_c = extract_array(right_c, extract_numpy=True) search_indices = right_c.searchsorted(left_c, side="left") # if any of the positions in `search_indices` # is equal to the length of `right_keys` # that means the respective position in `left_c` # has no values from `right_c` that are less than # or equal, and should therefore be discarded len_right = right_c.size rows_equal = search_indices == len_right if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] # the idea here is that if there are any equal values # shift to the right to the immediate next position # that is not equal if strict: rows_equal = right_c[search_indices] rows_equal = left_c == rows_equal # replace positions where rows are equal # with positions from searchsorted('right') # positions from searchsorted('right') will never # be equal and will be the furthermost in terms of position # example : right_c -> [2, 2, 2, 3], and we need # positions where values are not equal for 2; # the furthermost will be 3, and searchsorted('right') # will return position 3. if rows_equal.any(): replacements = right_c.searchsorted(left_c, side="right") # now we can safely replace values # with strictly less than positions search_indices = np.where(rows_equal, replacements, search_indices) # check again if any of the values # have become equal to length of right_c # and get rid of them rows_equal = search_indices == len_right if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] if not search_indices.size: return None right_c = [right_index[ind:len_right] for ind in search_indices] right_c = np.concatenate(right_c) left_c = np.repeat(left_index, len_right - search_indices) return left_c, right_c def _greater_than_indices( left_c: pd.Series, right_c: pd.Series, strict: bool, multiple_conditions: bool, ) -> tuple: """ Use binary search to get indices where left_c is greater than or equal to right_c. If strict is True, then only indices where `left_c` is greater than (but not equal to) `right_c` are returned. if multiple_conditions is False, a tuple of integer indexes for left_c and right_c is returned; else a tuple of the index for left_c, right_c, as well as the positions of left_c in right_c is returned. """ # quick break, avoiding the hassle if left_c.max() < right_c.min(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c = extract_array(left_c, extract_numpy=True) right_index = right_c.index.to_numpy(dtype=int, copy=False) right_c = extract_array(right_c, extract_numpy=True) search_indices = right_c.searchsorted(left_c, side="right") # if any of the positions in `search_indices` # is equal to 0 (less than 1), it implies that # left_c[position] is not greater than any value # in right_c rows_equal = search_indices < 1 if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] # the idea here is that if there are any equal values # shift downwards to the immediate next position # that is not equal if strict: rows_equal = right_c[search_indices - 1] rows_equal = left_c == rows_equal # replace positions where rows are equal with # searchsorted('left'); # however there can be scenarios where positions # from searchsorted('left') would still be equal; # in that case, we shift down by 1 if rows_equal.any(): replacements = right_c.searchsorted(left_c, side="left") # return replacements # `left` might result in values equal to len right_c replacements = np.where( replacements == right_c.size, replacements - 1, replacements ) # now we can safely replace values # with strictly greater than positions search_indices = np.where(rows_equal, replacements, search_indices) # any value less than 1 should be discarded # since the lowest value for binary search # with side='right' should be 1 rows_equal = search_indices < 1 if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] if not search_indices.size: return None if multiple_conditions: return left_index, right_index, search_indices right_c = [right_index[:ind] for ind in search_indices] right_c = np.concatenate(right_c) left_c = np.repeat(left_index, search_indices) return left_c, right_c def _not_equal_indices(left_c: pd.Series, right_c: pd.Series) -> tuple: """ Use binary search to get indices where `left_c` is exactly not equal to `right_c`. It is a combination of strictly less than and strictly greater than indices. A tuple of integer indexes for left_c and right_c is returned. """ dummy = np.array([], dtype=int) # deal with nulls l1_nulls = dummy r1_nulls = dummy l2_nulls = dummy r2_nulls = dummy any_left_nulls = left_c.isna() any_right_nulls = right_c.isna() if any_left_nulls.any(): l1_nulls = left_c.index[any_left_nulls.array] l1_nulls = l1_nulls.to_numpy(copy=False) r1_nulls = right_c.index # avoid NAN duplicates if any_right_nulls.any(): r1_nulls = r1_nulls[~any_right_nulls.array] r1_nulls = r1_nulls.to_numpy(copy=False) nulls_count = l1_nulls.size # blow up nulls to match length of right l1_nulls = np.tile(l1_nulls, r1_nulls.size) # ensure length of right matches left if nulls_count > 1: r1_nulls = np.repeat(r1_nulls, nulls_count) if any_right_nulls.any(): r2_nulls = right_c.index[any_right_nulls.array] r2_nulls = r2_nulls.to_numpy(copy=False) l2_nulls = left_c.index nulls_count = r2_nulls.size # blow up nulls to match length of left r2_nulls = np.tile(r2_nulls, l2_nulls.size) # ensure length of left matches right if nulls_count > 1: l2_nulls = np.repeat(l2_nulls, nulls_count) l1_nulls = np.concatenate([l1_nulls, l2_nulls]) r1_nulls = np.concatenate([r1_nulls, r2_nulls]) outcome = _less_than_indices(left_c, right_c, strict=True) if outcome is None: lt_left = dummy lt_right = dummy else: lt_left, lt_right = outcome outcome = _greater_than_indices( left_c, right_c, strict=True, multiple_conditions=False ) if outcome is None: gt_left = dummy gt_right = dummy else: gt_left, gt_right = outcome left_c = np.concatenate([lt_left, gt_left, l1_nulls]) right_c = np.concatenate([lt_right, gt_right, r1_nulls]) if (not left_c.size) & (not right_c.size): return None return left_c, right_c def _eq_indices( left_c: pd.Series, right_c: pd.Series, ) -> tuple: """ Use binary search to get indices where left_c is equal to right_c. Returns a tuple of the left_index, right_index, lower_boundary and upper_boundary. """ # no point going through all the hassle if left_c.min() > right_c.max(): return None if left_c.max() < right_c.min(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c = extract_array(left_c, extract_numpy=True) right_index = right_c.index.to_numpy(dtype=int, copy=False) right_c = extract_array(right_c, extract_numpy=True) lower_boundary = right_c.searchsorted(left_c, side="left") upper_boundary = right_c.searchsorted(left_c, side="right") keep_rows = lower_boundary < upper_boundary if not keep_rows.any(): return None if not keep_rows.all(): left_index = left_index[keep_rows] lower_boundary = lower_boundary[keep_rows] upper_boundary = upper_boundary[keep_rows] return left_index, right_index, lower_boundary, upper_boundary def _generic_func_cond_join( left_c: pd.Series, right_c: pd.Series, op: str, multiple_conditions: bool, ) -> tuple: """ Generic function to call any of the individual functions (_less_than_indices, _greater_than_indices, or _not_equal_indices). """ strict = False if op in { _JoinOperator.GREATER_THAN.value, _JoinOperator.LESS_THAN.value, _JoinOperator.NOT_EQUAL.value, }: strict = True if op in less_than_join_types: return _less_than_indices(left_c, right_c, strict) elif op in greater_than_join_types: return _greater_than_indices( left_c, right_c, strict, multiple_conditions ) elif op == _JoinOperator.NOT_EQUAL.value: return _not_equal_indices(left_c, right_c) def _generate_indices( left_index: np.ndarray, right_index: np.ndarray, conditions: list ) -> tuple: """ Run a for loop to get the final indices. This iteratively goes through each condition, builds a boolean array, and gets indices for rows that meet the condition requirements. `conditions` is a list of tuples, where a tuple is of the form: `(Series from df, Series from right, operator)`. """ for condition in conditions: left_c, right_c, op = condition left_c =
extract_array(left_c, extract_numpy=True)
pandas.core.construction.extract_array
import os import shutil from deepsense import neptune import pandas as pd import math from .pipeline_config import DESIRED_CLASS_SUBSET, ID_COLUMN, SEED, SOLUTION_CONFIG from .pipelines import PIPELINES from .utils import competition_metric_evaluation, generate_list_chunks, get_img_ids_from_folder, \ init_logger, reduce_number_of_classes, set_seed, submission_formatting, add_missing_image_ids, read_params LOGGER = init_logger() CTX = neptune.Context() PARAMS = read_params(CTX) set_seed(SEED) class PipelineManager: def train(self, pipeline_name, dev_mode): train(pipeline_name, dev_mode) def evaluate(self, pipeline_name, dev_mode, chunk_size): evaluate(pipeline_name, dev_mode, chunk_size) def predict(self, pipeline_name, dev_mode, submit_predictions, chunk_size): predict(pipeline_name, dev_mode, submit_predictions, chunk_size) def make_submission(self, submission_filepath): make_submission(submission_filepath) def train(pipeline_name, dev_mode): LOGGER.info('training') if PARAMS.clone_experiment_dir_from != '': if os.path.exists(PARAMS.experiment_dir): shutil.rmtree(PARAMS.experiment_dir) shutil.copytree(PARAMS.clone_experiment_dir_from, PARAMS.experiment_dir) if bool(PARAMS.clean_experiment_directory_before_training) and os.path.isdir(PARAMS.experiment_dir): shutil.rmtree(PARAMS.experiment_dir) annotations = pd.read_csv(PARAMS.annotations_filepath) annotations_human_labels =
pd.read_csv(PARAMS.annotations_human_labels_filepath)
pandas.read_csv
from datetime import datetime, timedelta import pandas as pd import numpy as np import tinkoff_data as td import edhec_risk_kit as erk import csv #l=[] #l=["TIPO", "TGLD", "TUSD", "TSPX", "TBIO", "TECH"] l=["FXUS","FXRW","FXWO","FXKZ","FXCN","FXIT","FXDE","FXRL","FXRB","FXRU","FXGD","FXMM","FXTB"] pddf = td.getTinkoffETFsLYPrices(l) pddf.index =
pd.to_datetime(pddf.index)
pandas.to_datetime
""" Date: Nov 2018 Author: <NAME> Retrieves sample counts to help select train, validation and testing subsets. We have already created sync samples using script "create_sync_samples". This script gets the numbers of samples for each datasets, speakers, and sessions. These counts are used to select training, validation and test subsets. These are chosen randomly based only on the relative sizes of subsets. We end up with ~80% training, 10% validation and 10% testing (in terms of number of samples, which are 200 ms each). """ import pandas as pd from synchronisation.create_experiment_data_utils import get_sync_file_names, split_name def main(): PATH = "/disk/scratch_big/../SyncDataSmallSil/" output_file_names = "/disk/scratch_big/../SyncDataSmallSil/docs/df_file_names.csv" output_file_info = "/disk/scratch_big/../SyncDataSmallSil/docs/df_file_info.csv" output_speakers = "/disk/scratch_big/../SyncDataSmallSil/docs/df_speakers.csv" print("finding .npz files in ", PATH) files = get_sync_file_names(PATH) files.sort() # file names df_files = pd.DataFrame(columns={"filename"}, data=files)
pd.DataFrame.to_csv(df_files, output_file_names, index=False)
pandas.DataFrame.to_csv
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/24 15:02 Desc: 东方财富网-数据中心-新股数据-打新收益率 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html 东方财富网-数据中心-新股数据-新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html """ import pandas as pd import requests from tqdm import tqdm from akshare.utils import demjson def _get_page_num_dxsyl() -> int: """ 东方财富网-数据中心-新股数据-打新收益率-总页数 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 总页数 :rtype: int """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "st": "16", "sr": "-1", "ps": "500", "p": '1', "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) total_page = data_json["pages"] return total_page def stock_dxsyl_em() -> pd.DataFrame: """ 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 指定市场的打新收益率数据 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" page_num = _get_page_num_dxsyl() big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): params = { "st": "16", "sr": "-1", "ps": "500", "p": str(page), "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } res = requests.get(url, params=params) data_text = res.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json["data"]]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", "-", ] big_df = big_df[[ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", ]] big_df["发行价"] = pd.to_numeric(big_df["发行价"], errors='coerce') big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["网上-发行中签率"] = pd.to_numeric(big_df["网上-发行中签率"]) big_df["网上-有效申购股数"] = pd.to_numeric(big_df["网上-有效申购股数"]) big_df["网上-有效申购户数"] = pd.to_numeric(big_df["网上-有效申购户数"]) big_df["网上-超额认购倍数"] = pd.to_numeric(big_df["网上-超额认购倍数"]) big_df["网下-配售中签率"] = pd.to_numeric(big_df["网下-配售中签率"]) big_df["网下-有效申购股数"] = pd.to_numeric(big_df["网下-有效申购股数"]) big_df["网下-有效申购户数"] = pd.to_numeric(big_df["网下-有效申购户数"]) big_df["网下-配售认购倍数"] = pd.to_numeric(big_df["网下-配售认购倍数"]) big_df["总发行数量"] = pd.to_numeric(big_df["总发行数量"]) big_df["开盘溢价"] = pd.to_numeric(big_df["开盘溢价"]) big_df["首日涨幅"] = pd.to_numeric(big_df["首日涨幅"]) big_df["打新收益"] = pd.to_numeric(big_df["打新收益"]) return big_df def stock_xgsglb_em(symbol: str = "京市A股") -> pd.DataFrame: """ 新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html :param symbol: choice of {"全部股票", "沪市A股", "科创板", "深市A股", "创业板", "京市A股"} :type symbol: str :return: 新股申购与中签数据 :rtype: pandas.DataFrame """ market_map = { "全部股票": """(APPLY_DATE>'2010-01-01')""", "沪市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE in ("069001001001","069001001003","069001001006"))""", "科创板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE="069001001006")""", "深市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE in ("069001002001","069001002002","069001002003","069001002005"))""", "创业板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE="069001002002")""", } url = "http://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "京市A股": params = { 'sortColumns': 'APPLY_DATE', 'sortTypes': '-1', 'pageSize': '500', 'pageNumber': '1', 'columns': 'ALL', 'reportName': 'RPT_NEEQ_ISSUEINFO_LIST', 'quoteColumns': 'f14~01~SECURITY_CODE~SECURITY_NAME_ABBR', 'source': 'NEEQSELECT', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, 1+int(total_page)), leave=False): params.update({ 'pageNumber': page }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ '序号', '-', '代码', '-', '简称', '申购代码', '发行总数', '-', '发行价格', '发行市盈率', '申购日', '发行结果公告日', '上市日', '网上发行数量', '顶格申购所需资金', '申购上限', '网上申购缴款日', '网上申购退款日', '-', '网上获配比例', '最新价', '首日收盘价', '网下有效申购倍数', '每百股获利', '-', '-', '-', '-', '-', '-', ] big_df = big_df[[ '序号', '代码', '简称', '申购代码', '发行总数', '网上发行数量', '顶格申购所需资金', '申购上限', '发行价格', '最新价', '首日收盘价', '申购日', '网上申购缴款日', '网上申购退款日', '上市日', '发行结果公告日', '发行市盈率', '网上获配比例', '网下有效申购倍数', '每百股获利', ]] big_df['发行总数'] = pd.to_numeric(big_df['发行总数']) big_df['网上发行数量'] = pd.to_numeric(big_df['网上发行数量']) big_df['顶格申购所需资金'] = pd.to_numeric(big_df['顶格申购所需资金']) big_df['申购上限'] = pd.to_numeric(big_df['申购上限']) big_df['发行价格'] = pd.to_nu
meric(big_df['发行价格'])
pandas.to_numeric
import pandas as pd import numpy as np try: from paraview.vtk.numpy_interface import dataset_adapter as dsa from paraview.vtk.numpy_interface import algorithms as algs from paraview import servermanager as sm from paraview.simple import * except: pass from vtk.util.numpy_support import vtk_to_numpy from typing import List, Dict import logging logger = logging.getLogger(__name__) class BaseFilter: """ Class used as a basecase class for the different Paraview filters """ filter_type: str = "VTK_reader" counter: int = 0 filter: object vector_keys: List = ["x", "y", "z"] x_min: float x_max: float y_min: float y_max: float z_min: float z_max: float def __init__(self, name): self.name = name @property def cell_keys(self): vtk_object = sm.Fetch(self.filter) vtk_object = dsa.WrapDataObject(vtk_object) return vtk_object.CellData.keys() @property def point_keys(self): vtk_object = sm.Fetch(self.filter) vtk_object = dsa.WrapDataObject(vtk_object) return vtk_object.PointData.keys() @property def field_keys(self): vtk_object = sm.Fetch(self.filter) vtk_object = dsa.WrapDataObject(vtk_object) return vtk_object.FieldData.keys() @property def cell_data(self) -> pd.DataFrame: vtk_object = sm.Fetch(self.filter) vtk_object = dsa.WrapDataObject(vtk_object) pd_df = pd.DataFrame() for key in self.cell_keys: temp_dataset = np.array(vtk_object.CellData[key]).transpose() if len(temp_dataset.shape) != 1: # The dataset is a vector: for idx, vector_element in enumerate(temp_dataset): new_key = f"{key}{self.vector_keys[idx]}" pd_df[new_key] = vector_element else: pd_df[key] = temp_dataset return pd_df @property def point_data(self) -> pd.DataFrame: vtk_object = sm.Fetch(self.filter) vtk_object = dsa.WrapDataObject(vtk_object) pd_df =
pd.DataFrame()
pandas.DataFrame
from __future__ import annotations from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy.stats import gamma, exponnorm sns.set() BASE_PATH = Path('..', 'data', 'experimental') INPUT_PATHS = [ BASE_PATH / 'control.csv', BASE_PATH / 'tmz.csv', ] CURVE_PARAMETERS = { # estimated from running "clovars fit" on "control.csv" and "tmz.csv" 'control_division_parameters': { 'type': gamma, 'loc': 16.23, 'scale': 2.84, 'a': 3.32, }, 'tmz_division_parameters': { 'type': exponnorm, 'loc': 12.72, 'scale': 8.50, 'K': 2.87, }, 'tmz_death_parameters': { 'type': exponnorm, 'loc': 55.09, 'scale': 23.75, 'K': 2.93, }, } def main( input_paths: list[Path], curve_parameters: dict[str, dict[str, float]], ) -> None: """Main function of this script.""" dfs = [] for path in input_paths: df = pd.melt(
pd.read_csv(path, index_col=None)
pandas.read_csv
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from numpy import mean, var from scipy import stats from matplotlib import rc from lifelines import KaplanMeierFitter # python program to plot the OS difference between M2 HOXA9 low and M2 high HOXA9 def find_gene_index(gene_list,gene): j = [i for i,x in enumerate(gene_list) if x == gene] return j def find_patients_index(patients, p): j = [i for i,x in enumerate(patients) if x == p] return j[0] filename = "log_modified_LAML_TPM.csv" filename2 = "laml_tcga_clinical_data.tsv" # from David download - cbioPortal data = pd.read_csv(filename) patient_description = pd.read_csv(filename2,sep='\t') gene_list = data['Hybridization REF'] # find the index of HOXA9 in the data i_HOXA9 = find_gene_index(gene_list, "HOXA9") HOXA9_exp = data.iloc[i_HOXA9,2:] # select patients that have HOXA9 expression in the peaks peak1_indexes = [i+2 for i,x in enumerate(HOXA9_exp.values[0]) if x <= 1 and x >= 0.005] # +1 due to the first gene columns we removed +1 due to index shift peak2_indexes = [i+2 for i,x in enumerate(HOXA9_exp.values[0]) if x <= 5.5 and x >= 4] # 32 patients for low and 80 for high peak1_patients = data.iloc[:,peak1_indexes].columns peak2_patients = data.iloc[:,peak2_indexes] .columns # only keep the patient number peak1_patients = [item.split('-')[2] for item in peak1_patients] peak2_patients = [item.split('-')[2] for item in peak2_patients] patient2 = patient_description['Patient ID'] patient2 = [item.split('-')[2] for item in patient2] M2_low_indexes = [i for i,x in enumerate(patient2) if x in peak1_patients and patient_description['FAB'][i] == 'M2'] M2_high_indexes = [i for i,x in enumerate(patient2) if x in peak2_patients and patient_description['FAB'][i] == 'M2'] M4_low_indexes = [i for i,x in enumerate(patient2) if x in peak1_patients and patient_description['FAB'][i] == 'M4'] M4_high_indexes = [i for i,x in enumerate(patient2) if x in peak2_patients and patient_description['FAB'][i] == 'M4'] M2_low_vital = patient_description["Patient's Vital Status"][M2_low_indexes] M2_high_vital = patient_description["Patient's Vital Status"][M2_high_indexes ] M4_low_vital = patient_description["Patient's Vital Status"][M4_low_indexes] M4_high_vital = patient_description["Patient's Vital Status"][M4_high_indexes ] M2_low_vital2 = [0 if item == "Alive" else 1 for item in M2_low_vital] M2_high_vital2 = [0 if item == "Alive" else 1 for item in M2_high_vital] M4_low_vital2 = [0 if item == "Alive" else 1 for item in M4_low_vital] M4_high_vital2 = [0 if item == "Alive" else 1 for item in M4_high_vital] M2_low_OS = patient_description["Overall Survival (Months)"][M2_low_indexes] M2_high_OS = patient_description["Overall Survival (Months)"][M2_high_indexes] M4_low_OS = patient_description["Overall Survival (Months)"][M4_low_indexes] M4_high_OS = patient_description["Overall Survival (Months)"][M4_high_indexes] M2_low_tab = {'OS':M2_low_OS, 'vital':M2_low_vital, 'vital2':M2_low_vital2} M2_high_tab = {'OS':M2_high_OS, 'vital':M2_high_vital, 'vital2':M2_high_vital2} M4_low_tab = {'OS':M4_low_OS, 'vital':M4_low_vital, 'vital2':M4_low_vital2} M4_high_tab = {'OS':M4_high_OS, 'vital':M4_high_vital, 'vital2':M4_high_vital2} M2_low_tab =
pd.DataFrame(data=M2_low_tab)
pandas.DataFrame
# # Collective Knowledge () # # # # # Developer: # cfg={} # Will be updated by CK (meta description of this module) work={} # Will be updated by CK (temporal data) ck=None # Will be updated by CK (initialized CK kernel) import os import sys import json import re import pandas as pd import numpy as np # Local settings selector=[ ] selector2=[ {'name':'Device', 'key':'_platform'}, {'name':'Team', 'key':'_team'}, {'name':'Minimizer', 'key':'_minimizer_method'} ] selector3=[ ] metrics_selector_s=[ {'name':'Fun Key', 'key':'__fun_key', 'values':['fun','fun_exact','fun_validated']}, {'name':'Time Key', 'key':'__time_key', 'values':['total_q_shots','total_q_seconds','total_seconds']}, {'name':'Delta', 'key':'__delta', 'config':{'type':'number','min':0,'step':0.05}}, {'name':'Prob', 'key':'__prob', 'config':{'type':'number','min':0,'max':1,'step':0.1}} ] dimensions=[ {"key":"experiment", "name":"Experiment number", "view_key":"__number"}, {"key":"__energies", "name":"Energy convergence", "view_key":"__energies"}, {"key":"__fevs", "name":"Function evaluation", "view_key":"__fevs"}, {"key":"_point", "name":"Point", "view_key":"_point"}, {"key":"fun", "name":"fun", "view_key":"fun"}, {"key":"fun_exact", "name":"fun_exact", "view_key":"fun_exact"}, {"key":"fun_validated", "name":"fun_validated", "view_key":"fun_validated"}, {"key":"total_q_seconds", "name":"total_q_seconds", "view_key":"total_q_seconds"}, {"key":"total_q_shots", "name":"total_q_shots", "view_key":"total_q_shots"}, {"key":"total_seconds", "name":"total_seconds", "view_key":"total_seconds"}, ] metrics_dimensions=[ {"key":"experiment", "name":"Experiment number", "view_key":"__number"}, {"key":"_point", "name":"Point", "view_key":"_point"}, {"key":"__energies", "name":"Energy", "view_key":"__energies"}, {"key":"T_ave", "name":"T_ave", "view_key":"T_ave"}, {"key":"_sample_number", "name":"Sample number", "view_key":"_sample_number"}, {"key":"__times", "name":"Time", "view_key":"__times"}, {"key":"t_ave", "name":"t_ave", "view_key":"t_ave"}, ] view_cache=[ ] table_view=[ {"key":"_platform", "name":"Device"}, {"key":"_team", "name":"Team"}, {"key":"_minimizer_method", "name":"Minimizer"}, {"key":"_sample_number", "name":"Sample number"}, {"key":"_max_iterations", "name":"Max iterations"}, {"key":"_point", "name":"Point"}, {"key":"_repetition_id", "name":"Repetition ID"}, {"key":"fun", "name":"fun", "format":"%.3f"}, {"key":"fun_exact", "name":"fun_exact", "format":"%.3f"}, {"key":"fun_validated", "name":"fun_validated", "format":"%.3f"}, {"key":"nfev", "name":"nfev"}, {"key":"nit", "name":"nit"}, {"key":"success", "name":"success"}, {"key":"total_q_seconds", "name":"total_q_seconds", "format":"%.3f"}, {"key":"total_q_shots", "name":"total_q_shots"}, {"key":"total_seconds", "name":"total_seconds", "format":"%.3f"}, {"key":"_minimizer_src", "name":"Minimizer Source"}, ] metrics_table_view=[ {"key":"_platform", "name":"Device"}, {"key":"_team", "name":"Team"}, {"key":"_minimizer_method", "name":"Minimizer"}, {"key":"_sample_number", "name":"Sample number"}, {"key":"_max_iterations", "name":"Max iterations"}, {"key":"_point", "name":"Point"}, {"key":"T_ave", "name":"T_ave", "format":"%.3f"}, {"key":"T_err", "name":"T_err", "format":"%.3f"}, {"key":"num_repetitions", "name":"num_repetitions"}, {"key":"s", "name":"s", "format":"%.3f"}, {"key":"s_err", "name":"s_err", "format":"%.3f"}, {"key":"t_ave", "name":"t_ave", "format":"%.3f"}, {"key":"t_err", "name":"t_err", "format":"%.3f"}, ] ############################################################################## # Initialize module def init(i): """ Input: {} Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ return {'return':0} ############################################################################## # TBD: action description def detect(i): """ Input: { } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ ck.out('TBD: action description') ck.out('') ck.out('Command line: ') ck.out('') import json cmd=json.dumps(i, indent=2) ck.out(cmd) return {'return':0} ############################################################################## # get raw data for repo-widget def get_raw_data(i): """ Input: { } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ repo_uoa = 'ck-quantum-hackathon-20180615' def get_experimental_results(repo_uoa, tags='qck', module_uoa='experiment'): r = ck.access({'action':'search', 'repo_uoa':repo_uoa, 'module_uoa':module_uoa, 'tags':tags}) if r['return']>0: print('Error: %s' % r['error']) exit(1) experiments = r['lst'] dfs = [] for experiment in experiments: data_uoa = experiment['data_uoa'] r = ck.access({'action':'list_points', 'repo_uoa':repo_uoa, 'module_uoa':module_uoa, 'data_uoa':data_uoa}) if r['return']>0: print('Error: %s' % r['error']) exit(1) tags = r['dict']['tags'] skip = False # Get team name (final data) or email (submission data). team_tags = [ tag for tag in tags if tag.startswith('team-') ] email_tags = [ tag for tag in tags if tag.find('@')!=-1 ] if len(team_tags) > 0: team = team_tags[0][0:7] elif len(email_tags) > 0: team = email_tags[0] else: print('[Warning] Cannot determine team name for experiment in: \'%s\'' % r['path']) team = 'team-default' if skip: print('[Warning] Skipping experiment with bad tags:') print(tags) continue # For each point. for point in r['points']: point_file_path = os.path.join(r['path'], 'ckp-%s.0001.json' % point) with open(point_file_path) as point_file: point_data_raw = json.load(point_file) characteristics_list = point_data_raw['characteristics_list'] num_repetitions = len(characteristics_list) data = [ { # features 'platform': characteristics['run'].get('vqe_input', {}).get('q_device_name', 'unknown').lower(), # choices 'minimizer_method': characteristics['run'].get('vqe_input', {}).get('minimizer_method', 'n/a'), 'minimizer_options': characteristics['run'].get('vqe_input', {}).get('minimizer_options', {'maxfev':-1}), 'minimizer_src': characteristics['run'].get('vqe_input', {}).get('minimizer_src', ''), 'sample_number': characteristics['run'].get('vqe_input', {}).get('sample_number','n/a'), # statistical repetition 'repetition_id': repetition_id, # runtime characteristics 'run': characteristics['run'], 'report': characteristics['run'].get('report', {}), 'vqe_output': characteristics['run'].get('vqe_output', {}), } for (repetition_id, characteristics) in zip(range(num_repetitions), characteristics_list) if len(characteristics['run']) > 0 ] index = [ 'platform', 'team', 'minimizer_method', 'sample_number', 'max_iterations', 'point', 'repetition_id' ] for datum in data: datum['team'] = team datum['point'] = point datum['success'] = datum.get('vqe_output',{}).get('success',False) datum['nfev'] = np.int64(datum.get('vqe_output',{}).get('nfev',-1)) datum['nit'] = np.int64(datum.get('vqe_output',{}).get('nit',-1)) datum['fun'] = np.float64(datum.get('vqe_output',{}).get('fun',0)) datum['fun_validated'] = np.float64(datum.get('vqe_output',{}).get('fun_validated',0)) datum['fun_exact'] = np.float64(datum.get('vqe_output',{}).get('fun_exact',0)) datum['total_seconds'] = np.float64(datum.get('report',{}).get('total_seconds',0)) datum['total_q_seconds'] = np.float64(datum.get('report',{}).get('total_q_seconds',0)) datum['total_q_shots'] = np.int64(datum.get('report',{}).get('total_q_shots',0)) tmp_max_iterations = list(datum.get('minimizer_options',{'maxfev':-1}).values()) datum['max_iterations'] = tmp_max_iterations[0] if len(tmp_max_iterations)>0 else -1 for key in index: datum['_' + key] = datum[key] datum['_minimizer_src'] = datum['minimizer_src'] # Construct a DataFrame. df = pd.DataFrame(data) df = df.set_index(index) # Append to the list of similarly constructed DataFrames. dfs.append(df) if dfs: # Concatenate all thus constructed DataFrames (i.e. stack on top of each other). result = pd.concat(dfs) result.sort_index(ascending=True, inplace=True) else: # Construct a dummy DataFrame the success status of which can be safely checked. result = pd.DataFrame(columns=['success']) return result # Merge experimental results from the same team with the same parameters # (minimizer_method, sample_number, max_iterations) and minimizer source. def merge_experimental_results(df): dfs = [] df_prev = None for index, row in df.iterrows(): # Construct a DataFrame. df_curr = pd.DataFrame(row).T # Check if this row is similar to the previous row. if df_prev is not None: # if not the very first row if df_prev.index.levels[:-2]==df_curr.index.levels[:-2]: # if the indices match for all but the last two levels if df_prev.index.levels[-2]!=df_curr.index.levels[-2]: # if the experiments are different if df_prev['minimizer_src'].values==df_curr['minimizer_src'].values: # if the minimizer source is the same print('[Info] Merging experiment:') print(df_curr.index.levels) print('[Info] into:') print(df_prev.index.levels) print('[Info] as:') # df_curr.index = df_prev.index.copy() # TODO: increment repetition_id df_curr.index =
pd.MultiIndex.from_tuples([(x[0],x[1],x[2],x[3],x[4],x[5],x[6]+1) for x in df_prev.index])
pandas.MultiIndex.from_tuples
# -*- coding: utf-8 -*- # Copyright © 2021 by <NAME>. All rights reserved # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. """Set of operations to transform pandas DataFrames given user specified config. These operations are ordered according to `ndj_pipeline.model.run_model_training`. """ import logging from pathlib import Path from typing import Any, Dict, List, Tuple import numpy as np import pandas as pd from sklearn.model_selection import train_test_split as tts from ndj_pipeline import utils def load_data_and_key(model_config: Dict[str, Any]) -> pd.DataFrame: """Uses config to load data and assign key. Args: model_config: Loaded model experiment config, specifically for data path and index column(s) Returns: Pandas dataframe with optionally assigned index """ input_path = Path(*model_config["data_file"]) logging.info(f"Loading parquet from {input_path}") data =
pd.read_parquet(input_path)
pandas.read_parquet
""" Original work Copyright 2017 <NAME> Modified work Copyright 2018 IBM Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd from cvxpy import Problem, Minimize, Variable, sum_entries,\ mul_elemwise, norm from logging import info, debug, warn class OptTools(): ''' Class that implements the optimization for optimized pre-processing. Based on: http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention and https://github.com/fair-preprocessing/nips2017 The particular formulation implemented here is: 1. l1 distance between input and transformed distributions 2. "Excess distortion constraint" - eqn 5 in paper. 3. Discrimination constraints for all combinations of groups specified (there is no distinction between protected and unprotected groups). The constraints are given in eqn 2, 3 in the paper. We use a single epsilon value for all combinations of y and d values See section 4.3 in supplementary material of the paper for an example Attributes: features (list): All features df (DataFrame): Input data dfJoint (DataFrame): Empirical joint distribution D_features (list): protected attribute names X_features (list): feature names for input data Y_features (list): feature names for binary label X_values (list): Values that features can take Y_values (list): Values that the label can take D_values (list): Values that protected attributes can take XY_features (list): Combination of X, and Y features DXY_features (list): Combination of D, X, and Y features XY_values (list): Combination of X, and Y values DXY_values (list): Combination of D, X, and Y values y_index (Int64Index): Indices for the Y values XY_index (MultiIndex): Indices for the combination of X, and Y values DXY_index (MultiIndex): Indices for the combination of D, X, and Y values YD_features_index (MultiIndex): Indices for the combination of Y, and D values clist (list): Distance thresholds for individual distortion CMlist (list): List of constraint matrices corresponding to each threshold in clist dfD (DataFrame): distortion matrix with indices and columns dlist (list): Probability bounds given in eq. 5 of the paper for each threshold in clist epsilon (float): epsilon value used in discrimination constraint dfD_to_Y_address (Dataframe): matrix for p_yd, with y varying in the columns dfMask_Pxyd_to_Pyd (DataFrame): Mask to transform P_XYD to P_YD dfMask_Pxyd_to_Pxy (DataFrame): Mask to convert from P_XYD to P_XY dfPxyd (DataFrame): Representation of only frequencies from dfJoint dfMask_Pxyd_to_Py (DataFrame): Mask to convert from P_XYD to P_Y dfMask_Pxy_to_Py (DataFrame): Mask to convert from P_XY to P_Y dfMask_Pxyd_to_Pd (DataFrame): Mask to convert from P_XYD to P_D dfP (DataFrame): Mapping transformation learned from the data ''' def __init__(self, df=None, features=None): """ Initialize the problem. Not all attributes are initialized when creating the object. Args: df (DataFrame): Input dataframe features (list): Optional features to subset the dataframe """ self.df = df.copy() if not isinstance(df, pd.DataFrame): raise TypeError("`df` must be a pandas DataFrame") if not features: self.features = list(df) else: self.features = features # build joint distribution self.dfJoint = self.df.groupby(self.features).size().reset_index() self.dfJoint.rename(columns={0:'Count'},inplace=True) self.dfJoint['Frequency'] = self.dfJoint['Count'].apply(lambda x : x/float(len(self.df))) # initialize the features that will be used for optimization self.D_features = [] # discriminatory features self.Y_features = [] # binary decision variable self.X_features = [] # variables used for decision making # values that each feature can assume self.D_values = [] self.Y_values = [] # place holder for mapping dataframe self.dfP = pd.DataFrame() # this will hold the conditional mappings # place holder for the distortion mapping self.dfD = pd.DataFrame() # excess distortion constraint placeholder self.clist = [] # excess distortion matrices self.CMlist = [] def get_mask(self, dfRef): """ Create a mask assuming the multindex column is a subset of the multindex rows. This mask will be used for marginalizing distributions. Args: dfRef (DataFrame): Reference data frame """ # generates a mask assuming the multindex column is a subset of the multindex rows target_ix = list(dfRef.columns.names) dfRows = pd.DataFrame(index = dfRef.index).reset_index()[target_ix].values dfCols = pd.DataFrame(index = dfRef.columns).reset_index()[target_ix].values for i in range(dfRef.shape[0]): val1 = dfRows[i,:] for j in range(dfRef.shape[1]): val2 = dfCols[j,:] if np.all(val1 == val2): dfRef.iat[i,j] = 1.0 return dfRef # method for setting the features def set_features(self,D = [], X = [], Y = []): """ Set many features for the class Args: D (list): names of D features X (list): names of X features Y (list): names of Y features """ self.D_features = D self.Y_features = Y self.X_features = X # Get values for Pandas multindex self.D_values = [self.dfJoint[feature].unique().tolist() for feature in self.D_features] self.Y_values = [self.dfJoint[feature].unique().tolist() for feature in self.Y_features] self.X_values = [self.dfJoint[feature].unique().tolist() for feature in self.X_features] # Create multindex for mapping dataframe self.DXY_features = self.D_features+self.X_features+self.Y_features self.DXY_values = self.D_values+self.X_values+self.Y_values self.DXY_index = pd.MultiIndex.from_product(self.DXY_values, names = self.DXY_features) # Create multindex for distortion dataframe self.XY_features = self.X_features+self.Y_features self.XY_values = self.X_values+self.Y_values self.XY_index = pd.MultiIndex.from_product(self.XY_values, names = self.XY_features) # Initialize mapping dataframe self.dfP = pd.DataFrame(np.zeros((len(self.DXY_index),len(self.XY_index))), \ index=self.DXY_index, columns = self.XY_index) # Initialize distortion dataframe self.dfD = pd.DataFrame(np.zeros((len(self.XY_index),len(self.XY_index))), \ index=self.XY_index.copy(), columns = self.XY_index.copy()) ### # Generate masks for recovering marginals ### self.dfPxyd =
pd.DataFrame(index=self.dfP.index,columns=['Frequency'])
pandas.DataFrame
# # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # import random import math import pandas as pd import numpy as np from sklearn.preprocessing import PolynomialFeatures from mlos.Optimizers.RegressionModels.Prediction import Prediction from mlos.Optimizers.RegressionModels.LassoCrossValidatedConfigStore import lasso_cross_validated_config_store from mlos.Optimizers.RegressionModels.LassoCrossValidatedRegressionModel import LassoCrossValidatedRegressionModel from mlos.Spaces import SimpleHypergrid, ContinuousDimension, CategoricalDimension from mlos.Spaces.HypergridAdapters.ContinuousToPolynomialBasisHypergridAdapter import ContinuousToPolynomialBasisHypergridAdapter from mlos.OptimizerEvaluationTools.ObjectiveFunctionFactory import ObjectiveFunctionFactory, objective_function_config_store import mlos.global_values as global_values class TestLassoCrossValidatedRegressionModel: @classmethod def setup_class(cls): global_values.declare_singletons() def setup_method(self, method): self.model_config = lasso_cross_validated_config_store.default self.max_basis_function_degree = 2 self.test_case_globals = { '2d_X_deg2_poly_input_space': SimpleHypergrid( name="2d_X_deg2_poly_search_domain", dimensions=[ ContinuousDimension(name="1", min=0.0, max=5.0), ContinuousDimension(name="x1", min=0.0, max=5.0), ContinuousDimension(name="x2", min=0.0, max=5.0), ContinuousDimension(name="x1**2", min=0.0, max=25.0), ContinuousDimension(name="x1*x2", min=0.0, max=25.0), ContinuousDimension(name="x2**2", min=0.0, max=25.0) ] ), 'categorical_deg2_poly_input_space': SimpleHypergrid( name="categorical_search_domain", dimensions=[ CategoricalDimension(name='x0', values=['a', 'b', 'c']), ContinuousDimension(name="1", min=0.0, max=5.0), ContinuousDimension(name="x1", min=0.0, max=5.0), ContinuousDimension(name="x2", min=0.0, max=5.0), ContinuousDimension(name="x1**2", min=0.0, max=25.0), ContinuousDimension(name="x1*x2", min=0.0, max=25.0), ContinuousDimension(name="x2**2", min=0.0, max=25.0), CategoricalDimension(name='i0', values=['-5', '5']) ] ), 'degree2_output_space': SimpleHypergrid( name="degree2_polynomial", dimensions=[ ContinuousDimension(name="degree2_polynomial_y", min=-10 ** 15, max=10 ** 15) ] ) } @staticmethod def n_choose_k(n, k): return math.factorial(n) / math.factorial(k) / math.factorial(n - k) @staticmethod def get_simple_quadratic_coefficients(): return np.array([1, -3, -4, -0.5, 0.0, -2.0]) @staticmethod def generate_points_simple_quadratic(num_points, num_features): x = np.random.uniform(0, 5, [num_points, num_features]) # y = 1 -3*X_1 -4*X_2 -0.5*X_1**2 -2*X_2**2 y_coef_true = TestLassoCrossValidatedRegressionModel.get_simple_quadratic_coefficients() poly_reg = PolynomialFeatures(degree=2) poly_terms_x = poly_reg.fit_transform(x) y = np.matmul(poly_terms_x, y_coef_true) y_df = pd.DataFrame(y, columns=['degree2_polynomial_y']) x_df =
pd.DataFrame(poly_terms_x, columns=['1', 'x1', 'x2', 'x1**2', 'x1*x2', 'x2**2'])
pandas.DataFrame
import numpy as np from datetime import timedelta import pandas as pd import pandas.tslib as tslib import pandas.util.testing as tm import pandas.tseries.period as period from pandas import (DatetimeIndex, PeriodIndex, period_range, Series, Period, _np_version_under1p10, Index, Timedelta, offsets) from pandas.tests.test_base import Ops class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub(self): rng = period_range('2007-01', periods=50) result = rng - 5 exp = rng + (-5) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_comp_nat(self): left = pd.PeriodIndex([pd.Period('2011-01-01'), pd.NaT, pd.Period('2011-01-03')]) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True])
tm.assert_numpy_array_equal(result, expected)
pandas.util.testing.assert_numpy_array_equal
import sys import pandas as pd from sqlalchemy import * def load_data(messages_filepath, categories_filepath): ''' load the data set from the csv file and convert it to pandas dataframe and combine the two data frame Argument : messages_filepath - path of the csv file disaster_messages.csv categories_filepath - path of the csv file disaster_categories.csv return : df - uncleaned data frame ''' # load messages and categories datasets messages =
pd.read_csv('disaster_messages.csv')
pandas.read_csv
import os.path import logging import pandas as pd from common.constants import * from common.base_parser import BaseParser PATHWAY_FILE = 'pathway.tsv' KO_FILE = 'ko.tsv' GENE_FILE = 'gene.tsv' GENOME_FILE = 'genome.tsv' KO2PATHWAY_FILE = 'ko2pathway.tsv' GENOME2PATHWAY_FILE = 'genome2pathway.tsv' GENE2KO_FILE = 'gene2ko.tsv' class KeggParser(BaseParser): def __init__(self, prefix: str, basedir=None): BaseParser.__init__(self, prefix, DB_KEGG.lower(), basedir) # self.logger = logging.getLogger(__name__) def parse_pathway_file(self): file = os.path.join(self.download_dir, 'pathway', 'pathway.list') df = pd.read_csv(file, sep='\t', names=[PROP_ID, PROP_NAME]) df = df[~df[PROP_ID].str.startswith('#')] return df def parse_ko_file(self): ENTRY = 'ENTRY' NAME = PROP_NAME.upper() DEF = PROP_DEF.upper() file = os.path.join(self.download_dir, 'genes', 'ko', 'ko') entries = [] entry = {} with open(file, 'r') as f: for line in f: if line.startswith(ENTRY): entry = dict() entries.append(entry) val = self.get_attr_value(ENTRY, line).split(' ')[0] entry[PROP_ID] = val elif line.startswith(NAME): entry[PROP_NAME] = self.get_attr_value(NAME, line) elif line.startswith(DEF): entry[PROP_DEF] = self.get_attr_value(DEF, line) return pd.DataFrame(entries, columns=[PROP_ID, PROP_NAME, PROP_DEF]) def parse_pathway2ko_file(self): file = os.path.join(self.download_dir, 'pathway', 'links', 'pathway_ko.list') df = pd.read_csv(file, sep='\t', header=None, names=['pathway', 'ko']) # print(len(df)) df = df[df.pathway.str.contains('map')] df['pathway'] = df['pathway'].str.replace('path:map', '') df['ko'] = df['ko'].str.replace('ko:', '') return df def parse_pathway2genome_file(self): file = os.path.join(self.download_dir, 'pathway', 'links', 'pathway_genome.list') df = pd.read_csv(file, sep='\t', header=None, names=['pathway', 'genome']) # print(len(df)) df['pathway'] = df.pathway.str.replace('[\D:]+', '', regex=True) df['genome'] = df.genome.str.replace('gn:', '') df_genome = df[['genome']].copy().drop_duplicates() df_genome.columns = [PROP_ID] print(df_genome.head()) return df, df_genome @classmethod def get_attr_value(self, attr_name, line): if line.startswith(attr_name): val = line[len(attr_name):].strip() return val return '' def parse_and_write_data_files(self): df_pathway = self.parse_pathway_file() logging.info('kegg pathways: ' + str(len(df_pathway))) df_pathway.to_csv(os.path.join(self.output_dir, self.file_prefix + PATHWAY_FILE), sep='\t', index=False) df_ko = self.parse_ko_file() logging.info('kegg ko: ' + str(len(df_ko))) df_ko.to_csv(os.path.join(self.output_dir, self.file_prefix + KO_FILE), sep='\t', index=False) # Write gene data file outfile = os.path.join(self.output_dir, self.file_prefix + GENE_FILE) infile = os.path.join(self.download_dir, 'genes', 'genes_ncbi-geneid.list') header = True chunks =
pd.read_csv(infile, sep='\t', chunksize=3000, header=None, names=[PROP_ID, 'gene_id'])
pandas.read_csv
import glob import os import pathlib import tempfile import warnings import logging from abc import ABC from pathlib import Path from shutil import copy from tempfile import mkstemp from typing import Union, Dict from zipfile import ZipFile import numpy as np import pandas as pd from flask import send_from_directory, jsonify from shapely.geometry import GeometryCollection, mapping from openeo.metadata import CollectionMetadata from openeo_driver.datacube import DriverDataCube from openeo_driver.errors import OpenEOApiException from openeo_driver.utils import replace_nan_values _log = logging.getLogger(__name__) class SaveResult(ABC): """ A class that generates a Flask response. """ def __init__(self, format: str = None, options: dict = None): self.format = format and format.lower() self.options = options or {} def is_format(self, *args): return self.format.lower() in {f.lower() for f in args} def set_format(self, format: str, options: dict = None): self.format = format.lower() self.options = options or {} def create_flask_response(self): """ Returns a Flask compatible response. :return: A response that can be handled by Flask """ pass def get_mimetype(self, default="application/octet-stream"): return { "gtiff": "image/tiff; application=geotiff", "cog": "image/tiff; application=geotiff; profile=cloud-optimized", "netcdf": "application/x-netcdf", "png": "image/png", "json": "application/json", "geojson": "application/geo+json", "covjson": "application/json", "csv": "text/csv", # TODO: support more formats }.get(self.format.lower(), default) def get_temp_file(suffix="", prefix="openeo-pydrvr-"): # TODO: make sure temp files are cleaned up when read _, filename = tempfile.mkstemp(suffix=suffix, prefix=prefix) return filename class ImageCollectionResult(SaveResult): def __init__(self, cube: DriverDataCube, format: str, options: dict): super().__init__(format=format, options=options) self.cube = cube def save_result(self, filename: str) -> str: return self.cube.save_result(filename=filename, format=self.format, format_options=self.options) def write_assets(self, directory:str) -> Dict: """ Save generated assets into a directory, return asset metadata. TODO: can an asset also be a full STAC item? In principle, one openEO job can either generate a full STAC collection, or one STAC item with multiple assets... :return: STAC assets dictionary: https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md#assets """ if "write_assets" in dir(self.cube): return self.cube.write_assets(filename=directory, format=self.format, format_options=self.options) else: filename = self.cube.save_result(filename=directory, format=self.format, format_options=self.options) return {filename:{"href":filename}} def create_flask_response(self): filename = get_temp_file(suffix=".save_result.{e}".format(e=self.format.lower())) filename = self.save_result(filename) mimetype = self.get_mimetype() return send_from_directory(os.path.dirname(filename), os.path.basename(filename), mimetype=mimetype) class JSONResult(SaveResult): def __init__(self, data, format: str = "json", options: dict = None): super().__init__(format=format, options=options) self.data = data def write_assets(self, path:str) -> Dict: """ Save generated assets into a directory, return asset metadata. TODO: can an asset also be a full STAC item? In principle, one openEO job can either generate a full STAC collection, or one STAC item with multiple assets... :return: STAC assets dictionary: https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md#assets """ output_dir = Path(path).parent output_file = output_dir / "result.json" with open(output_file, 'w') as f: import json json.dump(self.prepare_for_json(), f) return {"result.json":{ "href":str(output_file), "roles": ["data"], "type": "application/json", "description": "json result generated by openEO" }} def get_data(self): return self.data def prepare_for_json(self): return replace_nan_values(self.get_data()) def create_flask_response(self): return jsonify(self.prepare_for_json()) class AggregatePolygonResult(JSONResult): """ Container for timeseries result of `aggregate_polygon` process (aka "zonal stats") Expects internal representation of timeseries as nested structure: dict mapping timestamp (str) to: a list, one item per polygon: a list, one float per band """ def __init__(self, timeseries: dict, regions: GeometryCollection, metadata:CollectionMetadata=None): super().__init__(data=timeseries) if not isinstance(regions, GeometryCollection): # TODO: raise exception instead of warning? warnings.warn("AggregatePolygonResult: GeometryCollection expected but got {t}".format(t=type(regions))) self._regions = regions self._metadata = metadata def get_data(self): if self.is_format('covjson', 'coveragejson'): return self.to_covjson() # By default, keep original (proprietary) result format return self.data def write_assets(self, directory:str) -> Dict: """ Save generated assets into a directory, return asset metadata. TODO: can an asset also be a full STAC item? In principle, one openEO job can either generate a full STAC collection, or one STAC item with multiple assets... :return: STAC assets dictionary: https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md#assets """ directory = pathlib.Path(directory).parent filename = str(Path(directory)/"timeseries.json") asset = { "roles": ["data"], "type": "application/json" } if self.is_format('netcdf', 'ncdf'): filename = str(Path(directory) / "timeseries.nc") self.to_netcdf(filename) asset["type"] = "application/x-netcdf" elif self.is_format('csv'): filename = str(Path(directory) / "timeseries.csv") self.to_csv(filename) asset["type"] = "text/csv" else: import json with open(filename, 'w') as f: json.dump(self.prepare_for_json(), f) asset["href"] = filename if self._metadata is not None and self._metadata.has_band_dimension(): bands = [b._asdict() for b in self._metadata.bands] asset["bands"] = bands return {str(Path(filename).name): asset} def create_flask_response(self): if self.is_format('netcdf', 'ncdf'): filename = self.to_netcdf() return send_from_directory(os.path.dirname(filename), os.path.basename(filename)) if self.is_format('csv'): filename = self.to_csv() return send_from_directory(os.path.dirname(filename), os.path.basename(filename)) return super().create_flask_response() def create_point_timeseries_xarray(self, feature_ids, timestamps,lats,lons,averages_by_feature): import xarray as xr import pandas as pd #xarray breaks with timezone aware dates: https://github.com/pydata/xarray/issues/1490 time_index =
pd.to_datetime(timestamps,utc=False)
pandas.to_datetime
from difflib import SequenceMatcher import functools from typing import Optional import pandas __doc__ = """Get specialty codes and consolidate data from different sources in basic_data.""" COLUMNS = ['first_name', 'last_name', 'city', 'postal_code', 'state', 'specialty_code'] GENERIC_OPHTHALMOLOGY_CODE = '207W00000X' GENERIC_ENDOCRINOLOGY_CODE = '207RE0101X' def _convert_zip9_to_zip5(z: Optional[str]) -> Optional[str]: if pandas.isnull(z): return return z.split('-')[0].zfill(5) def clean_asoprs(in_df: pandas.DataFrame) -> pandas.DataFrame: out_df: pandas.DataFrame = in_df.loc[:, ['Full Name_firstName', 'Full Name_lastName']] all_address_columns = {col for col in in_df.columns if 'address' in col.lower()} all_address_subfields = {col.split('_')[-1] for col in all_address_columns} def get_first_address_subfield(row: pandas.Series): out_dict = {i: None for i in all_address_subfields} for col in set(row.index).intersection(all_address_columns): subfield = col.split('_')[-1] if not pandas.isnull(value := row[col]) and out_dict[subfield] is None: out_dict[subfield] = row[col] target_cols = ['city', 'zip', 'state'] out_dict = {i: out_dict[i] for i in target_cols} return out_dict address_data = in_df.apply(get_first_address_subfield, 1, False, 'expand') out_df =
pandas.concat([out_df, address_data], 1)
pandas.concat
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18:
pd.Timestamp("2013-05-19 00:00:00")
pandas.Timestamp
import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.api.indexers import ( BaseIndexer, FixedForwardWindowIndexer, ) from pandas.core.window.indexers import ( ExpandingIndexer, FixedWindowIndexer, VariableOffsetWindowIndexer, ) from pandas.tseries.offsets import BusinessDay def test_bad_get_window_bounds_signature(): class BadIndexer(BaseIndexer): def get_window_bounds(self): return None indexer = BadIndexer() with pytest.raises(ValueError, match="BadIndexer does not implement"): Series(range(5)).rolling(indexer) def test_expanding_indexer(): s = Series(range(10)) indexer = ExpandingIndexer() result = s.rolling(indexer).mean() expected = s.expanding().mean() tm.assert_series_equal(result, expected) def test_indexer_constructor_arg(): # Example found in computation.rst use_expanding = [True, False, True, False, True] df = DataFrame({"values": range(5)}) class CustomIndexer(BaseIndexer): def get_window_bounds(self, num_values, min_periods, center, closed): start = np.empty(num_values, dtype=np.int64) end = np.empty(num_values, dtype=np.int64) for i in range(num_values): if self.use_expanding[i]: start[i] = 0 end[i] = i + 1 else: start[i] = i end[i] = i + self.window_size return start, end indexer = CustomIndexer(window_size=1, use_expanding=use_expanding) result = df.rolling(indexer).sum() expected = DataFrame({"values": [0.0, 1.0, 3.0, 3.0, 10.0]}) tm.assert_frame_equal(result, expected) def test_indexer_accepts_rolling_args(): df = DataFrame({"values": range(5)}) class CustomIndexer(BaseIndexer): def get_window_bounds(self, num_values, min_periods, center, closed): start = np.empty(num_values, dtype=np.int64) end = np.empty(num_values, dtype=np.int64) for i in range(num_values): if center and min_periods == 1 and closed == "both" and i == 2: start[i] = 0 end[i] = num_values else: start[i] = i end[i] = i + self.window_size return start, end indexer = CustomIndexer(window_size=1) result = df.rolling(indexer, center=True, min_periods=1, closed="both").sum() expected = DataFrame({"values": [0.0, 1.0, 10.0, 3.0, 4.0]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("constructor", [Series, DataFrame]) @pytest.mark.parametrize( "func,np_func,expected,np_kwargs", [ ("count", len, [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 2.0, np.nan], {}), ("min", np.min, [0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 6.0, 7.0, 8.0, np.nan], {}), ( "max", np.max, [2.0, 3.0, 4.0, 100.0, 100.0, 100.0, 8.0, 9.0, 9.0, np.nan], {}, ), ( "std", np.std, [ 1.0, 1.0, 1.0, 55.71654452, 54.85739087, 53.9845657, 1.0, 1.0, 0.70710678, np.nan, ], {"ddof": 1}, ), ( "var", np.var, [ 1.0, 1.0, 1.0, 3104.333333, 3009.333333, 2914.333333, 1.0, 1.0, 0.500000, np.nan, ], {"ddof": 1}, ), ( "median", np.median, [1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 7.0, 8.0, 8.5, np.nan], {}, ), ], ) @pytest.mark.filterwarnings("ignore:min_periods:FutureWarning") def test_rolling_forward_window(constructor, func, np_func, expected, np_kwargs): # GH 32865 values = np.arange(10.0) values[5] = 100.0 indexer = FixedForwardWindowIndexer(window_size=3) match = "Forward-looking windows can't have center=True" with pytest.raises(ValueError, match=match): rolling = constructor(values).rolling(window=indexer, center=True) getattr(rolling, func)() match = "Forward-looking windows don't support setting the closed argument" with pytest.raises(ValueError, match=match): rolling = constructor(values).rolling(window=indexer, closed="right") getattr(rolling, func)() rolling = constructor(values).rolling(window=indexer, min_periods=2) result = getattr(rolling, func)() # Check that the function output matches the explicitly provided array expected = constructor(expected) tm.assert_equal(result, expected) # Check that the rolling function output matches applying an alternative # function to the rolling window object expected2 = constructor(rolling.apply(lambda x: np_func(x, **np_kwargs))) tm.assert_equal(result, expected2) # Check that the function output matches applying an alternative function # if min_periods isn't specified # GH 39604: After count-min_periods deprecation, apply(lambda x: len(x)) # is equivalent to count after setting min_periods=0 min_periods = 0 if func == "count" else None rolling3 = constructor(values).rolling(window=indexer, min_periods=min_periods) result3 = getattr(rolling3, func)() expected3 = constructor(rolling3.apply(lambda x: np_func(x, **np_kwargs))) tm.assert_equal(result3, expected3) @pytest.mark.parametrize("constructor", [Series, DataFrame]) def test_rolling_forward_skewness(constructor): values = np.arange(10.0) values[5] = 100.0 indexer = FixedForwardWindowIndexer(window_size=5) rolling = constructor(values).rolling(window=indexer, min_periods=3) result = rolling.skew() expected = constructor( [ 0.0, 2.232396, 2.229508, 2.228340, 2.229091, 2.231989, 0.0, 0.0, np.nan, np.nan, ] ) tm.assert_equal(result, expected) @pytest.mark.parametrize( "func,expected", [ ("cov", [2.0, 2.0, 2.0, 97.0, 2.0, -93.0, 2.0, 2.0, np.nan, np.nan]), ( "corr", [ 1.0, 1.0, 1.0, 0.8704775290207161, 0.018229084250926637, -0.861357304646493, 1.0, 1.0, np.nan, np.nan, ], ), ], ) def test_rolling_forward_cov_corr(func, expected): values1 = np.arange(10).reshape(-1, 1) values2 = values1 * 2 values1[5, 0] = 100 values = np.concatenate([values1, values2], axis=1) indexer = FixedForwardWindowIndexer(window_size=3) rolling = DataFrame(values).rolling(window=indexer, min_periods=3) # We are interested in checking only pairwise covariance / correlation result = getattr(rolling, func)().loc[(slice(None), 1), 0] result = result.reset_index(drop=True) expected = Series(expected) expected.name = result.name tm.assert_equal(result, expected) @pytest.mark.parametrize( "closed,expected_data", [ ["right", [0.0, 1.0, 2.0, 3.0, 7.0, 12.0, 6.0, 7.0, 8.0, 9.0]], ["left", [0.0, 0.0, 1.0, 2.0, 5.0, 9.0, 5.0, 6.0, 7.0, 8.0]], ], ) def test_non_fixed_variable_window_indexer(closed, expected_data): index = date_range("2020", periods=10) df = DataFrame(range(10), index=index) offset = BusinessDay(1) indexer = VariableOffsetWindowIndexer(index=index, offset=offset) result = df.rolling(indexer, closed=closed).sum() expected = DataFrame(expected_data, index=index) tm.assert_frame_equal(result, expected) def test_fixed_forward_indexer_count(): # GH: 35579 df = DataFrame({"b": [None, None, None, 7]}) indexer = FixedForwardWindowIndexer(window_size=2) result = df.rolling(window=indexer, min_periods=0).count() expected = DataFrame({"b": [0.0, 0.0, 1.0, 1.0]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( ("end_value", "values"), [(1, [0.0, 1, 1, 3, 2]), (-1, [0.0, 1, 0, 3, 1])] ) @pytest.mark.parametrize(("func", "args"), [("median", []), ("quantile", [0.5])]) def test_indexer_quantile_sum(end_value, values, func, args): # GH 37153 class CustomIndexer(BaseIndexer): def get_window_bounds(self, num_values, min_periods, center, closed): start = np.empty(num_values, dtype=np.int64) end = np.empty(num_values, dtype=np.int64) for i in range(num_values): if self.use_expanding[i]: start[i] = 0 end[i] = max(i + end_value, 1) else: start[i] = i end[i] = i + self.window_size return start, end use_expanding = [True, False, True, False, True] df = DataFrame({"values": range(5)}) indexer = CustomIndexer(window_size=1, use_expanding=use_expanding) result = getattr(df.rolling(indexer), func)(*args) expected = DataFrame({"values": values}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "indexer_class", [FixedWindowIndexer, FixedForwardWindowIndexer, ExpandingIndexer] ) @pytest.mark.parametrize("window_size", [1, 2, 12]) @pytest.mark.parametrize( "df_data", [ {"a": [1, 1], "b": [0, 1]}, {"a": [1, 2], "b": [0, 1]}, {"a": [1] * 16, "b": [np.nan, 1, 2, np.nan] + list(range(4, 16))}, ], ) def test_indexers_are_reusable_after_groupby_rolling( indexer_class, window_size, df_data ): # GH 43267 df = DataFrame(df_data) num_trials = 3 indexer = indexer_class(window_size=window_size) original_window_size = indexer.window_size for i in range(num_trials): df.groupby("a")["b"].rolling(window=indexer, min_periods=1).mean() assert indexer.window_size == original_window_size @pytest.mark.parametrize( "window_size, num_values, expected_start, expected_end", [ (1, 1, [0], [1]), (1, 2, [0, 1], [1, 2]), (2, 1, [0], [1]), (2, 2, [0, 1], [2, 2]), (5, 12, range(12), list(range(5, 12)) + [12] * 5), (12, 5, range(5), [5] * 5), (0, 0, np.array([]), np.array([])), (1, 0, np.array([]), np.array([])), (0, 1, [0], [0]), ], ) def test_fixed_forward_indexer_bounds( window_size, num_values, expected_start, expected_end ): # GH 43267 indexer = FixedForwardWindowIndexer(window_size=window_size) start, end = indexer.get_window_bounds(num_values=num_values) tm.assert_numpy_array_equal(start, np.array(expected_start), check_dtype=False) tm.assert_numpy_array_equal(end, np.array(expected_end), check_dtype=False) assert len(start) == len(end) @pytest.mark.parametrize( "df, window_size, expected", [ ( DataFrame({"b": [0, 1, 2], "a": [1, 2, 2]}), 2, Series( [0, 1.5, 2.0], index=MultiIndex.from_arrays([[1, 2, 2], range(3)], names=["a", None]), name="b", dtype=np.float64, ), ), ( DataFrame( { "b": [np.nan, 1, 2, np.nan] + list(range(4, 18)), "a": [1] * 7 + [2] * 11, "c": range(18), } ), 12, Series( [ 3.6, 3.6, 4.25, 5.0, 5.0, 5.5, 6.0, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, ], index=MultiIndex.from_arrays( [[1] * 7 + [2] * 11, range(18)], names=["a", None] ), name="b", dtype=np.float64, ), ), ], ) def test_rolling_groupby_with_fixed_forward_specific(df, window_size, expected): # GH 43267 indexer = FixedForwardWindowIndexer(window_size=window_size) result = df.groupby("a")["b"].rolling(window=indexer, min_periods=1).mean() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "group_keys", [ (1,), (1, 2), (2, 1), (1, 1, 2), (1, 2, 1), (1, 1, 2, 2), (1, 2, 3, 2, 3), (1, 1, 2) * 4, (1, 2, 3) * 5, ], ) @pytest.mark.parametrize("window_size", [1, 2, 3, 4, 5, 8, 20]) def test_rolling_groupby_with_fixed_forward_many(group_keys, window_size): # GH 43267 df = DataFrame( { "a": np.array(list(group_keys)), "b": np.arange(len(group_keys), dtype=np.float64) + 17, "c": np.arange(len(group_keys), dtype=np.int64), } ) indexer =
FixedForwardWindowIndexer(window_size=window_size)
pandas.api.indexers.FixedForwardWindowIndexer
import pandas as pd import zipfile import re import collections from lxml import etree import pathlib import utils import random docxFileName = "../resources/quicks/quick_section4.docx" annFileName = "../resources/quicks/annotations.tsv" ### Issue a warning if either the docx Chronology or the annotations are not available: if not pathlib.Path(docxFileName).is_file() or not pathlib.Path(annFileName).is_file(): print("\n***WARNING:***\n\nOne of the following files does not exist:") print("* " + docxFileName) print("* " + annFileName) print("\nThis script will be skipped. Make sure you follow the instructions in\nhttps://github.com/Living-with-machines/station-to-station/blob/main/resources.md\nto make sure you have the files required to be able to run the linking experiments.") print() ### Otherwise, process and parse the docx file. else: docxZip = zipfile.ZipFile(docxFileName) documentXML = docxZip.read('word/document.xml') et = etree.XML(documentXML) ns = {'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main'} pathlib.Path('../resources/quicks/').mkdir(parents=True, exist_ok=True) ### Find main stations mainstation = "" lowerstation = "" dText = dict() counter = 0 for i, para in enumerate(et.xpath('//w:p', namespaces=ns)): text = para.xpath('./w:r/w:t', namespaces=ns) description = " ".join([t.text for t in text]) mainstation, counter = utils.is_mainst(para, mainstation, counter, ns) description = description.lstrip('\x01').strip() if description: if (counter, mainstation) in dText: dText[(counter, mainstation)].append(description) else: description = re.sub('^(' + re.escape(mainstation) + ')', '\1', description).lstrip('\x01').strip() description = re.sub(r" +", " ", description).lstrip('\x01').strip() if description: dText[(counter, mainstation)] = [description] ### Index main stations dStations = collections.OrderedDict(dText) indices = [] stations = [] descriptions = [] for k in dStations: indices.append(k[0]) stations.append(k[1]) descriptions.append(dStations[k]) stationdf = pd.DataFrame(columns=["Index", "Station", "Description"]) stationdf["Index"] = indices stationdf["Station"] = stations stationdf["Description"] = descriptions stationdf = stationdf.set_index("Index") ### Detect substations stations = pd.DataFrame(columns=['station','type','description']) cols = ['MainId', 'MainStation', 'SubId', 'SubStation', 'Description'] lst = [] subInd = 0 for i, row in stationdf.iterrows(): main_station = row["Station"] description = row["Description"] dSubstations, subInd = utils.process_decription(main_station, description, subInd) for ss in dSubstations: lst.append([i, main_station, ss[0], ss[1], dSubstations[ss]]) subsdf = pd.DataFrame(lst, columns=cols) ### Renaming abbreviated substations subsdf['SubStFormatted'] = subsdf.apply(lambda row: utils.subst_rename(row["MainStation"], row["SubStation"]), axis = 1) subsdf = subsdf[["MainId", "SubId", "MainStation", "SubStation", "SubStFormatted", "Description"]] subsdf.to_pickle('../resources/quicks/quicks_processed.pkl') ### Find disambiguators and companies parsedf = subsdf.copy() parsedf[['Disambiguator', 'Companies', 'FirstCompanyWkdt', 'AltCompaniesWkdt']] = parsedf.apply(lambda row: pd.Series(list(utils.detect_companies(row["Description"]))), axis = 1) ### Extract map information parsedf[['LocsMaps', 'LocsMapsDescr']] = parsedf.apply(lambda row: pd.Series(list(utils.detect_mapsInfo(row["Description"]))), axis = 1) ### Extact alternate and referenced railway stations parsedf[['Altnames', 'Referenced']] = parsedf.apply(lambda row: pd.Series(list(utils.detect_altnames(row["Description"], row["MainStation"], row["SubStFormatted"]))), axis = 1) ### Capture opening and closing dates parsedf[['FirstOpening', 'LastClosing', 'Interrupted']] = parsedf.apply(lambda row: pd.Series(list(utils.capture_dates(row["Description"]))), axis = 1) ### Store resulting dataframe parsedf.to_pickle('../resources/quicks/quicks_parsed.pkl') ### Drop description from dataframe for next steps: parsedf = parsedf.drop(columns=["Description"]) ### Create dev and test dataframes # **Note:** You will need to have the `annotations.tsv` file in `resources`. annotations = pd.read_csv(annFileName, sep='\t') annotations = annotations[annotations["Final Wikidata ID"] != "cross_reference"] annotations = annotations[annotations["Final Wikidata ID"] != "parsing_error"] annotations = annotations[annotations["Final Wikidata ID"] != "unknown"] annotations = annotations.sample(frac=1, random_state=42).reset_index(drop=True) # Split into train and test: queries = list(annotations.SubId.unique()) random.Random(42).shuffle(queries) test_cutoff = int(len(queries)*.5) train_q, test_q = queries[test_cutoff:],queries[:test_cutoff] df_dev = annotations[annotations.SubId.isin(train_q)] df_test = annotations[annotations.SubId.isin(test_q)] df_test =
pd.merge(df_test, parsedf, on=["MainId", "SubId", "MainStation", "SubStation", "SubStFormatted"])
pandas.merge
#Library of functions called by SimpleBuildingEngine import pandas as pd import numpy as np def WALLS(Btest=None): #Building height h_building = 2.7#[m] h_m_building = h_building / 2 h_cl = 2.7# heigth of a storey #number of walls n_walls = 7 A_fl = 48 #WALLS CHARACTERISTICS #Orientation ori = pd.Series([('S'), ('W'), ('N'), ('E'), ('R'), ('F'), ('C')]) #Surface azimuth surf_az = pd.Series([0, 90, 180 - 90, 0, 0, 0]) #Slopes (90:vertical; 0:horizontal) slope = pd.Series([90, 90, 90, 90, 0, 0, 0]) #Masks f_low_diff = pd.Series([1, 1, 1, 1, 1, 1, 1]) f_low_dir = pd.Series([1, 1, 1, 1, 1, 1, 1]) #U VALUES U_hopw = pd.Series([0.5144, 0.5144, 0.5144, 0.5144, 0.3177, 0, 0]) U_lopw = pd.Series([3, 3, 3, 3, 3, 3, 3]) U_fr = pd.Series([2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4]) U_gl = pd.Series([3, 3, 3, 3, 3, 3, 3]) if (Btest == 195 or Btest == 395): #SURFACES #Heavy Opaque walls A_hopw = pd.Series([21.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) elif (Btest == 200 or Btest == 210 or Btest == 230 or Btest == 240 or Btest == 250 or Btest == 400 or Btest == 410 or Btest == 420 or Btest == 430 or Btest == 800): #Heavy Opaque walls A_hopw = pd.Series([9.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([12, 0, 0, 0, 0, 0, 0]) elif (Btest == 270 or Btest == 320 or Btest == 600 or Btest == 640 or Btest == 650 or Btest == 810 or Btest == 900 or Btest == 940 or Btest == 950 or Btest == 6001 or Btest == 9001 or Btest == 6501 or Btest == 9501): #Heavy Opaque walls A_hopw = pd.Series([9.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([12, 0, 0, 0, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) elif (Btest == 300 or Btest == 620 or Btest == 920): #Heavy Opaque walls A_hopw = pd.Series([9.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([0, 6, 0, 6, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Total A_hopw_t = A_hopw.sum() A_wd_t = A_wd.sum() A_fr_t = A_fr.sum() A_lopw_t = A_lopw.sum() A_gl_t = max(0, A_wd_t - A_fr_t) A_t = A_hopw_t + A_lopw_t + A_wd_t + A_fr_t #CAPACITIES if (Btest == 800 or Btest == 900 or Btest == 920 or Btest == 940 or Btest == 950 or Btest == 9001 or Btest == 9501): C_hopw = ([145154, 145154, 145154, 145154, 18170, 112121, 0]) C_lopw = ([0, 0, 0, 0, 0, 0, 0]) else: C_hopw = ([14534, 14534, 14534, 14534, 18170, 19620, 0]) C_lopw = ([0, 0, 0, 0, 0, 0, 0]) C_m = sum((A_lopw * C_lopw + A_hopw * C_hopw)) #Effective mass area [m^2] A_m = C_m ** 2 / sum((A_lopw * np.exp2(C_lopw) + A_hopw * np.exp2(C_hopw))) return n_walls, f_low_diff, f_low_dir, ori, surf_az, slope, A_t, A_fl, A_lopw_t, A_hopw_t, A_gl_t, A_fr_t, A_lopw,\ A_hopw, A_gl, h_cl, C_m, A_m, U_hopw, U_lopw, U_fr, U_gl def w_t_RH(p_atm=None, t=None, RH=None): from math import exp #Humidity ratio as function of drybulb temperature and humidity ratio p_w_s = exp((17.438 * t / (239.78 + t)) + 6.4147)#partial pressure of saturated water vapor p_w = RH * p_w_s w = (p_w * 0.62198) / (p_atm - p_w) return w def ZENITHANG(Lat=None, Long=None, Long_st=None, n=None, h=None): from math import pi,cos,sin,acos from numpy import fix #ZENITH ANGLE #Ref: Duffie,J.A.,<NAME>. 1980. Solar engineering of thermal #processes. 2nd Edition. <NAME> & Sons. #OUTPUTS # -h_sol: Solar time (in hours) # -h_sol_per: Solar time (in hours per day) # -phi: Latitude in radians # -delta: Declination angle in radians # -omega: Hour angle in radians # -theta_z: Zenith angle in radians, i.e. angle of incidence of beam radiation on a horizontal surface #INPUTS # -Lat: Latitude of the location (north positive) -90<Lat<90 # -Long: Longitude of the location (west positive) 0<Long<180 # -Long_st: Longitude of the standard meridian of the time zone # -n: day 1<n<365 # -h: hour 1<h<8760 #Angles in radians% phi = Lat * pi / 180 #Summer time correction (Masy, 2008) epsilon_summer = 1 #Equation of time (minutes) B = (n - 1) * 360 / 365 * pi / 180 E = 229.2 * (0.000075 + 0.001868 * cos(B) - 0.032077 * sin(B) - 0.014615 * cos(2 * B) - 0.04089 * sin(2 * B)) #Solar time (in hours) h_sol = h + (4 * (Long_st - Long) + E) / 60 - epsilon_summer #Solar time (in hours per day) h_sol_per_1 = h_sol - 24 * fix(h_sol / 24) if h_sol_per_1 <= 1E-6: h_sol_per = 24 else: h_sol_per = h_sol_per_1 #Declination (angular position of the sun at solar noon, north positive) #-23.45<delta<23.45 delta = 23.45 * sin(360 * (284 + n) / 365 * pi / 180) * pi / 180#(daily basis, Cooper in Duffie & Beckmann) #Hour angle (morning negative, afternoon positive) omega = (h_sol_per - 12) * 15 * pi / 180 #Zenith angle (between the vertical and the line to the sun) theta_z = max(1E-5, acos(cos(delta) * cos(phi) * cos(omega) + sin(delta) * sin(phi))) return phi, delta, omega, theta_z, h_sol def CSITH(Lat=None, Long=None, Long_st=None, n=None, h=None): from math import cos,exp #Clear sky solar radiation #OUTPUTS # -I_th_cs: Clear sky theoretical solar radiation (in W/m2) #INPUTS # -Lat: Latitude of the location (north positive) -90<Lat<90 # -Long: Longitude of the location (west positive) 0<Long<180 # -Long_st: Longitude of the standard meridian of the time zone # -n: day 1<n<365 # -h: hour 1<h<8760 #Main angles and solar time for location phi, delta, omega, theta_z, h_sol = ZENITHANG(Lat, Long, Long_st, n, h) #Extraterrestrial radiation G_sc = 1353#W/m2 - Solar constant I_on = G_sc * (1 + 0.033 * cos(360 * (h_sol / 24) / 365))#Normal extraterrestrial radiation #Atmospheric transmittance for beam radiation (altitude = 0m) tau_b = 0.12814 + 0.7568875 * exp(-0.387225 / (cos(theta_z))) #Clear sky beam normal radiation I_cnb = I_on * tau_b #Clear sky horizontal beam radiation I_cb = I_cnb * cos(theta_z) #Atmospheric transmittance for diffuse radiation (altitude = 0m) tau_d = 0.271 - 0.294 * tau_b #Clear sky horizontal diffuse radiation I_cd = I_on * tau_d * cos(theta_z) #Total horizontal clear sky radiation I_th_cs = max(0, (I_cb + I_cd)) #Simplified calculation (G.Masy) I_th_cs2 = max(0, (0.7 * I_on * cos(theta_z))) return I_th_cs,I_th_cs2 def Btest_cases(Btest=None, h=None): if (Btest == 195 or Btest == 200): #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 0 #infiltrations ACH_inf = 0 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) epsilon_ir_lopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) epsilon_ir_gl = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) #Solar absorbance alpha_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) alpha_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Solar Shadings e_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #0=no solar shading; 1=interior solar shadings; 2=exterior solar shadings mode_solshad = pd.Series([1, 1, 1, 1, 1, 0, 0]) #1=manual solar shadings; 2=automatic solar shadings NL_ext_max = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Exterior natural lighting intensity for control of shadings IAC_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Indoor solar Attenuation Coefficient (fraction of SHGC with solar shadings) f_c_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Convective fraction of solar gains with solar shadings #Ventilation V_dot_vent = 0 elif Btest == 210 or Btest == 220: #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 0 #infiltrations ACH_inf = 0 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) epsilon_ir_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) epsilon_ir_gl = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) #Solar absorbance alpha_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) alpha_lopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) #Solar Shadings e_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #0=no solar shading; 1=interior solar shadings; 2=exterior solar shadings mode_solshad = pd.Series([1, 1, 1, 1, 1, 0, 0]) #1=manual solar shadings; 2=automatic solar shadings NL_ext_max = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Exterior natural lighting intensity for control of shadings IAC_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Indoor solar Attenuation Coefficient (fraction of SHGC with solar shadings) f_c_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Convective fraction of solar gains with solar shadings #Ventilation V_dot_vent = 0 elif Btest == 230: #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 0 #infiltrations ACH_inf = 1 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) epsilon_ir_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) epsilon_ir_gl = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) #Solar absorbance alpha_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) alpha_lopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) #Solar Shadings e_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #0=no solar shading; 1=interior solar shadings; 2=exterior solar shadings mode_solshad = pd.Series([1, 1, 1, 1, 1, 0, 0]) #1=manual solar shadings; 2=automatic solar shadings NL_ext_max = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Exterior natural lighting intensity for control of shadings IAC_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Indoor solar Attenuation Coefficient (fraction of SHGC with solar shadings) f_c_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Convective fraction of solar gains with solar shadings #Ventilation V_dot_vent = 0 elif Btest == 240: #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 200 #infiltrations ACH_inf = 0 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) epsilon_ir_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) epsilon_ir_gl = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) #Solar absorbance alpha_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) alpha_lopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) #Solar Shadings e_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #0=no solar shading; 1=interior solar shadings; 2=exterior solar shadings mode_solshad = pd.Series([1, 1, 1, 1, 1, 0, 0]) #1=manual solar shadings; 2=automatic solar shadings NL_ext_max =
pd.Series([0, 0, 0, 0, 0, 0, 0])
pandas.Series
import numpy as np import hydra from hydra.utils import get_original_cwd from dataset.dataloader.labeledDS import LabeledDataModule from dataset.dataloader.unlabeledDS import UnlabeledDataModule import os from utils.metrics import AllMetrics import json from sklearn.preprocessing import StandardScaler import warnings from tqdm import trange import pandas as pd from model.SoilModel import SoilModel from dataset.dataloader.patchDS import PatchDataModule @hydra.main(config_path='conf', config_name='config') def my_app(cfg): predictions = [] targets = [] metric = AllMetrics() if cfg.model.name == 'soilcnn': for i in range(cfg.dataset.n_splits): data_labeled = LabeledDataModule(path=os.path.join(get_original_cwd(), cfg.dataset.path_labeled), features_metrical=cfg.vars.features_metrical, features_categorical=cfg.vars.features_categorical, levels_categorical=cfg.vars.levels_categorical, encoding_categorical=cfg.vars.encoding_categorical, mode='test', fold=i) data_labeled_patch = PatchDataModule(path_lab=os.path.join(get_original_cwd(), cfg.dataset.path_labeled), path_unlab=os.path.join(get_original_cwd(), cfg.dataset.path_unlabeled), n=cfg.model.parameters.patch_size, deviation_to_shrink_df=cfg.patch.parameters.deviation_to_shrink_df, deviation_for_perfect_hit1=cfg.patch.parameters.deviation_for_perfect_hit1, deviation_for_perfect_hit2=cfg.patch.parameters.deviation_for_perfect_hit2, deviation_between_two_points=cfg.patch.parameters.deviation_between_two_points, features_metrical = cfg.vars.features_metrical, features_categorical = cfg.vars.features_categorical, mode="test") data_unlabeled = UnlabeledDataModule(path=os.path.join(get_original_cwd(), cfg.dataset.path_weak_labeled), path_labeled=os.path.join(get_original_cwd(), cfg.dataset.path_labeled), path_unlabeled=os.path.join(get_original_cwd(), cfg.dataset.path_unlabeled), data_labeled=data_labeled, weak_model=cfg.weak_model, vars=cfg.vars.name, fold=i) model = SoilModel(cfg.model.name, cfg.model.parameters, data_labeled_patch.num_features, data_labeled_patch.num_data) model.fit(data_labeled_patch, data_unlabeled) pred, y = model.predict(data_labeled_patch) metric.update(pred, y) predictions.append(pred) targets.append(y) else: for i in range(cfg.dataset.n_splits): data_labeled = LabeledDataModule(path=os.path.join(get_original_cwd(), cfg.dataset.path_labeled), features_metrical=cfg.vars.features_metrical, features_categorical=cfg.vars.features_categorical, levels_categorical=cfg.vars.levels_categorical, encoding_categorical=cfg.vars.encoding_categorical, mode='test', fold=i) data_unlabeled = UnlabeledDataModule(path=os.path.join(get_original_cwd(), cfg.dataset.path_weak_labeled), path_labeled=os.path.join(get_original_cwd(), cfg.dataset.path_labeled), path_unlabeled=os.path.join(get_original_cwd(), cfg.dataset.path_unlabeled), data_labeled=data_labeled, weak_model=cfg.weak_model, vars=cfg.vars.name, fold=i) data_unlabeled=None model = SoilModel(cfg.model.name, cfg.model.parameters, data_labeled.num_features, data_labeled.num_data) model.fit(data_labeled, data_unlabeled) pred, y = model.predict(data_labeled) metric.update(pred, y) predictions.append(pred) targets.append(y) results = metric.calculate() model_results = {'model': cfg.model.name} model_results.update(results) with open('results.json', mode='w') as file: json.dump(model_results, file) if cfg.general.verbose: print(metric.calculate_string()) if cfg.general.save_predictions: predictions = np.vstack(predictions) targets = np.vstack(targets) pred_target = np.hstack([targets, predictions]) columns = cfg.vars.targets + [t + "_pred" for t in cfg.vars.targets] df =
pd.DataFrame(data=pred_target, columns=columns)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error df = pd.read_csv('./survey_results_public.csv') schema = pd.read_csv('./survey_results_schema.csv') ##Categorical Variables # Question 1 cat_df = df.select_dtypes(include=['object']) #Question 2 cat_df_dict = {'the number of columns with no missing values': 6, 'the number of columns with more than half of the column missing': 49, 'the number of columns with more than 75% of the column missing': 13 } #Question 3 sol_3_dict = {'Which column should you create a dummy variable for?': 'col1', 'When you use the default settings for creating dummy variables, how many are created?': 2, 'What happens with the nan values?': 'the NaNs are always encoded as 0' } #Question 4 #create needed dataframe dummy_var_df = pd.DataFrame({'col1': ['a', 'a', 'b', 'b', 'a', np.nan, 'b', np.nan], 'col2': [1, np.nan, 3, np.nan, 5, 6, 7, 8] }) #dummy cols dummy_cols_df = pd.get_dummies(dummy_var_df['col1'], dummy_na=True) #Question 5 cat_cols_lst = cat_df.columns def create_dummy_df(df, cat_cols, dummy_na): for col in cat_cols: try: # for each cat add dummy var, drop original column df = pd.concat([df.drop(col, axis=1),
pd.get_dummies(df[col], prefix=col, prefix_sep='_', drop_first=True, dummy_na=dummy_na)
pandas.get_dummies
# -*- coding: utf-8 -*- # Dirichlet Mixing Module v1.2 # Implemented by <NAME>, based on original MatLab code by <NAME>. # Mathematics described in Rudge et al. import numpy as np import pandas as pd import matplotlib.pyplot as plt # Mean composition of melts from all lithologies def mean_comp_total(f,w,c): return np.sum(f*c*w) # Import a Melts output file def Import_Melts_output(filename,dX=0.0001,RudgeMethod=False): """Import a Melts csv file and recasts the melting column in terms of equal dX increments. Converts pressure from bars to GPa. Returns a pandas dataframe. Parameters ---------- filename: string Name of the file (and path relative to script) to import dX: float Discretization interval. Default 0.01%. RudgeMethod: bool Use the Rudge method for calculating melt fraction from the MELTS input. I think this method is erroneous, but have kept it so his results may be reproduced. """ meltsFile = pd.read_csv(filename,skiprows=1) if RudgeMethod == True: # Calculate Melt Fraction meltsFile['F'] = (100-meltsFile.Mass)/100 # Calculate residual porosity ResidualPorosity = meltsFile.F.iloc[0] X = (meltsFile.F - ResidualPorosity)/(1-ResidualPorosity) else: X = (meltsFile.Mass[0]-meltsFile.Mass)/meltsFile.Mass[0] # Find last X=0 term during upwelling (and first DeltaX>0 term) # Find last melting step MeltingBounds = [0,0] MeltingBounds[0] = np.argmin(X[X>0]) - 1 MeltingBounds[1] = np.argmax(X) # Make list of columns for new array columns = ['X','P','T'] columns = columns + (meltsFile.columns[3:].tolist()) # Set up list of X values to map all other variables to X_to_map = np.arange(X[MeltingBounds[0]],X[MeltingBounds[1]],dX) # Create an array of zeroes with the length of the number of rows needed in the dataframe EmptyColumns = np.array([np.zeros(np.shape(X_to_map))]*np.shape(columns)[0]).T # Create Empty Dataframe d =
pd.DataFrame(EmptyColumns, columns=columns)
pandas.DataFrame
from tifffile import TiffFile import numpy as np import pandas as pd import sys, hashlib, json from scipy.ndimage.morphology import binary_dilation from sklearn.neighbors import NearestNeighbors from scipy.ndimage import gaussian_filter from collections import OrderedDict #from random import random """ A set of functions to help read / modify images """ def compare_tiff_contents(path1,path2): """ For two input tif image paths, see if they have the same layer structure and image descriptions Args: path1 (str): a path to a tif path2 (str): a path to a tif Returns: result (bool): True if they are the same image False if they are not """ stack1 = hash_tiff_contents(path1) stack2 = hash_tiff_contents(path2) return stack1==stack2 def hash_tiff_contents(path): """ For two input tif image paths, see if they have the same layer structure and image descriptions Args: path (str): a path to a tif Returns: result (bool): True if they are the same image False if they are not """ stack = read_tiff_stack(path) stack = tuple([(hashlib.sha256(x['raw_meta']['ImageDescription'].encode('utf-8')).hexdigest(),hashlib.sha256(x['raw_image'].tostring()).hexdigest()) for x in stack]) return hashlib.sha256(json.dumps(stack).encode('utf-8')).hexdigest() def binary_image_dilation(np_array,steps=1): """ For an input image that gets set to 0 or 1, expand the 1's by the number of steps Args: np_array (numpy.array): a 2d image steps (int): number of pixels to expand Returns: numpy.array: Image with that has been expanded """ img = make_binary_image_array(np_array) img = binary_dilation(img,iterations=steps).astype(np.uint8) return img def median_id_coordinates(np_array,exclude_points=None): """ Locate a coordinate near the center of each object in an image Args: np_array (numpy.array): Take an image where pixels code for the IDs exclude_points (list): optional. a list of tuples of 'x','y' coordinates. to exclude from being possible median outputs Returns: pandas.DataFrame: DataFrame indexed by ID with a near median 'x', and median 'y' for that ID """ nids = map_image_ids(np_array) if exclude_points is not None: exclude_points = pd.DataFrame(exclude_points,columns=['x','y']) exclude_points['exclude'] = 'Yes' nids = nids.merge(exclude_points,on=['x','y'],how='left') nids = nids.loc[nids['exclude'].isna()].drop(columns='exclude') # Get the median of the x dimension ngroup = nids.groupby('id').apply(lambda x: pd.Series({'x':list(x['x'])})) ngroup['median_x'] = ngroup['x'].apply(lambda x: np.quantile(x,0.5,interpolation='nearest')) nids = nids.merge(ngroup[['median_x']],left_on='id',right_index=True) # Subset to y values that fall on that x median nids = nids.loc[nids['x']==nids['median_x']] ngroup = nids.groupby('id').apply(lambda x: pd.Series({'x':list(x['x']),'y':list(x['y'])})) nmedian = ngroup.applymap(lambda x: np.quantile(x,0.5,interpolation='nearest')) return nmedian def watershed_image(np_array,starting_points,valid_target_points,steps=1,border=1,fill_value=1,border_fill_value=0): """ A function for expanding a set of pixels in an image from starting_points and into valid_target_points. Args: np_array (numpy.array): A 2d array of the image where comprised of integer values starting_points (list): a list of (x,y) tuples to begin filling out from. the values of these points valid_target_points (list): a list of (x,y) tuples of valid locations to expand into steps (int): the number of times to execute the watershed border (int): the distance to remain away from the edge of the image fill_value (int): The integer value to fill the area in with border_fill_value (int): The value to fill the border area in with Returns: numpy.array: the image with the watershed executed """ output = np_array.copy() if len(valid_target_points) > 0 and len(starting_points) > 0: nn = NearestNeighbors(n_neighbors=1,radius=steps).\ fit(starting_points).\ radius_neighbors(valid_target_points,radius=steps) for i,v in enumerate(nn[0]): if len(v) == 0: continue output[valid_target_points[i][1],valid_target_points[i][0]] = fill_value output = _fill_borders(output,border,fill_value=border_fill_value) return output def _fill_borders(img,border_size_px,fill_value): if border_size_px == 0: return img.copy() _temp = pd.DataFrame(img.copy()) _temp.iloc[0:,0:border_size_px] = fill_value _temp.iloc[0:border_size_px,0:] = fill_value _temp.iloc[-1*border_size_px:,0:] = fill_value _temp.iloc[0:,-1*border_size_px:] = fill_value return np.array(_temp) def split_color_image_array(np_array): if len(np_array.shape) == 2: return [np_array] images = [] for i in range(0,np_array.shape[2]): image = np.array([[y[0] for y in x] for x in np_array]) images.append(image) return np.array(images) def make_binary_image_array(np_array): """ Make a binary (one channel) image from a drawn color image Args: np_array (numpy.array) a numpy array that came from a color image Returns: numpy.array: an array that is 1 where something (anything) existed vs 0 where there was nothing """ np_array = np.nan_to_num(np_array) if len(np_array.shape) == 2: return np.array([[1 if y > 0 else 0 for y in x] for x in np_array]) return np.array([[1 if np.nanmax([z for z in y]) > 0 else 0 for y in x] for x in np_array]).astype(np.int8) def read_tiff_stack(filename): """ Read in a tiff filestack into individual images and their metadata Args: filename (str): a path to a tiff file Returns: list: a list of dictionary entries keyed by 'raw_meta' and 'raw_image' for each image in the tiff stack """ data = [] with TiffFile(filename) as tif: image_stack = tif.asarray() for page in tif.pages: meta = dict((tag.name,tag.value) for tag in page.tags.values()) data.append({'raw_meta':meta,'raw_image':np.array(page.asarray())}) return data def flood_fill(image,x,y,exit_criteria,max_depth=1000,recursion=0,visited=None,border_trim=0): """ There is a flood_fill in scikit-image 0.15.dev0, but it is not faster than this for this application. It may be good to revisit skikit's implemention if it is optimized. Args: image (numpy.array): a 2d numpy array image x (int): x starting coordinate y (int): y starting coordinate exit_criteria (function): a function for which to exit i.e. ``lambda x: x!=0`` max_depth (int): a maximum recurssion depth recursion (int): not set by user, used to keep track of recursion depth visited (list): list of (x,y) tuple representing coordinates that have been visited border_trim (int): the size of the border to avoid on the edge Returns: numpy.array: the filled image """ # return a list of coordinates we fill without visiting twice or hitting an exit condition if visited is None: visited = set() if len(visited)>=max_depth: return visited if recursion > 1000: return visited if y < 0+border_trim or y >= image.shape[0]-border_trim: return visited if x < 0+border_trim or x >= image.shape[1]-border_trim: return visited if (x,y) in visited: return visited if exit_criteria(image[y][x]): return visited visited.add((x,y)) # traverse deeper if (x,y+1) not in visited: visited = flood_fill(image,x,y+1,exit_criteria,max_depth=max_depth,recursion=recursion+1,visited=visited,border_trim=border_trim) if (x+1,y) not in visited: visited = flood_fill(image,x+1,y,exit_criteria,max_depth=max_depth,recursion=recursion+1,visited=visited,border_trim=border_trim) if (x,y-1) not in visited: visited = flood_fill(image,x,y-1,exit_criteria,max_depth=max_depth,recursion=recursion+1,visited=visited,border_trim=border_trim) if (x-1,y) not in visited: visited = flood_fill(image,x-1,y,exit_criteria,max_depth=max_depth,recursion=recursion+1,visited=visited,border_trim=border_trim) return visited def map_image_ids(image,remove_zero=True): """ Convert an image into a list of coordinates and the id (coded by pixel integer value) Args: image (numpy.array): A numpy 2d array with the integer values representing cell IDs remove_zero (bool): If True (default), remove all zero pixels Returns: pandas.DataFrame: A pandas dataframe with columns shaped as <x><y><id> """ nmap = pd.DataFrame(image.astype(float)).stack().reset_index().\ rename(columns={'level_0':'y','level_1':'x',0:'id'}) nmap.loc[~np.isfinite(nmap['id']),'id'] = 0 if remove_zero: nmap = nmap[nmap['id']!=0].copy() nmap['id'] = nmap['id'].astype(int) return nmap[['x','y','id']] def _test_edge(image,x,y,myid): for x_iter in [-1,0,1]: xcoord = x+x_iter if xcoord >= image.shape[1]-1: continue for y_iter in [-1,0,1]: ycoord = y+y_iter if x_iter == 0 and y_iter==0: continue if xcoord <= 0 or ycoord <=0: continue if ycoord >= image.shape[0]-1: continue if image[ycoord][xcoord] != myid: return True return False def image_edges(image,verbose=False): """ Take an image of cells where pixel intensitiy integer values represent cell ids (fully filled-in) and return just the edges Args: image (numpy.array): A 2d numpy array of integers coding for cell IDs verbose (bool): If true output more details to stderr Returns: numpy.array: an output image of just edges """ if verbose: sys.stderr.write("Making dataframe of possible neighbors.\n") cmap = map_image_ids(image) edge_image = np.zeros(image.shape) if verbose: sys.stderr.write("Testing for edge.\n") # cmap #print(cmap.head()) mod =
pd.DataFrame({'mod':[-1,0,1]})
pandas.DataFrame
import pandas as pd import datetime as dt from scipy.interpolate import interp1d from trios.utils.sunposition import sunpos from trios.config import * class awr_data: ''' Above-water radiometry ''' def __init__(self, idpr=None, files=None, Edf=None, Lskyf=None, Ltf=None): # ''' get file names for Ed, Lsky and Lt data''' if not files is None: self.file = list(filter(lambda x: 'idpr' + idpr in x, files)) file = self.file self.Edf = list(filter(lambda x: 'Ed' in x, file)) self.Lskyf = list(filter(lambda x: 'Lsky' in x, file)) self.Ltf = list(filter(lambda x: 'Lt' in x, file)) elif all(v is not None for v in [Edf, Lskyf, Ltf]): self.Edf = Edf self.Lskyf = Lskyf self.Ltf = Ltf else: raise SyntaxError('ERROR: must specify `files` or `(Edf, Lskyf, Ltf)` variables') self.idpr = idpr def reader(self, lat, lon, alt=0, name='', index_idx=[0], utc_conv=0, file_format='csv'): ''' Read above-water data files for a given acquisition series (idpr), merge the different data types: - by interpolating over wavelengths on a common band set (from those of Lt sensor) - by searching the nearest neighbor in time compute solar zenith angle return full data frame :param Edf: file path of irradiance data :param Lskyf: file pat of sky radiance data :param Ltf: file path of water radiance data :param lat: latitude (decimal) :param lon: longitude (decimal) :param alt: altitude (m) :param idpr: ID of the acquisition series :param utc_conv: decimal hours added to convert local time into UTC :return: ''' # ''' read files with pandas format ''' d = data(index_idx, file_type=file_format) Ed, wl_Ed = d.load_file(self.Edf, utc_conv=utc_conv) Lsky, wl_Lsky = d.load_file(self.Lskyf, utc_conv=utc_conv) Lt, wl_Lt = d.load_file(self.Ltf, utc_conv=utc_conv) # ''' interpolate Ed, Lt and Lsky data upon common wavelength''' wl = wl_common intEd = interp1d(wl_Ed, Ed.values, fill_value='extrapolate')(wl) newEd = pd.DataFrame(index=Ed.index, columns=pd.MultiIndex.from_tuples(zip(['Ed'] * len(wl), wl), names=['param', 'wl']), data=intEd) intLt = interp1d(wl_Lt, Lt.values, fill_value='extrapolate')(wl) newLt = pd.DataFrame(index=Lt.index, columns=pd.MultiIndex.from_tuples(zip(['Lt'] * len(wl), wl), names=['param', 'wl']), data=intLt) intLsky = interp1d(wl_Lsky, Lsky.values, fill_value='extrapolate')(wl) newLsky = pd.DataFrame(index=Lsky.index, columns=pd.MultiIndex.from_tuples(zip(['Lsky'] * len(wl), wl), names=['param', 'wl']), data=intLsky) # merge sensor data on time df = pd.merge_asof(newLt, newEd, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"), direction="nearest") df = pd.merge_asof(df, newLsky, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"), direction="nearest") # Convert to UTC time df.index = df.index # + pd.Timedelta(hours=3) # add solar angle data and idpr # compute solar angle (mean between fisrt and last aqcuisition time df['sza', ''] = np.nan for index, row in df.iterrows(): # print index sza = sunpos(index, lat, lon, alt)[1] df.at[index, 'sza'] = sza df['idpr', ''] = self.idpr df['name', ''] = name return df, wl class iwr_data: ''' In-water radiometry ''' def __init__(self, idpr, files): # ''' get file names for Ed, Lsky and Lt data''' self.file = list(filter(lambda x: 'idpr' + idpr in x, files)) file = self.file self.Edf = list(filter(lambda x: 'Ed_' in x, file)) self.Edzf = list(filter(lambda x: 'Edz' in x, file)) self.Luzf = list(filter(lambda x: 'Luz' in x, file)) self.idpr = idpr def reader(self, lat, lon, alt=0, name='', delta_Lu_depth=0, delta_Edz_depth=0): ''' Read above-water data files for a given acquisition series (idpr), merge the different data types: - by interpolating over wavelengths on a common band set (from those of Lt sensor) - by searching the nearest neighbor in time compute solar zenith angle return full data frame :param Edf: file path of irradiance data :param Edzf: file path of downward in-water irradiance data :param Luzf: file path of upward in-water radiance data :param lat: latitude (decimal) :param lon: longitude (decimal) :param alt: altitude (m) :param delta_Lu_depth: adjustment of actual depth for Lu sensor (distance from depth sensor); in meters for depth counted positively :param delta_Edz_depth: similar to delta_Lu_depth for Edz sensor :param idpr: ID of the acquisition series :return: ''' # ''' read files with pandas format ''' d = data([1, 0]) Ed, wl_Ed = d.load_csv(self.Edf) Edz, wl_Edz = d.load_csv(self.Edzf) Luz, wl_Luz = d.load_csv(self.Luzf) # mask negative values TODO save number of discarded data Ed[Ed < 0] = 0 # .mask(Ed<0,inplace=True) Edz[Edz < 0] = 0 # .mask(Edz<0,inplace=True) Luz[Luz < 0] = 0 # .mask(Luz<0,inplace=True) # copy depth data to Ed frame on date index # Ed.index = Ed.index.droplevel(level=1) # ''' interpolate Ed, Edz and Luz data upon common wavelength''' wl = wl_common intEd = interp1d(wl_Ed, Ed.values, fill_value='extrapolate')(wl) newEd = pd.DataFrame(index=Ed.index.get_level_values(0), columns=pd.MultiIndex.from_tuples(list(zip(['Ed'] * len(wl), wl)), names=['param', 'wl']), data=intEd) intEdz = interp1d(wl_Edz, Edz.values, fill_value='extrapolate')(wl) newEdz = pd.DataFrame(index=Edz.index, columns=pd.MultiIndex.from_tuples(list(zip(['Edz'] * len(wl), wl)), names=['param', 'wl']), data=intEdz) intLuz = interp1d(wl_Luz, Luz.values, fill_value='extrapolate')(wl) newLuz = pd.DataFrame(index=Luz.index, columns=pd.MultiIndex.from_tuples(list(zip(['Luz'] * len(wl), wl)), names=['param', 'wl']), data=intLuz) print('read merge ok') # correct depth data for sensor to sensor distance newLuz.reset_index(level=1, inplace=True) newLuz.iloc[:, 0] = newLuz.iloc[:, 0] + delta_Lu_depth # newEd.reset_index(level=1,inplace=True) newEdz.reset_index(level=1, inplace=True) newEdz.iloc[:, 0] = newEdz.iloc[:, 0] + delta_Edz_depth # merge sensor data on time df = pd.merge_asof(newLuz, newEd, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"), direction="nearest") df = pd.merge_asof(df, newEdz, left_index=True, right_index=True, suffixes=('_Luz', '_Edz'), tolerance=pd.Timedelta("2 seconds"), direction="nearest") # by="depth", # add solar angle data and idpr # compute solar angle (mean between fisrt and last acquisition time df['sza', ''] = np.nan for index, row in df.iterrows(): # print index sza = sunpos(index, lat, lon, alt)[1] df.at[index, 'sza'] = sza df['idpr', ''] = self.idpr df['name', ''] = name return df, wl # def load_csv(self, file): # # dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S') # if len(file) > 1: # print('Warning! Multiple files found but only one expected, trios first file of the list:') # print(file) # file = file[0] # df = pd.read_csv(file, sep=';', index_col=[1, 0], na_values=['-NAN']) # df = df.dropna(axis=1, how='all').dropna(axis=0, how='all') # df.index = df.index.set_levels([pd.to_datetime(df.index.levels[0]), df.index.levels[1]]) # df.columns = df.columns.astype('float') # str.extract('(\d+)',expand=False).astype('float') # # resort to get data in increasing time order # df.sort_index(inplace=True, level=0) # wl = df.columns # # return df, wl class swr_data: ''' Surface-water radiometry ''' def __init__(self, idpr, files): # ''' get file names for Ed, Lsky and Lt data''' self.file = list(filter(lambda x: 'idpr' + idpr in x, files)) file = self.file self.Edf = list(filter(lambda x: '_Ed' in x, file)) self.Lu0f = list(filter(lambda x: '_Lu0+' in x, file)) self.idpr = idpr def reader(self, lat=None, lon=None, alt=0): ''' Read above-water data files for a given acquisition series (idpr), merge the different data types: - by interpolating over wavelengths on a common band set (from those of Lt sensor) - by searching the nearest neighbor in time compute solar zenith angle return full data frame :param Edf: file path of irradiance data :param Lu0f: file path of upward in-water radiance data :param lat: latitude (decimal) :param lon: longitude (decimal) :param alt: altitude (m) :param idpr: ID of the acquisition series :return: ''' df = pd.DataFrame() # ''' read files with pandas format ''' Ed, wl_Ed = data().load_csv(self.Edf) Lu0, wl_Lu0 = data().load_csv(self.Lu0f) # ''' interpolate Ed and Lsky data upon common wavelengths''' wl = wl_common intEd = interp1d(wl_Ed, Ed.values, fill_value='extrapolate')(wl) newEd = pd.DataFrame(index=Ed.index, columns=pd.MultiIndex.from_tuples(zip(['Ed'] * len(wl), wl), names=['param', 'wl']), data=intEd) intLu0 = interp1d(wl_Lu0, Lu0.values, fill_value='extrapolate')(wl) newLu0 = pd.DataFrame(index=Lu0.index, columns=pd.MultiIndex.from_tuples(zip(['Lu0+'] * len(wl), wl), names=['param', 'wl']), data=intLu0) # merge sensor data on time df = pd.merge_asof(newLu0, newEd, left_index=True, right_index=True, tolerance=
pd.Timedelta("2 seconds")
pandas.Timedelta
from collections import namedtuple from datetime import datetime as dt import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from speculator.features.OBV import OBV from speculator.features.RSI import RSI from speculator.features.SMA import SMA from speculator.features.SO import SO import speculator.models.random_forest as rf import speculator.models.deep_neural_network as dnn from speculator.utils import date from speculator.utils import poloniex # Enum-like object with 1:1 mapping. Converts a readable # market trend like 'bearish' to an int that is easier to parse. TARGET_CODES = {'bearish': 0, 'neutral': 1, 'bullish': 2} class Market: """ Evaluates TA indicators of a market Gets data from a market and then calculates technical analysis features. It also prepares this data to be fed into machine learning interfaces by creating a pandas DataFrame, and generating training/test sets for features (x-axis) and the target market trend (y-axis). Attributes: symbol: String of currency pair, like a ticker symbol. unit: String of time period unit for count argument. How far back to check historical market data. valid values: 'hour', 'day', 'week', 'month', 'year' count: Int of units. How far back to check historical market data. period: Int defining width of each chart candlestick in seconds. Valid values: 300, 900, 1800, 7200, 14400, 86400. json: JSON data as a list of dict dates, where the keys are the raw market statistics. """ def __init__(self, json=None, symbol='USDT_BTC', unit='month', count=6, period=86400): """ Inits market class of symbol with data going back count units """ self.symbol = symbol self.unit = unit self.count = count self.period = period if json is None: self.json = self.get_json() else: self.json = json def get_json(self): """ Gets market chart data from today to a previous date """ today = dt.now() DIRECTION = 'last' epochs = date.get_end_start_epochs(today.year, today.month, today.day, DIRECTION, self.unit, self.count) return poloniex.chart_json(epochs['shifted'], epochs['initial'], self.period, self.symbol)[0] def set_features(self, partition=1): """ Parses market data JSON for technical analysis indicators Args: partition: Int of how many dates to take into consideration when evaluating technical analysis indicators. Returns: Pandas DataFrame instance with columns as numpy.float32 features. """ if len(self.json) < partition + 1: raise ValueError('Not enough dates for the specified partition size: {0}. Try a smaller partition.'.format(partition)) data = [] for offset in range(len(self.json) - partition): json = self.json[offset : offset + partition] data.append(eval_features(json)) return
pd.DataFrame(data=data, dtype=np.float32)
pandas.DataFrame
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import re import argparse import json import logging import requests from copy import deepcopy import pandas as pd FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def parse_args(): """ parse input args """ parser = argparse.ArgumentParser() # for local excel analysis parser.add_argument( "--log_file", type=str, default="result.log", help="ci result log path") return parser.parse_args() def _find_char(input_char): """ find english char in input string """ result = re.findall(r'[a-zA-Z=_/0-9.]+', str(input_char)) return result def process_log(file_name: str): """ process log """ train_list_dict = [] export_list_dict = [] predict_det_list_dict = [] with open(file_name, 'r') as f: for i, data in enumerate(f.readlines()): # print(i, data) train_dict = {} if "train.py" in data: split_data = data.split(' ') for line_value in split_data: if "=" in line_value: key = _find_char(line_value.split('=')[0]) value = _find_char(line_value.split('=')[-1]) # print(key, value) train_dict[key[0]] = ''.join(value) if "successfully" in split_data: train_dict["status"] = "passed" else: train_dict["status"] = "failed" # print(train_dict) train_list_dict.append(train_dict) export_dict = {} if "export_model.py" in data: split_data = data.split(' ') for line_value in split_data: if "=" in line_value: key = _find_char(line_value.split('=')[0]) value = _find_char(line_value.split('=')[-1]) # print(key, value) export_dict[key[0]] = ''.join(value) if "successfully" in split_data: export_dict["status"] = "passed" else: export_dict["status"] = "failed" # print(export_dict) export_list_dict.append(export_dict) predict_det_dict = {} if "predict_det.py" in data: split_data = data.split(' ') for line_value in split_data: if "=" in line_value: key = _find_char(line_value.split('=')[0]) value = _find_char(line_value.split('=')[-1]) # print(key, value) predict_det_dict[key[0]] = ''.join(value) if "successfully" in split_data: predict_det_dict["status"] = "passed" else: predict_det_dict["status"] = "failed" # print(predict_det_dict) predict_det_list_dict.append(predict_det_dict) return train_list_dict, export_list_dict, predict_det_list_dict def main(): """ main """ args = parse_args() a, b, c = process_log(args.log_file) a_1 = pd.DataFrame(a) b_1 = pd.DataFrame(b) c_1 =
pd.DataFrame(c)
pandas.DataFrame
""" Train a neural network for regression task: cv: 10 batch size: 8 initializer: He normal initializer optimizer: AdamMax learning rate: 0.0004 loss: RMSE Calculate RMSE at once, Oct. 3, 2020 revised """ import argparse import numpy as np import pandas as pd import scipy.stats as scistat from datetime import datetime import sklearn.preprocessing as skpre import sklearn.model_selection as skms import sklearn.metrics as skmts import sklearn.utils as skut import torch as tch import torch.utils.data as tchud import myModel as mynet import myFit as myfit import myDataloader as mydl import myDatasplit as mysplit import myUtility as myutil import myPlotter as myplot import myMetrics as mymts import shap as sp class RMSELoss(tch.nn.Module): def __init__(self): super(RMSELoss,self).__init__() def forward(self,x,y): eps = 1e-6 criterion = tch.nn.MSELoss() loss = tch.sqrt(criterion(x, y) + eps) return loss def fit(net, train_dl, valid_dl, epochs, learning_rate, device, opt_fn): """ Return train and valid performance including loss :param net: model :param train_dl: train dataloader :param valid_dl: valid dataloader :param epochs: integer representing EPOCH :param learning_rate: float representing LEARNING_RATE :param device: string representing cpu or cuda:0 :param opt_fn: optimization function in torch (e.g., tch.optim.Adam) :param loss_fn: loss function in torch (e.g., tch.nn.MSELoss) """ # setup criterion = RMSELoss() # setup LOSS function optimizer = opt_fn(net.parameters(), lr=learning_rate, weight_decay=1e-5) # setup optimizer net = net.to(device) # load the network onto the device trainloss_list = [] # metrics: MSE, size equals to EPOCH validloss_list = [] # metrics: MSE, size equals to EPOCH early_stopping = myutil.EarlyStopping(patience=30, verbose=True) # initialize the early_stopping # repeat the training for EPOCH times for epoch in range(epochs): ## training phase net.train() # initial loss train_epoch_loss = 0.0 # save loss for each epoch, batch by batch for i, (X_train, y_train) in enumerate(train_dl): X_train, y_train = X_train.to(device), y_train.to(device) # load data onto the device y_train_pred = net(X_train) # train result train_loss = criterion(y_train_pred, y_train.float()) # calculate loss optimizer.zero_grad() # clear gradients train_loss.backward() # backpropagation #### add this if you have gradient explosion problem ### clip_value = 5 tch.nn.utils.clip_grad_value_(net.parameters(), clip_value) ########climp gradient within -5 ~ 5 ################### optimizer.step() # update weights train_epoch_loss += train_loss.item() # adding loss from each batch # calculate total loss of all batches avg_train_loss = train_epoch_loss / len(train_dl) trainloss_list.append( avg_train_loss ) ## validation phase with tch.no_grad(): net.eval() valid_epoch_loss = 0.0 # save loss for each epoch, batch by batch for i, (X_valid, y_valid) in enumerate(valid_dl): X_valid, y_valid = X_valid.to(device), y_valid.to(device) # load data onto the device y_valid_pred = net(X_valid) # valid result valid_loss = criterion(y_valid_pred, y_valid.float())#y_valid.unsqueeze(1)) # calculate loss valid_epoch_loss += valid_loss.item() # adding loss from each batch # calculate total loss of all batches, and append to result list avg_valid_loss = valid_epoch_loss / len(valid_dl) validloss_list.append( avg_valid_loss) # display print message #print('epoch={:}/{:}, train loss={:.5f}, valid loss={:.5f}'.format( # epoch+1, epochs, train_epoch_loss / len(train_dl), # valid_epoch_loss / len(valid_dl))) # early_stopping needs the validation loss to check if it has decresed, # and if it has, it will make a checkpoint of the current model early_stopping(avg_valid_loss, net) if early_stopping.early_stop: print("Early stopping") break # load the last checkpoint with the best model net.load_state_dict(tch.load('checkpoint.pt')) return net, trainloss_list, validloss_list def predict(net, test_dl, device): """ Return prediction list :param net: model :param train_dl: train dataloader :param device: string representing cpu or cuda:0 """ # create result lists prediction_list = list() with tch.no_grad(): net = net.to(device) # load the network onto the device net.eval() for i, (X_test, y_test) in enumerate(test_dl): X_test, y_test = X_test.to(device), y_test.to(device) # load data onto the device y_test_pred = net(X_test) # test result # bring data back to cpu in np.array format, and append to result lists prediction_list.append( y_test_pred.cpu().numpy() ) #print(prediction_list) # merge all batches prediction_list = np.vstack(prediction_list) prediction_list = np.hstack(prediction_list).tolist() # return return prediction_list # define arguments def parse_parameter(): parser = argparse.ArgumentParser(description = "Train a feedforward") parser.add_argument("-i", "--input_path", required = True, help = "input path") parser.add_argument("-s", "--seed_int", required = False, default = 42, type = int, help = "seed for reproducibility. default=42") parser.add_argument("-c", "--cv_int", required = False, default = 10, type = int, help = "K fold cross validation. default=10") parser.add_argument("-g", "--gpu_int", default = 0, type = int, help = "assign the n-th GPU") parser.add_argument("-shap", "--shap_bool", default = False, type = bool, help = "enable SHAP if True") parser.add_argument("-o", "--output_path", required = True, help = "output path") return parser.parse_args() if __name__ == "__main__": start_time = datetime.now() # get args args = parse_parameter() # load data df = pd.read_csv(args.input_path, header=0, index_col=[0,1], sep="\t") # shuffle sdf = skut.shuffle(df, random_state=args.seed_int) # set parameters myutil.set_seed(args.seed_int) device = myutil.get_device(uth=args.gpu_int) kFold = args.cv_int learning_rate = 0.0004 epoch = 800 batch_size = 12 opt_fn = tch.optim.Adam # create result list loss_df_list = [] score_df_list = [] ytest_df_list = [] shap_df_list = [] # train with cross-validation kf = skms.KFold(n_splits=kFold, random_state=args.seed_int, shuffle=True) X_df = sdf.iloc[:, 0:-1] y_df = sdf.iloc[:, -1] # save best model with lowest RMSE best_rmse = 10000 best_model = None best_fold = 0 for i, (train_index, test_index) in enumerate(kf.split(X_df, y_df)): n_fold = i+1 print('Fold={:}/{:}'.format(n_fold, args.cv_int)) # get train/test splits Xtrain_arr = X_df.values[train_index] Xtest_arr = X_df.values[test_index] ytrain_arr = y_df.values[train_index] ytest_arr = y_df.values[test_index] # get train/valid splits from train Xtrain_arr, Xvalid_arr, ytrain_arr, yvalid_arr = skms.train_test_split(Xtrain_arr, ytrain_arr, test_size=0.1, random_state=args.seed_int) print(' train={:}, valid={:}, test={:}'.format(Xtrain_arr.shape, Xvalid_arr.shape, Xtest_arr.shape)) # prepare dataframe for output ytest_df = y_df.iloc[test_index].to_frame() # convert to numpy array Xtrain_arr = np.array(Xtrain_arr).astype('float32') Xvalid_arr = np.array(Xvalid_arr).astype('float32') Xtest_arr = np.array(Xtest_arr).astype('float32') ytrain_arr = np.array(ytrain_arr).astype('float32') yvalid_arr = np.array(yvalid_arr).astype('float32') ytest_arr = np.array(ytest_arr).astype('float32') # create mini-batch train_dataset = mydl.NumpyDataset(tch.from_numpy(Xtrain_arr), tch.from_numpy(ytrain_arr)) valid_dataset = mydl.NumpyDataset(tch.from_numpy(Xvalid_arr), tch.from_numpy(yvalid_arr)) test_dataset = mydl.NumpyDataset(tch.from_numpy(Xtest_arr), tch.from_numpy(ytest_arr)) train_dl = tchud.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) valid_dl = tchud.DataLoader(valid_dataset, batch_size=batch_size, shuffle=False) test_dl = tchud.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # initial weight def init_weights(m): if type(m) == tch.nn.Linear: tch.nn.init.kaiming_uniform_(m.weight) m.bias.data.fill_(0.01) # load model n_features = Xtrain_arr.shape[1] net = mynet.FNN(n_features) net.apply(init_weights) # fit data with model trained_net, train_loss_list, valid_loss_list = fit(net, train_dl, valid_dl, epoch, learning_rate, device, opt_fn) prediction_list = predict(trained_net, test_dl, device) # evaluation metrics mse = skmts.mean_squared_error(ytest_arr, prediction_list) rmse = np.sqrt(mse) if rmse <= best_rmse: best_rmse = rmse best_fold = n_fold best_model = trained_net print('best model so far at fold={:}, rmse={:}'.format(best_fold, best_rmse)) if args.shap_bool == True: print('calculate shapely values') # random select 100 samples as baseline train_dataset = mydl.NumpyDataset(tch.from_numpy(Xtrain_arr), tch.from_numpy(ytrain_arr)) train_dl = tchud.DataLoader(train_dataset, batch_size=200, shuffle=True) background, lbl = next(iter(train_dl)) explainer = sp.DeepExplainer(trained_net, background[:100].to(device)) shap_arr = explainer.shap_values(tch.from_numpy(Xtest_arr)) shap_df = pd.DataFrame(shap_arr, index=ytest_df.index, columns=X_df.columns) # append to result shap_df_list.append(shap_df) # collect result loss_df = pd.DataFrame({'fold':[n_fold]*len(train_loss_list), 'epoch':[i+1 for i in range(len(train_loss_list))], 'train loss':train_loss_list, 'valid loss': valid_loss_list}) ytest_df['prediction'] = prediction_list ytest_df['fold'] = n_fold loss_df_list.append(loss_df) ytest_df_list.append(ytest_df) # end of fold trained_net = None # save to output all_ytest_df = pd.concat(ytest_df_list, axis=0) all_loss_df =
pd.concat(loss_df_list, axis=0)
pandas.concat
import sys import subprocess import os import pandas as pd def get_repo_root(): """Get the root directory of the repo.""" dir_in_repo = os.path.dirname(os.path.abspath('__file__')) return subprocess.check_output('git rev-parse --show-toplevel'.split(), cwd=dir_in_repo, universal_newlines=True).rstrip() ROOT_dir = get_repo_root() sys.path.append(ROOT_dir) sys.path.insert(0, ROOT_dir + '/lib') import lib.gs_model as gs_model import time import json import lib.validation as validation class RegionParaGenerate: def __init__(self, res=None, region=None, rg=None, visits=None): self.res = res self.region = region self.rg = rg self.visits = visits def region_data_load(self, type='calibration'): if '-' not in self.region: self.res = ROOT_dir + '/dbs/' + self.region + '/visits/' + type + '.csv' else: self.res = ROOT_dir + '/dbs/sweden/visits/' + self.region.split('-')[1] + '_' + type + '.csv' rg_ = gs_model.RegionDataPrep(region=self.region) rg_.load_zones_odm() rg_.load_geotweets(type=type) rg_.kl_baseline_compute() self.rg = rg_ self.visits = gs_model.VisitsGeneration(region=self.region, bbox=self.rg.bbox, zones=self.rg.zones, odm=self.rg.gt_odm, distances=self.rg.distances, distance_quantiles=self.rg.distance_quantiles, gt_dms=self.rg.dms) def visits_gen_by_days(self, type='calibration', p=None, gamma=None, beta=None, days=None): if type == 'calibration': tweets = self.rg.tweets_calibration else: tweets = self.rg.tweets_validation # userid as index for visits_total visits_total = self.visits.visits_gen(tweets, p, gamma, beta, days=days, homelocations=self.rg.home_locations) dms, _, _ = self.visits.visits2measure(visits=visits_total, home_locations=self.rg.home_locations) kl = validation.DistanceMetrics().kullback_leibler(dms, titles=['groundtruth', 'model']) print("D=", days, " kl=", kl) return kl if __name__ == '__main__': file = ROOT_dir + '/results/para-search-r1/parasearch.txt' list_lines = [] with open(file) as f: for jsonObj in f: line = json.loads(jsonObj) list_lines.append(line) df = pd.DataFrame(list_lines) list_df_res = [] for region2compute in ['sweden', 'netherlands', 'saopaulo']: # Start timing the code start_time = time.time() dc = df.loc[df['region'] == region2compute, ['p', 'beta', 'gamma']].to_dict('records')[0] # Prepare region data by initiating the class gs = RegionParaGenerate(region=region2compute) tp = 'calibration' gs.region_data_load(type=tp) list_kl = [gs.visits_gen_by_days(type=tp, p=dc['p'], gamma=dc['gamma'], beta=dc['beta'], days=day) for day in [1, 5] + [x*10 for x in range(1, 31)]] df_res =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """Extract a COCO captions dataframe from the annotation files.""" from __future__ import print_function import os import sys import argparse import pandas as pd def main(args): """Extract a COCO captions dataframe from the annotation files.""" # Load coco library sys.path.append(args.coco_path + '/PythonAPI') from pycocotools.coco import COCO set_2014 = ['val2014', 'train2014'] set_2017 = ['val2017', 'train2017'] # Make dataframe to store captions in cocoDF = pd.DataFrame(columns=['id', 'set', 'filename', 'caption']) for st in set_2014 + set_2017: print('\nProcessing {}'.format(st)) # Instantiate coco classes coco = COCO(args.coco_path + 'annotations/instances_{}.json'.format(st)) coco_anns = COCO(args.coco_path + 'annotations/captions_{}.json'.format(st)) # Get Categories cats = coco.loadCats(coco.getCatIds()) # Get unique image ids imgIds = [] for cat in cats: imgId = coco.getImgIds(catIds=cat['id']) imgIds += imgId imgIds = list(set(imgIds)) # Get annotations annIds = coco_anns.getAnnIds(imgIds=imgIds) anns = coco_anns.loadAnns(annIds) # Extract ids and captions as tuples captions = [(int(ann['image_id']), ann['caption']) for ann in anns] print(len(captions)) # Extract filenames as tuples img_ids = list(set([ann['image_id'] for ann in anns])) imgs = coco.loadImgs(img_ids) filenames = [(int(img['id']), st + '/' + img['file_name']) for img in imgs] # Make dataframe of captions and filenames captionDF = pd.DataFrame(captions, columns=['id', 'caption']) filesDF = pd.DataFrame(filenames, columns=['id', 'filename']) # Merge dataframes on image id df = captionDF.merge(filesDF, how='outer', on='id') # Assign to set df['set'] = st # Concatenate to resultsDF cocoDF =
pd.concat([cocoDF, df], axis=0)
pandas.concat
import pandas as pd import numpy as np import datetime import sys import time import xgboost as xgb from add_feture import * FEATURE_EXTRACTION_SLOT = 10 LabelDay = datetime.datetime(2014,12,18,0,0,0) Data = pd.read_csv("../../../../data/fresh_comp_offline/drop1112_sub_item.csv") Data['daystime'] = Data['days'].map(lambda x: time.strptime(x, "%Y-%m-%d")).map(lambda x: datetime.datetime(*x[:6])) def get_train(train_user,end_time): # 取出label day 前一天的记录作为打标记录 data_train = train_user[(train_user['daystime'] == (end_time-datetime.timedelta(days=1)))]#&((train_user.behavior_type==3)|(train_user.behavior_type==2)) # 训练样本中,删除重复的样本 data_train = data_train.drop_duplicates(['user_id', 'item_id']) data_train_ui = data_train['user_id'] / data_train['item_id'] # print(len(data_train)) # 使用label day 的实际购买情况进行打标 data_label = train_user[train_user['daystime'] == end_time] data_label_buy = data_label[data_label['behavior_type'] == 4] data_label_buy_ui = data_label_buy['user_id'] / data_label_buy['item_id'] # 对前一天的交互记录进行打标 data_train_labeled = data_train_ui.isin(data_label_buy_ui) dict = {True: 1, False: 0} data_train_labeled = data_train_labeled.map(dict) data_train['label'] = data_train_labeled return data_train[['user_id', 'item_id','item_category', 'label']] def get_label_testset(train_user,LabelDay): # 测试集选为上一天所有的交互数据 data_test = train_user[(train_user['daystime'] == LabelDay)]#&((train_user.behavior_type==3)|(train_user.behavior_type==2)) data_test = data_test.drop_duplicates(['user_id', 'item_id']) return data_test[['user_id', 'item_id','item_category']] def item_category_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] item_count = pd.crosstab(data.item_category,data.behavior_type) item_count_before5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] item_count_before5 =
pd.crosstab(beforefiveday.item_category,beforefiveday.behavior_type)
pandas.crosstab
import pandas as pd from iexfinance.base import _IEXBase from iexfinance.utils import _handle_lists, no_pandas from iexfinance.utils.exceptions import IEXSymbolError, IEXEndpointError class StockReader(_IEXBase): """ Base class for obtaining data from the Stock endpoints of IEX. """ # Possible option values (first is default) _ENDPOINTS = ["chart", "quote", "book", "open-close", "previous", "company", "stats", "peers", "relevant", "news", "financials", "earnings", "dividends", "splits", "logo", "price", "delayed-quote", "effective-spread", "volume-by-venue", "ohlc"] def __init__(self, symbols=None, **kwargs): """ Initialize the class Parameters ---------- symbols : string, array-like object (list, tuple, Series), or DataFrame Desired symbols for retrieval """ self.symbols = list(map(lambda x: x.upper(), _handle_lists(symbols))) self.n_symbols = len(self.symbols) self.endpoints = [] super(StockReader, self).__init__(**kwargs) def get_all(self): """ Returns all endpoints, indexed by endpoint title for each symbol Notes ----- Only allows JSON format (pandas not supported). """ self.optional_params = {} self.endpoints = self._ENDPOINTS[:10] json_data = self.fetch(fmt_p=no_pandas) self.endpoints = self._ENDPOINTS[10:20] json_data_2 = self.fetch(fmt_p=no_pandas) for symbol in self.symbols: if symbol not in json_data: raise IEXSymbolError(symbol) json_data[symbol].update(json_data_2[symbol]) return json_data[self.symbols[0]] if self.n_symbols == 1 else json_data @property def url(self): return 'stock/market/batch' @property def params(self): temp = { "symbols": ','.join(self.symbols), "types": ','.join(self.endpoints) } temp.update(self.optional_params) if "filter_" in temp: if isinstance(temp["filter_"], list): temp["filter"] = ",".join(temp.pop("filter_")) else: temp["filter"] = temp.pop("filter_") if "range_" in temp: temp["range"] = temp.pop("range_") params = {k: str(v).lower() if v is True or v is False else str(v) for k, v in temp.items()} return params def _get_endpoint(self, endpoint, params={}, fmt_p=None, fmt_j=None, filter_=None): result = {} if filter_: params.update({"filter": filter_}) self.optional_params = params self.endpoints = [endpoint] data = self.fetch(fmt_j=fmt_j, fmt_p=no_pandas) for symbol in self.symbols: if symbol not in data: raise IEXSymbolError(symbol) if endpoint not in data[symbol]: result[symbol] = [] else: result[symbol] = data[symbol][endpoint] return self._output_format_one(result, fmt_p=fmt_p, fmt_j=fmt_j) def _get_field(self, endpoint, field): data = getattr(self, "get_%s" % endpoint)(filter_=field) if self.output_format == 'json': if self.n_symbols == 1: data = data[field] else: data = {symbol: data[symbol][field] for symbol in self.symbols} return data def _output_format_one(self, out, fmt_p=None, fmt_j=None): data = super(StockReader, self)._output_format(out, fmt_p=fmt_p) if len(self.symbols) == 1 and self.output_format == 'json': return data[self.symbols[0]] return data def get_endpoints(self, endpoints=[]): """ Universal selector method to obtain specific endpoints from the data set. Parameters ---------- endpoints: str or list Desired valid endpoints for retrieval Notes ----- Only allows JSON format (pandas not supported). Raises ------ IEXEndpointError If an invalid endpoint is specified IEXSymbolError If a symbol is invalid IEXQueryError If issues arise during query """ if isinstance(endpoints, str) and endpoints in self._ENDPOINTS: endpoints = list(endpoints) if not endpoints or not set(endpoints).issubset(self._ENDPOINTS): raise IEXEndpointError("Please provide a valid list of endpoints") elif len(endpoints) > 10: raise ValueError("Please input up to 10 valid endpoints") self.optional_params = {} self.endpoints = endpoints json_data = self.fetch(fmt_p=no_pandas) for symbol in self.symbols: if symbol not in json_data: raise IEXSymbolError(symbol) return json_data[self.symbols[0]] if self.n_symbols == 1 else json_data def get_book(self, **kwargs): """ Reference: https://iextrading.com/developer/docs/#book Returns ------- dict or pandas.DataFrame Stocks Book endpoint data """ return self._get_endpoint("book", params=kwargs) def get_chart(self, **kwargs): """ Reference: https://iextrading.com/developer/docs/#chart Parameters ---------- range: str, default '1m', optional Chart range to return. See docs. chartReset: boolean, default True, optional If true, 1d chart will reset at midnight instead of the default behavior of 9:30am EST. chartSimplify: boolean, default True, optional If true, runs polyline simplification using Douglas-Peucker algorithm. Useful for plotting spotline charts chartInterval: int, default None, optional Chart data will return every nth element (where n is chartInterval) changeFromClose: bool, default False, optional If true, changeOverTime and marketChangeOverTime will be relative to previous day close instead of the first value. chartLast: int, optional return the last N elements Returns ------- list Stocks Chart endpoint data """ def fmt_p(out): result = {} for symbol in self.symbols: d = out.pop(symbol) df =
pd.DataFrame(d)
pandas.DataFrame
## 1. Introduction ## import pandas as pd hn =
pd.read_csv('hacker_news.csv')
pandas.read_csv
import os import csv import numpy as np import pandas as pd import logging from collections import deque from datetime import date, datetime, timedelta, time from typing import Dict, List, Iterator from libs.utils.loggers import get_source_log_directory, get_area_log_directory, get_source_logging_interval logger = logging.getLogger(__name__) def parse_date_range(dates): """Generator. From a continuous sorted list of datetime64 yields tuples (start_date, end_date) for each week encompassed""" while not dates.empty: start = 0 end = (7 - dates[start].weekday()) - 1 if end > len(dates): end = len(dates) - 1 yield (dates[start], dates[end]) dates = dates[end+1:] class BaseMetric: processing_count_threshold = 3 reports_folder = None csv_headers = [] # entity value can be "source" or "area" entity = "source" # Use the `live_csv_headers` when the csv strucutre differs from the hourly/daily live_csv_headers = [] @classmethod def get_entity_base_directory(cls, config=None): if config: return get_source_log_directory(config) if cls.entity == "source" else get_area_log_directory(config) return os.getenv("SourceLogDirectory") if cls.entity == "source" else os.getenv("AreaLogDirectory") @classmethod def get_entities(cls, config): return config.get_video_sources() if cls.entity == "source" else config.get_areas() @classmethod def procces_csv_row(cls, csv_row, object_logs): """ Extracts from the `csv_row` the required information to calculate the metric. The extracted information is populated into `object_logs`. """ raise NotImplementedError @classmethod def generate_hourly_metric_data(cls, object_logs, entity): """ Generates the hourly reports for the hours received in `object_logs`. """ raise NotImplementedError @classmethod def generate_hourly_csv_data(cls, entity: Dict, entity_file: str, time_from: datetime, time_until: datetime): if not os.path.isfile(entity_file): entity_type = "Camera" if cls.entity else "Area" logger.warn(f"The [{entity_type}: {entity['id']}] contains no recorded data for that day") return objects_logs = {} for hour in range(time_from.hour, time_until.hour): objects_logs[hour] = {} with open(entity_file, newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: row_time = datetime.strptime(row["Timestamp"], "%Y-%m-%d %H:%M:%S") if time_from <= row_time < time_until: cls.procces_csv_row(row, objects_logs) return cls.generate_hourly_metric_data(objects_logs, entity) @classmethod def compute_hourly_metrics(cls, config): if not cls.reports_folder: raise Exception(f"The metric {cls} doesn't have configured the folder parameter") base_directory = cls.get_entity_base_directory(config) entities = cls.get_entities(config) current_hour = datetime.now().hour for entity in entities: entity_directory = os.path.join(base_directory, entity["id"]) log_directory = None if cls.entity == "source": log_directory = os.path.join(entity_directory, "objects_log") else: # cls.entity == "area" log_directory = os.path.join(entity_directory, "occupancy_log") reports_directory = os.path.join(entity_directory, "reports", cls.reports_folder) # Create missing directories os.makedirs(log_directory, exist_ok=True) os.makedirs(reports_directory, exist_ok=True) time_until = datetime.combine(date.today(), time(current_hour, 0)) if current_hour == 0: # Pending to process the latest hour from yesterday report_date = date.today() - timedelta(days=1) else: report_date = date.today() entity_csv = os.path.join(log_directory, str(report_date) + ".csv") daily_csv = os.path.join(reports_directory, "report_" + str(report_date) + ".csv") time_from = datetime.combine(report_date, time(0, 0)) if os.path.isfile(daily_csv): with open(daily_csv, "r", newline='') as csvfile: processed_hours = sum(1 for line in csv.reader(csvfile)) - 1 time_from = datetime.combine(report_date, time(processed_hours + 1, 0)) else: with open(daily_csv, "a", newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=cls.csv_headers) writer.writeheader() csv_data = cls.generate_hourly_csv_data(entity, entity_csv, time_from, time_until) if csv_data is None: entity_type = "Camera" if cls.entity else "Area" logger.warn(f"Hourly report not generated! [{entity_type}: {entity['id']}]") continue with open(daily_csv, "a", newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=cls.csv_headers) logger.info(f">>>>>>>>>>daily csv file write in libs/metrics/base.py\n") for item in csv_data: row = {} for index, header in enumerate(cls.csv_headers): row[header] = item[index] writer.writerow(row) @classmethod def generate_daily_csv_data(cls, yesterday_hourly_file): """ Generates the daily report for the `yesterday_hourly_file` received. """ raise NotImplementedError @classmethod def compute_daily_metrics(cls, config): base_directory = cls.get_entity_base_directory(config) entities = cls.get_entities(config) for entity in entities: entity_directory = os.path.join(base_directory, entity["id"]) reports_directory = os.path.join(entity_directory, "reports", cls.reports_folder) # Create missing directories os.makedirs(reports_directory, exist_ok=True) yesterday = str(date.today() - timedelta(days=1)) hourly_csv = os.path.join(reports_directory, "report_" + yesterday + ".csv") report_csv = os.path.join(reports_directory, "report.csv") if not os.path.isfile(hourly_csv): entity_type = "Camera" if cls.entity else "Area" logger.warn(f"Daily report for date {str(yesterday)} not generated! [{entity_type}: {entity['id']}]") continue daily_data = cls.generate_daily_csv_data(hourly_csv) headers = ["Date"] + cls.csv_headers report_file_exists = os.path.isfile(report_csv) with open(report_csv, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=headers) logger.info(f">>>>>>>>>report csv write in libs/metrics/base.py\n") if not report_file_exists: writer.writeheader() row = {"Date": yesterday} for index, header in enumerate(cls.csv_headers): row[header] = daily_data[index] writer.writerow(row) @classmethod def generate_live_csv_data(cls, today_entity_csv, entity, entries_in_interval): """ Generates the live report using the `today_entity_csv` file received. """ raise NotImplementedError @classmethod def compute_live_metrics(cls, config, live_interval): base_directory = cls.get_entity_base_directory(config) entities = cls.get_entities(config) for entity in entities: entity_directory = os.path.join(base_directory, entity["id"]) reports_directory = os.path.join(entity_directory, "reports", cls.reports_folder) # Create missing directories os.makedirs(reports_directory, exist_ok=True) log_directory = None if cls.entity == "source": log_directory = os.path.join(entity_directory, "objects_log") else: # cls.entity == "area" log_directory = os.path.join(entity_directory, "occupancy_log") today_entity_csv = os.path.join(log_directory, str(date.today()) + ".csv") live_report_csv = os.path.join(reports_directory, "live.csv") csv_headers = cls.live_csv_headers if cls.live_csv_headers else cls.csv_headers headers = ["Time"] + csv_headers report_file_exists = os.path.isfile(live_report_csv) if not os.path.isfile(today_entity_csv): return entity["base_directory"] = entity_directory entries_in_interval = int(live_interval * 60 / get_source_logging_interval(config)) live_data = cls.generate_live_csv_data(today_entity_csv, entity, entries_in_interval) with open(live_report_csv, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=headers) logger.info(f">>>>>>>.libe report csv file write in libs/metrics/base.py\n") if not report_file_exists: writer.writeheader() row = {"Time": datetime.now().strftime("%Y-%m-%d %H:%M:%S")} for index, header in enumerate(csv_headers): row[header] = live_data[index] writer.writerow(row) @classmethod def get_hourly_report(cls, entities: List[str], report_date: date) -> Dict: base_directory = cls.get_entity_base_directory() hours = list(range(0, 24)) results = {} for header in cls.csv_headers: results[header] = np.zeros(24) for entity in entities: entity_directory = os.path.join(base_directory, entity) reports_directory = os.path.join(entity_directory, "reports", cls.reports_folder) file_path = os.path.join(reports_directory, f"report_{report_date}.csv") if os.path.exists(file_path): df = pd.read_csv(file_path) for header in cls.csv_headers: results[header] += np.pad( df[header].to_numpy(), (0, 24 - df[header].to_numpy().size), mode="constant" ) for metric in results: results[metric] = results[metric].tolist() results["Hours"] = hours return results @classmethod def get_daily_report(cls, entities: List[str], from_date: date, to_date: date) -> Dict: base_directory = cls.get_entity_base_directory() date_range = pd.date_range(start=from_date, end=to_date) base_results = {} for key in date_range: base_results[key.strftime('%Y-%m-%d')] = {} for header in cls.csv_headers: base_results[key.strftime('%Y-%m-%d')][header] = 0 for entity in entities: entity_directory = os.path.join(base_directory, entity) reports_directory = os.path.join(entity_directory, "reports", cls.reports_folder) file_path = os.path.join(reports_directory, "report.csv") if not os.path.isfile(file_path): continue df = pd.read_csv(file_path) df['Date'] =
pd.to_datetime(df['Date'], format='%Y-%m-%d')
pandas.to_datetime
import sys import pandas as pd import numpy as np from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ parameters: messages_filepath --> messages file location categories_filepath --> categories file location output: merged messages, categories """ messages =
pd.read_csv(messages_filepath)
pandas.read_csv
from autodesk.model import Model from autodesk.sqlitedatastore import SqliteDataStore from autodesk.states import UP, DOWN, ACTIVE, INACTIVE from pandas import Timestamp, Timedelta from pandas.testing import assert_frame_equal from tests.stubdatastore import StubDataStore import pandas as pd import pytest def make_spans(records): return pd.DataFrame(records, columns=['start', 'end', 'state']) @pytest.fixture() def inmemory_model(): model = Model(SqliteDataStore(':memory:')) yield model model.close() def test_get_desk_spans_empty(): t1 = Timestamp.min t2 = Timestamp.max model = Model(StubDataStore.empty()) result = model.get_desk_spans(t1, t2) expected = make_spans([(t1, t2, DOWN)]) assert_frame_equal(result, expected) def test_get_session_spans_empty(): t1 = Timestamp.min t2 = Timestamp.max model = Model(StubDataStore.empty()) result = model.get_session_spans(t1, t2) expected = make_spans([(t1, t2, INACTIVE)]) assert_frame_equal(result, expected) def test_get_desk_spans_one_up_span(): t1 = Timestamp(2018, 1, 1) t2 = Timestamp(2018, 1, 2) t3 = Timestamp(2018, 1, 3) model = Model(StubDataStore( session_events=[], desk_events=[(t2, UP)] )) result = model.get_desk_spans(t1, t3) expected = make_spans([(t1, t2, DOWN), (t2, t3, UP)]) assert_frame_equal(result, expected) def test_get_session_spans_one_active_span(): t1 = Timestamp(2018, 1, 1) t2 = Timestamp(2018, 1, 2) t3 = Timestamp(2018, 1, 3) model = Model(StubDataStore( session_events=[(t2, ACTIVE)], desk_events=[] )) result = model.get_session_spans(t1, t3) expected = make_spans([(t1, t2, INACTIVE), (t2, t3, ACTIVE)]) assert_frame_equal(result, expected) def test_get_session_state_empty(): model = Model(StubDataStore.empty()) assert model.get_session_state() == INACTIVE def test_get_desk_state_empty(): model = Model(StubDataStore.empty()) assert model.get_desk_state() == DOWN def test_get_active_time_empty(): model = Model(StubDataStore.empty()) assert model.get_active_time(Timestamp.min, Timestamp.max) == Timedelta(0) def test_get_active_time_active_zero(): t = Timestamp(2018, 1, 1) model = Model(StubDataStore( session_events=[(t, ACTIVE)], desk_events=[] )) assert model.get_active_time(Timestamp.min, t) == Timedelta(0) def test_get_active_time_active_for_10_minutes(): t1 = Timestamp(2018, 1, 1, 0, 0, 0) t2 = Timestamp(2018, 1, 1, 0, 10, 0) model = Model(StubDataStore( session_events=[(t1, ACTIVE)], desk_events=[] )) assert model.get_active_time(Timestamp.min, t2) == Timedelta(minutes=10) def test_get_active_time_just_after_desk_change(): t1 =
Timestamp(2018, 1, 1, 0, 0, 0)
pandas.Timestamp
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected =
tm.box_expected(expected, box_with_array)
pandas._testing.box_expected
from flask import render_template, request, redirect, url_for, session from app import app from model import * from model.main import * import json import pandas as pd import numpy as np class DataStore(): model=None model_month=None sale_model=None data = DataStore() @app.route('/', methods=["GET"]) def home(): percent=percentageMethod() total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) with open('percent.json') as f: file2 = json.load(f) labels=file2['index'] data=file2['data'] if "username" in session: return render_template('index.html', last_year=lastYear(), last_month=lastMonth(),dataset=data, label=labels, percent=percent, month_index=month_index, month_data=month_data) else: return render_template('login.html') # Register new user @app.route('/register', methods=["GET", "POST"]) def register(): if request.method == "GET": return render_template("register.html") elif request.method == "POST": registerUser() return redirect(url_for("login")) #Check if email already exists in the registratiion page @app.route('/checkusername', methods=["POST"]) def check(): return checkusername() # Everything Login (Routes to renderpage, check if username exist and also verifypassword through Jquery AJAX request) @app.route('/login', methods=["GET"]) def login(): if request.method == "GET": if "username" not in session: return render_template("login.html") else: return redirect(url_for("home")) @app.route('/checkloginusername', methods=["POST"]) def checkUserlogin(): return checkloginusername() @app.route('/checkloginpassword', methods=["POST"]) def checkUserpassword(): return checkloginpassword() #The admin logout @app.route('/logout', methods=["GET"]) # URL for logout def logout(): # logout function session.pop('username', None) # remove user session return redirect(url_for("home")) # redirect to home page with message #Forgot Password @app.route('/forgot-password', methods=["GET"]) def forgotpassword(): return render_template('forgot-password.html') #404 Page @app.route('/404', methods=["GET"]) def errorpage(): return render_template("404.html") #Blank Page @app.route('/blank', methods=["GET"]) def blank(): return render_template('blank.html') @app.route('/totalyear', methods=["GET"]) def total_year(): total_year=totalYear() file1=pd.read_json('total_year.json',orient='index') year_index=np.array(file1['year']) year_data=np.array(file1['total']) return render_template("total_year.html",year_index=year_index, year_data=year_data) @app.route('/totalmonth', methods=["GET"]) def total_month(): total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) num=6 # Fit model model=fit_model() data.model_month=model predict_rs, fitted_data=predict(model,6) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['total']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("total_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=model, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num=num) def check_stationary(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def fit_model(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) data=data1['total'] stationary=check_stationary() p=stationary[1] if (p<0.05): result1 = fit_model_stationary(data) else: result1 = fit_model_non_stationary(data) return result1 def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','total']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','total'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','total']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/totalmonth', methods=["POST"]) def total_month_num(): total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) #Get data if request.method == "POST": num = int(request.form.get("num_month")) predict_rs, fitted_data=predict(data.model_month,num) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['total']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("total_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=data.model_month, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num=num) def check_stationary(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data2=total_day[['date','total']] data2.set_index('date', inplace=True) date = pd.date_range(data2.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','total'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','total']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/totaldate', methods=["GET"]) def total_date(): total_date=totalDate() date_index=np.array(total_date['date']) date_data=np.array(total_date['total']) num=30 # Fit model model_date=fit_model_date() data.model=model_date predict_rs_date, fitted_data_date=predict_date(model_date,30) pred_index_date=np.array(predict_rs_date['date']) pred_data_date=np.array(predict_rs_date['total']) #Test model test_rs= test_date(pred_data_date[0], fitted_data_date) return render_template("total_date.html",date_index=date_index, date_data=date_data, stationary=check_stationary_date(), model_date=model_date, pred_index=pred_index_date, pred_data=pred_data_date, test_rs=test_rs, num=num) def check_stationary_date(): total_date=totalDate() data1=total_date[['date','total']] data1.set_index('date', inplace=True) result=stationary_trend(data1) return result def fit_model_date(): total_date=totalDate() data1=total_date[['date','total']] data1.set_index('date', inplace=True) data=data1['total'] result1 = fit_model_fast(data) return result1 def predict_date(model_date, num_predict): if num_predict==0: num_predict=30 fitted_date, confint_date = model_date.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','total']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict) fitted_seri_date = pd.Series(fitted_date, index=date) dff=pd.DataFrame(fitted_seri_date) dff=dff.reset_index() dff.columns=['date','total'] dff['date'] = pd.to_datetime(dff['date']).dt.to_period('D') pred=dff[['date','total']] return pred, fitted_date def test_date(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/totaldate', methods=["POST"]) def total_date_num(): total_date=totalDate() date_index=np.array(total_date['date']) date_data=np.array(total_date['total']) #Get data if request.method == "POST": num = int(request.form.get("num_date")) predict_rs_date, fitted_data_date=predict_date(data.model,num) pred_index_date=np.array(predict_rs_date['date']) pred_data_date=np.array(predict_rs_date['total']) test_rs= test_date(pred_data_date[0], fitted_data_date) return render_template("total_date.html",date_index=date_index, date_data=date_data, stationary=check_stationary_date(), model_date=data.model, pred_index=pred_index_date, pred_data=pred_data_date, test_rs=test_rs, num=num) def check_stationary_date(): total_date=totalDate() data1=total_date[['date','total']] data1.set_index('date', inplace=True) result=stationary_trend(data1) return result def predict_date(model_date, num_predict): if num_predict==0: num_predict=6 fitted_date, confint_date = model_date.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data2=total_day[['date','total']] data2.set_index('date', inplace=True) date = pd.date_range(data2.index[-1], periods=num_predict) fitted_seri_date = pd.Series(fitted_date, index=date) dff=pd.DataFrame(fitted_seri_date) dff=dff.reset_index() dff.columns=['date','total'] dff['date'] = pd.to_datetime(dff['date']).dt.to_period('D') pred=dff[['date','total']] return pred, fitted_date def test_date(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) return mse, rmse, mae, mape @app.route('/revenueyear', methods=["GET"]) def revenue_year(): sale_year=saleYear() year_index=np.array(sale_year['year']) year_data=np.array(sale_year['quantity']) return render_template("revenue_year.html",year_index=year_index, year_data=year_data) @app.route('/revenuemonth', methods=["GET"]) def revenue_month(): total_month=saleMonth() file1=pd.read_json('sale_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['quantity']) num_sale=6 # Fit model model=fit_model() data.model_month=model predict_rs, fitted_data=predict(model,6) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['quantity']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("revenue_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=model, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num_sale=num_sale) def check_stationary(): total_month=saleMonth() data1=total_month[['month_year','quantity']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def fit_model(): total_month=saleMonth() data1=total_month[['month_year','quantity']] data1.set_index('month_year', inplace=True) data=data1['quantity'] stationary=check_stationary() p=stationary[1] if (p<0.05): result1 = fit_model_stationary(data) else: result1 = fit_model_non_stationary(data) return result1 def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['quantity', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','quantity']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','quantity'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','quantity']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/revenuemonth', methods=["POST"]) def revenue_month_num(): total_month=saleMonth() file1=pd.read_json('sale_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['quantity']) #Get data if request.method == "POST": num_sale= int(request.form.get("sale_month")) predict_rs, fitted_data=predict(data.model_month,num_sale) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['quantity']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("revenue_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=data.model_month, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num_sale=num_sale) def check_stationary(): total_month=saleMonth() data1=total_month[['month_year','quantity']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['quantity', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data2=total_day[['date','quantity']] data2.set_index('date', inplace=True) date = pd.date_range(data2.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','quantity'] dff['month_year'] =
pd.to_datetime(dff['date'])
pandas.to_datetime
import numpy as np import pandas as pd import pytest import scipy.stats as st from ..analysis import GroupCorrelation from ..analysis.exc import MinimumSizeError, NoDataError from ..data import UnequalVectorLengthError, Vector @pytest.fixture def random_seed(): """Generate a numpy random seed for repeatable test results.""" return np.random.seed(987654321) def test_pearson_correlation_four_groups(random_seed): """Test the output of a pearson correlation with three groups.""" input_1 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_2 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_3 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_4_x = st.norm.rvs(size=100) input_4_y = [x + st.norm.rvs(0, 0.5, size=1)[0] for x in input_4_x] input_4 = input_4_x, input_4_y cs_x = np.concatenate((input_1[0], input_2[0], input_3[0], input_4[0])) cs_y = np.concatenate((input_1[1], input_2[1], input_3[1], input_4[1])) grp = [1] * 100 + [2] * 100 + [3] * 100 + [4] * 100 input_array = pd.DataFrame({'a': cs_x, 'b': cs_y, 'c': grp}) output = """ Pearson Correlation Coefficient ------------------------------- n r value p value Group -------------------------------------------------------- 100 -0.0055 0.9567 1 100 0.0605 0.5497 2 100 -0.2250 0.0244 3 100 0.9045 0.0000 4 """ exp = GroupCorrelation(input_array['a'], input_array['b'], groups=input_array['c'], display=False) assert ('100', '100', '100', '100') == exp.counts assert (-0.005504761441239719, 0.06052034843856759, -0.225005891506915, 0.9044623083255101) == exp.r_value assert (-0.005504761441239719, 0.06052034843856759, -0.225005891506915, 0.9044623083255101) == exp.statistic assert (0.9566515868901755, 0.5497443545114141, 0.02440365919474257, 4.844813765580646e-38) == exp.p_value assert str(exp) == output def test_pearson_correlation_four_string_groups(random_seed): """Test the output of a pearson correlation with three groups.""" input_1 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_2 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_3 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_4_x = st.norm.rvs(size=100) input_4_y = [x + st.norm.rvs(0, 0.5, size=1)[0] for x in input_4_x] input_4 = input_4_x, input_4_y cs_x = np.concatenate((input_1[0], input_2[0], input_3[0], input_4[0])) cs_y = np.concatenate((input_1[1], input_2[1], input_3[1], input_4[1])) grp = ['b'] * 100 + ['a'] * 100 + ['d'] * 100 + ['c'] * 100 input_array = pd.DataFrame({'a': cs_x, 'b': cs_y, 'c': grp}) output = """ Pearson Correlation Coefficient ------------------------------- n r value p value Group -------------------------------------------------------- 100 0.0605 0.5497 a 100 -0.0055 0.9567 b 100 0.9045 0.0000 c 100 -0.2250 0.0244 d """ exp = GroupCorrelation(input_array['a'], input_array['b'], groups=input_array['c'], display=False) assert ('100', '100', '100', '100') == exp.counts assert (0.06052034843856759, -0.005504761441239719, 0.9044623083255101, -0.225005891506915) == exp.r_value assert (0.06052034843856759, -0.005504761441239719, 0.9044623083255101, -0.225005891506915) == exp.statistic assert (0.5497443545114141, 0.9566515868901755, 4.844813765580646e-38, 0.02440365919474257) == exp.p_value assert str(exp) == output def test_pearson_correlation_one_groups(random_seed): """Test the output of a pearson correlation with one groups.""" input_1 = st.norm.rvs(size=100), st.norm.rvs(size=100) output = """ Pearson Correlation Coefficient ------------------------------- n r value p value Group -------------------------------------------------------- 100 -0.0055 0.9567 1 """ exp = GroupCorrelation(input_1[0], input_1[1], display=False) assert str(exp) == output def test_spearman_correlation_four_groups(random_seed): """Test the output of a pearson correlation with three groups.""" input_1 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_2 = st.weibull_min.rvs(1.7, size=100), st.norm.rvs(size=100) input_3 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_4_x = st.norm.rvs(size=100) input_4_y = [x + st.norm.rvs(0, 0.5, size=1)[0] for x in input_4_x] input_4 = input_4_x, input_4_y cs_x = np.concatenate((input_1[0], input_2[0], input_3[0], input_4[0])) cs_y = np.concatenate((input_1[1], input_2[1], input_3[1], input_4[1])) grp = [1] * 100 + [2] * 100 + [3] * 100 + [4] * 100 input_array = pd.DataFrame({'a': cs_x, 'b': cs_y, 'c': grp}) output = """ Spearman Correlation Coefficient -------------------------------- n r value p value Group -------------------------------------------------------- 100 0.0079 0.9376 1 100 0.0140 0.8898 2 100 -0.1227 0.2241 3 100 0.9006 0.0000 4 """ exp = GroupCorrelation(input_array['a'], input_array['b'], groups=input_array['c'], display=False) assert ('100', '100', '100', '100') == exp.counts assert (0.007932793279327931, 0.014029402940294028, -0.12266426642664265, 0.9005940594059406) == exp.r_value assert (0.007932793279327931, 0.014029402940294028, -0.12266426642664265, 0.9005940594059406) == exp.statistic assert (0.9375641178035645, 0.8898160391011217, 0.22405419866382636, 3.0794115586718083e-37) == exp.p_value assert str(exp) == output def test_pearson_correlation_with_missing_data(random_seed): """Test the output of a pearson correlation with random missing data.""" input_1 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_2 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_3 = st.norm.rvs(size=100), st.norm.rvs(size=100) input_4_x = st.norm.rvs(size=100) input_4_y = [x + st.norm.rvs(0, 0.5, size=1)[0] for x in input_4_x] input_4 = input_4_x, input_4_y cs_x = np.concatenate((input_1[0], input_2[0], input_3[0], input_4[0])) cs_y = np.concatenate((input_1[1], input_2[1], input_3[1], input_4[1])) grp = [1] * 100 + [2] * 100 + [3] * 100 + [4] * 100 input_array = pd.DataFrame({'a': cs_x, 'b': cs_y, 'c': grp}) input_array['a'][24] = np.nan input_array['a'][256] = np.nan input_array['b'][373] = np.nan input_array['b'][24] = np.nan input_array['b'][128] = np.nan output = """ Pearson Correlation Coefficient ------------------------------- n r value p value Group -------------------------------------------------------- 99 -0.0113 0.9114 1 99 0.0300 0.7681 2 99 -0.2224 0.0269 3 99 0.9043 0.0000 4 """ exp = GroupCorrelation(input_array['a'], input_array['b'], groups=input_array['c'], display=False) assert ('99', '99', '99', '99') == exp.counts assert str(exp) == output def test_no_data(): """Test the case where there's no data.""" with pytest.raises(NoDataError): GroupCorrelation([], []) def test_at_minimum_size(random_seed): """Test the case where one group is at the minimum size.""" input_1 = st.norm.rvs(size=3), st.norm.rvs(size=3) input_2 = st.norm.rvs(size=3), st.norm.rvs(size=3) input_3 = st.norm.rvs(size=3), st.norm.rvs(size=3) input_4 = st.norm.rvs(size=3), st.norm.rvs(size=3) cs_x = np.concatenate((input_1[0], input_2[0], input_3[0], input_4[0])) cs_y = np.concatenate((input_1[1], input_2[1], input_3[1], input_4[1])) grp = [1] * 3 + [2] * 3 + [3] * 3 + [4] * 3 input_array = pd.DataFrame({'a': cs_x, 'b': cs_y, 'c': grp}) output = """ Pearson Correlation Coefficient ------------------------------- n r value p value Group -------------------------------------------------------- 3 0.9757 0.1407 1 3 -0.8602 0.3406 2 3 0.9530 0.1959 3 3 -0.9981 0.0398 4 """ exp = GroupCorrelation(input_array['a'], input_array['b'], groups=input_array['c'], display=False) assert str(exp) == output def test_below_minimum_size(random_seed): """Test the case where the supplied data is less than the minimum size.""" input_1 = st.norm.rvs(size=20), st.norm.rvs(size=20) input_2 = st.norm.rvs(size=20), st.norm.rvs(size=20) input_3 = st.norm.rvs(size=2), st.norm.rvs(size=2) input_4 = st.norm.rvs(size=20), st.norm.rvs(size=20) cs_x = np.concatenate((input_1[0], input_2[0], input_3[0], input_4[0])) cs_y = np.concatenate((input_1[1], input_2[1], input_3[1], input_4[1])) grp = [1] * 20 + [2] * 20 + [3] * 2 + [4] * 20 input_array = pd.DataFrame({'a': cs_x, 'b': cs_y, 'c': grp}) output = """ Pearson Correlation Coefficient ------------------------------- n r value p value Group -------------------------------------------------------- 20 0.1239 0.6029 1 20 0.0233 0.9224 2 20 0.0577 0.8090 4 """ exp = GroupCorrelation(input_array['a'], input_array['b'], groups=input_array['c'], display=False) assert str(exp) == output def test_all_below_minimum_size(random_seed): """Test the case where all the supplied data is less than the minimum size.""" input_1 = st.norm.rvs(size=1), st.norm.rvs(size=1) input_2 = st.norm.rvs(size=1), st.norm.rvs(size=1) input_3 = st.norm.rvs(size=1), st.norm.rvs(size=1) input_4 = st.norm.rvs(size=1), st.norm.rvs(size=1) cs_x = np.concatenate((input_1[0], input_2[0], input_3[0], input_4[0])) cs_y = np.concatenate((input_1[1], input_2[1], input_3[1], input_4[1])) grp = [1, 2, 3, 4] input_array =
pd.DataFrame({'a': cs_x, 'b': cs_y, 'c': grp})
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import random import numpy as np import pandas as pd from pandas.compat import lrange from pandas.api.types import CategoricalDtype from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range, NaT, IntervalIndex, Categorical) from pandas.util.testing import assert_series_equal, assert_frame_equal import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameSorting(TestData): def test_sort_values(self): frame = DataFrame([[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list('ABC')) # by column (axis=0) sorted_df = frame.sort_values(by='A') indexer = frame['A'].argsort().values expected = frame.loc[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) indexer = indexer[::-1] expected = frame.loc[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=['A'], ascending=[False]) assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=['B', 'C']) expected = frame.loc[[2, 1, 3]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=['B', 'C'], ascending=False) assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=['B', 'A'], ascending=[True, False]) assert_frame_equal(sorted_df, expected) pytest.raises(ValueError, lambda: frame.sort_values( by=['A', 'B'], axis=2, inplace=True)) # by row (axis=1): GH 10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis='columns') expected = frame.reindex(columns=['B', 'A', 'C']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) msg = r'Length of ascending \(5\) != length of by \(2\)' with tm.assert_raises_regex(ValueError, msg): frame.sort_values(by=['A', 'B'], axis=0, ascending=[True] * 5) def test_sort_values_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) sorted_df = frame.copy() sorted_df.sort_values(by='A', inplace=True) expected = frame.sort_values(by='A') assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=1, axis=1, inplace=True) expected = frame.sort_values(by=1, axis=1) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by='A', ascending=False, inplace=True) expected = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=['A', 'B'], ascending=False, inplace=True) expected = frame.sort_values(by=['A', 'B'], ascending=False) assert_frame_equal(sorted_df, expected) def test_sort_nan(self): # GH3917 nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # sort one column only expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A'], na_position='first') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A'], na_position='first', ascending=False) assert_frame_equal(sorted_df, expected) expected = df.reindex(columns=['B', 'A']) sorted_df = df.sort_values(by=1, axis=1, na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', order expected = DataFrame( {'A': [1, 1, 2, 4, 6, 8, nan], 'B': [2, 9, nan, 5, 5, 4, 5]}, index=[3, 0, 1, 6, 4, 5, 2]) sorted_df = df.sort_values(['A', 'B']) assert_frame_equal(sorted_df, expected) # na_position='first', order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 2, 9, nan, 5, 5, 4]}, index=[2, 3, 0, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='first', not order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 1, 0], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', not order expected = DataFrame( {'A': [8, 6, 4, 2, 1, 1, nan], 'B': [4, 5, 5, nan, 2, 9, 5]}, index=[5, 4, 6, 1, 3, 0, 2]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 0, 1], na_position='last') assert_frame_equal(sorted_df, expected) # Test DataFrame with nan label df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) # NaN label, ascending=True, na_position='last' sorted_df = df.sort_index( kind='quicksort', ascending=True, na_position='last') expected = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=True, na_position='first' sorted_df = df.sort_index(na_position='first') expected = DataFrame({'A': [4, 1, 2, nan, 1, 6, 8], 'B': [5, 9, nan, 5, 2, 5, 4]}, index=[nan, 1, 2, 3, 4, 5, 6]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='last' sorted_df = df.sort_index(kind='quicksort', ascending=False) expected = DataFrame({'A': [8, 6, 1, nan, 2, 1, 4], 'B': [4, 5, 2, 5, nan, 9, 5]}, index=[6, 5, 4, 3, 2, 1, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='first' sorted_df = df.sort_index( kind='quicksort', ascending=False, na_position='first') expected = DataFrame({'A': [4, 8, 6, 1, nan, 2, 1], 'B': [5, 4, 5, 2, 5, nan, 9]}, index=[nan, 6, 5, 4, 3, 2, 1]) assert_frame_equal(sorted_df, expected) def test_stable_descending_sort(self): # GH #6399 df = DataFrame([[2, 'first'], [2, 'second'], [1, 'a'], [1, 'b']], columns=['sort_col', 'order']) sorted_df = df.sort_values(by='sort_col', kind='mergesort', ascending=False) assert_frame_equal(df, sorted_df) def test_stable_descending_multicolumn_sort(self): nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # test stable mergesort expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 2, 9]}, index=[2, 5, 4, 6, 1, 3, 0]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 1], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 0], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) def test_stable_categorial(self): # GH 16793 df = DataFrame({ 'x': pd.Categorical(np.repeat([1, 2, 3, 4], 5), ordered=True) }) expected = df.copy() sorted_df = df.sort_values('x', kind='mergesort') assert_frame_equal(sorted_df, expected) def test_sort_datetimes(self): # GH 3461, argsort / lexsort differences for a datetime column df = DataFrame(['a', 'a', 'a', 'b', 'c', 'd', 'e', 'f', 'g'], columns=['A'], index=date_range('20130101', periods=9)) dts = [Timestamp(x) for x in ['2004-02-11', '2004-01-21', '2004-01-26', '2005-09-20', '2010-10-04', '2009-05-12', '2008-11-12', '2010-09-28', '2010-09-28']] df['B'] = dts[::2] + dts[1::2] df['C'] = 2. df['A1'] = 3. df1 = df.sort_values(by='A') df2 = df.sort_values(by=['A']) assert_frame_equal(df1, df2) df1 = df.sort_values(by='B') df2 = df.sort_values(by=['B']) assert_frame_equal(df1, df2) df1 = df.sort_values(by='B') df2 = df.sort_values(by=['C', 'B']) assert_frame_equal(df1, df2) def test_frame_column_inplace_sort_exception(self): s = self.frame['A'] with tm.assert_raises_regex(ValueError, "This Series is a view"): s.sort_values(inplace=True) cp = s.copy() cp.sort_values() # it works! def test_sort_nat_values_in_int_column(self): # GH 14922: "sorting with large float and multiple columns incorrect" # cause was that the int64 value NaT was considered as "na". Which is # only correct for datetime64 columns. int_values = (2, int(NaT)) float_values = (2.0, -1.797693e308) df = DataFrame(dict(int=int_values, float=float_values), columns=["int", "float"]) df_reversed = DataFrame(dict(int=int_values[::-1], float=float_values[::-1]), columns=["int", "float"], index=[1, 0]) # NaT is not a "na" for int64 columns, so na_position must not # influence the result: df_sorted = df.sort_values(["int", "float"], na_position="last") assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["int", "float"], na_position="first") assert_frame_equal(df_sorted, df_reversed) # reverse sorting order df_sorted = df.sort_values(["int", "float"], ascending=False) assert_frame_equal(df_sorted, df) # and now check if NaT is still considered as "na" for datetime64 # columns: df = DataFrame(dict(datetime=[Timestamp("2016-01-01"), NaT], float=float_values), columns=["datetime", "float"]) df_reversed = DataFrame(dict(datetime=[NaT, Timestamp("2016-01-01")], float=float_values[::-1]), columns=["datetime", "float"], index=[1, 0]) df_sorted = df.sort_values(["datetime", "float"], na_position="first") assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["datetime", "float"], na_position="last") assert_frame_equal(df_sorted, df) # Ascending should not affect the results. df_sorted = df.sort_values(["datetime", "float"], ascending=False) assert_frame_equal(df_sorted, df) def test_sort_nat(self): # GH 16836 d1 = [Timestamp(x) for x in ['2016-01-01', '2015-01-01', np.nan, '2016-01-01']] d2 = [Timestamp(x) for x in ['2017-01-01', '2014-01-01', '2016-01-01', '2015-01-01']] df = pd.DataFrame({'a': d1, 'b': d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ['2015-01-01', '2016-01-01', '2016-01-01', np.nan]] d4 = [Timestamp(x) for x in ['2014-01-01', '2015-01-01', '2017-01-01', '2016-01-01']] expected = pd.DataFrame({'a': d3, 'b': d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=['a', 'b'], ) tm.assert_frame_equal(sorted_df, expected) class TestDataFrameSortIndexKinds(TestData): def test_sort_index_multicolumn(self): A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B']) result = frame.sort_values(by=['A', 'B']) indexer = np.lexsort((frame['B'], frame['A'])) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B'], ascending=False) result = frame.sort_values(by=['A', 'B'], ascending=False) indexer = np.lexsort((frame['B'].rank(ascending=False), frame['A'].rank(ascending=False))) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['B', 'A']) result = frame.sort_values(by=['B', 'A']) indexer = np.lexsort((frame['A'], frame['B'])) expected = frame.take(indexer) assert_frame_equal(result, expected) def test_sort_index_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 unordered = frame.loc[[3, 2, 4, 1]] a_id = id(unordered['A']) df = unordered.copy() df.sort_index(inplace=True) expected = frame assert_frame_equal(df, expected) assert a_id != id(df['A']) df = unordered.copy() df.sort_index(ascending=False, inplace=True) expected = frame[::-1] assert_frame_equal(df, expected) # axis=1 unordered = frame.loc[:, ['D', 'B', 'C', 'A']] df = unordered.copy() df.sort_index(axis=1, inplace=True) expected = frame assert_frame_equal(df, expected) df = unordered.copy() df.sort_index(axis=1, ascending=False, inplace=True) expected = frame.iloc[:, ::-1] assert_frame_equal(df, expected) def test_sort_index_different_sortorder(self): A = np.arange(20).repeat(5) B = np.tile(np.arange(5), 20) indexer = np.random.permutation(100) A = A.take(indexer) B = B.take(indexer) df = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['A', 'B'], ascending=[1, 0]) result = df.sort_values(by=['A', 'B'], ascending=[1, 0]) ex_indexer = np.lexsort((df.B.max() - df.B, df.A)) expected = df.take(ex_indexer) assert_frame_equal(result, expected) # test with multiindex, too idf = df.set_index(['A', 'B']) result = idf.sort_index(ascending=[1, 0]) expected = idf.take(ex_indexer) assert_frame_equal(result, expected) # also, Series! result = idf['C'].sort_index(ascending=[1, 0]) assert_series_equal(result, expected['C']) def test_sort_index_duplicates(self): # with 9816, these are all translated to .sort_values df = DataFrame([lrange(5, 9), lrange(4)], columns=['a', 'a', 'b', 'b']) with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with tm.assert_raises_regex(ValueError, 'not unique'): df.sort_values(by='a') with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['a']) with tm.assert_raises_regex(ValueError, 'not unique'): df.sort_values(by=['a']) with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): # multi-column 'by' is separate codepath df.sort_index(by=['a', 'b']) with tm.assert_raises_regex(ValueError, 'not unique'): # multi-column 'by' is separate codepath df.sort_values(by=['a', 'b']) # with multi-index # GH4370 df = DataFrame(np.random.randn(4, 2), columns=MultiIndex.from_tuples([('a', 0), ('a', 1)])) with tm.assert_raises_regex(ValueError, 'level'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with tm.assert_raises_regex(ValueError, 'level'): df.sort_values(by='a') # convert tuples to a list of tuples # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=[('a', 1)]) expected = df.sort_values(by=[('a', 1)]) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=('a', 1)) result = df.sort_values(by=('a', 1)) assert_frame_equal(result, expected) def test_sort_index_level(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4]], mi) res = df.sort_index(level='A', sort_remaining=False) assert_frame_equal(df, res) res = df.sort_index(level=['A', 'B'], sort_remaining=False) assert_frame_equal(df, res) def test_sort_index_categorical_index(self): df = (DataFrame({'A': np.arange(6, dtype='int64'), 'B': Series(list('aabbca')) .astype(CategoricalDtype(list('cab')))}) .set_index('B')) result = df.sort_index() expected = df.iloc[[4, 0, 1, 5, 2, 3]] assert_frame_equal(result, expected) result = df.sort_index(ascending=False) expected = df.iloc[[3, 2, 5, 1, 0, 4]] assert_frame_equal(result, expected) def test_sort_index(self): # GH13496 frame = DataFrame(np.arange(16).reshape(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 : sort rows by index labels unordered = frame.loc[[3, 2, 4, 1]] result = unordered.sort_index(axis=0) expected = frame assert_frame_equal(result, expected) result = unordered.sort_index(ascending=False) expected = frame[::-1] assert_frame_equal(result, expected) # axis=1 : sort columns by column names unordered = frame.iloc[:, [2, 1, 3, 0]] result = unordered.sort_index(axis=1) assert_frame_equal(result, frame) result = unordered.sort_index(axis=1, ascending=False) expected = frame.iloc[:, ::-1] assert_frame_equal(result, expected) @pytest.mark.parametrize("level", ['A', 0]) # GH 21052 def test_sort_index_multiindex(self, level): # GH13496 # sort rows by specified level of multi-index mi = MultiIndex.from_tuples([ [2, 1, 3], [2, 1, 2], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mi) expected_mi = MultiIndex.from_tuples([ [1, 1, 1], [2, 1, 2], [2, 1, 3]], names=list('ABC')) expected = pd.DataFrame([ [5, 6], [3, 4], [1, 2]], index=expected_mi) result = df.sort_index(level=level) assert_frame_equal(result, expected) # sort_remaining=False expected_mi = MultiIndex.from_tuples([ [1, 1, 1], [2, 1, 3], [2, 1, 2]], names=list('ABC')) expected = pd.DataFrame([ [5, 6], [1, 2], [3, 4]], index=expected_mi) result = df.sort_index(level=level, sort_remaining=False) assert_frame_equal(result, expected) def test_sort_index_intervalindex(self): # this is a de-facto sort via unstack # confirming that we sort in the order of the bins y = Series(np.random.randn(100)) x1 = Series(np.sign(np.random.randn(100))) x2 = pd.cut(Series(np.random.randn(100)), bins=[-3, -0.5, 0, 0.5, 3]) model = pd.concat([y, x1, x2], axis=1, keys=['Y', 'X1', 'X2']) result = model.groupby(['X1', 'X2'], observed=True).mean().unstack() expected = IntervalIndex.from_tuples( [(-3.0, -0.5), (-0.5, 0.0), (0.0, 0.5), (0.5, 3.0)], closed='right') result = result.columns.levels[1].categories
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
#system libraries from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.keys import Keys import random import urllib import os import sys import time import pandas as pd opc = Options() opc.add_argument("user-agent=Mozilla/5.0 (X11; Linux x85_64) AppleWebKit/537.36(KHTML, like Gecko)") driver = webdriver.Chrome('./chromedriver/chromedriver.exe', options=opc) driver.get('https://es.stripchat.com/login') user = "fnietzshe" password = open('<PASSWORD>').readline().strip() #Aquí está el código para resolver el user y password input_user = WebDriverWait(driver, 5).until( EC.presence_of_element_located((By.XPATH, '/html/body/div[2]/div[2]/div/main/div[2]/div[3]/div/div/div/div[2]/form/div[1]/input')) ) input_user = driver.find_element(By.XPATH, '/html/body/div[2]/div[2]/div/main/div[2]/div[3]/div/div/div/div[2]/form/div[1]/input') input_pass = driver.find_element(By.XPATH,'/html/body/div[2]/div[2]/div/main/div[2]/div[3]/div/div/div/div[2]/form/div[2]/input') input_user.send_keys(user) input_pass.send_keys(password) #Aquí está el código para resolver el Recaptcha audioToTextDelay = 10 delayTime = 2 audioFile = "\\payload.mp3" URL = "https://www.google.com/recaptcha/api2/demo" SpeechToTextURL = "https://speech-to-text-demo.ng.bluemix.net/" def delay(): time.sleep(random.randint(2, 3)) def audioToText(audioFile): driver.execute_script('''window.open("","_blank")''') driver.switch_to.window(driver.window_handles[1]) driver.get(SpeechToTextURL) delay() audioInput = driver.find_element(By.XPATH, '/html/body/div/div/div[3]/div[2]/div[1]/div[1]/div[2]/button') audioInput.send_keys(audioFile) time.sleep(audioToTextDelay) text = driver.find_element(By.XPATH, '//*[@id="root"]/div/div[7]/div/div/div/span') while text is None: text = driver.find_element(By.XPATH, '//*[@id="root"]/div/div[7]/div/div/div/span') result = text.text driver.close() driver.switch_to.window(driver.window_handles[0]) return result try: # create chrome driver option = webdriver.ChromeOptions() option.add_argument('--disable-notifications') # option.add_argument('--mute-audio') option.add_argument("user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36") driver = webdriver.Chrome(os.getcwd() + "\\chromedriver.exe", options=option) delay() # go to website which have recaptcha protection driver.get(URL) except Exception as e: sys.exit( "[-] Please update the chromedriver.exe in the webdriver folder according to your chrome version:https://chromedriver.chromium.org/downloads") g_recaptcha = driver.find_element(By.XPATH, 'id#recaptcha-anchor-label')[0] outerIframe = g_recaptcha.find_element_by_tag_name('/html/body/div/div') outerIframe.click() iframes = driver.find_elements_by_id('#rc-imageselect > div.rc-imageselect-payload') audioBtnFound = False audioBtnIndex = -1 for index in range(len(iframes)): driver.switch_to.default_content() iframe = driver.find_elements_by_id('#rc-imageselect > div.rc-imageselect-payload')[index] driver.switch_to.frame(iframe) driver.implicitly_wait(delayTime) try: audioBtn = driver.find_element_by_id("recaptcha-anchor > div.recaptcha-checkbox-border") audioBtn.click() audioBtnFound = True audioBtnIndex = index break except Exception as e: pass if audioBtnFound: try: while True: # get the mp3 audio file src = driver.find_element_by_id("audio-source").get_attribute("src") print("[INFO] Audio src: %s" % src) # download the mp3 audio file from the source urllib.request.urlretrieve(src, os.getcwd() + audioFile) # Speech To Text Conversion key = audioToText(os.getcwd() + audioFile) print("[INFO] Recaptcha Key: %s" % key) driver.switch_to.default_content() iframe = driver.find_elements_by_tag_name('iframe')[audioBtnIndex] driver.switch_to.frame(iframe) # key in results and submit inputField = driver.find_element_by_id("audio-response") inputField.send_keys(key) delay() inputField.send_keys(Keys.ENTER) delay() err = driver.find_elements_by_class_name('rc-audiochallenge-error-message')[0] if err.text == "" or err.value_of_css_property('display') == 'none': print("[INFO] Success!") break except Exception as e: print(e) sys.exit("[INFO] Possibly blocked by google. Change IP,Use Proxy method for requests") else: sys.exit("[INFO] Audio Play Button not found! In Very rare cases!") #Aquí está el código para dar clic en el botón de inicio de sesión button = driver.find_element(By.XPATH, '/html/body/div[2]/div[2]/div/main/div[2]/div[3]/div/div/div/div[2]/form/div[4]/button') button.click() #Aquí está el código para acceder a la modelo opcs = Options() opcs.add_argument("user-agent=Mozilla/5.0 (X11; Linux x85_64) AppleWebKit/537.36(KHTML, like Gecko)") driver = webdriver.Chrome('./chromedriver/chromedriver.exe', optiones=opcs) driver.get('https://es.stripchat.com/') modelo = WebDriverWait(driver, 5).until( EC.presence_of_element_located((By.XPATH, '/html/body/div[2]/div[2]/div/main/div[2]/div[3]/div/div/div/div[2]/form/div[1]/input')) ) #Entra al transmision de la modelo modelo = driver.find_element(By.XPATH, '/html/body/div[2]/div[2]/div[1]/main/div[2]/div[3]/div/div[2]/div/div/div[3]/div[2]/div[1]/div/section/div[1]/a') modelo.click() #Entra a la sección de perfil de la modelo perfil = driver.find_element(By.XPATH, '/html/body/div[2]/div[2]/div[1]/main/div[2]/div[3]/div/div/div/div[1]/div/nav[1]/div[1]/div[2]/a') perfil.click() #Datos del perfil de la modelo datos = driver.find_element(By.XPATH, '/html/body/div[2]/div[2]/div[1]/main/div[2]/div[3]/div/div/div/div[3]/div/div/div[4]/div/div[1]/div[1]/div/div/div') datos = datos.text datos_perfil = datos.split('Perfil')[0].split('\n')[1:-1] nombre = list() de = list() idiomas = list() edad = list() cuerpo = list() detalles = list() etnia = list() pelo = list() ojos = list() subcultura= list() redes = list() for i in range(0, len(datos_perfil), 12): nombre.append(datos_perfil[i]) de.append(datos_perfil[i+1]) idiomas.append(datos_perfil[i+2]) edad.append(datos_perfil[i+3]) cuerpo.append(datos_perfil[i+5]) detalles.append(datos_perfil[i+6]) etnia.append(datos_perfil[i+7]) pelo.append(datos_perfil[i+8]) ojos.append(datos_perfil[i+9]) subcultura.append(datos_perfil[i+10]) redes.append(datos_perfil[i+11]) df =
pd.DataFrame({'Nombre': nombre, 'Nacionalidad': de, 'Idiomas': idiomas, 'Edad': edad, 'Cuerpo': cuerpo,'Detalles': detalles,'Etnia': etnia,'Pelo': pelo,'C_Ojos': ojos, 'Subcultura': subcultura,'R_Sociales': redes }) print(df)
pandas.DataFrame
import numpy as np import pandas as pd class Stream: def __init__(self, stream_id, side_a, side_b, plist, direct=None): self.stream_id = stream_id self.side_a = side_a self.side_b = side_b self.packets = plist self.direct = direct self._pkt_size_list = None self._pkt_time_list = None # 报文长度列表 def pkt_size(self): if self._pkt_size_list is not None: return np.array(self._pkt_size_list) self._pkt_size_list = [] for p in self.packets: self._pkt_size_list.append(p.length) return pd.Series(self._pkt_size_list).astype('int') # 报文到达间隔列表 def pkt_iat(self): if self._pkt_time_list is not None: return np.diff(np.array(self._pkt_time_list)) self._pkt_time_list = [] for p in self.packets: self._pkt_time_list.append(p.time) return np.diff(np.array(self._pkt_time_list)) # 报文到达速率(报文数) def pkt_num_rate(self, interval=1000): self._make_pkt_list() num = len(self.packets) pkt_se =
pd.Series([1]*num, index=self._pkt_time_list)
pandas.Series
import datareader import dataextractor import bandreader import numpy as np from _bisect import bisect import matplotlib.pyplot as plt import matplotlib.ticker as plticker import pandas as pd from scipy import stats from sklearn import metrics def full_signal_extract(path, ident): """Extract breathing and heartbeat features from one user and save features to file. :param path: (str) main path to data, where user data is located in specific folders :param ident: (str) user identifier :return: Nothing. It saves features (dataframe) to a .csv file """ dataread = datareader.DataReader(path, ident) # initialize path to data data = dataread.read_grc_data() # read from files data = dataread.unwrap_grc_data() # unwrap phase. returns time and y values samp_rate = round(len(data[1]) / max(data[0])) dataextract = dataextractor.DataExtractor(data[0], data[1], samp_rate) cog_res = dataread.read_cognitive_load_study(ident + '-primary-extract.txt') end_epoch_time = dataread.get_end_time_cognitive_load_study() # end t extracted_br_features = dataextract.raw_windowing_breathing(30, 1) extracted_br_features['br_rate'] = np.array(extracted_br_features['br_rate'].rolling(6).mean()) extracted_br_features_roll_avg = extracted_br_features.loc[:, extracted_br_features.columns != 'times'].rolling( 6).mean() extracted_br_features_roll_avg['times'] = extracted_br_features['times'] extracted_br_features_roll_avg['br_ok'] = extracted_br_features['br_ok'] extracted_hr_features = dataextract.raw_windowing_heartrate(10, 1) extracted_hr_features = extracted_hr_features.drop(['hr_HRV_lf', 'hr_HRV_hf', 'hr_HRV_lf_hf'], axis=1) extracted_hr_features_roll_avg = extracted_hr_features.loc[:, extracted_hr_features.columns != 'times'].rolling( 10).mean() extracted_hr_features_roll_avg['times'] = extracted_hr_features['times'] extracted_hr_features_roll_avg['hr_ok'] = extracted_hr_features['hr_ok'] extracted_hr_features2 = dataextract.raw_windowing_heartrate(100, 1) # longer time to extract HRV frequency feat. extracted_hr_features2 = extracted_hr_features2[['hr_HRV_lf', 'hr_HRV_hf', 'hr_HRV_lf_hf', 'times']] extracted_hr_features2_roll_avg = extracted_hr_features2.loc[:, extracted_hr_features2.columns != 'times'].rolling( 10).mean() extracted_hr_features2_roll_avg['times'] = extracted_hr_features2['times'] all_features = extracted_br_features_roll_avg all_features = pd.merge(all_features, extracted_hr_features_roll_avg, on='times') all_features = pd.merge(all_features, extracted_hr_features2_roll_avg, on='times') task_timestamps = dataread.get_data_task_timestamps() relax_timestamps = dataread.get_relax_timestamps() bandread = bandreader.HeartRateBand(path + '_Hrates/', ident) band_data = bandread.load() band_data_time_start = bisect(band_data[0][:], end_epoch_time - data[0][-1] * 1000) band_data_time_stop = bisect(band_data[0][:], end_epoch_time) band_data = [band_data[0][band_data_time_start:band_data_time_stop], band_data[1][band_data_time_start:band_data_time_stop]] band_data_new__data = [(band_data[0] - band_data[0][0]) / 1000, band_data[1]] hr_data = extracted_hr_features_roll_avg[['times', 'hr_rate']] hr_data['times'] = hr_data['times'].astype(int) band_data = pd.DataFrame() band_data['times'] = band_data_new__data[0] band_data['times'] = band_data['times'].astype(int) band_data['band_rate'] = band_data_new__data[1] band_data = band_data.drop_duplicates(subset=['times']) together_data = pd.merge(hr_data, band_data, on='times') together_data = together_data.dropna() for i in range(len(all_features['times'])): find_in_hr_data = bisect(together_data['times'], all_features['times'][i]) all_features.ix[i, 'band_rate'] = together_data['band_rate'][find_in_hr_data] for i in range(len(cog_res)): all_feat_ind_task_start = bisect(all_features['times'], task_timestamps[i][0]) all_feat_ind_task_end = bisect(all_features['times'], task_timestamps[i][1]) for j in cog_res.columns: all_features.ix[all_feat_ind_task_start:all_feat_ind_task_end, j] = cog_res.iloc[i][j] if cog_res.iloc[i][j] == 'GC' or cog_res.iloc[i][j] == 'PT': all_features.ix[all_feat_ind_task_start:all_feat_ind_task_end, 'keyboard_task'] = True elif cog_res.iloc[i][j] == 'HP' or cog_res.iloc[i][j] == 'FA' or cog_res.iloc[i][j] == 'NC' or \ cog_res.iloc[i][j] == 'SX': all_features.ix[all_feat_ind_task_start:all_feat_ind_task_end, 'keyboard_task'] = False for k in range(all_feat_ind_task_end - all_feat_ind_task_start + 1): all_features.ix[k + all_feat_ind_task_start, 'on_task_or_break_index'] = k for k in range(all_feat_ind_task_end - all_feat_ind_task_start, -1, -1): all_features.ix[all_feat_ind_task_end - k, 'on_task_or_break_index_down'] = k all_features.ix[all_feat_ind_task_start:all_feat_ind_task_end, 'on_task'] = True for i in range(len(relax_timestamps)): all_feat_ind_task_start = bisect(all_features['times'], relax_timestamps[i][0]) all_feat_ind_task_end = bisect(all_features['times'], relax_timestamps[i][1]) new_end = all_feat_ind_task_end + 30 # if i==0: # continue for k in range(all_feat_ind_task_end - all_feat_ind_task_start + 1): all_features.ix[k + all_feat_ind_task_start, 'on_task_or_break_index'] = k all_features.ix[k + all_feat_ind_task_start, 'consecutive_break'] = i for k in range(new_end - all_feat_ind_task_start + 1): all_features.ix[k + all_feat_ind_task_start, 'on_break_and_after_index'] = k if k <= 15: all_features.ix[k + all_feat_ind_task_start, 'engagement_increase'] = False elif k <= 30: all_features.ix[k + all_feat_ind_task_start, 'engagement_increase'] = np.nan else: all_features.ix[k + all_feat_ind_task_start, 'engagement_increase'] = True for k in range(all_feat_ind_task_end - all_feat_ind_task_start, -1, -1): all_features.ix[all_feat_ind_task_end - k, 'on_task_or_break_index_down'] = k all_features.ix[all_feat_ind_task_start:all_feat_ind_task_end, 'on_task'] = False all_features['person_id'] = cog_res['person_id'][0] all_features.to_csv(path_or_buf=path + ident + '/' + ident + '-data.csv', index=False) def extract_for_all_users_and_combine(path, idents, outfile): for i in idents: print(i) full_signal_extract(path, i) append_csv_files(path, idents, outfile) def plot_all_full_signals(path, idents): for i in idents: print(i) plot_whole_signal_and_tasks_times(path, i) def compare_extracted_hr_and_band(path, ident): """Compater heart rates acquired wirelessly and with Microfost Band. :param path: (str) main path to data, where user data is located in specific folders :param ident: (str) user identifier :return: MAE, MSE, CORRelation values of the aligned HR time series """ dataread = datareader.DataReader(path, ident) # initialize path to data data = dataread.read_grc_data() # read from files data = dataread.unwrap_grc_data() # unwrap phase. returns time and y values samp_rate = round(len(data[1]) / max(data[0])) dataextract = dataextractor.DataExtractor(data[0], data[1], samp_rate) cog_res = dataread.read_cognitive_load_study(ident + '-primary-extract.txt') end_epoch_time = dataread.get_end_time_cognitive_load_study() # end t extracted_br_features = dataextract.raw_windowing_breathing(30, 1) extracted_br_features['br_rate'] = np.array(extracted_br_features['br_rate'].rolling(6).mean()) extracted_br_features_roll_avg = extracted_br_features.loc[:, extracted_br_features.columns != 'times'].rolling( 6).mean() extracted_br_features_roll_avg['times'] = extracted_br_features['times'] extracted_br_features_roll_avg['br_ok'] = extracted_br_features['br_ok'] extracted_hr_features = dataextract.raw_windowing_heartrate(10, 1) extracted_hr_features = extracted_hr_features.drop(['hr_HRV_lf', 'hr_HRV_hf', 'hr_HRV_lf_hf'], axis=1) extracted_hr_features_roll_avg = extracted_hr_features.loc[:, extracted_hr_features.columns != 'times'].rolling( 10).mean() extracted_hr_features_roll_avg['times'] = extracted_hr_features['times'] extracted_hr_features_roll_avg['hr_ok1'] = extracted_hr_features['hr_ok'] bandread = bandreader.HeartRateBand(path + '_Hrates/', ident) band_data = bandread.load() band_data_time_start = bisect(band_data[0][:], end_epoch_time - data[0][-1] * 1000) band_data_time_stop = bisect(band_data[0][:], end_epoch_time) band_data = [band_data[0][band_data_time_start:band_data_time_stop], band_data[1][band_data_time_start:band_data_time_stop]] band_data_new_data = [(band_data[0] - band_data[0][0]) / 1000, band_data[1]] plt.figure(1) plt.clf() plt.plot(extracted_hr_features_roll_avg['times'], extracted_hr_features_roll_avg['hr_rate'], color='orange', label='Wi-Mind heart rate') plt.plot(band_data_new_data[0], band_data_new_data[1], color='green', label='Microsoft Band heart rate') plt.xlabel('time (s)') plt.ylabel('heart rate') plt.legend() plt.show() hr_data = extracted_hr_features_roll_avg[['times', 'hr_rate']] hr_data['times'] = hr_data['times'].astype(int) band_data = pd.DataFrame() band_data['times'] = band_data_new_data[0] band_data['times'] = band_data['times'].astype(int) band_data['rate'] = band_data_new_data[1] band_data = band_data.drop_duplicates(subset=['times']) together_data = pd.merge(hr_data, band_data, on='times') together_data = together_data.dropna() # new_hr = res_ind[intersect] # new_band = band_data_new__data[1][intersect] mae = metrics.mean_absolute_error(together_data['rate'], together_data['hr_rate']) mse = metrics.mean_squared_error(together_data['rate'], together_data['hr_rate']) corr = stats.pearsonr(together_data['rate'], together_data['hr_rate']) # print('mae amd mse: ', mae, mse) return mae, mse, corr def compare_hr_for_all_idents(path, idents): compare_metrics = pd.DataFrame() for i in idents: print(i) mae, mse, cor = compare_extracted_hr_and_band(path, i) # uncomment if comparing errors df =
pd.DataFrame([[i, mae, mse, cor[0]]], columns=['ID', 'MAE', 'MSE', 'COR'])
pandas.DataFrame
import numpy as np import pandas as pd import simpy from sim_utils.audit import Audit from sim_utils.data import Data from sim_utils.patient import Patient import warnings warnings.filterwarnings("ignore") class Model(object): def __init__(self, scenario): """ """ self.env = simpy.Environment() self.params = scenario self.data = Data(self.params) self.audit = Audit() self.patients = [] self.patient_id_count = 0 # Set up 1D NumPy array for patient counts per unit number_hospitals = self.data.units.shape[0] self.unit_occupancy = np.zeros(number_hospitals) self.unit_admissions = np.zeros(number_hospitals) # Count displaced patients self.unit_occupancy_displaced_preferred = np.zeros(number_hospitals) self.unit_occupancy_displaced_destination = np.zeros(number_hospitals) self.unit_occupancy_waiting_preferred = np.zeros(number_hospitals) # Set up tracker dictionary (total patients updated after warmup) self.tracker = { 'total_patients': 0, 'total_patients_asu': 0, 'total_patients_waited': 0, 'total_patients_displaced': 0, 'current_patients': 0, 'current_asu_patients_all': 0, 'current_asu_patients_allocated': 0, 'current_asu_patients_unallocated': 0, 'current_asu_patients_displaced': 0, 'patient_waiting_time': [] } def assign_asu_los(self, patient): """Assign length of stay based on assigned ASU unit""" los_mean = self.data.units.iloc[patient.assigned_asu_index]['los_mean'] los_sd = los_mean * self.params.los_cv los = max(np.random.normal(los_mean, los_sd), 0.01) patient.los_asu = los return def end_run_routine(self): """ Data handling at end of run """ self.global_audit =
pd.DataFrame(self.audit.global_audit)
pandas.DataFrame
"""Locator functions to interact with geographic data""" import numpy as np import pandas as pd import flood_tool.geo as geo __all__ = ['Tool'] def clean_postcodes(postcodes): """ Takes list or array of postcodes, and returns it in a cleaned numpy array """ postcode_df = pd.DataFrame({'Postcode':postcodes}) postcode_df['Postcode'] = postcode_df['Postcode'].str.upper() # If length is not 7 get rid of spaces. This fixes e.g. "SW19 2AZ" -> "SW192AZ" postcode_df['Postcode'] = postcode_df['Postcode'].where( postcode_df['Postcode'].str.len() == 7, postcode_df['Postcode'].str.replace(" ", "")) # If length is 5 (e.g. "W67HZ") add two spaces in the middle (-> "W6 7HZ") postcode_df['Postcode'] = postcode_df['Postcode'].where( postcode_df['Postcode'].str.len() != 5, postcode_df['Postcode'].str[:2]+ " " + postcode_df['Postcode'].str[2:]) # If length is 6 (e.g. "SW72AZ") add a space in the middle and end(-> "SW7 2AZ") postcode_df['Postcode'] = postcode_df['Postcode'].where( postcode_df['Postcode'].str.len() != 6, postcode_df['Postcode'].str[:3]+ " " + postcode_df['Postcode'].str[3:]) return postcode_df['Postcode'].to_numpy() class Tool(object): """Class to interact with a postcode database file.""" def __init__(self, postcode_file=None, risk_file=None, values_file=None): """ Reads postcode and flood risk files and provides a postcode locator service. Parameters --------- postcode_file : str, optional Filename of a .csv file containing geographic location data for postcodes. risk_file : str, optional Filename of a .csv file containing flood risk data. values_file : str, optional Filename of a .csv file containing property value data for postcodes. """ self.postcode_file = postcode_file self.risk_file = risk_file self.values_file = values_file self.postcode_df = pd.read_csv(self.postcode_file) # Make data frame of values & clean the postcodes in them. self.values_df =
pd.read_csv(self.values_file)
pandas.read_csv
#!/usr/bin/env python # Copyright (C) 2019 <NAME> import crispy import logging import numpy as np import pandas as pd import pkg_resources import seaborn as sns from natsort import natsorted import matplotlib.pyplot as plt import matplotlib.patches as patches from scipy import stats from crispy.BGExp import GExp from crispy.QCPlot import QCplot from sklearn.manifold import TSNE from sklearn.decomposition import PCA from crispy.CrispyPlot import CrispyPlot from scipy.stats import pearsonr, skewtest from sklearn.model_selection import ShuffleSplit from sklearn.linear_model.base import LinearRegression from sklearn.metrics import jaccard_score, matthews_corrcoef LOG = logging.getLogger("Crispy") DPATH = pkg_resources.resource_filename("crispy", "data/") RPATH = pkg_resources.resource_filename("notebooks", "depmap/reports/") KWS_SCATTER = dict(edgecolor="w", lw=0.3, s=10, alpha=0.6) KWS_LINE = dict(lw=1.0, color=CrispyPlot.PAL_DBGD[1], alpha=1.0) KWS_JOINT = dict(lowess=False, scatter_kws=KWS_SCATTER, line_kws=KWS_LINE) KWS_MARGINAL = dict(kde=False, hist_kws={"linewidth": 0}) KWS_ANNOT = dict(stat="R") class GDSCGexp: GEXP_FILE = f"{DPATH}/rnaseq_voom.csv.gz" SAMPLESHEET_FILE = f"{DPATH}/ModelList_20191106.csv" GROWTH_FILE = f"{DPATH}/GrowthRates_v1.3.0_20190222.csv" TISSUE_PAL_FILE = f"{DPATH}/tissue_palette.csv" def __init__(self): self.growth = pd.read_csv(self.GROWTH_FILE) self.ss = pd.read_csv(self.SAMPLESHEET_FILE, index_col=0) self.ss["growth"] = self.growth.groupby("model_id")["GROWTH_RATE"].mean() self.gexp = pd.read_csv(self.GEXP_FILE, index_col=0) self.pal_tissue = pd.read_csv(self.TISSUE_PAL_FILE, index_col=0)["color"] @staticmethod def gene_lh(tcga_genes, gtex_genes, tcga_thres=(-2.5, 7.5), gtex_thres=(0.5, 2)): genes_low_tcga = set(tcga_genes[tcga_genes < tcga_thres[0]].index) genes_low_gtex = set(gtex_genes[gtex_genes < gtex_thres[0]].index) genes_high_tcga = set(tcga_genes[tcga_genes > tcga_thres[1]].index) genes_high_gtex = set(gtex_genes[gtex_genes > gtex_thres[1]].index) return dict( low=set.intersection(genes_low_tcga, genes_low_gtex), high=set.intersection(genes_high_tcga, genes_high_gtex), ) class TCGAGexp: GEXP_FILE = f"{DPATH}/GSE62944_merged_expression_voom.tsv" CANCER_TYPE_FILE = f"{DPATH}/GSE62944_06_01_15_TCGA_24_CancerType_Samples.txt" def __init__(self, gene_subset=None): self.gexp = pd.read_csv(self.GEXP_FILE, index_col=0, sep="\t") if gene_subset is not None: self.gexp = self.gexp[self.gexp.index.isin(gene_subset)] self.gexp_genes = self.gexp.median(1).sort_values(ascending=False) self.gexp_genes_std = self.gexp.std(1).sort_values(ascending=False) self.gexp_genes_skew = pd.Series( skewtest(self.gexp.T)[0], index=self.gexp.index ) self.cancer_type = pd.read_csv( self.CANCER_TYPE_FILE, sep="\t", header=None, index_col=0 )[1] self.cancer_type = self.cancer_type.append( pd.Series( {x: "Normal" for x in self.gexp.columns if x not in self.cancer_type} ) ) colors = ( sns.color_palette("tab20c").as_hex() + sns.color_palette("tab20b").as_hex() ) self.cancer_type_palette = dict( zip(natsorted(self.cancer_type.value_counts().index), colors) ) class GTEXGexp: GEXP_FILE = f"{DPATH}/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct" def __init__(self, gene_subset=None): self.gexp = pd.read_csv(self.GEXP_FILE, sep="\t") self.gexp = self.gexp.drop(columns=["Name"]).groupby("Description").median() if gene_subset is not None: self.gexp = self.gexp[self.gexp.index.isin(gene_subset)] self.gexp_genes = np.log10(self.gexp + 1).median(1).sort_values(ascending=False) self.gexp_genes_std = ( np.log10(self.gexp + 1).std(1).sort_values(ascending=False) ) self.gexp_genes_skew = pd.Series( skewtest(np.log10(self.gexp + 1).T)[0], index=self.gexp.index ) def pc_labels(n): return [f"PC{i}" for i in np.arange(1, n + 1)] def dim_reduction( df, input_pca_to_tsne=True, pca_ncomps=50, tsne_ncomps=2, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0, n_iter=1000, ): # PCA df_pca = PCA(n_components=pca_ncomps).fit_transform(df.T) df_pca = pd.DataFrame(df_pca, index=df.T.index, columns=pc_labels(pca_ncomps)) # tSNE df_tsne = TSNE( n_components=tsne_ncomps, perplexity=perplexity, early_exaggeration=early_exaggeration, learning_rate=learning_rate, n_iter=n_iter, ).fit_transform(df_pca if input_pca_to_tsne else df.T) df_tsne = pd.DataFrame(df_tsne, index=df_pca.index if input_pca_to_tsne else df.T.index, columns=pc_labels(tsne_ncomps)) return df_tsne, df_pca def plot_dim_reduction(data, palette=None, ctype="tSNE"): if "tissue" not in data.columns: data = data.assign(tissue="All") if palette is None: palette = dict(All=CrispyPlot.PAL_DBGD[0]) fig, ax = plt.subplots(1, 1, figsize=(4.0, 4.0), dpi=600) for t, df in data.groupby("tissue"): ax.scatter( df["PC1"], df["PC2"], c=palette[t], marker="o", edgecolor="", s=5, label=t, alpha=.8 ) ax.set_xlabel("Dimension 1") ax.set_ylabel("Dimension 2") ax.axis("off" if ctype == "tSNE" else "on") ax.legend( loc="center left", bbox_to_anchor=(1, 0.5), prop={"size": 4}, frameon=False, title="Tissue", ).get_title().set_fontsize("5") return ax if __name__ == "__main__": # GDSC GExp # gdsc = GDSCGexp() # TCGA imports # tcga = TCGAGexp(gene_subset=set(gdsc.gexp.index)) # GTEx gene median expression # gtex = GTEXGexp(gene_subset=set(gdsc.gexp.index)) # # tcga_thres, gtex_thres = (-2.5, 7.5), (0.5, 2.0) # # pal_genes_lh = {"low": "#fc8d62", "high": "#2b8cbe"} genes_lh = gdsc.gene_lh( tcga.gexp_genes, gtex.gexp_genes, tcga_thres=tcga_thres, gtex_thres=gtex_thres ) genes_lh_df = pd.DataFrame( [dict(gene=g, gtype=gtype) for gtype in genes_lh for g in genes_lh[gtype]] ) genes_lh_df.to_csv(f"{DPATH}/GExp_genesets_20191126.csv", index=False) # TCGA and GTEX gene histograms # for n, df in [("TCGA", tcga.gexp_genes), ("GTEX", gtex.gexp_genes)]: plt.figure(figsize=(2.5, 1.5), dpi=600) sns.distplot( df, hist=False, kde_kws={"cut": 0, "shade": True}, color=CrispyPlot.PAL_DBGD[0], ) plt.title(n) plt.grid(True, ls=":", lw=0.1, alpha=1.0, zorder=0, axis="x") plt.xlabel( "Gene median (RPKM voom)" if n == "TCGA" else "Gene median (TPM log10)" ) plt.savefig( f"{RPATH}/genes_histogram_{n}.pdf", bbox_inches="tight", transparent=True ) plt.close("all") # TCGA dimension reduction # tcga_gexp_tsne, tcga_gexp_pca = dim_reduction(tcga.gexp) for ctype, df in [("tSNE", tcga_gexp_tsne), ("PCA", tcga_gexp_pca)]: plot_df = pd.concat( [df, tcga.cancer_type._set_name("tissue")], axis=1, sort=False ).dropna() ax = plot_dim_reduction( plot_df, ctype=ctype, palette=tcga.cancer_type_palette ) ax.set_title(f"{ctype} - TCGA GExp") plt.savefig( f"{RPATH}/tcga_gexp_{ctype}.pdf", bbox_inches="tight", transparent=True ) plt.close("all") # TCGA and GTEX gene correlation # plot_df = pd.concat( [ tcga.gexp_genes.rename("TCGA_median"), tcga.gexp_genes_std.rename("TCGA_std"), tcga.gexp_genes_skew.rename("TCGA_skew"), gtex.gexp_genes.rename("GTEX_median"), gtex.gexp_genes_std.rename("GTEX_std"), gtex.gexp_genes_skew.rename("GTEX_skew"), ], axis=1, sort=False, ).dropna() for xx, yy in [("TCGA_median", "GTEX_median")]: g = sns.JointGrid(x=xx, y=yy, data=plot_df, space=0) g = g.plot_joint( plt.hexbin, cmap="Spectral_r", gridsize=100, mincnt=1, bins="log", lw=0 ) g.ax_joint.grid(True, ls=":", lw=0.1, alpha=1.0, zorder=0) x_lim, y_lim = g.ax_joint.get_xlim(), g.ax_joint.get_ylim() for i, n in enumerate(["low", "high"]): x, y = tcga_thres[i], gtex_thres[i] w, h = x_lim[i] - x, y_lim[i] - y rect = patches.Rectangle( (x, y), w, h, linewidth=0, facecolor=CrispyPlot.PAL_DBGD[0], alpha=0.25, zorder=0, ) g.ax_joint.annotate( f"N={len(genes_lh[n])}", (x + w / 2, y + h / 2), color="k", weight="bold", fontsize=6, ha="center", va="center", ) g.ax_joint.add_patch(rect) g.ax_joint.set_ylim(y_lim) g.ax_joint.set_xlim(x_lim) g = g.plot_marginals( sns.distplot, kde=False, color=CrispyPlot.PAL_DBGD[0], hist_kws={"linewidth": 0}, ) g.set_axis_labels( f"{xx.replace('_', ' ')} (voom)", f"{yy.replace('_', ' ')} (TPM log10)" ) plt.gcf().set_size_inches(2.5, 2.5) plt.savefig( f"{RPATH}/genes_TCGA_GTEX_corrplot_{xx.split('_')[1]}.pdf", bbox_inches="tight", transparent=True, ) plt.close("all") # Mean vs Std # for n, (x, y) in [ ("TCGA", ("TCGA_median", "TCGA_std")), ("GTEX", ("GTEX_median", "GTEX_std")), ]: g = sns.JointGrid(x=x, y=y, data=plot_df, space=0) g = g.plot_joint( plt.hexbin, cmap="Spectral_r", gridsize=100, mincnt=1, bins="log", lw=0 ) for s in ["low", "high"]: g.ax_joint.scatter( plot_df.loc[genes_lh[s], x], plot_df.loc[genes_lh[s], y], c=pal_genes_lh[s], marker="o", edgecolor="white", linewidth=0.1, s=3, alpha=1.0, label=s, ) g.ax_joint.legend(frameon=False) g.ax_joint.grid(True, ls=":", lw=0.1, alpha=1.0, zorder=0) g = g.plot_marginals( sns.distplot, kde=False, color=CrispyPlot.PAL_DBGD[0], hist_kws={"linewidth": 0}, ) x_label = ( "TCGA gene median (voom)" if n == "TCGA" else "GTEX gene median (TPM log10)" ) y_label = "TCGA gene std (voom)" if n == "TCGA" else "GTEX gene std (TPM log10)" g.set_axis_labels(x_label, y_label) plt.gcf().set_size_inches(2.5, 2.5) plt.savefig( f"{RPATH}/bgexp/genes_std_{n}.pdf", bbox_inches="tight", transparent=True ) plt.close("all") # Genes distribution in GDSC # plt.figure(figsize=(2.5, 1.5), dpi=600) for s in genes_lh: sns.distplot( gdsc.gexp.loc[genes_lh[s]].median(1), hist=False, label=s, kde_kws={"cut": 0, "shade": True}, color=pal_genes_lh[s], ) plt.grid(True, ls=":", lw=0.1, alpha=1.0, zorder=0, axis="x") plt.xlabel("GDSC gene median (voom)") plt.legend(frameon=False, prop={"size": 5}) plt.savefig( f"{RPATH}/genes_lh_gdsc_histograms.pdf", bbox_inches="tight", transparent=True ) plt.close("all") # Discretise gene-expression (calculate) # gexp = GExp(genesets=genes_lh) for s in gdsc.gexp: sample = gdsc.gexp[s] LOG.info(f"Sample={s}") sample_disc = gexp.discretise(sample, max_fpr=0.1) LOG.info(sample_disc[gexp.genesets].sum()) # Export report sample_disc.to_csv(f"{RPATH}/bgexp/bgexp_{s}.csv") # GDSC discretised gene-expression (import) # gdsc_disc = pd.concat( [ pd.read_csv(f"{RPATH}/bgexp/bgexp_{s}.csv", index_col=0)[ ["high", "low"] ].add_suffix(f"_{s}") for s in gdsc.gexp ], axis=1, ) # GDSC discretised log-ratio # gdsc_lr = pd.DataFrame( { s: pd.read_csv(f"{RPATH}/bgexp/bgexp_{s}.csv", index_col=0)["lr_mean"] for s in gdsc.gexp } ) # Assemble discretised table # def sample_melt_df(sample): df =
pd.read_csv(f"{RPATH}/bgexp/bgexp_{sample}.csv", index_col=0)
pandas.read_csv
# Copyright (c) 2013, GreyCube Technologies and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.utils import cint import pandas from operator import itemgetter def execute(filters=None): return get_columns(filters), get_data(filters) def get_columns(filters): if filters.get("show_summary"): return [ dict( label="Salesman", fieldname="sales_partner", width=160, ), dict( label="Commission", fieldname="commission_amount", fieldtype="Currency", width=110, ), ] else: return [ dict( label="Salesman", fieldname="sales_partner", width=160, ), dict( label="Item Code", fieldname="item_code", width=160, ), dict( label="Item Name", fieldname="item_name", width=160, ), dict( label="Qty", fieldname="qty", fieldtype="Float", width=90, ), dict( label="Sales UOM", fieldname="sales_uom", fieldtype="Data", width=90, ), dict( label="Sales Amount", fieldname="sales_amount", fieldtype="Currency", width=110, ), dict( label="Customer Group", fieldname="customer_group", width=110, ), dict( label="Percentage", fieldname="commission_percent", fieldtype="Float", width=90, ), dict( label="Commission", fieldname="commission_amount", fieldtype="Currency", width=110, ), ] def get_conditions(filters): where_clause = ["si.docstatus = 1"] if filters.get("from_date"): where_clause.append("si.posting_date >= %(from_date)s") if filters.get("to_date"): where_clause.append("si.posting_date <= %(to_date)s") if filters.get("salesman"): where_clause.append("si.sales_partner = %(salesman)s") return " where " + " and ".join(where_clause) if where_clause else "" def get_data(filters): data = frappe.db.sql( """ with fn_comm as ( select icgc.customer_group, icgc.item item_code, sd.from, sd.to, sd.commission_percent, icgc.default_sales_uom from `tabItem Customer Group Commission` icgc inner join `tabItem Customer Group Commission Slab Detail` sd on sd.parent = icgc.name ), fn_sales as ( select si.sales_partner, cus.customer_group, sit.item_code, sit.item_name, sum(sit.base_net_amount) sales_amount, sum(round(sit.qty * sale_ucd.conversion_factor/default_sales_ucd.conversion_factor,2)) qty, it.sales_uom from `tabSales Invoice` si inner join `tabSales Invoice Item` sit on sit.parent = si.name inner join tabItem it on it.item_code = sit.item_code inner join `tabUOM Conversion Detail` sale_ucd on sale_ucd.parent = sit.item_code and sale_ucd.uom = sit.uom inner join `tabUOM Conversion Detail` default_sales_ucd on default_sales_ucd.parent = sit.item_code and default_sales_ucd.uom = it.sales_uom inner join tabCustomer cus on cus.name = si.customer {where_conditions} group by si.sales_partner, cus.customer_group, sit.item_code, sit.item_name ) select fn_sales.sales_partner, fn_sales.customer_group, fn_sales.item_code, fn_sales.item_name, fn_sales.sales_uom, sum(fn_sales.qty) qty, sum(fn_sales.sales_amount) sales_amount, coalesce(fn_comm.commission_percent,0) commission_percent, round(sum(coalesce(fn_comm.commission_percent,0) * fn_sales.sales_amount * .01),2) commission_amount from fn_sales left outer join fn_comm on fn_comm.customer_group = fn_sales.customer_group and fn_comm.item_code = fn_sales.item_code and fn_sales.qty BETWEEN fn_comm.from and fn_comm.to group by fn_sales.sales_partner, fn_sales.item_code, fn_sales.item_name, fn_sales.sales_uom, fn_comm.commission_percent, fn_sales.customer_group """.format( where_conditions=get_conditions(filters) ), filters, as_dict=True, # debug=True, ) if filters.get("show_summary"): df =
pandas.DataFrame.from_records(data)
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E': Categorical([np.nan], categories=['a']), 'F': [pd.NaT], 'G': to_timedelta([pd.NaT])}), (True, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical(['a', np.nan, np.nan, np.nan], categories=['a']), 'L': to_datetime(['2000-1-2', 'NaT', 'NaT', 'NaT']), 'M': to_timedelta(['1 days', 'nan', 'nan', 'nan']), 'N': [0, 1, 2, 3]}), (False, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical([np.nan, 'a', np.nan, np.nan], categories=['a']), 'L': to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), 'M': to_timedelta(['nan', '1 days', 'nan', 'nan']), 'N': [0, 1, 2, 3]}) ]) def test_mode_dropna(self, dropna, expected): df = DataFrame({"A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, 'a', np.nan], "E": Categorical([np.nan, np.nan, 'a', np.nan]), "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(['a', np.nan, 'a', np.nan]), "L": to_datetime(['2000-1-2', '2000-1-2', 'NaT', 'NaT']), "M": to_timedelta(['1 days', 'nan', '1 days', 'nan']), "N": np.arange(4, dtype='int64')}) result = df[sorted(list(expected.keys()))].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df = DataFrame({"A": [np.nan, np.nan, 'a', 'a']}) expected = DataFrame({'A': ['a', np.nan]}) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = df.mode(dropna=False) result = result.sort_values(by='A').reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_operators_timedelta64(self): df = DataFrame(dict(A=date_range('2012-1-1', periods=3, freq='D'), B=date_range('2012-1-2', periods=3, freq='D'), C=Timestamp('20120101') - timedelta(minutes=5, seconds=5))) diffs = DataFrame(dict(A=df['A'] - df['C'], B=df['A'] - df['B'])) # min result = diffs.min() assert result[0] == diffs.loc[0, 'A'] assert result[1] == diffs.loc[0, 'B'] result = diffs.min(axis=1) assert (result == diffs.loc[0, 'B']).all() # max result = diffs.max() assert result[0] == diffs.loc[2, 'A'] assert result[1] == diffs.loc[2, 'B'] result = diffs.max(axis=1) assert (result == diffs['A']).all() # abs result = diffs.abs() result2 = abs(diffs) expected = DataFrame(dict(A=df['A'] - df['C'], B=df['B'] - df['A'])) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # mixed frame mixed = diffs.copy() mixed['C'] = 'foo' mixed['D'] = 1 mixed['E'] = 1. mixed['F'] = Timestamp('20130101') # results in an object array result = mixed.min() expected = Series([pd.Timedelta(timedelta(seconds=5 * 60 + 5)), pd.Timedelta(timedelta(days=-1)), 'foo', 1, 1.0, Timestamp('20130101')], index=mixed.columns) tm.assert_series_equal(result, expected) # excludes numeric result = mixed.min(axis=1) expected = Series([1, 1, 1.], index=[0, 1, 2]) tm.assert_series_equal(result, expected) # works when only those columns are selected result = mixed[['A', 'B']].min(1) expected = Series([timedelta(days=-1)] * 3) tm.assert_series_equal(result, expected) result = mixed[['A', 'B']].min() expected = Series([timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=['A', 'B']) tm.assert_series_equal(result, expected) # GH 3106 df = DataFrame({'time': date_range('20130102', periods=5), 'time2': date_range('20130105', periods=5)}) df['off1'] = df['time2'] - df['time'] assert df['off1'].dtype == 'timedelta64[ns]' df['off2'] = df['time'] - df['time2'] df._consolidate_inplace() assert df['off1'].dtype == 'timedelta64[ns]' assert df['off2'].dtype == 'timedelta64[ns]' def test_sum_corner(self): empty_frame = DataFrame() axis0 = empty_frame.sum(0) axis1 = empty_frame.sum(1) assert isinstance(axis0, Series) assert isinstance(axis1, Series) assert len(axis0) == 0 assert len(axis1) == 0 @pytest.mark.parametrize('method, unit', [ ('sum', 0), ('prod', 1), ]) def test_sum_prod_nanops(self, method, unit): idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]}) # The default result = getattr(df, method) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') # min_count=1 result = getattr(df, method)(min_count=1) expected = pd.Series([unit, unit, np.nan], index=idx)
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
""" "Stacking: LGB, XGB, Cat with and without imputation (old & new LGBs),tsne,logistic" """ import os from timeit import default_timer as timer from datetime import datetime from functools import reduce import pandas as pd import src.common as common import src.config.constants as constants import src.munging as process_data import src.modeling as model from sklearn.model_selection import KFold from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import RidgeClassifier from sklearn.linear_model import LogisticRegression common.set_timezone() start = timer() # Create RUN_ID RUN_ID = datetime.now().strftime("%m%d_%H%M") MODEL_NAME = os.path.basename(__file__).split(".")[0] SEED = 42 EXP_DETAILS = "Stacking: LGB, XGB, Cat with and without imputation (old & new LGBs),tsne,logistic" IS_TEST = False PLOT_FEATURE_IMPORTANCE = False TARGET = "claim" MODEL_TYPE = "Ranking" LOGGER_NAME = "ranking" logger = common.get_logger(LOGGER_NAME, MODEL_NAME, RUN_ID, constants.LOG_DIR) common.set_seed(SEED) logger.info(f"Running for Model Number [{MODEL_NAME}] & [{RUN_ID}]") common.update_tracking(RUN_ID, "model_number", MODEL_NAME, drop_incomplete_rows=True) common.update_tracking(RUN_ID, "model_type", MODEL_TYPE) common.update_tracking(RUN_ID, "metric", "roc_auc") train_df, test_df, sample_submission_df = process_data.read_processed_data( logger, constants.PROCESSED_DATA_DIR, train=True, test=True, sample_submission=True ) # Read different submission files and merge them to create dataset # for level 2 sub_1_predition_name = ( "sub_lgb_K5_nonull_mean_sum_max_no_imp_no_scaler_params_K_0924_1159_0.81605.gz" ) sub_1_oof_name = ( "oof_lgb_K5_nonull_mean_sum_max_no_imp_no_scaler_params_K_0924_1159_0.81605.csv" ) sub_1_test_pred = pd.read_csv(f"{constants.SUBMISSION_DIR}/{sub_1_predition_name}") sub_1_oof_pred =
pd.read_csv(f"{constants.OOF_DIR}/{sub_1_oof_name}")
pandas.read_csv
import datetime import json import numpy as np import requests import pandas as pd import streamlit as st from copy import deepcopy from fake_useragent import UserAgent import webbrowser from footer_utils import image, link, layout, footer service_input = st.selectbox('Select Service',["","CoWin Vaccine Slot","Oxygen","Beds","Ambulance","Medicines","Miscellaneous","Important Links"]) if service_input =="CoWin Vaccine Slot": temp_user_agent = UserAgent() browser_header = {'User-Agent': temp_user_agent.random} st.title("Vacciation Slot Availability") @st.cache(allow_output_mutation=True, suppress_st_warning=True) def import_dataset(): df = pd.read_csv("Combined_List.csv") return df def district_mapping(state_inp,df): return list(df[df['State_Name']==state_inp]['District_Name']) def column_mapping(df,col,value): df_temp = deepcopy(df.loc[df[col] == value, :]) return df_temp def availability_check(df,col,value): df_temp2 = deepcopy(df.loc[df[col]>value, :]) return df_temp2 @st.cache(allow_output_mutation=True) def Pageviews(): return [] mapping_df= import_dataset() state_name = list((mapping_df['State_Name'].sort_values().unique())) district_name = list((mapping_df['District_Name'].sort_values().unique())) age = [18,45] date_input = st.sidebar.slider('Select Date Range', min_value=0, max_value=50) state_input = st.sidebar.selectbox('Select State',state_name) district_input = st.sidebar.selectbox('Select District',district_mapping(state_input,mapping_df)) age_input = st.sidebar.selectbox('Select Minimum Age',[""]+age) fee_input = st.sidebar.selectbox('Select Free or Paid',[""]+['Free','Paid']) vaccine_input = st.sidebar.selectbox("Select Vaccine",[""]+['COVISHIELD','COVAXIN']) available_input = st.sidebar.selectbox("Select Availability",[""]+['Available']) col_rename = { 'date': 'Date', 'min_age_limit': 'Minimum Age Limit', 'available_capacity': 'Available Capacity', 'vaccine': 'Vaccine', 'pincode': 'Pincode', 'name': 'Hospital Name', 'state_name' : 'State', 'district_name' : 'District', 'block_name': 'Block Name', 'fee_type' : 'Fees' } DIST_ID = mapping_df[mapping_df['District_Name']==district_input]['District_ID'].values[0] base_date = datetime.datetime.today() date_list = [base_date+ datetime.timedelta(days = x) for x in range(date_input+1)] date_string = [i.strftime('%d-%m-%y') for i in date_list] final_df =None for INP_DATE in date_string: URL = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByDistrict?district_id={}&date={}".format(DIST_ID, INP_DATE) data = requests.get(URL,headers = browser_header) if (data.ok) and ('centers' in data.json()): data_json = data.json()['centers'] if data_json is not None: data_df = pd.DataFrame(data_json) if len(data_df): data_df = data_df.explode('sessions') data_df['date']= data_df.sessions.apply(lambda x: x['date']) data_df['available_capacity']= data_df.sessions.apply(lambda x: x['available_capacity']) data_df['min_age_limit']= data_df.sessions.apply(lambda x: x['min_age_limit']) data_df['vaccine']= data_df.sessions.apply(lambda x: x['vaccine']) data_df = data_df[["date","state_name", "district_name", "name", "block_name", "pincode", "available_capacity", "min_age_limit", "vaccine", "fee_type"]] if final_df is not None: final_df = pd.concat([final_df,data_df]) else: final_df = deepcopy(data_df) else: st.error('Nothing extracted from the API') else: st.write("As of now Center has restricted real-time data sharing through API's, you can only see the real-time data once the restrictions are removed.") st.markdown("[Read more about this here->](https://government.economictimes.indiatimes.com/news/governance/centre-restricts-real-time-data-sharing-for-blocking-vaccination-slots-on-cowin-portal/82458404)") st.write('\n\n') st.write('Nevertheless, You can search and find other Services available on this site.:wink:') st.write('\n\n') if (final_df is not None) and (len(final_df)): final_df.drop_duplicates(inplace=True) final_df.rename(columns = col_rename,inplace=True) if age_input != "": final_df = column_mapping(final_df,'Minimum Age Limit',age_input) if fee_input != "": final_df = column_mapping(final_df,'Fees',fee_input) if vaccine_input != "": final_df = column_mapping(final_df,'Vaccine',vaccine_input) if available_input != "": final_df = availability_check(final_df,'Available Capacity',0) pincodes = list(np.unique(final_df["Pincode"].values)) pincode_inp = st.sidebar.selectbox('Select Pincode', [""] + pincodes) if pincode_inp != "": final_df = column_mapping(final_df, "Pincode", pincode_inp) final_df['Date'] = pd.to_datetime(final_df['Date'],dayfirst=True) final_df = final_df.sort_values(by='Date') final_df['Date'] = final_df['Date'].apply(lambda x:x.strftime('%d-%m-%y')) table = deepcopy(final_df) table.reset_index(inplace=True, drop=True) st.table(table) else: if st.button('Book Your Slot'): js = "window.open('https://www.cowin.gov.in/home')" # New tab or window #js = "window.location.href = 'https://www.streamlit.io/'" # Current tab html = '<img src onerror="{}">'.format(js) div = Div(text=html) st.bokeh_chart(div) st.write('\n\n') st.write('\n\n') st.write('\n\n\n\n') pageviews=Pageviews() pageviews.append('dummy') pg_views = len(pageviews) footer(pg_views) elif service_input=="Oxygen": st.write(':point_left:') st.text('Filter services by State and City') st.write('\n\n') st.title("Oxygen Availability") @st.cache(allow_output_mutation=True, suppress_st_warning=True) def import_dataset(): df = pd.read_csv("oxy_final.csv") return df def city_mapping(state,df): return list(np.unique(list(df[df['State']==state]['City']))) def column_mapping(df,col,value): df_temp = deepcopy(df.loc[df[col] == value, :]) return df_temp @st.cache(allow_output_mutation=True) def Pageviews(): return [] oxy_df = import_dataset() valid_states = list(np.unique(oxy_df.State)) state_input = st.sidebar.selectbox('Select State',valid_states) city_input = st.sidebar.selectbox('Select City',city_mapping(state_input,oxy_df)) st.sidebar.text("More States and Cities will be\navailable in the future") final_df = column_mapping(oxy_df,'State',state_input) final_df = column_mapping(oxy_df,'City',city_input) table = deepcopy(final_df) table.reset_index(inplace=True, drop=True) st.table(table) st.subheader('Chaos is a part of evolution!:muscle:') st.write('\n\n\n\n\n\n\n\n') pageviews=Pageviews() pageviews.append('dummy') pg_views = len(pageviews) footer(pg_views) elif service_input=="Beds": st.write(':point_left:') st.text('Filter services by State and City') st.write('\n\n') st.title("Beds Availability") @st.cache(allow_output_mutation=True, suppress_st_warning=True) def import_dataset(): df =
pd.read_csv("beds_final.csv")
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_series_repr(self): s = pd.Series(pd.Categorical([1, 2, 3])) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10))) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_ordered(self): s = pd.Series(pd.Categorical([1, 2, 3], ordered=True)) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10), ordered=True)) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 < 8 days 01:00:00 < 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_index_repr(self): idx = pd.CategoricalIndex(pd.Categorical([1, 2, 3])) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" self.assertEqual(repr(idx), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10))) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_ordered(self): i = pd.CategoricalIndex(pd.Categorical([1, 2, 3], ordered=True)) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10), ordered=True)) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx), ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period(self): # test all length idx = pd.period_range('2011-01-01 09:00', freq='H', periods=1) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=2) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=3) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx))) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_frame(self): # normal DataFrame dt = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') p = pd.period_range('2011-01', freq='M', periods=5) df = pd.DataFrame({'dt': dt, 'p': p}) exp = """ dt p 0 2011-01-01 09:00:00-05:00 2011-01 1 2011-01-01 10:00:00-05:00 2011-02 2 2011-01-01 11:00:00-05:00 2011-03 3 2011-01-01 12:00:00-05:00 2011-04 4 2011-01-01 13:00:00-05:00 2011-05""" df = pd.DataFrame({'dt': pd.Categorical(dt), 'p': pd.Categorical(p)}) self.assertEqual(repr(df), exp) def test_info(self): # make sure it works n = 2500 df = DataFrame({'int64': np.random.randint(100, size=n)}) df['category'] = Series(np.array(list('abcdefghij')).take( np.random.randint(0, 10, size=n))).astype('category') df.isnull() df.info() df2 = df[df['category'] == 'd'] df2.info() def test_groupby_sort(self): # http://stackoverflow.com/questions/23814368/sorting-pandas-categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') res = self.cat.groupby(['value_group'])['value_group'].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = pd.CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_min_max(self): # unordered cats have no min/max cat = Series(Categorical(["a", "b", "c", "d"], ordered=False)) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Series(Categorical(["a", "b", "c", "d"], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Series(Categorical(["a", "b", "c", "d"], categories=[ 'd', 'c', 'b', 'a'], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Series(Categorical( [np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a' ], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") cat = Series(Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) def test_mode(self): s = Series(Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5, 1], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([], categories=[5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) def test_value_counts(self): s = pd.Series(pd.Categorical( ["a", "b", "c", "c", "c", "b"], categories=["c", "a", "b", "d"])) res = s.value_counts(sort=False) exp = Series([3, 1, 2, 0], index=pd.CategoricalIndex(["c", "a", "b", "d"])) tm.assert_series_equal(res, exp) res = s.value_counts(sort=True) exp = Series([3, 2, 1, 0], index=pd.CategoricalIndex(["c", "b", "a", "d"])) tm.assert_series_equal(res, exp) def test_value_counts_with_nan(self): # https://github.com/pydata/pandas/issues/9443 s = pd.Series(["a", "b", "a"], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) s = pd.Series(["a", "b", None, "a", None, None], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) # When we aren't sorting by counts, and np.nan isn't a # category, it should be last. tm.assert_series_equal( s.value_counts(dropna=False, sort=False), pd.Series([2, 1, 3], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", "a"], categories=["a", "b", np.nan])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1, 0], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", None, "a", None, None], categories=["a", "b", np.nan ])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) def test_groupby(self): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c" ], categories=["a", "b", "c", "d"], ordered=True) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) expected = DataFrame({'a': Series( [1, 2, 4, np.nan], index=pd.CategoricalIndex( ['a', 'b', 'c', 'd'], name='b'))}) result = data.groupby("b").mean() tm.assert_frame_equal(result, expected) raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A") exp_idx = pd.CategoricalIndex(['a', 'b', 'z'], name='A') expected = DataFrame({'values': Series([3, 7, np.nan], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers gb = df.groupby(['A', 'B']) expected = DataFrame({'values': Series( [1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan ], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']))}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers with a non-cat df = df.copy() df['C'] = ['foo', 'bar'] * 2 gb = df.groupby(['A', 'B', 'C']) expected = DataFrame({'values': Series( np.nan, index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y'], ['foo', 'bar'] ], names=['A', 'B', 'C']))}).sortlevel() expected.iloc[[1, 2, 7, 8], 0] = [1, 2, 3, 4] result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name) g = x.groupby(['person_id']) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[['person_name']]) result = x.drop_duplicates('person_name') expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates('person_name').iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name='person_id') expected['person_name'] = expected['person_name'].astype('object') tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.max(xs)), df[['a']]) # Filter tm.assert_series_equal(df.a.groupby(c).filter(np.all), df['a']) tm.assert_frame_equal(df.groupby(c).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.sum(xs)), df[['a']]) # GH 9603 df = pd.DataFrame({'a': [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4]) result = df.groupby(c).apply(len) expected = pd.Series([1, 0, 0, 0], index=pd.CategoricalIndex(c.values.categories)) expected.index.name = 'a' tm.assert_series_equal(result, expected) def test_pivot_table(self): raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B']) expected = Series([1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']), name='values') tm.assert_series_equal(result, expected) def test_count(self): s = Series(Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) result = s.count() self.assertEqual(result, 2) def test_sort(self): c = Categorical(["a", "b", "b", "a"], ordered=False) cat = Series(c) # 9816 deprecated with tm.assert_produces_warning(FutureWarning): c.order() # sort in the categories order expected = Series( Categorical(["a", "a", "b", "b"], ordered=False), index=[0, 3, 1, 2]) result = cat.sort_values() tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "c", "b", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) cat = Series(Categorical(["a", "c", "b", "d"], categories=[ "a", "b", "c", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res.__array__(), exp) raw_cat1 = Categorical(["a", "b", "c", "d"], categories=["a", "b", "c", "d"], ordered=False) raw_cat2 = Categorical(["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True) s = ["a", "b", "c", "d"] df = DataFrame({"unsort": raw_cat1, "sort": raw_cat2, "string": s, "values": [1, 2, 3, 4]}) # Cats must be sorted in a dataframe res = df.sort_values(by=["string"], ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res["sort"].values.__array__(), exp) self.assertEqual(res["sort"].dtype, "category") res = df.sort_values(by=["sort"], ascending=False) exp = df.sort_values(by=["string"], ascending=True) self.assert_numpy_array_equal(res["values"], exp["values"]) self.assertEqual(res["sort"].dtype, "category") self.assertEqual(res["unsort"].dtype, "category") # unordered cat, but we allow this df.sort_values(by=["unsort"], ascending=False) # multi-columns sort # GH 7848 df = DataFrame({"id": [6, 5, 4, 3, 2, 1], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df["grade"] = pd.Categorical(df["raw_grade"], ordered=True) df['grade'] = df['grade'].cat.set_categories(['b', 'e', 'a']) # sorts 'grade' according to the order of the categories result = df.sort_values(by=['grade']) expected = df.iloc[[1, 2, 5, 0, 3, 4]] tm.assert_frame_equal(result, expected) # multi result = df.sort_values(by=['grade', 'id']) expected = df.iloc[[2, 1, 5, 4, 3, 0]] tm.assert_frame_equal(result, expected) # reverse cat = Categorical(["a", "c", "c", "b", "d"], ordered=True) res = cat.sort_values(ascending=False) exp_val = np.array(["d", "c", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) # some NaN positions cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) def test_slicing(self): cat = Series(Categorical([1, 2, 3, 4])) reversed = cat[::-1] exp = np.array([4, 3, 2, 1]) self.assert_numpy_array_equal(reversed.__array__(), exp) df = DataFrame({'value': (np.arange(100) + 1).astype('int64')}) df['D'] = pd.cut(df.value, bins=[0, 25, 50, 75, 100]) expected = Series([11, '(0, 25]'], index=['value', 'D'], name=10) result = df.iloc[10] tm.assert_series_equal(result, expected) expected = DataFrame({'value': np.arange(11, 21).astype('int64')}, index=np.arange(10, 20).astype('int64')) expected['D'] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100]) result = df.iloc[10:20] tm.assert_frame_equal(result, expected) expected = Series([9, '(0, 25]'], index=['value', 'D'], name=8) result = df.loc[8] tm.assert_series_equal(result, expected) def test_slicing_and_getting_ops(self): # systematically test the slicing operations: # for all slicing ops: # - returning a dataframe # - returning a column # - returning a row # - returning a single value cats = pd.Categorical( ["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]) idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 2, 3, 4, 5, 6, 7] df = pd.DataFrame({"cats": cats, "values": values}, index=idx) # the expected values cats2 = pd.Categorical(["b", "c"], categories=["a", "b", "c"]) idx2 = pd.Index(["j", "k"]) values2 = [3, 4] # 2:4,: | "j":"k",: exp_df = pd.DataFrame({"cats": cats2, "values": values2}, index=idx2) # :,"cats" | :,0 exp_col = pd.Series(cats, index=idx, name='cats') # "j",: | 2,: exp_row = pd.Series(["b", 3], index=["cats", "values"], dtype="object", name="j") # "j","cats | 2,0 exp_val = "b" # iloc # frame res_df = df.iloc[2:4, :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.iloc[2, :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.iloc[2, 0] self.assertEqual(res_val, exp_val) # loc # frame res_df = df.loc["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.loc["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.loc[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.loc["j", "cats"] self.assertEqual(res_val, exp_val) # ix # frame # res_df = df.ix["j":"k",[0,1]] # doesn't work? res_df = df.ix["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.ix["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.ix[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.ix["j", 0] self.assertEqual(res_val, exp_val) # iat res_val = df.iat[2, 0] self.assertEqual(res_val, exp_val) # at res_val = df.at["j", "cats"] self.assertEqual(res_val, exp_val) # fancy indexing exp_fancy = df.iloc[[2]] res_fancy = df[df["cats"] == "b"] tm.assert_frame_equal(res_fancy, exp_fancy) res_fancy = df[df["values"] == 3] tm.assert_frame_equal(res_fancy, exp_fancy) # get_value res_val = df.get_value("j", "cats") self.assertEqual(res_val, exp_val) # i : int, slice, or sequence of integers res_row = df.iloc[2] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) res_df = df.iloc[slice(2, 4)] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_df = df.iloc[[2, 3]] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) res_df = df.iloc[:, slice(0, 2)] tm.assert_frame_equal(res_df, df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_df = df.iloc[:, [0, 1]] tm.assert_frame_equal(res_df, df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) def test_slicing_doc_examples(self): # GH 7918 cats = Categorical( ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c"]) idx = Index(["h", "i", "j", "k", "l", "m", "n", ]) values = [1, 2, 2, 2, 3, 4, 5] df = DataFrame({"cats": cats, "values": values}, index=idx) result = df.iloc[2:4, :] expected = DataFrame( {"cats": Categorical( ['b', 'b'], categories=['a', 'b', 'c']), "values": [2, 2]}, index=['j', 'k']) tm.assert_frame_equal(result, expected) result = df.iloc[2:4, :].dtypes expected = Series(['category', 'int64'], ['cats', 'values']) tm.assert_series_equal(result, expected) result = df.loc["h":"j", "cats"] expected = Series(Categorical(['a', 'b', 'b'], categories=['a', 'b', 'c']), index=['h', 'i', 'j'], name='cats') tm.assert_series_equal(result, expected) result = df.ix["h":"j", 0:1] expected = DataFrame({'cats': Series( Categorical( ['a', 'b', 'b'], categories=['a', 'b', 'c']), index=['h', 'i', 'j'])}) tm.assert_frame_equal(result, expected) def test_assigning_ops(self): # systematically test the assigning operations: # for all slicing ops: # for value in categories and value not in categories: # - assign a single value -> exp_single_cats_value # - assign a complete row (mixed values) -> exp_single_row # assign multiple rows (mixed values) (-> array) -> exp_multi_row # assign a part of a column with dtype == categorical -> # exp_parts_cats_col # assign a part of a column with dtype != categorical -> # exp_parts_cats_col cats = pd.Categorical( ["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 1, 1, 1, 1, 1, 1] orig = pd.DataFrame({"cats": cats, "values": values}, index=idx) # the expected values # changed single row cats1 = pd.Categorical( ["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx1 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values1 = [1, 1, 2, 1, 1, 1, 1] exp_single_row = pd.DataFrame( {"cats": cats1, "values": values1}, index=idx1) # changed multiple rows cats2 = pd.Categorical( ["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx2 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values2 = [1, 1, 2, 2, 1, 1, 1] exp_multi_row = pd.DataFrame( {"cats": cats2, "values": values2}, index=idx2) # changed part of the cats column cats3 = pd.Categorical( ["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx3 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values3 = [1, 1, 1, 1, 1, 1, 1] exp_parts_cats_col = pd.DataFrame( {"cats": cats3, "values": values3}, index=idx3) # changed single value in cats col cats4 = pd.Categorical( ["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx4 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values4 = [1, 1, 1, 1, 1, 1, 1] exp_single_cats_value = pd.DataFrame( {"cats": cats4, "values": values4}, index=idx4) # iloc # ############### # - assign a single value -> exp_single_cats_value df = orig.copy() df.iloc[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.iloc[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.iloc[2, 0] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.iloc[2, :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.iloc[2, :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.iloc[2:4, :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.iloc[2:4, :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.iloc[2:4, 0] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.iloc[2:4, 0] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.iloc[2:4, 0] = ["c", "c"] # loc # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.loc["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.loc[df.index == "j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.loc["j", "cats"] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.loc["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.loc["j", :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.loc["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.loc["j":"k", :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.loc["j":"k", "cats"] = ["c", "c"] # ix # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.ix["j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.ix[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.ix["j", 0] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.ix["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.ix["j", :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.ix["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.ix["j":"k", :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.ix["j":"k", 0] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.ix["j":"k", 0] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.ix["j":"k", 0] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.ix["j":"k", 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.ix["j":"k", 0] = ["c", "c"] # iat df = orig.copy() df.iat[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.iat[2, 0] = "c" self.assertRaises(ValueError, f) # at # - assign a single value -> exp_single_cats_value df = orig.copy() df.at["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.at["j", "cats"] = "c" self.assertRaises(ValueError, f) # fancy indexing catsf = pd.Categorical( ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"]) idxf = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) valuesf = [1, 1, 3, 3, 1, 1, 1] df = pd.DataFrame({"cats": catsf, "values": valuesf}, index=idxf) exp_fancy = exp_multi_row.copy() exp_fancy["cats"].cat.set_categories(["a", "b", "c"], inplace=True) df[df["cats"] == "c"] = ["b", 2] tm.assert_frame_equal(df, exp_multi_row) # set_value df = orig.copy() df.set_value("j", "cats", "b") tm.assert_frame_equal(df, exp_single_cats_value) def f(): df = orig.copy() df.set_value("j", "cats", "c") self.assertRaises(ValueError, f) # Assigning a Category to parts of a int/... column uses the values of # the Catgorical df = pd.DataFrame({"a": [1, 1, 1, 1, 1], "b": ["a", "a", "a", "a", "a"]}) exp = pd.DataFrame({"a": [1, "b", "b", 1, 1], "b": ["a", "a", "b", "b", "a"]}) df.loc[1:2, "a"] = pd.Categorical(["b", "b"], categories=["a", "b"]) df.loc[2:3, "b"] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp) # Series orig = Series(pd.Categorical(["b", "b"], categories=["a", "b"])) s = orig.copy() s[:] = "a" exp = Series(pd.Categorical(["a", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[1] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[s.index > 0] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[[False, True]] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s.index = ["x", "y"] s["y"] = "a" exp = Series( pd.Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"]) tm.assert_series_equal(s, exp) # ensure that one can set something to np.nan s = Series(Categorical([1, 2, 3])) exp = Series(Categorical([1, np.nan, 3])) s[1] = np.nan tm.assert_series_equal(s, exp) def test_comparisons(self): tests_data = [(list("abc"), list("cba"), list("bbb")), ([1, 2, 3], [3, 2, 1], [2, 2, 2])] for data, reverse, base in tests_data: cat_rev = pd.Series(pd.Categorical(data, categories=reverse, ordered=True)) cat_rev_base = pd.Series(pd.Categorical(base, categories=reverse, ordered=True)) cat = pd.Series(pd.Categorical(data, ordered=True)) cat_base = pd.Series(pd.Categorical( base, categories=cat.cat.categories, ordered=True)) s = Series(base) a = np.array(base) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = Series([True, False, False]) tm.assert_series_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = Series([False, False, True]) tm.assert_series_equal(res_rev, exp_rev) res = cat > cat_base exp = Series([False, False, True]) tm.assert_series_equal(res, exp) scalar = base[1] res = cat > scalar exp = Series([False, False, True]) exp2 = cat.values > scalar tm.assert_series_equal(res, exp) tm.assert_numpy_array_equal(res.values, exp2) res_rev = cat_rev > scalar exp_rev = Series([True, False, False]) exp_rev2 = cat_rev.values > scalar tm.assert_series_equal(res_rev, exp_rev) tm.assert_numpy_array_equal(res_rev.values, exp_rev2) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) # categorical cannot be compared to Series or numpy array, and also # not the other way around self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # unequal comparison should raise for unordered cats cat = Series(Categorical(list("abc"))) def f(): cat > "b" self.assertRaises(TypeError, f) cat = Series(Categorical(list("abc"), ordered=False)) def f(): cat > "b" self.assertRaises(TypeError, f) # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Series(Categorical(list("abc"), ordered=True)) self.assertRaises(TypeError, lambda: cat < "d") self.assertRaises(TypeError, lambda: cat > "d") self.assertRaises(TypeError, lambda: "d" < cat) self.assertRaises(TypeError, lambda: "d" > cat) self.assert_series_equal(cat == "d", Series([False, False, False])) self.assert_series_equal(cat != "d", Series([True, True, True])) # And test NaN handling... cat = Series(Categorical(["a", "b", "c", np.nan])) exp = Series([True, True, True, False]) res = (cat == cat) tm.assert_series_equal(res, exp) def test_cat_equality(self): # GH 8938 # allow equality comparisons a = Series(list('abc'), dtype="category") b = Series(list('abc'), dtype="object") c = Series(['a', 'b', 'cc'], dtype="object") d = Series(list('acb'), dtype="object") e = Categorical(list('abc')) f = Categorical(list('acb')) # vs scalar self.assertFalse((a == 'a').all()) self.assertTrue(((a != 'a') == ~(a == 'a')).all()) self.assertFalse(('a' == a).all()) self.assertTrue((a == 'a')[0]) self.assertTrue(('a' == a)[0]) self.assertFalse(('a' != a)[0]) # vs list-like self.assertTrue((a == a).all()) self.assertFalse((a != a).all()) self.assertTrue((a == list(a)).all()) self.assertTrue((a == b).all()) self.assertTrue((b == a).all()) self.assertTrue(((~(a == b)) == (a != b)).all()) self.assertTrue(((~(b == a)) == (b != a)).all()) self.assertFalse((a == c).all()) self.assertFalse((c == a).all()) self.assertFalse((a == d).all()) self.assertFalse((d == a).all()) # vs a cat-like self.assertTrue((a == e).all()) self.assertTrue((e == a).all()) self.assertFalse((a == f).all()) self.assertFalse((f == a).all()) self.assertTrue(((~(a == e) == (a != e)).all())) self.assertTrue(((~(e == a) == (e != a)).all())) self.assertTrue(((~(a == f) == (a != f)).all())) self.assertTrue(((~(f == a) == (f != a)).all())) # non-equality is not comparable self.assertRaises(TypeError, lambda: a < b) self.assertRaises(TypeError, lambda: b < a) self.assertRaises(TypeError, lambda: a > b) self.assertRaises(TypeError, lambda: b > a) def test_concat(self): cat = pd.Categorical(["a", "b"], categories=["a", "b"]) vals = [1, 2] df = pd.DataFrame({"cats": cat, "vals": vals}) cat2 = pd.Categorical(["a", "b", "a", "b"], categories=["a", "b"]) vals2 = [1, 2, 1, 2] exp = pd.DataFrame({"cats": cat2, "vals": vals2}, index=pd.Index([0, 1, 0, 1])) res = pd.concat([df, df]) tm.assert_frame_equal(exp, res) # Concat should raise if the two categoricals do not have the same # categories cat3 = pd.Categorical(["a", "b"], categories=["a", "b", "c"]) vals3 = [1, 2] df_wrong_categories = pd.DataFrame({"cats": cat3, "vals": vals3}) def f(): pd.concat([df, df_wrong_categories]) self.assertRaises(ValueError, f) # GH 7864 # make sure ordering is preserverd df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df["grade"] = pd.Categorical(df["raw_grade"]) df['grade'].cat.set_categories(['e', 'a', 'b']) df1 = df[0:3] df2 = df[3:] self.assert_numpy_array_equal(df['grade'].cat.categories, df1['grade'].cat.categories) self.assert_numpy_array_equal(df['grade'].cat.categories, df2['grade'].cat.categories) dfx = pd.concat([df1, df2]) dfx['grade'].cat.categories self.assert_numpy_array_equal(df['grade'].cat.categories, dfx['grade'].cat.categories) def test_concat_preserve(self): # GH 8641 # series concat not preserving category dtype s = Series(list('abc'), dtype='category') s2 = Series(list('abd'), dtype='category') def f(): pd.concat([s, s2]) self.assertRaises(ValueError, f) result = pd.concat([s, s], ignore_index=True) expected = Series(list('abcabc')).astype('category') tm.assert_series_equal(result, expected) result = pd.concat([s, s]) expected = Series( list('abcabc'), index=[0, 1, 2, 0, 1, 2]).astype('category') tm.assert_series_equal(result, expected) a = Series(np.arange(6, dtype='int64')) b = Series(list('aabbca')) df2 = DataFrame({'A': a, 'B': b.astype('category', categories=list('cab'))}) result = pd.concat([df2, df2]) expected = DataFrame({'A': pd.concat([a, a]), 'B': pd.concat([b, b]).astype( 'category', categories=list('cab'))}) tm.assert_frame_equal(result, expected) def test_categorical_index_preserver(self): a = Series(np.arange(6, dtype='int64')) b = Series(list('aabbca')) df2 = DataFrame({'A': a, 'B': b.astype('category', categories=list( 'cab'))}).set_index('B') result = pd.concat([df2, df2]) expected = DataFrame({'A': pd.concat([a, a]), 'B': pd.concat([b, b]).astype( 'category', categories=list( 'cab'))}).set_index('B') tm.assert_frame_equal(result, expected) # wrong catgories df3 = DataFrame({'A': a, 'B': b.astype('category', categories=list( 'abc'))}).set_index('B') self.assertRaises(TypeError, lambda: pd.concat([df2, df3])) def test_append(self): cat = pd.Categorical(["a", "b"], categories=["a", "b"]) vals = [1, 2] df = pd.DataFrame({"cats": cat, "vals": vals}) cat2 = pd.Categorical(["a", "b", "a", "b"], categories=["a", "b"]) vals2 = [1, 2, 1, 2] exp = pd.DataFrame({"cats": cat2, "vals": vals2}, index=pd.Index([0, 1, 0, 1])) res = df.append(df) tm.assert_frame_equal(exp, res) # Concat should raise if the two categoricals do not have the same # categories cat3 = pd.Categorical(["a", "b"], categories=["a", "b", "c"]) vals3 = [1, 2] df_wrong_categories = pd.DataFrame({"cats": cat3, "vals": vals3}) def f(): df.append(df_wrong_categories) self.assertRaises(ValueError, f) def test_merge(self): # GH 9426 right = DataFrame({'c': {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e'}, 'd': {0: 'null', 1: 'null', 2: 'null', 3: 'null', 4: 'null'}}) left = DataFrame({'a': {0: 'f', 1: 'f', 2: 'f', 3: 'f', 4: 'f'}, 'b': {0: 'g', 1: 'g', 2: 'g', 3: 'g', 4: 'g'}}) df = pd.merge(left, right, how='left', left_on='b', right_on='c') # object-object expected = df.copy() # object-cat cright = right.copy() cright['d'] = cright['d'].astype('category') result = pd.merge(left, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) # cat-object cleft = left.copy() cleft['b'] = cleft['b'].astype('category') result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) # cat-cat cright = right.copy() cright['d'] = cright['d'].astype('category') cleft = left.copy() cleft['b'] = cleft['b'].astype('category') result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) def test_repeat(self): # GH10183 cat = pd.Categorical(["a", "b"], categories=["a", "b"]) exp = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b"]) res = cat.repeat(2) self.assert_categorical_equal(res, exp) def test_na_actions(self): cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) vals = ["a", "b", np.nan, "d"] df = pd.DataFrame({"cats": cat, "vals": vals}) cat2 = pd.Categorical([1, 2, 3, 3], categories=[1, 2, 3]) vals2 = ["a", "b", "b", "d"] df_exp_fill = pd.DataFrame({"cats": cat2, "vals": vals2}) cat3 = pd.Categorical([1, 2, 3], categories=[1, 2, 3]) vals3 = ["a", "b", np.nan] df_exp_drop_cats = pd.DataFrame({"cats": cat3, "vals": vals3}) cat4 = pd.Categorical([1, 2], categories=[1, 2, 3]) vals4 = ["a", "b"] df_exp_drop_all = pd.DataFrame({"cats": cat4, "vals": vals4}) # fillna res = df.fillna(value={"cats": 3, "vals": "b"}) tm.assert_frame_equal(res, df_exp_fill) def f(): df.fillna(value={"cats": 4, "vals": "c"}) self.assertRaises(ValueError, f) res = df.fillna(method='pad') tm.assert_frame_equal(res, df_exp_fill) res = df.dropna(subset=["cats"]) tm.assert_frame_equal(res, df_exp_drop_cats) res = df.dropna() tm.assert_frame_equal(res, df_exp_drop_all) # make sure that fillna takes both missing values and NA categories # into account c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan df = pd.DataFrame({"cats": c, "vals": [1, 2, 3]}) df_exp = pd.DataFrame({"cats": Categorical(["a", "b", "a"]), "vals": [1, 2, 3]}) res = df.fillna("a") tm.assert_frame_equal(res, df_exp) def test_astype_to_other(self): s = self.cat['value_group'] expected = s tm.assert_series_equal(s.astype('category'), expected) tm.assert_series_equal(s.astype(com.CategoricalDtype()), expected) self.assertRaises(ValueError, lambda: s.astype('float64')) cat = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'])) exp = Series(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_series_equal(cat.astype('str'), exp) s2 = Series(Categorical.from_array(['1', '2', '3', '4'])) exp2 = Series([1, 2, 3, 4]).astype(int) tm.assert_series_equal(s2.astype('int'), exp2) # object don't sort correctly, so just compare that we have the same # values def cmp(a, b): tm.assert_almost_equal( np.sort(np.unique(a)), np.sort(np.unique(b))) expected = Series(np.array(s.values), name='value_group') cmp(s.astype('object'), expected) cmp(s.astype(np.object_), expected) # array conversion tm.assert_almost_equal(np.array(s), np.array(s.values)) # valid conversion for valid in [lambda x: x.astype('category'), lambda x: x.astype(com.CategoricalDtype()), lambda x: x.astype('object').astype('category'), lambda x: x.astype('object').astype( com.CategoricalDtype()) ]: result = valid(s) tm.assert_series_equal(result, s) # invalid conversion (these are NOT a dtype) for invalid in [lambda x: x.astype(pd.Categorical), lambda x: x.astype('object').astype(pd.Categorical)]: self.assertRaises(TypeError, lambda: invalid(s)) def test_astype_categorical(self): cat = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_categorical_equal(cat, cat.astype('category')) tm.assert_almost_equal(np.array(cat), cat.astype('object')) self.assertRaises(ValueError, lambda: cat.astype(float)) def test_to_records(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # to record array # this coerces result = df.to_records() expected = np.rec.array([(0, 'a'), (1, 'b'), (2, 'c')], dtype=[('index', '=i8'), ('0', 'O')]) tm.assert_almost_equal(result, expected) def test_numeric_like_ops(self): # numeric ops should not succeed for op in ['__add__', '__sub__', '__mul__', '__truediv__']: self.assertRaises(TypeError, lambda: getattr(self.cat, op)(self.cat)) # reduction ops should not succeed (unless specifically defined, e.g. # min/max) s = self.cat['value_group'] for op in ['kurt', 'skew', 'var', 'std', 'mean', 'sum', 'median']: self.assertRaises(TypeError, lambda: getattr(s, op)(numeric_only=False)) # mad technically works because it takes always the numeric data # numpy ops s = pd.Series(pd.Categorical([1, 2, 3, 4])) self.assertRaises(TypeError, lambda: np.sum(s)) # numeric ops on a Series for op in ['__add__', '__sub__', '__mul__', '__truediv__']: self.assertRaises(TypeError, lambda: getattr(s, op)(2)) # invalid ufunc self.assertRaises(TypeError, lambda: np.log(s)) def test_cat_tab_completition(self): # test the tab completion display ok_for_cat = ['categories', 'codes', 'ordered', 'set_categories', 'add_categories', 'remove_categories', 'rename_categories', 'reorder_categories', 'remove_unused_categories', 'as_ordered', 'as_unordered'] def get_dir(s): results = [r for r in s.cat.__dir__() if not r.startswith('_')] return list(sorted(set(results))) s = Series(list('aabbcde')).astype('category') results = get_dir(s) tm.assert_almost_equal(results, list(sorted(set(ok_for_cat)))) def test_cat_accessor_api(self): # GH 9322 from pandas.core.categorical import CategoricalAccessor self.assertIs(Series.cat, CategoricalAccessor) s = Series(list('aabbcde')).astype('category') self.assertIsInstance(s.cat, CategoricalAccessor) invalid = Series([1]) with tm.assertRaisesRegexp(AttributeError, "only use .cat accessor"): invalid.cat self.assertFalse(hasattr(invalid, 'cat')) def test_cat_accessor_no_new_attributes(self): # https://github.com/pydata/pandas/issues/10673 c = Series(list('aabbcde')).astype('category') with tm.assertRaisesRegexp(AttributeError, "You cannot add any new attribute"): c.cat.xlabel = "a" def test_str_accessor_api_for_categorical(self): # https://github.com/pydata/pandas/issues/10661 from pandas.core.strings import StringMethods s = Series(list('aabb')) s = s + " " + s c = s.astype('category') self.assertIsInstance(c.str, StringMethods) # str functions, which need special arguments special_func_defs = [ ('cat', (list("zyxw"),), {"sep": ","}), ('center', (10,), {}), ('contains', ("a",), {}), ('count', ("a",), {}), ('decode', ("UTF-8",), {}), ('encode', ("UTF-8",), {}), ('endswith', ("a",), {}), ('extract', ("([a-z]*) ",), {}), ('find', ("a",), {}), ('findall', ("a",), {}), ('index', (" ",), {}), ('ljust', (10,), {}), ('match', ("a"), {}), # deprecated... ('normalize', ("NFC",), {}), ('pad', (10,), {}), ('partition', (" ",), {"expand": False}), # not default ('partition', (" ",), {"expand": True}), # default ('repeat', (3,), {}), ('replace', ("a", "z"), {}), ('rfind', ("a",), {}), ('rindex', (" ",), {}), ('rjust', (10,), {}), ('rpartition', (" ",), {"expand": False}), # not default ('rpartition', (" ",), {"expand": True}), # default ('slice', (0, 1), {}), ('slice_replace', (0, 1, "z"), {}), ('split', (" ",), {"expand": False}), # default ('split', (" ",), {"expand": True}), # not default ('startswith', ("a",), {}), ('wrap', (2,), {}), ('zfill', (10,), {}) ] _special_func_names = [f[0] for f in special_func_defs] # * get, join: they need a individual elements of type lists, but # we can't make a categorical with lists as individual categories. # -> `s.str.split(" ").astype("category")` will error! # * `translate` has different interfaces for py2 vs. py3 _ignore_names = ["get", "join", "translate"] str_func_names = [f for f in dir(s.str) if not (f.startswith("_") or f in _special_func_names or f in _ignore_names)] func_defs = [(f, (), {}) for f in str_func_names] func_defs.extend(special_func_defs) for func, args, kwargs in func_defs: res = getattr(c.str, func)(*args, **kwargs) exp = getattr(s.str, func)(*args, **kwargs) if isinstance(res, pd.DataFrame): tm.assert_frame_equal(res, exp) else: tm.assert_series_equal(res, exp) invalid = Series([1, 2, 3]).astype('category') with tm.assertRaisesRegexp(AttributeError, "Can only use .str accessor with string"): invalid.str self.assertFalse(hasattr(invalid, 'str')) def test_dt_accessor_api_for_categorical(self): # https://github.com/pydata/pandas/issues/10661 from pandas.tseries.common import Properties from pandas.tseries.index import date_range, DatetimeIndex from pandas.tseries.period import period_range, PeriodIndex from pandas.tseries.tdi import timedelta_range, TimedeltaIndex s_dr = Series(date_range('1/1/2015', periods=5, tz="MET")) c_dr = s_dr.astype("category") s_pr = Series(period_range('1/1/2015', freq='D', periods=5)) c_pr = s_pr.astype("category") s_tdr = Series(timedelta_range('1 days', '10 days')) c_tdr = s_tdr.astype("category") test_data = [ ("Datetime", DatetimeIndex._datetimelike_ops, s_dr, c_dr), ("Period", PeriodIndex._datetimelike_ops, s_pr, c_pr), ("Timedelta", TimedeltaIndex._datetimelike_ops, s_tdr, c_tdr)] self.assertIsInstance(c_dr.dt, Properties) special_func_defs = [ ('strftime', ("%Y-%m-%d",), {}), ('tz_convert', ("EST",), {}), ('round', ("D",), {}), ('floor', ("D",), {}), ('ceil', ("D",), {}), # ('tz_localize', ("UTC",), {}), ] _special_func_names = [f[0] for f in special_func_defs] # the series is already localized _ignore_names = ['tz_localize'] for name, attr_names, s, c in test_data: func_names = [f for f in dir(s.dt) if not (f.startswith("_") or f in attr_names or f in _special_func_names or f in _ignore_names)] func_defs = [(f, (), {}) for f in func_names] for f_def in special_func_defs: if f_def[0] in dir(s.dt): func_defs.append(f_def) for func, args, kwargs in func_defs: res = getattr(c.dt, func)(*args, **kwargs) exp = getattr(s.dt, func)(*args, **kwargs) if isinstance(res, pd.DataFrame): tm.assert_frame_equal(res, exp) elif isinstance(res, pd.Series): tm.assert_series_equal(res, exp) else: tm.assert_numpy_array_equal(res, exp) for attr in attr_names: try: res = getattr(c.dt, attr) exp = getattr(s.dt, attr) except Exception as e: print(name, attr) raise e if isinstance(res, pd.DataFrame): tm.assert_frame_equal(res, exp) elif isinstance(res, pd.Series):
tm.assert_series_equal(res, exp)
pandas.util.testing.assert_series_equal
# %% [markdown] # # FOI-based hospital/ICU beds data analysis import pandas import altair altair.data_transformers.disable_max_rows() # %% [markdown] # ## BHSCT FOI data # # * weekly totals, beds data is summed (i.e. bed days) bhsct_beds = pandas.read_excel('../data/BHSCT/10-11330 Available_Occupied Beds & ED Atts 2010 - 2020.xlsx', engine='openpyxl', header=[9,10,11], index_col=0, sheet_name='BEDS') bhsct_beds = bhsct_beds.stack([0,2]).reset_index() bhsct_beds.rename(columns={'level_0':'Dates','level_1':'Hospital','Dates':'Care'},inplace=True) bhsct_beds['start'] = pandas.to_datetime(bhsct_beds['Dates'].str.split(' - ', expand=True)[0], format='%d/%m/%Y') bhsct_beds = bhsct_beds.groupby(['start','Care','Hospital'])['Available', 'Occupied'].sum().reset_index() bhsct_beds = bhsct_beds.melt(id_vars=['start','Care','Hospital']) bhsct_beds['col'] = bhsct_beds['Care'] + '-' + bhsct_beds['variable'] bhsct_beds = bhsct_beds.pivot(index=['start','Hospital'], columns='col', values='value') bhsct_beds.rename(columns={'ICU/Critical Care-Available': 'Critical Care Available', 'NON ICU/Critical Care-Available': 'General Available', 'ICU/Critical Care-Occupied': 'Critical Care Occupied', 'NON ICU/Critical Care-Occupied': 'General Occupied'}, inplace=True) bhsct_ae = pandas.read_excel('../data/BHSCT/10-11330 Available_Occupied Beds & ED Atts 2010 - 2020.xlsx', engine='openpyxl', header=6, sheet_name='AE') bhsct_ae['start'] = pandas.to_datetime(bhsct_ae['Dates'].str.split(' - ', expand=True)[0], format='%d/%m/%Y') bhsct_ae.drop(columns=['Dates'],inplace=True) bhsct_ae = bhsct_ae.melt(id_vars=['start']).groupby(['start','variable'])['value'].sum().reset_index() bhsct_ae.rename(columns={'variable': 'Hospital', 'value': 'ED Attendances'}, inplace=True) bhsct_ae.set_index(['start', 'Hospital'], inplace=True) bhsct_weekly = bhsct_beds.merge(bhsct_ae, how='left', left_index=True, right_index=True) bhsct_weekly.fillna(0, inplace=True) bhsct_weekly = bhsct_weekly.astype(int) bhsct_weekly = bhsct_weekly.reset_index().replace({ 'MIH': 'Mater Infirmorum Hospital', 'RBHSC': 'Royal Belfast Hospital for Sick Children', 'RVH': 'Royal Victoria Hospital', 'BCH': 'Belfast City Hospital', 'MPH': 'Musgrave Park Hospital' }).set_index(['start','Hospital']) # %% [markdown] # ## NHSCT FOI data # # * daily data nhsct_ae = pandas.read_excel('../data/NHSCT/20210208_PB080121_Response_Attachment_IJ.xlsx', engine='openpyxl', header=6, sheet_name='ED Attendances') nhsct_ae.dropna(axis='columns', how='all', inplace=True) nhsct_ae.dropna(axis='index', subset=['Arrival Date'], inplace=True) nhsct_ae['date'] = pandas.to_datetime(nhsct_ae['Arrival Date'], format='%Y-%m-%d') nhsct_ae.rename(columns={'Site': 'Hospital'}, inplace=True) nhsct_ae_daily = nhsct_ae.groupby(['date','Hospital'])['Attendances'].sum() nhsct_ae_daily.name = 'ED Attendances' nhsct_icu = pandas.read_excel('../data/NHSCT/20210208_PB080121_Response_Attachment_IJ.xlsx', engine='openpyxl', header=5, sheet_name='ICU Wards') nhsct_icu['date'] = pandas.to_datetime(nhsct_icu['DATE'], format='%Y-%m-%d') nhsct_icu.rename(columns={'HOSPITAL': 'Hospital'}, inplace=True) nhsct_icu_daily = nhsct_icu.groupby(['date','Hospital'])['AVAILABLE BEDS','OCCUPIED BEDS'].sum() nhsct_icu_daily.rename(columns={'AVAILABLE BEDS': 'Critical Care Available', 'OCCUPIED BEDS': 'Critical Care Occupied'}, inplace=True) nhsct_daily = nhsct_icu_daily.merge(nhsct_ae_daily, how='left', left_index=True, right_index=True) nhsct_nonicu = pandas.read_excel('../data/NHSCT/20210208_PB080121_Response_Attachment_IJ.xlsx', engine='openpyxl', header=6, sheet_name='Non ICU Wards') nhsct_nonicu['date'] = pandas.to_datetime(nhsct_nonicu['DATE'], format='%Y-%m-%d') nhsct_nonicu.rename(columns={'HOSPITAL': 'Hospital'}, inplace=True) nhsct_nonicu_daily = nhsct_nonicu.groupby(['date','Hospital'])['AVAILABLE BEDS','OCCUPIED BEDS'].sum() nhsct_nonicu_daily.rename(columns={'AVAILABLE BEDS': 'General Available', 'OCCUPIED BEDS': 'General Occupied'}, inplace=True) nhsct_daily = nhsct_daily.merge(nhsct_nonicu_daily, how='left', left_index=True, right_index=True) nhsct_daily = nhsct_daily.astype(int) nhsct_daily.reset_index(inplace=True) nhsct_daily['start'] = nhsct_daily['date'] - pandas.to_timedelta((nhsct_daily['date'].dt.dayofweek+3)%7, unit='d') nhsct_weekly = nhsct_daily.groupby(['start','Hospital']).sum() nhsct_weekly = nhsct_weekly.reset_index().replace({'ANTRIM':'Antrim Area Hospital','CAUSEWAY':'Causeway Hospital'}).set_index(['start', 'Hospital']) # %% [markdown] # ## SEHSCT FOI data # # * weekly data, beds data is summed (i.e. bed days) sehsct_beds = pandas.read_excel('../data/SEHSCT/Attachment 1 - Occupied & Available Beds and A&E Attendances.xlsx', engine='openpyxl', header=[9,10,11], sheet_name='Beds') sehsct_beds.dropna(axis='columns', how='all', inplace=True) sehsct_beds[sehsct_beds.columns[0]] = sehsct_beds[sehsct_beds.columns[0]].replace(to_replace ='27/03/2020 - 31/03/20', value = '2020-03-27 00:00:00') sehsct_beds['start'] = pandas.to_datetime(sehsct_beds[sehsct_beds.columns[0]], format='%Y-%m-%d 00:00:00') sehsct_beds.drop(columns=sehsct_beds.columns[0], inplace=True) sehsct_beds = sehsct_beds.melt(id_vars=[('start','','')]) sehsct_beds.rename(columns={('start','',''): 'start', 'variable_0': 'hospital', 'variable_1': 'state', 'variable_2': 'ward'}, inplace=True) sehsct_beds['col'] = sehsct_beds['ward'] + '-' + sehsct_beds['state'] sehsct_beds = sehsct_beds.pivot(index=['start', 'hospital'], columns='col', values='value').reset_index(1) sehsct_beds.rename(columns={'ICU/Critical Care-Available': 'Critical Care Available', 'Non Critical Care-Available': 'General Available', 'ICU/Critical Care-Occupied': 'Critical Care Occupied', 'Non Critical Care-Occupied': 'General Occupied'}, inplace=True) sehsct_beds.fillna(0, inplace=True) sehsct_beds.rename(columns={'hospital': 'Hospital'}, inplace=True) sehsct_weekly = sehsct_beds.groupby(['start','Hospital']).sum() sehsct_ae = pandas.read_excel('../data/SEHSCT/Attachment 1 - Occupied & Available Beds and A&E Attendances.xlsx', engine='openpyxl', header=7, sheet_name='ED') sehsct_ae['Week'] = sehsct_ae['Week'].replace(to_replace ='27/03/2020 - 31/03/20', value = '2020-03-27 00:00:00') sehsct_ae['start'] = pandas.to_datetime(sehsct_ae['Week'], format='%Y-%m-%d 00:00:00') sehsct_ae.drop(columns='Week', inplace=True) sehsct_ae = sehsct_ae.melt(id_vars='start', var_name='Hospital').set_index(['start','Hospital']) sehsct_ae['value'] = sehsct_ae['value'].fillna('0').replace(' ', '0').astype('int') sehsct_ae = sehsct_ae.groupby(['start','Hospital'])['value'].sum() sehsct_ae.name = 'ED Attendances' sehsct_weekly = sehsct_weekly.merge(sehsct_ae, how='left', left_index=True, right_index=True) sehsct_weekly.fillna(0, inplace=True) sehsct_weekly = sehsct_weekly.astype(int) sehsct_weekly = sehsct_weekly.reset_index().replace({ 'Ards': 'Ards Hospital', 'Bangor': 'Bangor Hospital', 'Downe': 'Downe Hospital', 'Lagan Valley': 'Lagan Valley Hospital', 'Ulster': 'Ulster Hospital' }).set_index(['start', 'Hospital']) # %% [markdown] # ## SHSCT FOI data # # * daily data shsct_ae = pandas.read_excel('../data/SHSCT/FOI 350 EC MIU ATTENDANCES.xlsx', engine='openpyxl', header=10, sheet_name='DATA') shsct_ae['date'] =
pandas.to_datetime(shsct_ae['Arrival Date'], format='%Y-%m-%d')
pandas.to_datetime
import numpy as np import pandas as pd import datetime import random as r def randate(): start_date = datetime.date(2020, 1, 1) end_date = datetime.date(2021, 2, 1) time_between_dates = end_date - start_date days_between_dates = time_between_dates.days random_number_of_days = r.randrange(days_between_dates) random_date = start_date + datetime.timedelta(days=random_number_of_days) return random_date donor =
pd.read_csv("donors.csv")
pandas.read_csv
import logging from urllib.request import urlopen import zipfile import os.path import io import pandas as pd logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) def data_url(): return "file:///home/orest/PycharmProjects/hdx/hdx-ecb-reference-fx/eurofxref-hist.zip" return "https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip" def raw_data(url=None): url = data_url() if url is None else url return urlopen(url).read() def csv_content(url=None): "Fetch the raw csv data" zipdata = raw_data(url) zf = zipfile.ZipFile(io.BytesIO(zipdata),"r") name = [n for n in zf.namelist() if os.path.splitext(n)[1].lower()==".csv"][0] return zf.read(name) def df_content(url=None,add_base_currency=False,base_currency="EUR"): "Fetch the data as a dataframe" return pd.read_csv(io.BytesIO(csv_content(url))) def add_base_currency(df,base_currency="EUR"): df.loc[:,base_currency]=1.0 return df def convert_currency(df, to_currency="USD", base_currency="EUR"): currency_columns = [c for c in df.columns if c.lower()!="date"] scale = (df.loc[:,base_currency]/df.loc[:,to_currency]).values.copy() for c in currency_columns: df.loc[:,c]*=scale return df def add_hxl_tags(df): hxl = [("#date" if c.lower()=="date" else "#value +"+str(c))for c in df.columns] hxl_df =
pd.DataFrame([hxl],columns=df.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright © 2021 by <NAME>. All rights reserved # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. """Set of operations to transform pandas DataFrames given user specified config. These operations are ordered according to `ndj_pipeline.model.run_model_training`. """ import logging from pathlib import Path from typing import Any, Dict, List, Tuple import numpy as np import pandas as pd from sklearn.model_selection import train_test_split as tts from ndj_pipeline import utils def load_data_and_key(model_config: Dict[str, Any]) -> pd.DataFrame: """Uses config to load data and assign key. Args: model_config: Loaded model experiment config, specifically for data path and index column(s) Returns: Pandas dataframe with optionally assigned index """ input_path = Path(*model_config["data_file"]) logging.info(f"Loading parquet from {input_path}") data = pd.read_parquet(input_path) unique_key = model_config.get("unique_key") if unique_key: data = data.set_index(unique_key) if not data.index.is_unique: raise ValueError(f"Config specified key not unique {unique_key}") return data def apply_filtering(df: pd.DataFrame, model_config: Dict[str, Any]) -> pd.DataFrame: """Filters dataframe according to config specified labels. Any row containing a specified label is filtered from the data. Args: df: Pandas dataframe, must contain `_filter` column with string type. model_config: Loaded model experiment config, specifically for list of filter labels. Returns: Pandas dataframe with optionally assigned index Raises: ValueError: Expects '_filter' column in processed data. """ if "_filter" not in df.columns: raise ValueError("Expects `_filter` column in processed data.") if not model_config.get("filters", []): logging.debug("No filter conditions from config, passing") return df master_filter = pd.Series(0, index=df.index) for _filter in model_config.get("filters", []): master_filter = master_filter | df["_filter"].str.contains(_filter) master_filter = ~master_filter logging.info(f"Applying filters {model_config.get('filters', [])} to dataset, pre shape {df.shape}") df = df.loc[master_filter] logging.info(f"Post filter shape {df.shape}") return df def create_compressed_dummies(df: pd.DataFrame, dummy: str, min_dummy: float) -> Tuple[pd.DataFrame, List[str]]: """Creates enhanced feature dummies for a single dataframe column. Improves on standard pandas.get_dummies by combining low-incidence dummy columns into a single `_other_combined` column. Dummy columns are named according to `{col_name}_##_{value}` Args: df: Pandas dataframe, must contain specified dummy column. dummy: string label of DataFrame to create dummy features min_dummy: minimum percentage incidence to create standalone dummy feature, otherwise group into `_other_combined`. Returns: Dummified Pandas DataFrame for a single feature. Also returns dummy column names as a list of strings. """ # Cleaning steps to avoid weird characters in string df[dummy] = df[dummy].astype(str) values = list(df[dummy].unique()) df[dummy] = df[dummy].replace(utils.clean_column_names(values)) raw_dummies = pd.get_dummies(df[dummy], prefix=f"{dummy}_##") dummies_min_test = raw_dummies.mean() < min_dummy insufficient = dummies_min_test[dummies_min_test].index sufficient = dummies_min_test[~dummies_min_test].index selected_dummies = raw_dummies[sufficient] selected_dummies[f"{dummy}_##_other_combined"] = (raw_dummies[insufficient].sum(axis=1) > 0).astype(int) return selected_dummies, selected_dummies.columns.tolist() def create_dummy_features(df: pd.DataFrame, model_config: Dict[str, Any]) -> Tuple[pd.DataFrame, List[str]]: """Create dummy features for each config specified dummy_variable. Iterates through all specified dummy features and adds to DataFrame. Args: df: Pandas dataframe, must contain specified dummy columns. model_config: Loaded model experiment config, specifically for list of dummy features. Returns: Pandas DataFrame with original data plus all new dummy fields. Also returns full list of created dummy column names """ logging.info("Creating dummy features") dummy_features = [] min_dummy = model_config.get("min_dummy_percent", 0.001) for col in model_config.get("dummy_features", []): logging.debug(f"Creating dummy features for {col}") _features, _cols = create_compressed_dummies(df, col, min_dummy) df = df.join(_features) dummy_features += _cols return df, dummy_features def filter_target(df: pd.DataFrame, model_config: Dict[str, Any]) -> pd.DataFrame: """Filters Dataframe to ensure no missing data in target variable. Args: df: Pandas dataframe, must contain config specified target colunn. model_config: Loaded model experiment config, specifically for target column name. Returns: Filtered Pandas DataFrame. """ logging.info(f"Original data size {df.shape}") df = df.dropna(subset=[model_config["target"]]) logging.info(f"Dropped target size {df.shape}") return df def split(df: pd.DataFrame, model_config: Dict[str, Any]) -> Tuple[pd.DataFrame, pd.DataFrame]: """Create train test split using model config. Config may specify a pre-calculated column present in the DataFrame, or use sklearn style split params. No config results in no split, with the creation of an empty test dataframe. Args: df: Pandas dataframe, must contain a pre-calculated split column if this is specified in the `model_config`. model_config: Loaded model experiment config, specifically for split approach, either a `field` or sklearn style params. Returns: Two Pandas DataFrames intended for training, test sets. """ split_params = model_config.get("split", {}) split_field = split_params.get("field", None) if split_field: logging.info(f"Splitting sample at using existing {split_field} column") train = df.loc[df[split_field] == 1] test = df.loc[df[split_field] == 0] elif split_params: logging.info("Splitting sample at random") train, test = tts(df, **split_params) else: logging.warning("No test set specified") train = df test = pd.DataFrame(columns=df.columns) logging.info(f"Training size: {train.shape}, Test size: {test.shape}") return train, test def get_simple_feature_aggregates(df: pd.DataFrame, model_config: Dict[str, Any]) -> pd.Series: """Generates config specified feature aggregates. These are used to inform missing data replacement strategy. Ideally this is run on training data, and used to replace train and test data. Performs validations and raises errors as part of process. Args: df: Pandas dataframe. Must include columns specified in the `simple_features` section of config, and these must be numeric type columns with no infinite values. model_config: Loaded model experiment config, specifically for `simple_features` dictionary of column names and aggregation strategy. Returns: Pandas Series with specified feature columns: value of aggregation. Raises: ValueError: If any features contain infinate values that need fixing. """ simple_features_agg = model_config.get("simple_features", {}) # Validate to ensure no features contain infinity problems = [] for feature in simple_features_agg: logging.debug(f"{feature} has {str(df[feature].dtype)}") try: isinf = df[feature].dropna().apply(np.isinf) except TypeError: problems.append(feature) if isinf.any(): problems.append(feature) if problems: raise ValueError(f"One or more features contains -inf/inf, fix these; {', '.join(problems)}") agg = df.agg(simple_features_agg) try: agg = agg.loc[0] # type: ignore except KeyError: logging.debug("No 'mode' values detected in aggregations") aggregates =
pd.Series(agg, name="aggregates")
pandas.Series
import numpy as np from scipy.stats import ranksums import pandas as pd import csv file = pd.read_csv('merged-file.txt', header=None, skiprows=0, delim_whitespace=True) file.columns = ['Freq_allel','dpsnp','sift','polyphen','mutas','muaccessor','fathmm','vest3','CADD','geneName'] df = file.drop_duplicates(keep=False) ################## START ################### # calculate ranksums for SIFT sift_df = df[['geneName','sift']] # extract all non-driver genes | sift_score genelist = pd.read_csv('/encrypted/e3000/gatkwork/COREAD-ESCA-all-driver.tsv', header=None, skiprows=0, sep='\t') genelist.columns = ['geneName'] # merged_df = pd.merge( sift_df, genelist, how='outer', on=['geneName'], indicator=True, suffixes=('_foo','')).query( '_merge == "left_only"') merged_df.drop(['geneName','_merge'], axis=1, inplace=True) # extract all predicted driver genes | sift_score genelist1 = pd.read_csv('/encrypted/e3000/gatkwork/COREAD-ESCA-predicteddriver.tsv', header=None, skiprows=0, sep='\t') genelist1.columns = ['geneName'] merged_df1 = sift_df.merge(genelist1, how = 'inner', on = ['geneName']) merged_df1.drop(['geneName'], axis=1, inplace=True) # calculate p-value for ranksums with SIFT stat, pvalue = ranksums(merged_df, merged_df1) print(pvalue) #################### POLYPHEN ################### # calculate ranksums for POLYPHEN polyphen_df = df[['geneName','polyphen']] # extract all non-driver genes | sift_score genelist = pd.read_csv('/encrypted/e3000/gatkwork/COREAD-ESCA-all-driver.tsv', header=None, skiprows=0, sep='\t') genelist.columns = ['geneName'] # merged_df = pd.merge( polyphen_df, genelist, how='outer', on=['geneName'], indicator=True, suffixes=('_foo','')).query( '_merge == "left_only"') merged_df.drop(['geneName','_merge'], axis=1, inplace=True) # extract all predicted driver genes | polyphen_score genelist1 =
pd.read_csv('/encrypted/e3000/gatkwork/COREAD-ESCA-predicteddriver.tsv', header=None, skiprows=0, sep='\t')
pandas.read_csv
import datetime import time import pandas as pd import numpy as np import tensorflow as tf import random as rn import os import keras from keras import Input from keras.models import Sequential, Model from keras.layers import concatenate from keras.layers import Dense from keras.layers import LSTM, Dropout from keras.callbacks import EarlyStopping from keras.callbacks import ReduceLROnPlateau from keras.callbacks import ModelCheckpoint from keras.models import load_model from keras import regularizers import keras as k os.environ['PYTHONHASHSEED'] = '0' np.random.seed(42) rn.seed(12345) # Restricting operation to 1 thread for reproducible results. session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) from keras import backend as K # Setting the graph-level random seed. tf.set_random_seed(1234) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) def read_data(filename): df = pd.read_csv(filename, header=None) df.columns = ['Time', 'PV'] df['Time'] = pd.to_datetime(df["Time"], errors='coerce') df.index = df["Time"] df = df.drop(columns=['Time']) print(df.head()) return df def pre_processing_data(real_file, hist_file): df = pd.read_csv(real_file, header=None) df.columns = ['Time', 'Values'] df['Time'] = pd.to_datetime(df["Time"], errors='coerce') df.index = df["Time"] df = df.drop(columns=['Time']) print("read csv") print(df.head()) #Changing Frequency of Data to Minutes df = df.resample('T').mean() #checking for null values and if any, replacing them with last valid observation df.isnull().sum() df.Values.fillna(method='pad', inplace=True) data = df.values.reshape(-1, 1) flat_list = [item for sublist in data for item in sublist] #Quantile Normalization s = pd.Series(flat_list) quant = s.quantile(0.75) Xmin = np.amin(data) Xmax = quant X_std = (data - Xmin) / (Xmax - Xmin) max = 1 min = 0 X_scaled = X_std * (max - min) + min hist_data = [] start_date_hist = datetime.datetime.strptime("2016-01-01 00:00:00", "%Y-%m-%d %H:%M:%S") with open(hist_file, "r") as f: data = f.readlines() data.insert(0, data[-1]) for v in data: hist_data.append([start_date_hist.strftime("%Y-%m-%d %H:%M:%S"), float(v)]) start_date_hist += datetime.timedelta(hours=1) hd = pd.DataFrame(hist_data, columns=['Time', 'Values']) hd['Time'] = pd.to_datetime(hd["Time"], errors='coerce') hd.index = hd["Time"] hd = hd.drop(columns=['Time']) print(hd.head(20)) data = hd.values.reshape(-1, 1) Xmin = np.amin(data) Xmax = np.amax(data) X_std = (data - Xmin) / (Xmax - Xmin) max = 1 min = 0 X_scaled_hist = X_std * (max - min) + min return X_scaled, df, X_scaled_hist, hd def train_model(realXtrain, histXtrain, Ytrain, model, input_size_real, input_size_hist, hidden_size, batch_size, output_size, Num_Epochs): #Creating LSTM's structure if model is None: print("Training the model..........") real_input = Input(batch_shape=(batch_size, input_size_real, 1), name="real") real_features = LSTM(hidden_size, stateful=True, return_sequences=True)(real_input) hist_input = Input(batch_shape=(batch_size, input_size_hist, 1), name="hist") hist_features = LSTM(hidden_size, stateful=True, return_sequences=True)(hist_input) x = concatenate([real_features, hist_features], axis=1) x = Dropout(0.3)(x) x = LSTM(hidden_size, stateful=True)(x) output_layer = Dense(output_size)(x) model = Model(inputs=[real_input, hist_input], outputs=output_layer) model.summary() adam = k.optimizers.Adam(lr=0.01) model.compile(loss="mean_squared_error", optimizer=adam, metrics=["mean_squared_error"]) model.compile(loss="mean_squared_error", optimizer=adam, metrics=["mean_squared_error"]) # define reduceLROnPlateau and early stopping callback reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.2, patience=3, min_lr=0.001) earlystop = EarlyStopping(monitor='loss', min_delta=0.0001, patience=3, verbose=1, mode='auto') # define the checkpoint filepath = "model.h5" checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=0, save_best_only=True, mode='min') callbacks_list = [reduce_lr,earlystop,checkpoint] #Training a stateful LSTM for i in range(Num_Epochs): print("Epoch {:d}/{:d}".format(i+1, Num_Epochs)) model.fit({"real": realXtrain, "hist": histXtrain}, Ytrain, batch_size=Batch_Size, epochs=1, verbose=2, callbacks=callbacks_list, shuffle=False) model.reset_states() return model def predict_model(model, realXtest, histXtest, Batch_Size): #Predicting for the test data start_time = time.clock() pred = model.predict({"real": realXtest, "hist": histXtest},batch_size=Batch_Size) end_time = time.clock() time_taken = end_time - start_time return pred[0], time_taken def find_nearest_hour_index(t): start_date_hist = datetime.datetime.strptime("2016-01-01 00:00:00", "%Y-%m-%d %H:%M:%S") if t.minute > 30: t = t.replace(year=2016, minute=0, second=0, microsecond=0) + datetime.timedelta(hours=1) else: t = t.replace(year=2016, minute=0, second=0, microsecond=0) index = int((t - start_date_hist).total_seconds()/3600) return index def incremental_algorithm(X_scaled, df, X_scaled_hist, Hist_input_size, look_back, Hidden_Size, Batch_Size, Num_Epochs): num_features = 1 prediction_horizon = 1440 nb_samples = X_scaled.shape[0] - look_back - prediction_horizon x_train_reshaped = np.zeros((nb_samples, look_back, num_features)) y_train_reshaped = np.zeros((nb_samples, prediction_horizon)) print("----", X_scaled.shape[0]) print("initial X",x_train_reshaped.shape) print("initial Y",y_train_reshaped.shape) train_time = [] prediction_time = [] prediction_error = [] prediction_median = [] prediction_std = [] for i in range(nb_samples): start_date_index = find_nearest_hour_index(datetime.datetime.strptime(str(df.index[i]), "%Y-%m-%d %H:%M:%S")) end_date_index = start_date_index + Hist_input_size histXtrain = X_scaled_hist[start_date_index:end_date_index] if end_date_index >= len(X_scaled_hist): histXtrain = histXtrain + X_scaled_hist[0:len(X_scaled_hist)-end_date_index] histXtrain = np.reshape(histXtrain, (1,) + histXtrain.shape) print("hist shape "+str(histXtrain.shape)) y_position = i + look_back y_position_end = y_position + prediction_horizon x_train_reshaped[i] = X_scaled[i:y_position] y__re = X_scaled[y_position:y_position_end] y_train_reshaped[i] = [item for sublist in y__re for item in sublist] realXtrain = np.reshape(x_train_reshaped[i], (1,) + x_train_reshaped[i].shape) ytrain = np.reshape(y_train_reshaped[i], (1,) + y_train_reshaped[i].shape) print("realX train shape : "+str(realXtrain.shape)) start_time = time.clock() if i == 0: trained_model = train_model(realXtrain, histXtrain, ytrain, None, look_back, Hist_input_size, Hidden_Size, Batch_Size, prediction_horizon, Num_Epochs) else: trained_model = train_model(realXtrain, histXtrain, ytrain, trained_model, look_back, Hist_input_size, Hidden_Size, Batch_Size, prediction_horizon, Num_Epochs) end_time = time.clock() time_taken = end_time - start_time predicted_value, predTime = predict_model(trained_model, realXtrain, histXtrain, Batch_Size) error = abs(ytrain[0] - predicted_value) error_median = np.median(error) error_std = np.std(error) error_mean = np.mean(error) prediction_median.append(error_median) prediction_std.append(error_std) prediction_error.append(error_mean) train_time.append(time_taken) prediction_time.append(predTime) print("The iteration is **** ", i) return prediction_error, prediction_median, train_time, prediction_time def post_processing_data(df, prediction_error, prediction_median, train_time, prediction_time): pred_new_df = df[1440:] # instead of 24 now 1440 new_df_date = pred_new_df[-len(pred_new_df):] test_act = new_df_date.reset_index() test_act = test_act.drop('Values', axis =1) #Adding datetime to prediction error and changing to dataframe test_predictions_date = pd.DataFrame(prediction_error) test_predictions_date.columns = ['Values'] test_predictions_date['Time'] = test_act['Time'] #Adding datetime to prediction error median and changing to dataframe test_predictions_medianError = pd.DataFrame(prediction_median) test_predictions_medianError.columns = ['Values'] test_predictions_medianError['Time'] = test_act['Time'] print("Average Error is", test_predictions_date['Values'].mean()) #Writing predicitons to a csv file test_predictions_date.to_csv('MAE_House20.csv') test_predictions_medianError.to_csv('MedianError_House20.csv') train_time_date =
pd.DataFrame(train_time)
pandas.DataFrame