prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 8 22:58:48 2021 @author: laura.gf """ import requests from requests.exceptions import HTTPError import time from dateutil.relativedelta import relativedelta from datetime import datetime import pandas as pd import sys def query_entry_pt(url): """This function takes as input a URL entry point and returns the complete JSON response in a REST API Input: - url(string): complete url (or entry point) pointing at server Output: - jsonResponse(json object): JSON response associated wtih query """ try: # Time query start_time = time.time() # Using GET command response = requests.get(url) total_time = time.time() - start_time # Raise issues if response is different from 200 response.raise_for_status() # access JSOn content jsonResponse = response.json() return [jsonResponse,total_time] except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') def format_json_resp(json_resp,query_time,record_path_field,date,time,output_dir,base_url,entry_pt): """ This function takes query result in JSON format and saves a CSV with results Parameters ---------- json_resp : JSON object content of query. query_time : string time it took for the query to complete. record_path_field : string level necessary to flatten JSON. date : datetime object date of query. time : datetime object time of query. output_dir : string path to directory where CSV query results will be stored. base_url : string URL pointing at REST API. entry_pt : string complete query type. Returns ------- None. """ df =
pd.json_normalize(json_resp,record_path=record_path_field)
pandas.json_normalize
from datetime import datetime, time, timedelta from pandas.compat import range import sys import os import nose import numpy as np from pandas import Index, DatetimeIndex, Timestamp, Series, date_range, period_range import pandas.tseries.frequencies as frequencies from pandas.tseries.tools import to_datetime import pandas.tseries.offsets as offsets from pandas.tseries.period import PeriodIndex import pandas.compat as compat from pandas.compat import is_platform_windows import pandas.util.testing as tm from pandas import Timedelta def test_to_offset_multiple(): freqstr = '2h30min' freqstr2 = '2h 30min' result = frequencies.to_offset(freqstr) assert(result == frequencies.to_offset(freqstr2)) expected = offsets.Minute(150) assert(result == expected) freqstr = '2h30min15s' result = frequencies.to_offset(freqstr) expected = offsets.Second(150 * 60 + 15) assert(result == expected) freqstr = '2h 60min' result = frequencies.to_offset(freqstr) expected = offsets.Hour(3) assert(result == expected) freqstr = '15l500u' result = frequencies.to_offset(freqstr) expected = offsets.Micro(15500) assert(result == expected) freqstr = '10s75L' result = frequencies.to_offset(freqstr) expected = offsets.Milli(10075) assert(result == expected) freqstr = '2800N' result = frequencies.to_offset(freqstr) expected = offsets.Nano(2800) assert(result == expected) # malformed try: frequencies.to_offset('2h20m') except ValueError: pass else: assert(False) def test_to_offset_negative(): freqstr = '-1S' result = frequencies.to_offset(freqstr) assert(result.n == -1) freqstr = '-5min10s' result = frequencies.to_offset(freqstr) assert(result.n == -310) def test_to_offset_leading_zero(): freqstr = '00H 00T 01S' result = frequencies.to_offset(freqstr) assert(result.n == 1) freqstr = '-00H 03T 14S' result = frequencies.to_offset(freqstr) assert(result.n == -194) def test_to_offset_pd_timedelta(): # Tests for #9064 td = Timedelta(days=1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(86401) assert(expected==result) td = Timedelta(days=-1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(-86399) assert(expected==result) td = Timedelta(hours=1, minutes=10) result = frequencies.to_offset(td) expected = offsets.Minute(70) assert(expected==result) td = Timedelta(hours=1, minutes=-10) result = frequencies.to_offset(td) expected = offsets.Minute(50) assert(expected==result) td = Timedelta(weeks=1) result = frequencies.to_offset(td) expected = offsets.Day(7) assert(expected==result) td1 = Timedelta(hours=1) result1 = frequencies.to_offset(td1) result2 = frequencies.to_offset('60min') assert(result1 == result2) td = Timedelta(microseconds=1) result = frequencies.to_offset(td) expected = offsets.Micro(1) assert(expected == result) td = Timedelta(microseconds=0) tm.assertRaises(ValueError, lambda: frequencies.to_offset(td)) def test_anchored_shortcuts(): result = frequencies.to_offset('W') expected = frequencies.to_offset('W-SUN') assert(result == expected) result1 = frequencies.to_offset('Q') result2 = frequencies.to_offset('Q-DEC') expected = offsets.QuarterEnd(startingMonth=12) assert(result1 == expected) assert(result2 == expected) result1 = frequencies.to_offset('Q-MAY') expected = offsets.QuarterEnd(startingMonth=5) assert(result1 == expected) def test_get_rule_month(): result = frequencies._get_rule_month('W') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Week()) assert(result == 'DEC') result = frequencies._get_rule_month('D') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Day()) assert(result == 'DEC') result = frequencies._get_rule_month('Q') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=12)) print(result == 'DEC') result = frequencies._get_rule_month('Q-JAN') assert(result == 'JAN') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=1)) assert(result == 'JAN') result = frequencies._get_rule_month('A-DEC') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.YearEnd()) assert(result == 'DEC') result = frequencies._get_rule_month('A-MAY') assert(result == 'MAY') result = frequencies._get_rule_month(offsets.YearEnd(month=5)) assert(result == 'MAY') class TestFrequencyCode(tm.TestCase): def test_freq_code(self): self.assertEqual(frequencies.get_freq('A'), 1000) self.assertEqual(frequencies.get_freq('3A'), 1000) self.assertEqual(frequencies.get_freq('-1A'), 1000) self.assertEqual(frequencies.get_freq('W'), 4000) self.assertEqual(frequencies.get_freq('W-MON'), 4001) self.assertEqual(frequencies.get_freq('W-FRI'), 4005) for freqstr, code in compat.iteritems(frequencies._period_code_map): result = frequencies.get_freq(freqstr) self.assertEqual(result, code) result = frequencies.get_freq_group(freqstr) self.assertEqual(result, code // 1000 * 1000) result = frequencies.get_freq_group(code) self.assertEqual(result, code // 1000 * 1000) def test_freq_group(self): self.assertEqual(frequencies.get_freq_group('A'), 1000) self.assertEqual(frequencies.get_freq_group('3A'), 1000) self.assertEqual(frequencies.get_freq_group('-1A'), 1000) self.assertEqual(frequencies.get_freq_group('A-JAN'), 1000) self.assertEqual(frequencies.get_freq_group('A-MAY'), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd()), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=1)), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=5)), 1000) self.assertEqual(frequencies.get_freq_group('W'), 4000) self.assertEqual(frequencies.get_freq_group('W-MON'), 4000) self.assertEqual(frequencies.get_freq_group('W-FRI'), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week()), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week(weekday=1)), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week(weekday=5)), 4000) def test_get_to_timestamp_base(self): tsb = frequencies.get_to_timestamp_base self.assertEqual(tsb(frequencies.get_freq_code('D')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('W')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('M')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('S')[0]), frequencies.get_freq_code('S')[0]) self.assertEqual(tsb(frequencies.get_freq_code('T')[0]), frequencies.get_freq_code('S')[0]) self.assertEqual(tsb(frequencies.get_freq_code('H')[0]), frequencies.get_freq_code('S')[0]) def test_freq_to_reso(self): Reso = frequencies.Resolution self.assertEqual(Reso.get_str_from_freq('A'), 'year') self.assertEqual(Reso.get_str_from_freq('Q'), 'quarter') self.assertEqual(Reso.get_str_from_freq('M'), 'month') self.assertEqual(Reso.get_str_from_freq('D'), 'day') self.assertEqual(Reso.get_str_from_freq('H'), 'hour') self.assertEqual(Reso.get_str_from_freq('T'), 'minute') self.assertEqual(Reso.get_str_from_freq('S'), 'second') self.assertEqual(Reso.get_str_from_freq('L'), 'millisecond') self.assertEqual(Reso.get_str_from_freq('U'), 'microsecond') self.assertEqual(Reso.get_str_from_freq('N'), 'nanosecond') for freq in ['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U', 'N']: # check roundtrip result = Reso.get_freq(Reso.get_str_from_freq(freq)) self.assertEqual(freq, result) for freq in ['D', 'H', 'T', 'S', 'L', 'U']: result = Reso.get_freq(Reso.get_str(Reso.get_reso_from_freq(freq))) self.assertEqual(freq, result) def test_get_freq_code(self): # freqstr self.assertEqual(frequencies.get_freq_code('A'), (frequencies.get_freq('A'), 1)) self.assertEqual(frequencies.get_freq_code('3D'), (frequencies.get_freq('D'), 3)) self.assertEqual(frequencies.get_freq_code('-2M'), (frequencies.get_freq('M'), -2)) # tuple self.assertEqual(frequencies.get_freq_code(('D', 1)), (frequencies.get_freq('D'), 1)) self.assertEqual(frequencies.get_freq_code(('A', 3)), (frequencies.get_freq('A'), 3)) self.assertEqual(frequencies.get_freq_code(('M', -2)), (frequencies.get_freq('M'), -2)) # numeric tuple self.assertEqual(
frequencies.get_freq_code((1000, 1))
pandas.tseries.frequencies.get_freq_code
import pandas as pd import numpy as np from itertools import chain import requests def read_cnv(inputfile): """Function to read CNV input file. input: _somatic_cnv.tsv output: dataframe""" def convert_to_int(row): if row['chr'].lower() in ["x", "y"]: return row["chr"] elif row['chr'] == "null": return row["chr"] else: return int(row["chr"]) dataframe = pd.read_csv(inputfile, sep="\t") dataframe["var_type"] = "cnv" dataframe.fillna("null", inplace=True) dataframe["chr"] = dataframe["chr"].str.replace("chr", "") # convert chromosome number to int. dataframe["chr"] = dataframe.apply(convert_to_int, axis=1) return dataframe def chainer(df_series): """Function to return flattened list of splitted values. It is used in parse_cnv(), to repeate the rows for splitted values.""" return list(chain.from_iterable(df_series.str.split(';'))) def split_effect(row): """Function to return gene's effect via parsing the effect column of the input dataframe. It is used in parse_cnv() to retrieve the corresponding effect of the gene given in the gene column after ; split.""" effect = row["effect"].split(";") if row["effect"] == "null": val = "null" elif row["gene"] in row["effect"]: for e in effect: if row['gene'] in e: val = e else: continue else: val = "null" return val # room for improvement: make request calls parallel, it takes long time def get_hgnc_id(dataframe): """Function to retrieve HGNC IDs via HGNC REST API""" def hgnc_to_str(row): if isinstance(row["HGNC_ID"], float): return str(int(row["HGNC_ID"])) elif isinstance(row["HGNC_ID"], int): return str(row["HGNC_ID"]) else: return row["HGNC_ID"] if "HGNC_ID" in dataframe.columns: dataframe["HGNC_ID"] = dataframe.apply(hgnc_to_str, axis=1) else: for index, row in dataframe.iterrows(): if row["gene"] == "null": dataframe.at[index, 'HGNC_ID'] = "null" continue url = "http://rest.genenames.org//search/symbol/{}".format( row['gene']) response = requests.get( url, headers={'Accept': 'application/json'}) if response.status_code == 200 and response.json()["response"]["numFound"] > 0: value = response.json()[ "response"]["docs"][0]["hgnc_id"].strip("HGNC: ") print(value) dataframe.at[index, 'HGNC_ID'] = value else: dataframe.at[index, 'HGNC_ID'] = "null" return dataframe # room for improvement: check for the column names before processing, it might change. def parse_cnv(dataframe): """Function to process input cnv file. split gene values seperated by ;, repeat rows and reshape the dataframe, get the effect of the splitted gene via parding the effect column, retrieving hgnc ids via hgnc rest api. """ # get repetations based on split lengths = dataframe['gene'].str.split(';').map(len) # reshape dataframe reshaped_data = {'size': np.repeat(dataframe['size'], lengths), 'type': np.repeat(dataframe['type'], lengths), 'copy_number': np.repeat( dataframe['copy_number'], lengths), 'gene': chainer(dataframe['gene']), 'exons': np.repeat(dataframe['exons'], lengths), 'transcript': np.repeat(dataframe['transcript'], lengths), 'chr': np.repeat(dataframe['chr'], lengths), 'start': np.repeat(dataframe['start'], lengths), 'end': np.repeat(dataframe['end'], lengths), 'effect': np.repeat(dataframe['effect'], lengths), 'var_type': np.repeat(dataframe['var_type'], lengths)} if "HGNC_ID" in dataframe.columns: reshaped_data['HGNC_ID'] = np.repeat(dataframe['HGNC_ID'], lengths) reshaped_dataframe =
pd.DataFrame(reshaped_data)
pandas.DataFrame
import pandas as pd import numpy as np from xgboost import XGBRegressor from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn import metrics import os import sys import itertools from pathlib import Path import pickle import logging import time logging.basicConfig(stream=sys.stdout, level=logging.DEBUG,) logger = logging.getLogger(__name__) #model training def train_and_score(queries,model,dims, **param_grid): X_train, X_test, y_train, y_test = train_test_split( queries[:,:queries.shape[1]-1], queries[:,-1], test_size=0.2, random_state=0) if param_grid: m = GridSearchCV(model(), cv=3,n_jobs=6, param_grid= param_grid) else: m=model() m.fit(X_train, y_train) pred = m.predict(X_test) rmse = np.sqrt(metrics.mean_squared_error(y_test, pred)) r2 = metrics.r2_score(y_test, pred) print("RMSE : {}".format(rmse)) print("Fitting : {}".format(r2)) return m, rmse, r2 #Save models xgb_parameters = { "learning_rate": 10.0**-np.arange(1,4), "max_depth" : np.arange(3,10,2), "n_estimators": [100, 200, 300], "reg_lambda": 10.0**-np.arange(0,4) } file = os.fsencode('input/queries/queries-uniform-5-multi_True-density') filename = os.fsdecode(file) f = np.loadtxt(filename ,delimiter=',') cols = [1,2,3] print(f.shape) queries_num = np.linspace(10000, f.shape[0],num=10).astype(int) print(queries_num) training_overhead = {} training_overhead['time'] = [] training_overhead['queries'] = [] training_overhead['hypertuning'] = [] for no in queries_num: X = f[:no,:] logger.debug("File : {0}".format(X.shape[0])) start = time.time() m,RMSE,R2 = train_and_score(X,XGBRegressor, X.shape[1], **xgb_parameters) end = time.time()-start training_overhead['time'].append(end) training_overhead['queries'].append(no) training_overhead['hypertuning'].append(True) for i in range(5): start = time.time() m,RMSE,R2 = train_and_score(X,XGBRegressor, X.shape[1]) end = time.time()-start training_overhead['time'].append(end) training_overhead['queries'].append(no) training_overhead['hypertuning'].append(False) df =
pd.DataFrame(training_overhead)
pandas.DataFrame
## Packages. import pandas, os, tqdm ## Group of table of data. group = [] for mode in ['train', 'test']: if(mode=='train'): ## Load table. table = pandas.read_csv("../DATA/BMSMT/TRAIN/CSV/LABEL.csv") table['mode'] = 'train' ## Information. folder = "../DATA/BMSMT/TRAIN/PNG/" table['image'] = [folder + i[0] + '/' + i[1] + '/' + i[2] + '/' + i + '.png' for i in table['image_id']] table['length'] = [len(i) for i in table['InChI']] ## Append to group. group += [table] pass if(mode=='test'): ## Load table. table =
pandas.read_csv("../DATA/BMSMT/TEST/CSV/LABEL.csv")
pandas.read_csv
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result =
_possibly_downcast_to_dtype(result, dtype)
pandas.core.common._possibly_downcast_to_dtype
""" Todo: * Implement correct cfgstrs based on algorithm input for cached computations. * Go pandas all the way Issues: * errors when there is a word without any database vectors. currently a weight of zero is hacked in """ from __future__ import absolute_import, division, print_function import ibeis import six import vtool import utool import numpy as np import numpy.linalg as npl # NOQA import pandas as pd from vtool import clustering2 as clustertool from vtool import nearest_neighbors as nntool from plottool import draw_func2 as df2 np.set_printoptions(precision=2) pd.set_option('display.max_rows', 7) pd.set_option('display.max_columns', 7) pd.set_option('isplay.notebook_repr_html', True) VEC_DIM = 128 VEC_COLUMNS = pd.Int64Index(range(VEC_DIM), name='vec') def pandasify_dict1d(dict_, keys, val_name, series_name): """ Turns dict into heirarchy of series """ key2_series = pd.Series( {key: pd.Series(dict_[key], name=val_name,) for key in keys}, index=keys, name=series_name) return key2_series def pandasify_dict2d(dict_, keys, key2_index, columns, series_name): """ Turns dict into heirarchy of dataframes """ key2_df = pd.Series( {key: pd.DataFrame(dict_[key], index=key2_index[key], columns=columns,) for key in keys}, index=keys, name=series_name) return key2_df def make_annot_df(ibs): """ Creates a panda dataframe using an ibeis controller >>> from ibeis.model.hots.smk.smk import * # NOQA >>> ibs = ibeis.opendb('PZ_MTEST') >>> annots_df = make_annot_df(ibs) """ aid_list = ibs.get_valid_aids() kpts_list = ibs.get_annot_kpts(aid_list) vecs_list = ibs.get_annot_desc(aid_list) aid_series = pd.Series(aid_list, name='aid') # TODO: this could be more pandas kpts_df =
pd.DataFrame(kpts_list, index=aid_series, columns=['kpts'])
pandas.DataFrame
import pandas as pd import pickle from sklearn.cluster import KMeans import math latlong_df = pd.read_csv("./latlongfinal.csv") features = latlong_df.iloc[:, [2,3]] new_features =
pd.DataFrame()
pandas.DataFrame
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import inspect import numpy as np import pandas as pd import pyspark import databricks.koalas as ks from databricks.koalas.exceptions import PandasNotImplementedError from databricks.koalas.missing.indexes import MissingPandasLikeIndex, MissingPandasLikeMultiIndex from databricks.koalas.testing.utils import ReusedSQLTestCase, TestUtils class IndexesTest(ReusedSQLTestCase, TestUtils): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0],}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) @property def kdf(self): return ks.from_pandas(self.pdf) def test_index(self): for pdf in [ pd.DataFrame(np.random.randn(10, 5), index=list("abcdefghij")), pd.DataFrame( np.random.randn(10, 5), index=pd.date_range("2011-01-01", freq="D", periods=10) ), pd.DataFrame(np.random.randn(10, 5), columns=list("abcde")).set_index(["a", "b"]), ]: kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index, pdf.index) def test_index_getattr(self): kidx = self.kdf.index item = "databricks" expected_error_message = "'Index' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_multi_index_getattr(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) kidx = kdf.index item = "databricks" expected_error_message = "'MultiIndex' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_to_series(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) # With name pidx.name = "Koalas" kidx.name = "Koalas" self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name=("x", "a"))), repr(pidx.to_series(name=("x", "a")))) # With tupled name pidx.name = ("x", "a") kidx.name = ("x", "a") self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) self.assert_eq((kidx + 1).to_series(), (pidx + 1).to_series()) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name="a"), pidx.to_series(name="a")) def test_to_frame(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) pidx.name = "a" kidx.name = "a" self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq(repr(kidx.to_frame(name="x")), repr(pidx.to_frame(name="x"))) self.assert_eq( repr(kidx.to_frame(index=False, name="x")), repr(pidx.to_frame(index=False, name="x")), ) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq( repr(kidx.to_frame(name=["x", "y"])), repr(pidx.to_frame(name=["x", "y"])) ) self.assert_eq( repr(kidx.to_frame(index=False, name=["x", "y"])), repr(pidx.to_frame(index=False, name=["x", "y"])), ) def test_index_names(self): kdf = self.kdf self.assertIsNone(kdf.index.name) idx = pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") pdf = pd.DataFrame(np.random.randn(10, 5), index=idx, columns=list("abcde")) kdf = ks.from_pandas(pdf) pser = pdf.a kser = kdf.a self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.name = "renamed" kidx.name = "renamed" self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) pidx.name = None kidx.name = None self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) with self.assertRaisesRegex(ValueError, "Names must be a list-like"): kidx.names = "hi" expected_error_message = "Length of new names must be {}, got {}".format( len(kdf._internal.index_map), len(["0", "1"]) ) with self.assertRaisesRegex(ValueError, expected_error_message): kidx.names = ["0", "1"] def test_multi_index_names(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.names = ["renamed_number", "renamed_color"] kidx.names = ["renamed_number", "renamed_color"] self.assertEqual(kidx.names, pidx.names) pidx.names = ["renamed_number", None] kidx.names = ["renamed_number", None] self.assertEqual(kidx.names, pidx.names) if LooseVersion(pyspark.__version__) < LooseVersion("2.4"): # PySpark < 2.4 does not support struct type with arrow enabled. with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx, pidx) else: self.assert_eq(kidx, pidx) with self.assertRaises(PandasNotImplementedError): kidx.name with self.assertRaises(PandasNotImplementedError): kidx.name = "renamed" def test_index_rename(self): pdf = pd.DataFrame( np.random.randn(10, 5), index=pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") ) kdf = ks.from_pandas(pdf) pidx = pdf.index kidx = kdf.index self.assert_eq(kidx.rename("y"), pidx.rename("y")) self.assert_eq(kdf.index.names, pdf.index.names) kidx.rename("z", inplace=True) pidx.rename("z", inplace=True) self.assert_eq(kidx, pidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kidx.rename(None), pidx.rename(None)) self.assert_eq(kdf.index.names, pdf.index.names) def test_multi_index_rename(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) pmidx = pdf.index kmidx = kdf.index self.assert_eq(kmidx.rename(["n", "c"]), pmidx.rename(["n", "c"])) self.assert_eq(kdf.index.names, pdf.index.names) kmidx.rename(["num", "col"], inplace=True) pmidx.rename(["num", "col"], inplace=True) self.assert_eq(kmidx, pmidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kmidx.rename([None, None]), pmidx.rename([None, None])) self.assert_eq(kdf.index.names, pdf.index.names) self.assertRaises(TypeError, lambda: kmidx.rename("number")) self.assertRaises(ValueError, lambda: kmidx.rename(["number"])) def test_multi_index_levshape(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2)]) kidx = ks.from_pandas(pidx) self.assertEqual(pidx.levshape, kidx.levshape) def test_index_unique(self): kidx = self.kdf.index # here the output is different than pandas in terms of order expected = [0, 1, 3, 5, 6, 8, 9] self.assert_eq(expected, sorted(kidx.unique().to_pandas())) self.assert_eq(expected, sorted(kidx.unique(level=0).to_pandas())) expected = [1, 2, 4, 6, 7, 9, 10] self.assert_eq(expected, sorted((kidx + 1).unique().to_pandas())) with self.assertRaisesRegex(IndexError, "Too many levels*"): kidx.unique(level=1) with self.assertRaisesRegex(KeyError, "Requested level (hi)*"): kidx.unique(level="hi") def test_multi_index_copy(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index.copy(), pdf.index.copy()) def test_drop_duplicates(self): pidx = pd.Index([4, 2, 4, 1, 4, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.drop_duplicates().sort_values(), pidx.drop_duplicates().sort_values()) self.assert_eq( (kidx + 1).drop_duplicates().sort_values(), (pidx + 1).drop_duplicates().sort_values() ) def test_dropna(self): pidx = pd.Index([np.nan, 2, 4, 1, np.nan, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.dropna(), pidx.dropna()) self.assert_eq((kidx + 1).dropna(), (pidx + 1).dropna()) def test_index_symmetric_difference(self): pidx1 = pd.Index([1, 2, 3, 4]) pidx2 = pd.Index([2, 3, 4, 5]) kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq( kidx1.symmetric_difference(kidx2).sort_values(), pidx1.symmetric_difference(pidx2).sort_values(), ) self.assert_eq( (kidx1 + 1).symmetric_difference(kidx2).sort_values(), (pidx1 + 1).symmetric_difference(pidx2).sort_values(), ) pmidx1 = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) pmidx2 = pd.MultiIndex( [["koalas", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) kmidx1 = ks.from_pandas(pmidx1) kmidx2 = ks.from_pandas(pmidx2) self.assert_eq( kmidx1.symmetric_difference(kmidx2).sort_values(), pmidx1.symmetric_difference(pmidx2).sort_values(), ) idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): idx.symmetric_difference(midx) def test_multi_index_symmetric_difference(self): idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) midx_ = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) self.assert_eq( midx.symmetric_difference(midx_), midx.to_pandas().symmetric_difference(midx_.to_pandas()), ) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): midx.symmetric_difference(idx) def test_missing(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) # Index functions missing_functions = inspect.getmembers(MissingPandasLikeIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name)() # MultiIndex functions missing_functions = inspect.getmembers(MissingPandasLikeMultiIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name)() # Index properties missing_properties = inspect.getmembers( MissingPandasLikeIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name) # MultiIndex properties missing_properties = inspect.getmembers( MissingPandasLikeMultiIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name) def test_index_has_duplicates(self): indexes = [("a", "b", "c"), ("a", "a", "c"), (1, 3, 3), (1, 2, 3)] names = [None, "ks", "ks", None] has_dup = [False, True, True, False] for idx, name, expected in zip(indexes, names, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(idx, name=name)) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multiindex_has_duplicates(self): indexes = [ [list("abc"), list("edf")], [list("aac"), list("edf")], [list("aac"), list("eef")], [[1, 4, 4], [4, 6, 6]], ] has_dup = [False, False, True, True] for idx, expected in zip(indexes, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multi_index_not_supported(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) with self.assertRaisesRegex(TypeError, "cannot perform any with this index type"): kdf.set_index(["a", "b"]).index.any() with self.assertRaisesRegex(TypeError, "cannot perform all with this index type"): kdf.set_index(["a", "b"]).index.all() def test_index_nlevels(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(["a", "b", "c"])) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 1) def test_multiindex_nlevel(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=[list("abc"), list("def")]) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 2) def test_multiindex_from_arrays(self): arrays = [["a", "a", "b", "b"], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays) kidx = ks.MultiIndex.from_arrays(arrays) self.assert_eq(pidx, kidx) def test_multiindex_swaplevel(self): pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", "number"]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(-2, -1), kidx.swaplevel(-2, -1)) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) self.assert_eq(pidx.swaplevel("word", 1), kidx.swaplevel("word", 1)) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(-3, "word") with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, 2) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, -3) with self.assertRaisesRegex(KeyError, "Level work not found"): kidx.swaplevel(0, "work") def test_multiindex_droplevel(self): pidx = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2)], names=["level1", "level2", "level3"] ) kidx = ks.from_pandas(pidx) with self.assertRaisesRegex(IndexError, "Too many levels: Index has only 3 levels, not 5"): kidx.droplevel(4) with self.assertRaisesRegex(KeyError, "Level level4 not found"): kidx.droplevel("level4") with self.assertRaisesRegex(KeyError, "Level.*level3.*level4.*not found"): kidx.droplevel([("level3", "level4")]) with self.assertRaisesRegex( ValueError, "Cannot remove 4 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 0, 1, 2]) with self.assertRaisesRegex( ValueError, "Cannot remove 3 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 1, 2]) self.assert_eq(pidx.droplevel(0), kidx.droplevel(0)) self.assert_eq(pidx.droplevel([0, 1]), kidx.droplevel([0, 1])) self.assert_eq(pidx.droplevel([0, "level2"]), kidx.droplevel([0, "level2"])) def test_index_fillna(self): pidx = pd.Index([1, 2, None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.fillna(0), kidx.fillna(0)) self.assert_eq(pidx.rename("name").fillna(0), kidx.rename("name").fillna(0)) with self.assertRaisesRegex(TypeError, "Unsupported type <class 'list'>"): kidx.fillna([1, 2]) def test_index_drop(self): pidx = pd.Index([1, 2, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop(1), kidx.drop(1)) self.assert_eq(pidx.drop([1, 2]), kidx.drop([1, 2])) def test_multiindex_drop(self): pidx = pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z")], names=["level1", "level2"] ) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop("a"), kidx.drop("a")) self.assert_eq(pidx.drop(["a", "b"]), kidx.drop(["a", "b"])) self.assert_eq(pidx.drop(["x", "y"], level=1), kidx.drop(["x", "y"], level=1)) self.assert_eq(pidx.drop(["x", "y"], level="level2"), kidx.drop(["x", "y"], level="level2")) pidx.names = ["lv1", "lv2"] kidx.names = ["lv1", "lv2"] self.assert_eq(pidx.drop(["x", "y"], level="lv2"), kidx.drop(["x", "y"], level="lv2")) self.assertRaises(IndexError, lambda: kidx.drop(["a", "b"], level=2)) self.assertRaises(KeyError, lambda: kidx.drop(["a", "b"], level="level")) kidx.names = ["lv", "lv"] self.assertRaises(ValueError, lambda: kidx.drop(["x", "y"], level="lv")) def test_sort_values(self): pidx = pd.Index([-10, -100, 200, 100]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx.name = "koalas" kidx.name = "koalas" self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx.names = ["hello", "koalas", "goodbye"] kidx.names = ["hello", "koalas", "goodbye"] self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) def test_index_drop_duplicates(self): pidx = pd.Index([1, 1, 2]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) pidx = pd.MultiIndex.from_tuples([(1, 1), (1, 1), (2, 2)], names=["level1", "level2"]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) def test_index_sort(self): idx = ks.Index([1, 2, 3, 4, 5]) midx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2)]) with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead" ): idx.sort() with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead" ): midx.sort() def test_multiindex_isna(self): kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex(NotImplementedError, "isna is not defined for MultiIndex"): kidx.isna() with self.assertRaisesRegex(NotImplementedError, "isna is not defined for MultiIndex"): kidx.isnull() with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notna() with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_index_nunique(self): pidx = pd.Index([1, 1, 2, None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.nunique(), kidx.nunique()) self.assert_eq(pidx.nunique(dropna=True), kidx.nunique(dropna=True)) def test_multiindex_nunique(self): kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_multiindex_rename(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx = pidx.rename(list("ABC")) kidx = kidx.rename(list("ABC")) self.assert_eq(pidx, kidx) pidx = pidx.rename(["my", "name", "is"]) kidx = kidx.rename(["my", "name", "is"]) self.assert_eq(pidx, kidx) def test_multiindex_set_names(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx = pidx.set_names(["set", "new", "names"]) kidx = kidx.set_names(["set", "new", "names"]) self.assert_eq(pidx, kidx) pidx.set_names(["set", "new", "names"], inplace=True) kidx.set_names(["set", "new", "names"], inplace=True) self.assert_eq(pidx, kidx) pidx = pidx.set_names("first", level=0) kidx = kidx.set_names("first", level=0) self.assert_eq(pidx, kidx) pidx = pidx.set_names("second", level=1) kidx = kidx.set_names("second", level=1) self.assert_eq(pidx, kidx) pidx = pidx.set_names("third", level=2) kidx = kidx.set_names("third", level=2) self.assert_eq(pidx, kidx) pidx.set_names("first", level=0, inplace=True) kidx.set_names("first", level=0, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names("second", level=1, inplace=True) kidx.set_names("second", level=1, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names("third", level=2, inplace=True) kidx.set_names("third", level=2, inplace=True) self.assert_eq(pidx, kidx) def test_multiindex_from_tuples(self): tuples = [(1, "red"), (1, "blue"), (2, "red"), (2, "blue")] pidx = pd.MultiIndex.from_tuples(tuples) kidx = ks.MultiIndex.from_tuples(tuples) self.assert_eq(pidx, kidx) def test_multiindex_from_product(self): iterables = [[0, 1, 2], ["green", "purple"]] pidx = pd.MultiIndex.from_product(iterables) kidx = ks.MultiIndex.from_product(iterables) self.assert_eq(pidx, kidx) def test_multiindex_tuple_column_name(self): column_labels = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")]) pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=column_labels) pdf.set_index(("a", "x"), append=True, inplace=True) kdf = ks.from_pandas(pdf) self.assert_eq(pdf, kdf) def test_len(self): pidx = pd.Index(range(10000)) kidx = ks.from_pandas(pidx) self.assert_eq(len(pidx), len(kidx)) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) self.assert_eq(len(pidx), len(kidx)) def test_delete(self): pidx = pd.Index([10, 9, 8, 7, 6, 7, 8, 9, 10]) kidx = ks.Index([10, 9, 8, 7, 6, 7, 8, 9, 10]) self.assert_eq(pidx.delete(5).sort_values(), kidx.delete(5).sort_values()) self.assert_eq(pidx.delete(-5).sort_values(), kidx.delete(-5).sort_values()) if LooseVersion(np.__version__) < LooseVersion("1.19"): self.assert_eq( pidx.delete([0, 10000]).sort_values(), kidx.delete([0, 10000]).sort_values() ) self.assert_eq( pidx.delete([10000, 20000]).sort_values(), kidx.delete([10000, 20000]).sort_values() ) else: self.assert_eq(pidx.delete([0]).sort_values(), kidx.delete([0, 10000]).sort_values()) self.assert_eq(pidx.delete([]).sort_values(), kidx.delete([10000, 20000]).sort_values()) with self.assertRaisesRegex(IndexError, "index 10 is out of bounds for axis 0 with size 9"): kidx.delete(10) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) self.assert_eq(pidx.delete(1).sort_values(), kidx.delete(1).sort_values()) self.assert_eq(pidx.delete(-1).sort_values(), kidx.delete(-1).sort_values()) if LooseVersion(np.__version__) < LooseVersion("1.19"): self.assert_eq( pidx.delete([0, 10000]).sort_values(), kidx.delete([0, 10000]).sort_values() ) self.assert_eq( pidx.delete([10000, 20000]).sort_values(), kidx.delete([10000, 20000]).sort_values() ) else: self.assert_eq(pidx.delete([0]).sort_values(), kidx.delete([0, 10000]).sort_values()) self.assert_eq(pidx.delete([]).sort_values(), kidx.delete([10000, 20000]).sort_values()) def test_append(self): # Index pidx = pd.Index(range(10000)) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.append(pidx), kidx.append(kidx)) # Index with name pidx1 = pd.Index(range(10000), name="a") pidx2 = pd.Index(range(10000), name="b") kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["a", "b", "c"]) pdf2 = pd.DataFrame({"a": [7, 8, 9], "d": [10, 11, 12]}, index=["x", "y", "z"]) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index("a").index pidx2 = pdf2.set_index("d").index kidx1 = kdf1.set_index("a").index kidx2 = kdf2.set_index("d").index self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame with MultiIndex columns pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) pdf2 = pd.DataFrame({"a": [7, 8, 9], "d": [10, 11, 12]}) pdf1.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y")]) pdf2.columns = pd.MultiIndex.from_tuples([("a", "x"), ("d", "y")]) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index(("a", "x")).index pidx2 = pdf2.set_index(("d", "y")).index kidx1 = kdf1.set_index(("a", "x")).index kidx2 = kdf2.set_index(("d", "y")).index self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # MultiIndex pmidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kmidx = ks.from_pandas(pmidx) self.assert_eq(pmidx.append(pmidx), kmidx.append(kmidx)) # MultiIndex with names pmidx1 = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["x", "y", "z"] ) pmidx2 = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["p", "q", "r"] ) kmidx1 = ks.from_pandas(pmidx1) kmidx2 = ks.from_pandas(pmidx2) self.assert_eq(pmidx1.append(pmidx2), kmidx1.append(kmidx2)) self.assert_eq(pmidx2.append(pmidx1), kmidx2.append(kmidx1)) self.assert_eq(pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) self.assert_eq(pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) # Index & MultiIndex currently is not supported expected_error_message = r"append\(\) between Index & MultiIndex currently is not supported" with self.assertRaisesRegex(NotImplementedError, expected_error_message): kidx.append(kmidx) with self.assertRaisesRegex(NotImplementedError, expected_error_message): kmidx.append(kidx) def test_argmin(self): pidx = pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.argmin(), kidx.argmin()) # MultiIndex kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex( TypeError, "reduction operation 'argmin' not allowed for this dtype" ): kidx.argmin() def test_argmax(self): pidx = pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.argmax(), kidx.argmax()) # MultiIndex kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex( TypeError, "reduction operation 'argmax' not allowed for this dtype" ): kidx.argmax() def test_monotonic(self): # test monotonic_increasing & monotonic_decreasing for MultiIndex. # Since the Behavior for null value was changed in pandas >= 1.0.0, # several cases are tested differently. datas = [] # increasing / decreasing ordered each index level with string datas.append([("w", "a"), ("x", "b"), ("y", "c"), ("z", "d")]) datas.append([("w", "d"), ("x", "c"), ("y", "b"), ("z", "a")]) datas.append([("z", "a"), ("y", "b"), ("x", "c"), ("w", "d")]) datas.append([("z", "d"), ("y", "c"), ("x", "b"), ("w", "a")]) # mixed order each index level with string datas.append([("z", "a"), ("x", "b"), ("y", "c"), ("w", "d")]) datas.append([("z", "a"), ("y", "c"), ("x", "b"), ("w", "d")]) # increasing / decreasing ordered each index level with integer datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 500), (2, 400), (3, 300), (4, 200), (5, 100)]) datas.append([(5, 100), (4, 200), (3, 300), (2, 400), (1, 500)]) datas.append([(5, 500), (4, 400), (3, 300), (2, 200), (1, 100)]) # mixed order each index level with integer datas.append([(1, 500), (3, 400), (2, 300), (4, 200), (5, 100)]) datas.append([(1, 100), (2, 300), (3, 200), (4, 400), (5, 500)]) # integer / negative mixed tests datas.append([("a", -500), ("b", -400), ("c", -300), ("d", -200), ("e", -100)]) datas.append([("e", -500), ("d", -400), ("c", -300), ("b", -200), ("a", -100)]) datas.append([(-5, "a"), (-4, "b"), (-3, "c"), (-2, "d"), (-1, "e")]) datas.append([(-5, "e"), (-4, "d"), (-3, "c"), (-2, "b"), (-1, "a")]) datas.append([(-5, "e"), (-3, "d"), (-2, "c"), (-4, "b"), (-1, "a")]) datas.append([(-5, "e"), (-4, "c"), (-3, "b"), (-2, "d"), (-1, "a")]) # None type tests (None type is treated as the smallest value) datas.append([(1, 100), (2, 200), (None, 300), (4, 400), (5, 500)]) datas.append([(5, None), (4, 200), (3, 300), (2, 400), (1, 500)]) datas.append([(5, 100), (4, 200), (3, None), (2, 400), (1, 500)]) datas.append([(5, 100), (4, 200), (3, 300), (2, 400), (1, None)]) datas.append([(1, 100), (2, 200), (None, None), (4, 400), (5, 500)]) datas.append([(-5, None), (-4, None), (-3, None), (-2, None), (-1, None)]) datas.append([(None, "e"), (None, "c"), (None, "b"), (None, "d"), (None, "a")]) datas.append([(None, None), (None, None), (None, None), (None, None), (None, None)]) # duplicated index value tests datas.append([("x", "d"), ("y", "c"), ("y", "b"), ("z", "a")]) datas.append([("x", "d"), ("y", "b"), ("y", "c"), ("z", "a")]) datas.append([("x", "d"), ("y", "c"), ("y", None), ("z", "a")]) datas.append([("x", "d"), ("y", None), ("y", None), ("z", "a")]) datas.append([("x", "d"), ("y", "c"), ("y", "b"), (None, "a")]) datas.append([("x", "d"), ("y", "b"), ("y", "c"), (None, "a")]) # more depth tests datas.append([("x", "d", "o"), ("y", "c", "p"), ("y", "c", "q"), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", "q"), ("y", "c", "p"), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", "p"), ("y", "c", None), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", None), ("y", "c", None), ("z", "a", "r")]) for data in datas: with self.subTest(data=data): pmidx = pd.MultiIndex.from_tuples(data) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.is_monotonic_increasing, pmidx.is_monotonic_increasing) self.assert_eq(kmidx.is_monotonic_decreasing, pmidx.is_monotonic_decreasing) # The datas below are showing different result depends on pandas version. # Because the behavior of handling null values is changed in pandas >= 1.0.0. datas = [] datas.append([(None, 100), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (None, 500)]) datas.append([(None, None), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (None, None)]) datas.append([("x", "d"), ("y", None), ("y", "c"), ("z", "a")]) datas.append([("x", "d", "o"), ("y", "c", None), ("y", "c", "q"), ("z", "a", "r")]) for data in datas: with self.subTest(data=data): pmidx = pd.MultiIndex.from_tuples(data) kmidx = ks.from_pandas(pmidx) expected_increasing_result = pmidx.is_monotonic_increasing if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): expected_increasing_result = not expected_increasing_result self.assert_eq(kmidx.is_monotonic_increasing, expected_increasing_result) self.assert_eq(kmidx.is_monotonic_decreasing, pmidx.is_monotonic_decreasing) def test_difference(self): # Index kidx1 = ks.Index([1, 2, 3, 4], name="koalas") kidx2 = ks.Index([3, 4, 5, 6], name="koalas") pidx1 = kidx1.to_pandas() pidx2 = kidx2.to_pandas() self.assert_eq(kidx1.difference(kidx2).sort_values(), pidx1.difference(pidx2).sort_values()) self.assert_eq( kidx1.difference([3, 4, 5, 6]).sort_values(), pidx1.difference([3, 4, 5, 6]).sort_values(), ) self.assert_eq( kidx1.difference((3, 4, 5, 6)).sort_values(), pidx1.difference((3, 4, 5, 6)).sort_values(), ) self.assert_eq( kidx1.difference({3, 4, 5, 6}).sort_values(), pidx1.difference({3, 4, 5, 6}).sort_values(), ) self.assert_eq( kidx1.difference({3: 1, 4: 2, 5: 3, 6: 4}).sort_values(), pidx1.difference({3: 1, 4: 2, 5: 3, 6: 4}).sort_values(), ) # Exceptions for Index with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference("1234") with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(1234) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(12.34) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(None) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(np.nan) with self.assertRaisesRegex( ValueError, "The 'sort' keyword only takes the values of None or True; 1 was passed." ): kidx1.difference(kidx2, sort=1) # MultiIndex kidx1 = ks.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["hello", "koalas", "world"] ) kidx2 = ks.MultiIndex.from_tuples( [("a", "x", 1), ("b", "z", 2), ("k", "z", 3)], names=["hello", "koalas", "world"] ) pidx1 = kidx1.to_pandas() pidx2 = kidx2.to_pandas() self.assert_eq(kidx1.difference(kidx2).sort_values(), pidx1.difference(pidx2).sort_values()) self.assert_eq( kidx1.difference({("a", "x", 1)}).sort_values(), pidx1.difference({("a", "x", 1)}).sort_values(), ) self.assert_eq( kidx1.difference({("a", "x", 1): [1, 2, 3]}).sort_values(), pidx1.difference({("a", "x", 1): [1, 2, 3]}).sort_values(), ) # Exceptions for MultiIndex with self.assertRaisesRegex(TypeError, "other must be a MultiIndex or a list of tuples"): kidx1.difference(["b", "z", "2"]) def test_repeat(self): pidx = pd.Index(["a", "b", "c"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.repeat(3).sort_values(), pidx.repeat(3).sort_values()) self.assert_eq(kidx.repeat(0).sort_values(), pidx.repeat(0).sort_values()) self.assert_eq((kidx + "x").repeat(3).sort_values(), (pidx + "x").repeat(3).sort_values()) self.assertRaises(ValueError, lambda: kidx.repeat(-1)) self.assertRaises(ValueError, lambda: kidx.repeat("abc")) pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.repeat(3).sort_values(), pmidx.repeat(3).sort_values()) self.assert_eq(kmidx.repeat(0).sort_values(), pmidx.repeat(0).sort_values()) self.assertRaises(ValueError, lambda: kmidx.repeat(-1)) self.assertRaises(ValueError, lambda: kmidx.repeat("abc")) def test_unique(self): pidx = pd.Index(["a", "b", "a"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.unique().sort_values(), pidx.unique().sort_values()) self.assert_eq(kidx.unique().sort_values(), pidx.unique().sort_values()) pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "a")]) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.unique().sort_values(), pmidx.unique().sort_values()) self.assert_eq(kmidx.unique().sort_values(), pmidx.unique().sort_values()) def test_asof(self): # Increasing values pidx = pd.Index(["2013-12-31", "2014-01-02", "2014-01-03"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.asof("2014-01-01"), pidx.asof("2014-01-01")) self.assert_eq(kidx.asof("2014-01-02"), pidx.asof("2014-01-02")) self.assert_eq(repr(kidx.asof("1999-01-02")), repr(pidx.asof("1999-01-02"))) # Decreasing values pidx = pd.Index(["2014-01-03", "2014-01-02", "2013-12-31"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.asof("2014-01-01"), pidx.asof("2014-01-01")) self.assert_eq(kidx.asof("2014-01-02"), pidx.asof("2014-01-02")) self.assert_eq(kidx.asof("1999-01-02"), pidx.asof("1999-01-02")) self.assert_eq(repr(kidx.asof("2015-01-02")), repr(pidx.asof("2015-01-02"))) # Not increasing, neither decreasing (ValueError) kidx = ks.Index(["2013-12-31", "2015-01-02", "2014-01-03"]) self.assertRaises(ValueError, lambda: kidx.asof("2013-12-31")) kmidx = ks.MultiIndex.from_tuples([("a", "a"), ("a", "b"), ("a", "c")]) self.assertRaises(NotImplementedError, lambda: kmidx.asof(("a", "b"))) def test_union(self): # Index pidx1 = pd.Index([1, 2, 3, 4]) pidx2 = pd.Index([3, 4, 5, 6]) kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq(kidx1.union(kidx2), pidx1.union(pidx2)) self.assert_eq(kidx2.union(kidx1), pidx2.union(pidx1)) self.assert_eq( kidx1.union([3, 4, 5, 6]), pidx1.union([3, 4, 5, 6]), ) self.assert_eq( kidx2.union([1, 2, 3, 4]), pidx2.union([1, 2, 3, 4]), ) self.assert_eq( kidx1.union(ks.Series([3, 4, 5, 6])), pidx1.union(pd.Series([3, 4, 5, 6])), ) self.assert_eq( kidx2.union(ks.Series([1, 2, 3, 4])), pidx2.union(pd.Series([1, 2, 3, 4])), ) # Testing if the result is correct after sort=False. # The `sort` argument is added in pandas 0.24. if LooseVersion(pd.__version__) >= LooseVersion("0.24"): self.assert_eq( kidx1.union(kidx2, sort=False).sort_values(), pidx1.union(pidx2, sort=False).sort_values(), ) self.assert_eq( kidx2.union(kidx1, sort=False).sort_values(), pidx2.union(pidx1, sort=False).sort_values(), ) self.assert_eq( kidx1.union([3, 4, 5, 6], sort=False).sort_values(), pidx1.union([3, 4, 5, 6], sort=False).sort_values(), ) self.assert_eq( kidx2.union([1, 2, 3, 4], sort=False).sort_values(), pidx2.union([1, 2, 3, 4], sort=False).sort_values(), ) self.assert_eq( kidx1.union(ks.Series([3, 4, 5, 6]), sort=False).sort_values(), pidx1.union(pd.Series([3, 4, 5, 6]), sort=False).sort_values(), ) self.assert_eq( kidx2.union(ks.Series([1, 2, 3, 4]), sort=False).sort_values(), pidx2.union(pd.Series([1, 2, 3, 4]), sort=False).sort_values(), ) # Duplicated values for Index is supported in pandas >= 1.0.0 if LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): pidx1 = pd.Index([1, 2, 3, 4, 3, 4, 3, 4]) pidx2 = pd.Index([3, 4, 3, 4, 5, 6]) kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq(kidx1.union(kidx2), pidx1.union(pidx2)) self.assert_eq(kidx2.union(kidx1), pidx2.union(pidx1)) self.assert_eq( kidx1.union([3, 4, 3, 3, 5, 6]), pidx1.union([3, 4, 3, 4, 5, 6]), ) self.assert_eq( kidx2.union([1, 2, 3, 4, 3, 4, 3, 4]), pidx2.union([1, 2, 3, 4, 3, 4, 3, 4]), ) self.assert_eq( kidx1.union(ks.Series([3, 4, 3, 3, 5, 6])), pidx1.union(pd.Series([3, 4, 3, 4, 5, 6])), ) self.assert_eq( kidx2.union(ks.Series([1, 2, 3, 4, 3, 4, 3, 4])), pidx2.union(
pd.Series([1, 2, 3, 4, 3, 4, 3, 4])
pandas.Series
import os import dash from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import plotly.graph_objects as go from plotly import express as px import pandas as pd from layout import layout_1, layout_2, navbar, footer from stockdata import stock_df, make_human_readable # Css stylesheet external_stylesheets = [ dbc.themes.BOOTSTRAP, "https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-awesome.min.css", ] app = dash.Dash( __name__, title="Py-Dash", external_stylesheets=external_stylesheets, ) server = app.server # Main layout of the app app.layout = html.Div(className="", children=[navbar, layout_1, layout_2, footer]) # Callback function for bootstrap Modal @app.callback( Output("modal", "is_open"), [Input("open", "n_clicks"), Input("close", "n_clicks")], [State("modal", "is_open")], ) def toggle_modal(n1, n2, is_open): if n1 or n2: return not is_open return is_open # Candlestick chart for single symbol @app.callback( Output("graph1", "figure"), [Input("ticker", "value"), Input("toggle-rangeslider", "value")], ) def display_candlestick(ticker, value): df = stock_df[stock_df.index == ticker] fig = go.Figure( go.Candlestick( x=df["Date"], open=df["Open Price"], high=df["High Price"], low=df["Low Price"], close=df["Close Price"], ) ) fig.update_layout( template="plotly_dark", title=ticker, yaxis_title="Price (INR)", xaxis_title="Date", xaxis_rangeslider_visible="slider" in value, ) fig.layout.autosize = True return fig # Line chart for multiple selected symbols @app.callback( Output("line_chart", "figure"), [Input("multi_tickers", "value"), Input("toggle-rangeslider2", "value")], ) def display_line_chart(tickers, value): fig = go.Figure() # List comprehension to create trace for fig objects because # tickers is a list and it can have only one element also so # if someone selects multiple symbols it will create multiple line charts accordingly traces = [ go.Scatter( x=stock_df["Date"], y=stock_df[stock_df.index == tic]["Close Price"], mode="lines", name=tic, ) for tic in tickers ] fig.add_traces(traces) fig.update_layout( template="plotly_dark", title=", ".join(tickers), yaxis_title="Price (INR)", xaxis_title="Date", xaxis_rangeslider_visible="slider" in value, # legend=dict(x=3, y=2), ) return fig # bar graph for Total traded quantity vs Deliverable quantity @app.callback( Output("bar_graph", "figure"), [ Input("bar_ticker", "value"), Input("bar_date_picker", "start_date"), Input("bar_date_picker", "end_date"), ], ) def display_bar_graph(bar_ticker, start_date, end_date): df = stock_df[ (stock_df.index == bar_ticker) & (stock_df["Pd_date"] >= pd.to_datetime(start_date)) & (stock_df["Pd_date"] <= pd.to_datetime(end_date)) ] fig = go.Figure( [ go.Bar( name="Total", x=df["Date"], y=df["Total Traded Quantity"], text=df["Total Traded Quantity"], textposition="auto", # orientation="h", ), go.Bar( name="Deliverable", x=df["Date"], y=df["Deliverable Qty"], text=df["Deliverable Qty"], textposition="outside", hovertext=df["% Dly Qt to Traded Qty"], ), ] ) fig.update_layout( template="plotly_dark", title="Total traded Qty vs Deliverable Qty", barmode="group", bargap=0.15, # uniformtext_minsize=6, uniformtext_mode="hide", xaxis=dict(title="Date"), yaxis=dict(title="Volume"), ) return fig # Pie chart for turnover data @app.callback( Output("pie_chart", "figure"), [Input("pie_tickers", "value"), Input("pie_date_picker_single", "date")], ) def display_pie_chart(pie_tickers, date): values = [ float( stock_df[ (stock_df.index == tic) & (stock_df["Pd_date"] ==
pd.to_datetime(date)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Mon Dec 13 17:52:00 2021 @author: SimenLab """ import pandas as pd def Data_getter(file_location): """A function which gets and prepares data from CSV files, as well as returning some additional params like an number of ROIs and their corresponding labels. Parameters --------- File: The directory of a CSV .txt file containing the data, with each ROI represented as individual columns in the file. Returns ------- Stimulus DataFrame, stimulus array (as an alternative), number of ROIs, and their labels. """ file = file_location avgs_data = pd.read_csv((file), sep="\t", header=None, engine="python") ##Label data ROI_num = avgs_data.shape[1] # Consider making data loading its own function? "Can put optional manipulations to data here" # pd.read_csv((file), sep="\t", header=None) #, names = labels) averages_dataframe = avgs_data avgerages_array = pd.DataFrame.to_numpy(averages_dataframe) return averages_dataframe, avgerages_array, ROI_num class Data: def Data_getter(self): """A function which gets and prepares data from CSV files, as well as returning some additional params like an number of ROIs and their corresponding labels. Parameters --------- File: The directory of a CSV .txt file containing the data, with each ROI represented as individual columns in the file. Returns ------- Stimulus DataFrame, stimulus array (as an alternative), number of ROIs, and their labels. """ file = self.file_location avgs_data = pd.read_csv((file), sep="\t", header=None, engine="python") ##Label data ROI_num = avgs_data.shape[1] # Consider making data loading its own function? "Can put optional manipulations to data here" # pd.read_csv((file), sep="\t", header=None) #, names = labels) averages_dataframe = avgs_data avgerages_array =
pd.DataFrame.to_numpy(averages_dataframe)
pandas.DataFrame.to_numpy
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 15 22:15:22 2018 @author: tknapen https://github.com/tknapen/hedfpy/blob/master/hedfpy/EyeSignalOperator.py - Wrapper sacc detection - sacc detection algorithm - interpolate gaze function (for pl) """ import numpy as np from scipy.interpolate import PchipInterpolator import pandas as pd import numpy.linalg as LA from functions.et_helper import append_eventtype_to_sample import functions.et_make_df as make_df from matplotlib import pyplot as plt import logging #%% WRAPPER TO DETECT SACCADES (IN THE CASE OF PL SAMPLES ARE INTERPOLATED FIRST) def detect_saccades_engbert_mergenthaler(etsamples,etevents=None,et = None,engbert_lambda=5): # Input: etsamples # fs: sampling frequency # Output: saccades (df) with expanded / raw # amplitude, duration, start_time, end_time, peak_velocity # get a logger logger = logging.getLogger(__name__) # if you specify a sampling frequency, the samples get interpolated # to have regular sampled data in order to apply the saccade detection algorithm etsamples = etsamples.copy() logger.debug('eyetracker: %s',et) if etevents is not None: logger.debug('Setting Eyeblink Data to 0') etsamples = append_eventtype_to_sample(etsamples,etevents,eventtype='blink') etsamples.loc[etsamples.type=='blink',['gx','gy']] = np.nan if 'outside' in etsamples: logger.debug('removing bad-samples for saccade detection') etsamples.loc[etsamples.outside==True,['gx','gy']] = np.nan # for pl the gaze needs to be interpolated first if et == 'pl': fs = 240 interpgaze = interpolate_gaze(etsamples, fs=fs) elif et == 'el': # Eyelink is already interpolated interpgaze = etsamples if np.nansum(str(etsamples.type)=='blink')>0: interpgaze['is_blink'] = etsamples.type=='blink' else: interpgaze['is_blink'] = 0 if np.isclose(etsamples.iloc[1:3].smpl_time.agg(np.diff),0.002): fs = 500 else: # for 5 subjects we have a sampling rate of only 250Hz fs = 250 # apply the saccade detection algorithm saccades = apply_engbert_mergenthaler(xy_data = interpgaze[['gx','gy']],is_blink = interpgaze['is_blink'], vel_data = None,sample_rate=fs,l = engbert_lambda) #sacsave = saccades.copy() #saccades = sacsave # convert samples of data back to sample time for fn in ['raw_start_time','raw_end_time','expanded_start_time','expanded_end_time']: saccades[fn]=np.array(interpgaze.smpl_time.iloc[np.array(saccades[fn])]) return saccades #%% SACCADE DETECTION ALGORITHM def apply_engbert_mergenthaler(xy_data = None, is_blink = None, vel_data = None, l = 5, sample_rate=None, minimum_saccade_duration = 0.0075): """Uses the engbert & mergenthaler algorithm (PNAS 2006) to detect saccades. This function expects a sequence (N x 2) of xy gaze position or velocity data. Arguments: xy_data (numpy.ndarray, optional): a sequence (N x 2) of xy gaze (float/integer) positions. Defaults to None vel_data (numpy.ndarray, optional): a sequence (N x 2) of velocity data (float/integer). Defaults to None. l (float, optional):determines the threshold. Defaults to 5 median-based standard deviations from the median sample_rate (float, optional) - the rate at which eye movements were measured per second). Defaults to 1000.0 minimum_saccade_duration (float, optional) - the minimum duration for something to be considered a saccade). Defaults to 0.0075 Returns: list of dictionaries, which each correspond to a saccade. The dictionary contains the following items: Raises: ValueError: If neither xy_data and vel_data were passed to the function. """ # get a logger logger = logging.getLogger(__name__) logger.debug('Start.... Detecting Saccades') # If xy_data and vel_data are both None, function can't continue if xy_data is None and vel_data is None: raise ValueError("Supply either xy_data or vel_data") #If xy_data is given, process it if not xy_data is None: xy_data = np.array(xy_data) if is_blink is None: raise('error you have to give me blink data!') # Calculate velocity data if it has not been given to function if vel_data is None: # # Check for shape of xy_data. If x and y are ordered in columns, transpose array. # # Should be 2 x N array to use np.diff namely (not Nx2) # rows, cols = xy_data.shape # if rows == 2: # vel_data = np.diff(xy_data) # if cols == 2: # vel_data = np.diff(xy_data.T) vel_data = np.zeros(xy_data.shape) vel_data[1:] = np.diff(xy_data, axis = 0) else: vel_data = np.array(vel_data) inspect_vel =
pd.DataFrame(vel_data)
pandas.DataFrame
from wf_core_data_dashboard import core import wf_core_data import mefs_utils import pandas as pd import inflection import urllib.parse import os def generate_mefs_table_data( test_events_path, student_info_path, student_assignments_path ): test_events = pd.read_pickle(test_events_path) student_info = pd.read_pickle(student_info_path) student_assignments =
pd.read_pickle(student_assignments_path)
pandas.read_pickle
# To add a new cell, type '#%%' # To add a new markdown cell, type '#%% [markdown]' #%% from IPython import get_ipython #%% import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import io import base64 from matplotlib import animation from matplotlib import cm from matplotlib.pyplot import * from sklearn.cluster import KMeans from sklearn.neighbors import KNeighborsClassifier from dateutil import parser from IPython.display import HTML from subprocess import check_output import seaborn as sns #%% get_ipython().run_line_magic('matplotlib', 'inline') #%% plt.rcParams['patch.force_edgecolor'] = 'True' plt.rcParams['figure.figsize'] = (16,10) plt.rcParams['axes.unicode_minus'] = False #%% df_train =
pd.read_csv('train.csv')
pandas.read_csv
# 爬取智联 武汉地区 所有.net 相关的 职位信息 import requests from bs4 import BeautifulSoup import pandas pos=[] headers={ 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Encoding':'gzip, deflate', 'Accept-Language':'zh-CN,zh;q=0.9,en;q=0.8', 'Connection':'keep-alive', 'Host':'sou.zhaopin.com', 'Upgrade-Insecure-Requests':'1', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36' } for p in range(1,50): url='http://sou.zhaopin.com/jobs/searchresult.ashx?jl=%E6%AD%A6%E6%B1%89&kw=java&sm=0&p='+str(p) re=requests.get(url,headers=headers) bs=BeautifulSoup(re.text,'lxml') tb=bs.find_all('table',class_="newlist") for x in tb: res={} zw=x.find('td',class_="zwmc") if(zw): res["Posion"]=zw.find("a").text gs=x.find('td',class_="gsmc") if(gs): res["Company"]=gs.text xs=x.find('td',class_="zwyx") if(xs): res["Salary"]=xs.text if(len(res)>0): pos.append(res)
pandas.DataFrame(pos)
pandas.DataFrame
import pandas as pd import pdb import openpyxl import html import sys import datetime def main(): data = pd.read_excel('cancer_genes_with_pcgp_210921.xlsx',sheet_name='final',index_col=0) # check args try: if sys.argv[1] == 'pcgp': filterField = 'PCGP category (PMID 26580448)' directory = 'byPCGP' panelBuckets = getPCGP(data) elif sys.argv[1] == 'mardis': filterField = 'Preferred list (Mardis)' directory = 'byMardis' panelBuckets = getMardis(data) elif sys.argv[1] == 'cgc': filterField = 'CGC list' directory = 'byCGC' panelBuckets = getCGC(data) elif sys.argv[1] == 'panel': filterField = 'Panel' directory = 'byPanel' panelBuckets = getPanels(data) else: print('Invalid argument') print('Defaulting to PCGP') filterField = 'PCGP category (PMID 26580448)' panelBuckets = getPCGP(data) except: panelBuckets = getPCGP(data) # Write individual buckets out to file for debugging purposes df3 = pd.DataFrame() df3 = df3.assign(buckets=panelBuckets) writer = pd.ExcelWriter('buckets.xlsx') df3.to_excel(writer,sheet_name='buckets') writer.save() # For each individual case, just set the bucket ID as if it ignored the comma split? Probably the quickest way to fix for i in panelBuckets: fix = fixThePanel(i) writeTSV(data,fix,filterField,directory) def fixThePanel(bucket): # From excel file, some buckets are messing up due to extra commas. This is a hard coded fix (hopefully a fix) if bucket == 'CGC Genetics USA OncoRisk Expanded (NGS panel for 89 genes' or bucket == 'including CNV analysis)': fixedBucket = 'CGC Genetics USA OncoRisk Expanded (NGS panel for 89 genes, including CNV analysis)' elif bucket == 'Phosphorous' or bucket == 'Inc. Brain and Nervous System Cancer Panel': fixedBucket = 'Phosphorous, Inc. Brain and Nervous System Cancer Panel' elif bucket == 'CGC Genetics USA OncoRisk (NGS panel for 48 genes': fixedBucket = 'CGC Genetics USA OncoRIsk (NGS panel for 48 genes, including CNV analysis)' elif bucket == 'and PNS Cancer: Deletion/Duplication Panel': fixedBucket = 'EGL Genetics Brain, CNS, and PNS Cancer: Deletion/Duplication Panel' elif bucket == 'and PNS Cancer Panel: Sequencing and CNV Analysis': fixedBucket = 'EGL Genetics Brain, CNS, and PNS Cancer Panel: Sequencing and CNV Analysis' elif bucket == 'Mayo Clinic Laboratories Neuro-Oncology Expanded Gene Panel with Rearrangement': fixedBucket = 'Mayo Clinic Laboratories Neuro-Oncology Expanded Gene Panel with Rearrangement Tumor' else: fixedBucket = bucket return(fixedBucket) def getPanels(df): crosscheck = list() for i in df['Panel']: if type(i)==float: print('FLOAT') pass else: temp = i.split(', ') for j in temp: if j in crosscheck: print('Already there') else: crosscheck.append(j) return(crosscheck) def getCGC(df): # Do the same thing as getPanels, but for the CGC List crosscheck = list() for i in df['CGC list']: if type(i)==float: print('FLOAT') pass else: temp = i.split(', ') for j in temp: if j in crosscheck: print('Already there') else: crosscheck.append(j) return(crosscheck) def getPCGP(df): # Do the same thing as getPanels, but for the PCGP List crosscheck = list() for i in df['PCGP category (PMID 26580448)']: if type(i)==float: print('FLOAT') pass else: temp = i.split(';') for j in temp: if j in crosscheck: print('Already there') else: crosscheck.append(j) return(crosscheck) def getMardis(df): # Do the same thing as getPanels, but for the Mardis Preferred List crosscheck = list() for i in df['Preferred list (Mardis)']: if type(i)==float: print('FLOAT') pass else: temp = i.split(', ') for j in temp: if j in crosscheck: print('Already there') else: crosscheck.append(j) return(crosscheck) def writeTSV(df,bucket,filter_field,directory): # Write function for saving split results. Change filename or whatever accordingly filename = bucket.replace('/',' ') filename = filename.replace('(',' ') if bucket == 'EGL Genetics Brain' or bucket == 'CNS' or bucket == 'Tumor' or bucket == '': return try: df2 = df[df[filter_field].str.contains(bucket)==True] except: print('Something went wrong sorting by bucket') pdb.set_trace() # Initialize excel file try: writer =
pd.ExcelWriter(directory + '/' + filename + '.xlsx')
pandas.ExcelWriter
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result = build_table_schema(self.df, version=False) expected = { 'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['idx'] } assert result == expected result = build_table_schema(self.df) assert "pandas_version" in result def test_series(self): s = pd.Series([1, 2, 3], name='foo') result = build_table_schema(s, version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'foo', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected result = build_table_schema(s) assert 'pandas_version' in result def test_series_unnamed(self): result = build_table_schema(pd.Series([1, 2, 3]), version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected def test_multiindex(self): df = self.df.copy() idx = pd.MultiIndex.from_product([('a', 'b'), (1, 2)]) df.index = idx result = build_table_schema(df, version=False) expected = { 'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['level_0', 'level_1'] } assert result == expected df.index.names = ['idx0', None] expected['fields'][0]['name'] = 'idx0' expected['primaryKey'] = ['idx0', 'level_1'] result = build_table_schema(df, version=False) assert result == expected class TestTableSchemaType(object): def test_as_json_table_type_int_data(self): int_data = [1, 2, 3] int_types = [np.int, np.int16, np.int32, np.int64] for t in int_types: assert as_json_table_type(np.array( int_data, dtype=t)) == 'integer' def test_as_json_table_type_float_data(self): float_data = [1., 2., 3.] float_types = [np.float, np.float16, np.float32, np.float64] for t in float_types: assert as_json_table_type(np.array( float_data, dtype=t)) == 'number' def test_as_json_table_type_bool_data(self): bool_data = [True, False] bool_types = [bool, np.bool] for t in bool_types: assert as_json_table_type(np.array( bool_data, dtype=t)) == 'boolean' def test_as_json_table_type_date_data(self): date_data = [pd.to_datetime(['2016']), pd.to_datetime(['2016'], utc=True), pd.Series(pd.to_datetime(['2016'])), pd.Series(pd.to_datetime(['2016'], utc=True)), pd.period_range('2016', freq='A', periods=3)] for arr in date_data: assert as_json_table_type(arr) == 'datetime' def test_as_json_table_type_string_data(self): strings = [pd.Series(['a', 'b']), pd.Index(['a', 'b'])] for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_data(self): assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' assert as_json_table_type(pd.Series(pd.Categorical([1]))) == 'any' assert as_json_table_type(pd.CategoricalIndex([1])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' # ------ # dtypes # ------ def test_as_json_table_type_int_dtypes(self): integers = [np.int, np.int16, np.int32, np.int64] for t in integers: assert as_json_table_type(t) == 'integer' def test_as_json_table_type_float_dtypes(self): floats = [np.float, np.float16, np.float32, np.float64] for t in floats: assert as_json_table_type(t) == 'number' def test_as_json_table_type_bool_dtypes(self): bools = [bool, np.bool] for t in bools: assert as_json_table_type(t) == 'boolean' def test_as_json_table_type_date_dtypes(self): # TODO: datedate.date? datetime.time? dates = [np.datetime64, np.dtype("<M8[ns]"), PeriodDtype(), DatetimeTZDtype('ns', 'US/Central')] for t in dates: assert as_json_table_type(t) == 'datetime' def test_as_json_table_type_timedelta_dtypes(self): durations = [np.timedelta64, np.dtype("<m8[ns]")] for t in durations: assert as_json_table_type(t) == 'duration' def test_as_json_table_type_string_dtypes(self): strings = [object] # TODO for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_dtypes(self): # TODO: I think before is_categorical_dtype(Categorical) # returned True, but now it's False. Figure out why or # if it matters assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(CategoricalDtype()) == 'any' class TestTableOrient(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), 'E': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'])), 'F': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'], ordered=True)), 'G': [1., 2., 3, 4.], 'H': pd.date_range('2016-01-01', freq='d', periods=4, tz='US/Central'), }, index=pd.Index(range(4), name='idx')) def test_build_series(self): s = pd.Series([1, 2], name='a') s.index.name = 'id' result = s.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [{'name': 'id', 'type': 'integer'}, {'name': 'a', 'type': 'integer'}] schema = { 'fields': fields, 'primaryKey': ['id'], } expected = OrderedDict([ ('schema', schema), ('data', [OrderedDict([('id', 0), ('a', 1)]), OrderedDict([('id', 1), ('a', 2)])])]) assert result == expected def test_to_json(self): df = self.df.copy() df.index.name = 'idx' result = df.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [ {'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'E', 'ordered': False, 'type': 'any'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'F', 'ordered': True, 'type': 'any'}, {'name': 'G', 'type': 'number'}, {'name': 'H', 'type': 'datetime', 'tz': 'US/Central'} ] schema = { 'fields': fields, 'primaryKey': ['idx'], } data = [ OrderedDict([('idx', 0), ('A', 1), ('B', 'a'), ('C', '2016-01-01T00:00:00.000Z'), ('D', 'P0DT1H0M0S'), ('E', 'a'), ('F', 'a'), ('G', 1.), ('H', '2016-01-01T06:00:00.000Z') ]), OrderedDict([('idx', 1), ('A', 2), ('B', 'b'), ('C', '2016-01-02T00:00:00.000Z'), ('D', 'P0DT1H1M0S'), ('E', 'b'), ('F', 'b'), ('G', 2.), ('H', '2016-01-02T06:00:00.000Z') ]), OrderedDict([('idx', 2), ('A', 3), ('B', 'c'), ('C', '2016-01-03T00:00:00.000Z'), ('D', 'P0DT1H2M0S'), ('E', 'c'), ('F', 'c'), ('G', 3.), ('H', '2016-01-03T06:00:00.000Z') ]), OrderedDict([('idx', 3), ('A', 4), ('B', 'c'), ('C', '2016-01-04T00:00:00.000Z'), ('D', 'P0DT1H3M0S'), ('E', 'c'), ('F', 'c'), ('G', 4.), ('H', '2016-01-04T06:00:00.000Z') ]), ] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_float_index(self): data = pd.Series(1, index=[1., 2.]) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', { 'fields': [{'name': 'index', 'type': 'number'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index'] }), ('data', [OrderedDict([('index', 1.0), ('values', 1)]), OrderedDict([('index', 2.0), ('values', 1)])])]) ) assert result == expected def test_to_json_period_index(self): idx = pd.period_range('2016', freq='Q-JAN', periods=2) data = pd.Series(1, idx) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') fields = [{'freq': 'Q-JAN', 'name': 'index', 'type': 'datetime'}, {'name': 'values', 'type': 'integer'}] schema = {'fields': fields, 'primaryKey': ['index']} data = [OrderedDict([('index', '2015-11-01T00:00:00.000Z'), ('values', 1)]), OrderedDict([('index', '2016-02-01T00:00:00.000Z'), ('values', 1)])] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_categorical_index(self): data = pd.Series(1, pd.CategoricalIndex(['a', 'b'])) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', {'fields': [{'name': 'index', 'type': 'any', 'constraints': {'enum': ['a', 'b']}, 'ordered': False}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']}), ('data', [ OrderedDict([('index', 'a'), ('values', 1)]), OrderedDict([('index', 'b'), ('values', 1)])])]) ) assert result == expected def test_date_format_raises(self): with pytest.raises(ValueError): self.df.to_json(orient='table', date_format='epoch') # others work self.df.to_json(orient='table', date_format='iso') self.df.to_json(orient='table') def test_make_field_int(self): data = [1, 2, 3] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'integer'} assert result == expected def test_make_field_float(self): data = [1., 2., 3.] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'number'} assert result == expected def test_make_field_datetime(self): data = [1., 2., 3.] kinds = [pd.Series(pd.to_datetime(data), name='values'), pd.to_datetime(data)] for kind in kinds: result = make_field(kind) expected = {"name": "values", "type": 'datetime'} assert result == expected kinds = [pd.Series(pd.to_datetime(data, utc=True), name='values'),
pd.to_datetime(data, utc=True)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Mon Sep 7 11:48:59 2020 @author: mazal """ """ ========================================= Support functions of pydicom (Not sourced) ========================================= Purpose: Create support functions for the pydicom project """ """ Test mode 1 | Basics testMode = True reportMode = False Test mode 2 | Function Report testMode = False reportMode = True Commisionning mode testMode = False reportMode = False """ testMode = False reportMode = False """ ========================================= Function 1: Aleatory Sampling ========================================= Purpose: Build an aleatory sample given a train dataset of Kaggle for competition and a sample size Raw code reference (see Tester.py): Test 5 """ def trainDatasetSampler(samplingSize,testMode,reportMode): # Set sampling size (% of the train population) samplingSize = 5 # Build a Sampling dataset | Phase 1: Determine: (1) the source path of the train data; (2) the location path of the sampling import os import pandas as pd path_source = 'Y:/Kaggle_OSIC/2-Data/train/' path_source_test = 'Y:/Kaggle_OSIC/2-Data/test/' path_destination = 'Y:/Kaggle_OSIC/4-Data (Sampling)/train/' path_destination_test = 'Y:/Kaggle_OSIC/4-Data (Sampling)/test/' path_destination_outcome = 'Y:/Kaggle_OSIC/4-Data (Sampling)/outcome/' # Build a Sampling dataset | Phase 2: Build dataset using the following features from train data: (1) ID; (2) # of DICOM files per ID (including percentage). ## Improvement: (3) # of other registers (not related to DICOM files) os.chdir(path_source) ID_list = os.listdir(path_source) ID_list_range = len(ID_list) DICOMFile_list = [] DICOMFileNumber_list = [] for i in range(0,ID_list_range): path_ID = path_source + ID_list[i] + '/' DICOMFile_list_unitary = os.listdir(path_ID) DICOMFile_list = DICOMFile_list + [DICOMFile_list_unitary] DICOMFileNumber_list_unitary = len(DICOMFile_list_unitary) DICOMFileNumber_list = DICOMFileNumber_list + [DICOMFileNumber_list_unitary] Population_Dictionary = {'ID':ID_list,'NumberDicomFiles':DICOMFileNumber_list,'DicomFIles':DICOMFile_list} Population_DataFrame = pd.DataFrame(data = Population_Dictionary) DICOMFilePercentage_list = [] TotalNumberDicomFiles = sum(Population_DataFrame.NumberDicomFiles) for j in range(0,ID_list_range): Percentage = Population_DataFrame['NumberDicomFiles'][j] / TotalNumberDicomFiles * 100 Percentage = round(Percentage,6) DICOMFilePercentage_list = DICOMFilePercentage_list + [Percentage] Population_Percentage_Dictionary = {'Percentage':DICOMFilePercentage_list} Population_Percentage_DataFrame = pd.DataFrame(data=Population_Percentage_Dictionary) Population_DataFrame = pd.concat([Population_DataFrame, Population_Percentage_DataFrame],axis=1, sort=False) filename_population = 'populationDataset.csv' path_population = path_destination_outcome Population_DataFrame.to_csv(path_population+filename_population) # Build a Sampling dataset | Phase 3: Get an aleatory grouping of IDs (just tags) import random Population_DataFrame_IndexToSample=[] Population_DataFrame_IDToSample=[] Population_DataFrame_PercentageToSample=[] samplingSizeGoal = 0 while (samplingSizeGoal <= samplingSize): randomNumberTermination = len(Population_DataFrame.ID) randomNumber = random.randrange(0,randomNumberTermination,1) if (randomNumber not in Population_DataFrame_IndexToSample): Population_DataFrame_IndexToSample = Population_DataFrame_IndexToSample + [randomNumber] ID_unitary = Population_DataFrame.ID[randomNumber] Population_DataFrame_IDToSample = Population_DataFrame_IDToSample + [ID_unitary] Percentage_unitary = Population_DataFrame.Percentage[randomNumber] Population_DataFrame_PercentageToSample = Population_DataFrame_PercentageToSample + [Percentage_unitary] samplingSize_unitary = Population_DataFrame.Percentage[randomNumber] samplingSizeGoal = samplingSizeGoal + samplingSize_unitary samplingDataset_Dictionary = {'Index':Population_DataFrame_IndexToSample,'ID':Population_DataFrame_IDToSample,'Percentage':Population_DataFrame_PercentageToSample} samplingDataset_DataFrame = pd.DataFrame(data=samplingDataset_Dictionary) filename_sampling = 'samplingDataset.csv' path_sampling = path_destination_outcome samplingDataset_DataFrame.to_csv(path_sampling+filename_sampling) # Build a Sampling dataset | Phase 3: Get train dataset (an aleatory grouping of IDs; tree-copy task) from distutils.dir_util import create_tree from distutils.dir_util import remove_tree from distutils.dir_util import copy_tree remove_tree(path_destination) create_tree(path_destination,[]) if testMode == True: print("=========================================") print("Building the Sampling Dataset given the Train Dataset of Kaggle for competition") print("=========================================") for k in Population_DataFrame_IDToSample: path_source_unitary = path_source + k + '/' path_destination_unitary = path_destination + k + '/' create_tree(path_destination_unitary,[]) copy_tree(path_source_unitary,path_destination_unitary) if testMode == True: print("ID tree copied: ",k) # Build a Sampling dataset | Phase 4: Get test dataset (tree-copy task) ## Assumption: The complete test dataset is copied. from distutils.dir_util import create_tree from distutils.dir_util import remove_tree from distutils.dir_util import copy_tree remove_tree(path_destination_test) create_tree(path_destination_test,[]) if testMode == True: print("=========================================") print("Building the Test Dataset given the Test Dataset of Kaggle for competition") print("=========================================") IDList_test = os.listdir(path_source_test) for l in IDList_test: path_source_unitary = path_source + l + '/' path_destination_unitary = path_destination_test + l + '/' create_tree(path_destination_unitary,[]) copy_tree(path_source_unitary,path_destination_unitary) if testMode == True: print("ID tree copied: ",l) if (testMode == False and reportMode == True): from datetime import date reportDate = date.today() print("=========================================") print("Function Report | Date:",reportDate.year,'/',reportDate.month,'/',reportDate.day,'/' ) print("=========================================") print("Function: trainDatasetSampler(samplingSize,testMode)") print("=========================================") print("(1) Inputs") print("=========================================") print("-Sampling Size :", samplingSize, "%") print("-Test Mode : False") print("=========================================") print("(2) Outputs") print("=========================================") print("-Type of sample: Aleatory based on IDs") print("-Train dataset percentage to sample (base): ", round(abs(samplingSize),6),"%") print("-Train dataset percentage to sample (adjustment): ", round(abs(samplingSizeGoal-samplingSize),6),"%") print("-Train dataset percentage to sample (fitted): ", round(samplingSizeGoal,6),"%") print("-Population of Train dataset (just information) available in file: ", filename_population) print("-Sample of Train dataset (just information) available in file: ", filename_sampling) print("=========================================") print("(2) Outcomes:") print("=========================================") print("Being the outcome expressed under the variable result, outcomes are as follows:") print("result[0] -> Dataframe for Population") print("result[1] -> Dataframe for Sample") print("result[2] -> Test Mode") print("result[3] -> Rerport Mode") print("=========================================") return Population_DataFrame, samplingDataset_DataFrame, testMode, reportMode if testMode == True: samplingSize = 5 resultFunction1 = trainDatasetSampler(samplingSize,testMode,reportMode) print("=========================================") print("Population dataset:") print("=========================================") print(resultFunction1[0]) print("=========================================") print("Population dataset:") print("=========================================") print(resultFunction1[1]) print("=========================================") print("Test result Function 1: Success") print("=========================================") """ ========================================= Function 2: Submission Builder ========================================= Purpose: Build a submission CSV file Raw code reference (see Tester.py): Test 8 """ def SubmissionBuilder(ProductType,filename,testMode): import os import pandas as pd # Set ProductType path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' # Set productType and splitType if ProductType == 'population': path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' if ProductType == 'prototype': path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' if ProductType == 'sampling': path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/' # Set outcome path_outcome = path_ProductType + 'outcome/' # Get raw data as a DataFrame os.chdir(path_outcome) rawFile_DataFrame = pd.read_csv('submissionRawFile_2020_09_19.csv') # Get submission file template as a DataFrame os.chdir(path_ProductType) submissionFile_DataFrame = pd.read_csv('sample_submission.csv') # Get submission data as required in submission file submissionNumber_range = len(rawFile_DataFrame.index) IDcases_List = submissionFile_DataFrame.Patient_Week.copy() IDcases_List = IDcases_List[0:5] IDcases_List_range = len(IDcases_List) for i in range (0,IDcases_List_range): IDcases_List[i] = IDcases_List[i][:-4] # Get submission data as required in submission file | FVC FVCDataList = [] for k in range(0,submissionNumber_range): for j in IDcases_List: # Get datum in raw data IDlabel_rawFile = str(j)+str('_FVC') datum = rawFile_DataFrame[IDlabel_rawFile][k] datum = round(datum,0) # Set datum in submission file FVCDataList = FVCDataList + [datum] submissionFile_DataFrame['FVC'] = FVCDataList # Get submission data as required in submission file | Confidence CONDataList = [] for k in range(0,submissionNumber_range): for j in IDcases_List: # Get datum in raw data IDlabel_rawFile = str(j)+str('_CON') datum = rawFile_DataFrame[IDlabel_rawFile][k] datum = round(datum,0) # Set datum in submission file CONDataList = CONDataList + [datum] submissionFile_DataFrame['Confidence'] = CONDataList # Save file | Get directory path_destination = path_outcome+'submissions/' try: os.chdir(path_destination) GetCreation = True except FileNotFoundError: GetCreation = False if GetCreation == False: from distutils.dir_util import mkpath mkpath(path_destination) os.chdir(path_destination) submissionList = os.listdir(path_destination) number = len(submissionList) filename = 'submission_'+str(number+1)+'.csv' submissionFile_DataFrame.to_csv(filename, index=False) return submissionFile_DataFrame, filename, testMode if testMode == True: ProductType = 'population' filename = 'submissionRawFile_2020_09_19.csv' resultFunction2 = SubmissionBuilder(ProductType,filename,testMode) print("=========================================") print("Product Type:") print("=========================================") print(ProductType) print("=========================================") print("Submission File saved as:") print("=========================================") print(resultFunction2[1]) print("=========================================") print("Test result Function 2: Success") print("=========================================") """ ========================================= Function 3: Dataset builder (Stacking solution case) to process with ML models ========================================= Purpose: Build an input dataset to be processed with an stacking solution Raw code reference (see Tester.py): Test 15 """ def stacking_Dataset_Builder(ProductType, PydicomMode, reportMode, testMode): # Set Product Type and its corresponding path if ProductType == 'population': path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' if ProductType == 'prototype': path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' if ProductType == 'sampling': path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/' # Set working directory import os os.chdir(path_ProductType) # Get train dataset and test dataset import pandas as pd filename_trainDataset = 'train.csv' train_dataset = pd.read_csv(path_ProductType+filename_trainDataset) filename_testDataset = 'test.csv' test_dataset = pd.read_csv(path_ProductType+filename_testDataset) # Get submission dataset (template) import numpy as np path_resources = 'Y:/Kaggle_OSIC/3-Data (Prototype)/resources/' if (PydicomMode == False): filename_submissionDataset = 'submissionInputDataset.csv' else: filename_submissionDataset = 'submissionInputDataset_pydicom.csv' submission_dataset = pd.read_csv(path_resources+filename_submissionDataset) submission_dataset = submission_dataset.replace(np.nan,'iNaN') # Adjust train dataset | Phase 1: Get ID list of the test dataset IDList = list(test_dataset.Patient) # Adjust train dataset | Phase 2: Get submission instances from train dataset instancesPopulation = len(train_dataset.Patient) indexList = [] for i in IDList: for j in range(0,instancesPopulation): if i == train_dataset.Patient[j]: indexToInclude = train_dataset.index[j] indexList = indexList + [indexToInclude] # Adjust train dataset | Phase 3: Create an adjusted train dataset | a. Remove test instances from train dataset and reset index train_dataset_adjusted = train_dataset.drop(indexList) train_dataset_adjusted.reset_index # Adjust train dataset | Phase 3: Create an adjusted train dataset | b. Get Transferring data from train dataset instanceToTrasferList_index = [] for k in range(0,instancesPopulation): for l in IDList: if train_dataset.Patient[k] == l: instanceToTransfer_Index = train_dataset.index[k] instanceToTrasferList_index = instanceToTrasferList_index + [instanceToTransfer_Index] train_dataset_instancesToTransfer = train_dataset.take(instanceToTrasferList_index) train_dataset_instancesToTransfer.index train_dataset_instancesToTransfer = train_dataset_instancesToTransfer.reset_index() train_dataset_instancesToTransfer.drop(columns='index') # Adjust train dataset | Phase 3: Create an adjusted train dataset | c. Update the submission dataset with the transferring data in b. submission_dataset_range = len(submission_dataset.Patient) train_dataset_instancesToTransfer_range = len(train_dataset_instancesToTransfer.Patient) Patient_List = [] Week_List = [] FVC_List = [] Percent_List = [] Age_List = [] Sex_List = [] SmokingStatus_List = [] for m in range (0,submission_dataset_range): timesCopy = 0 if(submission_dataset.Patient[m] in IDList): referenceWeek = submission_dataset.Weeks[m] for n in range (0,train_dataset_instancesToTransfer_range): if(train_dataset_instancesToTransfer.Patient[n] == submission_dataset.Patient[m] and train_dataset_instancesToTransfer.Weeks[n] == referenceWeek): if (timesCopy == 0): submission_dataset.FVC[m] = train_dataset_instancesToTransfer.FVC[n] submission_dataset.Percent[m] = train_dataset_instancesToTransfer.Percent[n] submission_dataset.Age[m] = train_dataset_instancesToTransfer.Age[n] submission_dataset.Sex[m] = train_dataset_instancesToTransfer.Sex[n] submission_dataset.SmokingStatus[m] = train_dataset_instancesToTransfer.SmokingStatus[n] timesCopy = timesCopy + 1 else: # Additional instances to include Patient_List = Patient_List + [train_dataset_instancesToTransfer.Patient[n]] Week_List = Week_List + [train_dataset_instancesToTransfer.Weeks[n]] FVC_List = FVC_List + [train_dataset_instancesToTransfer.FVC[n]] Percent_List = Percent_List + [train_dataset_instancesToTransfer.Percent[n]] Age_List = Age_List + [train_dataset_instancesToTransfer.Age[n]] Sex_List = Sex_List + [train_dataset_instancesToTransfer.Sex[n]] SmokingStatus_List = SmokingStatus_List + [train_dataset_instancesToTransfer.SmokingStatus[n]] # Adjust train dataset | Phase 3: Create an adjusted train dataset | d. Add common values to submission dataset given those from the test dataset (Features: Age, Sex, SmokingStatus) submission_dataset_range = len(submission_dataset.Patient) for o in range(0,submission_dataset_range): if(submission_dataset.Patient[o] in IDList): for p in range(0,train_dataset_instancesToTransfer_range): if(submission_dataset.Patient[o] == train_dataset_instancesToTransfer.Patient[p]): submission_dataset.Age[o] = train_dataset_instancesToTransfer.Age[p] submission_dataset.Sex[o] = train_dataset_instancesToTransfer.Sex[p] submission_dataset.SmokingStatus[o] = train_dataset_instancesToTransfer.SmokingStatus[p] # Scenario to replace NaN values: Average FVC for a given Patient averageFVC = train_dataset_instancesToTransfer.FVC[train_dataset_instancesToTransfer.Patient == train_dataset_instancesToTransfer.Patient[p]].mean() submission_dataset.FVC[o] = averageFVC # Adjust train dataset | Phase 4: Create an adjusted train dataset | e. Concatenate the submission dataset (and additional instance) and the adjusted train dataset additionalDictionary = {submission_dataset.columns[0]:Patient_List, submission_dataset.columns[1]:Week_List, submission_dataset.columns[2]:FVC_List, submission_dataset.columns[3]:Percent_List, submission_dataset.columns[4]:Age_List, submission_dataset.columns[5]:Sex_List, submission_dataset.columns[6]:SmokingStatus_List} additional_dataset = pd.DataFrame(data=additionalDictionary) frames = [train_dataset_adjusted,submission_dataset,additional_dataset] train_dataset_adjusted = pd.concat(frames) train_dataset_adjusted = train_dataset_adjusted.reset_index() train_dataset_adjusted = train_dataset_adjusted.drop(columns='index') # Adjust train dataset with pydicom train dataset) | Phase 1: Get pydicom train dataset if(PydicomMode == True): filename_pydicom = 'train_pydicom.csv' path_ProductType_pydicom = path_ProductType + 'outcome/' train_dataset_pydicom = pd.read_csv(path_ProductType_pydicom + filename_pydicom) # Adjust train dataset with pydicom train dataset) | Phase 2: Include values from train_adjusted_pydicom.py into adjusted train dataset if(PydicomMode == True): instancesToInclude_List = list(train_dataset_pydicom.Patient) InstanceToInclude_Patient = i newIndex = len(train_dataset_adjusted.Patient) for i in instancesToInclude_List: # Get instance to transfer InstanceToInclude_Patient = i InstanceToInclude_Week = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].Weeks)[0] InstanceToInclude_indexType1_Exhalation = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].indexType1_Exhalation)[0] InstanceToInclude_indexType1_Inhalation = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].indexType1_Inhalation)[0] InstanceToInclude_ImageType = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].ImageType)[0] # Put instance into train_dataset_adjusted DataFrame if (0 in list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Weeks)): # Get index indexToComplete = list(train_dataset_adjusted[train_dataset_adjusted.Weeks == 0].Patient[train_dataset_adjusted.Patient == i].index) # Complete instance train_dataset_adjusted.indexType1_Exhalation[indexToComplete] = InstanceToInclude_indexType1_Exhalation train_dataset_adjusted.indexType1_Inhalation[indexToComplete] = InstanceToInclude_indexType1_Inhalation train_dataset_adjusted.ImageType[indexToComplete] = str(InstanceToInclude_ImageType) else: # Add new instance ## Get repeatable instances repeatableInstance1 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].FVC)[0] repeatableInstance2 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Percent)[0] repeatableInstance3 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Age)[0] repeatableInstance4 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Sex)[0] repeatableInstance5 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].SmokingStatus)[0] ## Get Dictionary DictionaryToInclude = {} DictionaryToInclude['Patient'] = InstanceToInclude_Patient DictionaryToInclude['Weeks'] = InstanceToInclude_Week DictionaryToInclude['FVC'] = repeatableInstance1 DictionaryToInclude['Percent'] = repeatableInstance2 DictionaryToInclude['Age'] = repeatableInstance3 DictionaryToInclude['Sex'] = repeatableInstance4 DictionaryToInclude['SmokingStatus'] = repeatableInstance5 DictionaryToInclude['indexType1_Exhalation'] = InstanceToInclude_indexType1_Exhalation DictionaryToInclude['indexType1_Inhalation'] = InstanceToInclude_indexType1_Inhalation DictionaryToInclude['ImageType'] = str(InstanceToInclude_ImageType) ## Get DataFrame DataFrameToInclude = pd.DataFrame(data = DictionaryToInclude, index=[newIndex]) newIndex = newIndex + 1 ## Concatenate DataFrame train_dataset_adjusted = pd.concat([train_dataset_adjusted, DataFrameToInclude]) # nan filling train_dataset_adjusted = train_dataset_adjusted.replace('iNaN',np.nan) # Specifying dtype train_dataset_adjusted.astype({'Patient': 'O'}).dtypes train_dataset_adjusted.astype({'Weeks': 'float64'}).dtypes train_dataset_adjusted.astype({'Percent': 'float64'}).dtypes train_dataset_adjusted.astype({'Age': 'float64'}).dtypes train_dataset_adjusted.astype({'Sex': 'O'}).dtypes train_dataset_adjusted.astype({'SmokingStatus': 'O'}).dtypes train_dataset_adjusted.astype({'FVC': 'float64'}).dtypes if(PydicomMode == True): train_dataset_adjusted.astype({'indexType1_Exhalation': 'float64'}).dtypes train_dataset_adjusted.astype({'indexType1_Inhalation': 'float64'}).dtypes train_dataset_adjusted.astype({'ImageType': 'O'}).dtypes # Get CSV file path_output = path_ProductType +'outcome/' if(PydicomMode == False): filename_output = 'train_adjusted.csv' else: filename_output = 'train_adjusted_pydicom.csv' train_dataset_adjusted.to_csv(path_output+filename_output) # Function Result resultFunction = train_dataset_adjusted,path_output,filename_output # Report Mode if reportMode == True: print("=========================================") print("Function Report") print("=========================================") print("DataFrame") print("=========================================") print(resultFunction[0]) print("=========================================") print("Product Type: ", ProductType) print("=========================================") print("Pydicom Mode: ", PydicomMode) print("=========================================") print("Location of Input File:", resultFunction[1]) print("=========================================") print("Input File saved as:", resultFunction[2]) print("=========================================") print("Data type of the dataset") print("=========================================") print(resultFunction[0].dtypes) print("=========================================") print("Test result Function 3: Success") print("=========================================") return resultFunction if testMode == True: ProductType = 'prototype' PydicomMode = True reportMode = False resultFunction3 = stacking_Dataset_Builder(ProductType, PydicomMode, reportMode, testMode) print("=========================================") print("Function Report") print("=========================================") print("DataFrame") print("=========================================") print(resultFunction3[0]) print("=========================================") print("=========================================") print("Product Type: ", ProductType) print("=========================================") print("Pydicom Mode: ", PydicomMode) print("=========================================") print("Location of Input File:", resultFunction3[1]) print("=========================================") print("Input File saved as:", resultFunction3[2]) print("=========================================") print("Data type of the dataset") print("=========================================") print(resultFunction3[0].dtypes) print("=========================================") print("Test result Function 3: Success") print("=========================================") """ ========================================= Function 4: Submission dataset builder (Stacking solution case) after ML outcome ========================================= Purpose: Build a submission CSV file (Stacking solution case) Raw code reference (see Tester.py): Test 17 About the Shape Parameter: It amounts to c = 0.12607421874999922 for every instance in the oject of concern. c value has been computed deeming the following data fitting scope: (1) Data: FVC predictions; (2) Probability density function as follows (staistical function in scipy renowend as scipy.stats.loglaplace): loglaplace.pdf(x, c, loc=0, scale=1). """ def Stacking_Submission_Dataset_Builder(ProductType,shapeParameter_DataFrame,pydicomMode,testMode): # Set Product Type and its corresponding path if ProductType == 'population': path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' if ProductType == 'prototype': path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' if ProductType == 'sampling': path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/' # Set working directory import os os.chdir(path_ProductType + 'outcome/') # Get result data and test dataset import pandas as pd if(pydicomMode == True): filename_resultDataset = 'result_pydicom.csv' else: filename_resultDataset = 'result.csv' result_dataset = pd.read_csv(path_ProductType+'outcome/'+filename_resultDataset) filename_testDataset = 'test.csv' test_dataset = pd.read_csv(path_ProductType+filename_testDataset) # Get submission instances | Phase 1: Index IDList = list(test_dataset.Patient) IDList_index_dictionary = {} for i in IDList: itemToInclude = result_dataset.Patient[result_dataset.Patient==i].index IDList_index_dictionary[i] = itemToInclude # Get submission instances | Phase 2: Extract submission instances from result dataset IDList_index = [] IDList_columns = ['Patient', 'Weeks', 'Random Forest', 'Lasso', 'Gradient Boosting', 'Stacking Regressor'] for j in IDList: IDList_index = IDList_index + list(IDList_index_dictionary[j]) submission_dataset = result_dataset.loc[IDList_index] # Get submission instances | Phase 3: Extract duplicated instances submission_dataset = submission_dataset.drop_duplicates(subset=['Patient','Weeks']) # Get submission instances | Phase 4: Sort submission instances by Weeks (ascending) and reset index submission_dataset = submission_dataset.sort_values(by=['Weeks','Patient']) submission_dataset = submission_dataset.reset_index() submission_dataset = submission_dataset.drop(columns=['Unnamed: 0','index']) # Get confidence measure | Phase 1: Get shape Parameter DataFrame by default ## When shapeParameter_DataFrame==[], parameter c = 0.126074 is assigned by default per model and ID if (shapeParameter_DataFrame == []): shapeParameter_dictionary = {} shapeParameter = 0.126074 MLModelList = IDList_columns[2:] for l in MLModelList: keyShapeParameter = 'c Parameter_'+l shapeParameter_dictionary[keyShapeParameter] = [shapeParameter,shapeParameter,shapeParameter,shapeParameter,shapeParameter] shapeParameter_DataFrame = pd.DataFrame(data = shapeParameter_dictionary, index = IDList) # Get confidence measure | Phase 2: Get standard-deviation-clipped per instance ## Metric - Part 1: standard_deviation_clipped = max(standard_deviation, 70) ## Build a DataFrame with standard-deviation-clipped values given an ID and a ML Model: standardDeviationClipped_DataFrame standardDeviationClipped_DataFrame = shapeParameter_DataFrame.copy() columnLabels = list(standardDeviationClipped_DataFrame.columns) columnLabels_SDC_dictionary = {} for i in columnLabels: columnLabels_item ='SD_Clipped'+i[11:] columnLabels_SDC_dictionary[i]=columnLabels_item standardDeviationClipped_DataFrame = standardDeviationClipped_DataFrame.rename(columns=columnLabels_SDC_dictionary) import numpy as np standardDeviationClipped_DataFrame = standardDeviationClipped_DataFrame.replace(3,np.nan) ID_List = list(standardDeviationClipped_DataFrame.index) SDModel_List = list(standardDeviationClipped_DataFrame.columns) CParameter_List = list(shapeParameter_DataFrame.columns) numy = 0 from scipy.stats import loglaplace for j in ID_List: for k in SDModel_List: itemToInclude = CParameter_List[numy] c = shapeParameter_DataFrame[itemToInclude][j] sd_LL = loglaplace.std(c, loc=0, scale=100) standardDeviationClipped_DataFrame[k][j] = max(70,sd_LL) # j: index is ID | k: SD_Clipped_(ML Model) numy = numy + 1 numy = 0 # Get confidence measure | Phase 3: Get metric axe per model: |FVC_true - FVC_predicted| ## Metric - Part 1: |FVC_true - FVC_pred| if(pydicomMode == True): variableNumber = 10 else: variableNumber = 7 MLModelList = list(submission_dataset.columns[variableNumber:]) metric_dictionary = {} for j in MLModelList: metric_differential = abs(submission_dataset.FVC - submission_dataset[j]) metric_differential = list(metric_differential) keyToInclude = 'metric_'+j metric_dictionary[keyToInclude] = metric_differential metric_DataFrame = pd.DataFrame(data=metric_dictionary) # Get confidence measure | Phase 4: Get metric axe per model: min(|FVC_true - FVC_predicted|, 1000) ## metric per instance ## Metric - Part 2: min(|FVC_true - FVC_pred|,1000) metricLabels = list(metric_DataFrame.columns) instancesNumber = len(submission_dataset.index) for i in metricLabels: j = 0 while (j<instancesNumber): metric_DataFrame[i][j] = min(metric_DataFrame[i][j],1000) j = j+1 submission_dataset = submission_dataset.join(metric_DataFrame) # Get confidence measure | Phase 5: Get metric axe per model: (-1 * differential * 2^0.5 / SDC ) - ln(2^0.5 * SCD) ## metric per instance ## differential = min(|FVC_true - FVC_predicted|, 1000) ## SDC: Standard Deviation Clipped ## Metric - Part 2: min(|FVC_true - FVC_pred|,1000) IDList = list(test_dataset.Patient) SDModel_List = list(standardDeviationClipped_DataFrame.columns) SDModel_index_List = list(standardDeviationClipped_DataFrame.index) metric_lists = list(metric_DataFrame.columns) metric_index_lists = list(metric_DataFrame.index) submission_dataset_index_List = list(submission_dataset.index) instancesNumber = len(submission_dataset_index_List) indexPerID_dictionary = {} ### Step 1: Get index per ID to compute for i in IDList: listToInclude = list(submission_dataset.Patient[submission_dataset.Patient == i].index) indexPerID_dictionary[i] = listToInclude indexPerID_DataFrame = pd.DataFrame(data=indexPerID_dictionary) ### Step 3: Compute metric import math from math import log1p for k in IDList: for i in metric_lists: for j in list(indexPerID_DataFrame[k]): differential = submission_dataset[i][j] SDC_Label = 'SD_Clipped_' + i[7:] SDC = standardDeviationClipped_DataFrame[SDC_Label][k] metric_part1 = -1* 2**0.5 * differential / SDC metric_part2 = -1 * math.log1p(2**0.5 * SDC) metric = metric_part1 + metric_part2 submission_dataset[i][j] = metric # Result function specification resultFunction = submission_dataset,shapeParameter_DataFrame,standardDeviationClipped_DataFrame # Get submission files | Phase 1: Get submission file template filename = 'sample_submission.csv' submissionFile = pd.read_csv(path_ProductType+filename) ## Get submission files | Phase 2: Create directory try: path_output = path_ProductType + 'submission/' os.chdir(path_output) except FileNotFoundError: import distutils.ccompiler path_output = path_ProductType + 'submission/' distutils.dir_util.mkpath(path_output) ## Get submission files | Phase 3: Get correlative files_list = os.listdir(path_output) try: maxNumber = max(files_list) maxNumber = maxNumber[:-4] maxNumber = int(maxNumber) nextNumber = maxNumber+1 except ValueError: nextNumber = 0 ## Get submission files | Phase 4: Get models to include and their corresponding metrics ModelToInclude = IDList_columns[2:] ## Get submission files | Phase 5: Build Files for i in ModelToInclude: filename = 'sample_submission.csv' submissionFile =
pd.read_csv(path_ProductType+filename)
pandas.read_csv
# -*- coding: utf-8 -*- from datetime import timedelta, time import numpy as np from pandas import (DatetimeIndex, Float64Index, Index, Int64Index, NaT, Period, PeriodIndex, Series, Timedelta, TimedeltaIndex, date_range, period_range, timedelta_range, notnull) import pandas.util.testing as tm import pandas as pd from pandas.lib import Timestamp from .common import Base class DatetimeLike(Base): def test_shift_identity(self): idx = self.create_index() self.assert_index_equal(idx, idx.shift(0)) def test_str(self): # test the string repr idx = self.create_index() idx.name = 'foo' self.assertFalse("length=%s" % len(idx) in str(idx)) self.assertTrue("'foo'" in str(idx)) self.assertTrue(idx.__class__.__name__ in str(idx)) if hasattr(idx, 'tz'): if idx.tz is not None: self.assertTrue(idx.tz in str(idx)) if hasattr(idx, 'freq'): self.assertTrue("freq='%s'" % idx.freqstr in str(idx)) def test_view(self): super(DatetimeLike, self).test_view() i = self.create_index() i_view = i.view('i8') result = self._holder(i) tm.assert_index_equal(result, i) i_view = i.view(self._holder) result = self._holder(i) tm.assert_index_equal(result, i_view) class TestDatetimeIndex(DatetimeLike, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def setUp(self): self.indices = dict(index=tm.makeDateIndex(10)) self.setup_indices() def create_index(self): return date_range('20130101', periods=5) def test_shift(self): # test shift for datetimeIndex and non datetimeIndex # GH8083 drange = self.create_index() result = drange.shift(1) expected = DatetimeIndex(['2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(-1) expected = DatetimeIndex(['2012-12-31', '2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(3, freq='2D') expected = DatetimeIndex(['2013-01-07', '2013-01-08', '2013-01-09', '2013-01-10', '2013-01-11'], freq='D') self.assert_index_equal(result, expected) def test_construction_with_alt(self): i = pd.date_range('20130101', periods=5, freq='H', tz='US/Eastern') i2 = DatetimeIndex(i, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, tz=i.dtype.tz) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz=i.dtype.tz) self.assert_index_equal(i, i2) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') self.assert_index_equal(i2, expected) # incompat tz/dtype self.assertRaises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_pickle_compat_construction(self): pass def test_construction_index_with_mixed_timezones(self): # GH 11488 # no tz results in DatetimeIndex result = Index( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) # passing tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 19:00'), Timestamp('2011-01-03 00:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) def test_construction_index_with_mixed_timezones_with_NaT(self): # GH 11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) # passing tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 19:00'), pd.NaT, Timestamp('2011-01-03 00:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # all NaT result = Index([pd.NaT, pd.NaT], name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # all NaT with tz result = Index([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) def test_construction_dti_with_mixed_timezones(self): # GH 11488 (not changed, added explicit tests) # no tz results in DatetimeIndex result = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # same tz results in DatetimeIndex result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # same tz results in DatetimeIndex (DST) result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # different tz coerces tz-naive to tz-awareIndex(dtype=object) result = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 05:00'), Timestamp('2011-01-02 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # tz mismatch affecting to tz-aware raises TypeError/ValueError with tm.assertRaises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') with tm.assertRaises(TypeError): DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') with tm.assertRaises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='US/Eastern', name='idx') def test_astype(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(object) expected = Index([Timestamp('2016-05-16')] + [NaT] * 3, dtype=object) tm.assert_index_equal(result, expected) result = idx.astype(int) expected = Int64Index([1463356800000000000] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_index_equal(result,
Index(rng.asi8)
pandas.Index
import streamlit as st import pandas as pd import numpy as np import datetime import plotly.express as px import base64 def app(): LOGO_IMAGE_IBM = "apps/ibm.png" LOGO_IMAGE_U_OF_F = "apps/u_of_f.svg.png" LOGO_IMAGE_BRIGHTER = "apps/brighter_potential_logo.png" st.markdown( """ <style> .container { display: flex; } .logo-text { font-weight:700 !important; font-size:50px !important; color: #f9a01b !important; padding-top: 75px !important; } .logo-img { float: left; position: relative; margin-top: 600px; } #logo { position: absolute; float: right; } </style> """, unsafe_allow_html=True ) st.markdown( f""" <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE_IBM, "rb").read()).decode()}" width="100x`" height="40" style="border:20px;margin:0px" /> <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE_U_OF_F, "rb").read()).decode()}" width="200" height="40" style="border:20px;margin:0px"/> &ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp; &ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp; <img class="logo" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE_BRIGHTER, "rb").read()).decode()}" width="100" height="100" /> """, unsafe_allow_html=True ) st.markdown('---') st.header("Solar Rooftop Potential Prediction") # Sidebar st.sidebar.header('Choose Time Range to View:') min_date = st.sidebar.date_input('Min Date', datetime.datetime(2019, 1, 1)) min_date = min_date.strftime('%m/%d/%y') max_date = st.sidebar.date_input('Max Date', datetime.datetime(2019, 12, 31)) max_date = max_date.strftime('%m/%d/%y') st.sidebar.header('Choose Zipcode to View:') # Declare zipcode list zipcodes = [33131,33040,34112,33916,33407,33935,33471,33950, 34266,34994,34972,34236,34950,34205,33873,32960,33830,33606,33755,34741,33525,32806,34601, 32796,33513,32778,32771,34453,32720,34471,32621,32110,32601,32177,32456,32080,32091,32054, 32066,32347,32401,32327, 32025,32064,32063,32202,32502,32503,32424,32321,32304,32340,32344, 32351,32570,32034,32433,32536,32428,32448,32425,32602,32603,32604,32605,32606, 32607,32608,32609,32610,32611,32612,32614,32627,32641,32653,32402,32404,32405,32406, 32412,32073,32081,32099,32201,32203,32204,32205,32206,32207,32208,32209, 32210,32211,32212,32214,32216,32217,32218,32219,32220,32221,32222,32223,32224, 32225,32226,32227,32228,32229,32233,32234,32235,32236,32237,32238,32239, 32241,32244,32245,32246,32247,32250,32254,32255,32256,32257,32258,32266,32277, 32501,32504,32505,32514,32520,32522,32523,32524,32591,33601,33602,33603,33604, 33605,33607,33608,33609,33610,33611,33612,33613,33615,33616,33617,33619, 33620,33621,33622,33623,33629,33630,33631,33633,33634,33637,33646,33647,33650,33655,33660,33661, 33662,33664,33672,33673,33674,33675,33677,33679,33680,33681,33686,33901, 33902,33903,33905,33906,33907,33911,33912,33913,33917,33919,33966,33971,33990,32301,32302,32303,32305,32306, 32307,32308,32309,32310,32311,32312,32313,32314,32316,32317,32395,32399, 33101,33109,33111,33114,33125,33126,33127,33128,33129,33130,33132,33133,33134,33135,33136,33137,33138, 33139,33140,33142,33144,33145,33146,33147,33149,33150,33151,33159,33222,33233,33234, 33238,33242,33245,33255,32789,32801,32802,32803,32804,32805,32807,32808,32809, 32810,32811,32812,32814,32819,32822,32824,32827,32829,32832,32834, 32835,32839,32853,32854,32855,32856,32861,32862,32878,32885,32886, 32891,33401,33402,33403,33405,33409,33411,33412,33417,33756,33757,33758, 33759,33761,33763,33764,33765,33766,33767,33769,33302, 33303,33304,33305,33306,33307,33308,33309,33311,33312,33315,33316,33334,33338,33339,33348, 33394 ] # Put client and date options in the sidebar selected_zip = st.sidebar.selectbox( 'Choose Zipcode:', zipcodes, key='zipcodes' ) st.markdown(""" * Renewables currently account for roughly only 4% of energy production in Florida. * Stakeholders need to know how solar energy sources can supplement the power grid. * The sunburst chart below shows the daily potential of energy demand that could be supplied by rooftop solar energy for 2019. * This projection for 2019 is based on predictive modeling that predicts the daily rooftop solar energy potential and the energy demand based on the weather. """) # area_stats = pd.read_csv('data/RPMSZips.csv', dtype={'zip':str}) area_stats = pd.read_csv('apps/florida_weather_w_predictions_and_zip_codes.csv', dtype={'zipcode':str}) #st.write(area_stats.head()) st.markdown("""Energy Demand vs. Solar Production Potential for 62 most populated Florida zip codes for all of 2019:""") # get f'{value:,}' florida_predicted_demand = round(area_stats['real_pred_demand_mwh'].sum()) florida_predicted_solar = round(area_stats['solar_prod_mwh'].sum()) col1, col2 = st.columns(2) col1.metric(label="Predicted Demand (mwh)", value=f'{florida_predicted_demand:,}' #, delta=100 ) col2.metric(label = "Solar Rooftop Potential (mwh)", value = f'{florida_predicted_solar:,}', #delta = 50 ) # create a dataframe that gets masked based on min and max date selectors area_stats['date_time'] =
pd.to_datetime(area_stats['date_time'])
pandas.to_datetime
# encoding=utf-8 """ gs_data centralizes all data import functions such as reading csv's """ import pandas as pd import datetime as dt from gs_datadict import * def do_regions(ctydf: pd.DataFrame, mergef: str): """ do_regions assigns FIPS missing for multi-county regions, primarily occuring in UT where covid data is rolled up into 6 multi-county regions. reading from a reference file, do_regions assigns FIPS and cumulative population for the region, and identifies member counties """ namecol = ctydf.columns.get_loc('County') state_idx = ctydf.loc[ctydf.State=='Utah'].index.to_list() nonnull_idx = ctydf.loc[(ctydf.State=='Utah') & (ctydf.FIPS>'')].index.to_list() # list comprehension finds rows which are missing a county FIPS null_idx = [x for x in state_idx if x not in nonnull_idx] merge_df = pd.read_csv(mergef, dtype={'fips0': str,'fips1': str,'fips2': str, 'fips3': str, 'fips4': str,'fips5': str}) # add a column for county population, we'll add region pop here ctydf['Pop']= [None for x in range(len(ctydf))] ctydf['Multi_FIPS']= [[] for x in range(len(ctydf))] for x in null_idx: this_region = ctydf.iat[x,1] y = merge_df.loc[merge_df['Region']==this_region].to_dict('list') ctydf.iat[x,0]= y['fips0'][0] ctydf.iat[x,4]= y['Lat'][0] ctydf.iat[x, 5] = y['Long'][0] ctydf.iat[x, 9] = y['Long_Name'][0] ctydf.iat[x, 11] = y['Pop'][0] # make a list of county fips in the region, and add the list in column 'Multi-Fips' in master df z = [y['fips0'][0], y['fips1'][0]] if pd.notnull(y['fips2'][0]): z.append(y['fips2'][0]) if pd.notnull(y['fips3'][0]): z.append(y['fips3'][0]) if pd.notnull(y['fips4'][0]): z.append(y['fips4'][0]) if pd.notnull(y['fips5'][0]): z.append(y['fips5'][0]) ctydf.iat[x, 12] = z z = [] y = {} # ALSO need to deal with Dukes and Nantucket region in MA: y = {'UID':[84070002], 'Region':['Dukes and Nantucket'], 'stFIPS':[25], 'Lat':[41.40674725], 'Long':[-70.68763497], 'Long_Name':['Dukes-Nantucket Region MA'], 'Pop':[28731], 'fips0':['25007'], 'fips1':['25019'], 'name0':['Dukes'], 'name1':['Nantucket'], 'pop0':[17332], 'pop1':[11399]} state_idx = ctydf.loc[ctydf.State=='Massachusetts'].index.to_list() nonnull_idx = ctydf.loc[(ctydf.State=='Massachusetts')&(ctydf.FIPS>'')].index.to_list() null_idx = [x for x in state_idx if x not in nonnull_idx] x = null_idx[0] this_region = ctydf.iat[x, 1] ctydf.iat[x, 0] = y['fips0'][0] ctydf.iat[x, 4] = y['Lat'][0] ctydf.iat[x, 5] = y['Long'][0] ctydf.iat[x, 9] = y['Long_Name'][0] ctydf.iat[x, 11] = y['Pop'][0] ctydf.iat[x, 12] = [y['fips0'][0], y['fips1'][0]] # final one is fixing Kansas City MO, not a rollup but for some reason it is sometimes outlier with no fips MO_merge = {'region_pop': [459787], 'region_name': ['Kansas City MO'], 'prior_fips': [29000], 'prior_names': ['Kansas City Missouri'] } return ctydf def get_countypop(popfile: str, excludefile: str): """ get_statepop builds a Dataframe, indexed on State Fips, with est 2020 population to avoid corrupting data, it then removes any counties which are part of a multi-county rollup for covid reporting """ dfpop = pd.read_csv(popfile, usecols={0,3}, dtype={'FIPS': str,'Pop': int}) dfpop.set_index('FIPS', drop=True, inplace=True, verify_integrity=True) # df has only fips index and Pop field dfpop.sort_index(inplace=True) excl = pd.read_csv(excludefile, usecols={7,8,9,10,11,12}, dtype={'fips0': str, 'fips1': str, 'fips2': str, 'fips3': str, 'fips4': str, 'fips5': str}) for x in range(len(excl)): dfpop.drop(index=excl.iat[x, 0], inplace=True) dfpop.drop(index=excl.iat[x, 1], inplace=True) if pd.notnull(excl.iat[x, 2]): dfpop.drop(index=excl.iat[x, 2], inplace=True) if pd.notnull(excl.iat[x, 3]): dfpop.drop(index=excl.iat[x, 3], inplace=True) if pd.notnull(excl.iat[x, 4]): dfpop.drop(index=excl.iat[x, 4], inplace=True) if
pd.notnull(excl.iat[x, 5])
pandas.notnull
import collections import logging import multiprocessing import os import re import warnings import numpy as np import pandas as pd import tables from trafficgraphnn.utils import (E1IterParseWrapper, E2IterParseWrapper, TLSSwitchIterParseWrapper, _col_dtype_key, col_type, pairwise_iterate) _logger = logging.getLogger(__name__) def write_hdf_for_sumo_network(sumo_network, multiprocess=True): output_dir = os.path.join(os.path.dirname(sumo_network.netfile), 'output') if multiprocess: output_hdf = sumo_output_xmls_to_hdf_multiprocess(output_dir) else: output_hdf = sumo_output_xmls_to_hdf(output_dir) light_switch_out_files = light_switch_out_files_for_sumo_network( sumo_network) assert len(light_switch_out_files) == 1 # more than one xml not supported yet tls_output_xml_to_hdf(light_switch_out_files.pop()) return output_hdf def light_switch_out_files_for_sumo_network(sumo_network): light_switch_out_files = set() for edge in sumo_network.graph.edges.data(): try: light_switch_out_files.add( os.path.join(os.path.dirname(sumo_network.netfile), edge[-1]['tls_output_info']['dest'])) except KeyError: continue return light_switch_out_files def _append_to_store(store, buffer, all_ids): converter = {col: _col_dtype_key[col] for col in buffer.keys() if col in _col_dtype_key} df = pd.DataFrame.from_dict(buffer) df = df.astype(converter) df = df.set_index('begin') for i in all_ids: # sub_df = df.loc[df['id'] == i] # sub_df = sub_df.set_index('begin') sub_df = df.query(f"id == '{i}'") with warnings.catch_warnings(): warnings.simplefilter('ignore', tables.NaturalNameWarning) store.append(f'raw_xml/{i}', sub_df) assert len(store[f'raw_xml/{i}'].loc[0].shape) == 1, \ 'id %s has len(store[id].loc[0].shape) = %g' % (i, len(store[f'raw_xml/{i}'].loc[0].shape)) def xml_to_df_hdf(parser, store_filename, hdf_file_mode='a', complevel=7, complib='zlib', start_time=0, end_time=np.inf, buffer_size=1e5): buffer = collections.defaultdict(list) i = 0 all_ids = set() with pd.HDFStore(store_filename, hdf_file_mode, complevel=complevel, complib=complib) as store: for _ in parser.iterate_until(start_time): pass for row in parser.iterate_until(end_time): for k, v in row.items(): buffer[k].append(v) all_ids.add(row.get('id')) i += 1 if i >= buffer_size: _append_to_store(store, buffer, all_ids) buffer = collections.defaultdict(list) i = 0 _append_to_store(store, buffer, all_ids) def detector_output_xml_to_df(xml_filename): basename = os.path.basename(xml_filename) if '_e1_' in basename: parser = E1IterParseWrapper(xml_filename, True) elif '_e2_' in basename: parser = E2IterParseWrapper(xml_filename, True) else: return rows = collections.defaultdict(list) for row in parser.iterate_until(np.inf): for k, v in row.items(): rows[k].append(v) id_set = set(rows['id']) # sanity check there is only one detector assert len(id_set) == 1 det_id = id_set.pop() converter = {col: _col_dtype_key[col] for col in rows.keys() if col in _col_dtype_key} df = (pd.DataFrame.from_dict(rows) .astype(converter) .drop(columns='id') .set_index('begin')) return {det_id: df} def sumo_output_xmls_to_hdf_multiprocess(output_dir, hdf_filename='raw_xml.hdf', complevel=5, complib='blosc:lz4', num_workers=None, remove_old_if_exists=True): file_list = output_files_in_dir(output_dir) output_filename = os.path.join(output_dir, hdf_filename) if (remove_old_if_exists and os.path.exists(output_filename) and os.path.isfile(output_filename)): os.remove(output_filename) _logger.debug('Removed file %s for new one', output_filename) with multiprocessing.Pool(num_workers) as pool: dfs = pool.map(detector_output_xml_to_df, file_list) dfs = {k: v for d in dfs if d is not None for k, v in d.items()} with pd.HDFStore(output_filename, complevel=complevel, complib=complib) as store: for det_id, df in dfs.items(): store.append('raw_xml/{}'.format(det_id), df) return output_filename def output_files_in_dir(output_dir): file_list = [os.path.join(output_dir, f) for f in os.listdir(output_dir)] file_list = [f for f in file_list if os.path.isfile(f) and os.path.splitext(f)[-1] == '.xml'] return file_list def sumo_output_xmls_to_hdf(output_dir, hdf_filename='raw_xml.hdf', complevel=5, complib='blosc:lz4', remove_old_if_exists=True): file_list = output_files_in_dir(output_dir) output_filename = os.path.join(output_dir, hdf_filename) if (remove_old_if_exists and os.path.exists(output_filename) and os.path.isfile(output_filename)): os.remove(output_filename) _logger.debug('Removed file %s for new one', output_filename) for filename in file_list: basename = os.path.basename(filename) if '_e1_' in basename: parser = E1IterParseWrapper(filename, True) elif '_e2_' in basename: parser = E2IterParseWrapper(filename, True) else: continue xml_to_df_hdf(parser, output_filename, complevel=complevel, complib=complib) return output_filename def tls_output_xml_to_hdf(xml_file, hdf_filename='raw_xml.hdf', complevel=5, complib='blosc:lz4'): df = light_timing_xml_to_phase_df(xml_file) file_dir = os.path.dirname(xml_file) hdf_filename = os.path.join(file_dir, hdf_filename) with pd.HDFStore(hdf_filename, complevel=complevel, complib=complib) as store: store.append('raw_xml/tls_switch', df, append=False) return df def light_timing_xml_to_phase_df(xml_file): parser = TLSSwitchIterParseWrapper(xml_file, True) data = [dict(e.attrib) for e in parser.iterate_until(np.inf)] df =
pd.DataFrame(data)
pandas.DataFrame
from unittest import TestCase import pandas as pd from pandas.api.types import is_numeric_dtype import numpy as np from scripts.utils import di class TestDi(TestCase): """Test di() in utils.py""" def test_di_nan_row(self): """Tests that correct distance is computed if NaNs occur in a row of a column""" df = pd.DataFrame({"A": ["high", np.nan, "high", "low", "low", "high"], "B": [3, 2, 1, np.nan, 0.5, 2], "C": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], "Class": ["apple", "apple", "banana", "banana", "banana", "banana"]}) class_col_name = "Class" rule = pd.Series({"A": "high", "B": (1, 2), "C":(1, np.NaN), "Class": "banana"}) min_max = pd.DataFrame({"B": {"min": 1, "max": 5}}) correct = [pd.Series([1/4*1/4, 0.0, 0.0, 1.0, 1/8*1/8, 0.0], name="A"), pd.Series([1.0, 1.0, 1.0, 1.0, 1.0, 1.0], name="A")] j = 0 for i, col_name in enumerate(df): if col_name == class_col_name: continue col = df[col_name] if is_numeric_dtype(col): dist = di(col, rule, min_max) self.assertTrue(dist.equals(correct[j])) j += 1 def test_di_nan_rule(self): """Tests that correct distance is computed if NaNs occur in a rule""" df = pd.DataFrame({"A": ["high", np.nan, "high", "low", "low", "high"], "B": [3, 2, 1, np.nan, 1, 2], "Class": ["apple", "apple", "banana", "banana", "banana", "banana"]}) class_col_name = "Class" rule = pd.Series({"A": "high", "B": (np.NaN, 2), "Class": "banana"}) min_max = pd.DataFrame({"B": {"min": 1, "max": 2}}) correct = pd.Series([1.0, 1.0, 1.0, 1.0, 1.0, 1.0], name="A") for i, col_name in enumerate(df): if col_name == class_col_name: continue col = df[col_name] if is_numeric_dtype(col): dist = di(col, rule, min_max) self.assertTrue(dist.equals(correct)) def test_di_single_feature(self): """Tests that correct distance is computed for 1 numeric feature""" df = pd.DataFrame({"A": ["high", np.nan, "high", "low", "low", "high"], "B": [3, 2, 1, .5, 1, 2], "Class": ["apple", "apple", "banana", "banana", "banana", "banana"]}) class_col_name = "Class" rule = pd.Series({"A": "high", "B": (1, 2), "Class": "banana"}) dist = None min_max = pd.DataFrame({"B": {"min": 1, "max": 5}}) correct = pd.Series({0: 0.25*0.25, 1: 0, 2: 0, 3: 0.125*0.125, 4: 0, 5: 0.0}) for i, col_name in enumerate(df): if col_name == class_col_name: continue col = df[col_name] if is_numeric_dtype(col): dist = di(col, rule, min_max) self.assertTrue(dist.equals(correct)) def test_di_multiple_features(self): """Tests that correct distance is computed for 2 numeric features""" df = pd.DataFrame({"A": [1, 1, 4, 1.5, 0.5, 0.75], "B": [3, 2, 1, .5, 3, 2], "Class": ["apple", "apple", "banana", "banana", "banana", "banana"]}) class_col_name = "Class" rule = pd.Series({"A": (1, 2), "B": (1, 2), "Class": "banana"}) dists = [] min_max = pd.DataFrame({"A": {"min": 1, "max": 5}, "B": {"min": 1, "max": 11}}) # Only keep rows with the same class label as the rule df = df.loc[df[class_col_name] == "banana"] correct = [pd.Series({2: 0.5*0.5, 3: 0.0, 4: 0.125*0.125, 5: 1/16*1/16}), pd.Series({2: 0, 3: 0.05 * 0.05, 4: 0.1*0.1, 5: 0.0})] for i, col_name in enumerate(df): if col_name == class_col_name: continue col = df[col_name] if is_numeric_dtype(col): dist = di(col, rule, min_max) dists.append(dist) self.assertTrue(dists[i].equals(correct[i])) def test_di_multiple_features_multiple_rules(self): """Tests that correct distance is computed for 2 numeric features""" df = pd.DataFrame({"A": [1, 1, 4, 1.5, 0.5, 0.75], "B": [3, 2, 1, .5, 3, 2], "C": ["a", "b", "c", "d", "e", "f"], "Class": ["apple", "apple", "banana", "banana", "banana", "banana"]}) class_col_name = "Class" rules = [pd.Series({"A": (1, 2), "B": (1, 2), "Class": "banana"}), pd.Series({"A": (1, 2), "B": (1, 2), "Class": "banana"})] dists = [] min_max = pd.DataFrame({"A": {"min": 1, "max": 5}, "B": {"min": 1, "max": 11}}) # Only keep rows with the same class label as the rule df = df.loc[df[class_col_name] == "banana"] correct = [pd.Series({2: 0.5*0.5, 3: 0.0, 4: 0.125*0.125, 5: 1/16*1/16}),
pd.Series({2: 0, 3: 0.05 * 0.05, 4: 0.1*0.1, 5: 0.0})
pandas.Series
import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import config_local import logging _logger = logging.getLogger(__name__) class PrepareData: def __init__(self): path_str = './data/' + config_local.data_clean['data_file_name'] + '.csv' self.ds = pd.read_csv(path_str) def clean(self): # self.ds = self.ds.dropna(how='all') self.add() def add(self): self.ds['incident_month'] =
pd.to_datetime(self.ds['incident_date'])
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt import numpy as np #-------------read csv--------------------- df_2010_2011 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2010_2011.csv") df_2012_2013 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2012_2013.csv") df_2014_2015 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2014_2015.csv") df_2016_2017 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2016_2017.csv") df_2018_2019 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2018_2019.csv") df_2010_2011['prcab'].fillna(2, inplace=True) df_2012_2013['prcab'].fillna(2, inplace=True) df_2014_2015['prcab'].fillna(2, inplace=True) df_2016_2017['prcab'].fillna(2, inplace=True) df_2018_2019['prcab'].fillna(2, inplace=True) mask = df_2010_2011['surgyear'] != 2010 df_2011 = df_2010_2011[mask] df_2010 = df_2010_2011[~mask] mask2 = df_2012_2013['surgyear'] != 2012 df_2013 = df_2012_2013[mask2] df_2012 = df_2012_2013[~mask2] mask3 = df_2014_2015['surgyear'] != 2014 df_2015 = df_2014_2015[mask3] df_2014 = df_2014_2015[~mask3] mask4 = df_2016_2017['surgyear'] != 2016 df_2017 = df_2016_2017[mask4] df_2016 = df_2016_2017[~mask4] mask5 = df_2018_2019['surgyear'] != 2018 df_2019 = df_2018_2019[mask5] df_2018 = df_2018_2019[~mask5] avg_siteid = pd.DataFrame() avg_surgid = pd.DataFrame() def groupby_siteid(): df2010 = df_2010.groupby('siteid')['siteid'].count().reset_index(name='2010_total') df2011 = df_2011.groupby('siteid')['siteid'].count().reset_index(name='2011_total') df2012 = df_2012.groupby('siteid')['siteid'].count().reset_index(name='2012_total') df2013 = df_2013.groupby('siteid')['siteid'].count().reset_index(name='2013_total') df2014 = df_2014.groupby('siteid')['siteid'].count().reset_index(name='2014_total') df2015 = df_2015.groupby('siteid')['siteid'].count().reset_index(name='2015_total') df2016 = df_2016.groupby('siteid')['siteid'].count().reset_index(name='2016_total') df2017 = df_2017.groupby('siteid')['siteid'].count().reset_index(name='2017_total') df2018 = df_2018.groupby('siteid')['siteid'].count().reset_index(name='2018_total') df2019 = df_2019.groupby('siteid')['siteid'].count().reset_index(name='2019_total') df1 =pd.merge(df2010, df2011, on='siteid', how='outer') df2 =pd.merge(df1, df2012, on='siteid', how='outer') df3 =pd.merge(df2, df2013, on='siteid', how='outer') df4 =pd.merge(df3, df2014, on='siteid', how='outer') df5 =pd.merge(df4, df2015, on='siteid', how='outer') df6 =
pd.merge(df5, df2016, on='siteid', how='outer')
pandas.merge
# coding: utf-8 # In[ ]: from __future__ import division import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold from sklearn.feature_extraction.text import CountVectorizer from sklearn.preprocessing import OneHotEncoder,LabelEncoder from sklearn.model_selection import train_test_split from sklearn.utils import resample from scipy import sparse import xgboost as xgb import lightgbm as lgb import cPickle import time import datetime import math import os from multiprocessing import cpu_count import gc import warnings warnings.filterwarnings('ignore') # In[ ]: # Constants define ROOT_PATH = '/home/kaholiu/xiaoxy/2018-Tencent-Lookalike/' ONLINE = 0 # In[ ]: target = 'label' train_len = 45539700 # 8798814 test1_len = 11729073 # 2265989 test2_len = 11727304 # 2265879 positive_num = 2182403 # 421961 # In[ ]: ########################################### Helper function ########################################### # In[ ]: def log(info): print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' ' + str(info)) # In[ ]: def merge_count(df, columns_groupby, new_column_name, type='uint64'): add = pd.DataFrame(df.groupby(columns_groupby).size()).reset_index() add.columns = columns_groupby + [new_column_name] df = df.merge(add, on=columns_groupby, how="left"); del add; gc.collect() df[new_column_name] = df[new_column_name].astype(type) return df # In[ ]: def preprocess_word(texts): pre_texts = [] for text in texts: words = text.split() pre_words = [] for word in words: pre_words.append('W' + word) pre_text = ' '.join(pre_words) pre_texts.append(pre_text) return pre_texts # In[ ]: def down_sample(df, df_feat): df_majority = df_feat[df[target]==0] df_minority = df_feat[df[target]==1] df_majority_downsampled = resample(df_majority, replace=False, # sample without replacement n_samples=positive_num*3, # to match minority class random_state=7) # reproducible results df_downsampled =
pd.concat([df_majority_downsampled, df_minority])
pandas.concat
from numbers import Number from collections import Iterable import re import pandas as pd from pandas.io.stata import StataReader import numpy as np pd.set_option('expand_frame_repr', False) class hhkit(object): def __init__(self, *args, **kwargs): # if input data frame is specified as a stata data file or text file if len(args) > 0: if isinstance(args[0], pd.DataFrame): self.from_dict(args[0]) else: compiled_pattern = re.compile(r'\.(?P<extension>.{3})$') p = re.search(compiled_pattern,str(args[0])) if p is not None: if (p.group('extension').lower() == "dta"): self.read_stata(*args, **kwargs) elif (p.group('extension').lower() == "csv" or p.group('extension').lower() == "txt"): self.df = pd.read_csv('sample_hh_dataset.csv') self._initialize_variable_labels() else: pass # print('Unrecognized file type: %s' % p.group('extension')) else: pass print('Unrecognized file type: %s' % p.group('extension')) def _is_numeric(self, obj): for element in obj: try: 0+element except TypeError: return False return True def _create_key(self, dfon): new_list = [] for mytuple in zip(*dfon): temp_new_list_item = '' for item in mytuple: temp_new_list_item += str(item) new_list += [temp_new_list_item] return new_list def _initialize_variable_labels(self): # make sure variable_labels exists try: self.variable_labels except: self.variable_labels = {} # make sure each column has a variable label for var in self.df.columns.values: # check if var is already in the list of variable labels if var not in self.variable_labels: self.variable_labels[var] = '' return self.variable_labels def _make_include_exclude_series(self, df, include, exclude): using_excl = False if (include is None) and (exclude is None): # Make an array or data series same length as df with all entries true - all rows are included include = pd.Series([True]*df.shape[0]) elif (include is not None) and (exclude is not None): # raise an error saying that can only specify one raise Exception("Specify either include or exclude, but not both") elif (include is not None): # check that dimensions and content are correct pass elif (exclude is not None): # check that dimensions and content are correct using_excl = True include = exclude # include = np.invert(exclude) # Lets make sure we work with boolean include arrays/series. Convert numeric arrays to boolean if (self._is_numeric(include)): # Make this a boolean include = [x!=0 for x in include] elif (include.dtype is not np.dtype('bool')): raise Exception('The include and exclude series or arrays must be either numeric or boolean.') if (using_excl): include = np.invert(include) return include def set_variable_labels(self, varlabeldict={}): self._initialize_variable_labels() for var in varlabeldict: self.variable_labels[var] = varlabeldict[var] return self.variable_labels # Here is a 'count' method for calculating household size def egen(self, operation, groupby, column, obj=None, column_label='', include=None, exclude=None, varlabel='', replacenanwith=None): if obj is None: df = self.df else: df=obj.df include = self._make_include_exclude_series(df, include, exclude) if column_label == '': column_label = '('+operation+') '+column+' by '+groupby result = df[include].groupby(groupby)[column].agg([operation]) result.rename(columns={operation:column_label}, inplace=True) merged = pd.merge(df, result, left_on=groupby, right_index=True, how='left') if replacenanwith is not None: merged[column_label][merged[column_label].isnull()]=replacenanwith self.df = merged self.set_variable_labels(varlabeldict={column_label:varlabel,}) return merged def read_stata(self, *args, **kwargs): reader = StataReader(*args, **kwargs) self.df = reader.data() self.variable_labels = reader.variable_labels() self._initialize_variable_labels() self.value_labels = reader.value_labels() # self.data_label = reader.data_label() return self.df def sdesc(self, varlist=None, varnamewidth=20, vartypewidth=10, varlabelwidth=70, borderwidthinchars=100): if varlist is None: list_of_vars = self.df.columns.values else: list_of_vars = varlist print('-'*borderwidthinchars) print('obs: %d' % self.df.shape[0]) print('vars: %d' % len(list_of_vars)) print('-'*borderwidthinchars) # print('--------'.ljust(varnamewidth), '---------'.ljust(vartypewidth), ' ', '--------------'.ljust(varlabelwidth), end='\n') print('Variable'.ljust(varnamewidth), 'Data Type'.ljust(vartypewidth), ' ', 'Variable Label'.ljust(varlabelwidth), end='\n') print('-'*borderwidthinchars) # print('--------'.ljust(varnamewidth), '---------'.ljust(vartypewidth), ' ', '--------------'.ljust(varlabelwidth), end='\n') for x in list_of_vars: print(repr(x).ljust(varnamewidth), str(self.df[x].dtype).ljust(vartypewidth), ' ', self.variable_labels[x].ljust(varlabelwidth), end='\n') return True def from_dict(self, *args, **kwargs): self.df = pd.DataFrame(*args, **kwargs) self.variable_labels = {} self.value_labels = {} return self.df def statamerge(self, obj, on, how='outer', mergevarname='_m', replacelabels=True): df_using_right = obj.df # create a unique key based on the 'on' list dfon_left_master = [self.df[x] for x in on] dfon_left_master2 = [] for dfx in dfon_left_master: if dfx.dtype is not np.dtype('object'): # We want to allow string keys dfon_left_master2 += [dfx.astype(float)] # We want 1 and 1.0 to be considered equal when converted # to a string, so make them 1.0 and 1.0 respectively else: dfon_left_master2 += [dfx] dfon_right_using = [df_using_right[x] for x in on] dfon_right_using2 = [] for dfx in dfon_right_using: if dfx.dtype is not np.dtype('object'): dfon_right_using2 += [dfx.astype(float)] else: dfon_left_master2 += [dfx] left_master_on_key = self._create_key(dfon_left_master2) right_using_on_key = self._create_key(dfon_right_using2) # create a new column in each dataset with the combined key self.df['_left_merge_key'] = pd.Series(left_master_on_key) df_using_right['_right_merge_key'] = pd.Series(right_using_on_key) self.df = pd.merge(self.df, df_using_right, on=on, how=how) self.df[mergevarname] = 0 self.df[mergevarname][self.df['_left_merge_key'].isnull()] = 2 self.df[mergevarname][self.df['_right_merge_key'].isnull()] = 1 self.df[mergevarname][self.df[mergevarname] == 0 ] = 3 del self.df['_left_merge_key'] del self.df['_right_merge_key'] # How about the variable labels? variable_labels_to_add_to_merged_dataset_dict = {} try: obj.variable_labels except: obj.variable_labels = {} if (replacelabels): # replace the variable lables with those in the right/using dataset for var in obj.variable_labels: if (not obj.variable_labels[var]==""): variable_labels_to_add_to_merged_dataset_dict[var]=obj.variable_labels[var] else: # don't replace the variable lables with those in the right/using dataset, just add variable labels # for variables that are not already in the left/master dataset for var in obj.variable_labels: if var not in self.variable_labels: variable_labels_to_add_to_merged_dataset_dict[var]=obj.variable_labels[var] self.set_variable_labels(variable_labels_to_add_to_merged_dataset_dict) self._initialize_variable_labels() return self.df def tab(self, columns, shownan=False, p=True, includenan=True, includenanrows=True, includenancols=True, dropna=False, decimalplaces=5, usevarlabels=[True, True], include=None, exclude=None, weightcolumn=None): include = self._make_include_exclude_series(self.df, include, exclude) df = self.df[include] if (weightcolumn is None): df['_w'] = pd.Series([1]*df.shape[0]) # remember to delete this column else: df['_w'] = df[weightcolumn] # remember to delete this column if (isinstance(columns, str) or (isinstance(columns, Iterable) and len(columns)==1)): # One way tabulation - tabulation of one variable if (isinstance(columns, str)): column = columns else: column = columns[0] df['_deleteme'] = 1 if (includenan): table = pd.crosstab(columns=df[column].astype(str), index=df['_deleteme'], dropna=dropna) else: table = pd.crosstab(columns=df[column], index=df['_deleteme'], dropna=dropna) table1 = pd.DataFrame(table.sum(axis=0)) table1.index.names = [column] table1.columns = ['count'] del df['_deleteme'] # account for weights df['_'+column] = df[column].astype(str) w_by_col = df.groupby('_'+column)['_w'].agg('sum') # w_by_col.index = w_by_col.index.astype(str) #yes, this is quite likely redundant # make sure the 'nan' is at the bottom, if it is there at all if ('nan' in table1.index): table1 = pd.concat([table1[table1.index != 'nan'], table1[table1.index == 'nan']]) if ('nan' in w_by_col.index): w_by_col = pd.concat([w_by_col[w_by_col.index != 'nan'], w_by_col[w_by_col.index == 'nan']]) norm_w_by_col = w_by_col/w_by_col.sum() sum_of_counts = table1['count'].sum() table1['count']=norm_w_by_col*sum_of_counts table1['percent'] = 100*table1['count']/table1['count'].sum() # use variable labels? if (isinstance(usevarlabels, bool)): if (usevarlabels == True): table1.index.name = self.variable_labels[column] # Add a row with totals table1.loc['total'] = [table1['count'].sum(), table1['percent'].sum()] if (p): print(table1) return table1 elif (isinstance(columns, Iterable)): if (includenanrows and includenancols): table = pd.crosstab(df[columns[0]].astype(str), df[columns[1]].astype(str), dropna=dropna) elif (includenanrows and not includenancols): table = pd.crosstab(df[columns[0]].astype(str), df[columns[1]], dropna=dropna) elif (not includenanrows and includenancols): table = pd.crosstab(df[columns[0]], df[columns[1]].astype(str), dropna=dropna) else: table =
pd.crosstab(df[columns[0]], df[columns[1]], dropna=dropna)
pandas.crosstab
''' ASTGCN ''' import sys import math import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.autograd import Variable import numpy as np import pandas as pd from Param import * from Param_ASTGCN import * from scipy.sparse.linalg import eigs from torchsummary import summary from Utils import * class Spatial_Attention_layer(nn.Module): ''' compute spatial attention scores ''' def __init__(self, DEVICE, in_channels, num_of_vertices, num_of_timesteps): super(Spatial_Attention_layer, self).__init__() self.W1 = nn.Parameter(torch.FloatTensor(num_of_timesteps).to(DEVICE)) self.W2 = nn.Parameter(torch.FloatTensor(in_channels, num_of_timesteps).to(DEVICE)) self.W3 = nn.Parameter(torch.FloatTensor(in_channels).to(DEVICE)) self.bs = nn.Parameter(torch.FloatTensor(1, num_of_vertices, num_of_vertices).to(DEVICE)) self.Vs = nn.Parameter(torch.FloatTensor(num_of_vertices, num_of_vertices).to(DEVICE)) def forward(self, x): ''' :param x: (batch_size, N, F_in, T) :return: (B,N,N) ''' lhs = torch.matmul(torch.matmul(x, self.W1), self.W2) # (b,N,F,T)(T)->(b,N,F)(F,T)->(b,N,T) rhs = torch.matmul(self.W3, x).transpose(-1, -2) # (F)(b,N,F,T)->(b,N,T)->(b,T,N) product = torch.matmul(lhs, rhs) # (b,N,T)(b,T,N) -> (B, N, N) S = torch.matmul(self.Vs, torch.sigmoid(product + self.bs)) # (N,N)(B, N, N)->(B,N,N) S_normalized = F.softmax(S, dim=1) return S_normalized class cheb_conv_withSAt(nn.Module): ''' K-order chebyshev graph convolution ''' def __init__(self, K, cheb_polynomials, in_channels, out_channels): ''' :param K: int :param in_channles: int, num of channels in the input sequence :param out_channels: int, num of channels in the output sequence ''' super(cheb_conv_withSAt, self).__init__() self.K = K self.cheb_polynomials = cheb_polynomials self.in_channels = in_channels self.out_channels = out_channels self.DEVICE = cheb_polynomials[0].device self.Theta = nn.ParameterList([nn.Parameter(torch.FloatTensor(in_channels, out_channels).to(self.DEVICE)) for _ in range(K)]) def forward(self, x, spatial_attention): ''' Chebyshev graph convolution operation :param x: (batch_size, N, F_in, T) :return: (batch_size, N, F_out, T) ''' batch_size, num_of_vertices, in_channels, num_of_timesteps = x.shape outputs = [] for time_step in range(num_of_timesteps): graph_signal = x[:, :, :, time_step] # (b, N, F_in) output = torch.zeros(batch_size, num_of_vertices, self.out_channels).to(self.DEVICE) # (b, N, F_out) for k in range(self.K): T_k = self.cheb_polynomials[k] # (N,N) T_k_with_at = T_k.mul(spatial_attention) # (N,N)*(N,N) = (N,N) 多行和为1, 按着列进行归一化 theta_k = self.Theta[k] # (in_channel, out_channel) rhs = T_k_with_at.permute(0, 2, 1).matmul(graph_signal) # (N, N)(b, N, F_in) = (b, N, F_in) 因为是左乘,所以多行和为1变为多列和为1,即一行之和为1,进行左乘 output = output + rhs.matmul(theta_k) # (b, N, F_in)(F_in, F_out) = (b, N, F_out) outputs.append(output.unsqueeze(-1)) # (b, N, F_out, 1) return F.relu(torch.cat(outputs, dim=-1)) # (b, N, F_out, T) class Temporal_Attention_layer(nn.Module): def __init__(self, DEVICE, in_channels, num_of_vertices, num_of_timesteps): super(Temporal_Attention_layer, self).__init__() self.U1 = nn.Parameter(torch.FloatTensor(num_of_vertices).to(DEVICE)) self.U2 = nn.Parameter(torch.FloatTensor(in_channels, num_of_vertices).to(DEVICE)) self.U3 = nn.Parameter(torch.FloatTensor(in_channels).to(DEVICE)) self.be = nn.Parameter(torch.FloatTensor(1, num_of_timesteps, num_of_timesteps).to(DEVICE)) self.Ve = nn.Parameter(torch.FloatTensor(num_of_timesteps, num_of_timesteps).to(DEVICE)) def forward(self, x): ''' :param x: (batch_size, N, F_in, T) :return: (B, T, T) ''' _, num_of_vertices, num_of_features, num_of_timesteps = x.shape lhs = torch.matmul(torch.matmul(x.permute(0, 3, 2, 1), self.U1), self.U2) # x:(B, N, F_in, T) -> (B, T, F_in, N) # (B, T, F_in, N)(N) -> (B,T,F_in) # (B,T,F_in)(F_in,N)->(B,T,N) rhs = torch.matmul(self.U3, x) # (F)(B,N,F,T)->(B, N, T) product = torch.matmul(lhs, rhs) # (B,T,N)(B,N,T)->(B,T,T) E = torch.matmul(self.Ve, torch.sigmoid(product + self.be)) # (B, T, T) E_normalized = F.softmax(E, dim=1) return E_normalized class cheb_conv(nn.Module): ''' K-order chebyshev graph convolution ''' def __init__(self, K, cheb_polynomials, in_channels, out_channels): ''' :param K: int :param in_channles: int, num of channels in the input sequence :param out_channels: int, num of channels in the output sequence ''' super(cheb_conv, self).__init__() self.K = K self.cheb_polynomials = cheb_polynomials self.in_channels = in_channels self.out_channels = out_channels self.DEVICE = cheb_polynomials[0].device self.Theta = nn.ParameterList([nn.Parameter(torch.FloatTensor(in_channels, out_channels).to(self.DEVICE)) for _ in range(K)]) def forward(self, x): ''' Chebyshev graph convolution operation :param x: (batch_size, N, F_in, T) :return: (batch_size, N, F_out, T) ''' batch_size, num_of_vertices, in_channels, num_of_timesteps = x.shape outputs = [] for time_step in range(num_of_timesteps): graph_signal = x[:, :, :, time_step] # (b, N, F_in) output = torch.zeros(batch_size, num_of_vertices, self.out_channels).to(self.DEVICE) # (b, N, F_out) for k in range(self.K): T_k = self.cheb_polynomials[k] # (N,N) theta_k = self.Theta[k] # (in_channel, out_channel) rhs = graph_signal.permute(0, 2, 1).matmul(T_k).permute(0, 2, 1) output = output + rhs.matmul(theta_k) outputs.append(output.unsqueeze(-1)) return F.relu(torch.cat(outputs, dim=-1)) class ASTGCN_block(nn.Module): def __init__(self, DEVICE, in_channels, K, nb_chev_filter, nb_time_filter, time_strides, cheb_polynomials, num_of_vertices, num_of_timesteps): super(ASTGCN_block, self).__init__() self.TAt = Temporal_Attention_layer(DEVICE, in_channels, num_of_vertices, num_of_timesteps) self.SAt = Spatial_Attention_layer(DEVICE, in_channels, num_of_vertices, num_of_timesteps) self.cheb_conv_SAt = cheb_conv_withSAt(K, cheb_polynomials, in_channels, nb_chev_filter) self.time_conv = nn.Conv2d(nb_chev_filter, nb_time_filter, kernel_size=(1, 3), stride=(1, time_strides), padding=(0, 1)) self.residual_conv = nn.Conv2d(in_channels, nb_time_filter, kernel_size=(1, 1), stride=(1, time_strides)) self.ln = nn.LayerNorm(nb_time_filter) #需要将channel放到最后一个维度上 def forward(self, x): ''' :param x: (batch_size, N, F_in, T) :return: (batch_size, N, nb_time_filter, T) ''' batch_size, num_of_vertices, num_of_features, num_of_timesteps = x.shape # TAt temporal_At = self.TAt(x) # (b, T, T) x_TAt = torch.matmul(x.reshape(batch_size, -1, num_of_timesteps), temporal_At).reshape(batch_size, num_of_vertices, num_of_features, num_of_timesteps) # SAt spatial_At = self.SAt(x_TAt) # cheb gcn spatial_gcn = self.cheb_conv_SAt(x, spatial_At) # (b,N,F,T) # spatial_gcn = self.cheb_conv(x) # convolution along the time axis time_conv_output = self.time_conv(spatial_gcn.permute(0, 2, 1, 3)) # (b,N,F,T)->(b,F,N,T) 用(1,3)的卷积核去做->(b,F,N,T) # residual shortcut x_residual = self.residual_conv(x.permute(0, 2, 1, 3)) # (b,N,F,T)->(b,F,N,T) 用(1,1)的卷积核去做->(b,F,N,T) x_residual = self.ln(F.relu(x_residual + time_conv_output).permute(0, 3, 2, 1)).permute(0, 2, 3, 1) # (b,F,N,T)->(b,T,N,F) -ln-> (b,T,N,F)->(b,N,F,T) return x_residual class ASTGCN(nn.Module): def __init__(self, DEVICE, cheb_polynomials, nb_block= 2, in_channels =1 , K=3, nb_chev_filter = 64, nb_time_filter =64, time_strides = 2, num_for_predict = TIMESTEP_OUT, len_input = 12*(WEEK+DAY+HOUR), num_of_vertices = N_NODE): ''' :param nb_block: :param in_channels: :param K: :param nb_chev_filter: :param nb_time_filter: :param time_strides: :param cheb_polynomials: :param nb_predict_step: ''' super(ASTGCN, self).__init__() self.BlockList = nn.ModuleList([ASTGCN_block(DEVICE, in_channels, K, nb_chev_filter, nb_time_filter, time_strides, cheb_polynomials, num_of_vertices, len_input)]) self.BlockList.extend([ASTGCN_block(DEVICE, nb_time_filter, K, nb_chev_filter, nb_time_filter, 1, cheb_polynomials, num_of_vertices, len_input//time_strides) for _ in range(nb_block-1)]) self.final_conv = nn.Conv2d(int(len_input/time_strides), num_for_predict, kernel_size=(1, nb_time_filter)) self.DEVICE = DEVICE self.to(DEVICE) def forward(self, x): ''' :param x: (B, N_nodes, F_in, T_in) :return: (B, N_nodes, T_out) ''' for block in self.BlockList: x = block(x) output = self.final_conv(x.permute(0, 3, 1, 2))[:, :, :, -1].permute(0, 2, 1) # (b,N,F,T)->(b,T,N,F)-conv<1,F>->(b,c_out*T,N,1)->(b,c_out*T,N)->(b,N,T) return output def adj_tans(sensor_ids_file, distance_file): with open(sensor_ids_file) as f: sensor_ids = f.read().strip().split(',') sensor_ids2 = pd.DataFrame({'from':sensor_ids,'to':sensor_ids}) sensor_ids2['No']=sensor_ids2.index distance_df = pd.read_csv(distance_file,dtype={'from': 'str', 'to': 'str'}) result1 = pd.merge(distance_df,sensor_ids2,on='from',suffixes = ['','_sen']) del result1['to_sen'] result =
pd.merge(result1,sensor_ids2,on='to')
pandas.merge
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 14 14:45:58 2018 @author: yasir """ import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler from sklearn.compose import make_column_transformer from sklearn.model_selection import train_test_split import keras from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras import optimizers from keras.callbacks import TensorBoard import json from ModelQuality import Evaluator, Optimizer def evaluateClassifier(): classifier = Sequential() classifier.add(Dense(units = 6, kernel_initializer = "uniform", activation = "relu", input_dim = 11)) #classifier.add(Dropout(rate = 0.1)) classifier.add(Dense(units = 6, kernel_initializer = "uniform", activation = "relu")) #classifier.add(Dropout(rate = 0.1)) classifier.add(Dense(units = 1, kernel_initializer = "uniform", activation = "sigmoid")) classifier.compile(optimizer = "rmsprop", loss = "binary_crossentropy", metrics = ['accuracy']) return classifier def optimizeClassifier(optimizer): classifier = Sequential() classifier.add(Dense(units = 6, kernel_initializer = "uniform", activation = "relu", input_dim = 11)) # classifier.add(Dropout(rate = 0.1)) classifier.add(Dense(units = 6, kernel_initializer = "uniform", activation = "relu")) # classifier.add(Dropout(rate = 0.1)) classifier.add(Dense(units = 1, kernel_initializer = "uniform", activation = "sigmoid")) classifier.compile(optimizer = optimizer, loss = "binary_crossentropy", metrics = ['accuracy']) return classifier # Load the data dataset =
pd.read_csv("Churn_Modelling.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ @author: dani stable version as per 13 March, 2019 # Once per computer, Before the first run, install heteromotility by copying the following line into the console (and hit enter). ! pip install heteromotility # Minor error is the vertical position of the text in the boxplots, which is currently only dependent on the max value, # rather than the range. this results in incorrect positions if min value is not (approx) 0 or if it goes into negative I will probably not fix this, unless for publication purposes, in which case contact me (Dani) to do so # Non-essential, but for nicer heteromotility output files that don't have unnecessary white lines # change the file hmio.py line 90 (or thereabouts in future versions) # from with open(output_file_path, 'w') as out_file: # to with open(output_file_path, 'w',newline='') as out_file: # make sure the correct number of white spaces at start of line is maintained """ #%% Set parameters # set which script modules to run (set to True/1 or False/0) MOD_spiderplots = 1 # create spider plots MOD_run_HM = 1 # runs heteromotility (on files created above) MOD_DimReduct = 1 # PCA and tSNE analysis of data produced by heteromotility MOD_ComparisonPlots = 1 # generate plots for individual parameters of heteromotility # input names that need to be changed or checked for each experiment #base_dir = 'CF19' # working directory; this script should be saved in the same folder as base_dir #obsolete! exp_folder = 'CF15' # folder with 1 subfolder per condition with the csv files to be analyzed exp_name = '' # only *.csv starting with these letters will be analyzed (can be empty string to analyze everything) # parameters that need can be changed to reflect settings/choices of analysis track_length = 60 # length interval of tracks to plot/analyze pre_division_scrapping = 8 # time points before nuclear division to scrap analysis_interv = 'random' # must be 'first' OR 'last' OR 'random' move_thresh = 1 # for heteromotility: highest speed to check as a threshold for movement in time_moving and avg_moving_speed parameters (HM default is 10); unsure whether this is in um/frame or px/frame speed_thresh = 0 # minimum threshold of movement speed to be included in dimension reduction (can be 0); unsure whether this is in um/frame or px/frame rseed = 22 # random seed (to produce reproducible quasi-ramdom numbers) # parameters relating to data visualizations plot_size = 250 # size of spider plot spider_type = 'condition' # must be 'condition' or 'movie' reflecting what each speiderplot represents p_dec = 4 # number of decimals shown in p value of ANOVA and Kruskal-Wallis # Choose features from heteromotility to be used for PCA and t-SNE # Use Ctrl+1 to include/exclude entire lines, or use #s to remove everything behind # make sure each line ends with a comma, and that there's a closing square bracket at the very end DimReductParas = [#'Well/XY', 'cell_id', 'total_distance', 'net_distance', 'linearity', 'spearmanrsq', 'progressivity', 'max_speed', 'min_speed', 'avg_speed', 'MSD_slope', 'hurst_RS', 'nongauss', 'disp_var', 'disp_skew', 'rw_linearity', 'rw_netdist', 'rw_kurtosis01', 'rw_kurtosis02', 'rw_kurtosis03', 'rw_kurtosis04', 'rw_kurtosis05', 'rw_kurtosis06', 'rw_kurtosis07', 'rw_kurtosis08', 'rw_kurtosis09', 'rw_kurtosis10', 'avg_moving_speed01', 'avg_moving_speed02', 'avg_moving_speed03', 'avg_moving_speed04', 'avg_moving_speed05', 'avg_moving_speed06', 'avg_moving_speed07', 'avg_moving_speed08', 'avg_moving_speed09', 'avg_moving_speed10', 'time_moving01', 'time_moving02', 'time_moving03', 'time_moving04', 'time_moving05', 'time_moving06', 'time_moving07', 'time_moving08', 'time_moving09', 'time_moving10', 'autocorr_1', 'autocorr_2', 'autocorr_3', 'autocorr_4', 'autocorr_5', 'autocorr_6', 'autocorr_7', 'autocorr_8', 'autocorr_9', 'autocorr_10', # 'p_rturn_9_5', 'p_rturn_9_6', 'p_rturn_10_5', 'p_rturn_10_6', 'p_rturn_11_5', 'p_rturn_11_6', # 'mean_theta_9_5', 'min_theta_9_5', 'max_theta_9_5', 'mean_theta_9_6', 'min_theta_9_6', 'max_theta_9_6', # 'mean_theta_10_5', 'min_theta_10_5', 'max_theta_10_5', 'mean_theta_10_6', 'min_theta_10_6', 'max_theta_10_6', # 'mean_theta_11_5', 'min_theta_11_5', 'max_theta_11_5', 'mean_theta_11_6', 'min_theta_11_6', 'max_theta_11_6', ] # output folder names spider_outdir = 'X_SpiderPlots' # folder that contains spiderplots HM_indir = 'X_HM_input' # folder that contains (x,y)-coordinates for heteromotility HM_outdir = 'X_HM_output' # folder that contains output data from heteromotility Quant_analys = 'X_QuantAnalysis' # folder that contains graphs for PCA, tSNE, and individual parameters # parameters for tracking profress of script (don't really need to change) show_spiderplots = False # turn on to visualize spiderplots in console (mainly for debugging purposes) print_HM_command = False # turn on to see the name of command line callout for heteromotility for each file in console (mainly for debugging purposes) print_HM_process = True # turn on to see the process of heteromotility in console #%% default imports and parameters import pandas as pd #import itertools import sys import os from datetime import datetime import matplotlib.pyplot as plt from random import seed as rseed starttime = datetime.now() rseed(rseed) outdir_list = [] lens = [] counter = 0 #base_dir = './%s/'%base_dir base_dir = './' # input_dir = base_dir + 'data/raw/' + exp_folder + '/' print(input_dir) klvkld base_outdir = base_dir + f'tracklength{track_length}_movethresh{move_thresh}/' spider_outdir = base_outdir + spider_outdir + '/' HM_indir = base_outdir+HM_indir+ '/' HM_outdir = base_outdir+HM_outdir+ '/' Quant_analys = base_outdir+Quant_analys+ '/' MOD_HM_input = MOD_HM_input = 1 # generates files that can be read by heteromotility # generates files that can be read by heteromotility if MOD_spiderplots: outdir_list.append(spider_outdir) if MOD_HM_input: outdir_list.append(HM_indir) if MOD_run_HM: outdir_list.append(HM_outdir) if MOD_DimReduct or MOD_ComparisonPlots: outdir_list.append(Quant_analys) for outdir in outdir_list: if not os.path.exists(outdir): os.makedirs(outdir) input_para_set = [ base_dir , exp_folder , exp_name , track_length , pre_division_scrapping , analysis_interv , move_thresh , speed_thresh , rseed , plot_size , spider_type , p_dec, DimReductParas, ] log = f''' parameters for run on {starttime} input data: base_dir = {base_dir} exp_folder = {exp_folder} exp_name = {exp_name} analysis settings: track_length = {track_length} pre_division_scrapping = {pre_division_scrapping} analysis_interv = {analysis_interv} move_thresh = {move_thresh} speed_thresh = {speed_thresh} rseed = {rseed} visualization: plot_size = {plot_size} spider_type = {spider_type} p_dec = {p_dec} heteromotility parameters to include in dimenstion reduction: {[p for p in DimReductParas]} ''' with open(base_outdir+"log.txt", "w") as text_file: print(log, file=text_file) #%% spiderplots and (x,y)-coordinate extraction if MOD_spiderplots or MOD_HM_input: SPstart = datetime.now() print ('starting on spiderplot creation and/or (x,y)-data extraction') import csv from random import randint FOV = (-plot_size,plot_size) # loop through subdirectories in input dir (excluding output directories) dirlist = [d for d in os.listdir(input_dir) if (os.path.isdir(input_dir+d) and d not in outdir_list)] for i,d in enumerate (dirlist): outfile_x = HM_indir+d+'_x.csv' outfile_y = HM_indir+d+'_y.csv' # read input files file_array = [f for f in os.listdir(input_dir+d) if (f.startswith(exp_name) and f.endswith('.csv'))] xDict = {} yDict = {} for filename in file_array: spider_df = pd.read_csv(input_dir+d +'/'+ filename, usecols = ['Track ID', 'Position T', 'Position X ', 'Position Y', 'Frame']).rename(columns=lambda x: x.strip()) spider_df.columns = spider_df.columns.str.replace(" ", "_") spider_df.columns = map(str.upper, spider_df.columns) # create list of unique track numbers and initialize lists/dictionaries for data storage tracklist=spider_df.TRACK_ID.unique().tolist() LenList = [] # find data per track for track in tracklist: trackdf = spider_df.loc[spider_df.TRACK_ID == track].reset_index(drop=True) #scrap split tracks (dividing cells) and X frames preceding division (X = pre_division_scrapping) if len(trackdf) != len(trackdf.FRAME.unique()): framelist = list(trackdf.FRAME) div_point = min([fr for fr in framelist if framelist.count(fr) > 1])-trackdf.FRAME[0] analysis_end = max(0,div_point - pre_division_scrapping) trackdf = trackdf[:analysis_end] if len(trackdf) != len(trackdf.FRAME.unique()): print('duplicate timepoints still exist at timepoint %i, track %i, file: %s'%(div_point,track,filename)) sys.exit('fix duplicate track error') # add total length of tracks to list of lengths lens.append(len(trackdf)) # create length lists per track if len(trackdf) > track_length: t0 = randint(0, len(trackdf) - track_length) # create x- and y- coordinates for each position in each track. if analysis_interv == 'random': x_coord,y_coord = trackdf.POSITION_X[t0:t0+track_length], trackdf.POSITION_Y[t0:t0+track_length] elif analysis_interv == 'last': x_coord,y_coord = trackdf.POSITION_X[-track_length:], trackdf.POSITION_Y[-track_length:] elif analysis_interv == 'first': x_coord,y_coord = trackdf.POSITION_X[:track_length], trackdf.POSITION_Y[:track_length] x_coord,y_coord = x_coord - list(x_coord)[0], y_coord - list(y_coord)[0] # 0 total displacement in either x or y crashes heteromotility if x_coord.max()-x_coord.min()>0 and y_coord.max()-y_coord.min() > 0: counter +=1 # print (counter, d, filename, track) # plot track onto spider plot if MOD_spiderplots: plt.plot(x_coord,y_coord, linewidth=0.5,alpha=0.5) # write files into heteromotility output files if MOD_HM_input: # wx.writerow([*round(x_coord,3)]) # wy.writerow([*round(y_coord,3)]) xDict[counter] = x_coord yDict[counter] = y_coord # plot per file (= per movie) if spider_type == 'movie' or spider_type == 'file': plt.title(filename) plt.xlim(FOV) plt.ylim(FOV) plt.savefig(spider_outdir+'spider_'+filename+'.png', bbox_inches='tight',dpi=300) if show_spiderplots: plt.show() plt.close() # plot per folder (= per condition) if spider_type == 'condition' or spider_type == 'folder': plt.title(d) plt.xlim(FOV) plt.ylim(FOV) plt.savefig(spider_outdir+'spider_'+d+'.png', bbox_inches='tight',dpi=300) if show_spiderplots: plt.show() plt.close() if MOD_HM_input: with open(outfile_x, 'w',newline='') as outfile_x, open(outfile_y, 'w',newline='') as outfile_y: wx,wy = csv.writer(outfile_x),csv.writer(outfile_y) for xkey,xvalue in xDict.items(): wx.writerow([*round(xvalue,3)]) for ykey,yvalue in yDict.items(): wy.writerow([*round(yvalue,3)]) SPfinish = datetime.now() SPtime = int(round((SPfinish - SPstart).total_seconds(),0)) print ('spiderplots and/or (x,y)-data extraction done after %i seconds'%SPtime) print ('') #%% run heteromotility if MOD_run_HM: HMstart = datetime.now() print ('starting to run heteromotility') import subprocess as sp file_array = os.listdir(HM_indir) outdir_files = os.listdir(HM_outdir) skip_count = 0 for name in file_array: if 1==0: # replace by line below if I want to skip files already processed # if 'HMout_'+name[:-6]+'.csv' in outdir_files: # print ('already processed: '+name) q=0 elif name.endswith('_x.csv'): x_file = os.path.abspath(HM_indir)+name y_file = x_file.replace('_x.csv','_y.csv') if os.path.exists(y_file): base_name = name[:-6] # will print the status and commandline if print_HM_command: print ( 'heteromotility.exe',os.path.abspath(HM_outdir),'--tracksX',x_file,'--tracksY',y_file,'--output_suffix',base_name,'--move_thresh',str(move_thresh)) # run heteromotility as if in BASH sys.exit('fsdjhfjsd') print ('running heteromotility on ' + base_name) sp.call(['heteromotility.exe',os.path.abspath(HM_outdir),'--tracksX',x_file,'--tracksY',y_file,'--output_suffix',base_name,'--move_thresh',str(move_thresh)]) elif print_HM_process: print (y_file + "doesn't exist") print('--- skipped') skip_count+=1 HMfinish = datetime.now() HMtime = int(round((HMfinish - HMstart).total_seconds(),0)) print ('heteromotility processing finished after %i seconds'%HMtime) print ('') #%% run dimension reduction if MOD_DimReduct: DRstart = datetime.now() print ('starting on dimension reductions') import numpy as np from sklearn.decomposition import PCA from sklearn.manifold import TSNE # from scipy.stats import mannwhitneyu, mstats import matplotlib import csv matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 colors=['xkcd:azure','xkcd:darkblue','xkcd:cyan', 'xkcd:sienna','brown', # 'xkcd:orange','xkcd:red' ] #colors=[0,1,2,3,4] HM_files = os.listdir(HM_outdir) # Read in the csv in pandas, adds a label column = filename, drops all cells slower than speed_thresh samples = [] for filename in HM_files: HM_df = pd.read_csv(HM_outdir + filename , usecols = DimReductParas) HM_df['label'] = filename samples.append(HM_df[HM_df.avg_speed>speed_thresh]) with open(HM_outdir + filename) as csvFile: reader = csv.reader(csvFile) DimReductParas = next(reader)[1:] # All samples will be put together in df and label column is dropped from df DRdf = pd.concat(samples, ignore_index = True) label_df = DRdf.label DRdf = DRdf.drop(['label'], axis = 1) # Data is normalized/scaled to ensure equal contribution from all features # normalized_df = (DRdf - DRdf.min()) / (DRdf.max() - DRdf.min()) #sascha's method, depends heavily on outliers! normalized_df = (DRdf - DRdf.mean()) / DRdf.std() # Create a PCA object from sklearn.decomposition pca = PCA() # Perform PCA on the normalized data and return transformed principal components transformed = pca.fit_transform(normalized_df.values) components = pca.components_ normed_comp = abs(components)/np.sum(abs(components),axis = 0) # Calculate variance contribution of each principal component (currently unused) expl_var_ratio = pca.explained_variance_ratio_ # Create a scatter plot of the first two principal components w, h = plt.figaspect(1.) pca_fig, pca_ax =plt.subplots(figsize=(w,h)) for x,i in enumerate(HM_files): pca_ax.scatter(transformed[:,0][label_df == i], transformed[:,1][label_df == i], label = i[6:-4], alpha=0.5, s=5, ) #, c=colors[x]) # Format PCA graph pca_ax.legend(#loc='upper center', bbox_to_anchor=(0.5, 1.05), # ncol=math.ceil(len(HM_files)/2), fancybox=True, shadow=False, prop={'size': 6}, framealpha=0.75) pca_ax.spines['right'].set_visible(False) pca_ax.spines['top'].set_visible(False) pca_ax.set_xlabel('PC1 (variance ' + str(int(expl_var_ratio[0]*100))+ ' %)') pca_ax.set_ylabel('PC2 (variance ' + str(int(expl_var_ratio[1]*100))+ ' %)') # Save PCA plot pca_fig.savefig(Quant_analys + '0_PCA.png', bbox_inches='tight',dpi=1200) # pca_fig.savefig(base + '__' + thisdir + '_pca_.pdf', bbox_inches='tight') plt.close() DR_halfway = datetime.now() DRtime = int(round((DR_halfway - DRstart).total_seconds(),0)) print ('PCA done after %i seconds'%DRtime) # Create t-SNE plot without axis tsne = TSNE(n_components = 2, init = 'pca', random_state= 0 ) tsne_points = tsne.fit_transform(normalized_df.values) fig, ax = plt.subplots(figsize=(w,h)) ax.axis('off') for x,i in enumerate(HM_files): ax.scatter(tsne_points[:,0][label_df == i], tsne_points[:,1][label_df == i], label = i[6:-4], alpha=0.5, s=5,) # c=colors[x]) # Format tSNE graph ax.legend(#loc='upper left', #bbox_to_anchor=(0.5, 1.05), ncol=1, fancybox=True, shadow=False, prop={'size': 6}, framealpha=0.75) # Save t-SNE plot in directory fig.savefig(Quant_analys + '0_tSNE.png', bbox_inches='tight',dpi=1200) # fig.savefig(base + '__' + thisdir + '_tsne_.pdf', bbox_inches='tight') plt.close() DRfinish = datetime.now() DRtime = int(round((DR_halfway - DRstart).total_seconds(),0)) print ('tSNE done after %i seconds'%DRtime) print ('') #%% create individual plots for each parameter in heteromotility if MOD_ComparisonPlots: CPstart = datetime.now() print ('starting on boxplots') import seaborn as sns from scipy.stats import f_oneway as anova from scipy.stats import kruskal as kwtest import numpy as np # load data and format to useful object samples = [] HM_files = os.listdir(HM_outdir) for HM_data in HM_files: HM_df =
pd.read_csv(HM_outdir + HM_data)
pandas.read_csv
import pandas as pd import os import dcase_util import random import tempfile WORKSPACE = "/home/ccyoung/Downloads/dcase2018_task1-master" def generate_new_meta_csv(): meta_csv_path = os.path.join(WORKSPACE, 'appendixes', 'meta.csv') df = pd.read_csv(meta_csv_path, sep='\t') data = df.groupby(['scene_label']) new_df = pd.DataFrame(data=[], columns=['filename', 'scene_label', 'identifier', 'source_label']) for k, v in data: groups = [df for _, df in v.groupby('identifier')] random.shuffle(groups) v = pd.concat(groups).reset_index(drop=True) new_df =
pd.concat([new_df, v])
pandas.concat
import json import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import cross_val_score,train_test_split from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.metrics import f1_score, classification_report, confusion_matrix, accuracy_score import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns def save_classification_report(algorithm, y_pred, y_true, labels): with open(f"report-{algorithm}.txt", "w", encoding="utf-8") as file: report = classification_report(y_true, y_pred, target_names=labels) file.write(report) def plot_confusion_matrix(cm, classes, algorithm): df = pd.DataFrame(cm, index=classes, columns=classes) plt.figure(figsize=(10, 9)) sns.heatmap(df, annot=True, cmap=sns.color_palette("Blues")) plt.tight_layout() plt.savefig(f"{algorithm}.svg") df.to_csv(f"{algorithm}-cm.csv") def save_cross_val(clf, algorithm, data, labels, cv=10): cross_val = pd.Series(cross_val_score(clf, data, labels, cv=10)) cross_val.to_csv(f"{algorithm}-cross-val.csv", index=False) if __name__ == "__main__": f1_scores = list() accuracies =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Nov 21 10:24:15 2016 @author: <NAME> In this file, you will find the main filters and basics function for time series operations """ # Filters # Every filter has to produce a filtered time serie of prices from a sequence of price relatives """ Documentation for all the following filters : INPUT : dataset : a pandas.dataframe of price relatives to filter of shape (nb_periods , nb_shares) params : a dict of parameters OUTPUT : f_dataset : the filtered price serie dataset The resulting dataframe has the following properties : - same shape than the original dataset, - NAN values where prediction cannot be made (mostoften first days) - And at row t, the prediction made in period t - Note that you have to adjust the dataframe to perform predictive analysis otherwise you are measuring with knowledge of future information. Specific documentation added in each function """ def MA(dataset, params): """ Moving average params should at least contain window : window parameter """ assert "window" in params, "you should add the window parameter" p_dataset = to_absolute(dataset) f_dataset = p_dataset.rolling(window = params["window"]).mean() return f_dataset def EMA(dataset, params): """ Exponential moving average params should at least contain com : is the center of mass parameter """ assert "com" in params, "you should add the com (center of mass) parameter" p_dataset = to_absolute(dataset) f_dataset = p_dataset.ewm(com=params["com"]).mean() return f_dataset def ZLEMA(dataset, params): """cf filters""" # p_dataset = to_absolute(dataset) def KCA(dataset, params = None): """ KCA perform kalman filtering It is an online implementation of the kalman filter We fix the seed parameter to 1 since it doesn't affect a lot the way the filter behave in our case. """ p_dataset = to_absolute(dataset) f_dataset = pd.DataFrame() for stock in p_dataset.columns : f_dataset[stock] = kalman_filtering(p_dataset[stock]) return f_dataset from pykalman import KalmanFilter def kalman_filtering(price_sequence): h = 1 #time step A = np.array([[1,h,.5*h**2], [0,1,h], [0,0,1]]) Q = np.eye(A.shape[0]) #2) Apply the filter kf = KalmanFilter(transition_matrices = A , transition_covariance = Q) means, covariances = kf.filter([price_sequence[0]]) filtered_price_sequence = [means[0,0]] for i in range(1,len(price_sequence)): #to track it (streaming) new_mean, new_covariance = kf.filter_update(means[-1], covariances[-1], price_sequence[i]) means = np.vstack([means,new_mean]) covariances = np.vstack([covariances,new_covariance.reshape((1,3,3))]) filtered_price_sequence.append(means[i,0]) return filtered_price_sequence # Predictive analysis def adjust_data(dataset, prediction ,horizon = 1): """ Aims to adjust the prediction and the real price relative for the measure of performance you can adjust the horizon. """ assert dataset.shape == prediction.shape adjusted_prediction = prediction[:-horizon].dropna(axis=0, how='all', inplace=False) starting_idx = adjusted_prediction.index[0] adjusted_dataset = dataset[starting_idx+horizon:] assert adjusted_dataset.shape == adjusted_prediction.shape return adjusted_dataset, adjusted_prediction from sklearn.metrics import mean_absolute_error, r2_score import numpy as np import pandas as pd def regression_report(adjusted_dataset, adjusted_prediction, output="all"): """ Build a regression task report for the adjusted datasets report includes MAE : mean average error R2 : r2-score DPA : direction prediction accuracy error if output = "all" then it outputs the report stock per stock and the average if output = "average" the it ouputs the average only """ df =
pd.DataFrame()
pandas.DataFrame
import re import tempfile from dataclasses import fields from urllib.error import HTTPError import click import pandas as pd from loguru import logger from ..etl import collections from ..etl.core import get_etl_sources from .scrape import downloaded_pdf, extract_pdf_urls, get_driver from .utils import RichClickCommand def extract_parameters(s): """Extract year/quarter/month from a string.""" # The patterns to try to match patterns = [ "FY(?P<fiscal_year>[0-9]{2})[_-]Q(?P<quarter>[1234])", # FYXX-QX "FY(?P<fiscal_year>[0-9]{2})", # FYXX "(?P<year>[0-9]{4})[_-](?P<month>[0-9]{2})", # YYYY-MM ] for pattern in patterns: match = re.match(pattern, s) if match: d = match.groupdict() if "fiscal_year" in d: d["fiscal_year"] = "20" + d["fiscal_year"] return {k: int(v) for k, v in d.items()} return None def run_etl( cls, dry_run=False, no_validate=False, extract_only=False, fiscal_year=None, quarter=None, year=None, month=None, **kwargs, ): """Internal function to run ETL on fiscal year data.""" # Loop over the PDF files finished_params = [] for f in cls.get_pdf_files(): # Filter by fiscal year if fiscal_year is not None: pattern = f"FY{str(fiscal_year)[2:]}" if pattern not in f.stem: continue # Filter by quarter if quarter is not None: pattern = f"Q{quarter}" if pattern not in f.stem: continue # Filter by year if year is not None: pattern = f"{year}" if pattern not in f.stem: continue # Filter by month if month is not None: pattern = f"{month:02d}" if pattern not in f.stem: continue # Extract parameters params = extract_parameters(f.stem) if params is None: raise ValueError(f"Could not extract parameters from {f.stem}") # ETL if not dry_run: report = None all_params = {**params, **kwargs} try: report = cls(**all_params) except FileNotFoundError: pass all_params_tup = tuple(all_params.items()) # Run the ETL pipeline if report and all_params_tup not in finished_params: # Log it finished_params.append(all_params_tup) s = ", ".join(f"{k}={v}" for k, v in all_params.items()) logger.info(f"Processing: {s}") if not extract_only: report.extract_transform_load(validate=(not no_validate)) else: report.extract() def get_etl_function(source, etl): """Create and return an the ETL function for the given source.""" options = { "fiscal_year": "Fiscal year", "quarter": "Fiscal quarter", "kind": "Either 'adopted' or 'proposed'", "year": "Calendar year", "month": "Calendar month", } types = {"kind": click.Choice(["adopted", "proposed"])} required = ["kind"] @etl.command( cls=RichClickCommand, name=source.__name__, help=source.__doc__, ) @click.option("--dry-run", is_flag=True, help="Do not save any new files.") @click.option("--no-validate", is_flag=True, help="Do not validate the data.") @click.option( "--extract-only", is_flag=True, help="Only extract the data (do not transform/load).", ) def etl_source(dry_run, no_validate, extract_only, **kwargs): # Run the ETL logger.info(f"Running ETL pipeline for {source.__name__}") run_etl( source, dry_run=dry_run, no_validate=no_validate, extract_only=extract_only, **kwargs, ) # Add for field in fields(source): opt = click.Option( ["--" + field.name.replace("_", "-")], type=types.get(field.name, int), help=options[field.name] + ".", required=field.name in required, ) etl_source.params.insert(0, opt) return etl_source def generate_etl_commands(etl): """Generate the ETL commands.""" @etl.command(cls=RichClickCommand, name="CashReport") @click.option("--fiscal-year", help="Fiscal year.", type=int) @click.option("--quarter", help="Fiscal quarter.", type=int) @click.option("--dry-run", is_flag=True, help="Do not save any new files.") @click.option("--no-validate", is_flag=True, help="Do not validate the data.") @click.option( "--extract-only", is_flag=True, help="Only extract the data (do not transform/load).", ) def CashReport(dry_run, no_validate, extract_only, fiscal_year, quarter): "Run ETL on all Cash Report sources from the QCMR." # Run the ETL for Cash Report for source in get_etl_sources()["qcmr"]: name = source.__name__ if name.startswith("CashReport"): logger.info(f"Running ETL pipeline for {name}") run_etl( source, dry_run, no_validate, extract_only, fiscal_year=fiscal_year, quarter=quarter, ) # Names of the groups groups = { "qcmr": "QCMR", "collections": "Collections", "spending": "Spending", } out = [] # Loop over each group for group, sources in get_etl_sources().items(): # Track the command names commands = [] # Add each source for source in sources: # Get the etl function for this source etl_function = get_etl_function(source, etl) etl.add_command(etl_function) commands.append(source.__name__) # add CashReport to QCMR if group == "qcmr": etl.add_command(CashReport, name="CashReport") commands.append("CashReport") # Add the help group out.append( { "name": groups[group], "commands": sorted(commands), } ) return out def _get_latest_raw_pdf(cls): """Given an ETL class, return the latest PDF in the data directory.""" # Get PDF paths for the raw data files dirname = cls.get_data_directory("raw") pdf_files = dirname.glob("*.pdf") # Get the latest latest = sorted(pdf_files)[-1] year, month = map(int, latest.stem.split("_")) return year, month def _run_monthly_update(month, year, url, css_identifier, *etls): """ Internal function to run update on monthly PDFs. Parameters ---------- month : int the latest month that we have data for year : int the latest calendar year we have data for url : str the url to check css_identifier : str the element identifer to scrape etls : list the ETL classes to run """ # Try to extract out the PDF links from the page try: pdf_urls = extract_pdf_urls(url, css_identifier) except HTTPError as err: if err.code == 404: logger.info(f"URL '{url}' does not exist") return None else: raise # Find out which ones are new last_dt = pd.to_datetime(f"{month}/{year}") new_months = [dt for dt in pdf_urls if
pd.to_datetime(dt)
pandas.to_datetime
# # # # # # # # # # # # # # # # # # # # # # # # # # # Module to run real time contingencies # # By: <NAME> and <NAME> # # 09-08-2018 # # Version Aplha-0. 1 # # # # Module inputs: # # -> File name # # # # # # # # # # # # # # # # # # # # # # # # # import pandapower as pp import pandas as pd import json import copy import calendar from time import time import datetime from inspyred import ec import inspyred import math from random import Random # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Disconet_Asset(net,Asset_type,Asset_to_disc, Service=False): net_lf = copy.deepcopy(net) if Asset_type=='GEN': # Disconnect Generators index = net_lf.sgen.loc[net_lf.sgen['name'] == Asset_to_disc].index[0] net_lf.sgen.in_service[index] = Service elif Asset_type=='TR': # Disconnect Transformers index = net_lf.trafo.loc[net_lf.trafo['name'] == Asset_to_disc].index[0] net_lf.trafo.in_service[index] = Service elif Asset_type=='LN': # Disconnect Lines index = net_lf.line.loc[net_lf.line['name'] == Asset_to_disc].index[0] net_lf.line.in_service[index] = Service elif Asset_type=='SW': index = net_lf.switch.loc[net.switch['name'] == Asset_to_disc].index[0] net_lf.switch.closed[index] = not Service elif Asset_type=='LO': index = net_lf.load.loc[net.load['name'] == Asset_to_disc].index[0] net_lf.load.in_service[index] = Service elif Asset_type=='BUS': index = net_lf.bus.loc[net.bus['name'] == Asset_to_disc].index[0] net_lf.bus.in_service[index] = Service elif Asset_type=='ST': index = net_lf.storage.loc[net.storage['name'] == Asset_to_disc].index[0] net_lf.storage.in_service[index] = Service else: print('Asset to disconnet does not exist') return net_lf # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Network_Reconfiguration(net,strategy): net_lf = copy.deepcopy(net) for step in strategy: l_sequence = strategy[step] asset_type = l_sequence['Element_Type'] asset_to_disc = l_sequence['Element_Name'] net_lf = Disconet_Asset(net_lf,asset_type,asset_to_disc) return net_lf # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Load_Contingency_Strategies(File): with open(File) as json_file: data = json.load(json_file) return data # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Load_AM_Plan(File): data = Load_Contingency_Strategies(File) #with open(File) as json_file: # data = json.load(json_file) df = pd.DataFrame.from_dict(data, orient='index') df['Date'] = pd.to_datetime(df['Date'])#pd.to_datetime(df['Date']) return df # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Funtion to return the daily load growth def Load_Growth_By_Day(L_growth): daily_growth = pow(1+L_growth, 1/365)-1 # Daily growth rate def f_Load_Daily_Growth(ndays): # Daily growth rate fuction return pow(1+daily_growth,ndays) return f_Load_Daily_Growth # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Risk assessment def Power_Risk_assessment(net,secure=1): assessment = {} load = net.res_load['p_mw'].fillna(0)*secure load_base = net.load['p_mw']*net.load.scaling assessment['Load'] = pd.DataFrame( {'name':net.load.name, 'ENS':load_base - load, 'ES': load}) assessment['T_ES'] = load.sum() assessment['T_ENS'] = load_base.sum()-load.sum() gen_name = pd.concat([net.sgen.name, net.storage.name,net.ext_grid.name], ignore_index=True) p_gen = pd.concat([net.res_sgen.p_mw, net.res_storage.p_mw,net.res_ext_grid.p_mw], ignore_index=True) p_gen = p_gen.fillna(0)*secure net.res_sgen['Type'] = 'D_Gen' net.res_storage['Type'] = 'Storage' net.res_ext_grid['Type'] = 'External' p_source =
pd.concat([net.res_sgen.Type, net.res_storage.Type,net.res_ext_grid.Type], ignore_index=True)
pandas.concat
from datetime import datetime, timedelta import time import pandas as pd from email.mime.text import MIMEText from smtplib import SMTP import pytz from utility import run_function_till_success
pd.set_option('expand_frame_repr', False)
pandas.set_option
# Importing necessary packages import pandas as pd import numpy as np import datetime import geocoder from geopy.geocoders import Nominatim from darksky.api import DarkSky, DarkSkyAsync from darksky.types import languages, units, weather # Reading monthly yellow taxi trip data for 2019 df1 = pd.read_csv("yellow_tripdata_2019-01.csv", low_memory = False) df2 = pd.read_csv("yellow_tripdata_2019-02.csv", low_memory = False) df3 = pd.read_csv("yellow_tripdata_2019-03.csv", low_memory = False) df4 = pd.read_csv("yellow_tripdata_2019-04.csv", low_memory = False) df5 = pd.read_csv("yellow_tripdata_2019-05.csv", low_memory = False) df6 = pd.read_csv("yellow_tripdata_2019-06.csv", low_memory = False) df7 = pd.read_csv("yellow_tripdata_2019-07.csv", low_memory = False) df8 = pd.read_csv("yellow_tripdata_2019-08.csv", low_memory = False) df9 = pd.read_csv("yellow_tripdata_2019-09.csv", low_memory = False) df10 = pd.read_csv("yellow_tripdata_2019-10.csv", low_memory = False) df11 = pd.read_csv("yellow_tripdata_2019-11.csv", low_memory = False) df12 = pd.read_csv("yellow_tripdata_2019-12.csv", low_memory = False) # Dropping rows with N/A's in each month df1.dropna(inplace = True) df2.dropna(inplace = True) df3.dropna(inplace = True) df4.dropna(inplace = True) df5.dropna(inplace = True) df6.dropna(inplace = True) df7.dropna(inplace = True) df8.dropna(inplace = True) df9.dropna(inplace = True) df10.dropna(inplace = True) df11.dropna(inplace = True) df12.dropna(inplace = True) # Concatenating monthly data and removing unnecessary columns data =
pd.concat([df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11, df12])
pandas.concat
import numpy as np import pandas as pd import os.path import random import collections from bisect import bisect_right from bisect import bisect_left from .. import multimatch_gaze as mp dtype = [ ("onset", "<f8"), ("duration", "<f8"), ("label", "<U10"), ("start_x", "<f8"), ("start_y", "<f8"), ("end_x", "<f8"), ("end_y", "<f8"), ("amp", "<f8"), ("peak_vel", "<f8"), ("med_vel", "<f8"), ("avg_vel", "<f8"), ] def same_sample(run=1, subj=1): """duplicate dataset to force exactly similar scanpaths. Choose the run (integer between 1-8) and whether you want a lab (1) or mri (2) subject""" if subj == 1: sub = "sub-30" else: sub = "sub-10" path = os.path.join( "multimatch_gaze/tests/testdata", "{}_task-movie_run-{}_events.tsv".format(sub, run), ) loc = os.path.join( "multimatch_gaze/tests/testdata", "locations_run-{}_events.tsv".format(run) ) data = np.recfromcsv( path, delimiter="\t", dtype={ "names": ( "onset", "duration", "label", "start_x", "start_y", "end_x", "end_y", "amp", "peak_vel", "med_vel", "avg_vel", ), "formats": ( "f8", "f8", "U10", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", ), }, ) data2 = data shots = pd.read_csv(loc, sep="\t") return data, data2, shots def short_shots(run=3): """create a shortened shots location annotation to test longshots()""" loc = os.path.join( "multimatch_gaze/tests/testdata", "locations_run-{}_events.tsv".format(run) ) shots = pd.read_csv(loc, sep="\t") shortshots = shots[0:20] return shortshots def mk_fix_vector(length=5): """creates a random length x 3 fixation vector in form of a record array""" fix = np.recarray( (0,), dtype=[("start_x", "<f8"), ("start_y", "<f8"), ("duration", "<f8")] ) for i in range(0, length): fixation = np.array( ( np.random.uniform(1, 720), np.random.uniform(1, 720), np.random.uniform(0.01, 5), ), dtype=[("start_x", float), ("start_y", float), ("duration", float)], ) fix = np.append(fix, fixation) return fix def mk_strucarray(length=5): """create a random scanpath in the data format generateScanpathStructureArray would output""" fixation_x = random.sample(range(700), length) fixation_y = random.sample(range(700), length) fixation_dur = random.sample(range(5), length) saccade_x = random.sample(range(700), length - 1) saccade_y = random.sample(range(700), length - 1) saccade_lenx = random.sample(range(700), length - 1) saccade_leny = random.sample(range(700), length - 1) saccade_rho = random.sample(range(700), length - 1) saccade_theta = random.sample(range(4), length - 1) eyedata = dict( fix=dict(x=fixation_x, y=fixation_y, dur=fixation_dur,), sac=dict( x=saccade_x, y=saccade_y, lenx=saccade_lenx, leny=saccade_leny, theta=saccade_theta, rho=saccade_rho, ), ) eyedata2 = dict( fix=dict( x=fixation_x[::-1] * 2, y=fixation_y[::-1] * 2, dur=fixation_dur[::-1] * 2, ), sac=dict( x=saccade_x[::-1] * 2, y=saccade_y[::-1] * 2, lenx=saccade_lenx[::-1] * 2, leny=saccade_leny[::-1] * 2, theta=saccade_theta[::-1] * 2, rho=saccade_rho[::-1] * 2, ), ) return eyedata, eyedata2 def mk_angles(): """creates vectors with predefined angular relations. angles1 and angles2 contain the following properties: 1. same 0, 2. 60 diff, 3. 90 diff, 4.120 diff,4. 180 diff (max. dissimilar). They are in sectors (0,1) and (0, -1). Angles3 and angles4 contain the same properties reversed and lie in sectors (-1, 0) and (-1, -1)""" angles1 = dict(sac=dict(theta=[0, 0.523, 0.785, 1.04, 1.57])) angles2 = dict(sac=dict(theta=[0, -0.523, -0.785, -1.04, -1.57])) angles3 = dict(sac=dict(theta=[1.57, 2.093, 2.356, 2.617, 3.14])) angles4 = dict(sac=dict(theta=[-1.57, -2.093, -2.356, -2.617, -3.14])) path = [0, 6, 12, 18, 24] M_assignment = np.arange(5 * 5).reshape(5, 5) return M_assignment, path, angles1, angles2, angles3, angles4 def mk_durs(): """create some example duration for test_durationsim()""" durations1 = collections.OrderedDict() durations2 = collections.OrderedDict() durations1 = dict(fix=dict(dur=[0.001, 20.0, 7, -18, -2.0])) durations2 = dict(fix=dict(dur=[0.008, 18.0, 7, -11, 3.0])) path = [0, 6, 12, 18, 24] M_assignment = np.arange(5 * 5).reshape(5, 5) return M_assignment, path, durations1, durations2 def mk_supershort_shots(): data = { "onset": np.arange(0, 20), "duration": np.repeat(1, 20), "locale": np.repeat("somewhere", 20), } shots =
pd.DataFrame(data)
pandas.DataFrame
import os import sys import pandas_alive import pytest import pandas as pd import numpy as np from datetime import datetime, timedelta from PIL import Image myPath = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, "../..") @pytest.fixture(scope="function") def example_dataframe(): test_data = [ [np.random.randint(0, 10000), np.random.randint(0, 10000)], [np.random.randint(0, 10000), np.random.randint(0, 10000)], ] test_columns = ["A", "B"] index_start = datetime( np.random.randint(2000, 2020), np.random.randint(1, 12), np.random.randint(1, 28), ) index_end = index_start + timedelta(days=np.random.randint(1, 364)) test_index = [index_start, index_end] return
pd.DataFrame(data=test_data, columns=test_columns, index=test_index)
pandas.DataFrame
import datetime import numpy as np import pytest import pytz import pandas as pd from pandas import Timedelta, merge_asof, read_csv, to_datetime import pandas._testing as tm from pandas.core.reshape.merge import MergeError class TestAsOfMerge: def read_data(self, datapath, name, dedupe=False): path = datapath("reshape", "merge", "data", name) x = read_csv(path) if dedupe: x = x.drop_duplicates(["time", "ticker"], keep="last").reset_index( drop=True ) x.time = to_datetime(x.time) return x @pytest.fixture(autouse=True) def setup_method(self, datapath): self.trades = self.read_data(datapath, "trades.csv") self.quotes = self.read_data(datapath, "quotes.csv", dedupe=True) self.asof = self.read_data(datapath, "asof.csv") self.tolerance = self.read_data(datapath, "tolerance.csv") self.allow_exact_matches = self.read_data(datapath, "allow_exact_matches.csv") self.allow_exact_matches_and_tolerance = self.read_data( datapath, "allow_exact_matches_and_tolerance.csv" ) def test_examples1(self): """ doc-string examples """ left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 3, 7]} ) result = pd.merge_asof(left, right, on="a") tm.assert_frame_equal(result, expected) def test_examples2(self): """ doc-string examples """ trades = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.038", "20160525 13:30:00.048", "20160525 13:30:00.048", "20160525 13:30:00.048", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], }, columns=["time", "ticker", "price", "quantity"], ) quotes = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.030", "20160525 13:30:00.041", "20160525 13:30:00.048", "20160525 13:30:00.049", "20160525 13:30:00.072", "20160525 13:30:00.075", ] ), "ticker": [ "GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT", ], "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03], }, columns=["time", "ticker", "bid", "ask"], ) pd.merge_asof(trades, quotes, on="time", by="ticker") pd.merge_asof( trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms") ) expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.038", "20160525 13:30:00.048", "20160525 13:30:00.048", "20160525 13:30:00.048", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], "bid": [np.nan, 51.97, np.nan, np.nan, np.nan], "ask": [np.nan, 51.98, np.nan, np.nan, np.nan], }, columns=["time", "ticker", "price", "quantity", "bid", "ask"], ) result = pd.merge_asof( trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("10ms"), allow_exact_matches=False, ) tm.assert_frame_equal(result, expected) def test_examples3(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 6, np.nan]} ) result = pd.merge_asof(left, right, on="a", direction="forward") tm.assert_frame_equal(result, expected) def test_examples4(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 6, 7]} ) result = pd.merge_asof(left, right, on="a", direction="nearest") tm.assert_frame_equal(result, expected) def test_basic(self): expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_categorical(self): expected = self.asof trades = self.trades.copy() trades.ticker = trades.ticker.astype("category") quotes = self.quotes.copy() quotes.ticker = quotes.ticker.astype("category") expected.ticker = expected.ticker.astype("category") result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_left_index(self): # GH14253 expected = self.asof trades = self.trades.set_index("time") quotes = self.quotes result = merge_asof( trades, quotes, left_index=True, right_on="time", by="ticker" ) # left-only index uses right"s index, oddly expected.index = result.index # time column appears after left"s columns expected = expected[result.columns] tm.assert_frame_equal(result, expected) def test_basic_right_index(self): expected = self.asof trades = self.trades quotes = self.quotes.set_index("time") result = merge_asof( trades, quotes, left_on="time", right_index=True, by="ticker" ) tm.assert_frame_equal(result, expected) def test_basic_left_index_right_index(self): expected = self.asof.set_index("time") trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") result = merge_asof( trades, quotes, left_index=True, right_index=True, by="ticker" ) tm.assert_frame_equal(result, expected) def test_multi_index_on(self): def index_by_time_then_arbitrary_new_level(df): df = df.set_index("time") df = pd.concat([df, df], keys=["f1", "f2"], names=["f", "time"]) return df.reorder_levels([1, 0]).sort_index() trades = index_by_time_then_arbitrary_new_level(self.trades) quotes = index_by_time_then_arbitrary_new_level(self.quotes) expected = index_by_time_then_arbitrary_new_level(self.asof) result = merge_asof(trades, quotes, on="time", by=["ticker"]) tm.assert_frame_equal(result, expected) def test_on_and_index(self): # "on" parameter and index together is prohibited trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") with pytest.raises(MergeError): merge_asof( trades, quotes, left_on="price", left_index=True, right_index=True ) trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") with pytest.raises(MergeError): merge_asof( trades, quotes, right_on="bid", left_index=True, right_index=True ) def test_basic_left_by_right_by(self): # GH14253 expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof( trades, quotes, on="time", left_by="ticker", right_by="ticker" )
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import unittest import pandas as pd import numpy as np from econ_watcher_reader.reader import EconomyWatcherReader import logging logging.basicConfig() logging.getLogger("econ_watcher_reader.reader").setLevel(level=logging.DEBUG) class TestReaderCurrent(unittest.TestCase): @classmethod def setUpClass(cls): cls.kind_ = 'current' # ---------------- # normal scenarios # ---------------- def test_getting_data_for_one_month(self): reader = EconomyWatcherReader() data = reader.get_data(self.kind_, pd.datetime(2015,10,1), None) # check column names self.assertSetEqual(set(data.columns), {'date', 'reason_type', 'industry', 'region', 'is_tokyo', 'field', 'score', 'reason_sentence'}) def test_getting_data_for_multiple_months(self): reader = EconomyWatcherReader() data = reader.get_data('current', pd.datetime(2018, 1, 1), pd.datetime(2018,5,1)) # check data range self.assertListEqual( list(pd.date_range(pd.datetime(2018, 1, 1), pd.datetime(2018,5,1), freq='MS').values), list(np.sort(data.date.unique())) ) def test_getting_all_available_data(self): reader = EconomyWatcherReader() data = reader.get_data('current') date_in_data_str = ['{:%Y%m%d}'.format(pd.to_datetime(date_)) for date_ in data.date.unique()] self.assertIn('{:%Y%m%d}'.format(reader.EARLIEST_MONTH), date_in_data_str) self.assertIn('{:%Y%m%d}'.format(reader.LATEST_MONTH), date_in_data_str) self.assertGreater(len(date_in_data_str), 2) # -------------------- # non-normal scenarios # -------------------- def test_raise_exception(self): reader = EconomyWatcherReader() # invalid `kind_` parameter with self.assertRaises(ValueError): reader.get_data(kind_= 'invalid', start=pd.datetime(2018, 1, 1)) # invalid `start` parameter with self.assertRaises(ValueError): reader.get_data(kind_='current', start=pd.datetime(1945,1,1)) # invalid `end` parameter with self.assertRaises(ValueError): reader.get_data(kind_='current', start=pd.datetime(2100, 1, 1)) # pass `start` > `end` with self.assertRaises(ValueError): reader.get_data(kind_='current', start=pd.datetime(2018, 1, 1), end=pd.datetime(2017,1,1)) class TestReaderFuture(unittest.TestCase): @classmethod def setUpClass(cls): cls.kind_ = 'future' # ---------------- # normal scenarios # ---------------- def test_getting_data_for_one_month(self): reader = EconomyWatcherReader() data = reader.get_data(self.kind_, pd.datetime(2015,10,1), None) # check column names data.to_clipboard() self.assertSetEqual(set(data.columns), {'date', 'industry', 'region', 'is_tokyo', 'field', 'score', 'reason_sentence'}) def test_getting_data_for_multiple_months(self): reader = EconomyWatcherReader() data = reader.get_data('current', pd.datetime(2018, 1, 1), pd.datetime(2018,5,1)) # check data range self.assertListEqual( list(pd.date_range(
pd.datetime(2018, 1, 1)
pandas.datetime
from scapy.utils import RawPcapReader from scapy.all import PcapReader, Packet from scapy.layers.l2 import Ether from scapy.layers.inet import IP, TCP import scapy.contrib.modbus as mb from scapy.fields import ( ConditionalField, Emph, ) from scapy.config import conf, _version_checker from scapy.base_classes import BasePacket, Gen, SetGen, Packet_metaclass import pandas as pd import requests import zipfile from tqdm import tqdm from pathlib import Path import os data_dir = Path("datasets") data_files = { "captures1_v2.zip": { "url": "https://github.com/tjcruz-dei/ICS_PCAPS/releases/download/MODBUSTCP%231/captures1_v2.zip" }, "captures2.zip": { "url": "https://github.com/tjcruz-dei/ICS_PCAPS/releases/download/MODBUSTCP%231/captures2.zip" }, "captures3.zip": { "url": "https://github.com/tjcruz-dei/ICS_PCAPS/releases/download/MODBUSTCP%231/captures3.zip" }, } keep_features = ["Ethernet__type", "IP__src", "IP__dst", "IP__ihl", "IP__tos", "IP__len", "IP__id", "IP__ttl", "IP__flags", "IP__frag", "IP__proto", "IP__chksum", "TCP__sport", "TCP__flags", "TCP__dport", "TCP__seq", "TCP__ack", "TCP__dataofs", "TCP__reserved", "TCP__options", "TCP__chksum" "TCP__window", "TCP__chksum", "ModbusADU__transId", "ModbusADU__protoId", "ModbusADU__len", "ModbusADU__unitId", "time", "UDP__sport", "UDP__dport", "UDP__len", "UDP__chksum", "IPv6__version", "IPv6__fl", "IPv6__plen", "IPv6__nh", "IPv6__hlim", "IPv6 Extension Header - Hop-by-Hop Options Header__nh", "BOOTP__hlen", "BOOTP__xid", "BOOTP__secs", "ICMPv6 Neighbor Discovery - Neighbor Solicitation__type", "ICMPv6 Neighbor Discovery - Neighbor Solicitation__cksum", "ICMPv6 Neighbor Discovery - Router Solicitation__type", "ICMPv6 Neighbor Discovery - Router Solicitation__cksum", "ICMP__type", "ICMP__chksum", "ICMP__id", "ICMP__seq", "DHCPv6 Solicit Message__msgtype", "DHCPv6 Solicit Message__trid", "DHCP6 Elapsed Time Option__optcode", "DHCP6 Elapsed Time Option__optlen", "DHCP6 Elapsed Time Option__elapsedtime", "DHCP6 Client Identifier Option__optcode", "vendor class data_ |_len", "DHCP6 Option Request Option__optcode", "DHCP6 Option Request Option__optlen", "IP Option Router Alert_ |_option", "IP Option Router Alert_ |_length", "Link Local Multicast Node Resolution - Query__id", "Link Local Multicast Node Resolution - Query__qdcount", "DNS Question Record_ |_qtype", "DNS Question Record_ |_qclass", "ICMPv6 Neighbor Discovery Option - Source Link-Layer Address__type", "ICMPv6 Neighbor Discovery Option - Source Link-Layer Address__len", ] def download(url, outfile, dataset_number=1): response = requests.get(url, stream=True) if (response.status_code != 200): raise Exception("Error downloading data - status code: {}, url: {}".format(response.status_code, url)) total_size = int(response.headers["Content-Length"]) downloaded = 0 # keep track of size downloaded so far chunkSize = 1024 bars = total_size // chunkSize with open(str(outfile), "wb") as f: for chunk in tqdm(response.iter_content(chunk_size=chunkSize), total=bars, unit="KB", desc="Dataset {}/3".format(dataset_number), leave=True): f.write(chunk) downloaded += chunkSize def pkt_as_dict(pkt, indent=3, lvl="", label_lvl="", first_call=True): # based on scapy show() method # returns: dict of pkt attributes normally printed by show() plus time if first_call is True: ret = {} else: ret = first_call for f in pkt.fields_desc: if isinstance(f, ConditionalField) and not f._evalcond(pkt): continue fvalue = pkt.getfieldval(f.name) if isinstance(fvalue, Packet) or (f.islist and f.holds_packets and isinstance(fvalue, list)): # noqa: E501 key = "{}_{}".format(label_lvl + lvl, f.name) fvalue_gen = SetGen( fvalue, _iterpacket=0 ) # type: SetGen[Packet] for fvalue in fvalue_gen: if key in keep_features: ret[key] = pkt_as_dict(fvalue, indent=indent, label_lvl=label_lvl + lvl + " |", first_call=ret) # noqa: E501 else: key = "{}_{}_{}".format(pkt.name, label_lvl + lvl, f.name) if isinstance(fvalue, str): fvalue = fvalue.replace("\n", "\n" + " " * (len(label_lvl) + # noqa: E501 len(lvl) + len(f.name) + 4)) if key in keep_features: ret[key] = fvalue if pkt.payload: pkt_as_dict(pkt.payload, indent=indent, lvl=lvl,# + (" " * indent * pkt.show_indent), label_lvl=label_lvl, first_call=ret ) ret["time"] = float(pkt.time) return ret def pcap_to_df(file_name, out_csv_name): file_name = str(file_name) print('Opening {} ...'.format(file_name)) df = [] for i, pkt in enumerate(PcapReader(file_name)): data = pkt_as_dict(pkt) #data["bytes"] = str(pkt) data["packet_id"] = i + 1 df.append(data) df = pd.DataFrame(df) df["filename"] = file_name.split("/")[-1] if len(file_name.split("/")) > 2: df["attack_type"] = file_name.split("/")[-2] df["capturename"] = file_name.split("/")[-3] df["time_delta"] = df["time"].diff() df.to_csv(out_csv_name, index=False) print("done parsing {}".format(file_name)) return df def download_and_label_data(labels, data_dir): train_dfs = [] test_dfs = [] for folder in labels["folder"].unique(): zipfilename = data_dir / (folder + ".zip") try: archive = zipfile.ZipFile(zipfilename) except (FileNotFoundError, zipfile.BadZipfile): download(data_files[folder + ".zip"]["url"], zipfilename) archive = zipfile.ZipFile(zipfilename) for pcap_filename in labels[labels["folder"] == folder]["relevant_files"].unique(): pcap_headless_filepath = str(Path(*pcap_filename.parts[1:])) csv_filename = Path(data_dir) / pcap_headless_filepath.replace("pcap", "csv").replace("/", "_") if csv_filename.exists(): df = pd.read_csv(csv_filename) else: archive.extract(pcap_headless_filepath, data_dir) # remove top level of posix path (data_dir) df = pcap_to_df(pcap_filename, out_csv_name=csv_filename) if not "malicious" in df.columns.values: # label_data df["malicious"] = 0 df["attack_type"] = "clean" attack = labels[(labels["folder"] == folder) & (labels["relevant_files"] == pcap_filename) & (labels["malicious"] == 1)] assert len(attack) <= 1, attack # should only be one or zero attack periods for this code to work if len(attack): start, end = attack[["start_packet", "end_packet"]].values.flatten().astype(int) df.loc[(df["packet_id"] >= start) & (df["packet_id"] < end), "malicious"] = 1 df.loc[df["malicious"] == 1, "attack_type"] = attack["attack"].values[0] df.to_csv(csv_filename, index=False) train_test = labels[(labels["folder"] == folder) & (labels["relevant_files"] == pcap_filename)]["train_test"].values[0] if train_test == "train": train_dfs.append(df) else: test_dfs.append(df) pd.concat(train_dfs).to_csv(data_dir/"train.csv", index=False) pd.concat(test_dfs).to_csv(data_dir/"test.csv", index=False) def compress(zipfilename, filename): zipObj = zipfile.ZipFile(zipfilename, 'w', compression=zipfile.ZIP_DEFLATED) zipObj.write(filename) zipObj.close() def decompress(zipfilename, outfolder): zipObj = zipfile.ZipFile(zipfilename) zipObj.extractall(outfolder) zipObj.close() def reconstitute_data(training_set_file, testing_set_file): for file in tqdm([training_set_file, testing_set_file]): file = str(file) decompress(file.replace(".csv", "1.zip"), ".") decompress(file.replace(".csv", "2.zip"), ".") pd.concat([
pd.read_csv(file + "_1")
pandas.read_csv
import pandas as pd def generate_demand_csv(input_fn: str, user_data_dir: str): # Demand demand = pd.read_excel(input_fn, sheet_name='2.3 EUD', index_col=0, header=1, usecols=range(5)) demand.columns = [x.strip() for x in demand.columns] demand.index = [x.strip() for x in demand.index] # Add additional information demand_aux = pd.read_csv(f"{user_data_dir}/aux_demand.csv", index_col=0) demand = pd.merge(demand, demand_aux, left_index=True, right_index=True) # Rename and reorder columns demand.index.name = 'parameter name' demand = demand.reset_index() demand = demand[['Category', 'Subcategory', 'parameter name', 'HOUSEHOLDS', 'SERVICES', 'INDUSTRY', 'TRANSPORTATION', 'Units']] demand.to_csv(f"{user_data_dir}/Demand.csv", sep=',', index=False) def generate_resources_csv(input_fn: str, user_data_dir: str): # Resources resources = pd.read_excel(input_fn, sheet_name='2.1 RESOURCES', index_col=0, header=1, usecols=range(5)) resources.index = [x.strip() for x in resources.index] resources.columns = [x.split(" ")[0] for x in resources.columns] # Add additional information resources_aux = pd.read_csv(f"{user_data_dir}/aux_resources.csv", index_col=0) resources = pd.merge(resources, resources_aux, left_index=True, right_index=True) # Rename and reorder columns resources.index.name = 'parameter name' resources = resources.reset_index() resources = resources[['Category', 'Subcategory', 'parameter name', 'avail', 'gwp_op', 'c_op', 'einv_op']] # resources.columns = ['Category', 'Subcategory', 'parameter name', 'Availability', 'Direct and indirect emissions', # 'Price', 'Direct emissions'] # Add a line with units units = pd.Series(['', '', 'units', '[GWh/y]', '[ktCO2-eq./GWh]', '[Meuro/GWh]', '[GWh/y]'], index=resources.columns) resources = pd.concat((units.to_frame().T, resources), axis=0) resources.to_csv(f"{user_data_dir}/Resources.csv", sep=',', index=False) def generate_technologies_csv(input_fn: str, user_data_dir: str): # Technologies technologies = pd.read_excel(input_fn, sheet_name='3.2 TECH', index_col=1) technologies = technologies.drop(technologies.columns[[0]], axis=1) technologies.index = [x.strip() for x in technologies.index] # Add additional information technologies_aux = pd.read_csv(f"{user_data_dir}/aux_technologies.csv", index_col=0) technologies = pd.merge(technologies, technologies_aux, left_index=True, right_index=True) # Rename and reorder columns technologies.index.name = 'parameter name' technologies = technologies.reset_index() technologies = technologies[['Category', 'Subcategory', 'Technologies name', 'parameter name', 'c_inv', 'c_maint', 'gwp_constr', 'einv_constr', 'lifetime', 'c_p', 'fmin_perc', 'fmax_perc', 'f_min', 'f_max']] # Add a line with units units = pd.Series(['', '', 'Name (simplified)', 'Name (in model and documents)', '[Meuro/GW],[Meuro/GWh],[Meuro/(Mkmpass/h)],[Meuro/(Mtonkm/h)]', '[Meuro/GW],[Meuro/GWh],[Meuro/(Mkmpass/h)],[Meuro/(Mtonkm/h)]', '[ktonCO2_eq/GW],[ktonCO2_eq/GWh],[ktonCO2_eq/(Mkmpass/h)],[ktonCO2_eq/(Mtonkm/h)]', '[GWh/y]', '[years]', '[]', '[]', '[]', '[GW]', '[GW]'], index=technologies.columns) technologies = pd.concat((units.to_frame().T, technologies), axis=0) technologies.to_csv(f"{user_data_dir}/Technologies.csv", sep=',', index=False) def generate_layers_csv(input_fn: str, dev_data_dir: str): # Layers in-out layers = pd.read_excel(input_fn, sheet_name='3.1 layers_in_out', index_col=1) layers = layers.drop(layers.columns[0], axis=1) layers.columns = [x.strip() for x in layers.columns] layers.to_csv(f"{dev_data_dir}/Layers_in_out.csv", sep=',') def generate_storage_csv(input_fn: str, dev_data_dir: str): # Storage eff in storage_eff_in = pd.read_excel(input_fn, sheet_name='3.3 STO', header=2, nrows=25, index_col=0) storage_eff_in.index = [x.strip() for x in storage_eff_in.index] storage_eff_in.to_csv(f"{dev_data_dir}/Storage_eff_in.csv", sep=',') # Storage eff out storage_eff_out = pd.read_excel(input_fn, sheet_name='3.3 STO', header=30, nrows=25, index_col=0) storage_eff_out.index = [x.strip() for x in storage_eff_out.index] storage_eff_out.to_csv(f"{dev_data_dir}/Storage_eff_out.csv", sep=',') # Storage characteristics storage_c = pd.read_excel(input_fn, sheet_name='3.3 STO', header=58, nrows=25, index_col=0) storage_c.index = [x.strip() for x in storage_c.index] storage_c.dropna(axis=1).to_csv(f"{dev_data_dir}/Storage_characteristics.csv", sep=',') def generate_time_series_csv(input_fn: str, dev_data_dir: str): # Time series time_series = pd.read_excel(input_fn, sheet_name='1.1 Time Series', index_col=0, header=1, usecols=range(11), nrows=8761) time_series = time_series.drop(time_series.columns[0], axis=1) time_series = time_series.drop(time_series.index[0]) time_series.columns = ["Electricity (%_elec)", "Space Heating (%_sh)", "Passanger mobility (%_pass)", "Freight mobility (%_freight)", "PV", "Wind_onshore", "Wind_offshore", "Hydro_river", "Solar"] time_series.to_csv(f"{dev_data_dir}/Time_series.csv", sep=',') def estd_excel_to_csv(input_fn: str): user_data_dir = "../Data/User_data" dev_data_dir = "../Data/Developer_data" generate_demand_csv(input_fn, user_data_dir) generate_resources_csv(input_fn, user_data_dir) generate_technologies_csv(input_fn, user_data_dir) generate_layers_csv(input_fn, dev_data_dir) generate_storage_csv(input_fn, dev_data_dir) generate_time_series_csv(input_fn, dev_data_dir) def step1_excel_to_csv(input_fn, dev_data_dir: str, output_dir: str): change_name_dict = {"Electricity": "Lighting and co", "PV": "SUN", "Space Heating": "SH"} # weights defined by user user_data_weights = pd.read_excel(input_fn, sheet_name='User Define', index_col=0, header=4, nrows=5, usecols=[0, 6]).squeeze() user_data_weights.index = [change_name_dict[c] if c in change_name_dict else c for c in user_data_weights.index] variables = user_data_weights.index time_series = pd.read_csv(f"{dev_data_dir}/Time_series.csv", index_col=0)#, usecols=range(121), nrows=368) time_series.columns = [c.split(" (")[0] for c in time_series.columns] time_series.columns = [change_name_dict[c] if c in change_name_dict else c for c in time_series.columns] # Keep only the variables for which there is some user-defined weight time_series = time_series[variables] # Compute sums of all capacity factors totals = time_series.sum().round(2) # Compute .dat table content updated_time_series = pd.DataFrame(0., index=range(1, 365+1), columns=range(1, 24*len(variables)+1), dtype=float) for i, variable in enumerate(variables): for j in range(365): for k in range(24): updated_time_series.loc[j+1, k+1+24*i] = \ time_series.loc[j*24+k+1, variable]*user_data_weights[variable]/totals[variable] # Add header header = pd.DataFrame(index=['Type', 'Weights', 'Norm'], columns=range(1, 24*len(variables)+1)) for i, variable in enumerate(variables): columns_range = range(i*24+1, (i+1)*24+1) header.loc['Type', columns_range] = variable header.loc['Weights', columns_range] = user_data_weights[variable] header.loc['Norm', columns_range] = totals[variable] updated_time_series =
pd.concat((header, updated_time_series))
pandas.concat
""" Functions for building bokeh figure objects from dataframes. """ import datetime import logging import math from typing import Optional, Tuple, Union import numpy as np import pandas as pd from bokeh.layouts import Column, Row, gridplot from bokeh.models import ColumnDataSource, LabelSet, Legend, LegendItem from bokeh.palettes import brewer, magma from bokeh.plotting import figure from bokeh.transform import cumsum logger = logging.getLogger(__name__) def create_daily_chart_figure(current_month_df: pd.DataFrame, accountid_mapping: Optional[dict] = None) -> Tuple[figure, float, float]: """ Create a cumulative stacked line graph of given AWS accounts. :param current_month_df: Dataframe containing the current and previous month data :param accountid_mapping: AccountID to display name mapping for figure labels """ # get max record date (assumes values will NOT decrease) accountids = [i for i in current_month_df.columns if i.isdigit()] # dates are same for all accounts # - take a sample to discover the 'last_available_date' sample_accountid = accountids[0] account_max_value = current_month_df[[sample_accountid]].max()[0] if np.isnan(account_max_value): logger.error(f"No data for sample_accountid={sample_accountid}") last_available_date = current_month_df[current_month_df[sample_accountid] == account_max_value].index.date[0] current_cost = float(current_month_df[accountids].max().sum()) previous_cost = float(current_month_df.loc[last_available_date]["previous_month_total"]) percentage_change = round((current_cost / previous_cost - 1.0) * 100, 1) source = ColumnDataSource(current_month_df) today = datetime.datetime.utcnow() previous_day = today - datetime.timedelta(days=2) today_display_str = today.strftime("%Y-%m-%d") f = figure( title=f"AWS Cost ({today_display_str} UTC) ${round(current_cost, 2)} ({percentage_change}%)", x_axis_type="datetime", x_axis_label="Date", y_axis_label="Cost ($)", plot_width=800, plot_height=350, ) f.title.text_font_size = "14pt" f.line("date", "previous_month_total", source=source, line_color="gray", line_dash="dashed") def stacked(df): df_top = df.cumsum(axis=1) df_bottom = df_top.shift(axis=1)[::-1] df_stack =
pd.concat([df_bottom, df_top], ignore_index=True)
pandas.concat
# Copyright (c) 2016 <NAME> import numpy as np import pandas as pd from sklearn import decomposition import json import math import pickle ### Load data loadPrefix = "import/input/" # Bins 1, 2, 3 of Up are to be removed later on dirmagUpA = np.genfromtxt(loadPrefix+"MLM_adcpU_dirmag.csv", skip_header=3, delimiter=",", comments="#", dtype=float, invalid_raise=True) # Bin 1 of Down is to be removed later on dirmagDownA = np.genfromtxt(loadPrefix+"MLM_adcpD_dirmag.csv", skip_header=3, delimiter=",", comments="#", dtype=float, invalid_raise=True) openessA = np.genfromtxt(loadPrefix+"coral_frames2.csv", skip_header=2, delimiter=",", comments="#", dtype=float, invalid_raise=True) with open(loadPrefix+"scalar_POS434-156_conservativeTemperature_215_original.json") as fp: ctA = np.asarray(json.load(fp)["data"]) with open(loadPrefix+"scalar_POS434-156_absoluteSalinity_215_original.json") as fp: saA = np.asarray(json.load(fp)["data"]) with open(loadPrefix+"scalar_POS434-156_potentialDensityAnomaly_215_original.json") as fp: sigma0A = np.asarray(json.load(fp)["data"]) ### Create time series date indices dateOffset = np.datetime64("2012-06-01T00:00:01Z") hiResIndexStart = 354185 # in [s] hiResIndexEnd = 1343285 # in [s] --- shorter: 1342685 --- longer: 9332570 hiResIndexStep = 600 # in [s] hiResIndex = dateOffset + np.arange(hiResIndexStart, hiResIndexEnd, hiResIndexStep).astype("timedelta64[s]") ignoreBecauseOfLags = 7 loResIndex = dateOffset + openessA[ignoreBecauseOfLags:,0].astype("timedelta64[s]") ctIndex = dateOffset + ctA[:,0].astype("timedelta64[s]") saIndex = dateOffset + saA[:,0].astype("timedelta64[s]") sigma0Index = dateOffset + sigma0A[:,0].astype("timedelta64[s]") dirmagUpIndex = dateOffset + dirmagUpA[:,0].astype("timedelta64[s]") dirmagDownIndex = dateOffset + dirmagDownA[:,0].astype("timedelta64[s]") ### Create original time series / data frames ctOrig = pd.Series(ctA[:,1], index=ctIndex) saOrig = pd.Series(saA[:,1], index=saIndex) sigma0Orig = pd.Series(sigma0A[:,1], index=sigma0Index) nBinsUnfilteredUp = round((dirmagUpA.shape[1]-1)/2) dirUpOrig = pd.DataFrame(data=dirmagUpA[:,1:(1+nBinsUnfilteredUp)], index=dirmagUpIndex) magUpOrig = pd.DataFrame(data=dirmagUpA[:,(1+nBinsUnfilteredUp):], index=dirmagUpIndex) nBinsUnfilteredDown = round((dirmagDownA.shape[1]-1)/2) dirDownOrig =
pd.DataFrame(data=dirmagDownA[:,1:(1+nBinsUnfilteredDown)], index=dirmagDownIndex)
pandas.DataFrame
import numpy as np np.random.seed(0) import pandas as pd import matplotlib.pyplot as plt import gym env = gym.make('Taxi-v3') env.seed(0) print('观察空间 = {}'.format(env.observation_space)) print('动作空间 = {}'.format(env.action_space)) print('状态数量 = {}'.format(env.observation_space.n)) print('动作数量 = {}'.format(env.action_space.n)) state = env.reset() taxirow, taxicol, passloc, destidx = env.unwrapped.decode(state) print(taxirow, taxicol, passloc, destidx) print('的士位置 = {}'.format((taxirow, taxicol))) print('乘客位置 = {}'.format(env.unwrapped.locs[passloc])) print('目标位置 = {}'.format(env.unwrapped.locs[destidx])) env.render() class SARSAAgent: def __init__(self, env, gamma=0.9, learning_rate=0.2, epsilon=.01): self.gamma = gamma self.learning_rate = learning_rate self.epsilon = epsilon self.action_n = env.action_space.n self.q = np.zeros((env.observation_space.n, env.action_space.n)) def decide(self, state): if np.random.uniform() > self.epsilon: action = self.q[state].argmax() else: action = np.random.randint(self.action_n) return action def learn(self, state, action, reward, next_state, done, next_action): u = reward + self.gamma * \ self.q[next_state, next_action] * (1. - done) td_error = u - self.q[state, action] self.q[state, action] += self.learning_rate * td_error def play_sarsa(env, agent, train=False, render=False): episode_reward = 0 observation = env.reset() action = agent.decide(observation) while True: if render: env.render() next_observation, reward, done, _ = env.step(action) episode_reward += reward next_action = agent.decide(next_observation) # 终止状态时此步无意义 if train: agent.learn(observation, action, reward, next_observation, done) if done: break observation, action = next_observation, next_action return episode_reward agent = SARSAAgent(env) # 训练 episodes = 3000 episode_rewards = [] for episode in range(episodes): episode_reward = play_sarsa(env, agent, train=True) episode_rewards.append(episode_reward) plt.plot(episode_rewards) # 测试 agent.epsilon = 0. # 取消探索 episode_rewards = [play_sarsa(env, agent) for _ in range(100)] print('平均回合奖励 = {} / {} = {}'.format(sum(episode_rewards),len(episode_rewards), np.mean(episode_rewards))) print(
pd.DataFrame(agent.q)
pandas.DataFrame
import pandas as pd import pandas.testing as pdt import qiime2 from qiime2.plugin.testing import TestPluginBase from q2_types.feature_data import DNAFASTAFormat from genome_sampler.subsample_diversity import subsample_diversity class TestSubsampleDiversity(TestPluginBase): package = 'genome_sampler.tests' def setUp(self): super().setUp() def test_subsample_diversity(self): context_seqs1 = self.get_data_path('context-seqs-1.fasta') context_seqs1 = DNAFASTAFormat(context_seqs1, 'r') sel = subsample_diversity(context_seqs1, percent_id=0.98) exp_inclusion = pd.Series([True, True, False, False, False, True], index=['c1', 'c2', 'c3', 'c4', 'c5', 'c6'], name='inclusion') exp_metadata = pd.DataFrame(index=['c1', 'c2', 'c3', 'c4', 'c5', 'c6']) exp_metadata.index.name = 'id' exp_metadata = qiime2.Metadata(exp_metadata)
pdt.assert_series_equal(sel.inclusion, exp_inclusion)
pandas.testing.assert_series_equal
from connections.mysql_connector import MySQL_Connector from models.topic_modeling import Topic_Modeling from connections.neo4j_connector import Neo4j_Connector import os from datetime import datetime from gensim import corpora, models, similarities from models.graph_generator import Graph_Generator from models.tuple_extractor import Tuple_Extractor from acessos import read, get_conn, persistir_uma_linha, persistir_multiplas_linhas, replace_df import pandas as pd import re import credentials import warnings warnings.filterwarnings('ignore') connector = MySQL_Connector("conn_orfeu") conn = connector.return_conn("influencer_br") neo4j_client = Neo4j_Connector(credentials.neo4j_uri, credentials.neo4j_user, credentials.neo4j_password) graph_generator = Graph_Generator(neo4j_client) tuple_extractor = Tuple_Extractor() def gerar_tuplas(texto): tuple_extractor.extrair_tupla(texto) df_tuplas = tuple_extractor.get_ultimas_tuplas_geradas() return df_tuplas def gerar_df_doc(texto, video_id=""): if video_id !="": data = {'nome': [texto], 'type': ["DOC"], 'id': [video_id]} else: data = {'nome': [texto], 'type': ["DOC"]} df_doc = pd.DataFrame(data=data) return df_doc def pre_processar_tuplas(df_tuplas): df_tuplas['arg1'] = df_tuplas.apply(lambda x: graph_generator.pre_process_text(x['arg1']), axis=1) df_tuplas['arg2'] = df_tuplas.apply(lambda x: graph_generator.pre_process_text(x['arg2']), axis=1) df_tuplas['rel'] = df_tuplas.apply(lambda x: graph_generator.pre_process_text(x['rel'], rel=True), axis=1) return df_tuplas def get_df_sentencas(df_tuplas): df_sentencas =
pd.DataFrame()
pandas.DataFrame
"""Code for the bootstrap uncertainty quantification (BUQ) algorithm.""" import time import logging import numpy as np import pandas as pd import buq import models import tests def import_time_series_data(): """Import time series data for model, without any time slicing.""" ts_data = pd.read_csv('data/demand_wind.csv', index_col=0) ts_data.index =
pd.to_datetime(ts_data.index)
pandas.to_datetime
#!python ################################################## # ACCESS QC Module # Innovation Laboratory # Center For Molecular Oncology # Memorial Sloan Kettering Cancer Research Center # maintainer: <NAME> (<EMAIL>) # # # This module functions as an aggregation step to combine QC metrics # across Waltz runs on different bam types. import shutil import logging import argparse import numpy as np import pandas as pd from python_tools.constants import * from python_tools.util import to_csv def unique_or_tot(x): if TOTAL_LABEL in x: return TOTAL_LABEL else: return PICARD_LABEL def get_read_counts_table(path, pool): """ This method is only used to generate stats for un-collapsed bams """ read_counts_path = os.path.join(path, AGBM_READ_COUNTS_FILENAME) read_counts = pd.read_csv(read_counts_path, sep='\t') # Melt our DF to get all values of the on target rate and duplicate rates as values read_counts = pd.melt(read_counts, id_vars=[SAMPLE_ID_COLUMN], var_name='Category') # We only want the read counts-related row values read_counts = read_counts[~read_counts['Category'].isin(['bam', TOTAL_READS_COLUMN, UNMAPPED_READS_COLUMN, 'duplicate_fraction'])] read_counts['method'] = read_counts['Category'].apply(unique_or_tot) read_counts['pool'] = pool # read_counts = read_counts.reset_index(drop=True) return read_counts def get_read_counts_total_table(path, pool): """ This table is used for "Fraction of Total Reads that Align to the Human Genome" plot """ full_path = os.path.join(path, AGBM_READ_COUNTS_FILENAME) read_counts_total = pd.read_csv(full_path, sep='\t') col_idx = ~read_counts_total.columns.str.contains(PICARD_LABEL) read_counts_total = read_counts_total.iloc[:, col_idx] read_counts_total['AlignFrac'] = read_counts_total[TOTAL_MAPPED_COLUMN] / read_counts_total[TOTAL_READS_COLUMN] read_counts_total[TOTAL_OFF_TARGET_FRACTION_COLUMN] = 1 - read_counts_total[TOTAL_ON_TARGET_FRACTION_COLUMN] read_counts_total['pool'] = pool return read_counts_total def get_coverage_table(path, pool): """ Coverage table """ full_path = os.path.join(path, AGBM_COVERAGE_FILENAME) coverage_table = pd.read_csv(full_path, sep='\t') coverage_table = pd.melt(coverage_table, id_vars=SAMPLE_ID_COLUMN, var_name='method', value_name='average_coverage') coverage_table['method'] = coverage_table['method'].str.replace('average_coverage_', '') coverage_table['pool'] = pool return coverage_table def get_collapsed_waltz_tables(path, method, pool): """ Creates read_counts, coverage, and gc_bias tables for collapsed bam metrics. """ read_counts_table_path = os.path.join(path, AGBM_READ_COUNTS_FILENAME) read_counts_table = pd.read_csv(read_counts_table_path, sep='\t') read_counts_table = pd.melt(read_counts_table, id_vars=[SAMPLE_ID_COLUMN], var_name='Category') read_counts_table = read_counts_table.dropna(axis=0) read_counts_table['method'] = [method] * len(read_counts_table) read_counts_table['pool'] = pool # Todo: merge with get_cov_table coverage_table_path = '/'.join([path, AGBM_COVERAGE_FILENAME]) coverage_table = pd.read_csv(coverage_table_path, sep='\t', usecols=[0, 1], names=[SAMPLE_ID_COLUMN, 'average_coverage'], header=0) coverage_table['method'] = [method] * len(coverage_table) coverage_table['pool'] = pool gc_bias_table = get_gc_table(method, WALTZ_INTERVALS_FILENAME_SUFFIX, path) return [read_counts_table, coverage_table, gc_bias_table] def get_gc_table(curr_method, intervals_filename_suffix, path): """ Function to create GC content table """ gc_with_cov = pd.DataFrame(columns=GC_BIAS_HEADER) sample_files = [f for f in os.listdir(path) if intervals_filename_suffix in f] for sample in sample_files: filename = os.path.join(path, sample) curr_table = pd.read_csv(filename, names=WALTZ_INTERVALS_FILE_HEADER, sep='\t') sample = sample.split('_cl_aln_srt')[0] newDf = curr_table[[WALTZ_INTERVAL_NAME_COLUMN, WALTZ_PEAK_COVERAGE_COLUMN, WALTZ_GC_CONTENT_COLUMN]].copy() newDf['method'] = curr_method newDf[SAMPLE_ID_COLUMN] = sample gc_with_cov = pd.concat([gc_with_cov, newDf]).sort_values([SAMPLE_ID_COLUMN, WALTZ_INTERVAL_NAME_COLUMN]) return gc_with_cov def get_bins(tbl): """ Create bins from min_gc value to max_gc value in increments of 0.05 (for GC content table) """ logging.info('GC table generation') logging.info(tbl) min_gc = np.min(tbl['gc']) max_gc = np.max(tbl['gc']) start = round(min_gc - np.mod(min_gc, 0.05), 2) stop = round(max_gc + 0.1 - np.mod(max_gc, 0.05), 2) all_bins = np.arange(start, stop, step=0.05) return all_bins def get_gc_table_average_for_each_sample(tbl): """ Creates the GC content table, with each sample represented """ tbl = tbl.copy() # Restrict to just 0.3 --> 0.8 %GC all_bins = np.arange(0.3, 0.85, 0.05) tbl[GC_BIN_COLUMN] = pd.cut(tbl['gc'], all_bins) # Create new column of normalized coverage across intervals, for each combination of sample and method groups = [METHOD_COLUMN, SAMPLE_ID_COLUMN] grouped = tbl.groupby(groups)['peak_coverage'] tbl['coverage_norm'] = grouped.transform(lambda x: x / x.mean()) # Upgrading to newer pandas requires us to restrict transform operations to only rows with non-NA values tbl = tbl[~tbl[GC_BIN_COLUMN].isnull()] # Calculate mean coverage within each GC bin, after standardizing coverage across whole sample groups = [METHOD_COLUMN, SAMPLE_ID_COLUMN, GC_BIN_COLUMN] grouped = tbl.groupby(groups)['coverage_norm'] tbl['coverage_norm_2'] = grouped.transform(lambda x: x.mean()) tbl = tbl[[SAMPLE_ID_COLUMN, 'coverage_norm_2', GC_BIN_COLUMN, METHOD_COLUMN]].copy() tbl = tbl.drop_duplicates() tbl = tbl.rename(index=str, columns={'coverage_norm_2': 'coverage'}) tbl = tbl[~tbl.isnull().any(axis=1)] return tbl def get_gene_and_probe(interval): gene_interval_regex = re.compile(r'^.*_.*_.*_.*$') # Example interval string: exon_AKT1_4a_1 if interval[0:4] == 'exon': split = interval.split('_') return split[1], split[2] + '_' + split[3] # Another example I've encountered: 426_2903_324(APC)_1a elif gene_interval_regex.match(interval): split = interval.split('_') return '_'.join(split[0:2]), '_'.join(split[2:4]) else: gene, exon = interval.split('_exon_') return gene, exon def get_coverage_per_interval(tbl): """ Creates table of collapsed coverage per interval """ # Coverage per interval Graph comes from unfiltered Bam, Pool A Targets unfiltered_boolv = (tbl['method'] == UNFILTERED_COLLAPSING_METHOD) # Filter out MSI & Fingerprinting intervals exon_boolv = ['exon' in y for y in tbl[WALTZ_INTERVAL_NAME_COLUMN]] relevant_coverage_columns = [WALTZ_PEAK_COVERAGE_COLUMN, WALTZ_INTERVAL_NAME_COLUMN, SAMPLE_ID_COLUMN] final_tbl = tbl[unfiltered_boolv & exon_boolv][relevant_coverage_columns] # Add on new gene and probe columns gene_probe = [get_gene_and_probe(val) for val in final_tbl[WALTZ_INTERVAL_NAME_COLUMN]] gene_probe_df = pd.DataFrame(gene_probe, columns=['Gene', 'Probe']) # Todo: most likely, the reset_index() calls are unnecessary final_tbl = final_tbl.reset_index(drop=True) final_tbl = pd.concat([final_tbl, gene_probe_df], axis=1) final_tbl = final_tbl.reset_index(drop=True) return final_tbl def get_coverage_per_interval_exon_level(tbl): """ Exon-Level Coverage per Interval Graph comes from Duplex Bam, Pool A Targets """ total_boolv = (tbl['method'] == DUPLEX_COLLAPSING_METHOD) final_tbl = tbl[total_boolv] return final_tbl ######## # Main # ######## def main(): """ This method is kept separate to allow for testing of the create_combined_qc_tables() method, using a mock argparse object :return: """ parser = argparse.ArgumentParser(description='MSK ACCESS QC module', formatter_class=argparse.RawTextHelpFormatter) # Probe-level QC files, A-Targets parser.add_argument('-swa', '--standard_waltz_pool_a', type=str, default=None, required=True, action=FullPaths) parser.add_argument('-mua', '--unfiltered_waltz_pool_a', type=str, default=None, action=FullPaths) parser.add_argument('-msa', '--simplex_waltz_pool_a', type=str, default=None, action=FullPaths) parser.add_argument('-mda', '--duplex_waltz_pool_a', type=str, default=None, action=FullPaths) # Probe-level QC files, B-Targets parser.add_argument('-swb', '--standard_waltz_pool_b', type=str, default=None, required=True, action=FullPaths) parser.add_argument('-mub', '--unfiltered_waltz_pool_b', type=str, default=None, action=FullPaths) parser.add_argument('-msb', '--simplex_waltz_pool_b', type=str, default=None, action=FullPaths) parser.add_argument('-mdb', '--duplex_waltz_pool_b', type=str, default=None, action=FullPaths) # Exon-level QC files, A-Targets parser.add_argument('-swael', '--standard_waltz_metrics_pool_a_exon_level', type=str, default=None, action=FullPaths) parser.add_argument('-muael', '--unfiltered_waltz_metrics_pool_a_exon_level', type=str, default=None, action=FullPaths) parser.add_argument('-msael', '--simplex_waltz_metrics_pool_a_exon_level', type=str, default=None, action=FullPaths) parser.add_argument('-mdael', '--duplex_waltz_metrics_pool_a_exon_level', type=str, default=None, action=FullPaths) args = parser.parse_args() create_combined_qc_tables(args) def copy_fragment_sizes_files(args): """ Copy the fragment-sizes.txt files from the Waltz output folders, and create a combined table for all bam types Fragment Sizes graph comes from Unfiltered Bam, Pool A Targets Todo: not clean :param args: :return: """ fragment_sizes_files = [ (args.standard_waltz_pool_a, 'Standard_A'), (args.unfiltered_waltz_pool_a, 'Unfiltered_A'), (args.simplex_waltz_pool_a, 'Simplex_A'), (args.duplex_waltz_pool_a, 'Duplex_A'), (args.standard_waltz_pool_b, 'Standard_B'), (args.unfiltered_waltz_pool_b, 'Unfiltered_B'), (args.simplex_waltz_pool_b, 'Simplex_B'), (args.duplex_waltz_pool_b, 'Duplex_B'), ] fragment_sizes_files = [(outname, x[0], x[1]) for outname, x in zip(INSERT_SIZE_OUTPUT_FILE_NAMES, fragment_sizes_files)] for dst, src, type in fragment_sizes_files: # Copy to current directory of all aggregated QC info frag_sizes_path = os.path.join(src, 'fragment-sizes.txt') # Create combined DataFrame for A and B targets fragment_sizes_df = pd.read_csv(frag_sizes_path, sep='\t') fragment_sizes_df = fragment_sizes_df[['FragmentSize', 'TotalFrequency', SAMPLE_ID_COLUMN]] fragment_sizes_df = fragment_sizes_df.pivot('FragmentSize', SAMPLE_ID_COLUMN, 'TotalFrequency') # Add in missing rows for insert sizes that weren't represented new_index = pd.Index(np.arange(1, 800), name='FragmentSize') fragment_sizes_df = fragment_sizes_df.reindex(new_index).reset_index() # Replace nan's with 0 fragment_sizes_df = fragment_sizes_df.fillna(0) to_csv(fragment_sizes_df,os.path.join('.', dst)) def reformat_exon_targets_coverage_file(coverage_per_interval_table): """ DMP-specific format for coverage_per_interval_table file # Todo: # 1. Need to use average_coverage, not peak_coverage :param coverage_per_interval_table: :return: """ for method in coverage_per_interval_table[METHOD_COLUMN].unique(): subset = coverage_per_interval_table[coverage_per_interval_table['method'] == method] subset = subset.pivot('interval_name', SAMPLE_ID_COLUMN, 'peak_coverage') subset = subset.reset_index().rename(columns={subset.index.name: 'interval_name'}) interval_names_split = subset['interval_name'].str.split(':', expand=True) # Turn interval_name into Interval and TargetName subset.insert(0, 'TargetName', interval_names_split.iloc[:,0] + '_' + interval_names_split.iloc[:,2]) subset.insert(0, 'Interval', interval_names_split.iloc[:,3] + ':' + interval_names_split.iloc[:,4]) subset = subset.drop('interval_name', axis=1) to_csv(subset, 'coverage_per_interval_A_targets_{}.txt'.format(method.replace(' ', '_'))) def create_combined_qc_tables(args): """ Read in and concatenate all the tables from their respective waltz output folders Write these tables to the current directory :param args: argparse.ArgumentParser with parsed arguments :return: """ read_counts_total_pool_a_table = get_read_counts_total_table(args.standard_waltz_pool_a, POOL_A_LABEL) read_counts_total_pool_b_table = get_read_counts_total_table(args.standard_waltz_pool_b, POOL_B_LABEL) read_counts_total_table = pd.concat([read_counts_total_pool_a_table, read_counts_total_pool_b_table]) # Standard, Pools A and B pool_a_read_counts = get_read_counts_table(args.standard_waltz_pool_a, POOL_A_LABEL) pool_a_coverage_table = get_coverage_table(args.standard_waltz_pool_a, POOL_A_LABEL) gc_cov_int_table = get_gc_table(TOTAL_LABEL, WALTZ_INTERVALS_FILENAME_SUFFIX, args.standard_waltz_pool_a) pool_b_read_counts = get_read_counts_table(args.standard_waltz_pool_b, POOL_B_LABEL) read_counts_table = pd.concat([pool_b_read_counts, pool_a_read_counts]) pool_b_coverage_table = get_coverage_table(args.standard_waltz_pool_b, POOL_B_LABEL) coverage_table = pd.concat([pool_b_coverage_table, pool_a_coverage_table]) # Pool-Level, A Targets unfilt = get_collapsed_waltz_tables(args.unfiltered_waltz_pool_a, UNFILTERED_COLLAPSING_METHOD, POOL_A_LABEL) simplex = get_collapsed_waltz_tables(args.simplex_waltz_pool_a, SIMPLEX_COLLAPSING_METHOD, POOL_A_LABEL) duplex = get_collapsed_waltz_tables(args.duplex_waltz_pool_a, DUPLEX_COLLAPSING_METHOD, POOL_A_LABEL) read_counts_table = pd.concat([read_counts_table, unfilt[0], simplex[0], duplex[0]]).reset_index(drop=True) coverage_table = pd.concat([coverage_table, unfilt[1], simplex[1], duplex[1]]).reset_index(drop=True) gc_cov_int_table =
pd.concat([gc_cov_int_table, unfilt[2], simplex[2], duplex[2]])
pandas.concat
import pytest from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm @pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)]) def test_groupby_sample_balanced_groups_shape(n, frac): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=n, frac=frac) values = [1] * 2 + [2] * 2 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=n, frac=frac) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_unbalanced_groups_shape(): values = [1] * 10 + [2] * 20 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=5) values = [1] * 5 + [2] * 5 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=5) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_index_value_spans_groups(): values = [1] * 3 + [2] * 3 df = DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2]) result = df.groupby("a").sample(n=2) values = [1] * 2 + [2] * 2 expected = DataFrame({"a": values, "b": values}, index=result.index)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor from sklearn.feature_selection import SelectFromModel from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import MaxAbsScaler, PolynomialFeatures from constants import POSTPROCESSED_DATAPATH # NOTE: Make sure that the class is labeled 'target' in the data file tpot_data =
pd.read_csv(POSTPROCESSED_DATAPATH, sep=",", header="infer")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Oct 19 16:00:06 2020 @author: <NAME>, FINTECH CONSULTANCY license: Apache 2.0, Note: only tested on windows 10 """ import pandas as pd import sys import re import os import win32com.client from docx import * # Hardcoded for now. Wondering where configurations should go for future iterations columns = ['Definition', 'Revised Definition', 'DeliveryID','Name', 'Category'] def checkExtension(filename:str, extension:str): string = '' for character in filename[-1::-1]: if character == '.': break string += character if ''.join(string[-1::-1]) != extension: return(False) return(True) def generate_doc(filepath = 'Favorites.xlsx', output_name = 'Example.docx', ID = '1'): print(filepath) if type(filepath) != str: filepath = str(filepath) if type(output_name) != str: output_name = str(output_name) if type(ID) != str: ID = str(ID) if not checkExtension(filepath.split('/')[-1], 'xlsx'): print("1. Error -- Type of file accepted should be an excel file") return(False) else: print("1. Input file is of type xlsx.") if not checkExtension(output_name.split('/')[-1], 'docx'): print("2. Error -- Type of outputted should be a docx file") return(False) else: print("2. Output file is of type docx.") print("Opening the data") print("Warning: sheet name is 'Sheet1'") data = pd.read_excel(filepath, 'Sheet1') count, _ = data.shape print("Data has succesfully been opened") ''' Check will not work within python. Must be run from shell''' # if not os.path.exists('Deliverytemplate.docx'): # print(f"3. Error -- Make sure Deliverytemplate.docx is in the same directory as the {os.path.basename(__file__)}") # else: # print(f"3. Deliverytemplate.docx is in the same directory as the {os.path.basename(__file__)}") print("Writing Revised contnet") document = Document('Deliverytemplate.docx') document.add_heading('Manifest', level=1) p = document.add_paragraph('') p.add_run('Delivery Type: test \n').bold = True p.add_run(f'Number of fields: {count}').bold = True document.save("Revised.docx") print("Writing Original Content") original = Document('Deliverytemplate.docx') original .add_heading('Manifest', level=1) p = original.add_paragraph('') p.add_run('Delivery Type: test\n').bold = True p.add_run(f'Number of fields: {count}').bold = True original.save("Original.docx") p = document.add_paragraph('') po = original.add_paragraph('') for i in range(count): if pd.isna(data['Category'].iloc[i]): pass else: p.add_run("Category:").italic = True p.add_run(f" {data['Category'].iloc[i].strip()}\n") po.add_run("Category:").italic = True po.add_run(f" {data['Category'].iloc[i].strip()}\n") if pd.isna(data['Name'].iloc[i]): pass else: p.add_run('Name:').italic = True p.add_run(f" {data['Name'].iloc[i].strip()}\n") po.add_run("Name:").italic = True po.add_run(f" {data['Name'].iloc[i].strip()}\n") if
pd.isna(data['Revised Definition'].iloc[i])
pandas.isna
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper methods to load and analyse results from experiments.""" import json import os from typing import Any, Callable, Dict, Iterable, Mapping, Tuple import gym from imitation.util import networks import numpy as np import pandas as pd from stable_baselines.common import vec_env from evaluating_rewards import serialize Config = Tuple[Any, ...] Stats = Mapping[str, Any] ConfigStatsMapping = Mapping[Config, Stats] FilterFn = Callable[[Iterable[str]], bool] PreprocessFn = Callable[[pd.Series], pd.Series] def to_series(x) -> pd.Series: s = pd.Series(x) s.index.names = ("Source", "Target", "Seed") return s def average_loss(stats: Stats, n: int = 10) -> float: """Compute average loss of last n data points in training.""" loss = pd.DataFrame(stats["loss"])["singleton"] return loss.iloc[-n:].mean() def average_unwrapped_loss(stats: Stats) -> float: """Compute average "unwrapped" loss (original model vs target).""" metrics = stats["metrics"] unwrapped_loss = [v["singleton"]["unwrapped_loss"] for v in metrics] # Does not change during training, so can take mean over entire array return np.mean(unwrapped_loss) def loss_pipeline( stats: ConfigStatsMapping, preprocess: Tuple[PreprocessFn] = (), ): """Extract losses from stats and visualize in a heatmap.""" loss = {cfg: average_loss(d) for cfg, d in stats.items()} unwrapped_loss = {cfg: average_unwrapped_loss(d) for cfg, d in stats.items()} for pre in (to_series,) + preprocess: loss = pre(loss) unwrapped_loss = pre(unwrapped_loss) return {"loss": loss, "unwrapped_loss": unwrapped_loss} def get_metric(stats: ConfigStatsMapping, key: str, idx: int = -1): """Extract affine parameters from training statistics, at epoch idx.""" return {k: v["metrics"][idx]["singleton"][key] for k, v in stats.items()} def get_affine_from_models(env_name: str, paths: Iterable[str]): """Extract affine parameters from reward model.""" venv = vec_env.DummyVecEnv([lambda: gym.make(env_name)]) res = {} with networks.make_session(): for path in paths: model = serialize.load_reward( "evaluating_rewards/RewardModel-v0", os.path.join(path, "model"), venv, ) return model.models["wrapped"][0].get_weights() return res def affine_pipeline( stats: ConfigStatsMapping, preprocess: Tuple[PreprocessFn] = (), ): """Extract final affine parameters from stats and visualize in a heatmap.""" constants = get_metric(stats, "constant") scales = get_metric(stats, "scale") for pre in (to_series,) + preprocess: constants = pre(constants) scales = pre(scales) return {"constants": constants, "scales": scales} def pipeline(stats: ConfigStatsMapping, **kwargs): """Run loss and affine pipeline on stats.""" return {"loss": loss_pipeline(stats, **kwargs), "affine": affine_pipeline(stats, **kwargs)} # TODO(adam): backwards compatibility -- remove once rerun experiments DATA_ROOT_PREFIXES = [ # Older versions of the code stored absolute paths in config. # Try and turn these into relative paths for portability. "/root/output", "/home/adam/output", "/mnt/eval_reward/data", "/mnt/eval_reward_efs/data", ] def canonicalize_data_root(path: str) -> str: if path.endswith("dummy"): path = "dummy" for root_prefix in DATA_ROOT_PREFIXES: if path.startswith(root_prefix): path = path.replace(root_prefix, serialize.get_output_dir()) break return path def _canonicalize_cfg_path(cfg: Dict[str, Any]) -> Dict[str, Any]: cfg = dict(cfg) for fld in ("source_reward_path", "target_reward_path"): if fld in cfg: cfg[fld] = canonicalize_data_root(cfg[fld]) return cfg def _find_sacred_parent( path: str, seen: Dict[str, str] ) -> Tuple[Dict[str, Any], Dict[str, Any], str]: """Finds first Sacred directory that is in path or a parent. Args: path: Path to a directory to start searching from. seen: A dictionary from parent paths to children. Returns: A tuple of the config found and the parent path it is located at. As a side-effect, adds path to seen. Raises: ValueError: if the parent path was already in seen for a different child. ValueError: no parent path containing a Sacred directory exists. """ parent = path while parent and not os.path.exists(os.path.join(parent, "sacred", "config.json")): parent = os.path.dirname(parent) if parent == "/": parent = "" if not parent: raise ValueError(f"No parent of '{path}' contains a Sacred directory.") if parent in seen and seen[parent] != path: raise ValueError( f"index contains two paths '{path}' and '{seen[parent]}' " f"with common Sacred parent 'f{parent}'." ) seen[parent] = path config_path = os.path.join(parent, "sacred", "config.json") with open(config_path, "r") as f: config = json.load(f) run_path = os.path.join(parent, "sacred", "run.json") with open(run_path, "r") as f: run = json.load(f) return config, run, parent HARDCODED_TYPES = ["evaluating_rewards/Zero-v0"] def path_to_config(kinds: Iterable[str], paths: Iterable[str]) -> pd.DataFrame: """Extracts relevant config parameters from paths in index. Args: kinds: An index of reward types. paths: An index of paths. Returns: A MultiIndex consisting of original reward type and seed(s). """ seen = {} res = [] for (kind, path) in zip(kinds, paths): if kind in HARDCODED_TYPES or path == "dummy": res.append((kind, "hardcoded", 0, 0)) else: path = canonicalize_data_root(path) config, run, path = _find_sacred_parent(path, seen) if "target_reward_type" in config: # Learning directly from a reward: e.g. train_{regress,preferences} pretty_type = {"train_regress": "regress", "train_preferences": "preferences"} model_type = pretty_type[run["command"]] res.append((config["target_reward_type"], model_type, config["seed"], 0)) elif "rollout_path" in config: # Learning from demos: e.g. train_adversarial config["rollout_path"] = canonicalize_data_root(config["rollout_path"]) rollout_config, _, _ = _find_sacred_parent(config["rollout_path"], seen) reward_type = rollout_config["reward_type"] or "EnvReward" reward_args = config["init_trainer_kwargs"]["reward_kwargs"] state_only = reward_args.get("state_only", False) model_type = "IRL" + ("-SO" if state_only else "-SA") res.append((reward_type, model_type, config["seed"], rollout_config["seed"])) else: raise ValueError( f"Unexpected config at '{path}': does not contain " "'source_reward_type' or 'rollout_path'" ) names = ["source_reward_type", "model_type", "model_seed", "data_seed"] return
pd.DataFrame(res, columns=names)
pandas.DataFrame
# Related third party imports import pandas as pd import numpy as np from imblearn.over_sampling import SMOTE from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score import matplotlib.pyplot as plt import seaborn as sns class LinearRegressionRecSys(object): """ Class used to train logistic regression model in each defined cluster and to provide recommendations. """ def __init__(self, portfolio, database, cluster_labels, random_state=None): """ Set class variables and check if the database contains the portfolios' IDs. The database must contain IDs as index and the portfolio must contain `id` as a feature. :param portfolio: Pandas DataFrame, contains only the portfolio clients' IDs as feature `id`. :param database: Pandas DataFrame, contains all the companies' IDs as index. :param cluster_labels: Pandas DataFrame, contains numbers from 0 to max number of clusters. Maps each company to a cluster. :param random_state: integer, default=None, set random state of internal processess. """ # Set internal variables: portfolio, database, cluster_labels self.portfolio = portfolio self.database = database self.cluster_labels = cluster_labels self.random_state = random_state # Test - check if database contains portfolios' IDs print(f"\nTesting Portfolio . . .\n") print(f"Database size: {self.database.shape[0]}") print(f"Portfolio size: {self.portfolio.shape[0]}") assert np.all(self.portfolio["id"].isin(self.database.index)), "Not all the portfolios' ids are in the database" print("Portfolios' ids are in the database\n") # Set internal variable: rating_df Pandas DataFrame, with features: # - id: the id of the company # - client: if the company is a client (present) on the porfolio # - cluster: to which cluster the company belongs rating_df = self.database.reset_index()["id"] # get all IDs portfolio_flag = rating_df.isin(self.portfolio["id"]) # True means it is a client portfolio_flag.name = "client" rating_df = pd.concat([rating_df, portfolio_flag, self.cluster_labels], axis=1) # concatenate IDs, client flag and cluster labels self.rating_df = rating_df def _get_cluster_target_df(self, rating_df, cluster): """ Returns a Pandas DataFrame with all companies present in the cluster and a pandas series that represents if the company is a client. :param cluster: integer, cluster from which predictors dataframe will be constructed. :create self._cluster_df: Pandas DataFrame with features and IDs of all companies present in the cluster. :create self._target: Pandas Series that represents if the company is a client. """ condition = rating_df["cluster"] == cluster # means that we're accessing the right cluster cluster_ids = rating_df[(condition)]["id"] # gets ids from all companies in the cluster cluster_df = self.database.loc[cluster_ids, :] # get features from all companies in the cluster target = rating_df.loc[condition, "client"] # get target for cluster - True means it is a client self._cluster_df = cluster_df self._target = target def train_classifiers(self): """ Train logistic regression classifier for each cluster present in the companies dataframe. \ Predictor is a dataframe with all companies features' for each cluster, target is Pandas Series with boolean values indicating if company is client. Does train test split, SMOTE oversampling, logistic regression training for each cluster. :create self.train_output: dictionary, contains keys: -"client_flag": 1 if cluster has no clients, 0 if has. The following keys are present in the second case: -"classifier": trained logistic regression object. -"metrics": dictionary, contains keys: -"accuracy": accuracy score -"precision": precision score -"recall": recall score -"f1_score": f1 score -"roc_auc": area under the curve """ n_clusters = self.cluster_labels.nunique()[0] train_output = {} for cluster in range(n_clusters): print(f"- Veryfing Cluster {cluster} -\n") self._get_cluster_target_df(self.rating_df, cluster) print(f"Cluster size: {self._cluster_df.shape[0]}") print(f"Clients in cluster: {self._target.sum()}") print(f"Clients per cluster ratio: {round(100*(self._target.sum() / self._cluster_df.shape[0]), 3)} % \n") print("Processing:\n") if self._target.sum() != 0: client_flag = 0 print("Applying train test split . . .") X_train, X_test, y_train, y_test = train_test_split(self._cluster_df, self._target, test_size=0.3, stratify=self._target, random_state=self.random_state) print("Applying SMOTE oversampling . . .") X_train, y_train = SMOTE(n_jobs=-1, random_state=self.random_state).fit_resample(X_train, y_train) print("Training Logistic Regression . . .") classifier = LogisticRegression(solver="saga", max_iter=1000, n_jobs=-1, class_weight="balanced", random_state=self.random_state) classifier.fit(X_train, y_train) print("Making predictions and saving metrics . . .") prediction = classifier.predict(X_test) train_output.update({cluster: {"client_flag": client_flag, "classifier": classifier, "metrics": {"accuracy": accuracy_score(y_test, prediction), "precision": precision_score(y_test, prediction), "recall": recall_score(y_test, prediction), "f1_score": f1_score(y_test, prediction), "roc_auc": roc_auc_score(y_test, prediction)} } }) else: print("Cluster has no clients, saving {'client_flag': 1} in the output dictionary.") client_flag = 1 train_output.update({cluster: {"client_flag": client_flag}}) print(169*"-"+"\n") self.train_output = train_output # dict output of the training function def recommend(self, n_recommendations=10, remove_portfolio_ids=True): """ Makes "n_recommendations". Models need to be trained first with method "train_classifiers". Use method "train_recommend" to do both steps at once. Recommendations are made for each cluster proportional to the number of clients in them. Recommendations are sorted by their predicted probabilities in descending order. :param n_recommendations: integer, default=10, number of recommendations to be made. :param remove_portfolio_ids: boolean, default=True, when False IDs from client companies are mantained in the dataset from which recommendations are made. \ When True, IDs from client companies are removed. :return recommendations: Pandas DataFrame, contains IDs and predicted probability of recommended clients for portfolio, sorted in descending order by predicted probabilities. """ n_clients = self.rating_df["client"].sum() # total number of clients recs_ratio = (self.rating_df.groupby("cluster").sum() / n_clients) # ratio of recommendations per cluster recs_per_cluster = round(recs_ratio * n_recommendations, 0) # number of recommendations per cluster n_clusters = self.cluster_labels.nunique()[0] # number of clusters try: self.train_output except: raise Exception("Models haven't been trained. Models need to be trained before making recommendations. Use method 'train_classifiers' or 'train_recommend'") recommendations =
pd.DataFrame()
pandas.DataFrame
import logging from pathlib import Path import pandas as pd from ..gov import Gov, Matcher from ..const import FILENAME_GOV_TEST_SET GOV_URL = "http://wiki-de.genealogy.net/Verlustlisten_Erster_Weltkrieg/Projekt/Ortsnamen" logger = logging.getLogger(__name__) class GovTestData: def __init__(self, gov: Gov, url: str = GOV_URL): self.gov_url = url self.gov = gov self.filename = FILENAME_GOV_TEST_SET self.filepath = Path(gov.data_root) # load data self.data = self.load_gov_test_data() def load_gov_test_data(self) -> pd.DataFrame: if not (self.filepath / self.filename).exists(): correction_tables = [] correction_tables.extend(pd.read_html(self.gov_url, attrs={"class": "sortable"})) correction_tables.extend(pd.read_html(self.gov_url, attrs={"class": "wikitable"})) df =
pd.concat(correction_tables)
pandas.concat
"""The noisemodels module contains all noisemodels available in Pastas. Supported Noise Models ---------------------- .. autosummary:: :nosignatures: :toctree: ./generated NoiseModel NoiseModel2 Examples -------- By default, a noise model is added to Pastas. It is possible to replace the default model with different models as follows: >>> n = ps.NoiseModel() >>> ml.add_noisemodel(n) or shorter >>> ml.add_noisemodel(ps.NoiseModel()) See Also -------- pastas.model.Model.add_noisemodel """ import numpy as np from pandas import Timedelta, DataFrame, Series from .decorators import set_parameter, njit __all__ = ["NoiseModel", "NoiseModel2", "ArmaModel"] class NoiseModelBase: _name = "NoiseModelBase" def __init__(self): self.nparam = 1 self.name = "noise" self.parameters = DataFrame( columns=["initial", "pmin", "pmax", "vary", "name"]) def set_init_parameters(self, oseries=None): if oseries is not None: pinit = oseries.index.to_series().diff() / Timedelta(1, "D") pinit = pinit.median() else: pinit = 14.0 self.parameters.loc["noise_alpha"] = (pinit, 1e-5, 5000, True, "noise") @set_parameter def set_initial(self, name, value): """ Internal method to set the initial parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, "initial"] = value @set_parameter def set_pmin(self, name, value): """ Internal method to set the minimum value of the noisemodel. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, "pmin"] = value @set_parameter def set_pmax(self, name, value): """ Internal method to set the maximum parameter values. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, "pmax"] = value @set_parameter def set_vary(self, name, value): """ Internal method to set if the parameter is varied. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, "vary"] = value def to_dict(self): return {"type": self._name} @staticmethod def weights(res, parameters): return 1 class NoiseModel(NoiseModelBase): """ Noise model with exponential decay of the residual and weighting. Notes ----- Calculates the noise [1]_ according to: .. math:: v(t1) = r(t1) - r(t0) * exp(- (\\frac{\\Delta t}{\\alpha}) Note that in the referenced paper, alpha is defined as the inverse of alpha used in Pastas. The unit of the alpha parameter is always in days. Examples -------- It can happen that the noisemodel is used during model calibration to explain most of the variation in the data. A recommended solution is to scale the initial parameter with the model timestep, E.g.:: >>> n = NoiseModel() >>> n.set_initial("noise_alpha", 1.0 * ml.get_dt(ml.freq)) References ---------- .. [1] <NAME>, <NAME>., and <NAME> (2005), Modeling irregularly spaced residual series as a continuous stochastic process, Water Resour. Res., 41, W12404, doi:10.1029/2004WR003726. """ _name = "NoiseModel" def __init__(self): NoiseModelBase.__init__(self) self.nparam = 1 self.set_init_parameters() def simulate(self, res, parameters): """ Simulate noise from the residuals. Parameters ---------- res: pandas.Series The residual series. parameters: array-like Alpha parameters used by the noisemodel. Returns ------- noise: pandas.Series Series of the noise. """ alpha = parameters[0] odelt = (res.index[1:] - res.index[:-1]).values / Timedelta("1d") # res.values is needed else it gets messed up with the dates res.iloc[1:] -= np.exp(-odelt / alpha) * res.values[:-1] res.name = "Noise" return res @staticmethod def weights(res, parameters): """ Method to calculate the weights for the noise. Based on the sum of weighted squared noise (SWSI) method. Parameters ---------- res: pandas.Series The residual series. parameters: array-like Alpha parameters used by the noisemodel. Returns ------- w: numpy.ndarray Array with the weights. """ alpha = parameters[0] odelt = (res.index[1:] - res.index[:-1]).values / Timedelta("1d") # divide power by 2 as nu / sigma is returned power = 1.0 / (2.0 * odelt.size) exp = np.exp(-2.0 / alpha * odelt) # Twice as fast as 2*odelt/alpha w = np.exp(power * np.sum(np.log(1.0 - exp))) / np.sqrt(1.0 - exp) w = np.insert(w, 0, 0) # Set first weight to zero w = Series(w, res.index) return w class NoiseModel2(NoiseModelBase): """ Noise model with exponential decay of the residual. Notes ----- Calculates the noise according to: .. math:: v(t1) = r(t1) - r(t0) * exp(- (\\frac{\\Delta t}{\\alpha}) The unit of the alpha parameter is always in days. Examples -------- It can happen that the noisemodel is used during model calibration to explain most of the variation in the data. A recommended solution is to scale the initial parameter with the model timestep, E.g.:: >>> n = NoiseModel() >>> n.set_initial("noise_alpha", 1.0 * ml.get_dt(ml.freq)) """ _name = "NoiseModel2" def __init__(self): NoiseModelBase.__init__(self) self.nparam = 1 self.set_init_parameters() @staticmethod def simulate(res, parameters): """ Simulate noise from the residuals. Parameters ---------- res : pandas.Series The residual series. parameters : array_like Alpha parameters used by the noisemodel. Returns ------- noise: pandas.Series Series of the noise. """ alpha = parameters[0] odelt = (res.index[1:] - res.index[:-1]).values / Timedelta("1d") # res.values is needed else it gets messed up with the dates res.iloc[1:] -= np.exp(-odelt / alpha) * res.values[:-1] res.iloc[0] = 0 res.name = "Noise" return res class NoiseModel3(NoiseModelBase): """ Noise model with exponential decay of the residual and weighting. Differences compared to NoiseModel: 1. First value is residual 2. First weight is 1 / sig_residuals (i.e., delt = infty) 3. Sum of all weights is always 1 Notes ----- Calculates the noise [1]_ according to: .. math:: v(t1) = r(t1) - r(t0) * exp(- (\\frac{\\Delta t}{\\alpha}) The unit of the alpha parameter is always in days. """ _name = "NoiseModel3" def __init__(self): NoiseModelBase.__init__(self) self.nparam = 1 self.set_init_parameters() def simulate(self, res, parameters): """ Simulate noise from the residuals. Parameters ---------- res: pandas.Series The residual series. parameters: array-like Alpha parameters used by the noisemodel. Returns ------- noise: pandas.Series Series of the noise. """ alpha = parameters[0] odelt = (res.index[1:] - res.index[:-1]).values / Timedelta("1d") # res.values is needed else it gets messed up with the dates v = res.values[1:] - np.exp(-odelt / alpha) * res.values[:-1] w = np.ones(len(res)) w[1:] = 1 / np.sqrt((1 - np.exp(-2.0 / alpha * odelt))) w /= np.sum(w) # make sure the sum up to 1 # res.iloc[0] is already the residual res.iloc[1:] = v res *= w res.name = "Noise" return res @staticmethod def weights(res, parameters): """ Method to calculate the weights for the noise. Based on the sum of weighted squared noise (SWSI) method. Parameters ---------- alpha: float odelt: numpy.ndarray Returns ------- w: pandas.Series Series of the weights. """ alpha = parameters[0] odelt = (res.index[1:] - res.index[:-1]).values / Timedelta("1d") # divide power by 2 as nu / sigma is returned power = 1.0 / (2.0 * odelt.size) exp = np.exp(-2.0 / alpha * odelt) # Twice as fast as 2*odelt/alpha w = np.exp(power * np.sum(np.log(1.0 - exp))) / np.sqrt(1.0 - exp) w = np.insert(w, 0, 1) # Set first weight to one w = Series(w, res.index) return w class ArmaModel(NoiseModelBase): """ ARMA(1,1) Noise model to simulate the noise. Notes ----- Calculates the noise according to: .. math:: \\upsilon_t = r_t - r_{t-1} e^{-\\Delta t/\\alpha} - \\upsilon_{t-1} e^{-\\Delta t/\\beta} The unit of the alpha parameter is always in days. Warnings -------- This model has only been tested on regular time steps and should not be used for irregular time steps yet. """ _name = "ArmaModel" def __init__(self): NoiseModelBase.__init__(self) self.nparam = 2 self.set_init_parameters() def set_init_parameters(self, oseries=None): self.parameters.loc["noise_alpha"] = (10, 1e-9, np.inf, True, "noise") self.parameters.loc["noise_beta"] = (10, 1e-9, np.inf, True, "noise") def simulate(self, res, parameters): alpha = parameters[0] beta = parameters[1] # Calculate the time steps odelt = (res.index[1:] - res.index[:-1]).values / Timedelta("1d") a = self.calculate_noise(res.values, odelt, alpha, beta) return
Series(index=res.index, data=a, name="Noise")
pandas.Series
""" Tasks ------- Search and transform jsonable structures, specifically to make it 'easy' to make tabular/csv output for other consumers. Example ~~~~~~~~~~~~~ *give me a list of all the fields called 'id' in this stupid, gnarly thing* >>> Q('id',gnarly_data) ['id1','id2','id3'] Observations: --------------------- 1) 'simple data structures' exist and are common. They are tedious to search. 2) The DOM is another nested / treeish structure, and jQuery selector is a good tool for that. 3a) R, Numpy, Excel and other analysis tools want 'tabular' data. These analyses are valuable and worth doing. 3b) Dot/Graphviz, NetworkX, and some other analyses *like* treeish/dicty things, and those analyses are also worth doing! 3c) Some analyses are best done using 'one-off' and custom code in C, Python, or another 'real' programming language. 4) Arbitrary transforms are tedious and error prone. SQL is one solution, XSLT is another, 5) the XPATH/XML/XSLT family is.... not universally loved :) They are very complete, and the completeness can make simple cases... gross. 6) For really complicated data structures, we can write one-off code. Getting 80% of the way is mostly okay. There will always have to be programmers in the loop. 7) Re-inventing SQL is probably a failure mode. So is reinventing XPATH, XSLT and the like. Be wary of mission creep! Re-use when possible (e.g., can we put the thing into a DOM using 8) If the interface is good, people can improve performance later. Simplifying --------------- 1) Assuming 'jsonable' structures 2) keys are strings or stringlike. Python allows any hashable to be a key. for now, we pretend that doesn't happen. 3) assumes most dicts are 'well behaved'. DAG, no cycles! 4) assume that if people want really specialized transforms, they can do it themselves. """ from __future__ import print_function from collections import namedtuple import csv import itertools from itertools import product from operator import attrgetter as aget, itemgetter as iget import operator import sys from pandas.compat import map, u, callable, Counter import pandas.compat as compat ## note 'url' appears multiple places and not all extensions have same struct ex1 = { 'name': 'Gregg', 'extensions': [ {'id':'hello', 'url':'url1'}, {'id':'gbye', 'url':'url2', 'more': dict(url='url3')}, ] } ## much longer example ex2 = {u('metadata'): {u('accessibilities'): [{u('name'): u('accessibility.tabfocus'), u('value'): 7}, {u('name'): u('accessibility.mouse_focuses_formcontrol'), u('value'): False}, {u('name'): u('accessibility.browsewithcaret'), u('value'): False}, {u('name'): u('accessibility.win32.force_disabled'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.startlinksonly'), u('value'): False}, {u('name'): u('accessibility.usebrailledisplay'), u('value'): u('')}, {u('name'): u('accessibility.typeaheadfind.timeout'), u('value'): 5000}, {u('name'): u('accessibility.typeaheadfind.enabletimeout'), u('value'): True}, {u('name'): u('accessibility.tabfocus_applies_to_xul'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.flashBar'), u('value'): 1}, {u('name'): u('accessibility.typeaheadfind.autostart'), u('value'): True}, {u('name'): u('accessibility.blockautorefresh'), u('value'): False}, {u('name'): u('accessibility.browsewithcaret_shortcut.enabled'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.enablesound'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.prefillwithselection'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.soundURL'), u('value'): u('beep')}, {u('name'): u('accessibility.typeaheadfind'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.casesensitive'), u('value'): 0}, {u('name'): u('accessibility.warn_on_browsewithcaret'), u('value'): True}, {u('name'): u('accessibility.usetexttospeech'), u('value'): u('')}, {u('name'): u('accessibility.accesskeycausesactivation'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.linksonly'), u('value'): False}, {u('name'): u('isInstantiated'), u('value'): True}], u('extensions'): [{u('id'): u('216ee7f7f4a5b8175374cd62150664efe2433a31'), u('isEnabled'): True}, {u('id'): u('1aa53d3b720800c43c4ced5740a6e82bb0b3813e'), u('isEnabled'): False}, {u('id'): u('01ecfac5a7bd8c9e27b7c5499e71c2d285084b37'), u('isEnabled'): True}, {u('id'): u('1c01f5b22371b70b312ace94785f7b0b87c3dfb2'), u('isEnabled'): True}, {u('id'): u('fb723781a2385055f7d024788b75e959ad8ea8c3'), u('isEnabled'): True}],
u('fxVersion')
pandas.compat.u
import pytest from pandas import Categorical, DataFrame, Series import pandas.util.testing as tm def _assert_series_equal_both(a, b, **kwargs): """ Check that two Series equal. This check is performed commutatively. Parameters ---------- a : Series The first Series to compare. b : Series The second Series to compare. kwargs : dict The arguments passed to `tm.assert_series_equal`. """ tm.assert_series_equal(a, b, **kwargs) tm.assert_series_equal(b, a, **kwargs) def _assert_not_series_equal(a, b, **kwargs): """ Check that two Series are not equal. Parameters ---------- a : Series The first Series to compare. b : Series The second Series to compare. kwargs : dict The arguments passed to `tm.assert_series_equal`. """ try: tm.assert_series_equal(a, b, **kwargs) msg = "The two Series were equal when they shouldn't have been" pytest.fail(msg=msg) except AssertionError: pass def _assert_not_series_equal_both(a, b, **kwargs): """ Check that two Series are not equal. This check is performed commutatively. Parameters ---------- a : Series The first Series to compare. b : Series The second Series to compare. kwargs : dict The arguments passed to `tm.assert_series_equal`. """ _assert_not_series_equal(a, b, **kwargs) _assert_not_series_equal(b, a, **kwargs) @pytest.mark.parametrize("data", [range(3), list("abc"), list("áàä")]) def test_series_equal(data): _assert_series_equal_both(Series(data), Series(data)) @pytest.mark.parametrize( "data1,data2", [ (range(3), range(1, 4)), (list("abc"), list("xyz")), (list("áàä"), list("éèë")), (list("áàä"), list(b"aaa")), (range(3), range(4)), ], ) def test_series_not_equal_value_mismatch(data1, data2): _assert_not_series_equal_both(Series(data1), Series(data2)) @pytest.mark.parametrize( "kwargs", [ dict(dtype="float64"), # dtype mismatch dict(index=[1, 2, 4]), # index mismatch dict(name="foo"), # name mismatch ], ) def test_series_not_equal_metadata_mismatch(kwargs): data = range(3) s1 = Series(data) s2 = Series(data, **kwargs) _assert_not_series_equal_both(s1, s2) @pytest.mark.parametrize("data1,data2", [(0.12345, 0.12346), (0.1235, 0.1236)]) @pytest.mark.parametrize("dtype", ["float32", "float64"]) @pytest.mark.parametrize("check_less_precise", [False, True, 0, 1, 2, 3, 10]) def test_less_precise(data1, data2, dtype, check_less_precise): s1 = Series([data1], dtype=dtype) s2 = Series([data2], dtype=dtype) kwargs = dict(check_less_precise=check_less_precise) if (check_less_precise is False or check_less_precise == 10) or ( (check_less_precise is True or check_less_precise >= 3) and abs(data1 - data2) >= 0.0001 ): msg = "Series values are different" with pytest.raises(AssertionError, match=msg): tm.assert_series_equal(s1, s2, **kwargs) else: _assert_series_equal_both(s1, s2, **kwargs) @pytest.mark.parametrize( "s1,s2,msg", [ # Index ( Series(["l1", "l2"], index=[1, 2]), Series(["l1", "l2"], index=[1.0, 2.0]), "Series\\.index are different", ), # MultiIndex ( DataFrame.from_records( {"a": [1, 2], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"] ).c, DataFrame.from_records( {"a": [1.0, 2.0], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"] ).c, "MultiIndex level \\[0\\] are different", ), ], ) def test_series_equal_index_dtype(s1, s2, msg, check_index_type): kwargs = dict(check_index_type=check_index_type) if check_index_type: with pytest.raises(AssertionError, match=msg): tm.assert_series_equal(s1, s2, **kwargs) else: tm.assert_series_equal(s1, s2, **kwargs) def test_series_equal_length_mismatch(check_less_precise): msg = """Series are different Series length are different \\[left\\]: 3, RangeIndex\\(start=0, stop=3, step=1\\) \\[right\\]: 4, RangeIndex\\(start=0, stop=4, step=1\\)""" s1 = Series([1, 2, 3]) s2 = Series([1, 2, 3, 4]) with pytest.raises(AssertionError, match=msg): tm.assert_series_equal(s1, s2, check_less_precise=check_less_precise) def test_series_equal_values_mismatch(check_less_precise): msg = """Series are different Series values are different \\(33\\.33333 %\\) \\[left\\]: \\[1, 2, 3\\] \\[right\\]: \\[1, 2, 4\\]""" s1 =
Series([1, 2, 3])
pandas.Series
#!/usr/bin/env python #-*- coding:utf-8 -*- """Overview: Classify cell candidates and determine true cells Usage: HDoG_classifier.py PARAM_FILE Options: -h --help Show this screen. --version Show version. """ import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import scipy.ndimage import os.path, joblib import tifffile import json from docopt import docopt from sklearn.mixture import BayesianGaussianMixture from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.tree import export_graphviz from sklearn.pipeline import Pipeline import graphviz from MergeBrain import WholeBrainCells dt_classified = np.dtype([ ('is_positive', 'bool'), ]) class ThresholdClassifier: """ Simple classifier with threshold on first feature. the data with first feature larger than the specified threshold is regarded as positive. """ def __init__(self, threshold): self.threshold = threshold def predict(self, X): return X[:,0] > self.threshold class LinearClassifier2D: """ Sample satisfies `a * X[:,0] + b * X[:,1] + c > 0` is regarded as positive. """ def __init__(self, a,b,c): self.a = a self.b = b self.c = c def predict(self, X): return self.a * X[:,0] + self.b * X[:,1] + self.c > 0 def get_X_whole(wbc, normalizer_img=None, **kwargs): info = joblib.load(os.path.join(wbc.wholebrain_images.params["dst_basedir"], "info.pkl")) X_whole = [] for src_pkl in info.keys(): yname,xname = src_pkl.split("/")[-1].split(".")[0].split("_") if "FW" in src_pkl: cellstack = wbc.halfbrain_cells_FW.get_stack_by_xyname(xname=xname, yname=yname) else: cellstack = wbc.halfbrain_cells_RV.get_stack_by_xyname(xname=xname, yname=yname) data_scalemerged_stack = joblib.load(src_pkl) X = get_X_with_normalizer(cellstack.data_local, data_scalemerged_stack, normalizer_img, is_ave=wbc.is_ave, **kwargs) X_whole.append(X) X_whole = np.concatenate(X_whole) return X_whole def get_data_scalemerged_whole(wbc, clf=None, normalizer_img=None, return_X=False, **kwargs): info = joblib.load(os.path.join(wbc.wholebrain_images.params["dst_basedir"], "info.pkl")) list_data_scalemerged = [] if return_X: X_whole = [] for src_pkl in info.keys(): yname,xname = src_pkl.split("/")[-1].split(".")[0].split("_") if "FW" in src_pkl: cellstack = wbc.halfbrain_cells_FW.get_stack_by_xyname(xname=xname, yname=yname) else: cellstack = wbc.halfbrain_cells_RV.get_stack_by_xyname(xname=xname, yname=yname) data_scalemerged_stack = joblib.load(src_pkl) if clf: X = get_X_with_normalizer(cellstack.data_local, data_scalemerged_stack, normalizer_img, is_ave=wbc.is_ave, **kwargs) if X.shape[0] == 0: continue pred = clf.predict(X) list_data_scalemerged.append(data_scalemerged_stack[data_scalemerged_stack["is_valid"]][pred]) if return_X: X_whole.append(X) else: list_data_scalemerged.append(data_scalemerged_stack[data_scalemerged_stack["is_valid"]]) if return_X: X = get_X_with_normalizer(cellstack.data_local, data_scalemerged_stack, normalizer_img, is_ave=wbc.is_ave, **kwargs) X_whole.append(X) data_scalemerged_whole = np.concatenate(list_data_scalemerged) if not return_X: return data_scalemerged_whole else: X_whole = np.concatenate(X_whole) return data_scalemerged_whole, X_whole def make_density_image(wbc, clf=None, dtype=np.uint16, normalizer_img=None, **kwargs): data_scalemerged_whole = get_data_scalemerged_whole(wbc, clf, normalizer_img, **kwargs) depth = int(np.floor(np.max(data_scalemerged_whole["scaled_z"]))) height = int(np.floor(np.max(data_scalemerged_whole["scaled_y"]))) width = int(np.floor(np.max(data_scalemerged_whole["scaled_x"]))) density_img,_ = np.histogramdd( np.vstack([ data_scalemerged_whole["scaled_z"], data_scalemerged_whole["scaled_y"], data_scalemerged_whole["scaled_x"] ]).T, bins=(depth, height, width), range=[(0,depth-1),(0,height-1),(0,width-1)] ) return density_img.astype(dtype) # Feature Vector def get_X_with_normalizer(data_local, data_scalemerged, normalizer_img=None, **kwargs): data_local_valid = data_local[data_scalemerged["is_valid"]] if data_local_valid.shape[0] == 0: return np.empty((0,3), dtype=np.float32) X = get_X_3d(data_local_valid, **kwargs) if normalizer_img is not None: data_scalemerged_valid = data_scalemerged[data_scalemerged["is_valid"]] X[:, 0] -= np.log10(normalizer_img[ np.clip(np.floor(data_scalemerged_valid["scaled_z"]).astype(int), a_min=0,a_max=normalizer_img.shape[0]-1), np.clip(np.floor(data_scalemerged_valid["scaled_y"]).astype(int), a_min=0,a_max=normalizer_img.shape[1]-1), np.clip(np.floor(data_scalemerged_valid["scaled_x"]).astype(int), a_min=0,a_max=normalizer_img.shape[2]-1) ]) return X def get_X_3d(data, bias=np.array([0, 0, 0]), scale=np.array([1.0, 1.0, 1.]), bias_before_log=np.array([0.0,0.0,0.0]), is_ave=False): if not is_ave: _X = np.array([ data["intensity"], data["structureness"], data["blobness"] ]).T else: _X = np.array([ data["intensity"] / data["size"], data["structureness"], data["blobness"] ]).T X = np.nan_to_num((np.log10(_X + bias_before_log) + bias) * scale) return X def predict_unsupervised(X, i_feature_maximize=1, n_components=3, **vargs): vbgmm = BayesianGaussianMixture( weight_concentration_prior_type="dirichlet_process", n_components=n_components, **vargs ) vbgmm.fit(X) pred = vbgmm.predict(X) if i_feature_maximize is None: return pred else: i_pred_cluster = np.argmax(vbgmm.means_[:,i_feature_maximize]) return pred == i_pred_cluster def train_decision_tree(X, y, max_depth=2): pipe = Pipeline([ ('pca', PCA()), ('tree', DecisionTreeClassifier(max_depth=max_depth)) ]) X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=.2, shuffle=True) pipe.fit(X_train, y_train) print("Validation Score:{}".format(pipe.score(X_test, y_test))) pred = pipe.predict(X) return pipe, pred def show_decision_tree(pipe, feature_names=["intensity","structureness","blobness"]): if isinstance(pipe, Pipeline): clf = pipe.named_steps['tree'] elif isinstance(pipe, DecisionTreeClassifier): clf = pipe dot_data = export_graphviz(clf, out_file=None, feature_names=feature_names, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) return graph def plot_classification_result(feature_x, feature_y, pred): sns.scatterplot(feature_x, feature_y, hue=pred) if np.count_nonzero(pred == 0) > 1: sns.kdeplot(feature_x[pred==0],feature_y[pred==0], cmap="Blues", shade=True, shade_lowest=False) if np.count_nonzero(pred == 1) > 1: sns.kdeplot(feature_x[pred==1],feature_y[pred==1], cmap="Oranges", shade=True, shade_lowest=False) return def plot_features_for_each_stacks(r, func_get_X, clf=None): i_xs = [] i_ys = [] x1s = [] x2s = [] preds=[] for i_y in range(len(r.stack_ys)): print(i_y) for i_x in range(len(r.stack_xs)): _stack = r.get_stack(i_xy=(i_x,i_y), verbose=False) if len(_stack.df) < 10000: continue _X_stack = func_get_X(_stack.df) if clf: _pred_stack = clf.predict(_X_stack) for i in range(0,len(_stack.df), 1000): i_xs.append(i_x) i_ys.append(i_y) x1s.append(_X_stack[i,0]) x2s.append(_X_stack[i,1]) if clf: preds.append(_pred_stack[i]) df_plot = pd.DataFrame({ "i_x":pd.Series(i_xs), "i_y":pd.Series(i_ys), "X1":pd.Series(x1s), "X2":pd.Series(x2s), "predicted":
pd.Series(preds)
pandas.Series
import os import copy import pytest import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather as pf from pyarrow import parquet as pq from time_series_transform.io.base import io_base from time_series_transform.io.numpy import ( from_numpy, to_numpy ) from time_series_transform.io.pandas import ( from_pandas, to_pandas ) from time_series_transform.io.arrow import ( from_arrow_record_batch, from_arrow_table, to_arrow_record_batch, to_arrow_table ) from time_series_transform.transform_core_api.base import ( Time_Series_Data, Time_Series_Data_Collection ) from time_series_transform.io.parquet import ( from_parquet, to_parquet ) from time_series_transform.io.feather import ( from_feather, to_feather ) @pytest.fixture(scope = 'class') def dictList_single(): return { 'time': [1, 2], 'data': [1, 2] } @pytest.fixture(scope = 'class') def dictList_collection(): return { 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_single_expandTime(): return { 'data_1':[1], 'data_2':[2] } @pytest.fixture(scope = 'class') def expect_single_seperateLabel(): return [{ 'time': [1, 2], 'data': [1, 2] }, { 'data_label': [1, 2] }] @pytest.fixture(scope = 'class') def expect_collection_seperateLabel(): return [{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, { 'data_label':[1,2,1,2] } ] @pytest.fixture(scope = 'class') def expect_collection_expandTime(): return { 'pad': { 'data_1':[1,1], 'data_2':[2,np.nan], 'data_3':[np.nan,2], 'category':[1,2] }, 'remove': { 'data_1':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def expect_collection_expandCategory(): return { 'pad': { 'time':[1,2,3], 'data_1':[1,2,np.nan], 'data_2':[1,np.nan,2] }, 'remove': { 'time':[1], 'data_1':[1], 'data_2':[1] } } @pytest.fixture(scope = 'class') def expect_collection_expandFull(): return { 'pad': { 'data_1_1':[1], 'data_2_1':[1], 'data_1_2':[2], 'data_2_2':[np.nan], 'data_1_3':[np.nan], 'data_2_3':[2] }, 'remove': { 'data_1_1':[1], 'data_2_1':[1], } } @pytest.fixture(scope = 'class') def expect_collection_noExpand(): return { 'ignore':{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, 'pad': { 'time': [1,2,3,1,2,3], 'data':[1,2,np.nan,1,np.nan,2], 'category':[1,1,1,2,2,2] }, 'remove': { 'time': [1,1], 'data':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def seq_single(): return { 'time':[1,2,3], 'data':[[1,2,3],[11,12,13],[21,22,23]] } @pytest.fixture(scope = 'class') def seq_collection(): return { 'time':[1,2,1,2], 'data':[[1,2],[1,2],[2,2],[2,2]], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_seq_collection(): return { 'data_1_1':[[1,2]], 'data_2_1':[[2,2]], 'data_1_2':[[1,2]], 'data_2_2':[[2,2]] } class Test_base_io: def test_base_io_from_single(self, dictList_single,expect_single_expandTime): ExpandTimeAns = expect_single_expandTime data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(ts, 'time', None) timeSeries = io.from_single(False) for i in timeSeries: assert timeSeries[i].tolist() == data[i] timeSeries = io.from_single(True) for i in timeSeries: assert timeSeries[i] == ExpandTimeAns[i] def test_base_io_to_single(self, dictList_single): data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(data, 'time', None) assert io.to_single() == ts def test_base_io_from_collection_expandTime(self, dictList_collection,expect_collection_expandTime): noChange = dictList_collection expand = expect_collection_expandTime fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(False,True,'ignore') timeSeries = io.from_collection(False,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandCategory(self, dictList_collection,expect_collection_expandCategory): noChange = dictList_collection expand = expect_collection_expandCategory fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(True,False,'ignore') timeSeries = io.from_collection(True,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandFull(self, dictList_collection,expect_collection_expandFull): noChange = dictList_collection expand = expect_collection_expandFull fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(True,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_to_collection(self, dictList_collection): dataList = dictList_collection io = io_base(dataList, 'time', 'category') testData = io.to_collection() tsd = Time_Series_Data(dataList,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') assert testData== tsc def test_base_io_from_collection_no_expand(self,dictList_collection,expect_collection_noExpand): noChange = dictList_collection expand = expect_collection_noExpand data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(False,False,'ignore') for i in timeSeries: np.testing.assert_array_equal(timeSeries[i],expand['ignore'][i]) timeSeries = io.from_collection(False,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) class Test_Pandas_IO: def test_from_pandas_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) tsd = Time_Series_Data(data,'time') testData = from_pandas(df,'time',None) assert tsd == testData def test_from_pandas_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = from_pandas(df,'time','category') assert tsc == testData def test_to_pandas_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_pandas( tsd, expandCategory= None, expandTime=False, preprocessType= None ) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_pandas( tsd, expandCategory= None, expandTime=True, preprocessType= None ) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_pandas_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_pandas_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_pandas_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_pandas_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ) pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_pandas_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_pandas(tsd,False,False,'ignore',True) print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_pandas(tsc,False,False,'ignore',True) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') test = to_pandas(tsd,False,False,'ignore',False) pd.testing.assert_frame_equal(test,df,False) def test_to_pandas_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_pandas(tsc,False,False,'ignore') pd.testing.assert_frame_equal(df,test,False) test = to_pandas(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) class Test_Numpy_IO: def test_from_numpy_single(self,dictList_single): data = dictList_single tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) numpydata = pd.DataFrame(dictList_single).values testData = from_numpy(numpydata,0,None) assert tsd == testData def test_from_numpy_collection(self,dictList_collection): data = dictList_collection numpyData = pd.DataFrame(data).values numpyDataDict = pd.DataFrame(pd.DataFrame(data).values).to_dict('list') testData = from_numpy(numpyData,0,2) tsd = Time_Series_Data(numpyDataDict,0) assert testData == Time_Series_Data_Collection(tsd,0,2) def test_to_numpy_single(self,dictList_single,expect_single_expandTime): data = dictList_single numpyData = pd.DataFrame(data).values expandTime = pd.DataFrame(expect_single_expandTime).values tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) testData = to_numpy( tsd, expandCategory= None, expandTime=False, preprocessType= None ) np.testing.assert_equal(testData,numpyData) testData = to_numpy( tsd, expandCategory= None, expandTime=True, preprocessType= None ) np.testing.assert_equal(testData,expandTime) def test_to_numpy_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection results = expect_collection_expandTime numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection results = expect_collection_expandCategory numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection results = expect_collection_expandFull numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) def test_to_numpy_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection results = expect_collection_noExpand numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) ignore_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='ignore' ) np.testing.assert_equal(ignore_numpy,pd.DataFrame(results['ignore']).values) def test_to_numpy_seperateLabel_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_numpy(tsd,False,False,'ignore',True) print(x) print(y) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_seperateLabel_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_numpy(tsc,False,False,'ignore',True) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') test = to_numpy(tsd,False,False,'ignore',False) np.testing.assert_equal(df,test) def test_to_numpy_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_numpy(tsc,False,False,'ignore') for i in range(len(test)): if isinstance(test[i][1],np.ndarray): test[i][1] = test[i][1].tolist() np.testing.assert_equal(df,test) test = to_numpy(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection).values for i in range(len(test[0])): if isinstance(test[0][i],np.ndarray): test[0][i] = test[0][i].tolist() np.testing.assert_equal(full,test) class Test_Arrow_IO: def test_from_arrow_table_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_table_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time','category') assert tsc == testData def test_from_arrow_batch_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_batch_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time','category') assert tsc == testData def test_to_arrow_table_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_arrow_table( tsd, expandCategory= None, expandTime=False, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_arrow_table( tsd, expandCategory= None, expandTime=True, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_arrow_table_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): tsc = Time_Series_Data_Collection(tsd,'time','category') timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_arrow_table_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_arrow_table_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_arrow_table_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_arrow_table_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_arrow_table(tsd,False,False,'ignore',True) x = x.to_pandas() y = y.to_pandas() print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_arrow_table(tsc,False,False,'ignore',True) x = x.to_pandas() y = y.to_pandas() print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') test = to_arrow_table(tsd,False,False,'ignore',False).to_pandas() pd.testing.assert_frame_equal(test,df,False) def test_to_arrow_table_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_arrow_table(tsc,False,False,'ignore').to_pandas() pd.testing.assert_frame_equal(df,test,False) test = to_arrow_table(tsc,True,True,'ignore').to_pandas() full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) ### def record_batch_to_pandas(self,batchList): df = None for i in batchList: if df is None: df = i.to_pandas() continue df = df.append(i.to_pandas(),ignore_index = True) return df def test_to_arrow_batch_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_arrow_record_batch( tsd, expandCategory= None, expandTime=False, preprocessType= None, max_chunksize = 1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_arrow_record_batch( tsd, expandCategory= None, expandTime=True, preprocessType= None, max_chunksize = 1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_arrow_batch_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_arrow_batch_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_arrow_batch_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_arrow_batch_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_arrow_batch_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_arrow_record_batch(tsd,1,False,False,'ignore',True) x = self.record_batch_to_pandas(x) y = self.record_batch_to_pandas(y) print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_arrow_record_batch(tsc,1,False,False,'ignore',True) x = self.record_batch_to_pandas(x) y = self.record_batch_to_pandas(y) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) class Test_Parquet_IO: def test_from_parquet_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) pq.write_table(table,'test.parquet') testData = from_parquet('test.parquet','time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData os.remove('test.parquet') def test_from_parquet_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) pq.write_table(table,'test_collection.parquet') testData = from_parquet('test_collection.parquet','time','category') assert tsc == testData os.remove('test_collection.parquet') ########### def test_to_parquet_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') to_parquet( 'test.parquet', tsd, expandCategory= None, expandTime=False, preprocessType= None ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,df,check_dtype=False) to_parquet( 'test.parquet', tsd, expandCategory= None, expandTime=True, preprocessType= None ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) os.remove('test.parquet') def test_to_parquet_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_parquet('test.parquet',tsc,False,True,'ignore') os.remove('test.parquet') def test_to_parquet_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_parquet('test.parquet',tsc,True,False,'ignore') os.remove('test.parquet') def test_to_parquet_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas('test.parquet',tsc,True,True,'ignore') def test_to_parquet_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) os.remove('test.parquet') def test_to_parquet_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') to_parquet(['test.parquet','label.parquet'],tsd,False,False,'ignore',True) x = pq.read_table('test.parquet').to_pandas() y = pq.read_table('label.parquet').to_pandas() print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) os.remove('test.parquet') os.remove('label.parquet') def test_to_parquet_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') to_parquet(['test.parquet','label.parquet'],tsc,False,False,'ignore',True) x = pq.read_table('test.parquet').to_pandas() y = pq.read_table('label.parquet').to_pandas() print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) os.remove('test.parquet') os.remove('label.parquet') def test_to_parquet_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') to_parquet('test.parquet',tsd,False,False,'ignore',False) test = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(test,df,False) os.remove('test.parquet') def test_to_parquet_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') to_parquet('test.parquet',tsc,False,False,'ignore') test = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(df,test,False) to_parquet('test.parquet',tsc,True,True,'ignore') test = pq.read_table('test.parquet').to_pandas() full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) os.remove('test.parquet') class Test_Generator_IO: def test_from_generator(self): pass def test_to_generator(self): pass class Test_Feather_IO: def test_from_feather_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) pf.write_feather(table,'test.feather') testData = from_feather('test.feather','time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData os.remove('test.feather') def test_from_feather_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) pf.write_feather(table,'test_collection.feather') testData = from_feather('test_collection.feather','time','category') assert tsc == testData os.remove('test_collection.feather') ########### def test_to_feather_single(self,dictList_single,expect_single_expandTime): data = dictList_single df =
pd.DataFrame(data)
pandas.DataFrame
import os from datetime import datetime, timedelta, timezone import pandas as pd from pandas.core.frame import DataFrame from sklearn.linear_model import LinearRegression def demand(exp_id, directory, threshold, warmup_sec): raw_runs = [] # Compute SLI, i.e., lag trend, for each tested configuration filenames = [filename for filename in os.listdir(directory) if filename.startswith(f"exp{exp_id}") and "lag-trend" in filename and filename.endswith(".csv")] for filename in filenames: run_params = filename[:-4].split("_") dim_value = run_params[1] instances = run_params[2] df = pd.read_csv(os.path.join(directory, filename)) input = df input['sec_start'] = input.loc[0:, 'timestamp'] - input.iloc[0]['timestamp'] regress = input.loc[input['sec_start'] >= warmup_sec] # Warm-Up X = regress.iloc[:, 1].values.reshape(-1, 1) # values converts it into a numpy array Y = regress.iloc[:, 2].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column linear_regressor = LinearRegression() # create object for the class linear_regressor.fit(X, Y) # perform linear regression Y_pred = linear_regressor.predict(X) # make predictions trend_slope = linear_regressor.coef_[0][0] row = {'load': int(dim_value), 'resources': int(instances), 'trend_slope': trend_slope} raw_runs.append(row) runs =
pd.DataFrame(raw_runs)
pandas.DataFrame
#from scipy.stats import chi2 import argparse import sys import numpy as np import pandas as pd import itertools #ARGS = None pnames = ["PRIOR-0", "PRIOR-1", "LIK-0", "LIK-1", "LIK", "POST-0", "POST-1"] def sigmoid(x, derivative=False): return x*(1-x) if derivative else 1/(1+np.exp(-x)) def main(args): param_file = args.param_file input_file = args.input_file output_file = args.output_file # Read pgenmi input and make GENE rownames and remove column din = pd.read_csv(input_file, sep="\t") din.index = din["GENE"] din = din.iloc[:,1:] dout = din genes = din.index # Read pgenmi output and extract w,a and make name (H_ALL,H_KD,etc..) rownames dpfull =
pd.read_csv(param_file, sep="\t")
pandas.read_csv
from __future__ import absolute_import, print_function, division import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib import rc import pandas as pd import logging import json import numpy as np import datetime from better.tools.indicator import max_drawdown, sharpe, positive_count, negative_count, moving_accumulate from better.tools.configprocess import parse_time, check_input_same from better.tools.shortcut import execute_backtest # the dictionary of name of indicators mapping to the function of related indicators # input is portfolio changes INDICATORS = {"portfolio value": np.prod, "sharpe ratio": sharpe, "max drawdown": max_drawdown, "positive periods": positive_count, "negative periods": negative_count, "postive day": lambda pcs: positive_count(moving_accumulate(pcs, 48)), "negative day": lambda pcs: negative_count(moving_accumulate(pcs, 48)), "postive week": lambda pcs: positive_count(moving_accumulate(pcs, 336)), "negative week": lambda pcs: negative_count(moving_accumulate(pcs, 336)), "average": np.mean} NAMES = {"best": "Best Stock (Benchmark)", "crp": "UCRP (Benchmark)", "ubah": "UBAH (Benchmark)", "anticor": "ANTICOR", "olmar": "OLMAR", "pamr": "PAMR", "cwmr": "CWMR", "rmr": "RMR", "ons": "ONS", "up": "UP", "eg": "EG", "bk": "BK", "corn": "CORN", "m0": "M0", "wmamr": "WMAMR" } def plot_backtest(config, algos, labels=None): """ @:param config: config dictionary @:param algos: list of strings representing the name of algorithms or index of better result """ results = [] for i, algo in enumerate(algos): if algo.isdigit(): results.append(np.cumprod(_load_from_summary(algo, config))) logging.info("load index "+algo+" from csv file") else: logging.info("start executing "+algo) results.append(np.cumprod(execute_backtest(algo, config))) logging.info("finish executing "+algo) start, end = _extract_test(config) timestamps = np.linspace(start, end, len(results[0])) dates = [datetime.datetime.fromtimestamp(int(ts)-int(ts)%config["input"]["global_period"]) for ts in timestamps] weeks = mdates.WeekdayLocator() days = mdates.DayLocator() rc("font", **{"family": "sans-serif", "sans-serif": ["Helvetica"], "size": 8}) """ styles = [("-", None), ("--", None), ("", "+"), (":", None), ("", "o"), ("", "v"), ("", "*")] """ fig, ax = plt.subplots() fig.set_size_inches(9, 5) for i, pvs in enumerate(results): if len(labels) > i: label = labels[i] else: label = NAMES[algos[i]] ax.semilogy(dates, pvs, linewidth=1, label=label) #ax.plot(dates, pvs, linewidth=1, label=label) plt.ylabel("portfolio value $p_t/p_0$", fontsize=12) plt.xlabel("time", fontsize=12) xfmt = mdates.DateFormatter("%m-%d %H:%M") ax.xaxis.set_major_locator(weeks) ax.xaxis.set_minor_locator(days) datemin = dates[0] datemax = dates[-1] ax.set_xlim(datemin, datemax) ax.xaxis.set_major_formatter(xfmt) plt.grid(True) plt.tight_layout() ax.legend(loc="upper left", prop={"size":10}) fig.autofmt_xdate() plt.savefig("result.eps", bbox_inches='tight', pad_inches=0) plt.show() def table_backtest(config, algos, labels=None, format="raw", indicators=list(INDICATORS.keys())): """ @:param config: config dictionary @:param algos: list of strings representing the name of algorithms or index of better result @:param format: "raw", "html", "latex" or "csv". If it is "csv", the result will be save in a csv file. otherwise only print it out @:return: a string of html or latex code """ results = [] labels = list(labels) for i, algo in enumerate(algos): if algo.isdigit(): portfolio_changes = _load_from_summary(algo, config) logging.info("load index " + algo + " from csv file") else: logging.info("start executing " + algo) portfolio_changes = execute_backtest(algo, config) logging.info("finish executing " + algo) indicator_result = {} for indicator in indicators: indicator_result[indicator] = INDICATORS[indicator](portfolio_changes) results.append(indicator_result) if len(labels)<=i: labels.append(NAMES[algo]) dataframe =
pd.DataFrame(results, index=labels)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.model_selection import GridSearchCV, learning_curve,ShuffleSplit, train_test_split import os import time import shap import xgboost as xgb areas = ['CE'] data_version = '2021-07-14_3' #targets = ['g1','g2','q','r','D','mu_w_0','mu_a_0','RoCof','nadir','MeanDevInFirstHalf','Loglike'] targets = ['MeanDevInFirstHalf']#['vari','nadir','nad','g1','g2','D','q','r']#,'RoCoFLong','mu_w_0','mu_a_0','RoCof','MeanDevInFirstHalf','Loglike'] start_time = time.time() for area in areas: print('---------------------------- ', area, ' ------------------------------------') #data_folder = './prepared_data/{}/version-{}/'.format(area,data_version) data_folder = './prepared_data/{}/{}/'.format(area,data_version) for target in targets: print('-------- ', target, ' --------') res_folder = './Results/model_fit/{}/version-{}/target_{}/'.format(area,data_version, target) if not os.path.exists(res_folder): os.makedirs(res_folder) y_train = pd.read_hdf(data_folder+'y_train.h5').loc[:, target] y_test = pd.read_hdf(data_folder+'y_test.h5').loc[:, target] if os.path.exists(res_folder+'y_pred.h5'): y_pred = pd.read_hdf(res_folder+'y_pred.h5') y_pred_cont =
pd.read_hdf(res_folder+'y_pred_cont.h5')
pandas.read_hdf
# -*- coding: utf-8 -*- """ Created on Tue Apr 20 11:41:36 2021 @author: Koustav """ import os import glob import matplotlib.pyplot as plt import seaborn as sea import numpy as np import pandas as pan import math import matplotlib.ticker as mtick from scipy.optimize import curve_fit def expo(x, a, b, c): return a + b*(np.exp(c*x)) def yandu(): binder=[] #Saves the values of the critical exponent for i in range(0,40): base_path = r"15+16" + "\\" + str(i) ''' log = open(base_path + r"\log.txt", "r") log_list = log.readlines() g = int(log_list[0]); p = float(log_list[1]); c = int(log_list[2]) ''' g =128; c= 12500; p = 0 #print("Grid Size: %d\t p: %f\t Length: %d\t" %(g,p,c)) unspliced_data = [] #This will store the raw unspliced data without any processing from all the CSV files. r=0 files = glob.glob(base_path + "/*.csv") for file in files: if (os.path.getsize(file) > 512): r+=16 #Filtering for file sizes that are greater than 512 Bytes in size. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1, usecols = (0,1,2,3) ) ''' data_temp resembles: | t, Correl, k+l, p | ''' p = data_temp[0,3] if(len(unspliced_data) == 0): #First chip off the old block. unspliced_data = data_temp else: unspliced_data = np.concatenate((unspliced_data, data_temp), axis=0) #Concatanated. print("Grid Size: %d\t p: %f\t Length: %d\t" %(g,p,c)) a,b = unspliced_data.shape print("Unspliced Array Size:\t (%d, %d)" %(a,b)) #ko=input("Enter to continue:\t") yandex(unspliced_data, g, p, c, r, binder) heado = 'p, A, SD(A), B, SD(B), C, SD(C), lag_0.95, lag_0.9, lag_0.8, lag_0.75, lag_0.7, lag_0.6' #Header for the CSV file np.savetxt("PissingAbout15+16.csv", binder, delimiter=',', header=heado, comments='#') find_stat(binder) # Find final stats def yandex(unspliced_data, g, p, c, r, bind): #Plot the shit out of Compton. os.chdir("../../../figures") if(os.path.isdir("CrossCor")==False): os.mkdir("CrossCor") os.chdir("CrossCor") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("GandU")==False): os.mkdir("GandU") os.chdir("GandU") f=0; hurtlocker=0; if(g == 128): unspliced_data[:,0]/= 4 unspliced_data = exxon_split(unspliced_data, c) unspliced_data[:,0]*= 4 print('First few lines of final matrix:') L=[] for x in range(25000,25500): if(x%r == 0): print("\n") if(len(L) > 0): print("SD of Max Corr for t = %f is:\t %f\n" %( unspliced_data[x-1,0], np.std(L) ) ) L=[] print("%f \t %6.5f \t %f \t %f" %(tuple(unspliced_data[x,:]))) L.append(unspliced_data[x,1]) hurtlocker= pan.DataFrame(unspliced_data, columns= [r"# Updates (m)", "Max Cross-Correlation", "i", "j"]) x1 =np.transpose(unspliced_data[:,0]) x2= np.transpose(unspliced_data[:,1]) f= sea.lineplot(data=hurtlocker, x=r"# Updates (m)" , y="Max Cross-Correlation", estimator= 'mean', ci='sd', err_style="band") plt.axvline(x= g*g, color='0.65') plt.text(g*(g+1),0.8, r'$N^2$ updates',rotation=90, color ='0.7') plt.axvline(x= 2*g*g, color='0.65') plt.text(2*g*(g+0.5),0.75,r'$2 \times N^2$ updates',rotation=90, color ='0.7') plt.axvline(x= 3*g*g, color='0.65') plt.text(3*g*(g+0.33),0.75,r'$3 \times N^2$ updates',rotation=90, color ='0.7') popt, pcov = curve_fit(expo, x1, x2, p0= np.asarray([0, 1, -0.05])) perr = np.sqrt(np.diag(pcov)) print("SD of exponent:\t" +str(perr[2]) + " for p:\t" +str(p)) tukan= (popt[0], popt[1], popt[2], perr[2]) plt.plot(x1, expo(x1, *popt), 'm--', label=r'Fit: $ R_{0,0}[p,t] = %3.2f + %3.2f \times e^{(%7.6f \mp %5.5f) \times m} $ ' % tukan ) plt.legend() #plt.xlim(g1,g2+20) #plt.yscale('log', basey= math.e) #plt.xscale('log', basex= math.e) #g.xaxis.set_major_formatter(mtick.FuncFormatter(ticks)) #g.yaxis.set_major_formatter(mtick.FuncFormatter(ticks)) f.set_title(r'p = %f, Grid Size (G) = %d, n = %d' %(p,g,r)) plt.savefig("Cross Correlation --- p_%f - Grid Size (G)_%d - n_%d.png" %(p, g, r), dpi=400) #plt.show() plt.close() #Time to get the lag timesteps (normalised by N^2). lag=[] iaggo= [0.95, 0.9, 0.8, 0.75, 0.7, 0.6] for i in iaggo: lag.append(float((math.log((i - popt[0])/popt[1])/(popt[2]*g*g)))) #Stores the lag. bind.append([p, popt[0], perr[0], popt[1], perr[1], popt[2], perr[2], lag[0], lag[1], lag[2], lag[3], lag[4], lag[5]]) os.chdir(r"..\..\..\..\analysis\Mass Action\DP") def find_stat(bind): os.chdir("../../../figures") if(os.path.isdir("CrossCor")==False): os.mkdir("CrossCor") os.chdir("CrossCor") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("GandU")==False): os.mkdir("GandU") os.chdir("GandU") bind =np.array(bind) blind = bind[:,0:7] g= 128; r=16 hurtlocker=
pan.DataFrame(blind, columns= ["p", "A", "SD(A)", "B", "SD(B)", "Decay Rate", "SD(C)"])
pandas.DataFrame
# The file will produce result based on closing rank # -*- coding: utf-8 -*- """//@<NAME> Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/github/priyanshgupta1998/Machine_learning/blob/master/Krisko_Assignmnet/coding.ipynb """ """#Krisko Assignment""" import pandas as pd #import pandas library(inbulid python package) used for data maniputation (like reading,writing file etc.) data1 = pd.read_excel('Input-Rank-Cutoff-List.xlsx') # read the dataset file( Excel) data1.to_csv('Train.csv') # convert this .xlsx file into .csv format for better understanding. #print(data1.shape) # check the order of the table ( rows x colmuns) column = [] # create a empty list # create the header for the dataset for i in range(data1.shape[1]): column.append('col_'+ str(i)) data = pd.read_csv('Train.csv' , names= column) #print(data.shape) #data.head() # display first 5 rows of dataset/table #arrange all the rows in proper seequence data.reset_index(inplace=True) #data.head() data.drop('index' , axis =1 , inplace =True) """#Get the Branch Name""" app =[] for i in list(data[data['col_0']=='Branch Name '].index): app.append(i-1) #print(len(app) , app) collg = [] for i in app: collg.append(data['col_0'][i]) #print(len(collg) , collg) #17 ['IIT Bombay', 'IIT Delhi', 'IIT Kharagpur', 'IIT Kanpur', 'IIT Madras', 'IIT Roorkee', 'IIT Guwahati', 'IIT Bhubaneshwar', 'IIT Mandi', 'IIT indore', 'IIT Hydrabad', 'IIT Jodhpur', 'IIT Gandhinagar', 'IIT Patna', 'IIT Ropar', 'IIT (BHU) Varanasi', 'ISM Dhanbad'] # create another column with the name of 'COLLEGE_NAME'. virus = app.copy() virus += [296] for i in range(len(virus)-1): virus[i] = virus[i+1] - virus[i] del virus[-1] #print(len(virus) , virus) # add all the college names col_name = [] for i in range(len(collg)): col_name+=[collg[i]]*virus[i] #print(len(col_name)) data.insert(0,'College_Name',col_name) #print(data.shape) #data.head() # Now new table has been created #change all the header/column names accordingly data.rename(columns = {"col_0": "BRANCH_NAME" , "col_1":"GENERAL_OPEN" , "col_2":"GENERAL_CLOSE" , "col_3":"OBC_OPEN" ,"col_4":"OBC_CLOSE" , "col_5":"SC_OPEN" ,"col_6":"SC_CLOSE", "col_7": "ST_OPEN" , "col_8":"ST_CLOSE"} , inplace=True) #Drop/delete all rows/lines which are having null values data = data.dropna(how='any',axis=0) data.drop(0 , axis =0 , inplace =True) # delete first row (redundant) # anrange data/table in order data.reset_index(inplace=True) data.drop('index' , axis =1 , inplace =True) #print(data.shape) #data.head(8) # copy all data into anther table named 'df' df = data.copy() #here we have total 103 unique Branches #df['BRANCH_NAME'].nunique() #df.info() # it will provide all the information reagarding variable data type , null values , number of columns # convert all the rank into integer/number from string df['GENERAL_OPEN'] = df['GENERAL_OPEN'].astype(int) df['GENERAL_CLOSE'] = df['GENERAL_CLOSE'].astype(int) df['OBC_OPEN'] = df['OBC_OPEN'].astype(int) df['OBC_CLOSE'] = df['OBC_CLOSE'].astype(int) df['SC_OPEN'] = df['SC_OPEN'].astype(int) df['SC_CLOSE'] = df['SC_CLOSE'].astype(int) df['ST_OPEN'] = df['ST_OPEN'].astype(int) df['ST_CLOSE'] = df['ST_CLOSE'].astype(int) #print(df.shape) #df.info() #df.describe() # descrip tion about dataset mean , medium , minimum, maximum , count etc .for columns with numeric values #df.head(8) #generate all the ranks for all the colleges for each Department #1.)for general rank_gen =[] branch_gen = [] college_gen = [] categ_gen = [] for i in range(len(df)): app = [] clg = [] cat= [] branch = [] for j in range(list(df['GENERAL_OPEN'])[i] , list(df['GENERAL_CLOSE'])[i] + 1): branch.append(list(df['BRANCH_NAME'])[i]) app.append(j) clg.append(list(df['College_Name'])[i]) cat.append('GENERAL') rank_gen+=app branch_gen+=branch college_gen+=clg categ_gen+=cat #2.)for obc rank_obc =[] branch_obc = [] college_obc = [] categ_obc = [] for i in range(len(df)): app = [] clg = [] cat= [] branch = [] for j in range(list(df['OBC_OPEN'])[i] , list(df['OBC_CLOSE'])[i] + 1): branch.append(list(df['BRANCH_NAME'])[i]) app.append(j) clg.append(list(df['College_Name'])[i]) cat.append('OBC') rank_obc+=app branch_obc+=branch college_obc+=clg categ_obc+=cat #3.)for sc rank_sc =[] branch_sc = [] college_sc = [] categ_sc = [] for i in range(len(df)): app = [] clg = [] cat= [] branch = [] for j in range(list(df['SC_OPEN'])[i] , list(df['SC_CLOSE'])[i] + 1): branch.append(list(df['BRANCH_NAME'])[i]) app.append(j) clg.append(list(df['College_Name'])[i]) cat.append('SC') rank_sc+=app branch_sc+=branch college_sc+=clg categ_sc+=cat #4.)for st rank_st =[] branch_st = [] college_st = [] categ_st = [] for i in range(len(df)): app = [] clg = [] cat= [] branch = [] for j in range(list(df['ST_OPEN'])[i] , list(df['ST_CLOSE'])[i] + 1): branch.append(list(df['BRANCH_NAME'])[i]) app.append(j) clg.append(list(df['College_Name'])[i]) cat.append('ST') rank_st+=app branch_st+=branch college_st+=clg categ_st+=cat #Design datafrome for each catefory individually #1.)for general data_gen = pd.DataFrame() data_gen['Department'] = branch_gen data_gen['INSTITUTES'] = college_gen data_gen['CATEGORY'] = categ_gen data_gen['RANK_PREDICTOR'] = rank_gen #print(data_gen.shape) #data_gen.head() #2.)for obc data_obc = pd.DataFrame() data_obc['Department'] = branch_obc data_obc['INSTITUTES'] = college_obc data_obc['CATEGORY'] = categ_obc data_obc['RANK_PREDICTOR'] = rank_obc #print(data_obc.shape) #data_obc.head() #3.)for sc data_sc = pd.DataFrame() data_sc['Department'] = branch_sc data_sc['INSTITUTES'] = college_sc data_sc['CATEGORY'] = categ_sc data_sc['RANK_PREDICTOR'] = rank_sc #print(data_sc.shape) #data_sc.head() #4.) for st data_st=
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pytest from estimagic.benchmarking.process_benchmark_results import _clip_histories from estimagic.benchmarking.process_benchmark_results import _find_first_converged from estimagic.benchmarking.process_benchmark_results import ( _get_history_as_stacked_sr_from_results, ) from estimagic.benchmarking.process_benchmark_results import ( _get_history_of_the_parameter_distance, ) from estimagic.benchmarking.process_benchmark_results import _make_history_monotone from estimagic.benchmarking.process_benchmark_results import _normalize from estimagic.benchmarking.process_benchmark_results import ( create_convergence_histories, ) PROBLEMS = ["prob1", "prob2", "prob3"] @pytest.fixture def problem_algo_eval_df(): df = pd.DataFrame() df["problem"] = ["prob1"] * 8 + ["prob2"] * 6 df["algorithm"] = ["algo1"] * 4 + ["algo2"] * 4 + ["algo1"] * 3 + ["algo2"] * 3 df["n_evaluations"] = [0, 1, 2, 3] * 2 + [0, 1, 2] * 2 return df def test_find_first_converged(problem_algo_eval_df): # we can assume monotonicity, i.e. no switch back from True to False converged = pd.Series( [ # in the middle False, False, True, True, ] + [ # last entry False, False, False, True, ] + [ # first entry True, True, True, ] + [ # not converged False, False, False, ] ) res = _find_first_converged(converged, problem_algo_eval_df) expected = pd.Series( [ # in the middle False, False, True, False, ] + [ # last entry False, False, False, True, ] + [ # first entry True, False, False, ] + [ # not converged False, False, False, ] ) pd.testing.assert_series_equal(res, expected) def test_normalize_minimize(): start_values = pd.Series([5, 4, 10], index=PROBLEMS) target_values = pd.Series([1, 0, 0], index=PROBLEMS) df =
pd.DataFrame()
pandas.DataFrame
from pyspark.sql.functions import expr, col, lit, year import matplotlib.pyplot as plt import numpy as np import pandas as pd def violations_in_year(nyc_data, vyear): return nyc_data.select('issue_date').filter(year('issue_date') == vyear).count() def reduction_in_violations(nyc_data, enable_plot=True): violations_2018 = violations_in_year(nyc_data, 2018) violations_2019 = violations_in_year(nyc_data, 2019) violations_2020 = violations_in_year(nyc_data, 2020) years = [2018, 2019, 2020] violations = [violations_2018, violations_2019, violations_2020] if enable_plot: fig, ax = plt.subplots(1, 1, figsize=(10,5)) ax.set_title("Year Vs No. of violations") ax.set_xlabel("Year") ax.set_ylabel("No. of violations") ax.bar(years, violations, color='blue') fig.savefig('../output/reduction_in_violations.png') reduction_2019_2018 = ((violations_2018 - violations_2019)/violations_2018) * 100 reduction_2020_2018 = ((violations_2019 - violations_2020)/violations_2019) * 100 reduction_data = [('Reduction 2019 from 2018', reduction_2019_2018), ('Reduction 2020 from 2019',reduction_2020_2018)] reduction_pad = pd.DataFrame(reduction_data, columns = ['Reduction Years', 'Reduction']) return reduction_pad def season_violation_frequencies(nyc_data, enable_plot=True): season_bins = nyc_data.withColumn('season', expr("case when month(issue_date) in (12, 1, 2) then 'winter'\ when month(issue_date) in (3, 4, 5) then 'spring' \ when month(issue_date) in (6, 7, 8) then 'summer'\ when month(issue_date) in (9, 10, 11) then 'autumn'\ end")) season_freq = season_bins.select('season').groupBy('season').agg({'season': 'count'}).withColumnRenamed('count(season)', 'No of tickets') ## plot bar graph for seasons season_freq_data = season_freq.collect() seasons = [row['season'] for row in season_freq_data] frequencies = [row['No of tickets'] for row in season_freq_data] if enable_plot: fig, ax = plt.subplots(1, 1, figsize=(10, 5)) ax.set_title("Season Vs No. of violations") ax.set_xlabel("Season") ax.set_ylabel("No. of violations") ax.bar(seasons, frequencies, color=['green', 'cyan','yellow']) fig.savefig('../output/season_violation_frequencies.png') return season_freq.toPandas() def season_violations(season_bins, season): violation_by_season = season_bins.select('season', 'violation_code')\ .filter(col('season') == season)\ .groupBy('violation_code')\ .agg({'violation_code':'count'})\ .withColumnRenamed('count(violation_code)', 'Freq of Violations')\ .withColumn('season', lit(season))\ .sort('Freq of Violations', ascending=False)\ .take(3) return violation_by_season def common_violations_season(nyc_data, enable_plot=True): season_bins = nyc_data.withColumn('season', expr("case when month(issue_date) in (12, 1, 2) then 'winter'\ when month(issue_date) in (3, 4, 5) then 'spring' \ when month(issue_date) in (6, 7, 8) then 'summer'\ when month(issue_date) in (9, 10, 11) then 'autumn'\ end")) spring_violations = season_violations(season_bins, 'spring') winter_violations = season_violations(season_bins, 'winter') summer_violations = season_violations(season_bins, 'summer') autumn_violations = season_violations(season_bins, 'autumn') spring_v = [row['Freq of Violations'] for row in spring_violations] spring_l = [row['violation_code'] for row in spring_violations] winter_v = [row['Freq of Violations'] for row in winter_violations] wintert_l = [row['violation_code'] for row in winter_violations] summer_v = [row['Freq of Violations'] for row in summer_violations] summer_l = [row['violation_code'] for row in summer_violations] autumn_v = [row['Freq of Violations'] for row in autumn_violations] autumn_l = [row['violation_code'] for row in autumn_violations] if enable_plot: x_ticks = ['spring', 'winter', 'summer', 'autumn'] labels = ['Top1', 'Top2', 'Top3'] x = np.arange(len(labels)) width = 0.2 fig, ax = plt.subplots(1, 1, figsize=(10,5)) ax.bar(x-0.2, spring_v, width, color='cyan') ax.bar(x, winter_v, width, color='orange') ax.bar(x+0.2, summer_v, width, color='green') ax.bar(x+0.4, autumn_v, width, color='yellow') ax.set_xlabel("Seasons") ax.set_ylabel("Violations") ax.legend(["spring", "winter", "summer", "autumn"]) fig.savefig('../output/common_violations_season.png') seasonwise_violations = spring_violations + winter_violations + summer_violations + autumn_violations pd_seasonwise_violations =
pd.DataFrame(seasonwise_violations, columns = ['Violation Code', 'Frequency', 'Season'])
pandas.DataFrame
import os import datetime import random import pandas as pd import numpy as np from calendar import monthrange from dateutil.easter import easter from utilities import get_path, get_config DAYS = {"MON": 0, "Mon": 0, "Mo": 0, "Montag": 0, "Monday": 0, "TUE": 1, "Tue": 1, "Di": 1, "Dienstag": 1, "Tuesday": 1, "WED": 2, "Wed": 2, "Mi": 2, "Mittwoch": 2, "Wednesday": 2, "THU": 3, "Thu": 3, "Do": 3, "Donnerstag": 3, "Thursday": 3, "FRI": 4, "Fri": 4, "Fr": 4, "Freitag": 4, "Friday": 4, "SAT": 5, "Sat": 5, "Sa": 5, "Samstag": 5, "Saturday": 5, "SUN": 6, "Sun": 6, "So": 6, "Sonntag": 6, "Sunday": 6} MONTHS = {"Januar": 1, "Februar": 2, "März": 3, "April": 4, "Mai": 5, "Juni": 6, "Juli": 7, "August": 8, "September": 9, "Oktober": 10, "November": 11, "Dezember": 12} MONTHS_REV = {v: k for k, v in MONTHS.items()} CONFIG = get_config() def get_all_dates(year, month): _, max_date = monthrange(year, month) start = f"{year}-{month:02}-01" end = f"{year}-{month:02}-{max_date:02}" out = pd.date_range(start, end) return out def get_holidays(year): new_year = f"{year}-01-01" womens_day = f"{year}-03-08" easter_sun = easter(year) easter_mon = easter_sun + datetime.timedelta(days=1) easter_fri = easter_sun - datetime.timedelta(days=2) may_first = f"{year}-05-01" fathers_day = easter_sun + datetime.timedelta(days=40) whitsun = easter_sun + datetime.timedelta(days=50) unification_day = f"{year}-10-03" christmas_1 = f"{year}-12-25" christmas_2 = f"{year}-12-26" new_years_eve = f"{year}-12-31" out = pd.to_datetime([new_year, womens_day, easter_fri, easter_sun, easter_mon, may_first, fathers_day, whitsun, unification_day, christmas_1, christmas_2, new_years_eve]) return out def get_work_days(year, month): all_days = get_all_dates(year, month) holidays = get_holidays(year) work_days = pd.to_datetime([d for d in all_days if d not in holidays]) return work_days def get_penalty(x): if x > pd.Timedelta('9 hours'): return pd.Timedelta('45 minutes') elif x > pd.Timedelta('6 hours'): return pd.Timedelta('30 minutes') else: return pd.Timedelta('0 seconds') def get_net_working_hours(df): duration = pd.to_timedelta(df.activity_end) - pd.to_timedelta(df.activity_start) penalties = duration.apply(get_penalty) out = (duration - penalties).sum() / pd.Timedelta('1 hour') return out def generate_slot(): for h in np.arange(5, 0, -0.25): yield pd.Timedelta(hours=h) def strfdelta(tdelta, fmt="{hours:02}:{minutes:02}:{seconds:02}"): d = {"days": tdelta.days} d["hours"], rem = divmod(tdelta.seconds, 3600) d["minutes"], d["seconds"] = divmod(rem, 60) return fmt.format(**d) def create_row(indexes, slot, note=None): idx = indexes[np.random.randint(0, len(indexes))] start_time = pd.Timedelta(hours=np.random.randint(6, 15)) end_time = start_time + slot out = pd.DataFrame({"activity_start": strfdelta(start_time), "activity_end": strfdelta(end_time), "note": note}, index=[idx]) return out class Schedule: template = pd.read_csv(get_path("schedule.csv"), comment='#', skipinitialspace=True, parse_dates=["valid_from", "valid_until"], converters={"day_of_week": lambda x: DAYS.get(x)}) activities = pd.read_csv(get_path("activities.txt"), comment='#', header=None, names=["title"]).title.to_list() # Ensure that activities has len of 2 - otherwise 'choice' throws a tantrum activities += [None, None] def __init__(self): self.total_hours = CONFIG["setup"]["total_hours"] self.year = CONFIG["setup"]["year"] self.start_sheet = CONFIG["general"]["start_sheet"] self.fill_missing = CONFIG["fill"]["fill_missing"] self.avoid_weekends = CONFIG["fill"]["avoid_weekends"] self.max_overtime = CONFIG["fill"]["max_overtime"] self.max_undertime = CONFIG["fill"]["max_undertime"] self.dates = None def fill(self, year, month): idx = get_work_days(year, month) df =
pd.DataFrame(index=idx)
pandas.DataFrame
import numpy as np import networkx as nx import pandas as pd import random import string import scipy.stats import network_prop import sys # for parallel processing #from joblib import Parallel, delayed #import multiprocessing def main(num_reps=10, seed_gene_file='HC_genes/example_seed.tsv',int_file='../interactomes/G_PCnet.gpickle', out_name='ASD',rand_method = 'degree_binning',single_or_double='single'): ''' Calculate z-scores for heat propagation Inputs: num_reps: number of randomizations seed_gene_file: location of file containing seed genes (see example for format... clunky format due to historical reasons... need to improve) int_file: location of interactome to use (gpickle format) out_name: identifier for output files (currently saves in current directory... need to update to allow setting of save location) rand_method: type of randomization (default = 'degree_binning', alternate method 'degree_ks_test' deprecated) single_or_double: single network prop or double network prop. (default = 'single'. 'double' is deprecated) python netprop_zscore.py 10 HC_genes/example_seed.tsv ../interactomes/G_PCnet.gpickle ASD degree_binning single ''' print('number of randomizations = '+str(num_reps)) print('background interactome = ' + int_file) print('randomization method = ' + rand_method) print('single or double = ' + single_or_double) num_reps = int(num_reps) # load interactome and select focal interactome Gint = nx.Graph() Gint = nx.read_gpickle(int_file) if 'None' in Gint.nodes(): Gint.remove_node('None') # load HC genes HC_genes_temp = pd.read_csv(seed_gene_file,sep='\t',index_col='Unnamed: 0') seed_HC = [str(g[1:-1]).strip("'") for g in HC_genes_temp['seed_genes'].tolist()[0][1:-1].split(', ')] print(seed_gene_file+':') print(len(seed_HC)) seed_HC = list(np.intersect1d(Gint.nodes(),seed_HC)) print(len(seed_HC)) # calculate the z-score # calc Wprime from Gint Wprime = network_prop.normalized_adj_matrix(Gint,conserve_heat=True) if single_or_double=='single': # calculate z-scores from a single set of seed genes print('calculating z-scores: '+seed_gene_file) z_seed,Fnew_rand_seed = calc_zscore_heat(Gint,Wprime,seed_HC,num_reps=num_reps,rand_method=rand_method) z_seed.to_csv('z_'+out_name+'_'+str(num_reps)+'_reps_'+rand_method+'.tsv',sep='\t') #pd.DataFrame(Fnew_rand_seed).to_csv('Fnew_'+outname+'_rand'+str(num_reps)+'_reps_'+rand_method+'.tsv',sep='\t') elif single_or_double=='double': # calculate z-scores from two sets of seed genes: # --- keeping for completeness, but currently not functional ---- print('calculating ASD-CHD z-scores') z_ASD_CHD,Fnew_rand_ASD_CHD = calc_zscore_heat_double(Gint,Wprime,ASD_HC,CHD_HC,num_reps=num_reps,rand_method = rand_method) z_ASD_CHD.to_csv('z_'+out_name+'_'+str(num_reps)+'_reps_'+rand_method+'.tsv',sep='\t') def calc_zscore_heat(Gint,Wprime,genes_D1,num_reps=10,ks_sig = 0.3,rand_method = 'degree_binning'): ''' Helper function to calculate the z-score of heat values from one input seet of genes rand_method = 'degree_ks_test', or 'degree_binning'. select the type of randomization ''' seed_D1 = list(np.intersect1d(list(genes_D1),Gint.nodes())) Fnew_D1 = network_prop.network_propagation(Gint,Wprime,seed_D1,alpha=.5,num_its=20) num_focal_edges=len(nx.subgraph(Gint,seed_D1).edges()) Fnew_rand_D1 = np.zeros([num_reps,len(Fnew_D1)]) if rand_method == 'degree_ks_test': for r in range(num_reps): if (r%50)==0: print(r) # UPDATE 8/23/17 -- replace with randomly selecting seed nodes, checking for degree distribution equivalence p=0 # resample until degree distributions are not significantly different while p<ks_sig: seed_D1_random = Gint.nodes() np.random.shuffle(seed_D1_random) seed_D1_random = seed_D1_random[0:len(seed_D1)] ks_stat,p=scipy.stats.ks_2samp(pd.Series(Gint.degree(seed_D1)),pd.Series(Gint.degree(seed_D1_random))) Fnew_rand_tmp = network_prop.network_propagation(Gint,Wprime,seed_D1_random,alpha=.5,num_its=20) Fnew_rand_tmp.loc[seed_D1_random]=np.nan # set seeds to nan so they don't bias results Fnew_rand_D1[r] = Fnew_rand_tmp.loc[Fnew_D1.index.tolist()] elif rand_method == 'degree_binning': bins = get_degree_binning(Gint,10) min_degree, max_degree, genes_binned = zip(*bins) bin_df =
pd.DataFrame({'min_degree':min_degree,'max_degree':max_degree,'genes_binned':genes_binned})
pandas.DataFrame
import numpy as np import pandas as pd from .base_test_class import DartsBaseTestClass from darts.timeseries import TimeSeries from darts.utils import timeseries_generation as tg from darts.metrics import mape from darts.models import ( NaiveSeasonal, ExponentialSmoothing, ARIMA, Theta, FourTheta, FFT, VARIMA ) from ..utils.utils import SeasonalityMode, TrendMode, ModelMode from ..logging import get_logger from ..datasets import AirPassengersDataset, IceCreamHeaterDataset logger = get_logger(__name__) try: from darts.models import RandomForest, LinearRegressionModel TORCH_AVAILABLE = True except ImportError: logger.warning('Torch not installed - some local forecasting models tests will be skipped') TORCH_AVAILABLE = False # (forecasting models, maximum error) tuples models = [ (ExponentialSmoothing(), 5.6), (ARIMA(12, 2, 1), 10), (ARIMA(1, 1, 1), 40), (Theta(), 11.3), (Theta(1), 20.2), (Theta(-1), 9.8), (FourTheta(1), 20.2), (FourTheta(-1), 9.8), (FourTheta(trend_mode=TrendMode.EXPONENTIAL), 5.5), (FourTheta(model_mode=ModelMode.MULTIPLICATIVE), 11.4), (FourTheta(season_mode=SeasonalityMode.ADDITIVE), 14.2), (FFT(trend="poly"), 11.4), (NaiveSeasonal(), 32.4) ] if TORCH_AVAILABLE: models += [(LinearRegressionModel(lags=12), 11.0), (RandomForest(lags=12, n_estimators=200, max_depth=3), 15.5)] # forecasting models with exogenous variables support multivariate_models = [ (VARIMA(1, 0, 0), 55.6), (VARIMA(1, 1, 1), 57.0), ] dual_models = [ARIMA()] try: from ..models import Prophet models.append((Prophet(), 13.5)) except ImportError: logger.warning("Prophet not installed - will be skipping Prophet tests") try: from ..models import AutoARIMA models.append((AutoARIMA(), 12.2)) dual_models.append(AutoARIMA()) PMDARIMA_AVAILABLE = True except ImportError: logger.warning("pmdarima not installed - will be skipping AutoARIMA tests") PMDARIMA_AVAILABLE = False try: from ..models import TCNModel TORCH_AVAILABLE = True except ImportError: logger.warning("Torch not installed - will be skipping Torch models tests") TORCH_AVAILABLE = False class LocalForecastingModelsTestCase(DartsBaseTestClass): # forecasting horizon used in runnability tests forecasting_horizon = 5 # dummy timeseries for runnability tests np.random.seed(1) ts_gaussian = tg.gaussian_timeseries(length=100, mean=50) # real timeseries for functionality tests ts_passengers = AirPassengersDataset().load() ts_pass_train, ts_pass_val = ts_passengers.split_after(pd.Timestamp("19570101")) # real multivariate timeseries for functionality tests ts_ice_heater = IceCreamHeaterDataset().load() ts_ice_heater_train, ts_ice_heater_val = ts_ice_heater.split_after(split_point=0.7) def test_save_model_parameters(self): # model creation parameters were saved before. check if re-created model has same params as original for model, _ in models: self.assertTrue(model._model_params, model.untrained_model()._model_params) def test_models_runnability(self): for model, _ in models: model.fit(self.ts_gaussian) prediction = model.predict(self.forecasting_horizon) self.assertTrue(len(prediction) == self.forecasting_horizon) def test_models_performance(self): # for every model, check whether its errors do not exceed the given bounds for model, max_mape in models: np.random.seed(1) # some models are probabilist... model.fit(self.ts_pass_train) prediction = model.predict(len(self.ts_pass_val)) current_mape = mape(prediction, self.ts_pass_val) self.assertTrue(current_mape < max_mape, "{} model exceeded the maximum MAPE of {}. " "with a MAPE of {}".format(str(model), max_mape, current_mape)) def test_multivariate_models_performance(self): # for every model, check whether its errors do not exceed the given bounds for model, max_mape in multivariate_models: np.random.seed(1) model.fit(self.ts_ice_heater_train) prediction = model.predict(len(self.ts_ice_heater_val)) current_mape = mape(prediction, self.ts_ice_heater_val) self.assertTrue(current_mape < max_mape, "{} model exceeded the maximum MAPE of {}. " "with a MAPE of {}".format(str(model), max_mape, current_mape)) def test_multivariate_input(self): es_model = ExponentialSmoothing() ts_passengers_enhanced = self.ts_passengers.add_datetime_attribute("month") with self.assertRaises(AssertionError): es_model.fit(ts_passengers_enhanced) es_model.fit(ts_passengers_enhanced["#Passengers"]) with self.assertRaises(KeyError): es_model.fit(ts_passengers_enhanced["2"]) def test_exogenous_variables_support(self): for model in dual_models: # Test models runnability model.fit(self.ts_gaussian, future_covariates=self.ts_gaussian) prediction = model.predict( self.forecasting_horizon, future_covariates=tg.gaussian_timeseries( length=self.forecasting_horizon, start=self.ts_gaussian.end_time() + self.ts_gaussian.freq)) self.assertTrue(len(prediction) == self.forecasting_horizon) # Test mismatch in length between exogenous variables and forecasting horizon with self.assertRaises(ValueError): model.predict( self.forecasting_horizon, future_covariates=tg.gaussian_timeseries(length=self.forecasting_horizon - 1)) # Test mismatch in time-index/length between series and exogenous variables with self.assertRaises(ValueError): model.fit(self.ts_gaussian, future_covariates=self.ts_gaussian[:-1]) with self.assertRaises(ValueError): model.fit(self.ts_gaussian[1:], future_covariates=self.ts_gaussian[:-1]) def test_dummy_series(self): values = np.random.uniform(low=-10, high=10, size=100) ts = TimeSeries.from_dataframe(
pd.DataFrame({"V1": values})
pandas.DataFrame
import numpy as np import pandas as pd from cascade_at.core.log import get_loggers from cascade_at.dismod.api.fill_extract_helpers import utils from cascade_at.dismod.constants import DensityEnum, IntegrandEnum, \ INTEGRAND_TO_WEIGHT LOG = get_loggers(__name__) DEFAULT_DENSITY = ["uniform", 0, -np.inf, np.inf] def prep_data_avgint(df: pd.DataFrame, node_df: pd.DataFrame, covariate_df: pd.DataFrame): """ Preps both the data table and the avgint table by mapping locations to nodes and covariates to names. Putting it in the same function because it does the same stuff, but data and avgint need to be called separately because dismod requires different columns. Parameters ---------- df The data frame to map node_df The node table from dismod db covariate_df The covariate table from dismod db """ data = df.copy() data = utils.map_locations_to_nodes(df=data, node_df=node_df) data = utils.map_covariate_names(df=data, covariate_df=covariate_df) data.reset_index(inplace=True, drop=True) return data def construct_data_table(df: pd.DataFrame, node_df: pd.DataFrame, covariate_df: pd.DataFrame, ages: np.ndarray, times: np.ndarray): """ Constructs the data table from input df. Parameters ---------- df data frame of inputs that have been prepped for dismod node_df the dismod node table covariate_df the dismod covariate table ages times """ LOG.info("Constructing data table.") data = df.copy() data = prep_data_avgint( df=data, node_df=node_df, covariate_df=covariate_df ) data["data_name"] = data.index.astype(str) data["density_id"] = data["density"].apply(lambda x: DensityEnum[x].value) data["integrand_id"] = data["measure"].apply(lambda x: IntegrandEnum[x].value) data["weight_id"] = data["measure"].apply(lambda x: INTEGRAND_TO_WEIGHT[x].value) data["subgroup_id"] = 0 columns = data.columns data = data[[ 'data_name', 'integrand_id', 'density_id', 'node_id', 'weight_id', 'subgroup_id', 'hold_out', 'meas_value', 'meas_std', 'eta', 'nu', 'age_lower', 'age_upper', 'time_lower', 'time_upper' ] + [x for x in columns if x.startswith('x_')]] data = data.loc[(data.time_lower >= times.min()) & (data.time_upper <= times.max())].copy() data = data.loc[(data.age_lower >= ages.min()) & (data.age_upper <= ages.max())].copy() return data def construct_gbd_avgint_table(df: pd.DataFrame, node_df: pd.DataFrame, covariate_df: pd.DataFrame, integrand_df: pd.DataFrame, ages: np.ndarray, times: np.ndarray) -> pd.DataFrame: """ Constructs the avgint table using the output df from the inputs.to_avgint() method. Parameters ---------- df The data frame to construct the avgint table from, that has things like ages, times, nodes (locations), sexes, etc. node_df dismod node data frame covariate_df dismod covariate data frame integrand_df dismod integrand data frame ages array of ages for the model times array of times for the model """ LOG.info("Constructing the avgint table.") avgint = df.copy() avgint = prep_data_avgint( df=avgint, node_df=node_df, covariate_df=covariate_df ) avgint_df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from pathlib import Path from datetime import datetime import random import sys from sklearn.model_selection import ParameterSampler from scipy.stats import randint as sp_randint from scipy.stats import uniform from functions import ( under_over_sampler, classifier_train, classifier_train_manual, make_generic_df, get_xy_from_df, plot_precision_recall_vs_threshold, plot_precision_vs_recall, ) from classification_methods import ( random_forest_classifier, # knn_classifier, # logistic_regression, # sgd_classifier, # ridge_classifier, # svm_classifier, # gaussian_nb_classifier, xgboost_classifier, ) # stop warnings from sklearn # https://stackoverflow.com/questions/32612180/eliminating-warnings-from-scikit-learn def warn(*args, **kwargs): pass import warnings warnings.warn = warn # to profile script for memory usage, use: # /usr/bin/time -f "mem=%K RSS=%M elapsed=%E cpu.sys=%S .user=%U" python random_search_run.py # from https://unix.stackexchange.com/questions/375889/unix-command-to-tell-how-much-ram-was-used-during-program-runtime ############################################################################# # RANDOM SEARCH PARAMETERS # fill these out to set parameters for the random search # set a seed for the parameter sampler sampler_seed = random.randint(0, 2 ** 16) no_iterations = 30000 # create list of tools that we want to look over # these are only the tools that we know we have wear-failures [57, 54, 32, 36, 22, 8, 2] # tool_list_all = [57, 54, 32, 36, 22, 8, 2] tool_list_all = [54] # tool_list_some = [57, 32, 22, 8, 2, 36] tool_list_some = [] # other parameters scaler_methods = ["standard", "min_max"] imbalance_ratios = [0.1,0.5,0.8,1] average_across_indices = [True,False] # list of classifiers to test classifier_list_all = [ random_forest_classifier, # knn_classifier, # logistic_regression, # sgd_classifier, # ridge_classifier, # svm_classifier, # gaussian_nb_classifier, xgboost_classifier, ] over_under_sampling_methods = [ "random_over", "random_under", "random_under_bootstrap", "smote", "adasyn", None, ] # no cut indices past 9 that are valid index_list = [ list(range(0, 10)), list(range(1, 10)), list(range(1, 9)), list(range(1, 8)), list(range(2, 8)), list(range(3, 7)), list(range(2, 9)), list(range(2, 10)), ] ############################################################################# # test and train folds # failures for tool 54 on following dates: # 2018-11-15 # 2019-01-28 # 2019-01-29 # 2019-01-30 # 2019-02-04 # 2019-02-07 # 2019-02-08 # 2019-09-11 - These are resampled into pickle files (in case that matters) # 2019-11-27 # 2019-01-23 - These are from January data without speed # update 8/6/2020: does not look like we use the 'test_fold' # therefore, I have divided the dates into the other three folds test_fold = [ "2018-10-23", "2018-11-15", # failures "2018-11-16", "2018-11-19", "2019-09-11", # failures "2019-09-13", ] train_fold_1 = [ "2018-11-21", "2019-01-25", "2019-01-28", # failures "2019-11-27", # failures "2019-01-23", # failures, from Jan without speed "2019-05-03", "2019-09-11", # failures "2019-09-13", ] train_fold_2 = [ "2019-01-29", # failures "2019-01-30", # failures "2019-02-01", "2019-02-08", # failures "2019-09-10", "2019-09-12", "2018-11-20", "2019-02-11", "2019-01-24", # i forgot this one earlier "2019-05-04", "2018-11-16", "2018-11-19", ] train_fold_3 = [ "2019-02-04", # failures "2019-02-05", "2019-02-07", # failures "2019-05-06", "2019-01-22", # from Jan without speed "2018-10-23", "2018-11-15", # failures ] train_folds = [train_fold_1, train_fold_2, train_fold_3] train_dates_all = [date for sublist in train_folds for date in sublist] ############################################################################# # start by loading the csv with the features # file_folder = Path( # "/home/tim/Documents/Checkfluid-Project/data/processed/" # "_tables/low_levels_labels_created_2020-03-11" # ) # for HPC file_folder = Path( "/home/tvhahn/projects/def-mechefsk/tvhahn/_tables/low_levels_labels_created_2020-03-11/" ) file = file_folder / "low_level_labels_created_2020.03.11_v3_updated_2020.08.06.csv" df = pd.read_csv(file) # sort the values by date and index so that it is reproducible df = df.sort_values(by=["unix_date", "tool", "index"]) # replace NaN's in failed columns with 0 df["failed"].fillna( 0, inplace=True, downcast="int" ) # replace NaN in 'failed' col with 0 # function to convert pandas column to datetime format def convert_to_datetime(cols): unix_date = cols[0] value = datetime.fromtimestamp(unix_date) return value # apply 'date_ymd' column to dataframe df["date"] = df[["unix_date"]].apply(convert_to_datetime, axis=1) # convert to a period, and then string df["date_ymd"] = pd.to_datetime(df["date"], unit="s").dt.to_period("D").astype(str) # create train set df_train = df[df["date_ymd"].isin(train_dates_all)].reset_index(drop=True).copy() ############################################################################# # build the parameters to search over # start with building the generic feature list which we will sample from feat_generic_all = [] for feat in list(df_train.columns): if "sub" in feat: feat_generic_all.append(feat.replace("_sub", "")) else: pass # parameter dictionary for random sampler to go over parameters_sample_dict = { # "no_tools": sp_randint(0, len(tool_list_some)), "no_tools": [0], "no_feat": sp_randint(3, 38), # sp_randint(1, len(feat_generic_all)) "classifier_used": classifier_list_all, "average_across_index": average_across_indices, "uo_method": over_under_sampling_methods, "scaler_method": scaler_methods, "parameter_sampler_random_int": sp_randint(0, 2 ** 16), "imbalance_ratio": imbalance_ratios, # additional parameters to narrow down random search "index_list": index_list, } # generate the list of parameters to sample over p_list = list( ParameterSampler( parameters_sample_dict, n_iter=no_iterations, random_state=sampler_seed ) ) ############################################################################# # run models with each of the parameters date_time = datetime.now().strftime("%Y.%m.%d-%H.%M.%S") for k, p in enumerate(p_list): # set random.seed random.seed(p["parameter_sampler_random_int"]) # get specific parameters clf_name = str(p["classifier_used"]).split(" ")[1] tool_list = sorted( random.sample(tool_list_some, p["no_tools"]) + [54]) # tool_list = sorted( # [54] # + random.sample([36], random.randint(0, 1)) # ) feat_list = sorted(random.sample(feat_generic_all, p["no_feat"])) indices_to_keep = p["index_list"] to_avg = p["average_across_index"] uo_method = p["uo_method"] # if svm, need to prevent too large a dataset, thus will only use undersampling if clf_name == "svm_classifier": uo_method = random.sample(["random_under", "random_under_bootstrap"], 1) imbalance_ratio = p["imbalance_ratio"] scaler_method = p["scaler_method"] parameter_sampler_random_int = p["parameter_sampler_random_int"] clf_function = p["classifier_used"] # build dictionary to store parameter results and other info parameter_values = { "clf_name": clf_name, "tool_list": tool_list, "feat_list": feat_list, "indices_to_keep": indices_to_keep, "info_no_samples": None, "info_no_failures": None, "info_no_feat": p["no_feat"], "to_average": to_avg, "uo_method": uo_method, "imbalance_ratio": imbalance_ratio, "scaler_method": scaler_method, "parameter_sampler_seed": parameter_sampler_random_int, "initial_script_seed": sampler_seed, } # prepare the data table X_train, y_train, df_ymd_only = get_xy_from_df( df_train, tool_list=tool_list, indices_to_keep=indices_to_keep, to_average=to_avg, generic_feat_list=feat_list, ) # check if empty X_train len_data = len(y_train) # check if not enough labels in y_train no_label_failed = np.sum(y_train) seed_indexer = 0 while len_data < 20 or no_label_failed < 15: random.seed(p["parameter_sampler_random_int"] + seed_indexer) tool_list = sorted( random.sample(tool_list_some, p["no_tools"]) + random.sample([54], random.randint(1, 2)) ) X_train, y_train, df_ymd_only = get_xy_from_df( df_train, tool_list=tool_list, indices_to_keep=indices_to_keep, to_average=to_avg, generic_feat_list=feat_list, ) parameter_values["tool_list"] = tool_list len_data = len(y_train) no_label_failed = np.sum(y_train) seed_indexer += 1 parameter_values["info_no_samples"] = len_data parameter_values["info_no_failures"] = no_label_failed # save the general parameters values df_gpam = pd.DataFrame.from_dict(parameter_values, orient="index").T # instantiate the model clf, classifier_parameters = clf_function(parameter_sampler_random_int) # save classifier parameters into dataframe df_cpam =
pd.DataFrame.from_dict(classifier_parameters, orient="index")
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime import itertools import numpy as np import pytest from pandas.compat import u import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range) from pandas.tests.frame.common import TestData import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestDataFrameReshape(TestData): def test_pivot(self): data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data) pivoted = frame.pivot( index='index', columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' tm.assert_frame_equal(pivoted, expected) # name tracking assert pivoted.index.name == 'index' assert pivoted.columns.name == 'columns' # don't specify values pivoted = frame.pivot(index='index', columns='columns') assert pivoted.index.name == 'index' assert pivoted.columns.names == (None, 'columns') def test_pivot_duplicates(self): data = DataFrame({'a': ['bar', 'bar', 'foo', 'foo', 'foo'], 'b': ['one', 'two', 'one', 'one', 'two'], 'c': [1., 2., 3., 3., 4.]}) with pytest.raises(ValueError, match='duplicate entries'): data.pivot('a', 'b', 'c') def test_pivot_empty(self): df = DataFrame({}, columns=['a', 'b', 'c']) result = df.pivot('a', 'b', 'c') expected = DataFrame() tm.assert_frame_equal(result, expected, check_names=False) def test_pivot_integer_bug(self): df = DataFrame(data=[("A", "1", "A1"), ("B", "2", "B2")]) result = df.pivot(index=1, columns=0, values=2) repr(result) tm.assert_index_equal(result.columns, Index(['A', 'B'], name=0)) def test_pivot_index_none(self): # gh-3962 data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data).set_index('index') result = frame.pivot(columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' assert_frame_equal(result, expected) # omit values result = frame.pivot(columns='columns') expected.columns = pd.MultiIndex.from_tuples([('values', 'One'), ('values', 'Two')], names=[None, 'columns']) expected.index.name = 'index' tm.assert_frame_equal(result, expected, check_names=False) assert result.index.name == 'index' assert result.columns.names == (None, 'columns') expected.columns = expected.columns.droplevel(0) result = frame.pivot(columns='columns', values='values') expected.columns.name = 'columns' tm.assert_frame_equal(result, expected) def test_stack_unstack(self): df = self.frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({'foo': stacked, 'bar': stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() assert_frame_equal(unstacked, df) assert_frame_equal(unstacked_df['bar'], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) assert_frame_equal(unstacked_cols.T, df) assert_frame_equal(unstacked_cols_df['bar'].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, 'a', 'b'], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame(1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1]) assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[['a', 'b']].stack(1) expected = expected[['a', 'b']] assert_frame_equal(result, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack(fill_value=-1) expected = DataFrame({'a': [1, -1, 5], 'b': [2, 4, -1]}, index=['x', 'y', 'z'], dtype=np.int16) assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame({'a': [1, 0.5, 5], 'b': [2, 4, 0.5]}, index=['x', 'y', 'z'], dtype=np.float) assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame({'x': ['a', 'a', 'b'], 'y': ['j', 'k', 'j'], 'z': [0, 1, 2], 'w': [0, 1, 2]}).set_index(['x', 'y', 'z']) unstacked = df.unstack(['x', 'y'], fill_value=0) key = ('<KEY>') expected = unstacked[key] result = pd.Series([0, 0, 2], index=unstacked.index, name=key) assert_series_equal(result, expected) stacked = unstacked.stack(['x', 'y']) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] assert_frame_equal(result, df) # From a series s = df['w'] result = s.unstack(['x', 'y'], fill_value=0) expected = unstacked['w'] assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list('AB'), dtype=np.int32) df.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list('xyz'), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) # From a mixed type dataframe df['A'] = df['A'].astype(np.int16) df['B'] = df['B'].astype(np.float64) result = df.unstack(fill_value=-1) expected['A'] = expected['A'].astype(np.int16) expected['B'] = expected['B'].astype(np.float64) assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list('xyz'), dtype=np.float) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = pd.date_range('2012-01-01', periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [dv[0], pd.NaT, dv[3]], 'b': [dv[1], dv[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame({'a': [dv[0], dv[0], dv[3]], 'b': [dv[1], dv[2], dv[0]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [td[0], pd.NaT, td[3]], 'b': [td[1], td[2], pd.NaT]}, index=['x', 'y', 'z'])
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import numpy as np import pandas as pd import matplotlib.pyplot as plt from time import time from sklearn import metrics from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import scale, LabelEncoder from sklearn.linear_model import LinearRegression ############################################ # Section 1 - Importing and Combining Data ############################################ np.random.seed(12345) # Getting company names and sector labels df = pd.read_csv('D:/ML/book1.csv', header=0, index_col='Ticker') to_keep = ['Name', 'Sector'] dfA = df[to_keep] # Getting financial ratio data dfB = pd.read_csv('D:/ML/ratios.csv', header=0, index_col='Ticker') ratioNames = np.array(dfB.columns.values) # Concatenating dataframes to get primary dataset companyData = dfA.join(dfB).drop(['BF-B', 'CTVA', 'FRC']) companyData = companyData.fillna(0) clusterData = np.array(companyData) companies = np.array(companyData.index) ############################################ # Section 2 - Computing Ranked Measures ############################################ # Storing sector-wise means of ratios dt = companyData.groupby('Sector').mean() # Function to get industry-relative ratios def getRelative(ratioData): ratios = ratioData[:, 2:] sector = ratioData[:, 1] for i in range(len(sector)): # Get sector of company and sector-wise averages of ratios ind = sector[i] indAvgs = dt.loc[ind] for j in range(len(indAvgs)): ratios[i, j] = ratios[i, j] / indAvgs[j] return ratios # Storing the relative ratios for future use finalData = pd.DataFrame(getRelative(clusterData), index=companies, columns=ratioNames).fillna(0) #################################################### # Section 3 - Identifying Optimal Number of Clusters ################################################### # Loading the feature dataset X = np.array(finalData) comp = clusterData[:, 1] # Encoding output labels lab = LabelEncoder() labels = lab.fit_transform(comp) # Algorithm to compare cluster sizes (adapted from Scikit-learn's documentation) def bench_k_means(classifier, name, data): # Prints labels of measures used print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') t0 = time() classifier.fit(data) print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), classifier.inertia_, metrics.homogeneity_score(labels, classifier.labels_), metrics.completeness_score(labels, classifier.labels_), metrics.v_measure_score(labels, classifier.labels_), metrics.adjusted_rand_score(labels, classifier.labels_), metrics.adjusted_mutual_info_score(labels, classifier.labels_, average_method='arithmetic'), metrics.silhouette_score(data, classifier.labels_, metric='euclidean', sample_size=497)) ) return classifier.inertia_ # List to store inertia for Elbow Method of cluster size identification wcss = [] # Comparing multiple values of k (chose to use 4) for i in range(2, 12): print("Calculating measurement scores for Cluster Size {}".format(i)) cluster = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, precompute_distances=True, random_state=3) inert = bench_k_means(classifier=cluster, name = "k-means++", data = X) print('') wcss.append(inert) # Plotting inertia for different values of k to identify 'elbow' plt.figure(figsize=(10, 10)) plt.plot(range(2, 12), wcss) plt.title('Elbow Method') plt.xlabel('Number of clusters') plt.ylabel('WCSS') plt.xticks(range(1, 12)) plt.show() # Function to visualise two most populous clusters on two random axes def plotClusters(kmeans_out, dimA, dimB): (values, counts) = np.unique(kmeans_out, return_counts=True) filled = np.stack((values, counts), axis=1) sortedFill = filled[filled[:, 1].argsort()] # Pick the last two clusters, i.e. most populous for i in [-1, -2]: cID = sortedFill[i][0] if i == -1: plt.scatter(X[kmeans_out == cID, dimA], X[kmeans_out == cID, dimB], s=50, c='lightblue', marker='o', edgecolor='black', label='cluster 1') else: plt.scatter(X[kmeans_out == cID, dimA], X[kmeans_out == cID, dimB], s=50, c='lightgreen', marker='s', edgecolor='black', label='cluster 2') plt.legend(scatterpoints=1) plt.grid() plt.xlabel('Dimension A') plt.ylabel('Dimension B') plt.title('Visual Decomposition of Clustering') plt.xlim(-1, 2) plt.ylim(-1, 2) plt.show() return sortedFill # Cluster Size chosen from previous section size = 7 # Visualising k-means using two random axes kmeans = KMeans(n_clusters=size, init='random', n_init=20, max_iter=300, precompute_distances=True, random_state=3) kmeans_out = kmeans.fit_predict(X) idlist = plotClusters(kmeans_out, 1, 7) #################################################### # Section 4 - Using PCA to visualise clusters ################################################### # Fitting K-means to reduced-form data pca = PCA(n_components=size-1).fit_transform(X) cluster = KMeans(init='random', n_clusters=size, n_init=20) pca_out = cluster.fit_predict(pca) plotClusters(pca_out, 0, 1) clusterID =
pd.DataFrame(kmeans_out, index=companies, columns=['ClusterID'])
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler def data_filling(): train_data = pd.read_csv("./data/train.csv") test_data = pd.read_csv("./data/test.csv") train_data = fill_holiday(train_data) test_data = fill_holiday(test_data) train_data.to_csv('./processed/train_data_filled.csv', index=False) test_data.to_csv('./processed/test_data_filled.csv', index=False) def fill_holiday(data): for i in range(len(data)): if data.loc[i, 'holiday'] != 'None': holiday_list = [data.loc[i, 'holiday']] * len( data.loc[data['timestamp'].str.contains(data.loc[i, 'timestamp'].split(' ')[0])]) data.loc[data['timestamp'].str.contains( data.loc[i, 'timestamp'].split(' ')[0]), 'holiday'] = holiday_list return data def data_processing(): train_data = pd.read_csv("processed/train_data_filled.csv") test_data = pd.read_csv("processed/test_data_filled.csv") x_train = train_data.drop('traffic_volume', axis=1) y_train = train_data['traffic_volume'] x_test = test_data all_data = pd.concat([x_train, x_test]) all_data['timestamp'] = pd.to_datetime(all_data['timestamp']) all_data['weekday'] = all_data['timestamp'].dt.weekday all_data['month'] = all_data['timestamp'].dt.month # all_data['day_of_month'] = all_data['timestamp'].dt.day all_data['hour'] = all_data['timestamp'].dt.hour all_data = all_data.drop(['timestamp'], axis=1) holiday_dummy =
pd.get_dummies(all_data['holiday'])
pandas.get_dummies
import pandas as pd from pandas import DataFrame import pandas._testing as tm class TestConcatSort: def test_concat_sorts_columns(self, sort): # GH-4588 df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"]) df2 = DataFrame({"a": [3, 4], "c": [5, 6]}) # for sort=True/None expected = DataFrame( {"a": [1, 2, 3, 4], "b": [1, 2, None, None], "c": [None, None, 5, 6]}, columns=["a", "b", "c"], ) if sort is False: expected = expected[["b", "a", "c"]] # default with tm.assert_produces_warning(None): result = pd.concat([df1, df2], ignore_index=True, sort=sort) tm.assert_frame_equal(result, expected) def test_concat_sorts_index(self, sort): df1 = DataFrame({"a": [1, 2, 3]}, index=["c", "a", "b"]) df2 = DataFrame({"b": [1, 2]}, index=["a", "b"]) # For True/None expected = DataFrame( {"a": [2, 3, 1], "b": [1, 2, None]}, index=["a", "b", "c"], columns=["a", "b"], ) if sort is False: expected = expected.loc[["c", "a", "b"]] # Warn and sort by default with tm.assert_produces_warning(None): result = pd.concat([df1, df2], axis=1, sort=sort) tm.assert_frame_equal(result, expected) def test_concat_inner_sort(self, sort): # https://github.com/pandas-dev/pandas/pull/20613 df1 = DataFrame( {"a": [1, 2], "b": [1, 2], "c": [1, 2]}, columns=["b", "a", "c"] ) df2 = DataFrame({"a": [1, 2], "b": [3, 4]}, index=[3, 4]) with
tm.assert_produces_warning(None)
pandas._testing.assert_produces_warning
import os.path as osp import matplotlib.pyplot as plt # from bokeh.palettes import Category20 from sklearn.manifold import TSNE import pandas as pd def tsne(feature_map, results, component_num, dir_path): # fig, ax = plt.subplots() # y_pred, y, conf, img_name = results y_pred, y = results model_tsne = TSNE(n_components=component_num, random_state=40) model_tsne.fit(feature_map) embeddings = model_tsne.embedding_ df =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, Index, MultiIndex, Series, qcut, ) import pandas._testing as tm def cartesian_product_for_groupers(result, args, names, fill_value=np.NaN): """Reindex to a cartesian production for the groupers, preserving the nature (Categorical) of each grouper """ def f(a): if isinstance(a, (CategoricalIndex, Categorical)): categories = a.categories a = Categorical.from_codes( np.arange(len(categories)), categories=categories, ordered=a.ordered ) return a index = MultiIndex.from_product(map(f, args), names=names) return result.reindex(index, fill_value=fill_value).sort_index() _results_for_groupbys_with_missing_categories = { # This maps the builtin groupby functions to their expected outputs for # missing categories when they are called on a categorical grouper with # observed=False. Some functions are expected to return NaN, some zero. # These expected values can be used across several tests (i.e. they are # the same for SeriesGroupBy and DataFrameGroupBy) but they should only be # hardcoded in one place. "all": np.NaN, "any": np.NaN, "count": 0, "corrwith": np.NaN, "first": np.NaN, "idxmax": np.NaN, "idxmin": np.NaN, "last": np.NaN, "mad": np.NaN, "max": np.NaN, "mean": np.NaN, "median": np.NaN, "min": np.NaN, "nth": np.NaN, "nunique": 0, "prod": np.NaN, "quantile": np.NaN, "sem": np.NaN, "size": 0, "skew": np.NaN, "std": np.NaN, "sum": 0, "var": np.NaN, } def test_apply_use_categorical_name(df): cats = qcut(df.C, 4) def get_stats(group): return { "min": group.min(), "max": group.max(), "count": group.count(), "mean": group.mean(), } result = df.groupby(cats, observed=False).D.apply(get_stats) assert result.index.names[0] == "C" def test_basic(): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) exp_index = CategoricalIndex(list("abcd"), name="b", ordered=True) expected = DataFrame({"a": [1, 2, 4, np.nan]}, index=exp_index) result = data.groupby("b", observed=False).mean() tm.assert_frame_equal(result, expected) cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A", observed=False) exp_idx = CategoricalIndex(["a", "b", "z"], name="A", ordered=True) expected = DataFrame({"values": Series([3, 7, 0], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) g = x.groupby(["person_id"], observed=False) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[["person_name"]]) result = x.drop_duplicates("person_name") expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates("person_name").iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name="person_id") expected["person_name"] = expected["person_name"].astype("object") tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.max(xs)), df[["a"]] ) # Filter tm.assert_series_equal(df.a.groupby(c, observed=False).filter(np.all), df["a"]) tm.assert_frame_equal(df.groupby(c, observed=False).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df[["a"]] ) # GH 9603 df = DataFrame({"a": [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4], labels=Categorical(list("abcd"))) result = df.groupby(c, observed=False).apply(len) exp_index = CategoricalIndex(c.values.categories, ordered=c.values.ordered) expected = Series([1, 0, 0, 0], index=exp_index) expected.index.name = "a" tm.assert_series_equal(result, expected) # more basic levels = ["foo", "bar", "baz", "qux"] codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True) expected = expected.reindex(exp_idx) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = np.asarray(cats).take(idx) ord_data = data.take(idx) exp_cats = Categorical( ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"] ) expected = ord_data.groupby(exp_cats, sort=False, observed=False).describe() tm.assert_frame_equal(desc_result, expected) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_level_get_group(observed): # GH15155 df = DataFrame( data=np.arange(2, 22, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(10)], codes=[[0] * 5 + [1] * 5, range(10)], names=["Index1", "Index2"], ), ) g = df.groupby(level=["Index1"], observed=observed) # expected should equal test.loc[["a"]] # GH15166 expected = DataFrame( data=np.arange(2, 12, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(5)], codes=[[0] * 5, range(5)], names=["Index1", "Index2"], ), ) result = g.get_group("a") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) # GH#21636 tracking down the xfail, in some builds np.mean(df.loc[[0]]) # is coming back as Series([0., 1., 0.], index=["missing", "dense", "values"]) # when we expect Series(0., index=["values"]) result = grouped.apply(lambda x: np.mean(x)) tm.assert_frame_equal(result, expected) # we coerce back to ints expected = expected.astype("int") result = grouped.mean() tm.assert_frame_equal(result, expected) result = grouped.agg(np.mean) tm.assert_frame_equal(result, expected) # but for transform we should still get back the original index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = Series(1, index=idx) result = grouped.apply(lambda x: 1) tm.assert_series_equal(result, expected) def test_observed(observed): # multiple groupers, don't re-expand the output space # of the grouper # gh-14942 (implement) # gh-10132 (back-compat) # gh-8138 (back-compat) # gh-8869 cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) df["C"] = ["foo", "bar"] * 2 # multiple groupers with a non-cat gb = df.groupby(["A", "B", "C"], observed=observed) exp_index = MultiIndex.from_arrays( [cat1, cat2, ["foo", "bar"] * 2], names=["A", "B", "C"] ) expected = DataFrame({"values": Series([1, 2, 3, 4], index=exp_index)}).sort_index() result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2, ["foo", "bar"]], list("ABC"), fill_value=0 ) tm.assert_frame_equal(result, expected) gb = df.groupby(["A", "B"], observed=observed) exp_index = MultiIndex.from_arrays([cat1, cat2], names=["A", "B"]) expected = DataFrame({"values": [1, 2, 3, 4]}, index=exp_index) result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2], list("AB"), fill_value=0 ) tm.assert_frame_equal(result, expected) # https://github.com/pandas-dev/pandas/issues/8138 d = { "cat": Categorical( ["a", "b", "a", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 1, 2, 2], "val": [10, 20, 30, 40], } df = DataFrame(d) # Grouping on a single column groups_single_key = df.groupby("cat", observed=observed) result = groups_single_key.mean() exp_index = CategoricalIndex( list("ab"), name="cat", categories=list("abc"), ordered=True ) expected = DataFrame({"ints": [1.5, 1.5], "val": [20.0, 30]}, index=exp_index) if not observed: index = CategoricalIndex( list("abc"), name="cat", categories=list("abc"), ordered=True ) expected = expected.reindex(index) tm.assert_frame_equal(result, expected) # Grouping on two columns groups_double_key = df.groupby(["cat", "ints"], observed=observed) result = groups_double_key.agg("mean") expected = DataFrame( { "val": [10, 30, 20, 40], "cat": Categorical( ["a", "a", "b", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 2, 1, 2], } ).set_index(["cat", "ints"]) if not observed: expected = cartesian_product_for_groupers( expected, [df.cat.values, [1, 2]], ["cat", "ints"] ) tm.assert_frame_equal(result, expected) # GH 10132 for key in [("a", 1), ("b", 2), ("b", 1), ("a", 2)]: c, i = key result = groups_double_key.get_group(key) expected = df[(df.cat == c) & (df.ints == i)] tm.assert_frame_equal(result, expected) # gh-8869 # with as_index d = { "foo": [10, 8, 4, 8, 4, 1, 1], "bar": [10, 20, 30, 40, 50, 60, 70], "baz": ["d", "c", "e", "a", "a", "d", "c"], } df = DataFrame(d) cat = pd.cut(df["foo"], np.linspace(0, 10, 3)) df["range"] = cat groups = df.groupby(["range", "baz"], as_index=False, observed=observed) result = groups.agg("mean") groups2 = df.groupby(["range", "baz"], as_index=True, observed=observed) expected = groups2.agg("mean").reset_index() tm.assert_frame_equal(result, expected) def test_observed_codes_remap(observed): d = {"C1": [3, 3, 4, 5], "C2": [1, 2, 3, 4], "C3": [10, 100, 200, 34]} df = DataFrame(d) values = pd.cut(df["C1"], [1, 2, 3, 6]) values.name = "cat" groups_double_key = df.groupby([values, "C2"], observed=observed) idx = MultiIndex.from_arrays([values, [1, 2, 3, 4]], names=["cat", "C2"]) expected = DataFrame({"C1": [3, 3, 4, 5], "C3": [10, 100, 200, 34]}, index=idx) if not observed: expected = cartesian_product_for_groupers( expected, [values.values, [1, 2, 3, 4]], ["cat", "C2"] ) result = groups_double_key.agg("mean") tm.assert_frame_equal(result, expected) def test_observed_perf(): # we create a cartesian product, so this is # non-performant if we don't use observed values # gh-14942 df = DataFrame( { "cat": np.random.randint(0, 255, size=30000), "int_id": np.random.randint(0, 255, size=30000), "other_id": np.random.randint(0, 10000, size=30000), "foo": 0, } ) df["cat"] = df.cat.astype(str).astype("category") grouped = df.groupby(["cat", "int_id", "other_id"], observed=True) result = grouped.count() assert result.index.levels[0].nunique() == df.cat.nunique() assert result.index.levels[1].nunique() == df.int_id.nunique() assert result.index.levels[2].nunique() == df.other_id.nunique() def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = Categorical(["a", "c", "a"], categories=["a", "b", "c"]) df = DataFrame({"cat": cat, "vals": [1, 2, 3]}) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a":
Index([0, 2], dtype="int64")
pandas.Index
import pandas as pd import numpy as np from multiprocessing import Pool import tqdm import sys import gzip as gz from tango.prepare import init_sqlite_taxdb def translate_taxids_to_names(res_df, reportranks, name_dict): """ Takes a pandas dataframe with ranks as columns and contigs as rows and taxids as values and translates taxids to names column by column using a taxid->name dictionary Parameters ---------- res_df: pandas.DataFrame Results with taxids reportranks: list List of taxonomic ranks to report results for name_dict: dictionary Dictionary mapping taxids -> names Returns ------- res: pandas.DataFrame Dataframe with names instead of taxids """ res = {} for rank in reportranks: res[rank] = [name_dict[taxid] for taxid in res_df.loc[:,rank]] res = pd.DataFrame(res) res.index = res_df.index res = res.loc[:, reportranks] return res def get_thresholds(df, top=10): """ Here bit-score thresholds are calculated per query an returned in a dictionary. The pandas DataFrame is first sorted by bitscore (high to low), then grouped by query, then for the first entry per query the top% of the best hit is calculated and converted to dictionary. Parameters ---------- df: pandas.DataFrame DataFrame of diamond results top: int Percentage range of top bitscore Returns ------- thresholds: dict Dictionary with queries as keys and bitscore thresholds as values """ thresholds = (df.sort_values("bitscore", ascending=False).groupby(level=0).first().bitscore * ( (100 - top)) / 100).to_dict() return thresholds def get_rank_thresholds(ranks, thresholds): """ Constructs dictionary of rank-specific thresholds Parameters ---------- ranks: list Taxonomic ranks to assign thresholds: list Thresholds for taxonomic ranks Returns ------- Dictionary of thresholds """ t_len, r_len = len(thresholds), len(ranks) if t_len != r_len: sys.exit("ERROR: Number of taxonomic ranks ({}) and number of thresholds ({}) differ\n".format(r_len, t_len)) return dict(zip(ranks, thresholds)) def add_names(x, taxid, ncbi_taxa): """ This function translates taxonomy ids to names. It operates per-row in the lineage dataframe. Parameters ---------- x: pandas.DataFrame DataFrame of one taxid and its taxonomic ranks taxid: int Taxid being evaluated ncbi_taxa: ete3.ncbi_taxonomy.ncbiquery.NCBITaxa The ete3 sqlite database connection Returns ------- The original DataFrame merged with the taxa names """ # Get a names dictionary for all taxids in the row names = ncbi_taxa.get_taxid_translator(list(x.loc[taxid].values) + [taxid]) n = {} # Iterate ranks for rank in list(x.columns): # Get taxid for the current rank t = x.loc[taxid, rank] # If taxid is negative it means that there is no classified taxonomy at this rank # Instead we get the last known name in the hierarchy. We can then use the negative values to translate into # the name with the "Unclassified." prefix. # If the name is 'root' we just use 'Unclassified' if t < 0: known_name = names[-t] if known_name == "root": name = "Unclassified" else: name = known_name # If taxid is positive we just use the name from the dictionary else: name = names[t] # Add name to a dictionary with keys in the form of {rank}.name n["{}.name".format(rank)] = name name_df = pd.DataFrame(n, index=[taxid]) return pd.merge(x, name_df, left_index=True, right_index=True) def propagate_lower(x, taxid, ranks): """ Shift known ranks down through the taxonomic hierarchy. Parameters ---------- x: pandas.DataFrame DataFrame of one taxid and its taxonomic ranks taxid: int Taxid being evaluated ranks: list Ranks used for assigning Returns ------- pandas.DataFrame updated with missing ranks Some proteins in the database may map to a taxonomic rank above the lowest taxonomic rank that we are trying to assign. For instance, if we use the ranks 'superkingdom phylum genus species' and a protein maps to a taxid at rank phylum then we want to add the taxonomic information at the genus and species levels. This is done here by adding the negative taxid of the lowest known rank to the lower ranks. Example: In the Uniref90 database the entry 'E1GVX1' maps to taxonomy id 838 (rank: genus, name: Prevotella). When creating the lineage for taxid 838 we add '-838' to rank species. """ rev_ranks = [ranks[x] for x in list(range(len(ranks) - 1, -1, -1))] missing = {} known = taxid for rank in rev_ranks[0:]: if rank not in x.columns: missing[rank] = -known else: known = x.loc[taxid, rank] return pd.merge(x, pd.DataFrame(missing, index=[taxid]), left_index=True, right_index=True) def get_lca(r, assignranks, reportranks): """ Assign lowest common ancestor from a set of taxids. Parameters ---------- r: pandas.DataFrame Results for a single query, extracted from the main diamond results file assignranks: list Taxonomic ranks to assign taxonomy for reportranks: list Taxonomic ranks to report taxonomy for Returns ------- a tuple of dictionaries with ranks as keys and taxa names/ids as values This function takes a query-slice of the diamond results after filtering by score (and rank-threshold if tango mode is 'rank_lca' or 'rank_vote'). It then iterates through each rank in reverse order checks how many unique taxids are found at that rank. If there's only one taxid """ query = r.index.unique()[0] # Reverse ranks for iterating rev_ranks = [assignranks[x] for x in list(range(len(assignranks) - 1, -1, -1))] # Iterate through the assignranks for rank in rev_ranks: higher_ranks = reportranks[0:reportranks.index(rank) + 1] higher_rank_names = ["{}.name".format(x) for x in higher_ranks] # Count number of taxa at rank c = r.groupby(rank).count() # If there's only one taxa then we have found the LCA if len(c) == 1: if len(r) == 1: lca_taxids = r.loc[query, higher_ranks].values else: lca_taxids = r.loc[query, higher_ranks].values[0] return dict(zip(higher_ranks, lca_taxids)) return {} def parse_with_rank_thresholds(r, assignranks, reportranks, rank_thresholds, mode, vote_threshold): """Assigns taxonomy using rank_specific thresholds The ranks used to assign taxonomy are iterated in reverse (e.g. species, genus, phylum), at each rank results are filtered by the corresponding rank threshold, if no hits remain after filtering the next rank is evaluated, Then, if mode=='rank_lca', for remaining hits, a lowest common ancestor is calculated from all remaining taxids. However, if mode=='rank_vote', taxids are counted among the remaining hits and all results matching taxids that occur more than vote_threshold are used to determine the lowest common ancestor. If a taxonomy can be assigned at a rank, it is returned directly. If no taxonomy can be assigned at any of the ranks, empty results are returned. Parameters ---------- r: pandas.DataFrame Dataframe slice for a query assignranks: list Taxonomic ranks used to assign taxonomy reportranks: list Taxonomic ranks at which taxonomy is reported rank_thresholds: dict Dictionary of rank_specific thresholds mode: str 'rank_lca' or 'rank_vote' vote_threshold: float Cutoff used to filter out common taxids Returns ------- tuple Dictionaries with taxonomy names and taxonomy ids at each rank """ # Start from lowest rank rev_ranks = [assignranks[x] for x in list(range(len(assignranks) - 1, -1, -1))] for rank in rev_ranks: # Make sure that LCA is not set below current rank allowed_ranks = assignranks[0:assignranks.index(rank) + 1] # Get rank threshold threshold = rank_thresholds[rank] # Filter results by rank threshold try: _r = r.loc[r.pident >= threshold] except KeyError: continue if len(_r) == 0: continue lca_taxids = {} # After filtering, either calculate lca from all filtered taxids if mode == "rank_lca": lca_taxids = get_lca(_r, allowed_ranks, reportranks) # Or at each rank, get most common taxid elif mode == "rank_vote": vote = get_rank_vote(_r, rank, vote_threshold) if len(vote) > 0: lca_taxids = get_lca(vote, allowed_ranks, reportranks) if len(lca_taxids.keys()) > 0: return lca_taxids return {} def get_rank_vote(r, rank, vote_threshold=0.5): """ Filter results based on fraction of taxa Parameters ---------- r: pandas.DataFrame Results for a single query, after filtering with bitscore and rank-specific thresholds rank: str Current rank being investigated vote_threshold: float Required fraction of hits from a single taxa in order to keep taxa Returns ------- Filtered dataframe only containing taxa that meet vote_threshold Here taxa are counted among all hits remaining for a query after filtering using bitscore and rank-specific thresholds. Taxa are counted at a certain rank and counts are normalized. Hits belonging to taxa above vote_threshold are kept while others are filtered out. """ # Create dataframe for unique taxids filtered at this rank threshold taxid_counts = pd.DataFrame(dict.fromkeys(r.staxids.unique(), 1), index=["count"]).T # Add taxid for rank being investigated rank_df = r.groupby("staxids").first().reset_index()[[rank, "staxids"]].set_index("staxids") rank_df = pd.merge(taxid_counts, rank_df, left_index=True, right_index=True) # Sum counts for current rank rank_sum = rank_df.groupby(rank).sum() rank_norm = rank_sum.div(rank_sum.sum()) rank_norm = rank_norm.sort_values("count", ascending=False) votes = rank_norm.loc[rank_norm["count"] > vote_threshold] if len(votes) > 0: return r.loc[r[rank].isin(votes.index)] return [] def propagate_taxids(res, ranks): """ Transfer taxonomy ids to unassigned ranks based on best known taxonomy Example: {'species': -1, 'family': -171549, 'genus': -171549, 'order': 171549, 'phylum': 976, 'class': 200643, 'superkingdom': 2} should become {'species': -171549, 'family': -171549, 'genus': -171549, 'order': 171549, 'phylum': 976, 'class': 200643, 'superkingdom': 2} Parameters ---------- res: dict Dictionary of ranks and taxonomy ids ranks: list Ranks to assign taxonomy to Returns ------- res: dict Dictionary with updated taxonomy ids """ known = -1 for rank in ranks: # If not -1 (Unclassified) at rank, store assignment as known if res[rank] != -1: known = res[rank] continue # If -1 at rank (Unclassified), add the taxid with the '-' prefix if res[rank] == -1: res[rank] = -abs(known) return res def series2df(df): """Converts pandas series to pandas dataframe""" if str(type(df)) == "<class 'pandas.core.series.Series'>": df = pd.DataFrame(df).T return df def read_taxidmap(f, ids): """ Reads the protein to taxid map file and stores mappings Parameters ---------- f: str Input file with protein_id->taxid map ids: list Protein ids to store taxids for Returns ------- Dictionary of protein ids to taxid and all unique taxids """ taxidmap = dict.fromkeys(ids, -1) open_function = open if ".gz" in f: open_function = gz.open with open_function(f, 'rt') as fhin: for line in tqdm.tqdm(fhin, desc="Reading idmap {}".format(f), ncols=100, unit=" lines"): items = (line.rstrip()).rsplit() # If file has only two columns, assume taxid in second if len(items) == 2: protid, taxid = items # Otherwise, assume format is same as NCBI protein mapping else: protid, taxid = items[0], items[2] # Add map to dictionary # We initialize the dictionary with -1 so we make an attempt to add the taxid + 1 # If the protid is not in the dictionary we skip it try: taxidmap[protid] += int(taxid) + 1 except KeyError: continue except ValueError: continue return
pd.DataFrame(taxidmap, index=["staxids"])
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import keras from keras.models import Sequential from keras.layers import Dense, Dropout from sklearn.metrics import confusion_matrix import sys from scipy.spatial.distance import euclidean as euc from os import walk import tensorflow as tf import os maxClusterSize = 100 def getDataLen(trainingDict): n = 0 for w in trainingDict: # print(w) n += trainingDict[w] print('Total number of data points after this round: ', n) return n def assignWeights(trainingDf, trainingDict): n = getDataLen(trainingDict) trainingDf['Weightage'] = trainingDf['DataSize'].apply(lambda x: x/n) return trainingDf, n def scale(weight, scaler): scaledWeights = [] for i in range(len(weight)): scaledWeights.append(scaler * weight[i]) return scaledWeights def getWeight(d): #creating sequential model model = Sequential() model.add(Dense(16, activation='relu', input_dim=30)) model.add(Dropout(0.1)) model.add(Dense(16, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(1, activation='sigmoid')) # model.summary() fpath = "./merge/"+d model.load_weights(fpath) weight = model.get_weights() return weight def getScaledWeight(d, scaler): #creating sequential model model = Sequential() model.add(Dense(16, activation='relu', input_dim=30)) model.add(Dropout(0.1)) model.add(Dense(16, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(1, activation='sigmoid')) # model.summary() fpath = "./merge/"+d model.load_weights(fpath) weight = model.get_weights() return scale(weight, scaler) def avgWeights(scaledWeights): avg = list() for weight_list_tuple in zip(*scaledWeights): layer_mean = tf.math.reduce_sum(weight_list_tuple, axis=0) avg.append(layer_mean) return avg def FedAvg(trainingDict): trainingDf = pd.DataFrame.from_dict(trainingDict, orient='index', columns=['DataSize']) models = list(trainingDict.keys()) scaledWeights = [] trainingDf, dataLen = assignWeights(trainingDf, trainingDict) for m in models: scaledWeights.append(getScaledWeight(m, trainingDf.loc[m]['Weightage'])) fedAvgWeight = avgWeights(scaledWeights) return fedAvgWeight, dataLen def saveModel(weight): #creating sequential model model = Sequential() model.add(Dense(16, activation='relu', input_dim=30)) model.add(Dropout(0.1)) model.add(Dense(16, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(1, activation='sigmoid')) model.set_weights(weight) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) #Saving Model fpath = str("./mergeG/newG.h5") model.save(fpath) def euclidean(m, n): distance = [] for i in range(len(m)): # print(i) distance.append(euc(m[i].reshape(-1,1), n[i].reshape(-1,1))) # print(distance) distance = sum(distance)/len(m) return distance def merge(trainingDict, b): # print(trainingDict) models = list(trainingDict.keys()) # print(models) trainingDf =
pd.DataFrame.from_dict(trainingDict, orient='index', columns=['DataSize'])
pandas.DataFrame.from_dict
import pandas as pd import numpy as np from ..siu import create_sym_call, Symbolic from functools import singledispatch # TODO: move into siu def register_symbolic(f): @f.register(Symbolic) def _dispatch_symbol(__data, *args, **kwargs): return create_sym_call(f, __data.source, *args, **kwargs) return f # fct_reorder ----------------------------------------------------------------- @register_symbolic @singledispatch def fct_reorder(fct, x, func = np.median): x_vals = x.values if isinstance(x, pd.Series) else x s = pd.Series(x_vals, index = fct) # for each cat, calc agg func, make values of ordered the codes ordered = s.groupby(level = 0).agg(func).sort_values() ordered[:] = np.arange(len(ordered)) codes = ordered[s.index.values] return pd.Categorical.from_codes(codes, list(ordered.index)) # fct_recode ------------------------------------------------------------------ @register_symbolic @singledispatch def fct_recode(fct, **kwargs): if not isinstance(fct, pd.Categorical): fct = pd.Categorical(fct) rev_kwargs = {v:k for k,v in kwargs.items()} return fct.rename_categories(rev_kwargs) # fct_collapse ---------------------------------------------------------------- @register_symbolic @singledispatch def fct_collapse(fct, recat, group_other = None): if not isinstance(fct, pd.Categorical): fct = pd.Categorical(fct) # each existing cat will map to a new one ---- # need to know existing to new cat # need to know new cat to new code cat_to_new = {k: None for k in fct.categories} new_cat_set = {k: True for k in fct.categories} for new_name, v in recat.items(): v = [v] if not np.ndim(v) else v for old_name in v: if cat_to_new[old_name] is not None: raise Exception("category %s was already re-assigned"%old_name) cat_to_new[old_name] = new_name del new_cat_set[old_name] new_cat_set[new_name] = True # add new cat # collapse all unspecified cats to group_other if specified ---- for k, v in cat_to_new.items(): if v is None: if group_other is not None: new_cat_set[group_other] = True cat_to_new[k] = group_other del new_cat_set[k] else: cat_to_new[k] = k # map from old cat to new code ---- # calculate new codes new_cat_set = {k: ii for ii, k in enumerate(new_cat_set)} # map old cats to them remap_code = {old: new_cat_set[new] for old, new in cat_to_new.items()} new_codes = fct.map(remap_code) new_cats = list(new_cat_set.keys()) return
pd.Categorical.from_codes(new_codes, new_cats)
pandas.Categorical.from_codes
from datetime import datetime import numpy as np from pandas import ( DataFrame, Index, MultiIndex, Period, Series, period_range, to_datetime, ) import pandas._testing as tm def test_multiindex_period_datetime(): # GH4861, using datetime in period of multiindex raises exception idx1 = Index(["a", "a", "a", "b", "b"]) idx2 = period_range("2012-01", periods=len(idx1), freq="M") s = Series(np.random.randn(len(idx1)), [idx1, idx2]) # try Period as index expected = s.iloc[0] result = s.loc["a", Period("2012-01")] assert result == expected # try datetime as index result = s.loc["a", datetime(2012, 1, 1)] assert result == expected def test_multiindex_datetime_columns(): # GH35015, using datetime as column indices raises exception mi = MultiIndex.from_tuples( [(to_datetime("02/29/2020"), to_datetime("03/01/2020"))], names=["a", "b"] ) df = DataFrame([], columns=mi) expected_df = DataFrame( [], columns=MultiIndex.from_arrays( [[to_datetime("02/29/2020")], [
to_datetime("03/01/2020")
pandas.to_datetime
#%% path = '../../dataAndModel/data/o2o/' import os, sys, pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt from datetime import date from sklearn.linear_model import SGDClassifier, LogisticRegression dfoff = pd.read_csv(path+'ccf_offline_stage1_train.csv') dftest = pd.read_csv(path+'ccf_offline_stage1_test_revised.csv') dfon = pd.read_csv(path+'ccf_online_stage1_train.csv') print('data read end.') print(dfoff['Discount_rate']) #%% dfoff['distance'] = dfoff['Distance'].fillna(-1).astype(int) print(dfoff['Distance']) print(dfoff['distance']) #%% print(dfoff['distance'][13]) print(dfoff['Distance'][13]) #%% # %% # 1. 将满xx减yy类型(`xx:yy`)的券变成折扣率 : `1 - yy/xx`,同时建立折扣券相关的特征 `discount_rate, discount_man, discount_jian, discount_type` # 2. 将距离 `str` 转为 `int` # convert Discount_rate and Distance def getDiscountType(row): if pd.isnull(row): return np.nan elif ':' in row: return 1 else: return 0 def convertRate(row): """Convert discount to rate""" if pd.isnull(row): return 1.0 elif ':' in str(row): rows = row.split(':') return 1.0 - float(rows[1])/float(rows[0]) else: return float(row) def getDiscountMan(row): if ':' in str(row): rows = row.split(':') return int(rows[0]) else: return 0 def getDiscountJian(row): if ':' in str(row): rows = row.split(':') return int(rows[1]) else: return 0 #%% def processData(df): # convert discunt_rate df['discount_rate'] = df['Discount_rate'].apply(convertRate) df['discount_man'] = df['Discount_rate'].apply(getDiscountMan) df['discount_jian'] = df['Discount_rate'].apply(getDiscountJian) df['discount_type'] = df['Discount_rate'].apply(getDiscountType) print(df['discount_rate'].unique()) # convert distance df['distance'] = df['Distance'].fillna(-1).astype(int) return df dfoff = processData(dfoff) # dftest = processData(dftest) #%% date_received = dfoff['Date_received'].unique() date_received = sorted(date_received[pd.notnull(date_received)]) date_buy = dfoff['Date'].unique() date_buy = sorted(date_buy[pd.notnull(date_buy)]) date_buy = sorted(dfoff[dfoff['Date'].notnull()]['Date']) couponbydate = dfoff[dfoff['Date_received'].notnull()][['Date_received', 'Date']].groupby(['Date_received'], as_index=False).count() couponbydate.columns = ['Date_received','count'] buybydate = dfoff[(dfoff['Date'].notnull()) & (dfoff['Date_received'].notnull())][['Date_received', 'Date']].groupby(['Date_received'], as_index=False).count() buybydate.columns = ['Date_received','count'] print("end") #%% def getWeekday(row): if row == 'nan': return np.nan else: return date(int(row[0:4]), int(row[4:6]), int(row[6:8])).weekday() + 1 dfoff['weekday'] = dfoff['Date_received'].astype(str).apply(getWeekday) dftest['weekday'] = dftest['Date_received'].astype(str).apply(getWeekday) # weekday_type : 周六和周日为1,其他为0 dfoff['weekday_type'] = dfoff['weekday'].apply(lambda x : 1 if x in [6,7] else 0 ) dftest['weekday_type'] = dftest['weekday'].apply(lambda x : 1 if x in [6,7] else 0 ) # change weekday to one-hot encoding weekdaycols = ['weekday_' + str(i) for i in range(1,8)] tmpdf = pd.get_dummies(dfoff['weekday'].replace('nan', np.nan)) print(tmpdf) tmpdf.columns = weekdaycols dfoff[weekdaycols] = tmpdf print(dfoff) tmpdf = pd.get_dummies(dftest['weekday'].replace('nan', np.nan)) tmpdf.columns = weekdaycols dftest[weekdaycols] = tmpdf def label(row): if pd.isnull(row['Date_received']): return -1 if pd.notnull(row['Date']): td = pd.to_datetime(row['Date'], format='%Y%m%d') -
pd.to_datetime(row['Date_received'], format='%Y%m%d')
pandas.to_datetime
import os import random from io import BytesIO from tempfile import TemporaryDirectory import tensorflow as tf from PIL import Image from google.cloud import storage import numpy as np import glob from tqdm import tqdm import h5py import json from data.thor_constants import THOR_AFFORDANCES, THOR_OBJECT_TYPES, THOR_ACTIONS, _action_to_type_ind, \ _object_to_type_ind, _object_to_statechange_df, _fixup_df, THOR_ACTION_TYPE_TO_IND from typing import List import pandas as pd class S3TFRecordWriter(object): def __init__(self, fn, buffer_size=10000): """ Upload to gcloud :param fn: :param buffer_size: Trying to space out idential things here by shuffling a buffer p(first lasts until the end,N) = (1-pflush) ^ (N/(p*buffer_size)) each flush event removes buffer_size*p If the buffer size is big enough then we have good randomness I think """ self.fn = fn if fn.startswith('gs://'): self.gclient = storage.Client() self.storage_dir = TemporaryDirectory() self.writer = tf.io.TFRecordWriter(os.path.join(self.storage_dir.name, 'temp.tfrecord')) self.bucket_name, self.file_name = self.fn.split('gs://', 1)[1].split('/', 1) else: self.gclient = None self.bucket_name = None self.file_name = None self.storage_dir = None self.writer = tf.io.TFRecordWriter(fn) self.buffer_size = buffer_size self.buffer = [] self.num_written = 0 def write(self, x): self.num_written += 1 if self.buffer_size < 10: self.writer.write(x) return if len(self.buffer) < self.buffer_size: self.buffer.append(x) else: random.shuffle(self.buffer) for i in range(self.buffer_size // 5): # Pop 20% self.writer.write(self.buffer.pop()) def close(self): # Flush buffer for x in self.buffer: self.writer.write(x) self.writer.close() if self.gclient is not None: print(f"UPLOADING {self.num_written}ex!!!!!", flush=True) bucket = self.gclient.get_bucket(self.bucket_name) blob = bucket.blob(self.file_name) blob.upload_from_filename(os.path.join(self.storage_dir.name, 'temp.tfrecord')) self.storage_dir.cleanup() def __enter__(self): # Called when entering "with" context. return self def __exit__(self, *_): # Called when exiting "with" context. # Upload shit print("CALLING CLOSE") self.close() def int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def int64_list_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def bytes_list_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) def float_list_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def float_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) def _convert_image_to_jpgstring(image): """ :param image: Numpy array of an image [H, W, 3] :return: it, as a jpg string """ with BytesIO() as output: image_pil = Image.fromarray(image, mode='RGB') image_pil.save(output, format='JPEG', quality=95) return output.getvalue() def _convert_image_seq_to_jpgstring(image): """ :param image: Numpy array of an image [N, H, W, 3] :return: it, as a jpg string """ with BytesIO() as output: image_pil = Image.fromarray(image.reshape((image.shape[0] * image.shape[1], image.shape[2], 3)), mode='RGB') image_pil.save(output, format='JPEG', quality=95) return output.getvalue() def _print_padding_tradeoff(lens, ps=(80, 85, 90, 95, 99, 100,)): """ Given the lengths of everything, print out how mcuh we lose by cutting it off to a shorter percentile :param lens: Lengths :param ps: Percentiles :return: """ lens_array = np.array(lens) for p in ps: lensp = np.percentile(lens_array, p) lensused = np.minimum(lens_array, lensp).sum() lenstotal = np.sum(lens_array) wasted_space = np.sum(lensp - np.minimum(lens_array, lensp)) / (lensp * len(lens_array)) print( "Lens {}%: {:.3f}. Using that as seqlength, we use {} frames of {} ({:.3f}), wasted space {:.3f}".format( p, np.percentile(lens_array, p), lensused, lenstotal, lensused / lenstotal, wasted_space), flush=True) ############################# def traj_dataloader(all_fns, include_frames=False): """ :param all_fns: list of all filenames to use :param include_frames: Whether to include the img :return: """ for fn in tqdm(all_fns): try: h5reader = h5py.File(fn, 'r') # Process it item = {} for k in ['meta_info', 'alias_object_id_to_old_object_id', 'object_id_to_states', 'output_action_results', 'output_actions']: item[k] = json.loads(h5reader[k][()].decode('utf-8')) item['object_ids'] = [x.decode('utf-8') for x in h5reader['object_ids'][()].tolist()] for k, k_v in h5reader['pos3d'].items(): for t, v in k_v.items(): item['object_id_to_states'][k][t]['pos3d'] = v[()] # bboxes bbox_keys = sorted([int(k) for k in h5reader['bboxes'].keys()]) item['bboxes'] = [h5reader['bboxes'][(str(k))][()] for k in bbox_keys] if not all([x.dtype == np.uint16 for x in item['bboxes']]): # Previously I had a clipping bug raise ValueError("dtype") if include_frames: item['frames'] = h5reader['frames'][()] item['agent_states'] = h5reader['agent_states'][()] item['meta_info']['fn'] = fn yield item except Exception as e: print("Error with {}: {}".format(fn, str(e)), flush=True) def traj_dataloader_v2(all_fns, IMAGE_WIDTH=640, IMAGE_HEIGHT=384): for item in traj_dataloader(all_fns, include_frames=True): num_frames = item['frames'].shape[0] main_object_ids, object_id_to_main_ind = _get_main_object_id_mappings(item['meta_info']['main_object_ids'], all_object_ids=item['object_ids'], output_actions=item['output_actions'], alias_object_id_to_old_object_id=item[ 'alias_object_id_to_old_object_id']) # boxes - use an extra ind that tells us what frame we're on # [img_id, obj_id, x1, y1, x2, y2]. bboxes_list = [_convert_bboxes(v, t, object_ids=item['object_ids'], image_width=IMAGE_WIDTH, image_height=IMAGE_HEIGHT, ) for t, v in enumerate(item['bboxes']) if v.size > 0] bboxes_df = pd.concat([x for x in bboxes_list if x.size > 0], 0) bboxes_df['main_inds'] = bboxes_df['object_ids'].apply(lambda x: object_id_to_main_ind[x]) # SORT bboxes_df by first, frame number, then, whether it's a main ind or not, and third the size item['bboxes_df'] = bboxes_df.sort_values(by=['frame', 'main_inds', 'size'], ascending=[True, False, False], ignore_index=True) item['output_actions'].append({'action': 'Done'}) item['output_action_results'].append({'action_success': True, 'action_err_msg': ''}) # Predict next action maybe item['actions'] = pd.DataFrame([_convert_action(x, main_object_ids=main_object_ids, alias_object_id_to_old_object_id=item[ 'alias_object_id_to_old_object_id']) for x in item['output_actions']]) del item['output_actions'] df_mapping = {} # Compute object -> size and also get a dynamic mapping of the states over time object_to_size = {} for k, sz in item['object_id_to_states'].items(): for s in sz.values(): size = np.prod(s['pos3d'][-1] + 1e-8) object_to_size[k] = max(size, object_to_size.get(k, 0.0)) for oid in main_object_ids: oid_list = [oid] + [aid for aid, oid2 in item['alias_object_id_to_old_object_id'].items() if oid2 == oid] df_mapping[oid] = _object_to_statechange_df([item['object_id_to_states'][k] for k in oid_list], num_frames=item['frames'].shape[0], object_to_size=object_to_size) item['df_mapping'] = df_mapping item['main_object_ids'] = main_object_ids item['object_id_to_main_ind'] = object_id_to_main_ind yield item def _convert_bboxes(bboxes_t, t, object_ids, image_width, image_height): """ Converts bboxes into tensorflow format :param bboxes_t: [N boxes, [obj_id, x1, y1, x2, y2]] :param t: Int :param object_ids: Mapping obj_id -> string :param image_width: :param image_height: :return: """ # Convert to tf format bbox_info_float = bboxes_t.astype(np.float32)[:, 1:5] / \ np.array([image_width, image_height, image_width, image_height], dtype=np.float32)[None] sizes = np.sqrt((bbox_info_float[:, 2] - bbox_info_float[:, 0]) * (bbox_info_float[:, 3] - bbox_info_float[:, 1])) # Get rid of really small objects big_enough = sizes > np.sqrt(4.0 / (image_height * image_width)) bbox_info_float = bbox_info_float[big_enough] bboxes_t = bboxes_t[big_enough] sizes = sizes[big_enough] df = pd.DataFrame(np.column_stack([bbox_info_float, sizes]), columns=['xmin', 'ymin', 'xmax', 'ymax', 'size']) df['frame'] = t df['object_ids'] = [object_ids[i] for i in bboxes_t[:, 0]] df['category_ids'] = df['object_ids'].apply(_object_to_type_ind) return df def _convert_action(action, main_object_ids: List[str], alias_object_id_to_old_object_id): """ Convert an action into something referring to the main obj ids (dealing with aliases and stuff) :param action: :param main_object_ids: :param alias_object_id_to_old_object_id: :return: """ results = {'action_id': _action_to_type_ind(action)} oid_to_ind = {oid: i for i, oid in enumerate(main_object_ids)} for alias_object_id, old_object_id in alias_object_id_to_old_object_id.items(): oid_to_ind[alias_object_id] = oid_to_ind[old_object_id] if 'objectId' in action: results['object_id'] = oid_to_ind[action['objectId']] else: results['object_id'] = -1 if 'receptacleObjectId' in action: results['receptacle_object_id'] = oid_to_ind[action['receptacleObjectId']] else: results['receptacle_object_id'] = -1 return results def _get_main_object_id_mappings(main_object_ids, all_object_ids, output_actions, alias_object_id_to_old_object_id): """ Return a list of main object IDs, and a mapping from all object Ids to the main ones :param main_object_ids: Main ids identified by the sampler :param all_object_ids: All object IDs ever seen :param output_actions: All output actions -- we might need to add more main object IDs if needed :param alias_object_id_to_old_object_id: Aliases - e.g. if we chop somethign it changes ID. ugh :return: new list of main object IDs, and a mapping of objectId to main ind (or 0 otherwise). Starts at 1. """ # Create a mapping of objectId -> mainObjectId ind (or nothing!) # Tack on enough things to main object ids if they're referenced if isinstance(main_object_ids, str): # Not sure what's going on here main_object_ids = [main_object_ids] ref_oids = set([v for a in output_actions for k, v in a.items() if k.endswith('bjectId')]) for roid in sorted(ref_oids): if roid not in sorted(alias_object_id_to_old_object_id.keys()) + main_object_ids: main_object_ids.append(roid) # print("{} objects: {}".format(len(main_object_ids), main_object_ids), flush=True) object_id_to_main_ind = {oid: -1 for oid in all_object_ids} for i, mi in enumerate(main_object_ids): object_id_to_main_ind[mi] = i for k, v in alias_object_id_to_old_object_id.items(): if v == mi: object_id_to_main_ind[k] = i return main_object_ids, object_id_to_main_ind def traj_dataloader_v3(all_fns, IMAGE_WIDTH=640, IMAGE_HEIGHT=384, include_frames=False): for item in traj_dataloader(all_fns, include_frames=include_frames): main_object_ids, object_id_to_main_ind = _get_main_object_id_mappings(item['meta_info']['main_object_ids'], all_object_ids=item['object_ids'], output_actions=item['output_actions'], alias_object_id_to_old_object_id=item[ 'alias_object_id_to_old_object_id']) # boxes - use an extra ind that tells us what frame we're on # [img_id, obj_id, x1, y1, x2, y2]. bboxes_list = [_convert_bboxes(v, t, object_ids=item['object_ids'], image_width=IMAGE_WIDTH, image_height=IMAGE_HEIGHT, ) for t, v in enumerate(item['bboxes']) if v.size > 0] bboxes_df = pd.concat([x for x in bboxes_list if x.size > 0], 0) del item['bboxes'] bboxes_df['main_inds'] = bboxes_df['object_ids'].apply(lambda x: object_id_to_main_ind[x]) # SORT bboxes_df by first, frame number, then, whether it's a main ind or not, and third the size item['bboxes_df'] = bboxes_df.sort_values(by=['frame', 'main_inds', 'size'], ascending=[True, False, False], ignore_index=True) item['output_actions'].append({'action': 'Done'}) item['output_action_results'].append({'action_success': True, 'action_err_msg': ''}) item['num_frames'] = len(item['output_actions']) # Predict next action maybe item['actions'] = pd.DataFrame([_convert_action(x, main_object_ids=main_object_ids, alias_object_id_to_old_object_id=item[ 'alias_object_id_to_old_object_id']) for x in item['output_actions']]) item['actions']['succeeds'] = [x['action_success'] for x in item['output_action_results']] item['actions']['err_msg'] = [x['action_err_msg'] for x in item['output_action_results']] del item['output_action_results'] item['actions']['action_name'] = item['actions']['action_id'].apply(lambda x: THOR_ACTIONS[x - 1]) item['actions']['object_name'] = item['actions']['object_id'].apply( lambda x: main_object_ids[x] if x >= 0 else None) item['actions']['receptacle_name'] = item['actions']['receptacle_object_id'].apply( lambda x: main_object_ids[x] if x >= 0 else None) bad_cols = ['canChangeTempToHot', 'canChangeTempToCold', 'salientMaterials_None'] df_mapping = {} # Compute object -> size and also get a dynamic mapping of the states over time object_to_size = {} for k, sz in item['object_id_to_states'].items(): for s in sz.values(): size = np.prod(s['pos3d'][-1] + 1e-8) object_to_size[k] = max(size, object_to_size.get(k, 0.0)) for oid in main_object_ids: oid_list = [oid] + [aid for aid, oid2 in item['alias_object_id_to_old_object_id'].items() if oid2 == oid] df_mapping[oid] = _object_to_statechange_df([item['object_id_to_states'][k] for k in oid_list], num_frames=item['num_frames'], object_to_size=object_to_size, include_pos=True, agent_states=item['agent_states']) # FIX BUGS object_name = oid.split('|')[0] # Coffee machines if object_name in ('CoffeeMachine', 'StoveBurner'): assert not df_mapping[oid]['isBroken'].any() df_mapping[oid]['breakable'] = False # These things haven't been changing state to 'slicd' if object_name.startswith(('Potato', 'Tomato', 'Apple', 'Lettuce', 'Bread', 'Egg')): df_mapping[oid]['isSliced'] |= (~df_mapping[oid]['sliceable']) df_mapping[oid].loc[:, 'cookable'] = True elif df_mapping[oid]['salientMaterials_Food'].any(): import ipdb ipdb.set_trace() elif len(df_mapping[oid]['sliceable'].value_counts()) > 1: import ipdb ipdb.set_trace() # some objects should ALWAYS be at room temperature if object_name in ('CounterTop',): df_mapping[oid]['ObjectTemperature'] = 1 # Objects never cool down UNLESS they are put in a fridge # temp_lowered = [False] + (df_mapping[oid]['ObjectTemperature'].values[1:] < df_mapping[oid]['ObjectTemperature'].values[:-1]).tolist() # if any(temp_lowered): # import ipdb # ipdb.set_trace() # Don't change these # Some bugs with things not getting cooked in the microwave (or even getting placed there?) microwave_rows = item['actions'].apply( lambda row: (row['action_name'] == 'PutObject') and row['receptacle_name'].startswith('Microwave') and ( row['object_name'] == oid) and row['succeeds'], axis=1) if microwave_rows.any(): inds = df_mapping[oid].index > np.min(np.where(microwave_rows)[0]) if df_mapping[oid]['cookable'].any(): df_mapping[oid].loc[inds, 'isCooked'] = True df_mapping[oid].loc[inds, 'ObjectTemperature'] = 2 # Kill these columns df_mapping[oid] = df_mapping[oid][[c for c in df_mapping[oid].columns if c not in bad_cols]] ############################ # fix stoveburner nonsense if item['actions'].apply(lambda row: (row['action_name'] == 'ToggleObjectOn') and ( row['object_name'].split('|')[0] == 'StoveKnob'), axis=1).any(): # First FAIL FAST if not enough important objects needed = ['StoveBurner', 'StoveKnob'] if not all([n in ' '.join(main_object_ids) for n in needed]) or len(main_object_ids) < 4: continue # Create a new actions df actions2 = [] for t_, row in item['actions'].iterrows(): actions2.append(row) if (row['action_name'] == 'ToggleObjectOn') and (row['object_name'].split('|')[0] == 'StoveKnob'): # Find a stoveburner stoveburner_id = [k for k, v in df_mapping.items() if k.startswith('StoveBurner') and v.shape[0] > (t_ + 1) and ( v.iloc[t_ + 1:]['ObjectTemperature'] == 2).any()] if len(stoveburner_id) == 0: import ipdb ipdb.set_trace() stoveburner_id = stoveburner_id[0] pan_id = [] for t__, v__ in item['object_id_to_states'][stoveburner_id].items(): if int(t__) > t_: for r_o_id in v__['receptacleObjectIds']: if r_o_id in df_mapping and df_mapping[r_o_id].iloc[0]['receptacle']: pan_id.append(r_o_id) # # # pan_id = [k for k in item['object_id_to_states'][stoveburner_id][str(t_+1)]['receptacleObjectIds'] # if item['object_id_to_states'][stoveburner_id][str(t_+1)]['receptacle']] if len(pan_id) == 0: import ipdb ipdb.set_trace() pan_id = pan_id[0] # OK now we can add the dummy action actions2.append(pd.Series({ 'action_id': THOR_ACTION_TYPE_TO_IND['HeatUpPan'], 'object_id': object_id_to_main_ind[pan_id], 'receptacle_object_id': -1, 'succeeds': True, 'err_msg': '', 'action_name': 'HeatUpPan', 'object_name': pan_id, 'receptacle_name': None, }, name=t_)) # NOTE THAT THIS RENDERS object_id_to_states OBSOLETE actions2 = pd.DataFrame(actions2) idx = actions2.index.values # Create an alternate index where instead of like # array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, # 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30]) # see that 28? # we have # array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, # 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 30]) # Since at 28 we have "ToggleObjectOn" and then the new action "HeatUpPan" idx2 = np.copy(idx) for i in np.where(idx[1:] == idx[:-1])[0]: idx2[i + 1] = idx[i + 1] + 1 item['agent_states'] = item['agent_states'][idx] bboxes_df_grouped = item['bboxes_df'].groupby('frame') item['bboxes_df'] = pd.concat( [bboxes_df_grouped.get_group(t) for t in idx if t in bboxes_df_grouped.groups], 0).reset_index( drop=True) if ('frames' in item) and (len(idx) != item['num_frames']): item['frames'] = item['frames'][idx] item['num_frames'] = len(idx) item['actions'] = actions2.reset_index(drop=True) for k in sorted(df_mapping.keys()): if k.startswith(('StoveBurner', 'StoveKnob')): df_mapping[k] = df_mapping[k].iloc[idx2].reset_index(drop=True) else: df_mapping[k] = df_mapping[k].iloc[idx].reset_index(drop=True) # This is stupid but whatever for t, row in item['actions'].iterrows(): if (row['action_name'] == 'ToggleObjectOn') and row['object_name'].startswith('StoveKnob'): for k in sorted(df_mapping.keys()): # Heat up all stove burners if k.startswith('StoveBurner'): df_mapping[k].loc[t + 1:, 'ObjectTemperature'] = 2 if row['action_name'] == 'HeatUpPan': for k in sorted(df_mapping.keys()): if (df_mapping[k].loc[t:(t + 5), 'ObjectTemperature'] == 2).any(): # print("FIXING heatuppan{}".format(k), flush=True) df_mapping[k].loc[t + 1:, 'ObjectTemperature'] = 2 if df_mapping[k].iloc[0]['cookable']: df_mapping[k].loc[t + 1:, 'isCooked'] = True # Sinks should fill with water ##### for k, v in df_mapping.items(): if k.startswith('Sink'): v['canFillWithLiquid'] = True filled_now = False filled_list = [False] for _, row in item['actions'].iterrows(): if row['object_name'] is not None and row['object_name'].startswith('Faucet'): if row['action_name'] == 'ToggleObjectOn': filled_now = True elif row['action_name'] == 'ToggleObjectOff': filled_now = False filled_list.append(filled_now) v['isFilledWithLiquid'] = filled_list[:-1] if k.startswith('Faucet'): # Weird stuff with size! v['sizeraw'] = v.iloc[0]['sizeraw'] v['size'] = v.iloc[0]['size'] # If there's a pan fail then skip if (item['actions']['action_name'] == 'HeatUpPan').any(): becomes_cooked = False for v in df_mapping.values(): if v['cookable'].any() and len(v['isCooked'].value_counts()) == 2: becomes_cooked = True if not becomes_cooked: # print("SKIPPING BECAUSE NOTHING BECAME COOKED", flush=True) continue item['df_mapping'] = df_mapping item['main_object_ids'] = main_object_ids item['object_id_to_main_ind'] = object_id_to_main_ind ########### Separate into "Temporal" and "non-temporal" keys = [] df_rows = [] for k, v in item['object_id_to_states'].items(): if len(v) > 0: keys.append(k) all_vals = list(v.values()) df_rows.append(random.choice(all_vals)) # if '0' in v: # keys.append(k) # df_rows.append(v['0']) nontemporal_mapping = _fixup_df(
pd.DataFrame(df_rows)
pandas.DataFrame
import functools import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.transforms as transforms import matplotlib.pyplot as plt import scipy.interpolate as interp import scipy.optimize as opt from .stats import poisson_interval __all__ = [ "cms_label", "legend_data_mc", "data_mc", "data", "mc", "heatmap", "annotate_heatmap", "process_names", "process_colours", "impacts", "nllscan", ] def cms_label(ax, label, lumi=35.9, energy=13): ax.text( 0, 1, r'$\mathbf{CMS}\ \mathit{'+label+'}$', ha='left', va='bottom', transform=ax.transAxes, ) ax.text( 1, 1, r'${:.1f}\ \mathrm{{fb}}^{{-1}}$ ({:.0f} TeV)'.format(lumi, energy), ha='right', va='bottom', transform=ax.transAxes, ) def legend_data_mc( ax, df_data, df_mc, label, add_ratios=True, offaxis=True, legend_kw={}, ): handles, labels = ax[0].get_legend_handles_labels() if add_ratios: # sort by process total tdf_mc = pd.pivot_table( df_mc, index=label, columns="parent", values="sum_w", aggfunc=np.sum, ) tdf_mc = tdf_mc[tdf_mc.sum(axis=0).sort_values().index] data_idx = labels.index("Data") data_label = labels.pop(data_idx) labels = (labels+[data_label])[::-1] data_handle = handles.pop(data_idx) handles = (handles+[data_handle])[::-1] df_data_sum = df_data.sum() tdf_mc_sum = tdf_mc.sum() fractions = [ df_data_sum["sum_w"]/tdf_mc_sum.sum(), 1., ] + list((tdf_mc_sum / tdf_mc_sum.sum()).values[::-1]) fraction_labels = [ "{:.3f} {}".format(fractions[idx], labels[idx]) for idx in range(len(labels)) ] else: handles = handles[::-1] fraction_labels = labels[::-1] kwargs = dict(legend_kw) kwargs_noloc = dict(kwargs) kwargs_noloc.pop("loc", None) if offaxis: box = ax[0].get_position() ax[0].set_position([box.x0, box.y0, box.width*0.8, box.height]) ax[0].legend( handles, fraction_labels, bbox_to_anchor=(1, 1), **kwargs_noloc ) box = ax[1].get_position() ax[1].set_position([box.x0, box.y0, box.width*0.8, box.height]) else: ax[0].legend(handles, fraction_labels, **kwargs) handles, labels = ax[1].get_legend_handles_labels() if offaxis: ax[1].legend(handles, labels, bbox_to_anchor=(1, 1), **kwargs_noloc) else: ax[1].legend(handles, labels, **kwargs) def bin_lows_to_edges_cents(lows): edges = np.array(list(lows)+[2*lows[-1]-lows[-2]]) cents = (edges[:-1] + edges[1:])/2. return edges, cents def data(ax, df, label, bins, data_kw={}): bin_edges, bin_cents = bin_lows_to_edges_cents(bins) # draw kwargs = dict(fmt='o', lw=1, color='black', label='Data') kwargs.update(data_kw) mask = (df["sum_ww"]==0.) neff = df["sum_w"]**2 / df["sum_ww"] neff[mask] = 0. scale = df["sum_w"]/neff scale[mask] = 1. down, up = poisson_interval(neff, scale=scale) ax.errorbar( bin_cents, df["sum_w"], yerr=[df["sum_w"]-down, up-df["sum_w"]], **kwargs, ) def poisson_interval_with_checks(x, variance): down, up = poisson_interval(x**2/variance, scale=variance/x) mask = (variance==0.) down[mask] = 0. up[mask] = np.inf return down, up def mc( ax, df, label, bins, mcstat=False, mc_kw={}, mcstat_kw={}, proc_kw={}, zorder=0, interval_func=poisson_interval_with_checks ): stacked = mc_kw.pop("stacked") if "stacked" in mc_kw else False bin_edges, bin_cents = bin_lows_to_edges_cents(bins) # preprocess mc tdf = pd.pivot_table( df, index=label, columns="parent", values="sum_w", aggfunc=np.sum, ) # sort by process total tdf_procsum = tdf.sum(axis=0) tdf = tdf[tdf_procsum.sort_values().index] # mc procs = tdf.columns.to_series() cumsum = tdf.iloc[:,0].copy(deep=True) cumsum.values[:] = 0. for idx, proc in enumerate(tdf.columns): if stacked: prev_cumsum = cumsum.copy(deep=True) cumsum += tdf[proc] else: cumsum = tdf[proc] color = proc_kw.get("colours", {}).get(proc, "blue") kwargs = { "color": color, "ec": color, "label": proc_kw.get("labels", {}).get(proc, proc), } kwargs.update(mc_kw) kwargs["zorder"] = -idx ax.hist(bin_cents, bins=bin_edges, weights=cumsum, **kwargs) if mcstat: tdf_ww_up = pd.pivot_table( df, index=label, columns="parent", values="sum_ww_up", aggfunc=np.sum, ) _, up = interval_func(tdf.values[:,0], tdf_ww_up.values[:,0]) tdf_ww_down = pd.pivot_table( df, index=label, columns="parent", values="sum_ww_down", aggfunc=np.sum, ) down, _ = interval_func(tdf.values[:,0], tdf_ww_down.values[:,0]) kwargs = dict(color='black', alpha=0.2) kwargs.update(mcstat_kw) ax.fill_between( bin_edges, list(up)+[list(up)[-1]], list(down)+[list(down)[-1]], step='post', **kwargs ) def data_mc( ax, df_data, df_mc, label, bins, sigs=[], blind=False, log=True, legend=True, ratio=True, sm_total=True, mcstat_top=False, mcstat=True, add_ratios=True, show_zeros=False, mc_kw={}, sig_kw={}, mcstat_kw={}, sm_kw={}, data_kw={}, proc_kw={}, legend_kw={}, cms_kw={}, interval_func=poisson_interval_with_checks, ): _df_data = df_data.copy(deep=True) _df_mc = df_mc.copy(deep=True) if not show_zeros: _df_data.loc[_df_data["sum_w"]==0.,"sum_w"] = np.nan # only mc sum_ww can be asymmetric if "sum_ww_up" not in _df_mc: _df_mc["sum_ww_up"] = _df_mc["sum_ww"] if "sum_ww_down" not in _df_mc: _df_mc["sum_ww_down"] = _df_mc["sum_ww"] # collect signals if set sigs = sigs[::-1] sig_mask = ~_df_mc.index.get_level_values("parent").isin(sigs) df_sig = _df_mc.loc[~sig_mask].copy(deep=True) df_mc_sm = _df_mc.loc[sig_mask].copy(deep=True) # preprocessing df_mc_sum = df_mc_sm.groupby(label).sum() df_mc_sum.loc[:,"parent"] = "SMTotal" df_mc_sum = df_mc_sum.groupby(["parent", label]).sum() # draw if log: ax[0].set_yscale('log') bin_edges, _ = bin_lows_to_edges_cents(bins) ax[0].set_xlim(bin_edges.min(), bin_edges.max()) # signals - top panel sig_kw_ = dict(histtype='step', zorder=1) sig_kw_.update(sig_kw) if len(sigs) > 0: mc( ax[0], df_sig, label, bins, mcstat=False, mc_kw=sig_kw_, proc_kw=proc_kw, interval_func=interval_func, ) # MC - top panel mc_kw_ = dict(stacked=True) mc_kw_.update(mc_kw) mc( ax[0], df_mc_sm, label, bins, mcstat=False, mc_kw=mc_kw_, proc_kw=proc_kw, interval_func=interval_func, ) # SM total - top panel if sm_total: mc_kw_ = dict(histtype='step') mc_kw_.update(sm_kw) mcstat_kw_ = dict(label="", color="black", alpha=0.2) mcstat_kw_.update(mcstat_kw) mc( ax[0], df_mc_sum, label, bins, mcstat=mcstat_top, mc_kw=mc_kw_, mcstat_kw=mcstat_kw_, proc_kw=proc_kw, interval_func=interval_func, ) # Data - top panel if not blind: data(ax[0], _df_data, label, bins, data_kw=data_kw) # CMS label - top panel kwargs = dict(label="Preliminary", lumi=35.9, energy=13) kwargs.update(cms_kw) #cms_label(ax[0], **kwargs) # SM total ratio - bottom panel df_mc_sum_ratio = df_mc_sum.copy() df_mc_sum_ratio.loc[:,"sum_w"] = 1. df_mc_sum_ratio.loc[:,"sum_ww_up"] = ( df_mc_sum["sum_ww_up"]/df_mc_sum["sum_w"]**2 ) df_mc_sum_ratio.loc[:,"sum_ww_down"] = ( df_mc_sum["sum_ww_down"]/df_mc_sum["sum_w"]**2 ) if ratio: mc_kw_ = dict(label="", histtype='step') mc_kw_.update(sm_kw) mcstat_kw_ = dict(label="MC stat. unc.", color="black", alpha=0.2) mcstat_kw_.update(mcstat_kw) mc( ax[1], df_mc_sum_ratio, label, bins, mcstat=mcstat, mc_kw=mc_kw_, mcstat_kw=mcstat_kw_, proc_kw=proc_kw, interval_func=interval_func, ) # Data ratio - bottom panel if not blind: kwargs = dict(data_kw) kwargs["label"] = "" df_data_ratio = _df_data.copy() df_data_ratio.loc[:,"sum_w"] = _df_data["sum_w"]/df_mc_sum["sum_w"].values df_data_ratio.loc[:,"sum_ww"] = _df_data["sum_ww"]/df_mc_sum["sum_w"].values**2 data(ax[1], df_data_ratio, label, bins, data_kw=kwargs) if legend: offaxis = legend_kw.pop("offaxis", True) kwargs = dict(labelspacing=0.05) kwargs.update(legend_kw) legend_data_mc( ax, _df_data, _df_mc, label, add_ratios=add_ratios, offaxis=offaxis, legend_kw=kwargs, ) return ax def heatmap( data, row_labels, col_labels, ax, cbar_kw=dict(fraction=0.046, pad=0.04), cbarlabel="", grid_kw={}, tick_kw={}, **kwargs, ): if not ax: ax = plt.gca() im = ax.imshow(data, **kwargs) cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) ax.set_xticklabels(col_labels) ax.set_yticklabels(row_labels) ax.tick_params(**tick_kw) # Rotate the tick labels and set their alignment. plt.setp( ax.get_xticklabels(), ha="right", #rotation=-30, rotation_mode="anchor", ) # Turn spines off and create white grid. for edge, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) gkw = dict(which="minor", color="w", linestyle='-', linewidth=2) gkw.update(grid_kw) ax.grid(**gkw) ax.tick_params( which="minor", bottom=False, left=False, top=False, right=False, ) ax.tick_params( which="major", bottom=False, left=False, top=False, right=False, ) return im, cbar def annotate_heatmap( im, data=None, valfmt="{x:.2f}", textcolors=["black", "white"], cthreshold=lambda z: True, vthreshold=lambda z: True, **textkw, ): if not isinstance(data, (list, np.ndarray)): data = im.get_array() kw = dict(ha="center", va="center") kw.update(textkw) # Get the formatter in case a string is supplied if isinstance(valfmt, str): valfmt = mpl.ticker.StrMethodFormatter(valfmt) # Loop over the data and create a `Text` for each "pixel". # Change the text's color depending on the data. texts = [] for i in range(data.shape[0]): for j in range(data.shape[1]): kw.update(color=textcolors[int(cthreshold(data[i, j]))]) if not vthreshold(data[i, j]): continue text = im.axes.text(j, i, valfmt(data[i, j], None), **kw) texts.append(text) return texts process_colours = { "SMTotal": "black", "MET": "black", "SingleMuon": "black", "SingleElectron": "black", "ZJetsToNuNu": "#80b1d3", "WJetsToLNu": "#b3de69", "WJetsToENu": "#b2df8a", "WJetsToMuNu": "#b3de69", "WJetsToTauNu": "#8dd3c7", "WJetsToTauLNu": "#8dd3c7", "WJetsToTauHNu": "#8dd3c7", "Diboson": "#fdb462", "DYJetsToLL": "#ffed6f", "DYJetsToEE": "#fff6b3", "DYJetsToMuMu": "#ffed6f", "DYJetsToTauTau": "#ffe41a", "DYJetsToTauLTauL": "#ffe41a", "DYJetsToTauHTauL": "#ffe41a", "DYJetsToTauHTauH": "#ffe41a", "EWKV2Jets": "#bebada", "SingleTop": "#fccde5", "TTJets": "#bc80bd", "Top": "#bc80bd", "QCD": "#fb8072", "G1Jet": "#ccebc5", "VGamma": "#ffffb3", "Minor": "#d9d9d9", "MinorBkgs": "#d9d9d9", } process_names = { "SMTotal": "SM total", "MET": "MET", "SingleMuon": "Single Muon", "SingleElectron": "Single Electron", "ZJetsToNuNu": "$Z(\\rightarrow \\nu\\nu)+j$", "WJetsToLNu": "$W(\\rightarrow l\\nu)+j$", "WJetsToENu": "$W(\\rightarrow e\\nu)+j$", "WJetsToMuNu": "$W(\\rightarrow \\mu\\nu)+j$", "WJetsToTauNu": "$W(\\rightarrow \\tau\\nu)+j$", "WJetsToTauLNu": "$W(\\rightarrow \\tau_{l}\\nu)+j$", "WJetsToTauHNu": "$W(\\rightarrow \\tau_{h}\\nu)+j$", "Diboson": "Diboson", "DYJetsToLL": "$Z/\\gamma^{*}(\\rightarrow ll)+j$", "DYJetsToEE": "$Z/\\gamma^{*}(\\rightarrow ee)+j$", "DYJetsToMuMu": "$Z/\\gamma^{*}(\\rightarrow \\mu\\mu)+j$", "DYJetsToTauTau": "$Z/\\gamma^{*}(\\rightarrow \\tau\\tau)+j$", "DYJetsToTauLTauL": "$Z/\\gamma^{*}(\\rightarrow \\tau_{l}\\tau_{l})+j$", "DYJetsToTauHTauL": "$Z/\\gamma^{*}(\\rightarrow \\tau_{l}\\tau_{h})+j$", "DYJetsToTauHTauH": "$Z/\\gamma^{*}(\\rightarrow \\tau_{h}\\tau_{h})+j$", "EWKV2Jets": "VBS", "SingleTop": "Single Top", "TTJets": "$t\\bar{t}+j$", "QCD": "QCD multijet", "G1Jet": "$\\gamma+j$", "VGamma": "$V+\\gamma$", "Minor": "Minor", "MinorBkgs": "Minor", } nuisance_names = { "d1kqcd": r'$\delta^{(1)}k_{\mathrm{QCD}}$', "d2kqcd": r'$\delta^{(2)}k_{\mathrm{QCD}}$', "d3kqcd": r'$\delta^{(3)}k_{\mathrm{QCD}}$', "d1kew": r'$\delta^{(1)}k_{\mathrm{EW}}$', "d2keww": r'$\delta^{(2)}k_{\mathrm{EW}}^{\mathrm{W}}$', "d2kewz": r'$\delta^{(2)}k_{\mathrm{EW}}^{\mathrm{Z}}$', "d3keww": r'$\delta^{(3)}k_{\mathrm{EW}}^{\mathrm{W}}$', "d3kewz": r'$\delta^{(3)}k_{\mathrm{EW}}^{\mathrm{Z}}$', "dkmix": r'$\delta k_{\mathrm{mix}}$', "jesTotal": r'JES', "jerSF": r'JER', "unclust": r'Unclustered energy', "lhePdfWeight": r'PDF', "btagSF": r'$b$-tag veto', "photonIdLoose": r'Photon id. veto', "photonPixelSeedVeto": r'Photon pixel veto', "tauIdTight": r'$\tau_h$-tag id. selection', "tauIdVLoose": r'$\tau_h$-tag id. veto', "muonIdLooseSyst": r'Muon id. veto (syst.)', "muonIdLooseStat": r'Muon id. veto (stat.)', "muonIsoLooseSyst": r'Muon iso. veto (syst.)', "muonIsoLooseStat": r'Muon iso. veto (stat.)', "muonIdTightSyst": r'Muon id. selection (syst.)', "muonIdTightStat": r'Muon id. selection (stat.)', "muonIsoTightSyst": r'Muon iso. selection (syst.)', "muonIsoTightStat": r'Muon iso. selection (stat.)', "eleIdIsoVeto": r'Electron id. veto', "eleIdIsoTight": r'Electron id. selection', "eleReco": r'Electron reconstruction', "eleTrig": r'Electron trigger', "prefiring": r'ECAL timing', "pileup": r'Pileup', "lumi": r'Luminosity', "metTrig0MuSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($0\mu$)', "metTrig1MuSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($1\mu$)', "metTrig2MuSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($2\mu$)', "metTrigReferenceTriggerSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger (ref.)', "metTrigMonojetSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($\p_{\mathrm{T}}^{\mathrm{miss}}+\mathrm{jets}$)', "metTrigSingleMuonSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($\mu+\mathrm{jets}$)', "metTrigDoubleMuonSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($\mu\mu+\mathrm{jets}$)', "metTrigSingleTauSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($\tau_h+\mathrm{jets}$)', "metTrigSingleElectronSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($e+\mathrm{jets}$)', "metTrigDoubleElectronSyst": r'$p_{\mathrm{T}}^{\mathrm{miss}}$ trigger ($ee+\mathrm{jets}$)', } def impacts(data, ax=None, converter=nuisance_names): if ax is None: fig, ax = plt.subplots( figsize=(4,4), dpi=150, ncols=2, nrows=1, sharex=False, sharey=True, gridspec_kw={"hspace": 0., "wspace": 0.}, ) ax[0].minorticks_off() ax[1].minorticks_off() ax[1].set_yticklabels([]) y = data["poi_paramdown"].values x = np.linspace(0., len(y), len(y)+1) ax[1].hist( x[:-1], bins=x, weights=y, color='#1f78b4', alpha=0.8, orientation='horizontal', label=r'$-1\sigma$', ) y = data["poi_paramup"].values ax[1].hist( x[:-1], bins=x, weights=y, color='#e31a1c', alpha=0.8, orientation='horizontal', label=r'$+1\sigma$', ) xmax = np.max(np.abs(ax[1].get_xlim())) ax[1].set_xlim(-1.1*xmax, 1.1*xmax) ax[1].set_ylim(0, len(y)) ax[1].axvline(0, lw=1, color='gray', alpha=0.8) y = data["param_value"].values yerr = ( -1*data["param_merrdown"].values, data["param_merrup"].values, ) ax[0].errorbar( y, (x[:-1]+x[1:])/2., xerr=yerr, fmt='o', color='black', ms=4, capsize=4, ) xmax = data.eval("param_value+param_merrup").max() xmax = max(xmax, data.eval("-(param_value+param_merrdown)").max()) xmax = int(xmax)+1 ax[0].set_xlim(-xmax, xmax) for pos in range(xmax): ax[0].axvline(pos, lw=1, color='gray', alpha=0.8) ax[0].axvline(-pos, lw=1, color='gray', alpha=0.8) ax[0].set_ylim(0, len(y)) ax[0].set_xticks(np.arange(-(xmax-1), (xmax-1)+0.1, 1.)) ax[0].set_yticks((x[:-1]+x[1:])/2.) labels = [ converter.get(l, l.replace("_", " ")) for l in data.index.get_level_values("param").values ] ax[0].set_yticklabels(labels) ax[0].set_xlabel(r'$\theta$') ax[1].set_xlabel(r'$\Delta\hat{r}$') ax[1].legend(fancybox=True, edgecolor='#d9d9d9') return fig, ax def nllscan( x, y, ax=None, marker_kw={}, spline_kw={}, splrep_kw={}, splev_kw={}, opt_kw={}, root_kw={}, line_kw={}, text_kw={}, nsigs=[1], bestfit_guess=[0.], left_bracket=(-np.inf, 0), right_bracket=(0, np.inf), ): """ Helper function to plot a -2*Delta(log(L)) scan from a pd.DataFrame with two columns: x variable and y variable (which should hold the -2*Delta(log(L)) values. Parameters ---------- x : np.ndarray-like The input x variable. y : np.ndarray-like The input y variable. Should hold values of -2*Delta(log(L)) ax : matplotlib.axes, optional (default=None) The axis to draw on. marker_kw : dict-like, optional (default={}) kwargs to pass to ax.plot. Updates a dict with: dict(marker='o', ms=2, lw=0., label='Scan', color='#1f78bf') spline_kw : dict-like, optional (default={}) kwargs to pass to ax.plot. Updates a dict with: dict(lw=1., label='Spline', color='#e31a1c') splrep_kw: dict-like, optional (default={}) kwargs to pass to scipy.interpolate.splrep. Updates a dict with: dict(s=0) splev_kw: dict-like, optional (default={}) kwargs to pass to scipy.interpolate.splev. Updates a dict with: dict(der=0) opt_kw: dict-like, optional (default={}) kwargs to pass to scipy.optimize.optimize. Updates a dict with: dict(der=0) root_kw: dict-like, optional (default={}) kwargs to pass to scipy.optimize.root_scalar. Updates a dict with: dict(method='brentq') line_kw: dict-like, optional (default={}) kwargs to pass to axes.ax?line. Updates a dict with: dict(lw=1, ls='--', color='gray') text_kw: dict-like, optional (default={}) kwargs to pass to axes.text. Updates a dict with: ict(ha='left', va='bottom', color='gray') nsigs : list of floats, optional (default=[1]) List of number of sigmas to draw on the final plot bestfit_guess : list of floats, options (default=[0.]) Best fit guess of the minimum for scipy.optimize left_bracket : tuple of floats, options (default=(-np.inf, 0)) Guess for left root bracket. right_bracket : tuple of floats, options (default=(-np.inf, 0)) Guess for right root bracket. Return ------ pd.DataFrame with columns: nsig and x values """ outdata = [] if ax is None: fig, ax = plt.subplots() kw = dict(marker='o', ms=2, lw=0., label='Scan', color='#1f78bf') kw.update(marker_kw) ax.plot(x, y, **kw) # spline kw = dict(s=0) kw.update(splrep_kw) tck = interp.splrep(x, y, **kw) kw = dict(der=0) kw.update(splev_kw) kw["tck"] = tck func = functools.partial(interp.splev, **kw) xfine = np.linspace(x.min(), x.max(), 201) kw = dict(lw=1., label='Spline', color='#e31a1c') kw.update(spline_kw) ax.plot(xfine, func(xfine), **kw) kw = dict(method='L-BFGS-B') kw.update(opt_kw) bestfit = opt.minimize(func, bestfit_guess, **kw) outdata.append({"nsig": 0., "xval": bestfit.x[0]}) for nsig in nsigs: kw = dict(method='brentq') kw.update(root_kw) kw["bracket"] = left_bracket left = opt.root_scalar(lambda x: func(x)-nsig**2, **kw) outdata.append({"nsig": nsig, "xval": left.root}) kw = dict(method='brentq') kw.update(root_kw) kw["bracket"] = right_bracket right = opt.root_scalar(lambda x: func(x)-nsig**2, **kw) outdata.append({"nsig": -nsig, "xval": right.root}) kw = dict(lw=1, ls='--', color='gray') kw.update(line_kw) ax.axvline(left.root, **kw) ax.axvline(right.root, **kw) ax.axhline(nsig**2, **kw) pos = ax.transData.inverted().transform( ax.transAxes.transform((0.025, 1)) ) kw = dict(ha='left', va='bottom', color='gray') kw.update(text_kw) ax.text(pos[0], nsig**2, f'${nsig}\\sigma$', **kw) return
pd.DataFrame(outdata)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """Combine and normalize tweet.json files into a DataFrame dumped to csv - Find json files (recursively) within the curent path - Load those that look like tweets dumped by tweetget - Expand columns that contain arrays, e.g. geo.coordinates -> geo.coordinates.lat and .lon - Combine each DataFrame into a single Pandas DataFrame - Save utf-8 encoded csv file of the normalized/combined DataFrame """ from __future__ import division, print_function, absolute_import, unicode_literals from future.utils import viewitems # noqa from builtins import str # noqa from past.builtins import basestring # noqa try: from itertools import izip as zip except ImportError: pass import os import re import json import logging import time import gzip import pandas as pd import progressbar from twip.futil import find_files from twip.constant import DATA_PATH import argparse import sys from twip import __version__ __author__ = "hobs" __copyright__ = "hobs" __license__ = "mit" np = pd.np log = logging.getLogger(__name__) LOG_FORMAT = '%(levelname)-5s %(module)s.%(funcName)s:%(lineno)d %(message)s' def parse_args(args): """ Parse command line parameters :param args: command line parameters as list of strings :return: command line parameters as :obj:`argparse.Namespace` """ parser = argparse.ArgumentParser( description="Concatenate and preprocess tweet json files dumped by tweetget") parser.add_argument( '-v', '--verbose', help='Whether to show progress messages on stdout', action='store_true') parser.add_argument( '--version', help='print twip package version and exit.', action='version', version='twip {ver}'.format(ver=__version__)) parser.add_argument( '-p', '--path', help='path to data dir (json input and csv output files)', default=DATA_PATH) parser.add_argument( '-t', '--tweetfile', help='file to store normalized table (csv) of tweets and features (metadata)', default='all_tweets.csv') parser.add_argument( '-n', '--numtweets', help='maximum number of tweets to process', type=int, default=1000000) parser.add_argument( '-g', '--geofile', help="file to store tweet lat/lon information (few use it)", default='geo_tweets.csv') return parser.parse_args(args) def main(args): """API with args object containing configuration parameters""" global logging, log args = parse_args(args) logging.basicConfig(format=LOG_FORMAT, level=logging.DEBUG if args.verbose else logging.INFO, stream=sys.stdout) df = cat_tweets(path=args.path, verbosity=args.verbose + 1, numtweets=args.numtweets, ignore_suspicious=False) log.info('Combined {} tweets'.format(len(df))) df = drop_nan_columns(df) save_tweets(df, path=args.path, filename=args.tweetfile) geo = get_geo(df, path=args.path, filename=args.geofile) log.info("Combined {} tweets into a single file {} and set asside {} geo tweets in {}".format( len(df), args.tweetfile, len(geo), args.geofile)) return df, geo def run(): """Entry point for command line script""" main(sys.argv[1:]) def cat_tweets(filename='all_tweets.json.gz', path=DATA_PATH, ext='.json', save_tmp=False, verbosity=1, numtweets=10000000, ignore_suspicious=True): """Find json files that were dumped by tweetget and combine them into a single CSV Normalize some (lat/lon)""" log.info('Finding {} files in {}...'.format(ext, path)) meta_files = find_files(path=path, ext=ext) meta_files = [meta for meta in meta_files if re.match(r'^[-#@a-z ]*201[5-6]-[0-9]{2}-[0-9]{2}.*', meta['name'])] # '\s[0-9]{2}[:][0-9]{2}[:][0-9]{2}[.][0-9]+[.]json(.gz)?$', meta['name'])] log.info('Found {} files that look like tweetget dumps.'.format(len(meta_files))) print([mf['name'] for mf in meta_files]) total_size = sum([meta['size'] for meta in meta_files]) if verbosity > 0: pbar = progressbar.ProgressBar(maxval=(total_size + 1.) / 1e6) pbar.start() else: pbar = None loaded_size = 0 df_all = pd.DataFrame() for meta in meta_files: with (gzip.open(meta['path']) if ext.endswith('.gz') else open(meta['path'])) as fin: js =
pd.json.load(fin)
pandas.json.load
import pandas as pd class TECRDB_compounds_data(object): def __init__(self): """ A module that processes information of compounds in TECRDB """ self.TECRDB_compounds_data_dict = {} self.TECRDB_compounds_pH7_species_id_dict = {} self.TECRDB_compounds_least_H_sid_dict = {} self.get_TECRDB_compounds_data() def get_TECRDB_compounds_data(self): """ reads in data for compounds in TECRDB :return: a dictionary with keys being different ion bound states of the compound (we call it species_id here, e.g CHB_15422_-1 refers to -1 charged form of compound_id CHB_15422), values being a dictionary storing the thermodynamic information and molecular properties of the species_id """ TECRDB_compounds_data_table =
pd.read_csv('data/TECRDB_compounds_data.csv')
pandas.read_csv
# ClinVarome annotation functions # Gather all genes annotations : gene, gene_id, # (AF, FAF,) diseases, clinical features, mecanismes counts, nhomalt. # Give score for genes according their confidence criteria # Commented code is the lines needed to make the AgglomerativeClustering import pandas as pd import numpy as np import pysam from scipy.stats import poisson # from sklearn.preprocessing import QuantileTransformer # from sklearn.cluster import AgglomerativeClustering from clinvarome.utils.dictionary import ( EFFECTS, MC_CATEGORIES, MC_SHORT, # ARRAY_TRANSFORM, # CLUSTER_NAMES, ) import logging # For logs def get_logger(scope: str, level=logging.DEBUG): """ get_logger """ logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=level ) return logging.getLogger(scope) logger = get_logger(__name__) # Clinical features def gather_clinical_features(record, gene_finding, gene_disease): """ update gene_finding and gene_disease dictionary using information from a VCF record """ geneinfo = record.info["GENEINFO"].split("|")[0].split(":")[0] if "CLNDISEASE" in record.info: clndisease = record.info["CLNDISEASE"][0].split("|") gene_disease.setdefault(geneinfo, []) gene_disease[geneinfo].append(clndisease) if "CLNFINDING" in record.info: clnfinding = record.info["CLNFINDING"][0].split("|") gene_finding.setdefault(geneinfo, []) gene_finding[geneinfo].append(clnfinding) def get_clinical_dataframe(gene_disease, gene_finding): """ Process dictionary output from gather_clinical_features function into a dataframe """ for key, value in gene_disease.items(): flat_list = [j for i in value for j in i] gene_disease[key] = ";".join(sorted(list(set(flat_list)))) gene_disease_df = pd.DataFrame( gene_disease.items(), columns=["gene_info", "clinical_disease"] ) for key, value in gene_finding.items(): flat_list = [j for i in value for j in i] gene_finding[key] = ";".join(sorted(list(set(flat_list)))) gene_finding_df = pd.DataFrame( gene_finding.items(), columns=["gene_info", "clinical_finding"] ) gene_features = gene_disease_df.merge(gene_finding_df, how="outer") return gene_features # FAF def calcul_max_AF(AC, AN): """ For a given AC and AN, calcul the maximum AF: the upper bound of the Poisson 95 % CI. """ if (AC == 0) and (AN != 0): max_AF_pois = 1 / AN elif (AC != 0) and (AN != 0): max_AC_pois = poisson.ppf(0.95, AC) max_AF_pois = float(max_AC_pois / AN) else: max_AF_pois = 0 return max_AF_pois def gather_dict_gene_max_AF(record, gene_AF_pois_dict): """ Update the maximum FAF of a gene using information in a VCF record """ ls_AC = [] ls_AN = [] ls_AF_pois = [] geneinfo = record.info["GENEINFO"].split("|")[0].split(":")[0] gene_AF_pois_dict.setdefault(geneinfo, []) if "AC_afr" in record.info: AC_afr = record.info["AC_afr"] AC_amr = record.info["AC_amr"] AC_nfe = record.info["AC_nfe"] AC_eas = record.info["AC_eas"] AN_afr = record.info["AN_afr"] AN_amr = record.info["AN_amr"] AN_nfe = record.info["AN_nfe"] AN_eas = record.info["AN_eas"] ls_AC = [AC_afr, AC_amr, AC_nfe, AC_eas] ls_AN = [AN_afr, AN_amr, AN_nfe, AN_eas] for k in range(0, len(ls_AC)): ls_AF_pois.append(calcul_max_AF(ls_AC[k], ls_AN[k])) max_af_pois = max(ls_AF_pois) gene_AF_pois_dict[geneinfo].append(max_af_pois) else: gene_AF_pois_dict[geneinfo].append(0) def get_AF_max_by_gene(gene_AF_dict): """For a given gene, return the maximum FAF (among its variants) and get a dataframe.""" gene_AF_max = {} for key, values in gene_AF_dict.items(): gene_max_AF = max(values) gene_AF_max.setdefault(key, []) gene_AF_max[key].append(gene_max_AF) print(gene_AF_max) gene_anno_pois = pd.DataFrame.from_dict( gene_AF_max, orient="index", columns=["FAF"] ) gene_anno_pois = gene_anno_pois.reset_index() gene_anno_pois = gene_anno_pois.rename(columns={"index": "gene_info"}) print(gene_anno_pois) return gene_anno_pois # Molecular consequence counts def mol_consequences_by_variant(record, gene_var_dict): """ Parse molecular consequences (mc) available for a variant and return the highest predicted effect """ geneinfo = record.info["GENEINFO"].split("|")[0].split(":")[0] gene_var_dict.setdefault(geneinfo, []) if "MC" in record.info: mc = record.info["MC"] mc_only = [i.split("|")[1] for i in mc] min_value = min([v for k, v in EFFECTS.items() if k in mc_only]) for key, value in EFFECTS.items(): if min_value == value: gene_var_dict[geneinfo].append(MC_CATEGORIES[key]) break else: gene_var_dict[geneinfo].append("Not_provided") def count_type_mol_consequences(gene_var_dict): """ Count occurence of molecular consequence (mc)from pathogenic variant for each gene """ gene_mc_count = {} for key, values in gene_var_dict.items(): list_mc = [] for k in MC_SHORT.keys(): if k in values: count = values.count(k) list_mc.append([count, k]) gene_mc_count.setdefault(key, []) gene_mc_count[key].append(list_mc) return gene_mc_count def get_mol_consequences_dataframe(gene_var_dict): """ Format molecular consequences occurences (mc) by gene dictionary into dataframe. """ gene_mc_count = count_type_mol_consequences(gene_var_dict) df_tot = pd.DataFrame() for key, values in gene_mc_count.items(): for k in range(len(values[0])): mecanism_dict = {} mecanism_dict[key] = values[0][k] df = pd.DataFrame.from_dict( mecanism_dict, orient="index", columns=["count", "mecanism"] ) df_tot = df_tot.append(df) df_tot.index.name = "gene_info" df_tot_piv = pd.pivot_table( df_tot, values="count", index="gene_info", columns=["mecanism"], fill_value=0, ) return df_tot_piv # nhomalt annotation def get_nhomalt(record, gene_nhomalt): """ Return count of homozygous allele in gnomad for a pathogenic variant. """ if "nhomalt" in record.info: nhomalt = record.info["nhomalt"][0] geneinfo = record.info["GENEINFO"].split("|")[0].split(":")[0] gene_nhomalt.setdefault(geneinfo, []) gene_nhomalt[geneinfo].append(nhomalt) return gene_nhomalt def get_max_nhomalt_by_gene(gene_nhomalt): """ Get the maximum count of homozygous pathogenic allele in gnomad by gene. Return a dataframe. """ gene_nhomalt_max = {} for key, values in gene_nhomalt.items(): nhomalt_max = max(values) gene_nhomalt_max.setdefault(key, []) gene_nhomalt_max[key].append(nhomalt_max) gene_nhomalt_max_df = pd.DataFrame.from_dict( gene_nhomalt_max, orient="index", columns=["nhomalt"] ) gene_nhomalt_max_df = gene_nhomalt_max_df.reset_index() gene_nhomalt_max_df = gene_nhomalt_max_df.rename(columns={"index": "gene_info"}) return gene_nhomalt_max_df # Gene date def gene_first_pathogenic_entry_date(clinvarome_df, compare_gene): """ Return the first occurence of a (lickely) pathogenic variant for a gene in ClinVar. """ compare_gene_df =
pd.read_csv(compare_gene, sep="\t", compression="gzip")
pandas.read_csv
from unittest import TestCase # or `from unittest import ...` if on Python 3.4+ from category_encoders.utils import convert_input_vector, convert_inputs import pandas as pd import numpy as np class TestUtils(TestCase): def test_convert_input_vector(self): index = [2, 3, 4] result = convert_input_vector([0, 1, 0], index) # list self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [2, 3, 4]) result = convert_input_vector([[0, 1, 0]], index) # list of lists (row) self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [2, 3, 4]) result = convert_input_vector([[0], [1], [0]], index) # list of lists (column) self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [2, 3, 4]) result = convert_input_vector(np.array([1, 0, 1]), index) # np vector self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [2, 3, 4]) result = convert_input_vector(np.array([[1, 0, 1]]), index) # np matrix row self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [2, 3, 4]) result = convert_input_vector(np.array([[1], [0], [1]]), index) # np matrix column self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [2, 3, 4]) result = convert_input_vector(pd.Series([0, 1, 0], index=[4, 5, 6]), index) # series self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [4, 5, 6], 'We want to preserve the original index') result = convert_input_vector(pd.DataFrame({'y': [0, 1, 0]}, index=[4, 5, 6]), index) # dataFrame self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [4, 5, 6], 'We want to preserve the original index') result = convert_input_vector((0, 1, 0), index) # tuple self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(3, len(result)) np.testing.assert_array_equal(result.index, [2, 3, 4]) result = convert_input_vector(0, [2]) # scalar self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(1, len(result)) self.assertTrue(result.index == [2]) result = convert_input_vector('a', [2]) # scalar self.assertTrue(isinstance(result, pd.Series)) self.assertEqual(1, len(result)) self.assertTrue(result.index == [2]) # multiple columns and rows should cause an error because it is unclear which column/row to use as the target self.assertRaises(ValueError, convert_input_vector, (pd.DataFrame({'col1': [0, 1, 0], 'col2': [1, 0, 1]})), index) self.assertRaises(ValueError, convert_input_vector, (np.array([[0, 1], [1, 0], [0, 1]])), index) self.assertRaises(ValueError, convert_input_vector, ([[0, 1], [1, 0], [0, 1]]), index) # edge scenarios (it is ok to raise an exception but please, provide then a helpful exception text) _ = convert_input_vector(pd.Series(dtype=float), []) _ = convert_input_vector([], []) _ = convert_input_vector([[]], []) _ = convert_input_vector(pd.DataFrame(), []) def test_convert_inputs(self): aindex = [2, 4, 5] bindex = [1, 3, 4] alist = [5, 3, 6] aseries =
pd.Series(alist, aindex)
pandas.Series
""" Technical Analysis Library Library of functions to compute various technical indicators. @author: eyu """ import logging import numpy as np import pandas as pd import math as math import statistics as stats import datetime import constants as c # create logger logger = logging.getLogger("algo-trader") def copy_column(df, column_source, column_target): """ Copy an existing column to a new column in dataframe. :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to copy :param column_target: name of target column in dataframe for copied values :return: modified dataframe """ df[column_target] = df[column_source] return df def copy_column_shift(df, column_source, column_target, shift_amount): """ Copy an existing column (shifted by shift_amount) to a new column in dataframe. :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to copy :param column_target: name of target column in dataframe for copied values :param shift_amount: amount of rows to shift :return: modified dataframe """ df[column_target] = df[column_source].shift(shift_amount) return df def compute_sma_custom(df, column_source, column_target_sma, time_period): """ Compute Simple Moving Average (SMA). :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute SMA (e.g. close price) :param column_target_sma: prefix of target column in dataframe for SMA results :param time_period: time period (number of days for SMA) :return: modified dataframe """ # compute SMA history_values = [] sma_values = [] for value in df[column_source]: history_values.append(value) if len(history_values) > time_period: del (history_values[0]) sma_values.append(stats.mean(history_values)) # add computed SMA results back to dataframe key_sma = column_target_sma + "-{:d}".format(time_period) df[key_sma] = sma_values return df def compute_sma(df, column_source, column_target_sma, time_periods): """ Compute Simple Moving Average (SMA). :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute SMA (e.g. close price) :param column_target_sma: prefix of target column in dataframe for SMA results :param time_periods: list of time periods (number of days for SMA) :return: modified dataframe """ # compute SMA for each time period and add results back to dataframe for time_period in time_periods: key_sma = column_target_sma + "-{:d}".format(time_period) df[key_sma] = df[column_source].rolling(window=time_period, min_periods=1).mean() return df def compute_ema_custom( df, column_source, column_target_ema, column_target_golden_cross, column_target_death_cross, time_period_fast, time_period_slow): """ Compute Exponential Moving Average (EMA). :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute EMA (e.g. close price) :param column_target_ema: prefix of target column in dataframe for EMA results :param column_target_golden_cross: name of target column in dataframe for golden cross results :param column_target_death_cross: name of target column in dataframe for death cross results :param time_period_fast: number of days over which to average for fast EMA :param time_period_slow: number of days over which to average for slow EMA :return: modified dataframe """ # compute EMA k_fast = 2 / (time_period_fast + 1) # fast EMA smoothing factor ema_fast = 0 k_slow = 2 / (time_period_slow + 1) # slow EMA smoothing factor ema_slow = 0 ema_fast_values = [] ema_slow_values = [] for value in df[column_source]: if ema_fast == 0: # first observation ema_fast = value ema_slow = value else: ema_fast = (value - ema_fast) * k_fast + ema_fast ema_slow = (value - ema_slow) * k_slow + ema_slow ema_fast_values.append(ema_fast) ema_slow_values.append(ema_slow) # add computed EMA results back to dataframe key_ema_fast = column_target_ema + "-{:d}".format(time_period_fast) key_ema_slow = column_target_ema + "-{:d}".format(time_period_slow) df[key_ema_fast] = ema_fast_values df[key_ema_slow] = ema_slow_values # compute golden cross / death cross previous_fast_series = df[key_ema_fast].shift(1) previous_slow_series = df[key_ema_slow].shift(1) golden_cross_values = [] death_cross_values = [] for i in (range(0, len(df.index))): golden_cross_values.append( (ema_fast_values[i] >= ema_slow_values[i]) & (previous_fast_series[i] <= previous_slow_series[i])) death_cross_values.append( (ema_fast_values[i] <= ema_slow_values[i]) & (previous_fast_series[i] >= previous_slow_series[i])) # add computed crossing results back to dataframe key_golden_cross = column_target_golden_cross + "-{:d}-{:d}".format(time_period_fast, time_period_slow) key_death_cross = column_target_death_cross + "-{:d}-{:d}".format(time_period_fast, time_period_slow) df[key_golden_cross] = golden_cross_values df[key_death_cross] = death_cross_values return df def compute_ema(df, column_source, column_target_ema, time_periods): """ Compute Exponential Moving Average (EMA). :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute EMA (e.g. close price) :param column_target_ema: prefix of target column in dataframe for EMA results :param time_periods: list of time periods (number of days for EMA) :return: modified dataframe """ # compute EMA for each time period and add results back to dataframe for time_period in time_periods: key_ema = column_target_ema + "-{:d}".format(time_period) ema_series = df[column_source].ewm(span=time_period, adjust=False).mean() df[key_ema] = ema_series return df def compute_ma_cross( df, column_source, column_target_golden_cross, column_target_death_cross, time_period_fast, time_period_slow): """ Compute Moving Average (Golden/Death) Crosses. :param df: dataframe (sorted in ascending time order) :param column_source: prefix of source column in dataframe with moving average values :param column_target_golden_cross: name of target column in dataframe for golden cross results :param column_target_death_cross: name of target column in dataframe for death cross results :param time_period_fast: number of days over which to average for fast MA :param time_period_slow: number of days over which to average for slow MA :return: modified dataframe """ # get moving average values key_ma_fast = column_source + "-{:d}".format(time_period_fast) key_ma_slow = column_source + "-{:d}".format(time_period_slow) fast_series = df[key_ma_fast] slow_series = df[key_ma_slow] # compute golden cross / death cross and add results back to dataframe previous_fast_series = df[key_ma_fast].shift(1) previous_slow_series = df[key_ma_slow].shift(1) key_golden_cross = column_target_golden_cross + "-{:d}-{:d}".format(time_period_fast, time_period_slow) key_death_cross = column_target_death_cross + "-{:d}-{:d}".format(time_period_fast, time_period_slow) df[key_golden_cross] = (fast_series >= slow_series) & (previous_fast_series <= previous_slow_series) df[key_death_cross] = (fast_series <= slow_series) & (previous_fast_series >= previous_slow_series) return df def compute_bb_custom(df, column_source, column_target_bb, time_period, stdev_factor=2): """ Compute Bollinger Bands (BB) With Simple Moving Average (SMA). :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute SMA (e.g. close price) :param column_target_bb: prefix of target column in dataframe for BB results :param time_period: number of days over which to average :param stdev_factor: standard deviation scaling factor for upper and lower bands :return: modified dataframe """ # compute BB history_values = [] sma_values = [] upper_band_values = [] lower_band_values = [] for value in df[column_source]: history_values.append(value) if len(history_values) > time_period: del (history_values[0]) sma = stats.mean(history_values) sma_values.append(sma) variance = 0 # variance is the square of standard deviation for history_value in history_values: variance = variance + ((history_value - sma) ** 2) stdev = math.sqrt(variance / len(history_values)) # use sqrt to get standard deviation upper_band_values.append(sma + (stdev_factor * stdev)) lower_band_values.append(sma - (stdev_factor * stdev)) # add computed BB results back to dataframe key_sma = column_target_bb + "-sma-{:d}-{:d}".format(time_period, stdev_factor) key_upper_band = column_target_bb + "-upper-{:d}-{:d}".format(time_period, stdev_factor) key_lower_band = column_target_bb + "-lower-{:d}-{:d}".format(time_period, stdev_factor) df[key_sma] = sma_values df[key_upper_band] = upper_band_values df[key_lower_band] = lower_band_values return df def compute_bb(df, column_source, column_target_bb, time_period, stdev_factor=2): """ Compute Bollinger Bands (BB) With Simple Moving Average (SMA). :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute SMA (e.g. close price) :param column_target_bb: prefix of target column in dataframe for BB results :param time_period: number of days over which to average :param stdev_factor: standard deviation scaling factor for upper and lower bands :return: modified dataframe """ # compute BB and add results back to dataframe key_sma = column_target_bb + "-sma-{:d}-{:d}".format(time_period, stdev_factor) key_upper_band = column_target_bb + "-upper-{:d}-{:d}".format(time_period, stdev_factor) key_lower_band = column_target_bb + "-lower-{:d}-{:d}".format(time_period, stdev_factor) df[key_sma] = df[column_source].rolling(window=time_period, min_periods=1).mean() sma_stdev = df[column_source].rolling(window=time_period, min_periods=1).std(ddof=0) df[key_upper_band] = df[key_sma] + (sma_stdev * stdev_factor) df[key_lower_band] = df[key_sma] - (sma_stdev * stdev_factor) return df def compute_macd_custom( df, column_source, column_target_ema, column_target_macd, column_target_macd_signal, column_target_macd_histogram, time_period_fast, time_period_slow, time_period_macd): """ Compute Moving Average Convergence Divergence (MACD). When fast ema crosses above slow ema, it indicates a reversal from downtrend to uptrend. When fast ema crosses below slow ema, it indicates a reversal from uptrend to downtrend. When macd crosses above ema_macd (signal), it indicates a reversal from downtrend to uptrend. When macd crosses below ema_macd (signal), it indicates a reversal from uptrend to downtrend. :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute MACD (e.g. close price) :param column_target_ema: prefix of target column in dataframe for EMA results :param column_target_macd: name of target column in dataframe for MACD results :param column_target_macd_signal: name of target column in dataframe for MACD signal results :param column_target_macd_histogram: name of target column in dataframe for MACD histogram results :param time_period_fast: number of days over which to average for fast EMA :param time_period_slow: number of days over which to average for slow EMA :param time_period_macd: number of days over which to average for MACD EMA :return: modified dataframe """ k_fast = 2 / (time_period_fast + 1) # fast EMA smoothing factor ema_fast = 0 k_slow = 2 / (time_period_slow + 1) # slow EMA smoothing factor ema_slow = 0 k_macd = 2 / (time_period_macd + 1) # MACD EMA smoothing factor ema_macd = 0 ema_fast_values = [] ema_slow_values = [] macd_values = [] macd_signal_values = [] # EMA of MACD values macd_histogram_values = [] # MACD - MACD-EMA for value in df[column_source]: # compute MACD if ema_fast == 0: # first observation ema_fast = value ema_slow = value else: ema_fast = (value - ema_fast) * k_fast + ema_fast ema_slow = (value - ema_slow) * k_slow + ema_slow ema_fast_values.append(ema_fast) ema_slow_values.append(ema_slow) macd = ema_fast - ema_slow macd_values.append(macd) # compute MACD signal and histogram if ema_macd == 0: # first observation ema_macd = macd else: ema_macd = (macd - ema_macd) * k_macd + ema_macd # signal is EMA of MACD values macd_signal_values.append(ema_macd) macd_histogram_values.append(macd - ema_macd) # add computed results back to dataframe time_fast = str(time_period_fast) time_slow = str(time_period_slow) time_fast_slow_macd = time_fast + "-" + time_slow + "-" + str(time_period_macd) key_ema_fast = column_target_ema + "-" + time_fast key_ema_slow = column_target_ema + "-" + time_slow key_macd = column_target_macd + "-" + time_fast_slow_macd key_macd_signal = column_target_macd_signal + "-" + time_fast_slow_macd key_macd_histogram = column_target_macd_histogram + "-" + time_fast_slow_macd df[key_ema_fast] = ema_fast_values df[key_ema_slow] = ema_slow_values df[key_macd] = macd_values df[key_macd_signal] = macd_signal_values df[key_macd_histogram] = macd_histogram_values return df def compute_macd( df, column_source, column_target_ema, column_target_macd, column_target_macd_signal, column_target_macd_histogram, time_period_fast, time_period_slow, time_period_macd): """ Compute Moving Average Convergence Divergence (MACD). When fast ema crosses above slow ema, it indicates a reversal from downtrend to uptrend. When fast ema crosses below slow ema, it indicates a reversal from uptrend to downtrend. When macd crosses above ema_macd (signal), it indicates a reversal from downtrend to uptrend. When macd crosses below ema_macd (signal), it indicates a reversal from uptrend to downtrend. :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute MACD (e.g. close price) :param column_target_ema: prefix of target column in dataframe for EMA results :param column_target_macd: name of target column in dataframe for MACD results :param column_target_macd_signal: name of target column in dataframe for MACD signal results :param column_target_macd_histogram: name of target column in dataframe for MACD histogram results :param time_period_fast: number of days over which to average for fast EMA :param time_period_slow: number of days over which to average for slow EMA :param time_period_macd: number of days over which to average for MACD EMA :return: modified dataframe """ time_fast_slow_macd = "{:d}-{:d}-{:d}".format(time_period_fast, time_period_slow, time_period_macd) key_ema_fast = column_target_ema + "-{:d}".format(time_period_fast) key_ema_slow = column_target_ema + "-{:d}".format(time_period_slow) key_macd = column_target_macd + "-" + time_fast_slow_macd key_macd_signal = column_target_macd_signal + "-" + time_fast_slow_macd key_macd_histogram = column_target_macd_histogram + "-" + time_fast_slow_macd # compute EMA and add results back to dataframe df[key_ema_fast] = df[column_source].ewm(span=time_period_fast, adjust=False).mean() df[key_ema_slow] = df[column_source].ewm(span=time_period_slow, adjust=False).mean() # compute MACD and add results back to dataframe df[key_macd] = df[key_ema_fast] - df[key_ema_slow] df[key_macd_signal] = df[key_macd].ewm(span=time_period_macd, adjust=False).mean() df[key_macd_histogram] = df[key_macd] - df[key_macd_signal] return df def compute_rsi(df, column_source, column_target_avg_gain, column_target_avg_loss, column_target_rsi, time_periods): """ Compute Relative Strength Indicator (RSI). RSI values over 50% indicate an uptrend, while values below 50% indicate a downtrend. :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute RSI (e.g. close price) :param column_target_avg_gain: name of target column in dataframe for average gain results :param column_target_avg_loss: name of target column in dataframe for average loss results :param column_target_rsi: name of target column in dataframe for RSI results :param time_periods: list ot time periods (in days) over which to look back to compute gains and losses :return: modified dataframe """ # compute RSI over time period and add results back to dataframe for time_period in time_periods: gain_history_values = [] # history of gains over look back period (0 if no gain, magnitude of gain if gain) loss_history_values = [] # history of loss over look back period (0 if no loss, magnitude if loss) avg_gain_values = [] avg_loss_values = [] rsi_values = [] last_value = 0 # current_value - last_value > 0 ==> gain; current_value - last_value < 0 ==> loss for value in df[column_source]: if last_value == 0: # first observation last_value = value # compute average gain and loss gain_history_values.append(max(0, value - last_value)) loss_history_values.append(max(0, last_value - value)) last_value = value if len(gain_history_values) > time_period: # maximum observations is equal to look back period del (gain_history_values[0]) del (loss_history_values[0]) avg_gain = stats.mean(gain_history_values) # average gain over look back period avg_loss = stats.mean(loss_history_values) # average loss over look back period avg_gain_values.append(avg_gain) avg_loss_values.append(avg_loss) # compute RS and RSI rs = 0 if avg_loss > 0: # to avoid division by 0 rs = avg_gain / avg_loss rsi = 100 - (100 / (1 + rs)) rsi_values.append(rsi) # add computed results back to dataframe key_avg_gain = column_target_avg_gain + "-{:d}".format(time_period) key_avg_loss = column_target_avg_loss + "-{:d}".format(time_period) key_rsi = column_target_rsi + "-{:d}".format(time_period) df[key_avg_gain] = avg_gain_values df[key_avg_loss] = avg_loss_values df[key_rsi] = rsi_values return df def compute_change(df, column_source, column_target_change, column_target_change_pc, time_periods): """ Compute the change and percentage change of the values in the source column for the specified period in (trading) days. :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute change (e.g. close price) :param column_target_change: name of target column in dataframe for change to add to dataframe :param column_target_change_pc: name of target column in dataframe for change pc to add to dataframe :param time_periods: list of time periods in (trading) days :return: modified dataframe """ # compute change over time period and add result back to dataframe for time_period in time_periods: key_change = column_target_change + "-{:d}".format(time_period) key_change_pc = column_target_change_pc + "-{:d}".format(time_period) #df2 = df[column_source].asfreq("D", method="ffill") #change_series = df2.diff(time_period) #change_pc_series = df2.pct_change(time_period) #df[key_change] = change_series #df[key_change_pc] = change_pc_series change_series = df[column_source].diff(time_period) change_pc_series = df[column_source].pct_change(time_period) df[key_change] = change_series df[key_change_pc] = change_pc_series return df def compute_daily_change_between_current_and_previous( df, column_source_current, column_source_previous, column_target_daily_change, column_target_daily_change_pc): """ Compute the daily change and daily percentage change between the current and previous values. :param df: dataframe (sorted in ascending time order) :param column_source_current: name of source column in dataframe with current values to compute (e.g. current open price) :param column_source_previous: name of source column in dataframe with previous values to compute (e.g. previous close price) :param column_target_daily_change: name of target column in dataframe for daily change to add to dataframe :param column_target_daily_change_pc: name of target column in dataframe for daily change pc to add to dataframe :return: modified dataframe """ # NOT CORRECT? daily_change = df[column_source_current] - df[column_source_previous].shift(1) # daily_change_pc = daily_change.pct_change(1) daily_change_pc = df[column_source_previous].pct_change(1) # add computed results back to dataframe df = pd.concat([df, daily_change.rename(column_target_daily_change)], axis=1) df = pd.concat([df, daily_change_pc.rename(column_target_daily_change_pc)], axis=1) return df def compute_52_week_range(df, column_source_low, column_source_high, column_target_low, column_target_high): """ Compute 52 Week Range (Low~High). :param df: dataframe (sorted in ascending time order) :param column_source_low: name of source column in dataframe with low values to compute :param column_source_high: name of source column in dataframe with high values to compute :param column_target_low: name of target column in dataframe for low range results to add to dataframe :param column_target_high: name of target column in dataframe for high range results to add to dataframe :return: modified dataframe """ # compute rolling 52 week range and add result back to dataframe df[column_target_low] = df[column_source_low].asfreq("D").rolling(window=52*7, min_periods=1).min(); df[column_target_high] = df[column_source_high].asfreq("D").rolling(window=52*7, min_periods=1).max(); return df def compute_change_pc_above(df, column_source1, column_source2, column_target, column_target_pc): """ Compute the percentage of source1 above source2 (e.g. close price above the 52 week low price). :param df: dataframe (sorted in ascending time order) :param column_source1: name of source1 column in dataframe with values to compute (e.g. close price) :param column_source2: name of source2 column in dataframe with values to compute (e.g. 52 week low price) :param column_target: name of target column in dataframe for change results to add to dataframe :param column_target_pc: name of target column in dataframe for percentage change results to add to dataframe :return: modified dataframe """ change_above = df[column_source1] - df[column_source2] pc_above = (df[column_source1] / df[column_source2]) - 1 # add computed results back to dataframe df = pd.concat([df, change_above.rename(column_target)], axis=1) df = pd.concat([df, pc_above.rename(column_target_pc)], axis=1) return df def compute_change_pc_below(df, column_source1, column_source2, column_target, column_target_pc): """ Compute the percentage of source1 below source2 (e.g. close price below the 52 week high price). :param df: dataframe (sorted in ascending time order) :param column_source1: name of source1 column in dataframe with values to compute (e.g. close price) :param column_source2: name of source2 column in dataframe with values to compute (e.g. 52 week high price) :param column_target: name of target column in dataframe for change results to add to dataframe :param column_target_pc: name of target column in dataframe for percentage change results to add to dataframe :return: modified dataframe """ change_below = df[column_source2] - df[column_source1] pc_below = 1 - (df[column_source1] / df[column_source2]) # add computed results back to dataframe df = pd.concat([df, change_below.rename(column_target)], axis=1) df = pd.concat([df, pc_below.rename(column_target_pc)], axis=1) return df def compute_sharpe(df, column_source, column_target, N=252): """ Compute the sharpe ratio of the (e.g. daily) return values in the source column. :param df: dataframe (sorted in ascending time order) :param column_source: name of source column in dataframe with values to compute sharpe ratio (e.g. daily returns) :param column_target: name of target column in dataframe for sharpe ratio to add to dataframe :param N: number of trading periods (e.g. 252 = daily, 12 = monthly) :return: modified dataframe """ # compute the sharpe ratio and add result back to dataframe return_series = df[column_source] df[column_target] = np.sqrt(N) * return_series.mean() / return_series.std() return df def compute_cumulative_total_return(df, column_price): """ Cumulative return on an investment is the aggregate amount that the investment has gained or lost over time, independent of the amount of time involved. cumulative total return = (price_end - price_start) / price_start = (price_end/price_start) - 1 :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute cumulative total return :return: cumulative total return """ # compute cumulative total return price_start = df[column_price][0] price_end = df[column_price][-1] cumulative_return = (price_end - price_start)/price_start return cumulative_return def compute_annualized_total_return_over_years(df, column_price, years): """ Computed the annualized total return over the specified number of years. This is equivalent to Compound Annual Growth Rate (CAGR). Note: If the period is less than one year, it is best not to use annualized total return as it could result in a very large (positive or negative) number that is not meaningful. :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute annualized total return :param years: time period in years (e.g. 1 = 1 year, 2 = 2 years, 2.5 = 1 year and 6 months, etc.) :return: annualized total return over years """ # compute cumulative total return total_return = compute_cumulative_total_return(df, column_price) # compute annualized total returns over months annualized_total_return = ((1 + total_return)**(1/years)) - 1 return annualized_total_return def compute_annualized_total_return_over_months(df, column_price, months): """ Computed the annualized total return over the specified number of months. This is equivalent to Compound Annual Growth Rate (CAGR). Note: If the period is less than one year, it is best not to use annualized total return as it could result in a very large (positive or negative) number that is not meaningful. :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute annualized total return :param months: time period in months (e.g. 1 = 1 month, 2 = 2 months, 2.5 = 1 month and ~15 days, etc.) :return: annualized total return over months """ # calculate cumulative total return total_return = compute_cumulative_total_return(df, column_price) # calculate annualized total returns over months annualized_total_return = ((1 + total_return)**(12/months)) - 1 return annualized_total_return def compute_annualized_total_return_over_calendar_days(df, column_price): """ Computed the annualized total return over the provided number of calendar days. This is equivalent to Compound Annual Growth Rate (CAGR). Note: Using days (versus years or months) provides the most precise form of annualized return calculation. Note: If the period is less than one year, it is best not to use annualized total return as it could result in a very large (positive or negative) number that is not meaningful. :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute annualized total return :return: annualized total return over days """ # calculate cumulative total return total_return = compute_cumulative_total_return(df, column_price) # fill in missing calendar days index_filled = pd.date_range(min(df.index), max(df.index)) df_filled = df.reindex(index_filled, method="ffill") # number of calendar days in data # note: dataframe includes one day before the desired range; for example, if we want to get the annualized total # return from 4/1/2000 to 3/31/2002, the dataframe will contain data from 3/31/2000 to 3/31/2002; as a result, # the number of calendar days is (len(df) - 1) calendar_days = len(df_filled) - 1 # calculate annualized total returns over days annualized_total_return = ((1 + total_return)**(c.CALENDAR_DAYS/calendar_days)) - 1 return annualized_total_return def compute_annualized_total_return_over_trading_days(df, column_price): """ Computed the (trailing) annualized total return over the provided number of trading days. This is equivalent to Compound Annual Growth Rate (CAGR). Note: Using days (versus years or months) provides the most precise form of annualized return calculation. Note: If the period is less than one year, it is best not to use annualized total return as it could result in a very large (positive or negative) number that is not meaningful. :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute annualized total return :return: annualized total return over days """ # calculate cumulative total return total_return = compute_cumulative_total_return(df, column_price) # number of trading days in data # note: dataframe includes one day before the desired range; for example, if we want to get the annualized total # return from 4/1/2000 to 3/31/2002, the dataframe will contain data from 3/31/2000 to 3/31/2002; as a result, # the number of trading days is (len(df) - 1) trading_days = len(df) - 1 # calculate annualized total returns over number of trading days annualized_total_return = ((1 + total_return)**(c.TRADING_DAYS_YEAR/trading_days)) - 1 return annualized_total_return def compute_trailing_returns(df, symbol): dict_returns = {"symbol": symbol} # compute total return (trailing 1 month) end = df.index[-1] start = end - pd.DateOffset(months=1) dict_returns[c.TRAILING_RETURN + "-1m"] = compute_cumulative_total_return(df.loc[start:end], c.CLOSE) # compute total return (trailing 3 month) end = df.index[-1] start = end -
pd.DateOffset(months=3)
pandas.DateOffset
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/8 22:08 Desc: 金十数据中心-经济指标-美国 https://datacenter.jin10.com/economic """ import json import time import pandas as pd import demjson import requests from akshare.economic.cons import ( JS_USA_NON_FARM_URL, JS_USA_UNEMPLOYMENT_RATE_URL, JS_USA_EIA_CRUDE_URL, JS_USA_INITIAL_JOBLESS_URL, JS_USA_CORE_PCE_PRICE_URL, JS_USA_CPI_MONTHLY_URL, JS_USA_LMCI_URL, JS_USA_ADP_NONFARM_URL, JS_USA_GDP_MONTHLY_URL, ) # 东方财富-美国-未决房屋销售月率 def macro_usa_phs(): """ 未决房屋销售月率 http://data.eastmoney.com/cjsj/foreign_0_5.html :return: 未决房屋销售月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { 'type': 'GJZB', 'sty': 'HKZB', 'js': '({data:[(x)],pages:(pc)})', 'p': '1', 'ps': '2000', 'mkt': '0', 'stat': '5', 'pageNo': '1', 'pageNum': '1', '_': '1625474966006' } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json['data']]) temp_df.columns = [ '时间', '前值', '现值', '发布日期', ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) return temp_df # 金十数据中心-经济指标-美国-经济状况-美国GDP def macro_usa_gdp_monthly(): """ 美国国内生产总值(GDP)报告, 数据区间从20080228-至今 https://datacenter.jin10.com/reportType/dc_usa_gdp :return: pandas.Series 2008-02-28 0.6 2008-03-27 0.6 2008-04-30 0.9 2008-06-26 1 2008-07-31 1.9 ... 2019-06-27 3.1 2019-07-26 2.1 2019-08-29 2 2019-09-26 2 2019-10-30 0 """ t = time.time() res = requests.get( JS_USA_GDP_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国国内生产总值(GDP)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "53", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gdp" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告 def macro_usa_cpi_monthly(): """ 美国CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_cpi https://cdn.jin10.com/dc/reports/dc_usa_cpi_all.js?v=1578741110 :return: 美国CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CPI_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国居民消费价格指数(CPI)(月环比)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "9", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "cpi_monthly" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国核心CPI月率报告 def macro_usa_core_cpi_monthly(): """ 美国核心CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_cpi https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v=1578740570 :return: 美国核心CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心CPI月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "6", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_cpi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国个人支出月率报告 def macro_usa_personal_spending(): """ 美国个人支出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_personal_spending https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v=1578741327 :return: 美国个人支出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国个人支出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "35", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_personal_spending" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告 def macro_usa_retail_sales(): """ 美国零售销售月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_retail_sales https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v=1578741528 :return: 美国零售销售月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国零售销售月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "39", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_retail_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国进口物价指数报告 def macro_usa_import_price(): """ 美国进口物价指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_import_price https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v=1578741716 :return: 美国进口物价指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国进口物价指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "18", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_import_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国出口价格指数报告 def macro_usa_export_price(): """ 美国出口价格指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_export_price https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v=1578741832 :return: 美国出口价格指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国出口价格指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "79", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_export_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-LMCI def macro_usa_lmci(): """ 美联储劳动力市场状况指数报告, 数据区间从20141006-至今 https://datacenter.jin10.com/reportType/dc_usa_lmci https://cdn.jin10.com/dc/reports/dc_usa_lmci_all.js?v=1578742043 :return: 美联储劳动力市场状况指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_LMCI_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美联储劳动力市场状况指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "93", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "lmci" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国失业率报告 def macro_usa_unemployment_rate(): """ 美国失业率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_unemployment_rate https://cdn.jin10.com/dc/reports/dc_usa_unemployment_rate_all.js?v=1578821511 :return: 获取美国失业率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_UNEMPLOYMENT_RATE_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国失业率"] for item in json_data["list"]] value_df =
pd.DataFrame(value_list)
pandas.DataFrame
# -*- coding: utf-8 -*- """ 单变量分析中常用工具,主要包含以下几类工具: 1、自动分箱(降基)模块:包括卡方分箱、Best-ks分箱 2、基本分析模块,单变量分析工具,以及woe编码工具,以及所有变量的分析报告 3、单变量分析绘图工具,如AUC,KS,分布相关的图 """ # Author: <NAME> import numpy as np import pandas as pd from abc import abstractmethod from abc import ABCMeta from sklearn.utils.multiclass import type_of_target from pandas.api.types import is_numeric_dtype import warnings import time from openpyxl import Workbook from openpyxl.utils.dataframe import dataframe_to_rows class Kit(object): """ 常用工具类 """ def __init__(self, positive_label=1, negative_label=0): self.positive_label = positive_label self.negative_label = negative_label pass def cond_insert_ind(self, cond, ind): """ 为分箱结果中添加需要独立分箱的部分 cond : 待处理的分箱结果 arr : 需要独立分箱的数据集合,不管是数值型还是非数值型变量cond,请使用list添加 """ if isinstance(cond, list): cond = list(set(cond + ind)) cond.sort() else: n = len(ind) arr = list(set(ind).difference(set(cond.keys()))) for k, v in cond.items(): cond[k] = v + n for i in range(len(arr)): cond[arr[i]] = i return cond def make_bin(self, df, var_name, cond, precision=3): """ 基于cond中的分箱条件,为df中var_name的变量匹配对应的分箱值 """ if isinstance(cond, list): df["bin"] = pd.cut(df[var_name], cond, duplicates='drop', precision=precision) elif isinstance(cond, dict): mapping = pd.Series(cond).reset_index().rename({"index": var_name, 0: "bin"}, axis=1) df = df[[var_name]].merge(mapping, on=var_name, how='left').set_index(df[[var_name]].index) else: raise ValueError("参数cond的类型只能为list或者dict") return df["bin"] def woe_code(self, df, var_name, woeDict): """ 对样本的数据进行woe编码,返回完成编码后的 """ if isinstance(df[var_name].dtype, pd.core.dtypes.dtypes.CategoricalDtype): mapping = pd.Series(woeDict).reset_index().rename({"index": var_name, 0: "woe"}, axis=1) breaks = mapping[var_name].to_list() breaks.insert(0, -np.inf) mapping[var_name] = pd.cut(mapping[var_name], breaks, duplicates="drop") else: mapping = pd.Series(woeDict).reset_index().rename({"index": var_name, 0: "woe"}, axis=1) df = df.merge(mapping, on=var_name, how='left').set_index(df.index) return df["woe"] def univerate(self, df, var_name, target, lamb=0.001, retWoeDict=False): """ 单变量分析函数,目前支持的计算指标为 IV,KS,LIFT 建议用于编码后的数值型变量进行分析,若在前面使用了cond_insert方法调整了cond """ # dti = pd.crosstab(df[var_name], df[target]) dti = df.groupby([var_name, target])[target].count().unstack().fillna(0) dti.rename({self.positive_label: "positive", self.negative_label: "negative"}, axis=1, inplace=True) dti["positive"] = dti["positive"].astype(int) dti["negative"] = dti["negative"].astype(int) p_t = dti["positive"].sum() n_t = dti["negative"].sum() t_t = p_t + n_t r_t = p_t / t_t dti["total"] = dti["positive"] + dti["negative"] dti["total_rate"] = dti["total"] / t_t dti["positive_rate"] = dti["positive"] / dti["total"] # (rs["positive"] + rs["negative"]) dti["negative_cum"] = dti["negative"].cumsum() dti["positive_cum"] = dti["positive"].cumsum() dti["woe"] = np.log(((dti["negative"] / n_t) + lamb) / ((dti["positive"] / p_t) + lamb)) dti["LIFT"] = dti["positive_rate"] / r_t dti["KS"] = np.abs((dti["positive_cum"] / p_t) - (dti["negative_cum"] / n_t)) dti["IV"] = (dti["negative"] / n_t - dti["positive"] / p_t) * dti['woe'] IV = dti["IV"].sum() KS = dti["KS"].max() dti["IV"] = IV dti["KS"] = KS dti = dti.reset_index() dti.columns.name = None dti.rename({"Total": "num", var_name: "bin"}, axis=1, inplace=True) dti.insert(0, "target", [target] * dti.shape[0]) dti.insert(0, "var", [var_name] * dti.shape[0]) if retWoeDict: if isinstance(dti["bin"].dtype, pd.core.dtypes.dtypes.CategoricalDtype): dti["v"] = dti["bin"].map(lambda x: x.right) else: dti["v"] = dti["bin"] woeDict = pd.Series(dti["woe"].values, index=dti["v"].values).to_dict() # # 修正根据分箱后,空分组,对应的woe值 # if cond0 is not None: # right0 = set(cond0[1:]) # right1 = set(woeDict.keys()) # for key in right0.difference(right1): # woeDict[key] = 0 dti.drop(columns=["negative_cum", "positive_cum", "v"], inplace=True) return dti, woeDict dti.drop(columns=["negative_cum", "positive_cum"], inplace=True) return dti def is_numeric(self, series): """ 判断变量是否为数值型变量 """ return is_numeric_dtype(series) def missing_count(self, series): """ 计算变量缺失率 """ missing_index = pd.isna(series) return missing_index.sum() def unique_count(self, series): """ 计算变量的枚举值数量 """ unique_arr = pd.unique(series) return unique_arr.size def csi(self, base, df, var_name): """ 计算不同数据集之间,同一个变量csi """ count1 = base.groupby(var_name)[var_name].count() count2 = df.groupby(var_name)[var_name].count() t1 = count1.sum() t2 = count2.sum() c1 = count1 / t1 c2 = count2 / t2 csi = (c1 - c2) * np.log(c1 / c2) return csi.sum() def group_rs(self, data, group, sum_col=[], count_col=[], rate_tupes=[]): """ 业务分析工具类,同时对比计算多个target指标,查看结果 data : 数据集 sum_col : 需要group_sum的列 count_col : 需要group_count的列 rate_tupe : 需要除法计算的列 格式为 (字段1,字段2,新列名称) 或者 (字段,新列名称) """ grouped = data.groupby(group) grouped_count = grouped[count_col].count() grouped_sum = grouped[sum_col].sum() grouped = pd.concat([grouped_count, grouped_sum], axis=1) for tup in rate_tupes: size = len(tup) if size == 3: grouped[tup[2]] = grouped[tup[0]] / grouped[tup[1]] if size == 2: grouped[tup[1]] = grouped[tup[0]] / grouped[tup[0]].sum() return grouped.reset_index() def batch_fillna(self, df, var_list, num_fill=-1, cate_fill="NA", suffix="_new"): """ 批量填充缺失值 """ for var_name in var_list: var_name_new = var_name + suffix if self.is_numeric(df[var_name]): df[var_name_new] = df[var_name].fillna(num_fill) else: df[var_name_new] = df[var_name].fillna(cate_fill) return df def varlist_suffix(self, var_list, suffix): return [var_name + suffix for var_name in var_list] def feature_engine(self, datas, var_list, target, discretize, max_bin=6, precision=4, num_fill=-1, cate_fill="NA", num_ind=None, cate_ind=None, fill_suffix="_fill", bin_suffix="_bin", woe_suffix="_woe", path=None): """ 批量对数据集进行自动化分箱和编码 Parameters ---------- datas: 数据集,为dataframe的list,第一个数据集为训练集 var_list: 特征列表 target : 目标值 discretize : 分箱工具类 max_bin : 最大分箱数 num_fill : 数值型变量填充结果 cate_fill : 类别型变量填充结果 num_ind : 数值型变量中,需要独立插入的分箱 为 list cate_ind : 字符型变量中,需要独立进行分箱的值 为 list fill_suffix : 处理确实 bin_suffix : 分箱后生成对应分箱的后缀 woe_suffix : woe编码后的编码的后缀 retInfoDict : 返回分箱后的变量信息,采用嵌套的dict格式,单个变量的相关信息如下: 变量名 : { "cond" , "woeDict" } """ assert len(datas) >= 1, "至少需要一个数据集" train = datas[0] all_data =
pd.concat(datas, axis=1)
pandas.concat
import pandas as pd import sqlite3 import sys import datetime _db_path = 'Database\Database.db' class GetData(object): @staticmethod def Equity(Ticker, Start=None, End = None): connection = sqlite3.connect(_db_path) cursor = connection.cursor() if (Start == None) & (End == None): cursor.execute("SELECT Date, Open, High, Low, Close, Volume, Dividends, AdjClose FROM Equity WHERE Ticker = ?",(Ticker,)) elif End == None: cursor.execute("SELECT Date, Open, High, Low, Close, Volume, Dividends, AdjClose FROM Equity WHERE Ticker = ? AND Date >= ?",(Ticker, Start)) elif Start == None: cursor.execute("SELECT Date, Open, High, Low, Close, Volume, Dividends, AdjClose FROM Equity WHERE Ticker = ? AND Date <= ?",(Ticker, End)) elif (Start != None) & (End != None): cursor.execute("SELECT Date, Open, High, Low, Close, Volume, Dividends, AdjClose FROM Equity WHERE Ticker = ? AND Date BETWEEN ? AND ?",(Ticker, Start, End)) else: raise Exception("Error in getting data from db(Equity).") data = cursor.fetchall() connection.close() Date_list = [] Open_list = [] High_list = [] Low_list = [] Close_list = [] Volume_list = [] Dividends_list = [] AdjClose_list = [] for row in data: Date_list.append(row[0]) Open_list.append(row[1]) High_list.append(row[2]) Low_list.append(row[3]) Close_list.append(row[4]) Volume_list.append(row[5]) Dividends_list.append(row[6]) AdjClose_list.append(row[7]) df = pd.DataFrame(index = Date_list, columns = ["Open","High","Low","Close","Volume","Dividends","AdjClose"]) df.index = pd.to_datetime(df.index) df['Open'] = Open_list df['High'] = High_list df['Low'] = Low_list df['Close'] = Close_list df['Volume'] = Volume_list df['Dividends'] = Dividends_list df['AdjClose'] = AdjClose_list df.sort_index() df.index.name = 'Date' return df @staticmethod def Get_EquityName(Ticker): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("SELECT Name FROM EquityList WHERE Ticker = ?",(Ticker,)) data = cursor.fetchall() connection.close() return data[0][0] @staticmethod def Multi_Equity(Tickers, Start = None, End = None): if (Start == None) & (End == None): Start = '1980-01-01' End = datetime.datetime.today().strftime('%Y-%m-%d') elif End == None: End = datetime.datetime.today().strftime('%Y-%m-%d') elif Start == None: Start = '1980-01-01' else: raise Exception("Error in datetime parameters.") df = pd.DataFrame(columns = Tickers, index = pd.date_range(start = Start, end = End, freq = 'D')) for Ticker in Tickers: df[Ticker] = GetData.Equity(Ticker, Start, End)['AdjClose'] return df.dropna(how = 'all') @staticmethod def Futures(Ticker, Start=None, End = None): connection = sqlite3.connect(_db_path) cursor = connection.cursor() if (Start == None) & (End == None): cursor.execute("SELECT Date, Open, High, Low, Settle, Volume, OI FROM Futures WHERE Ticker = ?",(Ticker,)) elif End == None: cursor.execute("SELECT Date, Open, High, Low, Settle, Volume, OI FROM Futures WHERE Ticker = ? AND Date >= ?",(Ticker, Start)) elif Start == None: cursor.execute("SELECT Date, Open, High, Low, Settle, Volume, OI FROM Futures WHERE Ticker = ? AND Date <= ?",(Ticker, End)) elif (Start != None) & (End != None): cursor.execute("SELECT Date, Open, High, Low, Settle, Volume, OI FROM Futures WHERE Ticker = ? AND Date BETWEEN ? AND ?",(Ticker, Start, End)) else: raise Exception("Error in getting data from db(Futures).") data = cursor.fetchall() connection.close() Date_list = [] Open_list = [] High_list = [] Low_list = [] Settle_list = [] Volume_list = [] OI_list = [] for row in data: Date_list.append(row[0]) Open_list.append(row[1]) High_list.append(row[2]) Low_list.append(row[3]) Settle_list.append(row[4]) Volume_list.append(row[5]) OI_list.append(row[6]) df = pd.DataFrame(index = Date_list, columns = ["Open","High","Low","Settle","Volume","OI"]) df.index = pd.to_datetime(df.index) df['Open'] = Open_list df['High'] = High_list df['Low'] = Low_list df['Settle'] = Settle_list df['Volume'] = Volume_list df['OI'] = OI_list df.sort_index() return df @staticmethod def Macro(Ticker, Start=None, End = None): connection = sqlite3.connect(_db_path) cursor = connection.cursor() if (Start == None) & (End == None): cursor.execute("SELECT Date,Value FROM Futures WHERE Ticker = ?",(Ticker,)) elif End == None: cursor.execute("SELECT Date,Value FROM Futures WHERE Ticker = ? AND Date >= ?",(Ticker, Start)) elif Start == None: cursor.execute("SELECT Date,Value FROM Futures WHERE Ticker = ? AND Date <= ?",(Ticker, End)) elif (Start != None) & (End != None): cursor.execute("SELECT Date,Value FROM Futures WHERE Ticker = ? AND Date BETWEEN ? AND ?",(Ticker, Start, End)) else: raise Exception("Error in getting data from db(Macro).") data = cursor.fetchall() connection.close() Date_list = [] Value_list = [] for row in data: Date_list.append(row[0]) Value_list.append(row[1]) df = pd.DataFrame(index = Date_list, columns = ["Value"]) df.index = pd.to_datetime(df.index) df['Value'] = Value_list df.sort_index() return df @staticmethod def Summary_table(): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("SELECT * FROM Summary_table") data = cursor.fetchall() connection.close() Category_list = [] Ticker_list = [] Start_list = [] End_list = [] Count_list = [] for row in data: Category_list.append(row[0]) Ticker_list.append(row[1]) Start_list.append(row[2]) End_list.append(row[3]) Count_list.append(row[4]) df = pd.DataFrame(index = range(len(Ticker_list)),columns = ['Category','Ticker','Start','End','Count']) df['Category'] = Category_list df['Ticker'] = Ticker_list df['Start'] = Start_list df['End'] = End_list df['Count'] = Count_list return df class InsertData(object): @staticmethod def Equity(Ticker,df): connection = sqlite3.connect(_db_path) cursor = connection.cursor() NumberOfData = len(df) for i in range(NumberOfData): Date = str(df.index[i])[:10] Open = df['Open'][i] High = df['High'][i] Low = df['Low'][i] Close = df['Close'][i] Volume = df['Volume'][i] Dividends = df['Dividends'][i] AdjClose = df['AdjClose'][i] LastUpdated = df['LastUpdated'][i] cursor.execute("INSERT OR REPLACE INTO Equity VALUES (?,?,?,?,?,?,?,?,?,?)",(Ticker,Date, float(Open), float(High), float(Low), float(Close), int(Volume), str(Dividends), float(AdjClose), str(LastUpdated))) sys.stderr.write("[info] wrote %s rows to db. \n" % (len(df))) connection.commit() connection.close() sys.stderr.write("[info] %s data created successfully.\n" % (Ticker)) @staticmethod def Futures(Ticker,df): connection = sqlite3.connect(_db_path) cursor = connection.cursor() NumberOfData = len(df) for i in range(NumberOfData): Date = str(df.index[i])[:10] Open = df['Open'][i] High = df['High'][i] Low = df['Low'][i] Settle = df['Settle'][i] Volume = df['Volume'][i] OI = df['OI'][i] cursor.execute("INSERT OR REPLACE INTO Futures VALUES (?,?,?,?,?,?,?,?)",(Ticker,Date, Open, High, Low, Settle, Volume, OI)) sys.stderr.write("[info] wrote %s rows to db. \n" % (len(df))) connection.commit() connection.close() sys.stderr.write("[info] %s data created successfully.\n" % (Ticker)) @staticmethod def Macro(Ticker,df): connection = sqlite3.connect(_db_path) cursor = connection.cursor() NumberOfData = len(df) for i in range(NumberOfData): Date = str(df.index[i])[:10] Value = df['Value'][i] cursor.execute("INSERT OR REPLACE INTO Macro VALUES (?,?,?)",(Ticker,Date, Value)) sys.stderr.write("[info] wrote %s rows to db. \n" % (len(df))) connection.commit() connection.close() sys.stderr.write("[info] %s data created successfully.\n" % (Ticker)) class DeleteData(object): @staticmethod def Equity(Ticker): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("DELETE FROM Equity WHERE Ticker = ?",(Ticker,)) connection.commit() connection.close() @staticmethod def Futures(Ticker): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("DELETE FROM Futures WHERE Ticker = ?",(Ticker,)) connection.commit() connection.close() @staticmethod def Macro(Ticker): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("DELETE FROM Macro WHERE Ticker = ?",(Ticker,)) connection.commit() connection.close() @staticmethod def SummaryData(): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("DELETE FROM Summary_table") connection.commit() connection.close() class SummaryData(object): @staticmethod def Equity(): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("SELECT Ticker, MIN(Date), MAX(Date), COUNT(Ticker) FROM Equity GROUP BY Ticker") data = cursor.fetchall() for each in data: cursor.execute("INSERT OR REPLACE INTO Summary_table VALUES (?,?,?,?,?)",('Equity',each[0],each[1],each[2],each[3])) connection.commit() connection.close() @staticmethod def Futures(): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("SELECT Ticker, MIN(Date), MAX(Date), COUNT(Ticker) FROM Futures GROUP BY Ticker") data = cursor.fetchall() for each in data: cursor.execute("INSERT OR REPLACE INTO Summary_table VALUES (?,?,?,?,?)",('Futures',each[0],each[1],each[2],each[3])) connection.commit() connection.close() @staticmethod def Macro(): connection = sqlite3.connect(_db_path) cursor = connection.cursor() cursor.execute("SELECT Ticker, MIN(Date), MAX(Date), COUNT(Ticker) FROM Macro GROUP BY Ticker") data = cursor.fetchall() for each in data: cursor.execute("INSERT OR REPLACE INTO Summary_table VALUES (?,?,?,?,?)",('Macro',each[0],each[1],each[2],each[3])) connection.commit() connection.close() class Metadata(object): @staticmethod def Insert_FRED(): path = 'metadata/FRED_metadata.csv' data = pd.read_csv(path) connection = sqlite3.connect(_db_path) cursor = connection.cursor() for i in range(len(data)): cursor.execute("INSERT INTO FRED_metadata VALUES (?,?,?,?,?,?)",(data.ix[i][0],data.ix[i][1],data.ix[i][2],data.ix[i][3],data.ix[i][4],data.ix[i][5])) connection.commit() connection.close() @staticmethod def Insert_CHRIS(): path = 'metadata/CHRIS_metadata.csv' data =
pd.read_csv(path)
pandas.read_csv
import numpy as np import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt import seaborn as sns from os.path import exists from pathlib import Path from scipy.constants import value def change_width(ax, new_value) : for patch in ax.patches : current_width = patch.get_width() diff = current_width - new_value # we change the bar width patch.set_width(new_value) # we recenter the bar patch.set_x(patch.get_x() + diff * .5) def load_consistency_result(filename): data = pd.read_csv(filename, header=None) data = data.iloc[:, 0:2].copy() #print(data) data.columns = ["Ontology", "IsConsitency"] return data def load_evaluation_csv(file_name): columns = ["Ontology", "Run1", "Run2", "Run3", "Run4", "Run5", "Run6", "Run7", "Run8", "Run9", "Run10", "Mean", "Median"] data = pd.read_csv(file_name, header=None, names=columns) total = data.shape[0] isNumeric = data.iloc[:, 1:11].copy() isNumeric = isNumeric.apply(lambda s: pd.to_numeric(s, errors='coerce').notnull().all(), axis=1) isNumeric = isNumeric.index[isNumeric].tolist() timeout = data.applymap(lambda x: 'timeout' in str(x).lower() ).any(axis=1) timeout = data[timeout].copy() time_count = timeout.shape[0] #data = data.apply(lambda x: "Timeout" if 'timeout' in str(x).lower() and x.name in ["Mean"] else x, axis=1) inconstent = data.applymap(lambda x: 'inconsistentontology' in str(x).lower()).any(axis=1) inconstent = data[inconstent].copy() inconstent_count = inconstent.shape[0] #data = data.apply(lambda x: "Inconsistent Error" if 'inconsistentontology' in str(x).lower() and x.name in ["Mean"] else x, axis=1) mem = data.applymap(lambda x: 'outofmemory' in str(x).lower()).any(axis=1) mem = data[mem].copy() mem_count = mem.shape[0] #data = data.apply(lambda x: "Inconsistent Error" if 'outofmemory' in str(x).lower() and x.name in ["Mean"] else x, axis=1) #data = data.apply(lambda x: "Other Error" if np.isnan(x["Mean"] and x.name in ["Mean"]) else x, axis=1) new_column = data.apply(lambda x: x["Run1"] if np.isnan(x["Mean"]) else x["Mean"], axis=1) new_column = new_column.apply(lambda x: "OutOfMemeory" if 'outofmemory' in str( x).lower() else x) new_column = new_column.apply(lambda x: "Inconsistent Error" if 'inconsistentontology' in str(x).lower() else x) new_column = new_column.apply(lambda x: "Timeout" if 'timeout' in str(x).lower() else x) new_column = new_column.apply(lambda x: "Other Error" if 'timeout' not in str(x).lower() and 'inconsistentontology' not in str(x).lower() and 'outofmemory' not in str(x).lower() and not np.isreal(x) else x) data["Mean"] = new_column new_data = data.iloc[isNumeric].copy() return new_data, data, total, time_count, inconstent_count, mem_count if __name__ == '__main__': #stat_csv_file = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\ORE2015_Statistics.csv" stat_realization_csv_file = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\ORE2015_Realization_Ontology_Statistics.csv" #input_folder: str = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\ORE2015\\" # output_folder = "./output/" #ore2015=True stat_csv_file = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\BioOntology_Statistics.csv" input_folder: str = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\Bio\\" output_folder = "./output/Bio/" ore2015 = False Path(output_folder).mkdir(parents=True, exist_ok=True) reasoner_name = ["Factpp", "HermiT", "JFact", "Konclude", "Openllet", "Pellet", "KoncludeCLI"] task_name = [ "Loading", "Consistency", "Classification", "Realization"] ontology_loading_file = input_folder + "Ontology_Loading.csv" t_ontology_loading, old_data, total, timeout, inconsistent_error_count, mem = load_evaluation_csv(ontology_loading_file) ontology_loading = t_ontology_loading[["Ontology", "Mean"]].copy() ontology_loading.columns = ["Ontology", "Ontology Loading"] stats = pd.read_csv(stat_csv_file) if ore2015: stats_realization =
pd.read_csv(stat_realization_csv_file)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']})
tm.assert_frame_equal(df, expected)
pandas.util.testing.assert_frame_equal
#Merges two CSV files and saves the final result import pandas as pd import sys df1 = pd.read_csv(sys.argv[1]) df2 = pd.read_csv(sys.argv[2]) df =
pd.concat([df1, df2], ignore_index=True)
pandas.concat
import pandas as pd import numpy as np # personal csv reader module import reader def count_number(array, number): """ Counts the occurrence of number in array. """ count = 0 for entry in array: if entry == number: count += 1 return count def count_numbers(array, numbers): """ Counts the occurrence of each number in array. """ count = [] for number in numbers: count.append(count_number(array, number)) return count # filename prefixes FILE_PREFIX_XGB = "../output/xgb/task2_xgb_nativ_[" FILE_PREFIX_MLP = "../output/mlp_lbgfs/task2_mlp_lbgfs_[" # filename suffix FILE_SUFFIX = "].csv" # last file index e.g. [5] INDEX_LAST_FILE = 6 # read training file files = [] # read all existing files for i in range(1, INDEX_LAST_FILE + 1): files.append(reader.read_csv(FILE_PREFIX_MLP + str(i) + FILE_SUFFIX, False)) rows = [] # create a list for all values of the same row for i in range(0, 3000): row = [] for file in files: row.append(file.iloc[i][1]) rows.append(row) average_values = [] for i in range(0, 3000): count = count_numbers(rows[i], [0, 1, 2]) # check which value has the highest count if count[0] > count[1]: if count[0] > count[2]: average_values.append(0) else: average_values.append(2) elif count[0] > count[2]: average_values.append(1) else: if count[1] > count[2]: average_values.append(1) else: average_values.append(2) # print each row including the average value print("Row-Number:", i+2000,"0s:", count[0], "\t1s:", count[1], "\t2s:", count[2], "\t-overfit-value:", average_values[i]) # preparing to write the coefficients to file out = {"Id" : files[0]['Id'], "y": average_values} # output data frame out =
pd.DataFrame(data=out, dtype=np.int16)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"),
Timestamp("2000-02-15", tz="US/Central")
pandas.Timestamp