prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# Copyright 2020 Verily Life Sciences LLC # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """Utilities for fetching and munging public data and forecasts.""" import numpy as np import pandas as pd import scipy import xarray as xr from metis import util # By default, these will be populated from covid19-open-data. Overwrite these # module variables if you want to use your own. DEMOGRAPHICS = None EPIDEMIOLOGY = None INDEX = None def demographics(): global DEMOGRAPHICS if DEMOGRAPHICS is None: DEMOGRAPHICS = pd.read_csv( 'https://storage.googleapis.com/covid19-open-data/v2/demographics.csv', index_col=0) return DEMOGRAPHICS def index(): global INDEX if INDEX is None: INDEX = pd.read_csv( 'https://storage.googleapis.com/covid19-open-data/v2/index.csv', index_col=0) return INDEX def epidemiology(): global EPIDEMIOLOGY if EPIDEMIOLOGY is None: EPIDEMIOLOGY = pd.read_csv( 'https://storage.googleapis.com/covid19-open-data/v2/epidemiology.csv') EPIDEMIOLOGY.rename(columns=dict(key='location', date='time'), inplace=True) EPIDEMIOLOGY['time'] = pd.to_datetime(EPIDEMIOLOGY['time']) return EPIDEMIOLOGY def us_county_data(): """An opencovid_key-indexed dataframe of county data.""" keys = demographics().index.values.astype(str) us_keys = keys[np.char.startswith(keys, 'US_')] key_fips = [] for key in us_keys: us_state_fips = key.split('_') if len(us_state_fips) == 3: key_fips.append((key, us_state_fips[2])) keys, fips = zip(*key_fips) us_counties = pd.Index(keys, name='location') county_df = pd.DataFrame(index=us_counties) county_df['fips'] = fips county_df['population'] = demographics().loc[us_counties, 'population'] county_df['subregion1_name'] = index().loc[us_counties, 'subregion1_name'] county_df['subregion2_name'] = index().loc[us_counties, 'subregion2_name'] return county_df def quantiles_to_samples(pred, num_samples): sample = np.linspace(0, 1, num_samples + 2)[1:-1] sample = xr.DataArray( sample, dims=('sample',), coords=(np.arange(len(sample)),)) weights = util.quantile_conversion_weights(pred['quantile'].values, sample.values) weights = xr.DataArray(weights, coords=(pred['quantile'], sample['sample'])) # Bound forecast incidence below by 0. return np.maximum(0.0, np.exp(np.log(pred + 1).dot(weights)) - 1) def fetch_cdc_forecast(model, date_stamp, end_date=None, num_samples=None): """Returns forecast incidence of the given model from the given date. Forecasts are converted from the quantiles given to num_samples uniformly spaced quantiles. New case forecasts are converted to incidence forecasts using population data from opencovid. Forecasts are constant-extrapolated through end_date. Args: model: string, which model forecast to fetch (e.g. 'COVIDhub-ensemble') date_stamp: string, which date-stamped forecast to use (e.g. '2020-10-12') end_date: how far to constant-extrapolate. If omited, no extrapolation is done. Must be castable to np.datetime64. num_samples: number of uniformly-spaced quantiles to return in the sample dimension. If omitted, the original quantiles are returned with a "quantile" dimension instead of a "sample" dimension. Returns: An xr.DataArray of shape [sample, location, time], the forecast incidence from the model. """ url = (f'https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/' f'master/data-processed/{model}/{date_stamp}-{model}.csv') df = pd.read_csv(url) county_df = us_county_data() # Restrict to counties df = df[df.location.isin(county_df.fips)] fips_to_key = county_df.reset_index().set_index('fips')['location'] df.loc[:, 'location'] = fips_to_key.loc[df.location].values # Restrict to the quantiles, discarding point predictions. df = df.query('type == "quantile"') df = df.rename(columns=dict(target_end_date='time')) df.loc[:, 'time'] =
pd.to_datetime(df.time)
pandas.to_datetime
"""""" __author__ = "<NAME>" __copyright__ = "WeatherBrain" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" import pandas def load_temperature_raw(): """This methid loads the raw temperature data from text files and recompiled the data into a dataframe. :return: Dataframe with temperature data. """ # with open(r'Data\\Raw Data\\Temperature 1756-1858.txt') as f: # data = f.readlines() # with open(r'Data\\Raw Data\\Temperature 1859-1960.txt') as f: # data += f.readlines() # with open(r'Data\\Raw Data\\Temperature 1961-2012.txt') as f: # data += f.readlines() # with open(r'Data\\Raw Data\\Temperature 2013-2017.txt') as f: # data += f.readlines() with open(r'..\\Data\\Raw Data\\Non-homogenized SLP series in hPa.txt') as f: data = f.readlines() with open(r'..\\Data\\Raw Data\\2013-2017, hPa, automatic station.txt') as f: data += f.readlines() data_length = len(data) result = [] for data_index, row in enumerate(data): row = row.replace('\n', '').split(' ') row = [x for x in row if x != ''] date = pandas.to_datetime(row[0] + '-' + row[1] + '-' + row[2]) row[2] = date row = row[2:] for row_index in range(1, len(row)): row[row_index] = float(row[row_index]) while len(row) < 4: row.append(None) data = [[row[0], row[1], row[2], row[3]]] result.append(
pandas.DataFrame(data, columns=['date', 'hPa_one', 'hPa_two', 'hPa_three'])
pandas.DataFrame
''' This file includes all the locally differentially private mechanisms we designed for the SIGMOD work. I am aware that this code can be cleaned a bit and there is a redundancy. But this helps keeping the code plug-n-play. I can simply copy a class and use it in a different context. http://dimacs.rutgers.edu/~graham/pubs/papers/sigmod18.pdf ''' import numpy as np import itertools from scipy.linalg import hadamard import pandas as pd import xxhash import sys import random #np.seterr(all='raise') BIG_PRIME = 9223372036854775783 def rr2 (bit,bern): if bern: return bit return -bit def pop_probmat(prob,sz): probmat =np.zeros((sz,sz)) d = np.log2(sz) for i in range(0,sz): for j in range(0,sz): perturbed = count_1(np.bitwise_xor(i,j)) #print i,bin(i),j,bin(j) ,bin(np.bitwise_xor(i,j)),perturbed probmat[i][j] = np.power(1.0-prob,perturbed) * np.power(prob,d-perturbed) return probmat def mps (num,bern,rnum): if bern: return num return rnum def L1(a,b): a = np.abs(a) b= np.abs(b) return round(np.abs(a-b).sum(),4) def count_1(num): cnt =0 while num !=0: num = np.bitwise_and(num,num-1) cnt+=1 return cnt def random_number(): return random.randrange(1, BIG_PRIME - 1) def compute_marg(misc_vars ,irr_estimate ,ips_estimate ,iht_pert_ns_estimate ,iolh_estimate ,mps_pert_dict ,mrr_pert_dict ,mht_pert_dict ,icms_estimate ,icmsht_estimate ): ### These lists store L1 error for each k way marginal. irr_l1_array = [] iht_l1_array = [] ips_l1_array =[] iolh_l1_array =[] icms_l1_array = [] icmsht_l1_array = [] mps_l1_array= [] mrr_l1_array=[] mht_l1_array = [] s = misc_vars.allsubsetsint.shape[0] temp_array2= np.zeros(s) input_dist_margs = np.zeros(np.power(2,misc_vars.d)) marg_from_irr = np.zeros(np.power(2,misc_vars.d)) marg_from_iht = np.zeros(s) marg_from_ips = np.zeros(np.power(2,misc_vars.d)) marg_from_iolh = np.zeros(np.power(2,misc_vars.d)) marg_from_icms = np.zeros(np.power(2,misc_vars.d)) marg_from_icmsht = np.zeros(np.power(2,misc_vars.d)) all_cords = np.array(range(0, np.power(2,misc_vars.d))) temp_array = np.zeros(np.power(2, misc_vars.d)) ### We now evaluate each marginal using the method described in Barak et al's paper. for beta in misc_vars.allsubsetsint: if count_1(beta) != misc_vars.k: continue alphas=misc_vars.alphas_cache[beta]["alphas"] gammas = alphas marg_from_irr.fill(0.0) marg_from_ips.fill(0.0) marg_from_iht.fill(0.0) marg_from_iolh.fill(0.0) marg_from_icms.fill(0.0) marg_from_icmsht.fill(0.0) input_dist_margs.fill(0.0) real_indices = [] for alpha in alphas: temp_array.fill(0.0) temp_array2.fill(0.0) try: f_alpha = misc_vars.f[alpha] except: f_alpha = np.zeros(np.power(2,misc_vars.d)) for i in all_cords: f_alpha[i] = np.power(-1.0, count_1(np.bitwise_and(alpha, i))) misc_vars.f[alpha] = f_alpha for gamma in gammas: temp_array[gamma]+=misc_vars.f[alpha][gamma] temp_array2[misc_vars.coef_dict[gamma]] +=np.power(-1.0,count_1(np.bitwise_and(gamma,alpha))) try: input_dist_margs += (temp_array * misc_vars.f[alpha].dot(misc_vars.input_dist)) marg_from_irr += (temp_array * misc_vars.f[alpha].dot(irr_estimate)) marg_from_ips += (temp_array * misc_vars.f[alpha].dot(ips_estimate)) marg_from_icms += (temp_array * misc_vars.f[alpha].dot(icms_estimate)) marg_from_icmsht += (temp_array * misc_vars.f[alpha].dot(icmsht_estimate)) marg_from_iolh += (temp_array * misc_vars.f[alpha].dot(iolh_estimate)) except: print ("Unexpected error:", sys.exc_info()) marg_from_iht += (temp_array2 * iht_pert_ns_estimate[misc_vars.coef_dict[alpha]]) real_indices.append(misc_vars.coef_dict[alpha]) ### input###### m_inp = np.abs(np.take(input_dist_margs,gammas)) ## Extracting counts from marginal indices specified by "gammas". m_inp/=m_inp.sum() #### INPUT_HT ############# m_inp_ht = np.abs(np.take(marg_from_iht,real_indices)) ## Extracting counts from marginal indices specified by "gammas". m_inp_ht/=m_inp_ht.sum() iht_l1_array.append(L1(m_inp_ht,m_inp)) ######## INPUT_PS ########### ips_marg = np.abs(np.take(marg_from_ips,gammas)) ## Extracting counts from marginal indices specified by "gammas". ips_marg/=ips_marg.sum() ips_l1_array.append(L1(ips_marg,m_inp)) ######## INPUT_RR ########## m_irr = np.abs(np.take(marg_from_irr, gammas)) ## Extracting counts from marginal indices specified by "gammas". m_irr /= m_irr.sum() irr_l1_array.append(L1(m_irr,m_inp)) ######### INPUT_OLH ########## try: m_iolh = np.abs(np.take(marg_from_iolh,gammas)) ## Extracting counts from marginal indices specified by "gammas". m_iolh/=m_iolh.sum() iolh_l1_array.append(L1(m_iolh,m_inp)) except: ## incase we drop INPUT_OLH from execution. #print ("Unexpected error:", sys.exc_info()) iolh_l1_array.append(0.0) try: icms_marg = np.abs(np.take(marg_from_icms,gammas)) ## Extracting counts from marginal indices specified by "gammas". icms_marg/=icms_marg.sum() icms_l1_array.append(L1(icms_marg,m_inp)) except: # incase we drop INPUT_CMS from execution. #print ("Unexpected error:", sys.exc_info()) icms_l1_array.append(0.0) try: icmsht_marg = np.abs(np.take(marg_from_icmsht,gammas)) ## Extracting counts from marginal indices specified by "gammas". icmsht_marg/=icmsht_marg.sum() icmsht_l1_array.append(L1(icmsht_marg,m_inp)) except: # incase we drop INPUT_HTCMS from execution. #print (icms_marg) #print ("Unexpected error:", sys.exc_info()) icmsht_l1_array.append(0.0) ######### MARG_RR ############### mrr_l1_array.append(L1(m_inp,mrr_pert_dict[np.binary_repr(beta,width=misc_vars.d)[::-1]])) #print (m_inp) ######### MARG_HT ##################### mht_l1_array.append(L1(mht_pert_dict[np.binary_repr(beta,width=misc_vars.d)[::-1]],m_inp)) ########## MARG_PS ##################### mps_l1_array.append(L1(mps_pert_dict[np.binary_repr(beta, width=misc_vars.d)[::-1]], m_inp)) irr_l1 = np.array(irr_l1_array).mean(axis=0) ips_l1 = np.array(ips_l1_array).mean(axis=0) iht_l1 = np.array(iht_l1_array).mean(axis=0) iolh_l1 = np.array(iolh_l1_array).mean(axis=0) icms_l1 = np.array(icms_l1_array).mean(axis=0) icmsht_l1 = np.array(icmsht_l1_array).mean(axis=0) mrr_l1 = np.array(mrr_l1_array).mean(axis=0) mps_l1 = np.array(mps_l1_array).mean(axis=0) mht_l1 = np.array(mht_l1_array).mean(axis=0) #print (irr_l1_array,mrr_l1,iht_l1_array,mht_l1,ips_l1,mps_l1,iolh_l1_array,icms_l1_array,icmsht_l1_array) return (irr_l1,mrr_l1,iht_l1, mht_l1, ips_l1, mps_l1, iolh_l1, icms_l1, icmsht_l1) class INPUT_RR(object): def perturb2(self): return def perturb(self,index_of_1,p): i = 0 while i < self.sz: item = 0.0 if i == index_of_1: item = 1.0 if self.bern_irr[p][i]: self.irr[i] += item else: self.irr[i] += (1.0 - item) i += 1 ## It is possible to simulate InputRR using Binomial distributions. We ## use this simulation for rapid completion. def correction2(self,miscvar): i=0 irr2 = np.zeros(self.sz) while i < self.sz: irr2[i] = np.random.binomial(miscvar.input_dist[i],0.5,size=1)[0] +\ np.random.binomial(self.population- miscvar.input_dist[i],1.0-self.prob,size=1)[0] irr2[i]/=self.population irr2[i] = (self.irr[i] + self.prob - 1.0) / (2.0 * self.prob - 1.0) i+=1 np.copyto(self.irr,irr2) #print (irr2) ## just repeat reconstruction of each index to reduce variance. def correction3(self,miscvar): i=0 while i <self.sz: j=0 while j<5: self.irr[i] += (np.random.binomial(miscvar.input_dist[i],0.5,size=1)[0] +\ np.random.binomial(self.population- miscvar.input_dist[i],self.prob,size=1)[0]) j+=1 self.irr[i]/=(5.0*self.population) self.irr[i] = (self.irr[i]-self.prob) / (0.5 -self.prob); #self.irr[i] = (self.irr[i] + self.prob - 1.0) / (2.0 * self.prob - 1.0) i+=1 #print (self.irr) def correction(self): self.irr/=self.population #print (self.irr) for i in range(0,self.sz): self.irr[i] = (self.irr[i]+self.prob-1.0)/(2.0*self.prob-1.0) #self.irr/=self.irr.sum() #print (self.irr.round(4)) def __init__(self,e_eps,d,population): self.population=population self.d = d self.sz = np.power(2, self.d) self.eps = np.log(e_eps) self.e_eps = np.power(np.e,(self.eps/2.0)) self.prob = self.e_eps/(1.0+self.e_eps) #print (self.prob,"input-RR") self.problist = [self.prob,1.0-self.prob] #self.bern_irr = np.random.choice([True,False], size=self.sz * self.population, p=self.problist).reshape(self.population, self.sz) #self.sample_index = np.random.choice(range(0, self.sz), size=self.population) self.irr = np.zeros(np.power(2,self.d)) class MARG_RR(object): def perturb(self,index_of_1,p,rand_quests): i = 0 if not rand_quests in self.marg_dict: self.marg_dict[rand_quests] = np.zeros(self.sz) self.marg_freq[rand_quests] = 0.0 self.marg_freq[rand_quests] += 1.0 while i < self.sz: item = 0.0 if i == index_of_1: item = 1.0 if self.bern[p][i]: self.marg_dict[rand_quests][i] += item else: self.marg_dict[rand_quests][i] += (1.0 - item) i += 1 def perturb2(self,index_of_1,p,rand_quests): i = 0 if not rand_quests in self.marg_dict: self.marg_dict[rand_quests] = np.zeros(self.sz) self.marg_freq[rand_quests] = 0.0 self.marg_freq[rand_quests] += 1.0 while i < self.sz: item = 0.0 b = self.bern_q if i == index_of_1: item = 1.0 b = self.bern_p if b[p][i]: self.marg_dict[rand_quests][i] += item else: self.marg_dict[rand_quests][i] += (1.0 - item) i += 1 def perturb3(self,index_of_1,p,rand_quests): try: self.marg_freq[rand_quests] += 1.0 self.true_marg[rand_quests][index_of_1]+= 1.0 except: self.marg_dict[rand_quests] = np.zeros(self.sz) self.marg_freq[rand_quests] = 0.0 self.true_marg[rand_quests] = np.zeros(self.sz) self.marg_freq[rand_quests] += 1.0 self.true_marg[rand_quests][index_of_1]+= 1.0 def correction(self): #print ("--------------------------------") for marg in self.marg_dict: self.marg_dict[marg] /= self.marg_freq[marg] for i in range(0,self.sz): self.marg_dict[marg][i] = (self.marg_dict[marg][i]+self.prob-1.0)/(2.0*self.prob-1.0) self.marg_dict[marg]/=self.marg_dict[marg].sum() def correction2(self): for marg in self.marg_dict: #print ("--------------------------------") self.marg_dict[marg] /= self.marg_freq[marg] for i in range(0,self.sz): #self.marg_dict[marg][i] = (self.marg_dict[marg][i]+self.prob-1.0)/(2.0*self.prob-1.0) self.marg_dict[marg][i] = (self.marg_dict[marg][i]-(self.prob)) / (0.5 -(self.prob)) self.marg_dict[marg]/=self.marg_dict[marg].sum() def correction3(self): for marg in self.marg_dict: #self.marg_dict[marg] /= self.marg_freq[marg] i=0 #print (self.marg_dict[marg]) total = self.marg_freq[marg] while i <self.sz: j=0 while j <5: self.marg_dict[marg][i] += (np.random.binomial(self.true_marg[marg][i],0.5,size=1)[0] +\ np.random.binomial(self.marg_freq[marg]- self.true_marg[marg][i],self.prob,size=1)[0]) j+=1 self.marg_dict[marg][i] /= (5.0*total) #self.marg_dict[marg][i] = (self.marg_dict[marg][i]+self.prob-1.0)/(2.0*self.prob-1.0) self.marg_dict[marg][i] = (self.marg_dict[marg][i]-(self.prob)) / (0.5 -(self.prob)) i+=1 self.marg_dict[marg]/=self.marg_dict[marg].sum() def __init__(self,d,k,e_eps,population,k_way): self.d = d self.k = k self.population= population self.k_way = k_way self.sz = np.power(2,self.k) self.eps = np.log(e_eps) self.e_eps = np.power(np.e,self.eps/2.0) self.prob = self.e_eps / (1.0+self.e_eps) #print (self.prob,"marg-RR") self.problist = [self.prob,1.0-self.prob] self.k_way_marg_ps = np.random.choice(self.k_way,size=self.population) self.bern = np.random.choice([True, False], size=self.sz * self.population, p=self.problist).reshape(self.population, self.sz) self.bern_p = np.random.choice([True, False], size=self.sz * self.population).reshape(self.population, self.sz) self.bern_q = np.random.choice([True, False], size=self.sz * self.population, p=self.problist[::-1]).reshape(self.population, self.sz) self.marg_dict = {} self.marg_freq={} self.true_marg={} class MARG_HT(object): def perturb(self,index_of_1,p,rand_quests): if not rand_quests in self.marg_dict: self.marg_dict[rand_quests] = np.zeros(self.sz) self.marg_freq[rand_quests] = np.zeros(self.sz) cf =self.rand_coef[p] self.marg_freq[rand_quests][cf] += 1.0 htc = self.f[index_of_1][cf] if self.bern[p]: self.marg_dict[rand_quests][cf] += htc else: self.marg_dict[rand_quests][cf] += -htc def correction(self): for rm in self.marg_dict: self.marg_freq[rm][self.marg_freq[rm] == 0.0] = 1.0 self.marg_dict[rm]/=self.marg_freq[rm] self.marg_dict[rm]/=(2.0*self.prob-1.0) self.marg_dict[rm][0]=1.0 #print ("-------------------") #print (self.marg_dict[rm]) self.marg_dict[rm]= np.abs(self.marg_dict[rm].dot(self.f)) self.marg_dict[rm]/=self.marg_dict[rm].sum() #print (self.marg_dict[rm].round(4)) def pop_probmat(self): probmat =np.zeros((self.sz,self.sz)) for i in range(0,self.sz): for j in range(0,self.sz): if i ==j: probmat[i][j]= self.prob else: probmat[i][j]= (1.0-self.prob)/(self.sz-1.0) return probmat def compute_all_marginals(self): for marg_int in self.k_way: self.correct_noise_mps(marg_int) def __init__(self,d,k,e_eps,population,k_way,cls): self.d = d self.k = k self.population= population self.sz = np.power(2,self.k) self.e_eps = e_eps self.f = hadamard(self.sz).astype("float64") self.prob = (self.e_eps/(1.0+self.e_eps)) self.problist = [self.prob,1.0-self.prob] self.coef_dist = np.zeros(cls) self.k_way = k_way self.k_way_marg_ps = np.random.choice(self.k_way,size=self.population) self.rand_coef= np.random.choice(range(0,self.sz),size=population) self.bern = np.random.choice([True, False], size= self.population, p=self.problist)#.reshape(self.population, self.sz) self.marg_freq = {} self.marg_dict = {} self.marg_noisy = np.zeros(self.sz) class MARG_PS(object): def perturb(self,index_of_1,p,rand_quests): try: freq = self.rand_cache[index_of_1]["freq"] except: i = 0 while i < self.sz: options = list(range(0, self.sz)) options.remove(i) self.rand_cache[i] = {"rnum": np.random.choice(np.array(options), size=10000), "freq": 0} i += 1 freq = self.rand_cache[index_of_1]["freq"] if freq > 9990: options = list(range(0, self.sz)) options.remove(index_of_1) self.rand_cache[index_of_1]["rnum"] = np.random.choice(np.array(options), size=10000) self.rand_cache[index_of_1]["freq"] = 0 rnum = self.rand_cache[index_of_1]["rnum"][freq] try: self.marg_ps_pert_aggr[rand_quests].append(mps(index_of_1, self.bern[p], rnum)) except: self.marg_ps_pert_aggr[rand_quests] = [mps(index_of_1, self.bern[p], rnum)] self.rand_cache[index_of_1]["freq"] += 1 def correct_noise_mps(self,marg_int): self.marg_int=marg_int self.marg_ps_noisy.fill(0.0) if type(self.marg_ps_pert_aggr[marg_int]) != "numpy.ndarray": for rm in self.marg_ps_pert_aggr: self.marg_ps_pert_aggr[rm] = np.array(self.marg_ps_pert_aggr[rm]) #print (self.marg_ps_pert_aggr.keys()) for index in self.marg_ps_pert_aggr[marg_int]: self.marg_ps_noisy[index]+=1.0 self.marg_ps_noisy/=self.marg_ps_noisy.sum() #marg_ps_recon = np.copy(marg_noisy) self.marg_ps_recon = self.mat_inv.dot(self.marg_ps_noisy) self.marg_ps_recon/=self.marg_ps_recon.sum() #print (self.marg_ps_recon.round(4)) return self.marg_ps_recon def pop_probmat(self): probmat =np.zeros((self.sz,self.sz)) for i in range(0,self.sz): for j in range(0,self.sz): if i ==j: probmat[i][j]= self.prob else: probmat[i][j]= (1.0-self.prob)/(self.sz-1.0) return probmat def compute_all_marginals(self): for marg_int in self.k_way: self.marg_dict[marg_int]=self.correct_noise_mps(marg_int) def __init__(self,d,k,e_eps,population,k_way): self.d = d self.k = k self.population= population self.k_way = k_way self.sz = np.power(2,self.k) #self.data = data self.e_eps = e_eps self.prob = (self.e_eps/(self.e_eps+self.sz-1.0)) #print self.prob,"marg-ps" self.probmat = self.pop_probmat() self.problist = [self.prob,1.0-self.prob] self.mat = self.pop_probmat() self.mat_inv = np.linalg.inv(self.mat) self.k_way_marg_ps = np.random.choice(self.k_way,size=self.population) self.bern = np.random.choice([True, False], p=self.problist, size=self.population) self.marg_ps_pert_aggr = {} self.rand_cache = {} self.marg_int = None self.marg_ps_noisy = np.zeros(self.sz) self.marg_dict = {} ## From <NAME> al's USENIX paper. ## https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tianhao.pdf ## This algorithm indeed does well for high order marginals but doesn't outperform INPUT_HT ## for small k's i.e. 2,3, the one's that are the most interesting. ## We trade the gain in accuracy by computational cost. The encoding (or decoding) cost is O(dN). class INPUT_OLH(object): def __init__(self,e_eps, d, population,g=1): self.d = d self.population= population self.sz = int(np.power(2,self.d)) #self.data = data self.e_eps = e_eps if g == 1: self.g = int(np.ceil(e_eps+1.0)) else: self.g = g #print (self.g) self.prob = (self.e_eps/(self.e_eps+self.g-1.0)) self.problist = [self.prob,1.0-self.prob] self.bern_ps = np.random.choice([False,True], size=self.population, p=self.problist) self.uni_dist = np.random.choice(range(self.g),size=self.population).astype("int32") #self.hash_cache = np.array( map(str,range(self.sz)),dtype="str") ## works with Python2 self.hash_cache = np.array(range(self.sz),dtype="str") #self.hashed_pdist = np.zeros(self.population) self.estimate = np.zeros(self.sz) def perturb(self,x,p): if self.bern_ps[p]: #x_hash= (xxhash.xxh32(self.hash_cache[x], seed=p).intdigest()) % self.g pert_val= (xxhash.xxh32(self.hash_cache[x], seed=p).intdigest()) % self.g else: pert_val=self.uni_dist[p] dom_index = 0 while dom_index<self.sz: if pert_val == (xxhash.xxh32(self.hash_cache[dom_index], seed=p).intdigest() % self.g): self.estimate[dom_index]+=1.0 dom_index+=1 def correction(self): p=0 while p <self.sz: self.estimate[p]=(self.estimate[p] - (self.population/self.g))/(self.prob -(1.0/self.g)) p+=1 self.estimate/=self.estimate.sum() #print(self.estimate.round(4)) class INPUT_HT(object): def perturb(self,index_of_1,p): rc = self.rand_coefs[p] index = self.misc_vars.coef_dict[rc] self.coef_dist[index] += 1.0 cf = np.power(-1.0, count_1(np.bitwise_and(index_of_1, rc))) self.iht_pert_ns_estimate[index] += rr2(cf, self.bern_ht[p]) def correction(self): self.coef_dist[self.coef_dist==0.0]=1.0 self.iht_pert_ns_estimate/=self.coef_dist self.iht_pert_ns_estimate/=(2.0*self.prob-1.0) self.iht_pert_ns_estimate[0] = 1.0 self.coef_dist[self.coef_dist<=0.0]=0.0 def __init__(self,d,k,e_eps,population,misc_vars): self.d = d self.k = k self.misc_vars = misc_vars self.population= population self.sz = np.power(2,self.k) self.e_eps = e_eps self.prob = self.e_eps/(1.0+self.e_eps) self.problist = [self.prob,1.0-self.prob] self.bern_ht = np.random.choice([True,False],p=self.problist,size=self.population) self.rand_coefs = np.random.choice(self.misc_vars.allsubsetsint,size=self.population) self.iht_pert_ns_estimate = np.zeros(self.misc_vars.allsubsetsint.shape[0]) #iht_pert_ns_estimate.fill(0.0) self.coef_dist = np.zeros(self.misc_vars.cls) ## From Apple's paper. ## https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html ## This algorithm might be a bad performer. But just adding it for a comparison. class INPUT_CMS: def __init__(self, w, d,population,e_eps,domain): ''' if delta <= 0 or delta >= 1: raise ValueError("delta must be between 0 and 1, exclusive") if epsilonh <= 0 or epsilonh >= 1: raise ValueError("epsilon must be between 0 and 1, exclusive") #self.w = int(np.ceil(np.e / epsilonh)) #self.d = int(np.ceil(np.log(1 / delta))) ''' self.w=w self.d =d self.population=population self.hash_functions = [self.__generate_hash_function() for i in range(self.d)] self.M = np.zeros(shape=(self.d, self.w)) #print (self.w,self.d,self.w*self.d,self.M.shape) self.hash_chooser = np.random.choice(range(self.d),size=self.population) self.epsilon = np.log(e_eps) self.flip_prob = 1.0/(1.0+np.power(np.e,self.epsilon/2.0)) problist = [self.flip_prob,1.0-self.flip_prob] self.bern = np.random.choice([True,False],p=problist,size=self.population*self.w).reshape(self.population,self.w) self.c_eps = (np.power(np.e,self.epsilon/2.0)+1.0)/(np.power(np.e,self.epsilon/2.0)-1.0) self.estimate = np.zeros(int(np.power(2,domain))) def __generate_hash_function(self): a = random_number() b= random_number() return lambda x: (a * x + b) % BIG_PRIME % self.w def perturb(self, key,p): hash_choice = self.hash_chooser[p] hashed_key = self.hash_functions[hash_choice](abs(hash(str(key)))) cnt = 0 while cnt< self.w: item = -1.0 if cnt == hashed_key: item = 1.0 if self.bern[p][cnt]: item = -item self.M[hash_choice][cnt]+=(self.d * (item*self.c_eps*0.5+0.5)) cnt+=1 def query(self,key): l =0 avg=0.0 hsh_str= abs(hash(str(key))) while l < self.d: hashed_key = self.hash_functions[l](hsh_str) avg+=self.M[l][hashed_key] l+=1 avg/=self.d est = ((1.0*self.w)/(self.w-1.0))* (avg- (1.0*self.population)/self.w) return est def correction(self): cnt=0 while cnt <self.estimate.shape[0]: self.estimate[cnt]=self.query(cnt) cnt+=1 self.estimate[self.estimate < 0.0] = 0.0 self.estimate/=self.estimate.sum() ## From Apple's paper. ## https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html ## This algorithm might be a bad performer. But just adding it for a comparison. class INPUT_HTCMS: #def __init__(self, delta, epsilonh,population,e_eps): def __init__(self, w, d,population,e_eps,domain): self.w=int(w) self.d =int(d) self.ht = hadamard(self.w, dtype="float32") self.population=population self.hash_functions = [self.__generate_hash_function() for i in range(self.d)] self.M = np.zeros(shape=(self.d, self.w)) #print (self.w,self.d,self.w*self.d,self.M.shape) self.hash_chooser = np.random.choice(range(self.d),size=self.population).astype("int32") self.coef_chooser = np.random.choice(range(self.w),size=self.population).astype("int32") #self.hash_choice_counter = np.zeros(self.d) self.flip_prob = 1.0/(1.0+e_eps) problist = [self.flip_prob,1.0-self.flip_prob] self.bern = np.random.choice([True,False],p=problist,size=self.population) self.c_eps = (e_eps+1.0)/(e_eps-1.0) self.estimate = np.zeros(int(np.power(2,domain))) def __generate_hash_function(self): a = random_number() b= random_number() return lambda x: (a * x + b) % BIG_PRIME % self.w def perturb(self, key,p): hash_choice = self.hash_chooser[p] #self.hash_choice_counter[hash_choice]+=1.0 hashed_key = self.hash_functions[hash_choice](abs(hash(str(key)))) rand_coef = self.coef_chooser[p] item = self.ht[rand_coef][hashed_key] if self.bern[p]: item = -item self.M[hash_choice][rand_coef]+=(self.d * item*self.c_eps) def correction(self): cnt = 0 while cnt < self.d: #print self.M[cnt] self.M[cnt] = self.ht.dot(self.M[cnt]) cnt+=1 cnt=0 while cnt <self.estimate.shape[0]: self.estimate[cnt]=self.query(cnt) cnt+=1 self.estimate[self.estimate < 0.0] = 0.0 self.estimate/=self.estimate.sum() def query(self,key): l =0 avg=0.0 hsh_str= abs(hash(str(key))) while l < self.d: hashed_key = self.hash_functions[l](hsh_str) avg+=self.M[l][hashed_key] l+=1 avg/=self.d est = ((1.0*self.w)/(self.w-1.0))* (avg- (1.0*self.population)/self.w) return est class INPUT_PS(object): def perturb2(self,index_of_1,p): if self.bern_ps[p]: self.ips_ps_pert_aggr[index_of_1] += 1.0 else: self.ips_ps_pert_aggr[self.rand_coef_ps[p]] += 1.0 def perturb(self,index_of_1,p): try: freq = self.rand_cache[index_of_1]["freq"] except: i = 0 while i < self.sz: options = list(range(0, self.sz)) options.remove(i) self.rand_cache[i] = {"rnum": np.random.choice(np.array(options), size=10000), "freq": 0} i += 1 freq = self.rand_cache[index_of_1]["freq"] if freq > 9990: options = list(range(0, self.sz)) options.remove(index_of_1) self.rand_cache[index_of_1]["rnum"] = np.random.choice(np.array(options), size=10000) self.rand_cache[index_of_1]["freq"] = 0 rnum = self.rand_cache[index_of_1]["rnum"][freq] ips_output = mps(index_of_1, self.bern[p], rnum) self.ips_ps_pert_aggr[ips_output] += 1.0 self.rand_cache[index_of_1]["freq"] += 1 def correction2(self): self.ips_ps_pert_aggr /= self.population #print self.ips_ps_pert_aggr, "pert",self.ips_ps_pert_aggr.sum() for i in range(0, self.sz): self.ips_ps_pert_aggr[i] = (self.ips_ps_pert_aggr[i] * self.sz + self.probps - 1.0) / (self.probps * (self.sz + 1.0) - 1.0) #print self.ips_ps_pert_aggr.round(4) def correction(self): self.ips_ps_pert_aggr /= self.ips_ps_pert_aggr.sum() for i in range(0,self.sz): self.ips_ps_pert_aggr[i] = (self.ips_ps_pert_aggr[i]*self.sz+self.prob-1.0)/(self.prob*(self.sz+1.0)-1.0) #print self.marg_ps_recon.round(4) ''' self.ips_ps_pert_aggr /= self.ips_ps_pert_aggr.sum() # marg_ps_recon = np.copy(marg_noisy) self.ips_ps_pert_aggr = np.abs(self.mat_inv.dot(self.ips_ps_pert_aggr)) self.ips_ps_pert_aggr /= self.ips_ps_pert_aggr.sum() ''' #return self.ips_ps_pert_aggr def pop_probmat(self): probmat =np.zeros((self.sz,self.sz)) for i in range(0,self.sz): for j in range(0,self.sz): if i ==j: probmat[i][j]= self.prob else: probmat[i][j]= (1.0-self.prob)/(self.sz-1.0) return probmat def __init__(self,d,k,e_eps,population,misc_vars): self.d = d self.k = k self.population= population self.k_way = misc_vars.k_way self.sz = np.power(2,self.d) self.e_eps = e_eps self.prob = (self.e_eps/(self.e_eps+self.sz-1.0)) #print (self.prob,"input-ps") self.problist = [self.prob,1.0-self.prob] self.probps = (self.e_eps - 1.0) / (self.e_eps + self.sz - 1.0) self.problist2 = [self.probps, 1.0 - self.probps] self.rand_coef_ps = np.random.choice(np.array(range(0, self.sz)), size=self.population) self.bern_ps = np.random.choice([True, False], size=self.population, p=[self.probps, 1.0 - self.probps]) #self.mat = self.pop_probmat() #self.mat_inv = np.linalg.inv(self.mat) n = gc.collect() self.bern = np.random.choice([True, False], p=self.problist, size=self.population) self.ips_ps_pert_aggr = np.zeros(self.sz) self.rand_cache = {} self.marg_int = None self.rand_cache = {} #inp_trans_menthods.loc[l]=np.array([population,d,len(iway),input_ht_pert,iht_pert_ns_estimate,had_coefs,input_ps,input_rr],dtype="object") def change_mapping(d): if d: return "1" return "0" def get_real_data(population,d): data = pd.read_pickle("data/nyc_taxi_bin_sample.pkl").sample(population,replace=True) data = data.as_matrix() f = np.vectorize(change_mapping) i = data.shape[1] remainder = d % i ncopies = d/i copies = [] j = 0 while j < ncopies: copies.append(data) j+=1 #print data[:,range(0,remainder)] copies.append(data[:,range(0,remainder)]) #rand_perm = np.random.choice(range(0,d),replace=False,size=d) #print rand_perm data_high = np.concatenate(tuple(copies),axis=1)#[:,rand_perm] #print (data_high.shape) #columns= data.columns.tolist() #print columns #data = f(data_high) return f(data_high).astype("str") class MARGINAL_VARS(object): #We cache the set of necessary and sufficient indices to evaluate each <= k way marginal. def compute_downward_closure(self): all_cords = np.array(range(0, np.power(2, self.d))) ## iterate over all possible <=k way marginals. for beta in self.allsubsetsint: marg_str = bin(beta)[2:] marg_str = "0" * (self.d - len(marg_str)) + marg_str parity = np.power(2, count_1(beta)) alphas = np.zeros(parity, dtype="int64") cnt = 0 for alpha in all_cords: if np.bitwise_and(alpha, beta) == alpha: alphas[cnt] = alpha cnt += 1 ### we add marginals in string formats incase needed. self.alphas_cache[marg_str] = {"alphas": alphas, "probps": ((self.e_eps - 1.0) / (parity + self.e_eps - 1.0))} self.alphas_cache[beta] = {"alphas": alphas, "probps": ((self.e_eps - 1.0) / (parity + self.e_eps - 1.0))} ## This method finds the set of <=k way marginal indices i.e. list of all subsets of length <=k from d. def get_k_way_marginals(self): j = 0 marginal = np.array(["0"] * self.d) while j <= self.k: subsets = list(itertools.combinations(range(0, self.d), j)) subsets = np.array([list(elem) for elem in subsets]) for s in subsets: marginal.fill("0") for b in s: marginal[b] = "1" self.allsubsetsint.append(int("".join(marginal)[::-1], 2)) if j == self.k: # k_way.append(int("".join(marginal),2)) self.k_way.append("".join(marginal)[::-1]) self.k_way_bit_pos.append(s) # print s,marginal,"".join(marginal) j += 1 self.allsubsetsint = np.array(self.allsubsetsint, dtype="int64") self.k_way = np.array(self.k_way, dtype="str") self.k_way_bit_pos = np.array(self.k_way_bit_pos, dtype="int64") self.allsubsetsint.sort() #print (self.allsubsetsint) ## We tie marginals indices and corresponding bit positions together. #print (dict(zip(self.k_way, self.k_way_bit_pos))) return dict(zip(self.k_way, self.k_way_bit_pos)) def __init__(self,d,k,e_eps): self.d = d self.k = k self.input_dist = np.zeros(np.power(2, self.d)) self.allsubsetsint = [] self.k_way = [] self.k_way_bit_pos = [] self.e_eps = e_eps #self.f = hadamard(np.power(2,self.d)).astype("float64") self.f = {} self.alphas_cache = {} self.k_way_bit_pos_dict =self.get_k_way_marginals() self.cls = self.allsubsetsint.shape[0] self.coef_dict = dict(zip(self.allsubsetsint, np.array(range(0, self.cls), dtype="int64"))) self.compute_downward_closure() ''' Main driver routine that accepts all parameters and runs perturbation simulation. ''' def driver(d,k,e_eps,population,misc_vars): width = 256 no_hash = 5 ###### Use the NYC Taxi data. #data = get_real_data(population, d) ####### Use synthetic data if you don't have the taxi data. ######## data = np.random.choice(["1","0"],p=[0.3,0.7],size=d*population).reshape(population,d) misc_vars.input_dist.fill(0.0) ##### Input Based Algorithms ######## iht_obj = INPUT_HT(d, k, e_eps, population, misc_vars) ips_obj = INPUT_PS(d, k, e_eps, population, misc_vars) irr_obj = INPUT_RR(e_eps, d, population) iolh_obj = INPUT_OLH(e_eps, d, population) icms_obj = INPUT_CMS(width, no_hash,population,e_eps,d) icmsht_obj = INPUT_HTCMS(width, no_hash,population,e_eps,d) ############ Marginal Based Algorithms ######### mps_obj = MARG_PS(d, k, e_eps, population, misc_vars.k_way) mrr_obj = MARG_RR(d, k, e_eps, population, misc_vars.k_way) mht_obj = MARG_HT(d, k, e_eps, population, misc_vars.k_way, misc_vars.cls) p = 0 while p < population: x = data[p] index_of_1 = int("".join(x), 2) misc_vars.input_dist[index_of_1] += 1.0 ############# input_RR############### #irr_obj.perturb(index_of_1,p) #irr_obj.perturb2() #########################input-PS ################################# ips_obj.perturb2(index_of_1,p) ######################################## iht_obj.perturb(index_of_1, p) ##########################INPUT_OLH ############################### #INPUT_OLH is a compute intense scheme. Hence we don't run it for larger d's. if d < 10: iolh_obj.perturb(index_of_1,p) ##########################inp_CMS ######################## icms_obj.perturb(index_of_1,p) ##########################inp_HTCMS ######################## icmsht_obj.perturb(index_of_1,p) ########### marg-ps ########### rand_questions = mps_obj.k_way_marg_ps[p] responses = misc_vars.k_way_bit_pos_dict[rand_questions] # print rand_questions,responses index_of_1 = int("".join(data[p][responses]), 2) mps_obj.perturb(index_of_1, p, rand_questions) ######################### marg-ht ############################ rand_questions = mht_obj.k_way_marg_ps[p] responses = misc_vars.k_way_bit_pos_dict[rand_questions] # print rand_quests,responses index_of_1 = int("".join(data[p][responses]), 2) mht_obj.perturb(index_of_1, p, rand_questions) ######################### marg-rs ################################# rand_questions = mrr_obj.k_way_marg_ps[p] responses = misc_vars.k_way_bit_pos_dict[rand_questions] index_of_1 = int("".join(data[p][responses]), 2) mrr_obj.perturb3(index_of_1, p, rand_questions) p += 1 irr_obj.correction3(misc_vars) #irr_obj.correction2(misc_vars) misc_vars.input_dist /= population #irr_obj.correction() #print (misc_vars.input_dist.round(4)) ips_obj.correction() iht_obj.correction() if d < 10: iolh_obj.correction() icms_obj.correction() icmsht_obj.correction() #print(icmsht_obj.estimate) mht_obj.correction() mrr_obj.correction3() mps_obj.compute_all_marginals() return compute_marg(misc_vars , irr_obj.irr , ips_obj.ips_ps_pert_aggr , iht_obj.iht_pert_ns_estimate , iolh_obj.estimate , mps_obj.marg_dict , mrr_obj.marg_dict , mht_obj.marg_dict , icms_obj.estimate , icmsht_obj.estimate ) ''' Call this method is used when you want to vary k keeping d, eps fixed. eps = 1.1 d = 9 ''' def vary_k(): ## number of repetitions. rpt = 5 e_eps = 3.0 d = 9 counter = 0 ## dfmean and dfstd store the results. We use them in our plotting script. l1 = np.zeros((rpt, 9)) dfmean = pd.DataFrame(columns=["population", "d", "k", "e_eps", "irr_l1", "mrr_l1", "iht_l1", "mht_l1", "ips_l1", "mps_l1","iolh_l1","icms_l1","icmsht_l1"]) dfstd = pd.DataFrame(columns=["irr_l1_std", "mrr_l1_std", "iht_l1_std", "mht_l1_std", "ips_l1_std", "mps_l1_std","iolh_l1_std","icms_l1_std","icmsht_l1_std"]) ## parameters of the sketch width = 256 no_hash = 5 # population variable. We prefer to keep it in the powers of two. population = np.power(2, 18) for k in reversed(range(1,d)): misc_vars = MARGINAL_VARS(d, k, e_eps) l1.fill(0.0) print ("------------------") for itr in (range(rpt)): irr_l1, mrr_l1, iht_l1, mht_l1, ips_l1, mps_l1, iolh_l1,icms_l1,icmsht_l1 = driver(d,k,e_eps,population,misc_vars) l1[itr] = np.array([irr_l1, mrr_l1, iht_l1, mht_l1, ips_l1, mps_l1,iolh_l1,icms_l1,icmsht_l1]) print (l1[itr]) conf = [population, d, k, e_eps] conf.extend(l1.mean(axis=0)) dfmean.loc[counter] = conf dfstd.loc[counter] = l1.std(axis=0) #print (conf) counter += 1 dfstdcols = list(dfstd.columns.values) for c in dfstdcols: dfmean[c] = dfstd[c] #print (dfmean) dfmean.to_pickle("data/all_mechanisms_vary_"+str(d)+".pkl") ## (irr_l1,mrr_l1,iht_l1, mht_l1, ips_l1, mps_l1, iolh_l1, icms_l1, icmsht_l1) #dfmean.to_pickle("all_mechanisms_vary_k_fo.pkl") ''' Call this method when you want to vary d holding k, eps, N fixed. Fixed k, eps values, k= 3 eps = 1.1 N = 2^18 ''' def vary_d(): print ("------------------") population = int(np.power(2,19)) e_eps = 3.0 rpt =4 l1 = np.zeros((rpt, 9)) ## Parameters for sketches width = 256 no_hash = 5 k=3 dfmean = pd.DataFrame(columns=["population", "d", "k", "e_eps", "irr_l1", "mrr_l1", "iht_l1", "mht_l1", "ips_l1", "mps_l1","iolh_l1","icms_l1","icmsht_l1"]) dfstd =
pd.DataFrame(columns=["irr_l1_std", "mrr_l1_std", "iht_l1_std", "mht_l1_std", "ips_l1_std", "mps_l1_std","iolh_l1_std","icms_l1_std","icmsht_l1_std"])
pandas.DataFrame
""" Tests for the choice_tools.py file. """ import unittest import os import warnings from collections import OrderedDict from copy import deepcopy import numpy as np import numpy.testing as npt import pandas as pd from scipy.sparse import csr_matrix, isspmatrix_csr import pylogit.choice_tools as ct import pylogit.base_multinomial_cm_v2 as base_cm class GenericTestCase(unittest.TestCase): def setUp(self): """ Create a fake dataset and specification from which we can initialize a choice model. """ # The set up being used is one where there are two choice situations, # The first having three alternatives, and the second having only two # alternatives. There is one generic variable. Two alternative # specific constants and all three shape parameters are used. # Create the betas to be used during the tests self.fake_betas = np.array([-0.6]) # Create the fake outside intercepts to be used during the tests self.fake_intercepts = np.array([1, 0.5]) # Create names for the intercept parameters self.fake_intercept_names = ["ASC 1", "ASC 2"] # Record the position of the intercept that is not being estimated self.fake_intercept_ref_pos = 2 # Create the shape parameters to be used during the tests. Note that # these are the reparameterized shape parameters, thus they will be # exponentiated in the fit_mle process and various calculations. self.fake_shapes = np.array([-1, 1]) # Create names for the intercept parameters self.fake_shape_names = ["Shape 1", "Shape 2"] # Record the position of the shape parameter that is being constrained self.fake_shape_ref_pos = 2 # Create an array of all model parameters self.fake_all_params = np.concatenate((self.fake_shapes, self.fake_intercepts, self.fake_betas)) # The mapping between rows and alternatives is given below. self.fake_rows_to_alts = csr_matrix(np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1]])) # Create the fake design matrix with columns denoting X # The intercepts are not included because they are kept outside the # index in the scobit model. self.fake_design = np.array([[1], [2], [3], [1.5], [3.5]]) # Create the index array for this set of choice situations self.fake_index = self.fake_design.dot(self.fake_betas) # Create the needed dataframe for the choice mdodel constructor self.fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2], "alt_id": [1, 2, 3, 1, 3], "choice": [0, 1, 0, 0, 1], "x": self.fake_design[:, 0], "intercept": [1 for i in range(5)]}) # Record the various column names self.alt_id_col = "alt_id" self.obs_id_col = "obs_id" self.choice_col = "choice" # Create the index specification and name dictionary for the model self.fake_specification = OrderedDict() self.fake_names = OrderedDict() self.fake_specification["x"] = [[1, 2, 3]] self.fake_names["x"] = ["x (generic coefficient)"] # Create a fake nest specification for the model self.fake_nest_spec = OrderedDict() self.fake_nest_spec["Nest 1"] = [1, 3] self.fake_nest_spec["Nest 2"] = [2] # Bundle args and kwargs used to construct the choice model. self.constructor_args = [self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col, self.fake_specification] # Create a variable for the kwargs being passed to the constructor self.constructor_kwargs = {"intercept_ref_pos": self.fake_intercept_ref_pos, "shape_ref_pos": self.fake_shape_ref_pos, "names": self.fake_names, "intercept_names": self.fake_intercept_names, "shape_names": self.fake_shape_names, "nest_spec": self.fake_nest_spec} # Create a generic model object self.model_obj = base_cm.MNDC_Model(*self.constructor_args, **self.constructor_kwargs) class ArgumentValidationTests(GenericTestCase): def test_get_dataframe_from_data(self): """ Ensure that appropriate errors are raised when get_dataframe_from_data receives incorrect arguments, and that the function returns the expected results when correct arguments are passed. """ # Create a test csv file. self.fake_df.to_csv("test_csv.csv", index=False) # Ensure that the dataframe is recovered func_df = ct.get_dataframe_from_data("test_csv.csv") self.assertIsInstance(func_df, pd.DataFrame) self.assertTrue((self.fake_df == func_df).all().all()) # Remove the csv file os.remove("test_csv.csv") # Pass the dataframe and ensure that it is returned func_df = ct.get_dataframe_from_data(self.fake_df) self.assertIsInstance(func_df, pd.DataFrame) self.assertTrue((self.fake_df == func_df).all().all()) # Test all the ways that a ValueError should or could be raised bad_args = [("test_json.json", ValueError), (None, TypeError), (77, TypeError)] for arg, error in bad_args: self.assertRaises(error, ct.get_dataframe_from_data, arg) return None def test_argument_type_check(self): """ Ensure that the appropriate errors are raised when arguments of incorrect type are passed to "check_argument_type". """ # Isolate arguments that are correct, and ensure the function being # tested returns None. good_args = [self.fake_df, self.fake_specification] self.assertIsNone(ct.check_argument_type(*good_args)) # Assemble a set of incorrect arguments and ensure the function raises # a ValueError. generic_dict = dict() generic_dict.update(self.fake_specification) bad_args = [[good_args[0], "foo"], [good_args[0], generic_dict], [self.fake_df.values, good_args[1]], [False, good_args[1]], [None, None]] for args in bad_args: self.assertRaises(TypeError, ct.check_argument_type, *args) return None def test_alt_id_col_inclusion_check(self): """" Ensure that the function correctly returns None when the alternative_id_col is in the long format dataframe and that ValueErrors are raised when the column is not the long format dataframe. """ self.assertIsNone(ct.ensure_alt_id_in_long_form(self.alt_id_col, self.fake_df)) bad_cols = ["foo", 23, None] for col in bad_cols: self.assertRaises(ValueError, ct.ensure_alt_id_in_long_form, col, self.fake_df) return None def test_check_type_and_values_of_specification_dict(self): """ Ensure that the various type and structure checks for the specification dictionary are working. """ # Ensure that a correct specification dict raises no errors. test_func = ct.check_type_and_values_of_specification_dict unique_alternatives = np.arange(1, 4) good_args = [self.fake_specification, unique_alternatives] self.assertIsNone(test_func(*good_args)) # Create various bad specification dicts to make sure the function # raises the correct errors. bad_spec_1 = deepcopy(self.fake_specification) bad_spec_1["x"] = "incorrect_string" # Use a structure that is incorrect (group_items should only be ints # not lists) bad_spec_2 = deepcopy(self.fake_specification) bad_spec_2["x"] = [[1, 2], [[3]]] # Use an alternative that is not in the universal choice set bad_spec_3 = deepcopy(self.fake_specification) bad_spec_3["x"] = [[1, 2, 4]] bad_spec_4 = deepcopy(self.fake_specification) bad_spec_4["x"] = [1, 2, 4] # Use a completely wrong type bad_spec_5 = deepcopy(self.fake_specification) bad_spec_5["x"] = set([1, 2, 3]) for bad_spec, error in [(bad_spec_1, ValueError), (bad_spec_2, ValueError), (bad_spec_3, ValueError), (bad_spec_4, ValueError), (bad_spec_5, TypeError)]: self.assertRaises(error, test_func, bad_spec, unique_alternatives) return None def test_check_keys_and_values_of_name_dictionary(self): """ Ensure that the checks of the keys and values of the name dictionary are working as expected. """ # Ensure that a correct name dict raises no errors. test_func = ct.check_keys_and_values_of_name_dictionary num_alts = 3 args = [self.fake_names, self.fake_specification, num_alts] self.assertIsNone(test_func(*args)) # Create various bad specification dicts to make sure the function # raises the correct errors. bad_names_1 = deepcopy(self.fake_names) bad_names_1["y"] = "incorrect_string" # Use a completely wrong type bad_names_2 = deepcopy(self.fake_names) bad_names_2["x"] = set(["generic x"]) # Use an incorrect number of elements bad_names_3 = deepcopy(self.fake_names) bad_names_3["x"] = ["generic x1", "generic x2"] # Use the wrong type for the name bad_names_4 = deepcopy(self.fake_names) bad_names_4["x"] = [23] for bad_names in [bad_names_1, bad_names_2, bad_names_3, bad_names_4]: args[0] = bad_names self.assertRaises(ValueError, test_func, *args) # Use two different specifications to test what could go wrong new_spec_1 = deepcopy(self.fake_specification) new_spec_1["x"] = "all_same" bad_names_5 = deepcopy(self.fake_names) bad_names_5["x"] = False new_spec_2 = deepcopy(self.fake_specification) new_spec_2["x"] = "all_diff" bad_names_6 = deepcopy(self.fake_names) bad_names_6["x"] = False bad_names_7 = deepcopy(self.fake_names) bad_names_7["x"] = ["foo", "bar"] for names, spec, error in [(bad_names_5, new_spec_1, TypeError), (bad_names_6, new_spec_2, ValueError), (bad_names_7, new_spec_2, ValueError)]: args[0], args[1] = names, spec self.assertRaises(error, test_func, *args) return None def test_create_design_matrix(self): """ Ensure that create_design_matrix returns the correct numpy arrays for model estimation. """ # Create a long format dataframe with variables of all types (generic, # alternative-specific, and subset specific) self.fake_df["y"] = np.array([12, 9, 0.90, 16, 4]) self.fake_df["z"] = np.array([2, 6, 9, 10, 1]) self.fake_df["m"] = np.array([2, 2, 2, 6, 6]) # Amend the specification of 'x' self.fake_specification["x"] = "all_same" self.fake_names["x"] = "x (generic coefficient)" # Add the new variables to the specification and name dictionaries self.fake_specification["y"] = "all_diff" self.fake_names["y"] = ["y_alt_1", "y_alt_2", "y_alt_3"] self.fake_specification["z"] = [[1, 2], 3] self.fake_names["z"] = ["z_alts_1_2", "z_alt_3"] self.fake_specification["m"] = [1, 2] self.fake_names["m"] = ["m_alt_1", "m_alt_2"] # Create the numpy array that should be returned expected = np.array([[1, 12, 0, 0, 2, 0, 2, 0], [2, 0, 9, 0, 6, 0, 0, 2], [3, 0, 0, 0.9, 0, 9, 0, 0], [1.5, 16, 0, 0, 10, 0, 6, 0], [3.5, 0, 0, 4, 0, 1, 0, 0]]) expected_names = ([self.fake_names["x"]] + self.fake_names["y"] + self.fake_names["z"] + self.fake_names["m"]) # Compare the expected array with the returned array func_results = ct.create_design_matrix(self.fake_df, self.fake_specification, self.alt_id_col, self.fake_names) func_design, func_names = func_results self.assertIsInstance(func_design, np.ndarray) self.assertEqual(func_design.shape, (5, 8)) npt.assert_allclose(func_design, expected) self.assertEqual(expected_names, func_names) return None def test_ensure_all_columns_are_used(self): """ Ensure appropriate warnings are raised when there are more /less variables in one's dataframe than are accounted for in one's function. """ # Make sure that None is returned when there is no problem. num_vars_used = self.fake_df.columns.size self.assertIsNone(ct.ensure_all_columns_are_used(num_vars_used, self.fake_df)) # Test to ensure that a warning message is raised when using # a number of colums different from the number in the dataframe. with warnings.catch_warnings(record=True) as context: # Use this filter to always trigger the UserWarnings warnings.simplefilter('always', UserWarning) for pos, package in enumerate([(-1, "only"), (1, "more")]): i, msg = package num_vars_used = self.fake_df.columns.size + i ct.ensure_all_columns_are_used(num_vars_used, self.fake_df) # Check that the warning has been created. self.assertEqual(len(context), pos + 1) self.assertIsInstance(context[-1].category, type(UserWarning)) self.assertIn(msg, str(context[-1].message)) return None def test_check_dataframe_for_duplicate_records(self): """ Ensure that ValueError is raised only when the passed dataframe has duplicate observation-id and alternative-id pairs. """ # Alias the function that is to be tested func = ct.check_dataframe_for_duplicate_records # Ensure that the function returns None when given data that is okay. good_args = [self.obs_id_col, self.alt_id_col, self.fake_df] self.assertIsNone(func(*good_args)) # Make sure a ValueError is raised when one has repeat obs-id and # alt-id pairs. bad_df = self.fake_df.copy() bad_df.loc[3, "obs_id"] = 1 bad_args = deepcopy(good_args) bad_args[2] = bad_df self.assertRaises(ValueError, func, *bad_args) return None def test_ensure_num_chosen_alts_equals_num_obs(self): """ Ensure that ValueError is raised only when the passed dataframe's number of choices does not equal the declared number of observations. """ # Alias the function that is to be tested func = ct.ensure_num_chosen_alts_equals_num_obs # Ensure that the function returns None when given data that is okay. args = [self.obs_id_col, self.choice_col, self.fake_df] self.assertIsNone(func(*args)) # Make sure a ValueError is raised when one has more or less choices # than observations # Too many choice bad_df_1 = self.fake_df.copy() bad_df_1.loc[0, "choice"] = 1 # Too few choices bad_df_2 = self.fake_df.copy() bad_df_2.loc[1, "choice"] = 0 for bad_df in [bad_df_1, bad_df_2]: args[2] = bad_df self.assertRaises(ValueError, func, *args) return None def test_check_type_and_values_of_alt_name_dict(self): """ Ensure that a TypeError is raised when alt_name_dict is not an instance of a dictionary, and ensure that a ValueError is raised when the keys of alt_name_dict are not actually in the alternative ID column of the passed dataframe. """ # Alias the function that is to be tested func = ct.check_type_and_values_of_alt_name_dict # Ensure that the function returns None when given data that is okay. alt_name_dict = {1: "alternative 1", 2: "alternative 2", 3: "alternative 3"} args = [alt_name_dict, self.alt_id_col, self.fake_df] self.assertIsNone(func(*args)) # Test both ways that the function of interest can raise errors. # Use a data structure that is not a dictionary. bad_dict_1 = alt_name_dict.items() # Use keys in the dictionary that are not valid alternative IDs. # Our alternative IDs are ints, not strings. bad_dict_2 = {'1': "alternative 1", '2': "alternative 2", '3': "alternative 3"} for bad_dict, error in [(bad_dict_1, TypeError), (bad_dict_2, ValueError)]: args[0] = bad_dict self.assertRaises(error, func, *args) return None def test_convert_long_to_wide(self): """ Test the basic functionality of convert_long_to_wide, ensuring correct outputs when given correct inputs. """ # Create a long format dataframe with variables of all types (generic, # alternative-specific, and subset specific) # Add the alternative specific variable self.fake_df["y"] = np.array([12, 9, 0.90, 16, 4]) # Add the subset specific variable (it only exists for a subset of # alternatives, 1 and 2) self.fake_df["z"] = np.array([2, 6, 0, 10, 0]) # Add the individual specific variables self.fake_df["m"] = np.array([2, 2, 2, 6, 6]) # Construct the wide format dataframe by hand wide_data = OrderedDict() wide_data["obs_id"] = [1, 2] wide_data["choice"] = [2, 3] wide_data["availability_1"] = [1, 1] wide_data["availability_2"] = [1, 0] wide_data["availability_3"] = [1, 1] # Add the individual specific variables wide_data["m"] = [2, 6] # Add the alternataive specific variables wide_data["y_1"] = [12.0, 16.0] wide_data["y_2"] = [9.0, np.nan] wide_data["y_3"] = [0.9, 4.0] # Add the subset specific variables wide_data["z_1"] = [2.0, 10.0] wide_data["z_2"] = [6, np.nan] expected =
pd.DataFrame(wide_data)
pandas.DataFrame
"""Exhastuve grid search for parameters for TSNE and UMAP""" import argparse import itertools import hdbscan import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.gridspec as gridspec import numpy as np import pandas as pd import seaborn as sns from scipy.spatial.distance import pdist, squareform from sklearn.manifold import TSNE, MDS from sklearn.decomposition import PCA from sklearn.metrics import confusion_matrix, matthews_corrcoef from sklearn.model_selection import RepeatedKFold from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from umap import UMAP import sys sys.path.append("../notebooks/scripts/") from Helpers import get_PCA_feature_matrix, get_euclidean_data_frame if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--distance-matrix", help="csv file with the distance matrix") parser.add_argument("--alignment", help="FASTA file with the alignment") parser.add_argument("--node-data", help="csv file with the clade_membership - that MUST be the name of the column.") parser.add_argument("--n-neighbors", nargs="+", type=int, help="list of values that the search should use") parser.add_argument("--min-dist", nargs="+", type=float, help="list of values that the search should use") parser.add_argument("--perplexity", nargs="+", type=float, help="list of values that the search should use") parser.add_argument("--threshold-information", nargs="+", help="the distance threshold values to be used on HDBSCAN. if not provided, it will run without.") parser.add_argument("--learning-rate", nargs="+", type=float, help="list of values that the search should use") parser.add_argument("--n-repeats", type=int, help="the number of times the k fold generator should repeat the k fold") parser.add_argument("--output", help="the path where the best thresholds will be saved.") parser.add_argument("--output-hyperparameters", help="the path where the best parameters will be saved. ") parser.add_argument("--output-metadata", help="the path where the grid search data will be saved.") parser.add_argument("--output-figure-HDBSCAN", help="PNG with the results displayed graphically for HDBSCAN thresholds") parser.add_argument("--output-figure-grid-search", help="PNG with the results displayed graphically for grid search") args = parser.parse_args() def _get_embedding_columns_by_method(method): if method in ("pca"): return list(f"{method}1 {method}2 {method}3 {method}4 {method}5 {method}6 {method}7 {method}8 {method}9 {method}10".split()) if method in ("mds"): return list(f"{method}1 {method}2".split()) if method in ("t-sne"): return list("tsne_x tsne_y".split()) else: return list(f"{method}_x {method}_y".split()) if(args.threshold_information is not None): #threshold_df = pd.read_csv(args.threshold_information) threshold_df.loc[threshold_df['embedding'] == args.method][args.column_threshold].values.tolist()[0] distance_thresholds = args.threshold_information else: distance_thresholds = np.arange(0,20,2) default_tuned_values = [] list_of_embedding_strings = ["t-sne", "umap", "mds", "pca"] #["t-SNE","UMAP","MDS", "PCA"] embedding_class = [TSNE, UMAP, MDS, PCA] tuned_parameter_values = [] # reading in the distance matrix and node data distance_matrix =
pd.read_csv(args.distance_matrix, index_col=0)
pandas.read_csv
""" Tests dtype specification during parsing for all of the parsers defined in parsers.py """ from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserWarning from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timestamp, concat import pandas._testing as tm @pytest.mark.parametrize("dtype", [str, object]) @pytest.mark.parametrize("check_orig", [True, False]) def test_dtype_all_columns(all_parsers, dtype, check_orig): # see gh-3795, gh-6607 parser = all_parsers df = DataFrame( np.random.rand(5, 2).round(4), columns=list("AB"), index=["1A", "1B", "1C", "1D", "1E"], ) with tm.ensure_clean("__passing_str_as_dtype__.csv") as path: df.to_csv(path) result = parser.read_csv(path, dtype=dtype, index_col=0) if check_orig: expected = df.copy() result = result.astype(float) else: expected = df.astype(str) tm.assert_frame_equal(result, expected) def test_dtype_all_columns_empty(all_parsers): # see gh-12048 parser = all_parsers result = parser.read_csv(StringIO("A,B"), dtype=str) expected = DataFrame({"A": [], "B": []}, index=[], dtype=str) tm.assert_frame_equal(result, expected) def test_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" expected = DataFrame( [[1, "2.5"], [2, "3.5"], [3, "4.5"], [4, "5.5"]], columns=["one", "two"] ) expected["one"] = expected["one"].astype(np.float64) expected["two"] = expected["two"].astype(object) result = parser.read_csv(StringIO(data), dtype={"one": np.float64, 1: str}) tm.assert_frame_equal(result, expected) def test_invalid_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" with pytest.raises(TypeError, match="data type [\"']foo[\"'] not understood"): parser.read_csv(StringIO(data), dtype={"one": "foo", 1: "int"}) @pytest.mark.parametrize( "dtype", [ "category",
CategoricalDtype()
pandas.core.dtypes.dtypes.CategoricalDtype
import concurrent.futures import multiprocessing import scipy import pandas as pd import random import re import time import pickle import os from .DataManager import DataManager from .Agent import Agent from colorama import Fore from .Utils import get_seconds from sklearn.feature_extraction.text import TfidfVectorizer class Coordinator: current_date =
pd.to_datetime('2020-03-29T00:00:00Z')
pandas.to_datetime
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re from collections.abc import Iterable from datetime import datetime, timedelta from unittest import TestCase import numpy as np import pandas as pd import statsmodels from kats.consts import TimeSeriesData from kats.detectors.detector_consts import ( AnomalyResponse, ChangePointInterval, ConfidenceBand, PercentageChange, SingleSpike, ) statsmodels_ver = float( re.findall("([0-9]+\\.[0-9]+)\\..*", statsmodels.__version__)[0] ) class SingleSpikeTest(TestCase): def test_spike(self) -> None: spike_time_str = "2020-03-01" spike_time = datetime.strptime(spike_time_str, "%Y-%m-%d") spike = SingleSpike(time=spike_time, value=1.0, n_sigma=3.0) self.assertEqual(spike.time_str, spike_time_str) class ChangePointIntervalTest(TestCase): def test_changepoint(self) -> None: np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(15)] current_length = 10 current_seq = [ previous_seq[10] + timedelta(days=x) for x in range(current_length) ] previous_values = np.random.randn(len(previous_seq)) current_values = np.random.randn(len(current_seq)) # add a very large value to detect spikes current_values[0] = 100.0 # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `previous`. self.previous = TimeSeriesData( pd.DataFrame({"time": previous_seq, "value": previous_values}) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current`. self.current = TimeSeriesData( pd.DataFrame({"time": current_seq, "value": current_values}) ) previous_extend = TimeSeriesData( pd.DataFrame({"time": previous_seq[9:], "value": previous_values[9:]}) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_start`. self.prev_start = previous_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_end`. self.prev_end = previous_seq[9] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_start`. self.current_start = current_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_end`. self.current_end = current_seq[-1] + timedelta(days=1) previous_int = ChangePointInterval(self.prev_start, self.prev_end) previous_int.data = self.previous # tests whether data is clipped property to start and end dates np.testing.assert_array_equal(previous_values[0:9], previous_int.data) # test extending the data # now the data is extended to include the whole sequence previous_int.end_time = previous_seq[-1] + timedelta(days=1) previous_int.extend_data(previous_extend) self.assertEqual(len(previous_int), len(previous_seq)) current_int = ChangePointInterval(self.current_start, self.current_end) current_int.data = self.current current_int.previous_interval = previous_int # check all the properties self.assertEqual(current_int.start_time, self.current_start) self.assertEqual(current_int.end_time, self.current_end) self.assertEqual( current_int.start_time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) self.assertEqual( current_int.end_time_str, datetime.strftime(self.current_end, "%Y-%m-%d") ) self.assertEqual(current_int.mean_val, np.mean(current_values)) self.assertEqual(current_int.variance_val, np.var(current_values)) self.assertEqual(len(current_int), current_length) self.assertEqual(current_int.previous_interval, previous_int) # check spike detection spike_list = current_int.spikes # pyre-fixme[16]: `List` has no attribute `value`. self.assertEqual(spike_list[0].value, 100.0) self.assertEqual( # pyre-fixme[16]: `List` has no attribute `time_str`. spike_list[0].time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) def test_multichangepoint(self) -> None: # test for multivariate time series np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(15)] current_length = 10 current_seq = [ previous_seq[10] + timedelta(days=x) for x in range(current_length) ] num_seq = 5 previous_values = [np.random.randn(len(previous_seq)) for _ in range(num_seq)] current_values = [np.random.randn(len(current_seq)) for _ in range(num_seq)] # add a very large value to detect spikes for i in range(num_seq): current_values[i][0] = 100 * (i + 1) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `previous`. self.previous = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq}, **{f"value_{i}": previous_values[i] for i in range(num_seq)}, } ) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current`. self.current = TimeSeriesData( pd.DataFrame( { **{"time": current_seq}, **{f"value_{i}": current_values[i] for i in range(num_seq)}, } ) ) previous_extend = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq[9:]}, **{f"value_{i}": previous_values[i][9:] for i in range(num_seq)}, } ) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_start`. self.prev_start = previous_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_end`. self.prev_end = previous_seq[9] # `current_start`. # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_start`. self.current_start = current_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_end`. self.current_end = current_seq[-1] + timedelta(days=1) previous_int = ChangePointInterval(self.prev_start, self.prev_end) previous_int.data = self.previous # tests whether data is clipped property to start and end dates for i in range(num_seq): self.assertEqual( # pyre-fixme[16]: Optional type has no attribute `__getitem__`. previous_int.data[:, i].tolist(), previous_values[i][0:9].tolist(), ) # test extending the data # now the data is extended to include the whole sequence except the last point previous_int.end_time = previous_seq[-1] # + timedelta(days=1) previous_int.extend_data(previous_extend) self.assertEqual(len(previous_int) + 1, len(previous_seq)) # let's repeat this except without truncating the final point previous_int2 = ChangePointInterval(self.prev_start, self.prev_end) previous_int2.data = self.previous previous_int2.end_time = previous_seq[-1] + timedelta(days=1) previous_int2.extend_data(previous_extend) self.assertEqual(len(previous_int2), len(previous_seq)) # let's extend the date range so it's longer than the data # this should not change the results previous_int3 = ChangePointInterval(self.prev_start, self.prev_end) previous_int3.data = self.previous previous_int3.end_time = previous_seq[-1] + timedelta(days=2) previous_int3.extend_data(previous_extend) self.assertEqual(len(previous_int3), len(previous_seq)) # let's construct the current ChangePointInterval current_int = ChangePointInterval(self.current_start, self.current_end) current_int.data = self.current current_int.previous_interval = previous_int # check all the properties self.assertEqual(current_int.start_time, self.current_start) self.assertEqual(current_int.end_time, self.current_end) self.assertEqual(current_int.num_series, num_seq) self.assertEqual( current_int.start_time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) self.assertEqual( current_int.end_time_str, datetime.strftime(self.current_end, "%Y-%m-%d") ) self.assertEqual( # pyre-fixme[16]: `float` has no attribute `tolist`. current_int.mean_val.tolist(), [np.mean(current_values[i]) for i in range(num_seq)], ) self.assertEqual( current_int.variance_val.tolist(), [np.var(current_values[i]) for i in range(num_seq)], ) self.assertEqual(len(current_int), current_length) self.assertEqual(current_int.previous_interval, previous_int) # check spike detection spike_array = current_int.spikes self.assertEqual(len(spike_array), num_seq) for i in range(num_seq): # pyre-fixme[16]: `SingleSpike` has no attribute `__getitem__`. self.assertEqual(spike_array[i][0].value, 100 * (i + 1)) self.assertEqual( spike_array[i][0].time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) class PercentageChangeTest(TestCase): def test_perc_change(self) -> None: np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(30)] current_length = 31 # offset one to make the new interval start one day after the previous one ends current_seq = [ previous_seq[-1] + timedelta(days=(x + 1)) for x in range(current_length) ] previous_values = 1.0 + 0.25 * np.random.randn(len(previous_seq)) current_values = 10.0 + 0.25 * np.random.randn(len(current_seq)) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `previous`. self.previous = TimeSeriesData( pd.DataFrame({"time": previous_seq, "value": previous_values}) ) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current`. self.current = TimeSeriesData( pd.DataFrame({"time": current_seq, "value": current_values}) ) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `prev_start`. self.prev_start = previous_seq[0] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `prev_end`. self.prev_end = previous_seq[9] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current_start`. self.current_start = current_seq[0] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current_end`. self.current_end = current_seq[-1] previous_int = ChangePointInterval( previous_seq[0], (previous_seq[-1] + timedelta(days=1)) ) previous_int.data = self.previous current_int = ChangePointInterval( current_seq[0], (current_seq[-1] + timedelta(days=1)) ) current_int.data = self.current current_int.previous_interval = previous_int perc_change_1 = PercentageChange(current=current_int, previous=previous_int) previous_mean = np.mean(previous_values) current_mean = np.mean(current_values) # test the ratios ratio_val = current_mean / previous_mean self.assertEqual(perc_change_1.ratio_estimate, ratio_val) ratio_estimate = perc_change_1.ratio_estimate assert isinstance(ratio_estimate, float) self.assertAlmostEqual(ratio_estimate, 10.0, 0) self.assertEqual(perc_change_1.perc_change, (ratio_val - 1) * 100) self.assertEqual(perc_change_1.direction, "up") self.assertEqual(perc_change_1.stat_sig, True) self.assertTrue(perc_change_1.p_value < 0.05) self.assertTrue(perc_change_1.score > 1.96) # test a detector with false stat sig second_values = 10.005 + 0.25 * np.random.randn(len(previous_seq)) second = TimeSeriesData( pd.DataFrame({"time": previous_seq, "value": second_values}) ) second_int = ChangePointInterval(previous_seq[0], previous_seq[-1]) second_int.data = second perc_change_2 = PercentageChange(current=current_int, previous=second_int) self.assertEqual(perc_change_2.stat_sig, False) self.assertFalse(perc_change_2.p_value < 0.05) self.assertFalse(perc_change_2.score > 1.96) # test the edge case when one of the intervals # contains a single data point current_int_2 = ChangePointInterval(current_seq[0], current_seq[1]) current_int_2.data = self.current perc_change_3 = PercentageChange(current=current_int_2, previous=previous_int) self.assertTrue(perc_change_3.score > 1.96) # TODO delta method tests def test_multi_perc_change(self) -> None: # test for multivariate time series np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(30)] current_length = 31 # offset one to make the new interval start one day after the previous one ends current_seq = [ previous_seq[-1] + timedelta(days=(x + 1)) for x in range(current_length) ] num_seq = 5 previous_values = np.array( [1.0 + 0.0001 * np.random.randn(len(previous_seq)) for _ in range(num_seq)] ) current_values = np.array( [10.0 + 0.0001 * np.random.randn(len(current_seq)) for _ in range(num_seq)] ) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `previous`. self.previous = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq}, **{f"value_{i}": previous_values[i] for i in range(num_seq)}, } ) ) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current`. self.current = TimeSeriesData( pd.DataFrame( { **{"time": current_seq}, **{f"value_{i}": current_values[i] for i in range(num_seq)}, } ) ) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `prev_start`. self.prev_start = previous_seq[0] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `prev_end`. self.prev_end = previous_seq[9] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current_start`. self.current_start = current_seq[0] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current_end`. self.current_end = current_seq[-1] previous_int = ChangePointInterval( previous_seq[0], previous_seq[-1] + timedelta(days=1) ) previous_int.data = self.previous current_int = ChangePointInterval( current_seq[0], current_seq[-1] + timedelta(days=1) ) current_int.data = self.current current_int.previous_interval = previous_int perc_change_1 = PercentageChange(current=current_int, previous=previous_int) previous_mean = np.array([np.mean(previous_values[i]) for i in range(num_seq)]) current_mean = np.array([np.mean(current_values[i]) for i in range(num_seq)]) # test the ratios ratio_val = current_mean / previous_mean ratio_estimate = perc_change_1.ratio_estimate assert isinstance(ratio_estimate, np.ndarray) self.assertEqual(ratio_estimate.tolist(), ratio_val.tolist()) for r in ratio_estimate: self.assertAlmostEqual(r, 10.0, 0) perc_change = perc_change_1.perc_change assert isinstance(perc_change, np.ndarray) self.assertEqual(perc_change.tolist(), ((ratio_val - 1) * 100).tolist()) direction = perc_change_1.direction assert isinstance(direction, np.ndarray) self.assertEqual(direction.tolist(), ["up"] * num_seq) stat_sig = perc_change_1.stat_sig assert isinstance(stat_sig, np.ndarray) self.assertEqual(stat_sig.tolist(), [True] * num_seq) p_value_list, score_list = perc_change_1.p_value, perc_change_1.score assert isinstance(p_value_list, Iterable) assert isinstance(score_list, Iterable) for p_value, score in zip(p_value_list, score_list): self.assertLess(p_value, 0.05) self.assertLess(1.96, score) # test a detector with false stat sig second_values = np.array( [10.005 + 0.25 * np.random.randn(len(previous_seq)) for _ in range(num_seq)] ) second = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq}, **{f"value_{i}": second_values[i] for i in range(num_seq)}, } ) ) second_int = ChangePointInterval(previous_seq[0], previous_seq[-1]) second_int.data = second perc_change_2 = PercentageChange(current=current_int, previous=second_int) stat_sig_list, p_value_list, score_list = ( perc_change_2.stat_sig, perc_change_2.p_value, perc_change_2.score, ) assert isinstance(stat_sig_list, Iterable) assert isinstance(p_value_list, Iterable) assert isinstance(score_list, Iterable) for stat_sig, p_value, score in zip(stat_sig_list, p_value_list, score_list): self.assertFalse(stat_sig) self.assertLess(0.05, p_value) self.assertLess(score, 1.96) # test a detector with a negative spike third_values = np.array( [ 1000.0 + 0.0001 * np.random.randn(len(previous_seq)) for _ in range(num_seq) ] ) third = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq}, **{f"value_{i}": third_values[i] for i in range(num_seq)}, } ) ) third_int = ChangePointInterval(previous_seq[0], previous_seq[-1]) third_int.data = third perc_change_3 = PercentageChange(current=current_int, previous=third_int) p_value_list, score_list = perc_change_3.p_value, perc_change_3.score assert isinstance(p_value_list, Iterable) assert isinstance(score_list, Iterable) for p_value, score in zip(p_value_list, score_list): self.assertLess(p_value, 0.05) self.assertLess(score, -1.96) # test the edge case when one of the intervals # contains a single data point current_int_single_point = ChangePointInterval(current_seq[0], current_seq[1]) current_int_single_point.data = self.current perc_change_single_point = PercentageChange( current=current_int_single_point, previous=previous_int ) p_value_list, score_list = ( perc_change_single_point.p_value, perc_change_single_point.score, ) assert isinstance(p_value_list, Iterable) assert isinstance(score_list, Iterable) for p_value, score in zip(p_value_list, score_list): self.assertLess(p_value, 0.05) self.assertLess(1.96, score) class TestAnomalyResponse(TestCase): def test_response(self) -> None: np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(30)] score_ts = TimeSeriesData( pd.DataFrame( {"time": previous_seq, "value": np.random.randn(len(previous_seq))} ) ) upper_values = 1.0 + np.random.randn(len(previous_seq)) upper_ts = TimeSeriesData(
pd.DataFrame({"time": previous_seq, "value": upper_values})
pandas.DataFrame
################################################# #created the 04/05/2018 09:52 by <NAME># ################################################# #-*- coding: utf-8 -*- ''' ''' ''' Améliorations possibles: ''' import warnings warnings.filterwarnings('ignore') ################################################# ########### Imports ################# ################################################# import sys import numpy as np import pandas as pd import scipy.stats import plotly import plotly.graph_objs as go import plotly.offline as offline from plotly import tools from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.base import BaseEstimator from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import train_test_split import lightgbm as lgb from sklearn.metrics import log_loss from sklearn.externals import joblib from ast import literal_eval ################################################# ########### Global variables #################### ################################################# ### LGB modeling params = {'learning_rate': 0.015, 'subsample': 0.9, #'subsample_freq': 1, 'colsample_bytree': 0.9, 'colsample_bylevel':0.9, 'reg_alpha': 1, 'reg_lambda': 1, 'max_depth' : 10, 'min_data_in_leaf': 1, 'boosting': 'dart',#'rf','dart','goss','gbdt' 'objective': 'binary', 'metric': 'binary_logloss', 'is_training_metric': True, 'seed': 99,'silent' : True,"verbose":-1} params1 = {'learning_rate': 0.015, 'subsample': 0.9, #'subsample_freq': 1, 'colsample_bytree': 0.9, 'colsample_bylevel':0.9, 'reg_alpha': 1, 'reg_lambda': 1, 'max_depth' : 8, 'num_leaves': 15, 'min_data_in_leaf': 1, 'boosting': 'dart',#'rf','dart','goss','gbdt' 'objective': 'binary', 'metric': 'binary_logloss', 'is_training_metric': True, 'seed': 99, 'silent' : True,"verbose":-1} MAX_TREES = 5000 ###################################################### class Classifier(BaseEstimator): def __init__(self): pass def fit(self, x1, y1,x2,y2): watchlist = [(lgb.Dataset(x1, label=y1), 'train'), (lgb.Dataset(x2, label=y2), 'valid')] self.clf2 = lgb.train(params, lgb.Dataset(x1, label=y1), MAX_TREES, lgb.Dataset(x2, label=y2),verbose_eval=200, feval=logloss_lgbm, early_stopping_rounds=300) self.clf1 = lgb.train(params1, lgb.Dataset(x1, label=y1), MAX_TREES, lgb.Dataset(x2, label=y2),verbose_eval=200, feval=logloss_lgbm, early_stopping_rounds=300) def predict(self, X): return self.clf1.predict(X) def predict_proba(self, X): res1 = self.clf1.predict(X, num_iteration = self.clf1.best_iteration) res2 = self.clf2.predict(X,num_iteration = self.clf2.best_iteration) return np.array([[1-0.5*(a+b),0.5*(a+b)] for a,b in zip(res1,res2)]) fileX_train ='/home/alexis/Bureau/Stage/Time-series/data/processed/sfrdaily_20180430_0_192_0_cleandata-processed.csv' fileY_train = '/home/alexis/Bureau/historique/label-30-04.csv' fileX_valid ='/home/alexis/Bureau/Stage/Time-series/data/processed/sfrdaily_20180507_0_192_0_cleandata-processed.csv' fileY_valid = '/home/alexis/Bureau/historique/label-07-05.csv' fileX_test ='/home/alexis/Bureau/Stage/Time-series/data/processed/sfrdaily_20180509_0_192_0_cleandata-processed.csv' fileY_test = '/home/alexis/Bureau/historique/label-09-05.csv' ################################################# ########### Important functions ################# ################################################# def load(fileX,fileY): X = pd.DataFrame() y =
pd.DataFrame()
pandas.DataFrame
import json import pandas as pd import numpy as np import matplotlib.pyplot as plt # %matplotlib inline: iPython의 magic fx은 사용할 수 없다!!! import seaborn as sns from sklearn import preprocessing import folium from config.settings import DATA_DIR, TEMPLATES from config.settings import STATICFILES_DIRS # 데이터 파일을 dataframe으로 바꾸기 df =
pd.read_excel(DATA_DIR[0] + '/city_pop.xlsx')
pandas.read_excel
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, to_datetime, ) import pandas._testing as tm import pandas.tseries.offsets as offsets class TestRollingTS: # rolling time-series friendly # xref GH13327 def setup_method(self, method): self.regular = DataFrame( {"A":
date_range("20130101", periods=5, freq="s")
pandas.date_range
# run_experiment # Basics import pandas as pd import numpy as np import datetime import pickle import typer import os # Import paths from globals import DATA_MODELLING_FOLDER, EVALUATION_RESULTS, full_feat_models, overlapping_feat_models, full_feat_models_rfe # Import sklearn processing/pipeline from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler from sklearn.feature_selection import RFE from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold # Models from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.dummy import DummyClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC # Metrics from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix class evaluation_manager(): def __init__(self, X_train, y_train, X_test, y_test, x_train_data, y_train_data, x_test_data, y_test_data, eval_name, EVALUATION_RESULTS): # Establish data, models, and runs for the experiment self.X_train = X_train self.y_train = y_train self.X_test = X_test self.y_test = y_test self.X_train_type = x_train_data self.y_train_type = y_train_data self.X_test_type = x_test_data self.y_test_type = y_test_data self.models = dict() self.runs = 10 self.results_path = EVALUATION_RESULTS self.eval_name = eval_name self.out_path = os.path.join(self.results_path, self.eval_name) self.model_path = self.out_path + "/models/" if os.path.isdir(self.out_path): raise Exception("Name already exists") else: os.mkdir(self.out_path + "/") os.mkdir(self.out_path + "/models/") def eval_run(self, pipe_model, model_name, run): """ Evaluates prepare pipeline model Returns run results """ # Fit model pipe_model.fit(self.X_train, self.y_train.target) # Collect model predictions training_predictions = pipe_model.predict(self.X_train) test_predictions = pipe_model.predict(self.X_test) # Obtain probabilities for calculation of AUC y_train_score = pipe_model.predict_proba(self.X_train)[:,1] y_test_score = pipe_model.predict_proba(self.X_test)[:,1] # Obtain AUC scores train_auc = roc_auc_score(self.y_train, y_train_score) test_auc = roc_auc_score(self.y_test, y_test_score) # Obtain training sensitivity/recall, specificity, PPV/precision, and NPV train_tn, train_fp, train_fn, train_tp = confusion_matrix(self.y_train, training_predictions).ravel() train_spec = train_tn/(train_tn + train_fp) train_sens = train_tp/(train_tp + train_fn) train_prec = train_tp/(train_tp + train_fp) train_npv = train_tn/(train_tn + train_fn) train_f1 = f1_score(self.y_train, training_predictions) # Obtain validation sensitivity, specificity, PPV/precision, and NPV test_tn, test_fp, test_fn, test_tp = confusion_matrix(self.y_test, test_predictions).ravel() test_spec = test_tn/(test_tn + test_fp) test_sens = test_tp/(test_tp + test_fn) test_prec = test_tp/(test_tp + test_fp) test_npv = test_tn/(test_tn + test_fn) test_f1 = f1_score(self.y_test, test_predictions) # Store scores for the current split train_bal_acc = balanced_accuracy_score(self.y_train, training_predictions) test_bal_acc = balanced_accuracy_score(self.y_test, test_predictions) train_acc = accuracy_score(self.y_train, training_predictions) test_acc = accuracy_score(self.y_test, test_predictions) # Feature Importances print(pipe_model.steps[1][1]) if model_name == 'Dummy_Classification' or model_name == "KNearest_Neighbors" or model_name == "Support_Vector_Machine": FI = np.zeros(len(self.X_train.columns)) elif model_name == 'Logistic_Regression': FI = pipe_model.steps[1][1].coef_.flatten() elif model_name == 'Random_Forest' or model_name == 'Gradient Boosting Classifier': FI = pipe_model.steps[1][1].feature_importances_.flatten() else: raise Exception("model_name doesn't match options for FI") # Store model pickle.dump(pipe_model, open(self.model_path + "/" + model_name + "_" + str(run), 'wb')) return train_bal_acc, train_acc, train_auc, train_tp, train_tn, train_fp, train_fn, train_sens, train_spec, train_prec, train_npv, train_f1, test_bal_acc, test_acc, test_auc, test_tp, test_tn, test_fp, test_fn, test_sens, test_spec, test_prec, test_npv, test_f1, FI def process_feature_importances(self, FI_array, model_name): FI_array = FI_array/self.runs feat_importance_dict = {"Feature": self.X_train.columns, "Weight": FI_array} self.FI_df =
pd.DataFrame(feat_importance_dict)
pandas.DataFrame
import logging import os import re import shutil import subprocess from builtins import object, range, str, zip from collections import OrderedDict, defaultdict import numpy as np import pandas as pd from bs4 import BeautifulSoup from editdistance import eval as editdist # Alternative library: python-levenshtein class VisualLinker(object): def __init__(self, time=False, verbose=False): self.logger = logging.getLogger(__name__) self.pdf_file = None self.verbose = verbose self.time = time self.coordinate_map = None self.pdf_word_list = None self.html_word_list = None self.links = None self.pdf_dim = None delimiters = ( u"([\(\)\,\?\u2212\u201C\u201D\u2018\u2019\u00B0\*']|(?<!http):|\.$|\.\.\.)" ) self.separators = re.compile(delimiters) # Check if poppler-utils is installed AND the version is 0.36.0 or above if shutil.which("pdfinfo") is None or shutil.which("pdftotext") is None: raise RuntimeError("poppler-utils is not installed or they are not in PATH") version = subprocess.check_output( "pdfinfo -v", shell=True, stderr=subprocess.STDOUT, universal_newlines=True ) m = re.search(r"\d\.\d{2}\.\d", version) if int(m.group(0).replace(".", "")) < 360: raise RuntimeError( "Installed poppler-utils's version is %s, but should be 0.36.0 or above" % m.group(0) ) def parse_visual(self, document_name, sentences, pdf_path): self.sentences = sentences self.pdf_file = ( pdf_path if os.path.isfile(pdf_path) else pdf_path + document_name + ".pdf" ) if not os.path.isfile(self.pdf_file): self.pdf_file = self.pdf_file[:-3] + "PDF" try: self.extract_pdf_words() except RuntimeError as e: self.logger.exception(e) return self.extract_html_words() self.link_lists(search_max=200) for sentence in self.update_coordinates(): yield sentence def extract_pdf_words(self): self.logger.debug( "pdfinfo '{}' | grep -a Pages | sed 's/[^0-9]*//'".format(self.pdf_file) ) num_pages = subprocess.check_output( "pdfinfo '{}' | grep -a Pages | sed 's/[^0-9]*//'".format(self.pdf_file), shell=True, ) pdf_word_list = [] coordinate_map = {} for i in range(1, int(num_pages) + 1): self.logger.debug( "pdftotext -f {} -l {} -bbox-layout '{}' -".format( str(i), str(i), self.pdf_file ) ) html_content = subprocess.check_output( "pdftotext -f {} -l {} -bbox-layout '{}' -".format( str(i), str(i), self.pdf_file ), shell=True, ) soup = BeautifulSoup(html_content, "html.parser") pages = soup.find_all("page") pdf_word_list_i, coordinate_map_i = self._coordinates_from_HTML(pages[0], i) pdf_word_list += pdf_word_list_i # update coordinate map coordinate_map.update(coordinate_map_i) self.pdf_word_list = pdf_word_list self.coordinate_map = coordinate_map if len(self.pdf_word_list) == 0: raise RuntimeError( "Words could not be extracted from PDF: %s" % self.pdf_file ) # take last page dimensions page_width, page_height = ( int(float(pages[0].get("width"))), int(float(pages[0].get("height"))), ) self.pdf_dim = (page_width, page_height) if self.verbose: self.logger.info("Extracted {} pdf words".format(len(self.pdf_word_list))) def _coordinates_from_HTML(self, page, page_num): pdf_word_list = [] coordinate_map = {} block_coordinates = {} blocks = page.find_all("block") i = 0 # counter for word_id in page_num for block in blocks: x_min_block = int(float(block.get("xmin"))) y_min_block = int(float(block.get("ymin"))) lines = block.find_all("line") for line in lines: y_min_line = int(float(line.get("ymin"))) y_max_line = int(float(line.get("ymax"))) words = line.find_all("word") for word in words: xmin = int(float(word.get("xmin"))) xmax = int(float(word.get("xmax"))) for content in self.separators.split(word.getText()): if len(content) > 0: # Ignore empty characters word_id = (page_num, i) pdf_word_list.append((word_id, content)) coordinate_map[word_id] = ( page_num, y_min_line, xmin, y_max_line, xmax, ) block_coordinates[word_id] = (y_min_block, x_min_block) i += 1 # sort pdf_word_list by page, block top then block left, top, then left pdf_word_list = sorted( pdf_word_list, key=lambda word_id__: block_coordinates[word_id__[0]] + coordinate_map[word_id__[0]][1:3], ) return pdf_word_list, coordinate_map def extract_html_words(self): html_word_list = [] for sentence in self.sentences: for i, word in enumerate(sentence.words): html_word_list.append(((sentence.stable_id, i), word)) self.html_word_list = html_word_list if self.verbose: self.logger.info("Extracted {} html words".format(len(self.html_word_list))) def link_lists(self, search_max=100, edit_cost=20, offset_cost=1): # NOTE: there are probably some inefficiencies here from rehashing words # multiple times, but we're not going to worry about that for now def link_exact(l, u): l, u, L, U = get_anchors(l, u) html_dict = defaultdict(list) pdf_dict = defaultdict(list) for i, (_, word) in enumerate(self.html_word_list[l:u]): if html_to_pdf[l + i] is None: html_dict[word].append(l + i) for j, (_, word) in enumerate(self.pdf_word_list[L:U]): if pdf_to_html[L + j] is None: pdf_dict[word].append(L + j) for word, html_list in list(html_dict.items()): pdf_list = pdf_dict[word] if len(html_list) == len(pdf_list): for k in range(len(html_list)): html_to_pdf[html_list[k]] = pdf_list[k] pdf_to_html[pdf_list[k]] = html_list[k] def link_fuzzy(i): (_, word) = self.html_word_list[i] l = u = i l, u, L, U = get_anchors(l, u) offset = int(L + float(i - l) / (u - l) * (U - L)) searchIndices = np.clip(offset + search_order, 0, M - 1) cost = [0] * search_max for j, k in enumerate(searchIndices): other = self.pdf_word_list[k][1] if ( word.startswith(other) or word.endswith(other) or other.startswith(word) or other.endswith(word) ): html_to_pdf[i] = k return else: cost[j] = int(editdist(word, other)) * edit_cost + j * offset_cost html_to_pdf[i] = searchIndices[np.argmin(cost)] return def get_anchors(l, u): while l >= 0 and html_to_pdf[l] is None: l -= 1 while u < N and html_to_pdf[u] is None: u += 1 if l < 0: l = 0 L = 0 else: L = html_to_pdf[l] if u >= N: u = N U = M else: U = html_to_pdf[u] return l, u, L, U def display_match_counts(): matches = sum( [ html_to_pdf[i] is not None and self.html_word_list[i][1] == self.pdf_word_list[html_to_pdf[i]][1] for i in range(len(self.html_word_list)) ] ) total = len(self.html_word_list) self.logger.info( "({:d}/{:d}) = {:.2f}".format(matches, total, matches / total) ) return matches N = len(self.html_word_list) M = len(self.pdf_word_list) try: assert N > 0 and M > 0 except Exception: self.logger.exception("N = {} and M = {} are invalid values.".format(N, M)) html_to_pdf = [None] * N pdf_to_html = [None] * M search_radius = search_max // 2 # first pass: global search for exact matches link_exact(0, N) if self.verbose: self.logger.debug("Global exact matching:") display_match_counts() # second pass: local search for exact matches for i in range(((N + 2) // search_radius) + 1): link_exact( max(0, i * search_radius - search_radius), min(N, i * search_radius + search_radius), ) if self.verbose: self.logger.debug("Local exact matching:") display_match_counts() # third pass: local search for approximate matches search_order = np.array( [(-1) ** (i % 2) * (i // 2) for i in range(1, search_max + 1)] ) for i in range(len(html_to_pdf)): if html_to_pdf[i] is None: link_fuzzy(i) if self.verbose: self.logger.debug("Local approximate matching:") display_match_counts() # convert list to dict matches = sum( [ html_to_pdf[i] is not None and self.html_word_list[i][1] == self.pdf_word_list[html_to_pdf[i]][1] for i in range(len(self.html_word_list)) ] ) total = len(self.html_word_list) if self.verbose: self.logger.debug( "Linked {:d}/{:d} ({:.2f}) html words exactly".format( matches, total, matches / total ) ) self.links = OrderedDict( (self.html_word_list[i][0], self.pdf_word_list[html_to_pdf[i]][0]) for i in range(len(self.html_word_list)) ) def _calculate_offset(self, listA, listB, seedSize, maxOffset): wordsA = zip(*listA[:seedSize])[1] wordsB = zip(*listB[:maxOffset])[1] offsets = [] for i in range(seedSize): try: offsets.append(wordsB.index(wordsA[i]) - i) except Exception as e: pass return int(np.median(offsets)) def display_links(self, max_rows=100): html = [] pdf = [] j = [] for i, l in enumerate(self.links): html.append(self.html_word_list[i][1]) for k, b in enumerate(self.pdf_word_list): if b[0] == self.links[self.html_word_list[i][0]]: pdf.append(b[1]) j.append(k) break try: assert len(pdf) == len(html) except Exception: self.logger.exception("PDF and HTML are not the same length") total = 0 match = 0 for i, word in enumerate(html): total += 1 if word == pdf[i]: match += 1 self.logger.info((match, total, match / total)) data = { # 'i': range(len(self.links)), "html": html, "pdf": pdf, "j": j, } pd.set_option("display.max_rows", max_rows) self.logger.info(pd.DataFrame(data, columns=["html", "pdf", "j"]))
pd.reset_option("display.max_rows")
pandas.reset_option
import re, random, os, json import pandas as pd import numpy as np import scipy as sp import seaborn as sns from bokeh import mpl from bokeh.plotting import output_file, show from sklearn.feature_extraction.text import TfidfVectorizer from classifier import Classifier, label2domain, manifestolabels MANIFESTO_FOLDER = "data/wahlprogramme/" RESULT_FOLDER = "data/resultate/" if not os.path.isdir(RESULT_FOLDER): os.mkdir(RESULT_FOLDER) # Tuples with party names, files and plotting colors partyFiles = [ ('AfD',"afd.md", "blue"), ('CDU/CSU', "cducsu.md", "gray"), ('FDP', "fdp.md", "yellow"), ('SPD', "spd.md", "red"), ('Grüne', "diegruenen.md", "green"), ('<NAME>', "dielinke.md", "purple") ] # political domains (according to manifestocodes) to be analysed domains = [ 'External Relations', 'Freedom and Democracy', 'Political System', 'Economy', 'Welfare and Quality of Life', 'Fabric of Society' ] def clean_whitespace(txt): ''' Replaces multiple whitespaces by blank ''' return re.sub("\s+"," ",txt) def read_md(fn, min_len=100): ''' Reads manifesto from md file; text segments shorter than min_len are discarded ''' # uncomment next line for sentence segmentation # split_symbol = '[\.\!\?\;] '# # this splits texts per paragraph, marked by one or more '#' split_symbol = '#+' md_text = open(fn).read() len_filter = lambda x: len(x) > min_len text_segments = re.split(split_symbol,md_text) texts = filter(len_filter, map(clean_whitespace, text_segments)) return texts def classify_br(folder, fn, party, clf, max_txts=10000): ''' Computes predictions for a given party INPUT: folder folder where [party].md files are stored fn filename of [party].md file party name of party (in case of different spelling than filename) clf manifestoproject classifier - see classifier.py max_txts maximal number of texts - subsamples max_txts if there are more OUTPUT: predictions pandas DataFrame with predictions, texts and party as columns ''' content = list(read_md(os.path.join(folder,fn))) if len(content) > max_txts: content = random.sample(content, max_txts) preds = clf.predictBatch(content) manifesto_codes = list(set(manifestolabels().values()).intersection(set(preds.columns.tolist()))) preds['max_manifesto'] = preds[manifesto_codes].idxmax(axis=1) preds['max_domain'] = preds[list(label2domain.keys())].idxmax(axis=1) preds['max_leftright'] = preds[['left', 'right']].idxmax(axis=1) preds['content'] = content preds['party'] = party return preds def compute_most_distant_statements_per_topic(preds, n_most_distant=5, folder=MANIFESTO_FOLDER): ''' Computes for each topic and party the text segments that are most distant to the average text segments of all other parties. Could be interpreted as 'characteristic statements' of a party INPUT: preds predictions obtained by classify_br n_most_distant number of 'characteristic' text segments to choose folder folder to store results ''' # BoW extraction tf = TfidfVectorizer().fit(preds.content) preds['tf_idf'] = preds.content.apply(lambda x: tf.transform([x])) most_distant_statements = [] for domain in domains: for party in [x[0] for x in partyFiles]: # find statements of this party this_party = (preds.party == party) & (preds.max_domain == domain) # find statements of other parties other_parties = (preds.party != party) & (preds.max_domain == domain) # stack BoW features for this party partyVecs = sp.sparse.vstack(preds[this_party]['tf_idf']) partyTexts = preds[this_party]['content'] # stack BoW vectors and take their average otherVec = sp.sparse.vstack(preds[other_parties]['tf_idf']).mean(axis=0) # compute L_1 distance between party and other parties dists = sp.array(abs(partyVecs - otherVec).sum(axis=1)).flatten() # find and store 'characteristic' text segments most_distant = [(partyTexts[idx], dists[idx]) for idx in dists.argsort()[-n_most_distant:][-1::-1]] most_distant_statements.extend([(party, domain, m, d) for m, d in most_distant]) # store results as DataFrame most_distant_statements_df =
pd.DataFrame(most_distant_statements, columns=['party', 'domain', 'most_distant_to_other_parties', 'distance'])
pandas.DataFrame
# Import dependencies def scrapeData(): import urllib.request, json from bson.json_util import dumps, loads import os, ssl import pymongo import itertools import pandas as pd # ### 2021 # In[2]: if (not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, '_create_unverified_context', None)): ssl._create_default_https_context = ssl._create_unverified_context with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2021") as url: inactive_2021 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[3]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2021") as url: active_2021 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2020 # In[4]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2020") as url: inactive_2020 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[5]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2020") as url: active_2020 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2019 # In[6]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2019") as url: inactive_2019 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[7]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2019") as url: active_2019 = json.loads(url.read().decode()) # ## 2018 # In[8]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2018") as url: inactive_2018 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[9]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2018") as url: active_2018 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2017 # In[10]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2017") as url: inactive_2017 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[11]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2017") as url: active_2017 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2016 # In[12]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2016") as url: inactive_2016 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[13]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2016") as url: active_2016 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2015 # In[14]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2015") as url: inactive_2015 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[15]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2015") as url: active_2015 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2014 # In[16]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2014") as url: inactive_2014 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[17]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2014") as url: active_2014 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2013 # In[18]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2013") as url: inactive_2013 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[19]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2013") as url: active_2013 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## Concat # In[20]: scraped_data = active_2021 + inactive_2021 + active_2020 + inactive_2020 + active_2019 + inactive_2019 + active_2018 + inactive_2018 + active_2017 + inactive_2017 + active_2016 + inactive_2016 + active_2015 + inactive_2015 + active_2014 + inactive_2014 + active_2013 + inactive_2013 len(scraped_data) # scraped_data # In[21]: #delete all fire data with erroneus values for either Latitude or Longitude (values outside the range of possibility) final_data = [] for item in scraped_data: if item["Latitude"] < 90 and item["Latitude"] > 0 and item["Longitude"] > -180 and item["Longitude"] < 180: final_data.append(item) # final_data # In[22]: final_df =
pd.DataFrame(final_data)
pandas.DataFrame
# ---------------------------------------------------------------------------- # # World Cup: Stats scanner # Ver: 0.01 # ---------------------------------------------------------------------------- # # # Code by <NAME> # # ---------------------------------------------------------------------------- # import os import numpy as np import pandas as pd import re from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.firefox.options import Options from selenium.common.exceptions import TimeoutException, NoSuchElementException, WebDriverException from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from time import sleep os.chdir("/mnt/aec0936f-d983-44c1-99f5-0f5b36390285/Dropbox/Python/Predictive Analytics FIFA") ''' browser = webdriver.Firefox() browser.get("https://www.whoscored.com/Regions/247/Tournaments/36/Seasons/5967/Stages/15737/Show/International-FIFA-World-Cup-2018") sleep(3) base_url = 'https://www.whoscored.com' def get_countries_links(browser): return [team.get_attribute('href') for team in browser.find_elements_by_xpath('//table[@id="tournament-fixture"]//td[contains(@class,"team")]//a')] countries_link = set() countries_link.update(get_countries_links(browser)) browser.find_elements_by_xpath('//table[@id="tournament-fixture"]//td[contains(@class,"team")]//a')[0].get_attribute('href') # click next page browser.find_element_by_xpath('//span[contains(@class, "ui-icon-triangle-1-e")]').click() sleep(1) countries_link.update(get_countries_links(browser)) # click next page browser.find_element_by_xpath('//span[contains(@class, "ui-icon-triangle-1-e")]').click() sleep(1) countries_link.update(get_countries_links(browser)) #countries_link player_link = dict() for country_link in countries_link: browser.get(country_link) sleep(1) team = browser.find_element_by_xpath('//span[@class="team-header-name"]') player_link[team.text] = dict() for player in browser.find_elements_by_xpath('//table[@id="top-player-stats-summary-grid"]//tbody//tr//a'): player_link[team.text][player.text] = player.get_attribute('href') np.save("Data/player_link.npy", player_link) ''' def detect_element(browser, element_id, by_what = By.ID): # Simplify the detection of an element in the browser element_present = EC.presence_of_element_located((by_what, element_id)) try: WebDriverWait(browser, 5, poll_frequency = .1).until(element_present) return True except TimeoutException as e: return False player_link = np.load("Data/player_link.npy").item() # will delete nan from already_loaded already_loaded = rating_dict.copy() for team in rating_dict.keys(): for player in rating_dict[team]: if
pd.isnull(rating_dict[team][player])
pandas.isnull
# -*- coding: utf-8 -*- """ Created on Thu Mar 26 11:30:13 2020 This script calculate damage for the yearly basis @author: acn980 """ import os, sys, glob import pandas as pd import numpy as np import warnings import scipy import matplotlib.pyplot as plt import subprocess warnings.filterwarnings("ignore") sys.path.insert(0,r'E:\github\seasonality_risk\Functions') from Functions_HCMC import remove_NaN_skew, detrend_fft, collect_rainfall, calc_avg_max_min_rainfall, thiessen_rain from Functions_HCMC import damage_surface_coord_z, load_damage, plot_damage_grid from Functions_HCMC import simulate_rain, simulate_skew, pairs_cooc, pairs_rain, pairs_sl #%% Setting the files and folder correctly fn_trunk = 'E:/surfdrive/Documents' fn_files = 'Paper/Paper5/Hydrodynamic_runs/RISK_maskTelemac' fn = os.path.join(fn_trunk,fn_files) #os.chdir(fn) #%% We plot the drivers - damage curve damage_grid = load_damage(fn_trunk, fn_files, max_rain=1000, max_sl=3000, thr_rain=50, thr_sl=1030) #max_rain, max_sl, thr_rain, thr_sl coords, dam = damage_surface_coord_z(damage_grid) #Plotting damage f = plt.figure(figsize=(8,4)) ax = f.add_subplot(111, projection='3d', azim=-60, elev=30) #Plotting damage plot_damage_grid(damage_grid, ax = ax, rstride=1, ctride=1) # damage_grid.drop(3000,axis=1).drop(1000, axis = 0) plt.show() #Plotting damage f = plt.figure(figsize=(8,4)) ax = f.add_subplot(111, projection='3d', azim=-60, elev=30) plot_damage_grid(damage_grid.drop([50,1000], axis=0).drop([1030,3000], axis = 1), ax = ax, rstride=1, ctride=1) plt.show() xv, yv = np.meshgrid(damage_grid.index.values, damage_grid.columns.values, indexing = 'ij') Z = damage_grid.to_numpy() plt.figure() plt.contour(xv, yv, Z, levels=np.arange(0,4e9, 5e7), c='k') # cmap=plt.cm.Reds) plt.show() #%% varname1 = 'Thiessen' varname2 = 'skew' lag_joint = 0 n=50000 dep_type= 'copula' #'copula' #'full corr' figure_joint = False cop_sim_R = False #%% We simulate based on monthly maxima of copula if cop_sim_R: output=subprocess.run(["C:/ProgramData/Anaconda3/envs/r_env/Scripts/Rscript.exe", "E:/github/HoChiMinh/YearlyCopFit.R", str(n), str(varname1), str(varname2)], shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE).stderr #%% We simulate events based on their co-occurence and dependence fn_rain = os.path.join(fn_trunk, 'Master2019/Thomas/data/NewRain/TRENDS/MONTH_CORRECTED/yearly_EVA') param_rain = pd.read_csv(os.path.join(fn_rain,'all_params.csv'), index_col = 'distribution') best_fit_rain = pd.read_csv(os.path.join(fn_rain,'best_fit_AIC.csv')) #, index_col = 'month') best_fit_rain.set_index('month', inplace = True) del fn_rain #Calculate montly skew surge mean fn_skew = os.path.join(fn_trunk, 'Master2019\Thomas\data\matlab_csv','skew_WACC_VungTau_Cleaned_Detrended_Strict_sel_const.csv') date_parser = lambda x: pd.datetime.strptime(x, "%d-%m-%Y %H:%M:%S") skew =
pd.read_csv(fn_skew, parse_dates = True, date_parser= date_parser, index_col = 'Date')
pandas.read_csv
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import tempfile import time from collections import OrderedDict from datetime import datetime from string import printable import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None try: import fastparquet except ImportError: # pragma: no cover fastparquet = None try: import sqlalchemy except ImportError: # pragma: no cover sqlalchemy = None from .... import tensor as mt from .... import dataframe as md from ....config import option_context from ....tests.core import require_cudf, require_ray from ....utils import arrow_array_to_objects, lazy_import, pd_release_version from ..dataframe import from_pandas as from_pandas_df from ..series import from_pandas as from_pandas_series from ..index import from_pandas as from_pandas_index, from_tileable from ..from_tensor import dataframe_from_tensor, dataframe_from_1d_tileables from ..from_records import from_records ray = lazy_import("ray") _date_range_use_inclusive = pd_release_version[:2] >= (1, 4) def test_from_pandas_dataframe_execution(setup): # test empty DataFrame pdf = pd.DataFrame() df = from_pandas_df(pdf) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) pdf = pd.DataFrame(columns=list("ab")) df = from_pandas_df(pdf) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) pdf = pd.DataFrame( np.random.rand(20, 30), index=[np.arange(20), np.arange(20, 0, -1)] ) df = from_pandas_df(pdf, chunk_size=(13, 21)) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) def test_from_pandas_series_execution(setup): # test empty Series ps = pd.Series(name="a") series = from_pandas_series(ps, chunk_size=13) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) series = from_pandas_series(ps) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) ps = pd.Series( np.random.rand(20), index=[np.arange(20), np.arange(20, 0, -1)], name="a" ) series = from_pandas_series(ps, chunk_size=13) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) def test_from_pandas_index_execution(setup): pd_index = pd.timedelta_range("1 days", periods=10) index = from_pandas_index(pd_index, chunk_size=7) result = index.execute().fetch() pd.testing.assert_index_equal(pd_index, result) def test_index_execution(setup): rs = np.random.RandomState(0) pdf = pd.DataFrame( rs.rand(20, 10), index=np.arange(20, 0, -1), columns=["a" + str(i) for i in range(10)], ) df = from_pandas_df(pdf, chunk_size=13) # test df.index result = df.index.execute().fetch() pd.testing.assert_index_equal(result, pdf.index) result = df.columns.execute().fetch() pd.testing.assert_index_equal(result, pdf.columns) # df has unknown chunk shape on axis 0 df = df[df.a1 < 0.5] # test df.index result = df.index.execute().fetch() pd.testing.assert_index_equal(result, pdf[pdf.a1 < 0.5].index) s = pd.Series(pdf["a1"], index=pd.RangeIndex(20)) series = from_pandas_series(s, chunk_size=13) # test series.index which has value result = series.index.execute().fetch() pd.testing.assert_index_equal(result, s.index) s = pdf["a2"] series = from_pandas_series(s, chunk_size=13) # test series.index result = series.index.execute().fetch() pd.testing.assert_index_equal(result, s.index) # test tensor raw = rs.random(20) t = mt.tensor(raw, chunk_size=13) result = from_tileable(t).execute().fetch() pd.testing.assert_index_equal(result, pd.Index(raw)) def test_initializer_execution(setup): arr = np.random.rand(20, 30) pdf = pd.DataFrame(arr, index=[np.arange(20), np.arange(20, 0, -1)]) df = md.DataFrame(pdf, chunk_size=(15, 10)) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) df = md.DataFrame(arr, index=md.date_range("2020-1-1", periods=20)) result = df.execute().fetch() pd.testing.assert_frame_equal( result, pd.DataFrame(arr, index=pd.date_range("2020-1-1", periods=20)) ) df = md.DataFrame( {"prices": [100, 101, np.nan, 100, 89, 88]}, index=md.date_range("1/1/2010", periods=6, freq="D"), ) result = df.execute().fetch() pd.testing.assert_frame_equal( result, pd.DataFrame( {"prices": [100, 101, np.nan, 100, 89, 88]}, index=pd.date_range("1/1/2010", periods=6, freq="D"), ), ) s = np.random.rand(20) ps = pd.Series(s, index=[np.arange(20), np.arange(20, 0, -1)], name="a") series = md.Series(ps, chunk_size=7) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) series = md.Series(s, index=md.date_range("2020-1-1", periods=20)) result = series.execute().fetch() pd.testing.assert_series_equal( result, pd.Series(s, index=pd.date_range("2020-1-1", periods=20)) ) pi =
pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
pandas.IntervalIndex.from_tuples
from datetime import time import numpy as np from pandas.compat._optional import import_optional_dependency from pandas.io.excel._base import _BaseExcelReader from pandas.core.dtypes.missing import isnull class _XlrdReader(_BaseExcelReader): def __init__(self, filepath_or_buffer): """Reader using xlrd engine. Parameters ---------- filepath_or_buffer : string, path object or Workbook Object to be parsed. """ err_msg = "Install xlrd >= 1.0.0 for Excel support"
import_optional_dependency("xlrd", extra=err_msg)
pandas.compat._optional.import_optional_dependency
import os import pandas as pd from collections import defaultdict import argparse from pattern.text.en import singularize # Dictionary used to store subject counts subject_counts = defaultdict(lambda:0) # Reads in the data def read_data(filename): print("Reading in {}".format(filename)) df = pd.read_csv(filename, skiprows = 1, names = ['doi', 'subjects', 'title'], delimiter="|") return df def sort(df, dhlw): # Used to store our cleaned subject data cleaned_data =
pd.DataFrame(columns=['doi', 'subjects', 'title'])
pandas.DataFrame
import gc import os import time import boto3 import dask import fsspec import joblib import numpy as np import pandas as pd import rasterio as rio import rioxarray import utm import xarray as xr import xgboost as xgb from pyproj import CRS from rasterio.session import AWSSession from s3fs import S3FileSystem import carbonplan_trace.v1.model as m from carbonplan_trace.v1.glas_allometric_eq import ECO_TO_REALM_MAP from carbonplan_trace.v1.landsat_preprocess import scene_seasonal_average from ..v1 import load, utils # flake8: noqa fs = S3FileSystem(requester_pays=True) def write_nodata(ds): for var in ds.data_vars: ds[var].rio.write_nodata(np.nan, inplace=True) def write_crs_dataset(ds, zone=None, overwrite=False): ''' This function will set a CRS for a dataset (whether or not one already exists!) so be sure you want to do that! ''' if zone is None: zone = '{}{}'.format(ds.utm_zone_number, ds.utm_zone_letter) crs = CRS.from_dict({'proj': 'utm', 'zone': zone}) ds = ds.rio.set_crs(crs) return ds def check_mins_maxes(ds): lat_lon_crs = CRS.from_epsg(4326) reprojected = ds.rio.reproject(lat_lon_crs) min_lat = reprojected.y.min().values max_lat = reprojected.y.max().values min_lon = reprojected.x.min().values max_lon = reprojected.x.max().values return min_lat, max_lat, min_lon, max_lon def create_target_grid(min_lat, max_lat, min_lon, max_lon): tiles = utils.find_tiles_for_bounding_box(min_lat, max_lat, min_lon, max_lon) if len(tiles) > 0: full_target_ds = utils.open_and_combine_lat_lon_data( 's3://carbonplan-climatetrace/intermediate/ecoregions_mask/', tiles=tiles, lat_lon_box=[min_lat, max_lat, min_lon, max_lon], consolidated=False, ) full_target_ds = full_target_ds.rename({'lat': 'y', 'lon': 'x'}) buffer = 0.01 target = full_target_ds.sel( y=slice(min_lat - buffer, max_lat + buffer), x=slice(min_lon - buffer, max_lon + buffer) ) target.attrs["crs"] = "EPSG:4326" del full_target_ds return target, tiles else: return None, [] def reproject_dataset_to_fourthousandth_grid(ds, zone=None): ds = write_crs_dataset(ds, zone=zone) min_lat, max_lat, min_lon, max_lon = check_mins_maxes(ds) if max_lon >= 170 and min_lon <= -170: data_list, tiles_list, bounding_box_list = [], [], [] target_east, tiles_east = create_target_grid(min_lat, max_lat, max_lon, 180) if len(tiles_east) > 0: reprojected_east = ds.rio.reproject_match(target_east).compute() reprojected_east = reprojected_east.where(reprojected_east < 1e100) data_list.append(reprojected_east) tiles_list.append(tiles_east) bounding_box_list.append([min_lat, max_lat, max_lon, 180]) del target_east target_west, tiles_west = create_target_grid(min_lat, max_lat, -180, min_lon) if len(tiles_west) > 0: reprojected_west = ds.rio.reproject_match(target_west).compute() reprojected_west = reprojected_west.where(reprojected_west < 1e100) data_list.append(reprojected_west) tiles_list.append(tiles_west) bounding_box_list.append([min_lat, max_lat, -180, min_lon]) del target_west return data_list, tiles_list, bounding_box_list else: target, tiles = create_target_grid(min_lat, max_lat, min_lon, max_lon) # the numbers aren't too big but if we normalize they might turn into decimals reprojected = ds.rio.reproject_match(target).compute() del ds del target reprojected = reprojected.where(reprojected < 1e100) return [reprojected], [tiles], [[min_lat, max_lat, min_lon, max_lon]] def dataset_to_tabular(ds): ''' Convert dataset to tabular form for inference Parameters ---------- ds : xarray dataset xarray dataset with multiple bands Returns ------- df : pandas dataframe dataframe with columns of bands ''' df = ds.to_dataframe() del ds # drop any nan values so we only carry around pixels we have landsat for # this will drop both the parts of the dataset that are empty because # the landsat scenes might be rotated w.r.t. the x/y grid # but will also drop any cloud-masked regions # TODO: further investigate %-age of nulls and root cause df = df.dropna(how='any').reset_index() return df def convert_to_lat_lon(df, utm_zone_number, utm_zone_letter): ''' Given dataframe with x/y coordinates, project into the correct lat/lon coordinates, based upon UTM zone. Parameters ---------- df : pandas dataframe geodataframe whose rows are entries for each row/path scene. Must include variables 'lon', 'lat' utm_zone_number : str/int string or int for the zone number (longitude) appropriate for that scene as defined by USGS utm_zone_letter : str string or int for the zone letter (latitude) appropriate for that scene as defined by USGS Returns ------- df : pandas dataframe The projected information for each pixel ''' return utm.to_latlon(df['x'], df['y'], int(utm_zone_number), utm_zone_letter) def add_all_variables(data, tiles, year, lat_lon_box=None): data = load.aster(data, tiles, lat_lon_box=lat_lon_box) data = load.worldclim(data) data = load.treecover2000(data, tiles) data = load.ecoregion(data, tiles, lat_lon_box=lat_lon_box) return data def make_inference(input_data, model): """ input_data is assumed to be a pandas dataframe, and model uses standard sklearn API with .predict """ input_data['NIR_V'] = m.calc_NIR_V(input_data) input_data = input_data.replace([np.nan, np.inf, -np.inf, None], np.nan) input_data = input_data.dropna(subset=m.features) gc.collect() print(f'predicting on {len(input_data)} records') t0 = time.time() with joblib.parallel_backend('threading', n_jobs=8): model.n_jobs = 8 input_data['biomass'] = model.predict(input_data) t1 = time.time() print(f'took {round(t1-t0)} seconds') return input_data[['x', 'y', 'biomass']] def predict( model_folder, path, row, year, access_key_id, secret_access_key, output_write_bucket=None, input_write_bucket=None, bands_of_interest='all', ): core_session = boto3.Session( aws_access_key_id=access_key_id, aws_secret_access_key=secret_access_key, region_name='us-west-2', ) aws_session = AWSSession(core_session, requester_pays=True) fs = S3FileSystem(key=access_key_id, secret=secret_access_key, requester_pays=True) with rio.Env(aws_session): # create the landsat scene for that year with dask.config.set(scheduler='single-threaded'): t0 = time.time() print('averaging') landsat_ds = scene_seasonal_average( path, row, year, access_key_id, secret_access_key, aws_session, core_session, fs, write_bucket=None, bands_of_interest='all', landsat_generation='landsat-7', ) t1 = time.time() print(f'averaging landsat took {round(t1-t0)} seconds') if landsat_ds: # reproject from utm to lat/lon landsat_zone = landsat_ds.utm_zone_number + landsat_ds.utm_zone_letter # sets null value to np.nan write_nodata(landsat_ds) print('reprojecting') data_list, tiles_list, bounding_box_list = reproject_dataset_to_fourthousandth_grid( landsat_ds.astype('float32'), zone=landsat_zone ) del landsat_ds dfs = [] for data, tiles, bounding_box in zip(data_list, tiles_list, bounding_box_list): # add in other datasets data = add_all_variables(data, tiles, year, lat_lon_box=bounding_box).load() df = dataset_to_tabular(data.drop(['spatial_ref'])) dfs.append(df) del df del data df = pd.concat(dfs) df = df.loc[df.ecoregion > 0] df['realm'] = df.ecoregion.apply(ECO_TO_REALM_MAP.__getitem__) else: df = pd.DataFrame({}) # apply the correct model for each realm if len(df) > 0: # write input if input_write_bucket is not None: utils.write_parquet(df, input_write_bucket, access_key_id, secret_access_key) rf_result = [] for realm, sub in df.groupby('realm'): rf = m.random_forest_model( realm=realm, df_train=None, df_test=None, output_folder=model_folder, validation_year='none', overwrite=False, ) rf_result.append(make_inference(sub, rf)) rf_result = pd.concat(rf_result) del df else: rf_result =
pd.DataFrame([[np.nan, np.nan, np.nan]], columns=['x', 'y', 'biomass'])
pandas.DataFrame
import re import json import subprocess import itertools from multiprocessing import Pool import urllib import pandas as pd from bs4 import BeautifulSoup def get_schools(county, year, grade): """Get all the schools in a county for a year and grade""" url = "https://app.azdhs.gov/IDRReportStats/Home/GetSchoolTable?{0}" query = { 'bRegex': 'false', 'bRegex_0': 'false', 'bRegex_1': 'false', 'bRegex_2': 'false', 'bRegex_3': 'false', 'bRegex_4': 'false', 'bRegex_5': 'false', 'bRegex_6': 'false', 'bRegex_7': 'false', 'bRegex_8': 'false', 'bSearchable_0': 'false', 'bSearchable_1': 'true', 'bSearchable_2': 'false', 'bSearchable_3': 'false', 'bSearchable_4': 'false', 'bSearchable_5': 'false', 'bSearchable_6': 'true', 'bSearchable_7': 'true', 'bSearchable_8': 'false', 'iColumns': '9', 'iDisplayLength': '2000', 'iDisplayStart': '0', 'mDataProp_0': 'SCHOOL_YEAR', 'mDataProp_1': 'SCHOOL_NAME', 'mDataProp_2': 'SCHOOL_TYPE', 'mDataProp_3': 'SCHOOL_GRADE', 'mDataProp_4': 'ENROLLED', 'mDataProp_5': 'ADDRESS', 'mDataProp_6': 'CITY', 'mDataProp_7': 'ZIP', 'mDataProp_8': 'COUNTY', 'sColumns': ',,,,,,,,', 'sEcho': '1', 'selectedCounty': county, 'selectedGrade': grade, 'selectedYear': year, } command = ['curl', url.format(urllib.parse.urlencode(query))] with subprocess.Popen(command, stdout=subprocess.PIPE) as proc: schools = json.loads(proc.communicate()[0].decode())['aaData'] return schools def get_data_from_table(table): """Put the html table into a dictionary""" soup = BeautifulSoup(table, 'html5lib') data = { 'school type': { 'SCHOOL_TYPE': 'N/A' }, 'enrolled': { 'ENROLLED': 'N/A' }, 'medical': { 'PCT_MEDICAL_EXEMPT': 'N/A' }, 'personal': { 'PCT_PBE': 'N/A' }, 'every': { 'PCT_PBE_EXEMPT_ALL': 'N/A' }, 'does': { 'HAS_NURSE': 'N/A' }, 'nurse type': { 'NURSE_TYPE': '' }, 'dtap': { 'PCT_IMMUNE_DTAP': 'N/A', 'PCT_EXEMPT_DTAP': 'N/A', 'PCT_COMPLIANCE_DTAP': 'N/A' }, 'tdap': { 'PCT_IMMUNE_TDAP': 'N/A', 'PCT_EXEMPT_TDAP': 'N/A', 'PCT_COMPLIANCE_TDAP': 'N/A' }, 'mcv': { 'PCT_IMMUNE_MVMVC': 'N/A', 'PCT_EXEMPT_MVMVC': 'N/A', 'PCT_COMPLIANCE_MVMVC': 'N/A' }, 'polio': { 'PCT_IMMUNE_POLIO': 'N/A', 'PCT_EXEMPT_POLIO': 'N/A', 'PCT_COMPLIANCE_POLIO': 'N/A' }, 'mmr': { 'PCT_IMMUNE_MMR': 'N/A', 'PCT_EXEMPT_MMR': 'N/A', 'PCT_COMPLIANCE_MMR': 'N/A' }, 'hep b': { 'PCT_IMMUNE_HEPB': 'N/A', 'PCT_EXEMPT_HEPB': 'N/A', 'PCT_COMPLIANCE_HEPB': 'N/A' }, 'hep a': { 'PCT_IMMUNE_HEPA': 'N/A', 'PCT_EXEMPT_HEPA': 'N/A', 'PCT_COMPLIANCE_HEPA': 'N/A' }, 'hib': { 'PCT_IMMUNE_HIB': 'N/A', 'PCT_EXEMPT_HIB': 'N/A', 'PCT_COMPLIANCE_HIB': 'N/A' }, 'var': { 'PCT_IMMUNE_VAR': 'N/A', 'PCT_EXEMPT_VAR': 'N/A', 'PCT_COMPLIANCE_VAR': 'N/A' }, } for row in soup.find_all('div', {'class': 'row'}): key = None children = list(row.children) if len(children) <= 1: continue key = children[1].text.lower() for k in data.keys(): if re.search(k, key): break else: continue cols = data[k] col_names = list(cols.keys()) index = 0 for child in children[2:]: try: text = child.text.lower() except Exception: continue cols[col_names[index]] = text index += 1 if index == len(col_names): break data[k] = cols return data def get_school_data(school_name, address, grade, year, county, zipcode, city): """Get data for a school""" params = { 'paramSelectedAddress': address, 'paramSelectedCity': city, 'paramSelectedGrade': grade, 'paramSelectedSchool': school_name, 'paramSelectedYear': year, } cmnd = [ 'curl', '-d', "{0}".format(urllib.parse.urlencode(params)), "https://app.azdhs.gov/IDRReportStats/Home/GetSchoolSpecifications", ] with subprocess.Popen(cmnd, stdout=subprocess.PIPE) as proc: table = proc.communicate()[0].decode() try: data = { 'School': str(school_name), 'Grade': str(grade), 'Address': str(address), 'School Year': str(year), 'Zipcode': str(zipcode), 'County': str(county), 'City': str(city), } table_data = get_data_from_table(table) for value in table_data.values(): data.update(value) return data except Exception: print(f'Failed: {county}, {year}, {grade}, {school_name}') raise def to_csv(vaccines_df): """Convert the vaccines dataframe to csv files""" def create_file_name(n): return '_'.join(n).replace('-', '_') + '.csv' columns = { 'Sixth': [ 'SCHOOL_NAME', 'SCHOOL_TYPE', 'SCHOOL_ADDRESS_ONE', 'CITY', 'COUNTY', 'ZIP_CODE', 'HAS_NURSE', 'NURSE_TYPE', 'ENROLLED', 'PCT_IMMUNE_DTAP', 'PCT_EXEMPT_DTAP', 'PCT_COMPLIANCE_DTAP', 'PCT_IMMUNE_TDAP', 'PCT_EXEMPT_TDAP', 'PCT_COMPLIANCE_TDAP', 'PCT_IMMUNE_MVMVC', 'PCT_EXEMPT_MVMVC', 'PCT_COMPLIANCE_MVMVC', 'PCT_IMMUNE_POLIO', 'PCT_EXEMPT_POLIO', 'PCT_COMPLIANCE_POLIO', 'PCT_IMMUNE_MMR', 'PCT_EXEMPT_MMR', 'PCT_COMPLIANCE_MMR', 'PCT_IMMUNE_HEPB', 'PCT_EXEMPT_HEPB', 'PCT_COMPLIANCE_HEPB', 'PCT_IMMUNE_VAR', 'PCT_EXEMPT_VAR', 'PCT_COMPLIANCE_VAR', 'PCT_PBE', 'PCT_MEDICAL_EXEMPT', 'PCT_PBE_EXEMPT_ALL', ], 'Childcare': [ 'SCHOOL_NAME', 'SCHOOL_TYPE', 'SCHOOL_ADDRESS_ONE', 'CITY', 'COUNTY', 'ZIP_CODE', 'HAS_NURSE', 'NURSE_TYPE', 'ENROLLED', 'PCT_IMMUNE_DTAP', 'PCT_EXEMPT_DTAP', 'PCT_COMPLIANCE_DTAP', 'PCT_IMMUNE_POLIO', 'PCT_EXEMPT_POLIO', 'PCT_COMPLIANCE_POLIO', 'PCT_IMMUNE_MMR', 'PCT_EXEMPT_MMR', 'PCT_COMPLIANCE_MMR', 'PCT_IMMUNE_HIB', 'PCT_EXEMPT_HIB', 'PCT_COMPLIANCE_HIB', 'PCT_IMMUNE_HEPA', 'PCT_EXEMPT_HEPA', 'PCT_COMPLIANCE_HEPA', 'PCT_IMMUNE_HEPB', 'PCT_EXEMPT_HEPB', 'PCT_COMPLIANCE_HEPB', 'PCT_IMMUNE_VAR', 'PCT_EXEMPT_VAR', 'PCT_COMPLIANCE_VAR', 'PCT_PBE', 'PCT_MEDICAL_EXEMPT', 'PCT_PBE_EXEMPT_ALL' ], 'Kindergarten': [ 'SCHOOL_NAME', 'SCHOOL_TYPE', 'SCHOOL_ADDRESS_ONE', 'CITY', 'COUNTY', 'ZIP_CODE', 'HAS_NURSE', 'NURSE_TYPE', 'ENROLLED', 'PCT_IMMUNE_DTAP', 'PCT_EXEMPT_DTAP', 'PCT_COMPLIANCE_DTAP', 'PCT_IMMUNE_POLIO', 'PCT_EXEMPT_POLIO', 'PCT_COMPLIANCE_POLIO', 'PCT_IMMUNE_MMR', 'PCT_EXEMPT_MMR', 'PCT_COMPLIANCE_MMR', 'PCT_IMMUNE_HEPB', 'PCT_EXEMPT_HEPB', 'PCT_COMPLIANCE_HEPB', 'PCT_IMMUNE_VAR', 'PCT_EXEMPT_VAR', 'PCT_COMPLIANCE_VAR', 'PCT_PBE', 'PCT_MEDICAL_EXEMPT', 'PCT_PBE_EXEMPT_ALL' ] } group_by = ['Grade', 'School Year'] for name, group in vaccines_df.groupby(group_by): grade, year = name cols = columns[grade] df =
pd.DataFrame(group)
pandas.DataFrame
import logging import io import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm import sandy __author__ = "<NAME>" __all__ = [ "Samples", ] np.random.seed(1) minimal_testcase = np.random.randn(4, 3) def cov33csv(func): def inner(*args, **kwargs): key = "<KEY>" kw = kwargs.copy() if key in kw: if kw[key]: print(f"found argument '{key}', ignore oher arguments") out = func( *args, index_col=[0, 1, 2], ) out.data.index.names = ["MAT", "MT", "E"] return out else: del kw[key] out = func(*args, **kw) return out return inner class Samples(): """ Attributes ---------- condition_number data Methods ------- filter_by from_csv regression_coefficients sm_ols """ def __init__(self, df): self.data = pd.DataFrame(df, dtype=float) def __repr__(self): return self.data.__repr__() @property def data(self): """ Dataframe of samples. Attributes ---------- index : `pandas.Index` or `pandas.MultiIndex` indices columns : `pandas.Index` samples numbering values : `numpy.array` sample values as `float` Returns ------- `pandas.DataFrame` tabulated samples """ return self._data @data.setter def data(self, data): self._data = data @property def condition_number(self): """ Return condition number of samples. Notes ----- ..note:: the condition number can help assess multicollinearity. """ # The first step is to normalize the independent variables to have # unit length X = self.data.T.copy() norm_x = X.values for i, name in enumerate(X): norm_x[:, i] = X[name] / np.linalg.norm(X[name]) norm_xtx = np.dot(norm_x.T, norm_x) # Then, we take the square root of the ratio of the biggest to the # smallest eigen values eigs = np.linalg.eigvals(norm_xtx) return np.sqrt(eigs.max() / eigs.min()) @property def mean(self): return self.data.mean(axis=1).rename("MEAN") @property def rstd(self): return (self.std / self.mean).rename("RSTD") @property def std(self): return self.data.std(axis=1).rename("STD") def filter_by(self, key, value): """ Apply condition to source data and return filtered results. Parameters ---------- `key` : `str` any label present in the columns of `data` `value` : `int` or `float` value used as filtering condition Returns ------- `sandy.Samples` filtered dataframe of samples Raises ------ `sandy.Error` if applied filter returned empty dataframe Notes ----- .. note:: The primary function of this method is to make sure that the filtered dataframe is still returned as a `Samples` object. """ condition = self.data.index.get_level_values(key) == value out = self.data.copy()[condition] if out.empty: raise sandy.Error("applied filter returned empty dataframe") return self.__class__(out) def _std_convergence(self): smp = self.data rng = range(2, smp.shape[0]) foo = lambda x: smp.loc[:x].std() return pd.DataFrame(map(foo, rng), index=rng) def _mean_convergence(self): smp = self.data rng = range(1, smp.shape[0]) foo = lambda x: smp.loc[:x].mean() return pd.DataFrame(map(foo, rng), index=rng) def _heatmap(self, vmin=-1, vmax=1, cmap="bwr", **kwargs): corr = np.corrcoef(self.data) return sns.heatmap(corr, vmin=vmin, vmax=vmax, cmap=cmap, **kwargs) def sm_ols(self, Y, normalized=False, intercept=False): X = self.data.T.copy() NX, MX = X.shape NY = Y.size N = min(NX, NY) if NX != NY: print(f"X and Y have different size, fit only first {N} samples") if normalized: X = X.divide(X.mean()).fillna(0) Y = Y.divide(Y.mean()).fillna(0) if intercept: X = sm.add_constant(X) model = sm.OLS(Y.iloc[:N].values, X[:N].values) out = model.fit() return out def regression_coefficients(self, Y, **kwargs): """ Calculate regression coefficients from OLS model given an output population. Parameters ---------- Y : `pandas.Series` tabulated output population kwargs : keyword arguments, optional arguments to pass to method `sm_ols` Returns ------- `pandas.DataFrame` Dataframe with regression coefficients and standard errors. """ X = self.data MX, NX = X.shape index = X.index res = self.sm_ols(Y, **kwargs) params = res.params bse = res.bse start_at = 0 if params.size == MX else 1 coeff = pd.DataFrame({ "coeff": params[start_at:], "stderr": bse[start_at:], }, index=index) return coeff @classmethod @cov33csv def from_csv(cls, file, **kwargs): """ Read samples from csv file, Parameters ---------- file : `str` csv file. **kwargs : `dict` keyword options for `pandas.read_csv`. Returns ------- `sandy.Samples` samples into a sandy object. Examples -------- >>> csv = minimal_testcase.to_string() >>> sandy.Samples.from_csv(io.StringIO(csv), sep="\s+") 0 1 2 0 1.62435e+00 -6.11756e-01 -5.28172e-01 1 -1.07297e+00 8.65408e-01 -2.30154e+00 2 1.74481e+00 -7.61207e-01 3.19039e-01 3 -2.49370e-01 1.46211e+00 -2.06014e+00 >>> index = pd.MultiIndex.from_product( ... [[9437], [102], [1e-5, 1e-1, 1e1, 1e6]] ... ) >>> df = minimal_testcase.copy() >>> df.index = index >>> csv = df.to_csv() >>> sandy.Samples.from_csv(io.StringIO(csv), sep="\s+", cov33csv=True) 0 1 2 MAT MT E 9437 102 1.00000e-05 1.62435e+00 -6.11756e-01 -5.28172e-01 1.00000e-01 -1.07297e+00 8.65408e-01 -2.30154e+00 1.00000e+01 1.74481e+00 -7.61207e-01 3.19039e-01 1.00000e+06 -2.49370e-01 1.46211e+00 -2.06014e+00 """ df =
pd.read_csv(file, **kwargs)
pandas.read_csv
#!/usr/bin/env python """ Copyright 2019 Johns Hopkins University (Author: <NAME>) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) Evals PLDA LLR """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from six.moves import xrange import sys import os import argparse import time import logging import numpy as np import pandas as pd from hyperion.hyp_defs import float_cpu, config_logger from hyperion.utils import SCPList, TrialNdx, TrialScores, ExtSegmentList, RTTM from hyperion.helpers.tracking_data_reader import TrackingDataReader as TDR from hyperion.helpers import PLDAFactory as F from hyperion.transforms import TransformList def flatten_segment_scores(ndx_seg, scores): scores = scores.align_with_ndx(ndx_seg) idx=(ndx_seg.trial_mask.T == True).nonzero() new_segment_ids = [] segment_ids = [] model_ids = [] flat_scores = np.zeros((len(idx[0]),), dtype=float) k = 0 for item in zip(idx[0], idx[1]): model_ids.append(ndx_seg.model_set[item[1]]) segment_ids.append(ndx_seg.seg_set[item[0]]) new_segment_ids.append('%s-%08d' % (ndx_seg.seg_set[item[0]],k)) flat_scores[k] = scores.scores[item[1], item[0]] k +=1 new_segment_ids = np.array(new_segment_ids) segment_ids = np.array(segment_ids) model_ids = np.array(model_ids) return new_segment_ids, segment_ids, model_ids, flat_scores def prepare_output_ext_segments(ext_segments_in, new_ext_segment_ids, ext_segment_ids, model_ids, scores): df_map = pd.DataFrame({'new_ext_segment_id': new_ext_segment_ids, 'ext_segment_id': ext_segment_ids}) new_segments =
pd.merge(ext_segments_in.segments, df_map)
pandas.merge
#!/usr/bin/env python # coding: utf-8 # ## Visualize a representation of the spherized LINCS Cell Painting dataset # In[1]: import umap import pathlib import numpy as np import pandas as pd import plotnine as gg from pycytominer.cyto_utils import infer_cp_features # In[2]: np.random.seed(9876) # In[3]: profile_path = pathlib.Path("profiles") batches = ["2016_04_01_a549_48hr_batch1", "2017_12_05_Batch2"] norm_methods = ["whole_plate", "dmso"] file_filler = "_dmso_spherized_profiles_with_input_normalized_by_" output_dir = pathlib.Path("figures") output_dir = {batch: pathlib.Path(output_dir, batch) for batch in batches} # In[4]: # Identify UMAP embeddings for all spherized profiles embeddings = {batch: {} for batch in batches} for batch in batches: for norm_method in norm_methods: file = pathlib.Path(profile_path, f"{batch}{file_filler}{norm_method}.csv.gz") print(f"Now obtaining UMAP embeddings for {file}...") # Load spherized data spherized_df =
pd.read_csv(file)
pandas.read_csv
def convert_to_perlodes(TaXon_table_xlsx, operational_taxon_list, path_to_outdirs): import PySimpleGUI as sg import pandas as pd from pandas import DataFrame import numpy as np from pathlib import Path #get the taxonomy from the operational taxon list operational_taxon_list_df = pd.read_excel(Path(operational_taxon_list), header=2, sheet_name="Operationelle Taxaliste") taxonomy_list = operational_taxon_list_df["Taxonname\n(Perlodes-Datenbank)"].values.tolist() taxonomy_list = [x for x in taxonomy_list if str(x) != 'nan'] # get the according IDs from the operational taxon list IDs_list = operational_taxon_list_df["ID_\nART"].values.tolist() IDs_list = [x for x in IDs_list if str(x) != 'nan'] # create a dict to store both the ID and the taxonomy operational_taxon_list_dict = {} for ID, taxonomy in zip(IDs_list, taxonomy_list): operational_taxon_list_dict[taxonomy] = int(ID) # load the taxon table and create a list TaXon_table_xlsx = Path(TaXon_table_xlsx) TaXon_table_df = pd.read_excel(TaXon_table_xlsx) TaXon_table_taxonomy = TaXon_table_df.columns.tolist()[0:7] samples_list = TaXon_table_df.columns.tolist()[10:] # store hits and dropped OTUs hit_list, dropped_list, transversion_list = [], [], [] # loop through the taxon table for taxonomy in TaXon_table_df[TaXon_table_taxonomy].drop_duplicates().values.tolist(): # collect the OTU name, species, genus and family and convert to perlodes format OTU = taxonomy[0] Species = taxonomy[6] Species_group = str(taxonomy[6]) + "-Gr." Genus = str(taxonomy[5]) + " sp." Family = str(taxonomy[4]) + " Gen. sp." # test if the OTU has a hit at: Species level, Genus level or Family level if Species in operational_taxon_list_dict.keys(): # add to hit list hit_list.append([OTU] + [str(operational_taxon_list_dict[Species])] + [Species]) # add to perlodes log file transversion_list.append(taxonomy + [str(operational_taxon_list_dict[Species])] + [Species]) elif Species_group in operational_taxon_list_dict.keys(): hit_list.append([OTU] + [str(operational_taxon_list_dict[Species_group])] + [Species_group]) transversion_list.append(taxonomy + [str(operational_taxon_list_dict[Species_group])] + [Species_group]) elif Genus in operational_taxon_list_dict.keys(): hit_list.append([OTU] + [str(operational_taxon_list_dict[Genus])] + [Genus]) transversion_list.append(taxonomy + [str(operational_taxon_list_dict[Genus])] + [Genus]) elif Family in operational_taxon_list_dict.keys(): hit_list.append([OTU] + [str(operational_taxon_list_dict[Family])] + [Family]) transversion_list.append(taxonomy + [str(operational_taxon_list_dict[Family])] + [Family]) # otherwise store the hit with an "nan" else: hit_list.append([OTU] + ["nan"]) dropped_list.append(OTU) transversion_list.append(taxonomy + ["", ""]) # create an output list for perlodes # make read abundaces binary perlodes_input_list = [] for hit, row in zip(hit_list, TaXon_table_df.values.tolist()): # skip OTUs that were not in the OPT if hit[1] != "nan": reads_list = [] # loop through all the sample of the file for reads in row[10:]: # reads > 0 --> 1 if reads > 0: reads_list.append(1) # reads == 0 --> 0 else: reads_list.append(0) # now append the taxonomy and the presence/absence to the perlodes list perlodes_input_list.append([hit[1]] + [hit[2]] + reads_list) # print the number of dropped OTUs number_of_initial_OTUs = len(TaXon_table_df[TaXon_table_taxonomy].drop_duplicates().values.tolist()) print("Warning: Dropped " + str(len(dropped_list)) + " of " + str(number_of_initial_OTUs) + " OTUs.\n") # write the perlodes output file perlodes_df =
pd.DataFrame(perlodes_input_list)
pandas.DataFrame
""" This file contains functions that allows running adaptive selection in parallel. @author: <NAME> """ from typing import List, Any, Optional import pandas as pd from sklearn.base import clone # It can serialize class methods and lambda functions. import pathos.multiprocessing as mp def add_partition_key( df: pd.DataFrame, series_keys: List[str], n_partitions: int ) -> pd.DataFrame: """ Add to `df` a new column that helps to balance load between different processes uniformly. :param df: data to be transformed in long format :param series_keys: columns that are identifiers of unique time series :param n_partitions: number of processes that will be used for parallel execution :return: DataFrame with a new column named 'partition_key' """ keys_df = df[series_keys].drop_duplicates() keys_df = ( keys_df .reset_index() .rename(columns={'index': 'partition_key'}) ) keys_df['partition_key'] = keys_df['partition_key'].apply( lambda x: x % n_partitions ) df = df.merge(keys_df, on=series_keys) return df def fit_selector_in_parallel( selector_instance: Any, df: pd.DataFrame, name_of_target: str, series_keys: List[str], scoring_keys: Optional[List[str]] = None, n_processes: int = 1 ) -> 'type(selector_instance)': """ Create a new selector of specified parameters and fit it with paralleling based on enumeration of unique time series. :param selector_instance: instance that specifies class of resulting selector and its initial parameters :param df: DataFrame in long format that contains time series :param name_of_target: name of target column :param series_keys: columns that are identifiers of unique time series :param scoring_keys: identifiers of groups such that best forecasters are selected per a group, not per an individual time series, see more in documentation on `fit` method of selector :param n_processes: number of parallel processes, default is 1 :return: new fitted instance of selector """ fit_kwargs = { 'name_of_target': name_of_target, 'series_keys': series_keys, 'scoring_keys': scoring_keys or series_keys } try: df = add_partition_key(df, series_keys, n_processes) selectors = mp.Pool(n_processes).map( lambda x: clone(selector_instance).fit(x, **fit_kwargs), [group for _, group in df.groupby('partition_key', as_index=False)] ) # pragma: no cover (`coverage` has issues with multiprocessing) results_tables = [ selector.best_scores_ for selector in selectors ] best_scores = pd.concat(results_tables) selector = selectors[0] # An arbitrary fitted selector. selector.best_scores_ = best_scores return selector finally: df.drop('partition_key', axis=1, inplace=True) def predict_with_selector_in_parallel( selector: Any, df: pd.DataFrame, n_processes: int = 1 ) -> pd.DataFrame: """ Predict future values of series with paralleling by series keys. :param selector: instance that has been fitted before :param df: DataFrame in long format that contains time series :param n_processes: number of parallel processes, default is 1 :return: DataFrame in long format with predictions """ try: df = add_partition_key(df, selector.series_keys_, n_processes) predictions = mp.Pool(n_processes).map( lambda x: selector.predict(x), [group for _, group in df.groupby('partition_key', as_index=False)] ) # pragma: no cover (`coverage` has issues with multiprocessing) result =
pd.concat(predictions)
pandas.concat
from __future__ import division import numpy as np import pandas as pd from base.uber_model import UberModel, ModelSharedInputs from .iec_functions import IecFunctions class IecInputs(ModelSharedInputs): """ Input class for IEC. """ def __init__(self): """Class representing the inputs for IEC""" super(IecInputs, self).__init__() self.dose_response = pd.Series([], dtype="float") self.lc50 = pd.Series([], dtype="float") self.threshold = pd.Series([], dtype="float") class IecOutputs(object): """ Output class for IEC. """ def __init__(self): """Class representing the outputs for IEC""" super(IecOutputs, self).__init__() self.out_z_score_f =
pd.Series([], dtype="float", name="out_z_score_f")
pandas.Series
from .microfaune_package.microfaune.detection import RNNDetector from .microfaune_package.microfaune import audio import matplotlib.pyplot as plt import pandas as pd import scipy.signal as scipy_signal import numpy as np import seaborn as sns from .IsoAutio import * def local_line_graph( local_scores, clip_name, sample_rate, samples, automated_df=None, premade_annotations_df=None, premade_annotations_label="Human Labels", log_scale=False, save_fig=False, normalize_local_scores=False): """ Function that produces graphs with the local score plot and spectrogram of an audio clip. Now integrated with Pandas so you can visualize human and automated annotations. Args: local_scores (list of floats) - Local scores for the clip determined by the RNN. clip_name (string) - Directory of the clip. sample_rate (int) - Sample rate of the audio clip, usually 44100. samples (list of ints) - Each of the samples from the audio clip. automated_df (Dataframe) - Dataframe of automated labelling of the clip. premade_annotations_df (Dataframe) - Dataframe labels that have been made outside of the scope of this function. premade_annotations_label (string) - Descriptor of premade_annotations_df log_scale (boolean) - Whether the axis for local scores should be logarithmically scaled on the plot. save_fig (boolean) - Whether the clip should be saved in a directory as a png file. Returns: None """ # Calculating the length of the audio clip duration = samples.shape[0] / sample_rate # Calculating the number of local scores outputted by Microfaune num_scores = len(local_scores) # the case for normalizing the local scores between [0,1] if normalize_local_scores: local_scores_max = max(local_scores) for ndx in range(num_scores): local_scores[ndx] = local_scores[ndx] / local_scores_max # Making sure that the local score of the x-axis are the same across the # spectrogram and the local score plot step = duration / num_scores time_stamps = np.arange(0, duration, step) if len(time_stamps) > len(local_scores): time_stamps = time_stamps[:-1] # general graph features fig, axs = plt.subplots(2) fig.set_figwidth(22) fig.set_figheight(10) fig.suptitle("Spectrogram and Local Scores for " + clip_name) # score line plot - top plot axs[0].plot(time_stamps, local_scores) axs[0].set_xlim(0, duration) if log_scale: axs[0].set_yscale('log') else: axs[0].set_ylim(0, 1) axs[0].grid(which='major', linestyle='-') # Adding in the optional automated labels from a Pandas DataFrame # if automated_df is not None: if not automated_df.empty: ndx = 0 for row in automated_df.index: minval = automated_df["OFFSET"][row] maxval = automated_df["OFFSET"][row] + \ automated_df["DURATION"][row] axs[0].axvspan(xmin=minval, xmax=maxval, facecolor="yellow", alpha=0.4, label="_" * ndx + "Automated Labels") ndx += 1 # Adding in the optional premade annotations from a Pandas DataFrame if not premade_annotations_df.empty: ndx = 0 for row in premade_annotations_df.index: minval = premade_annotations_df["OFFSET"][row] maxval = premade_annotations_df["OFFSET"][row] + \ premade_annotations_df["DURATION"][row] axs[0].axvspan( xmin=minval, xmax=maxval, facecolor="red", alpha=0.4, label="_" * ndx + premade_annotations_label) ndx += 1 axs[0].legend() # spectrogram - bottom plot # Will require the input of a pandas dataframe Pxx, freqs, bins, im = axs[1].specgram( samples, Fs=sample_rate, NFFT=4096, noverlap=2048, window=np.hanning(4096), cmap="ocean") axs[1].set_xlim(0, duration) axs[1].set_ylim(0, 22050) axs[1].grid(which='major', linestyle='-') # save graph if save_fig: plt.savefig(clip_name + "_Local_Score_Graph.png") # TODO rework function so that instead of generating the automated labels, it # takes the automated_df as input same as it does with the manual dataframe. def local_score_visualization( clip_path, weight_path=None, premade_annotations_df=None, premade_annotations_label="Human Labels", automated_df=False, isolation_parameters=None, log_scale=False, save_fig=False, normalize_local_scores=False): """ Wrapper function for the local_line_graph function for ease of use. Processes clip for local scores to be used for the local_line_graph function. Args: clip_path (string) - Path to an audio clip. weight_path (string) - Weights to be used for RNNDetector. premade_annotations_df (Dataframe) - Dataframe of annotations to be displayed that have been created outside of the function. premade_annotations_label (string) - String that serves as the descriptor for the premade_annotations dataframe. automated_df (Dataframe) - Whether the audio clip should be labelled by the isolate function and subsequently plotted. log_scale (boolean) - Whether the axis for local scores should be logarithmically scaled on the plot. save_fig (boolean) - Whether the plots should be saved in a directory as a png file. Returns: None """ # Loading in the clip with Microfaune's built-in loading function try: SAMPLE_RATE, SIGNAL = audio.load_wav(clip_path) except BaseException: print("Failure in loading", clip_path) return # downsample the audio if the sample rate > 44.1 kHz # Force everything into the human hearing range. try: if SAMPLE_RATE > 44100: rate_ratio = 44100 / SAMPLE_RATE SIGNAL = scipy_signal.resample( SIGNAL, int(len(SIGNAL) * rate_ratio)) SAMPLE_RATE = 44100 except BaseException: print("Failure in downsampling", clip_path) return # Converting to Mono if Necessary if len(SIGNAL.shape) == 2: # averaging the two channels together SIGNAL = SIGNAL.sum(axis=1) / 2 # Initializing the detector to baseline or with retrained weights if weight_path is None: # Microfaune RNNDetector class detector = RNNDetector() else: try: # Initializing Microfaune hybrid CNN-RNN with new weights detector = RNNDetector(weight_path) except BaseException: print("Error in weight path:", weight_path) return try: # Computing Mel Spectrogram of the audio clip microfaune_features = detector.compute_features([SIGNAL]) # Running the Mel Spectrogram through the RNN global_score, local_score = detector.predict(microfaune_features) except BaseException: print( "Skipping " + clip_path + " due to error in Microfaune Prediction") # In the case where the user wants to look at automated bird labels if premade_annotations_df is None: premade_annotations_df =
pd.DataFrame()
pandas.DataFrame
import copy from io import StringIO import numpy as np import pandas as pd from django import forms from django.core.exceptions import ValidationError from django.forms.widgets import RadioSelect, Select, Textarea, TextInput from pandas.errors import ParserError from core.utils.util import md5_hash from .models import Label, Project, ProjectPermissions def clean_data_helper(data, supplied_labels, metadata_fields=[]): ALLOWED_TYPES = [ "text/csv", "text/tab-separated-values", "application/vnd.ms-excel", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.openxmlformats-officedocument.spreadsheetml.template", "application/vnd.ms-excel.sheet.macroenabled.12", "application/vnd.ms-excel.template.macroenabled.12", "application/vnd.ms-excel.addin.macroenabled.12", "application/vnd.ms-excel.sheet.binary.macroenabled.12", ] REQUIRED_HEADERS = ["Text", "Label"] MAX_FILE_SIZE = 500 * 1000 * 1000 if data.size > MAX_FILE_SIZE: raise ValidationError( "File is too large. Received {0} but max size is {1}.".format( data.size, MAX_FILE_SIZE ) ) try: if data.content_type == "text/tab-separated-values": data = pd.read_csv( StringIO(data.read().decode("utf8", "ignore")), sep="\t", dtype=str, ).dropna(axis=0, how="all") elif data.content_type == "text/csv": data = pd.read_csv( StringIO(data.read().decode("utf8", "ignore")), dtype=str, ).dropna(axis=0, how="all") elif data.content_type.startswith("application/vnd") and data.name.endswith( ".csv" ): data = pd.read_csv( StringIO(data.read().decode("utf8", "ignore")), dtype=str, ).dropna(axis=0, how="all") elif data.content_type.startswith("application/vnd") and data.name.endswith( ".xlsx" ): data =
pd.read_excel(data, dtype=str)
pandas.read_excel
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 4 16:06:04 2020 @author: ryancrisanti """ from .prediction import Prediction from .account import Account from .utilities import format_name, save, load import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as ticker class Comparison: def __init__(self, predictions=[], accounts=[], name=''): self.name = format_name(name) self._predictions = list(predictions) self._accounts = list(accounts) @property def predictions(self): return self._predictions @property def named_predictions(self): return {p.name: p for p in self.predictions} @property def accounts(self): return self._accounts @property def named_accounts(self): return {a.name: a for a in self.accounts} @property def acnt_values(self): if len(self.accounts) == 0: return pd.DataFrame() else: return pd.concat([acc.value for acc in self.accounts], axis=1) @property def tot_acnt_value(self): '''Resolves unmatched dates with forward filling''' vals = self.acnt_values.fillna(method='ffill').dropna().sum(axis=1) vals.rename('TotalAccountsValue', inplace=True) return vals def add_prediction(self, pred): if not isinstance(pred, Prediction): raise TypeError self._predictions.append(pred) def add_predictions(self, preds): for pred in preds: self.add_prediction(pred) def add_account(self, acct): if not isinstance(acct, Account): raise TypeError self._accounts.append(acct) def add_accounts(self, accts): for acct in accts: self.add_account(acct) def pred_diffs(self, date_method='linear', linear_freq='D', linear_start='account', linear_end='account'): ''' Parameters ---------- date_method : str, optional Can be either "linear" or "account". * linear (by day, week, month, etc.) * account (use dates in tot_acnt_value index) The default is 'linear'. linear_freq : str, optional If `date_method` is "linear", this determines the frequency. Otherwise, this is ignored. The default is 'D'. linear_start : pd.Timestamp or 'account', optional If `date_method` is "linear", this determines the start date. Keyword 'account' means to use the first date in tot_acnt_value index. The default is 'account'. linear_end : pd.Timestamp or 'account', optional If `date_method` is "linear", this determines the end date. Keyword 'account' means to use the last date in tot_acnt_value index. The default is 'account'. Raises ------ ValueError DESCRIPTION. Returns ------- diffs : TYPE DESCRIPTION. ''' if date_method == 'linear': if linear_start == 'account': linear_start = self.tot_acnt_value.index.min() if linear_end == 'account': linear_end = self.tot_acnt_value.index.max() index = pd.date_range(linear_start, linear_end, freq=linear_freq) elif date_method == 'account': index = self.tot_acnt_value.index else: raise ValueError # Simulate all predictions for pred in self.predictions: pred.project(dates=index, end_date=None, time_granularity=None) # Make df with all preds & total acct df =
pd.DataFrame(self.tot_acnt_value)
pandas.DataFrame
""" Backs up ToodleDo """ import sys import os import requests import yaml import pandas as pd from getpass import getpass from requests_oauthlib import OAuth2Session import requests import urllib import json import logging # TODO modify redirection URI? Localhost is a bit weird, there might be something running there. # So, just play around with possibilities and see what works. # TODO create a dummy user account and try to restore info there # TODO Add writing scope # TODO Commons with constants? Make sure the script is runnable form anywhere CUR_FILE_DIR = os.path.dirname(os.path.realpath(__file__))+os.path.sep API_URL_PREFIX = "http://api.toodledo.com/3/" GET_URL_POSTFIX = '/get.php' # Tasks: http://api.toodledo.com/3/tasks/index.php DEFAULT_TASK_FIELDS = ["id", "title", "modified", "completed"] OPTIONAL_TASK_FIELDS = ["folder", "context", "goal", "location", "tag", "startdate", "duedate", "duedatemod", "starttime", "duetime", "remind", "repeat", "status", "star", "priority", "length", "timer", "added", "note", "parent", "children", "order", "meta", "previous", "attachment", "shared", "addedby", "via", "attachments"] DEFAULT_FOLDER_FIELDS = ["id","name","private","archived","ord"] DEFAULT_CONTEXT_FIELDS = ["id","name","private"] DEFAULT_GOAL_FIELDS = ["id","name","level","archived","contributes","note"] DEFAULT_LOCATION_FIELDS = ["id","name","description","lat","lon"] DEFAULT_NOTES_FIELDS = ["id","title","modified","added","folder","private","text"] LIST_ROW_DEFAULT_FIELDS=["id","added","modified","version","list","cells"] LIST_COL_DEFAULT_FIELDS=["id","title","type","sort","width"] AUTHORIZATION_URL = "https://api.toodledo.com/3/account/authorize.php" TOKEN_URL = 'https://api.toodledo.com/3/account/token.php' TOKEN_FILENAME = CUR_FILE_DIR+"token.txt" CONFIG_FILENAME = CUR_FILE_DIR+"config.yaml" CLIENT_ID_FIELD = 'CLIENT_ID' CLIENT_SECRET_FIELD = 'CLIENT_SECRET' REDIRECT_URL_FIELD = 'REDIRECT_URL' BACKUP_FOLDER_FIELD = 'BACKUP_FOLDER' ALL_SCOPES = ["basic","folders", "tasks","notes","outlines","lists"] def get_token_response(request_body): access_token, refresh_token = None, None token_response = requests.post(TOKEN_URL, data = request_body) if token_response.status_code == 200: token_dict = json.loads(token_response.text) if "access_token" in token_dict: access_token = token_dict["access_token"] if "refresh_token" in token_dict: refresh_token = token_dict["refresh_token"] else: logging.warning("Failed to refresh. Status: %d. Result:\n%s", token_response.status_code, str(token_response.text)) return access_token, refresh_token def get_authorization_response(config, oauth): authorization_url, state = oauth.authorization_url(AUTHORIZATION_URL) # Here print is intended. We are working with console. print('Please go to thir URL and authorize access:') print(authorization_url) authorization_response = input('Enter the full callback URL: ') return authorization_response def refresh_tokens(config, access_token, refresh_token): # If failed to refresh, we'll be OK anyway body = {'client_id': config[CLIENT_ID_FIELD], 'client_secret': config[CLIENT_SECRET_FIELD], 'redirect_uri': config[REDIRECT_URL_FIELD], 'grant_type': 'refresh_token', 'refresh_token': refresh_token, } try: new_access_token, new_refresh_token = get_token_response(body) if new_access_token is None: new_access_token = access_token logging.info("Keeping old access token: %s", new_access_token) else: logging.info("New access token: %s", new_access_token) if new_refresh_token is None: new_refresh_token = refresh_token logging.info("Keeping old refresh token: %s", new_refresh_token) else: logging.info("New refresh token: %s", new_refresh_token) except Exception as e: logging.warning("Failed to refresh. Might still be OK with old token.", str(e)) new_access_token, new_refresh_token = access_token, refresh_token return new_access_token, new_refresh_token def get_tokens_from_scratch(config): oauth = OAuth2Session(config[CLIENT_ID_FIELD], redirect_uri=config[REDIRECT_URL_FIELD], scope=ALL_SCOPES) authorization_response = get_authorization_response(config, oauth) connection_success=False first_time = True while not connection_success: try: if not first_time: logging.info("Trying to reconnect...") authorization_response = get_authorization_response(config, oauth) first_time = False code = urllib.parse.parse_qs( urllib.parse.urlsplit(authorization_response).query )["code"][0] # Just could not get in OAuth. It kept throwing # "(missing_token) Missing access token parameter" # Well, let's just get it working manually then. body = {'client_id': config[CLIENT_ID_FIELD], 'client_secret': config[CLIENT_SECRET_FIELD], 'code': code, 'redirect_uri': config[REDIRECT_URL_FIELD], 'grant_type': 'authorization_code', 'authorization_response': authorization_response, } access_token, refresh_token = get_token_response(body) connection_success = (access_token is not None)and(refresh_token is not None) except Exception as e: logging.warning("Token fetch failed: %s", str(e)) # TODO prevent infinite loop here? Prompt after error? # Limit the number of retries? Parametrize? return access_token, refresh_token def save_tokens(access_token, refresh_token): with open(TOKEN_FILENAME,"wt") as f: f.write(access_token+"\n"+refresh_token) logging.info("Saved tokens") def get_tokens(config): access_token = None refresh_token = None if os.path.isfile(TOKEN_FILENAME): with open(TOKEN_FILENAME,"rt") as f: s = f.read().split('\n') if len(s) == 2: access_token, refresh_token = s[0], s[1] logging.info("Access token from file: %s", access_token) logging.info("Refresh token from file: %s",refresh_token) access_token, refresh_token = refresh_tokens(config, access_token, refresh_token) if access_token is None or refresh_token is None: access_token, refresh_token = get_tokens_from_scratch(config) logging.info("Obtained tokens successfully") logging.info("Final access token: %s", access_token) logging.info("Final refresh token: %s",refresh_token) return access_token, refresh_token def generic_get_and_backup(access_token: str, parameter_name: str, default_fields: list, optional_fields: list = [], filename: str=None, readable_table_name: str=None, url_additions: dict={}, start_from=0, return_json: bool=False): result_df = pd.DataFrame(columns=default_fields+optional_fields) readable_table_name = \ readable_table_name if readable_table_name is not None else parameter_name url = API_URL_PREFIX + parameter_name + GET_URL_POSTFIX try: # TODO consider parameters: after=1234567890&f=xml data = {'access_token': access_token} if len(optional_fields)>0: data['fields'] = ",".join(optional_fields) for i in url_additions: data[i] = url_additions[i] response = requests.post(url, data = data) if response.status_code == 200: result_json_parsed = json.loads(response.text) if type(result_json_parsed) == list: if len(result_json_parsed) > start_from: result_df = pd.DataFrame(result_json_parsed[start_from:]) # 0 is num and total logging.info("Read %s successfully", readable_table_name) else: logging.info("List of %s is empty", readable_table_name) else: logging.warning("Failed to read %s. Response body: %s", readable_table_name, result_json_parsed) else: logging.warning( "Failed to read %s. Response status code: %d.\n Detailed response: %s", readable_table_name, response.status_code, str(response.text)) except Exception as e: logging.warning("Failed to list %s: %s", readable_table_name, str(e)) if filename is not None: try: result_df.to_csv(filename, index=False) logging.info("Saved %s successfully", readable_table_name) except Exception as e: logging.warning("Failed to backup %s: %s", readable_table_name, str(e)) else: logging.info("No filename provided. Not saving %s.", readable_table_name) if return_json: return result_df, result_json_parsed return result_df def get_raw_tasks(access_token): """ Raw tasks contain some fields in human-unreadable form. For example, folder or context. """ return generic_get_and_backup(access_token=access_token, parameter_name='tasks', default_fields=DEFAULT_TASK_FIELDS, optional_fields=OPTIONAL_TASK_FIELDS, readable_table_name="raw tasks", start_from=1) def get_and_backup_folders(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='folders', default_fields=DEFAULT_FOLDER_FIELDS) def get_and_backup_contexts(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='contexts', default_fields=DEFAULT_CONTEXT_FIELDS) def get_and_backup_goals(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='goals', default_fields=DEFAULT_GOAL_FIELDS) def get_and_backup_locations(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='locations', default_fields=DEFAULT_LOCATION_FIELDS) def get_and_backup_notes(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='notes', default_fields=DEFAULT_NOTES_FIELDS) def backup_list_details(access_token, list_info, lists_path): list_col_df = pd.DataFrame(list_info["cols"]) try: list_col_df.to_csv(lists_path+"cols_list_"+str(list_info["id"])+".csv", index=False) logging.info("Saved list %s columns successfully", list_info["id"]) except Exception as e: logging.warning("Failed to backup list %s columns: %s", list_info["id"], str(e)) #http://api.toodledo.com/3/rows/get.php?access_token=yourtoken&after=1234567890&list=1234567890 list_row_df, row_json =generic_get_and_backup( access_token=access_token, parameter_name='rows', default_fields=LIST_ROW_DEFAULT_FIELDS, filename=lists_path+"rows_list_"+str(list_info["id"])+".csv", url_additions={"list": list_info["id"]}, return_json=True) row_ids = list() col_ids = list() values = list() if len(list_row_df) > 0: for i in range(len(row_json)): for j in range(len(row_json[i]["cells"])): if ("c"+str(j+1)) in row_json[i]["cells"]: values.append(row_json[i]["cells"]["c"+str(j+1)]) else: values.append(None) col_ids.append(list_info["cols"][j]["id"]) row_ids.append(row_json[i]["id"]) list_cell_df = pd.DataFrame({"value": values, "row_id": row_ids, "column_ids": col_ids}) else: list_cell_df = pd.DataFrame({"value": [], "row_id": [], "column_ids": []}) list_cell_df["list_id"] = list_info["id"] list_row_df["list_id"] = list_info["id"] list_col_df["list_id"] = list_info["id"] return list_row_df, list_col_df, list_cell_df def get_and_backup_lists(access_token, backup_path): result_df = pd.DataFrame(columns=["id","added","modified","title","version","note","keywords","rows"]) url = API_URL_PREFIX + "lists" + GET_URL_POSTFIX all_list_rows = None all_list_cols = None all_list_cells = None try: # TODO consider parameters: after=1234567890&f=xml data = {'access_token': access_token} response = requests.post(url, data = data) if response.status_code == 200: result_json_parsed = json.loads(response.text) lists_path = backup_path+"Lists"+os.path.sep if not os.path.isdir(lists_path): logging.info("Lists directory did not exist. Creating...") os.mkdir(lists_path) if type(result_json_parsed) == list: if len(result_json_parsed) > 0: for i in result_json_parsed: cur_list_rows, cur_list_cols, cur_list_cells = backup_list_details(access_token, i, lists_path) if all_list_rows is None: all_list_rows = cur_list_rows else: all_list_rows = all_list_rows.append(cur_list_rows, ignore_index=True) if all_list_cols is None: all_list_cols = cur_list_cols else: all_list_cols = all_list_cols.append(cur_list_cols, ignore_index=True) if all_list_cells is None: all_list_cells = cur_list_cells else: all_list_cells = all_list_cells.append(cur_list_cells, ignore_index=True) del i["cols"] result_df = pd.DataFrame(result_json_parsed) logging.info("Read lists successfully") else: logging.info("List of lists is empty") else: logging.warning("Failed to read lists. Response body: %s", result_json_parsed) else: logging.warning( "Failed to read lists. Response status code: %d.\n Detailed response: %s", response.status_code, str(response.text)) except Exception as e: logging.warning("Failed to lists lists: %s", str(e)) try: result_df.to_csv(backup_path+'lists.csv', index=False) logging.info("Saved lists successfully") except Exception as e: logging.warning("Failed to backup lists: %s", str(e)) try: all_list_rows.to_csv(backup_path+'lists_rows.csv', index=False) logging.info("Saved all list rows successfully") except Exception as e: logging.warning("Failed to backup list rows: %s", str(e)) try: all_list_cols.to_csv(backup_path+'lists_cols.csv', index=False) logging.info("Saved all list columns successfully") except Exception as e: logging.warning("Failed to backup list columns: %s", str(e)) try: all_list_cells.to_csv(backup_path+'lists_cells.csv', index=False) logging.info("Saved all list cells successfully") except Exception as e: logging.warning("Failed to backup list cells: %s", str(e)) return result_df, all_list_rows, all_list_cols def get_and_backup_outlines(access_token, backup_path): all_outline_rows = None result_df = pd.DataFrame(columns=["id","added","modified","title","hidden","version","note","keywords","count", "updated_at"]) url = API_URL_PREFIX + "outlines" + GET_URL_POSTFIX try: # TODO consider parameters: after=1234567890&f=xml data = {'access_token': access_token} response = requests.post(url, data = data) if response.status_code == 200: result_json_parsed = json.loads(response.text) outlines_path = backup_path+"Outlines"+os.path.sep if not os.path.isdir(outlines_path): logging.info("Outlines directory did not exist. Creating...") os.mkdir(outlines_path) if type(result_json_parsed) == list: if len(result_json_parsed) > 0: for i in result_json_parsed: try: cur_outline_df =
pd.DataFrame(i["outline"]["children"])
pandas.DataFrame
import pandas as pd from pathlib import Path from utils import Config from sklearn.model_selection import train_test_split # dataset data_dir = Path("data") train =
pd.read_csv(data_dir / "kor_pair_train.csv")
pandas.read_csv
from django.shortcuts import render from django.views.generic.base import TemplateView from django.views.generic.edit import FormView from core import forms import numpy as np import pandas as pd # Create your views here. class HomePageView(TemplateView): template_name = 'core/index.html' form_class = forms.MainForm @property def reference_index(self): return np.array([ "Asus A455LA", "Asus X441UV", "Asus VIVOBOOK", "Asus Zenbook", ]) @property def reference_header(self): return np.array([ "Speed Processor", "VGA", "Layar", "RAM", "Jenis HD", "Harga", ]) @property def reference_header_function(self): return np.array([max, max, max, max, max, min]) @property def reference_data(self): return np.array([ [8, 2, 7, 8, 7.5, 10], [8, 2, 6, 9, 8, 6], [10, 7, 7, 10, 9, 5], [5, 6, 5, 4, 7, 10], ], dtype=float) # def get_weights(self): # form = forms.MainForm(request.GET) # if form.is_valid(): # choice = form.cleaned_data['case'] # if case == 1: # return np.array([[7.5, 2.5, 5.0, 7.0, 5.0, 0.0]]) # elif case == 2: # return np.array([[7.5, 2.5, 5.0, 3.5, 5.0, 6.125]]) # elif case == 3: # return np.array([[10.0, 10.0, 5.0, 10.0, 5.0, 6.125]]) # elif case == def solve(self): form = forms.MainForm(self.request.GET) if form.is_valid(): case = form.cleaned_data['case'] if case == "0": focus = [0, 3, 5] weights = np.array([0.6, 0.6, 10.0]) elif case == "1": focus = [0, 3, 5] weights = np.array([0.4, 0.4, 0.375]) elif case == "2": focus = list(range(6)) weights = np.array([10., 10., 7.5, 9.0, 6.0, 0.375]) else: focus = [0, 3, 4] weights = np.array([0.3, 0.4, 0.7]) focus_table = self.reference_data[:, focus] focus_header = self.reference_header[focus] normalized_table = np.zeros(focus_table.shape) for enu, col in enumerate(focus): f = self.reference_header_function[col] val = f(focus_table[:, enu]) if f is max: normalized_table[:, enu] = focus_table[:, enu] / val else: normalized_table[:, enu] = val / focus_table[:, enu] score = np.sum(normalized_table * weights, axis=1) wut = np.max(score) suggestion = np.argmax(score) index = self.reference_index return { 'case': case, 'focus': focus, 'weights': pd.DataFrame(weights[np.newaxis], columns=focus_header), 'table': pd.DataFrame(self.reference_data, index=index, columns=self.reference_header), 'focus_table': pd.DataFrame(focus_table, index=index, columns=focus_header), 'normalized_table':
pd.DataFrame(normalized_table, index=index, columns=focus_header)
pandas.DataFrame
import torch import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.utils import resample from sklearn.metrics import mean_squared_error import math # from .models.DeepCOVID import DeepCOVID from models.DeepCOVID import DeepCOVID # params #N_SAMPLES = 20 #N=3 # stochastic repetitions for each combination of prev predictions import torch import torch.nn as nn from torch.autograd import Variable from torch.nn.parameter import Parameter import torch.nn.functional as F from joblib import Parallel, delayed from joblib import wrap_non_picklable_objects import os device = torch.device("cpu") dtype = torch.float train_since_23_death = ['NJ','NY'] train_since_23 = ['NJ','AK','IN','MA', 'WA', 'WV'] train_since_29 = ['AL'] train_since_35 = ['AZ','KY','NE'] def get_region_data(datapath,next,region,target_name, include_col, exclude_col, n_samples,bootstrap=False,preds=None): ''' Get regional data, will open only the file for that week @param target_name: 'death' or 'hosp' @param next: 1 or 2 @param datapath: e.g. "./data/merged-data3.csv" @param check_train_data: to visualize data X,y,X_test @param preds: list of 1 or more past predictions ''' start_col =4 # NOTE: change this later df = pd.read_csv(datapath, header=0) # df = pd.read_csv("./data/merged-data3.csv", header=0) # df = df.drop(['deathIncrease','death_jhu_cumulative'],axis=1) if target_name=='hosp': if region in train_since_23: df = df[(df.loc[:,'epiweek'] >= 23)] elif region in train_since_29: df = df[(df.loc[:,'epiweek'] >= 29)] elif region in train_since_35: df = df[(df.loc[:,'epiweek'] >= 35)] elif target_name=='death': if region in train_since_23: df = df[(df.loc[:,'epiweek'] >= 23)] ###Select features columns based on include_col # print('exclude_col',exclude_col) for col in exclude_col: # include_col.remove(col) if col in include_col: include_col.remove(col) main = df.iloc[:,:start_col].copy() rest = df[include_col].copy() ##Combine the first 4 columns of df and the include_col as a new dataframe df =
pd.concat([main,rest], axis =1)
pandas.concat
# coding: utf-8 # In[ ]: import pandas as pd import numpy as np import sklearn from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler # In[ ]: def filtering(level): # filter class data based on level which students response db=pd.read_csv('/Users/surin/Documents/201720723/3-1/도메인분석및SW설계/Final/rcmd/finalAcademy.csv', engine='python') # load database filtered=db[db.level==level] # filter class data data=filtered.values.tolist() # change dataframe to list return data # In[ ]: def getRecommendation(data, preference): pref=[preference] # pref is the list based on students preference std=
pd.DataFrame(pref,columns=['class_size','tuition','careerOfTeacher','ageDistribution'])
pandas.DataFrame
# coding: utf-8 # # Parameter Calibration # This notebook describes a mathematical framework for selecting policy parameters - namely the emissions intensity baseline and permit price. Please be aware of the following key assumptions underlying this model: # # * Generators bid into the market at their short-run marginal cost (SRMC); # * the market for electricity is perfectly competitive; # * the policy maker is able to directly control the emissions intensity baseline and permit price. # # Steps taken to conduct the analysis: # 1. Import packages and declare declare paths to files # 2. Load data # 3. Organise data # 6. Construct model used to select scheme parameters. The model consists of three blocks of equations: # * Primal block - contains constraints related to a standard DCOPF model; # * Dual block - dual constraints associated with dual program of standard DCOPF model; # * Strong duality constraint block - block of constraints linking primal and dual objectives. # 7. Run DCOPF model to find business-as-usual emissions and wholesale prices. # 8. Run model used to select policy parameters, save output # # ## Import packages # In[1]: import os import re import time import pickle import random from math import pi import numpy as np import pandas as pd import datetime as dt from pyomo.environ import * import matplotlib.pyplot as plt # Seed random number generator np.random.seed(seed=10) # ## Declare paths to files # In[2]: # Identifier used to update paths depending on the number of scenarios investigated number_of_scenarios = '100_scenarios' class DirectoryPaths(object): "Paths to relevant directories" def __init__(self): self.data_dir = os.path.join(os.path.curdir, os.path.pardir, os.path.pardir, 'data') self.scenarios_dir = os.path.join(os.path.curdir, os.path.pardir, '1_create_scenarios') self.output_dir = os.path.join(os.path.curdir, 'output', number_of_scenarios) paths = DirectoryPaths() # ## Model data # ### Input data # In[3]: class RawData(object): "Collect input data" def __init__(self): # Paths to directories DirectoryPaths.__init__(self) # Network data # ------------ # Nodes self.df_n = pd.read_csv(os.path.join(self.data_dir, 'network_nodes.csv'), index_col='NODE_ID') # AC edges self.df_e = pd.read_csv(os.path.join(self.data_dir, 'network_edges.csv'), index_col='LINE_ID') # HVDC links self.df_hvdc_links = pd.read_csv(os.path.join(self.data_dir, 'network_hvdc_links.csv'), index_col='HVDC_LINK_ID') # AC interconnector links self.df_ac_i_links = pd.read_csv(os.path.join(self.data_dir, 'network_ac_interconnector_links.csv'), index_col='INTERCONNECTOR_ID') # AC interconnector flow limits self.df_ac_i_limits = pd.read_csv(os.path.join(self.data_dir, 'network_ac_interconnector_flow_limits.csv'), index_col='INTERCONNECTOR_ID') # Generators # ---------- # Generating unit information self.df_g = pd.read_csv(os.path.join(self.data_dir, 'generators.csv'), index_col='DUID', dtype={'NODE': int}) self.df_g['SRMC_2016-17'] = self.df_g['SRMC_2016-17'].map(lambda x: x + np.random.uniform(0, 2)) # Operating scenarios # ------------------- with open(os.path.join(paths.scenarios_dir, 'output', '{0}.pickle'.format(number_of_scenarios)), 'rb') as f: self.df_scenarios = pickle.load(f) # Create object containing raw model data raw_data = RawData() # ### Organise data for model # In[4]: class OrganiseData(object): "Organise data to be used in mathematical program" def __init__(self): # Load model data RawData.__init__(self) def reindex_nodes(self): # Original node indices df_index_map = self.df_n.index.to_frame().rename(columns={'NODE_ID': 'original'}).reset_index().drop('NODE_ID',axis=1) # New node indices df_index_map['new'] = df_index_map.apply(lambda x: x.name + 1, axis=1) # Create dictionary mapping original node indices to new node indices index_map = df_index_map.set_index('original')['new'].to_dict() # Network nodes # ------------- # Construct new index and assign to dataframe new_index = pd.Index(self.df_n.apply(lambda x: index_map[x.name], axis=1), name=self.df_n.index.name) self.df_n.index = new_index # Network edges # ------------- # Reindex 'from' and 'to' nodes in network edges dataframe def _reindex_from_and_to_nodes(row, order=False): """Re-index 'from' and 'to' nodes. If required, change node order such that 'from' node index < 'to' node index""" # Original 'from' and 'to' nodes n_1 = index_map[row['FROM_NODE']] n_2 = index_map[row['TO_NODE']] if order: # If original 'from' node index is less than original 'to' node index keep same order, else reverse order if n_1 < n_2: f, t = n_1, n_2 else: f, t = n_2, n_1 return pd.Series({'FROM_NODE': f, 'TO_NODE': t}) else: return pd.Series({'FROM_NODE': n_1, 'TO_NODE': n_2}) self.df_e[['FROM_NODE', 'TO_NODE']] = self.df_e.apply(_reindex_from_and_to_nodes, args=(True,), axis=1) # Sort lines by 'from' and 'to' node indices self.df_e.sort_values(by=['FROM_NODE', 'TO_NODE'], inplace=True) # Generators # ---------- self.df_g['NODE'] = self.df_g['NODE'].map(lambda x: df_index_map.set_index('original')['new'].loc[x]) # Network HVDC links # ------------------ self.df_hvdc_links[['FROM_NODE', 'TO_NODE']] = self.df_hvdc_links.apply(_reindex_from_and_to_nodes, axis=1) # Network interconnectors # ----------------------- self.df_ac_i_links[['FROM_NODE', 'TO_NODE']] = self.df_ac_i_links.apply(_reindex_from_and_to_nodes, axis=1) # Operating scenarios # ------------------- df_temp = self.df_scenarios.reset_index() df_temp['NODE_ID'] = df_temp.apply(lambda x: index_map[x['NODE_ID']] if type(x['NODE_ID']) == int else x['NODE_ID'], axis=1) self.df_scenarios = df_temp.set_index(['level', 'NODE_ID']).T reindex_nodes(self) def get_admittance_matrix(self): "Construct admittance matrix for network" # Initialise dataframe df_Y = pd.DataFrame(data=0j, index=self.df_n.index, columns=self.df_n.index) # Off-diagonal elements for index, row in self.df_e.iterrows(): fn, tn = row['FROM_NODE'], row['TO_NODE'] df_Y.loc[fn, tn] += - (1 / (row['R_PU'] + 1j * row['X_PU'])) * row['NUM_LINES'] df_Y.loc[tn, fn] += - (1 / (row['R_PU'] + 1j * row['X_PU'])) * row['NUM_LINES'] # Diagonal elements for i in self.df_n.index: df_Y.loc[i, i] = - df_Y.loc[i, :].sum() # Add shunt susceptance to diagonal elements for index, row in self.df_e.iterrows(): fn, tn = row['FROM_NODE'], row['TO_NODE'] df_Y.loc[fn, fn] += (row['B_PU'] / 2) * row['NUM_LINES'] df_Y.loc[tn, tn] += (row['B_PU'] / 2) * row['NUM_LINES'] return df_Y def get_HVDC_incidence_matrix(self): "Incidence matrix for HVDC links" # Incidence matrix for HVDC links df = pd.DataFrame(index=self.df_n.index, columns=self.df_hvdc_links.index, data=0) for index, row in self.df_hvdc_links.iterrows(): # From nodes assigned a value of 1 df.loc[row['FROM_NODE'], index] = 1 # To nodes assigned a value of -1 df.loc[row['TO_NODE'], index] = -1 return df def get_reference_nodes(self): "Get reference node IDs" # Filter Regional Reference Nodes (RRNs) in Tasmania and Victoria. mask = (model_data.df_n['RRN'] == 1) & (model_data.df_n['NEM_REGION'].isin(['TAS1', 'VIC1'])) reference_node_ids = model_data.df_n[mask].index return reference_node_ids def get_generator_node_map(self, generators): "Get set of generators connected to each node" generator_node_map = (self.df_g.reindex(index=generators) .reset_index() .rename(columns={'OMEGA_G': 'DUID'}) .groupby('NODE').agg(lambda x: set(x))['DUID'] .reindex(self.df_n.index, fill_value=set())) return generator_node_map # Create object containing organised model data model_data = OrganiseData() # Perturb generator SRMCs by a random number uniformly distributed between 0 and 1. Unique SRMCs assist the solver to find a unique solution. # In[5]: model_data.df_g['SRMC_2016-17'] = model_data.df_g['SRMC_2016-17'].map(lambda x: x + np.random.uniform(0, 1)) model_data.df_g['SRMC_2016-17'].head() # Save generator, node, and scenario information so they can be used in later processing and plotting steps. # In[6]: with open(os.path.join(paths.output_dir, 'df_g.pickle'), 'wb') as f: pickle.dump(model_data.df_g, f) with open(os.path.join(paths.output_dir, 'df_n.pickle'), 'wb') as f: pickle.dump(model_data.df_n, f) with open(os.path.join(paths.output_dir, 'df_scenarios.pickle'), 'wb') as f: pickle.dump(model_data.df_scenarios, f) # ## Model # Wrap optimisation model in function. Pass parameters to solve for different scenarios. # In[7]: def run_model(model_type=None, mode=None, tau_list=None, phi_list=None, E_list=None, R_list=None, target_bau_average_price_multiple_list=None, bau_average_price=None, fix_phi=None, fix_tau=None, stream_solver=False): """Construct and run model used to calibrate REP scheme parameters Parameters ---------- model_type : str Either DCOPF or MPPDC mode : str Mode in which to run model. E.g. compute baseline given fixed permit price and price target tau_list : list Fixed permit prices for which the model should be run [$/tCO2] phi_list : list Fixed emissions intensity baselines for which the model should be run [tCO2/MWh] E_list : list Average emissions intensity constraints [tCO2/MWh] R_list : list Minimum scheme revenue constraint [$] target_bau_average_price_multiple_list : list Wholesale electricity price target as multiple of the business-as-usual (BAU) price [$/MWh] bau_average_price : float Business-as-usual average wholesale electricity price [$/MWh] fix_phi : float Fixed value of emissions intensity baseline (only applies to DCOPF model) fix_tau : float Fixed value of permit price (only applies to DCOPF model) stream_solver : bool Indicator if solver output should be streamed to terminal """ # Checking model options are correctly inputted # --------------------------------------------- if model_type not in ['DCOPF', 'MPPDC']: raise(Exception("Must specify either 'DCOPF' or 'MPPDC' as the model type")) if model_type is 'MPPDC' and mode not in ['find_price_targeting_baseline', 'fixed_policy_parameters', 'find_permit_price_and_baseline']: raise(Exception("If model_type 'MPPDC' specified, must choose from 'find_price_targeting_baseline', 'fixed_policy_parameters', 'find_permit_price_and_baseline'")) # Initialise model object # ----------------------- model = ConcreteModel(name='DCOPF') # Setup solver # ------------ solver = 'cplex' solver_io = 'lp' keepfiles = False solver_opt = {} opt = SolverFactory(solver, solver_io=solver_io) # Sets # ---- # Operating scenarios if model_type is 'DCOPF': model.T = Set(initialize=['DUMMY']) if model_type is 'MPPDC': model.T = Set(initialize=model_data.df_scenarios.index) # Nodes model.I = Set(initialize=model_data.df_n.index) # Network reference nodes (Mainland and Tasmania) reference_nodes = model_data.get_reference_nodes() model.N = Set(initialize=reference_nodes) # AC network edges df_Y = model_data.get_admittance_matrix() ac_edges = [(df_Y.columns[i], df_Y.columns[j]) for i, j in zip(np.where(df_Y != 0)[0], np.where(df_Y != 0)[1]) if (i < j)] model.K = Set(initialize=ac_edges) # HVDC links hvdc_incidence_matrix = model_data.get_HVDC_incidence_matrix().T model.M = Set(initialize=hvdc_incidence_matrix.index) # Generators - only non-hydro dispatchable plant mask = (model_data.df_g['SCHEDULE_TYPE'] == 'SCHEDULED') & ~(model_data.df_g['FUEL_CAT'] == 'Hydro') model.G = Set(initialize=model_data.df_g[mask].index) # Parameters # ---------- # Generation lower bound [MW] def P_MIN_RULE(model, g): return 0 model.P_MIN = Param(model.G, initialize=P_MIN_RULE) # Generation upper bound [MW] def P_MAX_RULE(model, g): return float(model_data.df_g.loc[g, 'REG_CAP']) model.P_MAX = Param(model.G, initialize=P_MAX_RULE) # Voltage angle difference between connected nodes i and j lower bound [rad] model.VANG_MIN = Param(initialize=float(-pi / 2)) # Voltage angle difference between connected nodes i and j upper bound [rad] model.VANG_MAX = Param(initialize=float(pi / 2)) # Susceptance matrix [pu] def B_RULE(model, i, j): return float(np.imag(df_Y.loc[i, j])) model.B = Param(model.I, model.I, initialize=B_RULE) # HVDC incidence matrix def C_RULE(model, m, i): return float(hvdc_incidence_matrix.loc[m, i]) model.C = Param(model.M, model.I, initialize=C_RULE) # HVDC reverse flow from node i to j lower bound [MW] def H_MIN_RULE(model, m): return - float(model_data.df_hvdc_links.loc[m, 'REVERSE_LIMIT_MW']) model.H_MIN = Param(model.M, initialize=H_MIN_RULE) # HVDC forward flow from node i to j upper bound [MW] def H_MAX_RULE(model, m): return float(model_data.df_hvdc_links.loc[m, 'FORWARD_LIMIT_MW']) model.H_MAX = Param(model.M, initialize=H_MAX_RULE) # AC power flow limits on branches def F_MIN_RULE(model, i, j): return -99999 model.F_MIN = Param(model.K, initialize=F_MIN_RULE, mutable=True) def F_MAX_RULE(model, i, j): return 99999 model.F_MAX = Param(model.K, initialize=F_MAX_RULE, mutable=True) # Adjust power flow limits for major AC interconnectors for index, row in model_data.df_ac_i_links.drop('VIC1-NSW1').iterrows(): i, j = row['FROM_NODE'], row['TO_NODE'] # Take into account direction of branch flow if i < j: model.F_MAX[i, j] = model_data.df_ac_i_limits.loc[index, 'FORWARD_LIMIT_MW'] model.F_MIN[i, j] = - model_data.df_ac_i_limits.loc[index, 'REVERSE_LIMIT_MW'] else: model.F_MAX[j, i] = model_data.df_ac_i_limits.loc[index, 'REVERSE_LIMIT_MW'] model.F_MIN[j, i] = - model_data.df_ac_i_limits.loc[index, 'FORWARD_LIMIT_MW'] # Generator emissions intensities [tCO2/MWh] def E_RULE(model, g): return float(model_data.df_g.loc[g, 'EMISSIONS']) model.E = Param(model.G, initialize=E_RULE) # Generator short run marginal costs [$/MWh] def A_RULE(model, g): return float(model_data.df_g.loc[g, 'SRMC_2016-17']) model.A = Param(model.G, initialize=A_RULE) # System base power [MVA] model.S = Param(initialize=100) # Revenue constraint [$] - Initialise to very large negative value (loose constraint) model.R = Param(initialize=-9e9, mutable=True) # Target wholsale electricity price [$/MWh] model.TARGET_PRICE = Param(initialize=30, mutable=True) # Target REP scheme revenue model.MIN_SCHEME_REVENUE = Param(initialize=-float(5e9), mutable=True) # Upper-level program # ------------------- # Primal variables # ---------------- # Emissions intensity baseline [tCO2/MWh] model.phi = Var(initialize=0, within=NonNegativeReals) # Permit price [$/tCO2] model.tau = Var(initialize=0) # Lower-level program # ------------------- # Primal block (indexed over T) (model.LL_PRIM) # --------------------------------------------- def LL_PRIM_RULE(b, t): # Parameters # ---------- # Demand at each node (to be set prior to running model) b.P_D = Param(model.I, initialize=0, mutable=True) # Intermittent power injection at each node (to be set prior to running model) b.P_R = Param(model.I, initialize=0, mutable=True) # Trading interval length [h] - use 1hr if running DCOPF model if t == 'DUMMY': b.L = 1 else: b.L = Param(initialize=float(model_data.df_scenarios.loc[t, ('hours', 'duration')])) # Variables # --------- b.P = Var(model.G) b.vang = Var(model.I) b.H = Var(model.M) # Constraints # ----------- # Power output lower bound def P_LB_RULE(b, g): return model.P_MIN[g] - b.P[g] <= 0 b.P_LB = Constraint(model.G, rule=P_LB_RULE) # Power output upper bound def P_UB_RULE(b, g): return b.P[g] - model.P_MAX[g] <= 0 b.P_UB = Constraint(model.G, rule=P_UB_RULE) # Voltage angle difference between connected nodes lower bound def VANG_DIFF_LB_RULE(b, i, j): return model.VANG_MIN - b.vang[i] + b.vang[j] <= 0 b.VANG_DIFF_LB = Constraint(model.K, rule=VANG_DIFF_LB_RULE) # Voltage angle difference between connected nodes upper bound def VANG_DIFF_UB_RULE(b, i, j): return b.vang[i] - b.vang[j] - model.VANG_MAX <= 0 b.VANG_DIFF_UB = Constraint(model.K, rule=VANG_DIFF_UB_RULE) # Fix voltage angle = 0 for reference nodes def VANG_REF_RULE(b, n): return b.vang[n] == 0 b.VANG_REF = Constraint(model.N, rule=VANG_REF_RULE) # Map between nodes and generators connected to each node generator_node_map = model_data.get_generator_node_map([g for g in model.G]) # Nodal power balance constraint def POWER_BALANCE_RULE(b, i): # Branches connected to node i K_i = [k for k in model.K if i in k] # Nodes connected to node i I_i = [ii for branch in K_i for ii in branch if (ii != i)] return (-model.S * sum(model.B[i, j] * (b.vang[i] - b.vang[j]) for j in I_i) - sum(model.C[m, i] * b.H[m] for m in model.M) - b.P_D[i] + sum(b.P[g] for g in generator_node_map.loc[i] if g in model.G) + b.P_R[i] == 0) b.POWER_BALANCE = Constraint(model.I, rule=POWER_BALANCE_RULE) # AC branch flow limits upper bound def AC_FLOW_LB_RULE(b, i, j): return model.F_MIN[i, j] - model.S * model.B[i, j] * (b.vang[i] - b.vang[j]) <= 0 b.AC_FLOW_LB = Constraint(model.K, rule=AC_FLOW_LB_RULE) # AC branch flow limits lower bound def AC_FLOW_UB_RULE(b, i, j): return model.S * model.B[i, j] * (b.vang[i] - b.vang[j]) - model.F_MAX[i, j] <= 0 b.AC_FLOW_UB = Constraint(model.K, rule=AC_FLOW_UB_RULE) # HVDC branch flow limits lower bound def HVDC_FLOW_LB_RULE(b, m): return model.H_MIN[m] - b.H[m] <= 0 b.HVDC_FLOW_LB = Constraint(model.M, rule=HVDC_FLOW_LB_RULE) # HVDC branch flow limits upper bound def HVDC_FLOW_UB_RULE(b, m): return b.H[m] - model.H_MAX[m] <= 0 b.HVDC_FLOW_UB = Constraint(model.M, rule=HVDC_FLOW_UB_RULE) # Dual block (indexed over T) (model.LL_DUAL) # ------------------------------------------- def LL_DUAL_RULE(b, t): # Variables # --------- b.alpha = Var(model.G, within=NonNegativeReals) b.beta = Var(model.G, within=NonNegativeReals) b.gamma = Var(model.K, within=NonNegativeReals) b.delta = Var(model.K, within=NonNegativeReals) b.zeta = Var(model.N) b.lambda_var = Var(model.I) b.kappa = Var(model.K, within=NonNegativeReals) b.eta = Var(model.K, within=NonNegativeReals) b.omega = Var(model.M, within=NonNegativeReals) b.psi = Var(model.M, within=NonNegativeReals) # Constraints # ----------- def DUAL_CONS_1_RULE(b, g): # Node at which generator g is located f_g = model_data.df_g.loc[g, 'NODE'] # Don't apply scheme to existing hydro plant if model_data.df_g.loc[g, 'FUEL_CAT'] == 'Hydro': return model.A[g] - b.alpha[g] + b.beta[g] - b.lambda_var[f_g] == 0 else: return model.A[g] + ((model.E[g] - model.phi) * model.tau) - b.alpha[g] + b.beta[g] - b.lambda_var[f_g] == 0 b.DUAL_CONS_1 = Constraint(model.G, rule=DUAL_CONS_1_RULE) def DUAL_CONS_2_RULE(b, i): # Branches connected to node i K_i = [k for k in model.K if i in k] # Nodes connected to node i I_i = [ii for branch in K_i for ii in branch if (ii != i)] return (sum( (b.gamma[k] - b.delta[k] + (model.B[k] * model.S * (b.kappa[k] - b.eta[k])) ) * (np.sign(i - k[0]) + np.sign(i - k[1])) for k in K_i) + sum(model.S * ((b.lambda_var[i] * model.B[i, j]) - (b.lambda_var[j] * model.B[j, i])) for j in I_i) + sum(b.zeta[n] for n in model.N if n == i) == 0) b.DUAL_CONS_2 = Constraint(model.I, rule=DUAL_CONS_2_RULE) def DUAL_CONS_3_RULE(b, m): return sum(b.lambda_var[i] * model.C[m, i] for i in model.I) - b.omega[m] + b.psi[m] == 0 b.DUAL_CONS_3 = Constraint(model.M, rule=DUAL_CONS_3_RULE) # Strong duality constraints (indexed over T) # ------------------------------------------- def SD_CONS_RULE(model, t): return (sum(model.LL_PRIM[t].P[g] * ( model.A[g] + (model.E[g] - model.phi) * model.tau ) if model_data.df_g.loc[g, 'FUEL_CAT'] == 'Fossil' else model.LL_PRIM[t].P[g] * model.A[g] for g in model.G) == sum(model.LL_PRIM[t].P_D[i] * model.LL_DUAL[t].lambda_var[i] - (model.LL_PRIM[t].P_R[i] * model.LL_DUAL[t].lambda_var[i]) for i in model.I) + sum((model.LL_DUAL[t].omega[m] * model.H_MIN[m]) - (model.LL_DUAL[t].psi[m] * model.H_MAX[m]) for m in model.M) + sum(model.LL_DUAL[t].alpha[g] * model.P_MIN[g] for g in model.G) - sum(model.LL_DUAL[t].beta[g] * model.P_MAX[g] for g in model.G) + sum((model.VANG_MIN * model.LL_DUAL[t].gamma[k]) - (model.VANG_MAX * model.LL_DUAL[t].delta[k]) + (model.LL_DUAL[t].kappa[k] * model.F_MIN[k]) - (model.LL_DUAL[t].eta[k] * model.F_MAX[k]) for k in model.K)) # Run DCOPF # --------- if model_type is 'DCOPF': # Keep dual variables for DCOPF scenario model.dual = Suffix(direction=Suffix.IMPORT) # Build model model.LL_PRIM = Block(model.T, rule=LL_PRIM_RULE) # Fix phi and tau model.phi.fix(fix_phi) model.tau.fix(fix_tau) # DCOPF OBJECTIVE # --------------- def DCOPF_OBJECTIVE_RULE(model): return sum(model.LL_PRIM[t].P[g] * (model.A[g] + ((model.E[g] - model.phi) * model.tau) ) if model_data.df_g.loc[g, 'FUEL_CAT'] == 'Fossil' else model.LL_PRIM[t].P[g] * model.A[g] for t in model.T for g in model.G) model.DCOPF_OBJECTIVE = Objective(rule=DCOPF_OBJECTIVE_RULE, sense=minimize) # Container to store results results = [] # Solve model for each time period for t in model_data.df_scenarios.index: # Update demand and intermittent power injections at each node for i in model.I: # Demand model.LL_PRIM['DUMMY'].P_D[i] = float(model_data.df_scenarios.loc[t, ('demand', i)]) # Intermittent injections fixed power injections from hydro plant model.LL_PRIM['DUMMY'].P_R[i] = float(model_data.df_scenarios.loc[t, ('intermittent', i)] + model_data.df_scenarios.loc[t, ('hydro', i)]) # Solve model r = opt.solve(model, keepfiles=keepfiles, tee=stream_solver, options=solver_opt) print('Finished solving DCOPF for period {}'.format(t)) # Store model output model.solutions.store_to(r) # Convert to DataFrame try: df_results = pd.DataFrame(r['Solution'][0]) df_results['SCENARIO_ID'] = t df_results['FIXED_PHI'] = fix_phi df_results['FIXED_TAU'] = fix_tau except: df_results = 'infeasible' # If model not infeasible store results in list to be concatenated if type(df_results) != str: results.append(df_results) return pd.concat(results) # Run MPPDC # --------- if model_type is 'MPPDC': # Build model print('Building primal block') model.LL_PRIM = Block(model.T, rule=LL_PRIM_RULE) print('Building dual block') model.LL_DUAL = Block(model.T, rule=LL_DUAL_RULE) print('Building strong duality constraints') model.SD_CONS = Constraint(model.T, rule=SD_CONS_RULE) print('Finished building blocks') # Add revenue constraint to model if values of R are specified # Note: Exclude existing hydro and renewables from scheme (prevent windfall profits to existing generators) eligible_gens = [g for g in model.G if model_data.df_g.loc[g, 'FUEL_CAT'] == 'Fossil'] model.R_CONS = Constraint(expr=sum((model.E[g] - model.phi) * model.tau * model.LL_PRIM[t].P[g] * model.LL_PRIM[t].L for t in model.T for g in eligible_gens) >= model.R) # Dummy variables used to minimise difference between average price and target price model.x_1 = Var(within=NonNegativeReals) model.x_2 = Var(within=NonNegativeReals) # Expressions for total revenue, total demand, and average wholesale price model.TOTAL_REVENUE = Expression(expr=sum(model.LL_DUAL[t].lambda_var[i] * model.LL_PRIM[t].L * model.LL_PRIM[t].P_D[i] for t in model.T for i in model.I)) model.TOTAL_DEMAND = Expression(expr=sum(model.LL_PRIM[t].L * model.LL_PRIM[t].P_D[i] for t in model.T for i in model.I)) model.AVERAGE_PRICE = Expression(expr=model.TOTAL_REVENUE / model.TOTAL_DEMAND) # Expression for total emissions and average emissions intensity model.TOTAL_EMISSIONS = Expression(expr=sum(model.LL_PRIM[t].P[g] * model.LL_PRIM[t].L * model.E[g] for g in model.G for t in model.T)) model.AVERAGE_EMISSIONS_INTENSITY = Expression(expr=model.TOTAL_EMISSIONS / model.TOTAL_DEMAND) # Expression for net scheme revenue model.NET_SCHEME_REVENUE = Expression(expr=sum((model.E[g] - model.phi) * model.tau * model.LL_PRIM[t].P[g] * model.LL_PRIM[t].L for g in model.G for t in model.T)) # Constraints used to minimise difference between average wholesale price and target model.x_1_CONS = Constraint(expr=model.x_1 >= model.AVERAGE_PRICE - model.TARGET_PRICE) model.x_2_CONS = Constraint(expr=model.x_2 >= model.TARGET_PRICE - model.AVERAGE_PRICE) # MPPDC objective function def MPPDC_OBJECTIVE_RULE(model): return model.x_1 + model.x_2 model.MPPDC_OBJECTIVE = Objective(rule=MPPDC_OBJECTIVE_RULE, sense=minimize) # Useful functions # ---------------- def _fix_LLPRIM_vars(): "Fix generator output, voltage angles, and HVDC power flows." for t in model.T: for g in model.G: model.LL_PRIM[t].P[g].fix() for m in model.M: model.LL_PRIM[t].H[m].fix() for i in model.I: model.LL_PRIM[t].vang[i].fix() def _unfix_LLPRIM_vars(): "Unfix generator output, voltage angles, and HVDC power flows" for t in model.T: for g in model.G: model.LL_PRIM[t].P[g].unfix() for m in model.M: model.LL_PRIM[t].H[m].unfix() for i in model.I: model.LL_PRIM[t].vang[i].unfix() def _store_output(results): "Store fixed variable values in solutions set of model object" print('Storing fixed variables') for t in model.T: # Store generator output for g in model.G: results['Solution'][0]['Variable']['LL_PRIM[{0}].P[{1}]'.format(t, g)] = {'Value': model.LL_PRIM[t].P[g].value} # Store voltage angles for i in model.I: results['Solution'][0]['Variable']['LL_PRIM[{0}].vang[{1}]'.format(t, i)] = {'Value': model.LL_PRIM[t].vang[i].value} # Store HVDC power flows for m in model.M: results['Solution'][0]['Variable']['LL_PRIM[{0}].H[{1}]'.format(t, m)] = {'Value': model.LL_PRIM[t].H[m].value} return results # Solve model for each policy parameter scenario # ---------------------------------------------- print('Updating demand and fixed power injection parameters') # Initialise dictionary to store model output results = {} # Loop through scenarios - initialise parameters for demand and fixed power injections for t in model.T: # Loop through nodes for i in model.I: # Node demand [MW] model.LL_PRIM[t].P_D[i] = float(model_data.df_scenarios.loc[t, ('demand', i)]) # Power injections from intermittent sources + hydro [MW] model.LL_PRIM[t].P_R[i] = float(model_data.df_scenarios.loc[t, ('intermittent', i)] + model_data.df_scenarios.loc[t, ('hydro', i)]) if mode is 'find_price_targeting_baseline': # Loop through permit prices for tau in tau_list: # Loop through price targets for target_bau_average_price_multiple in target_bau_average_price_multiple_list: # Loop through revenue targets for R in R_list: # Start time t0 = time.time() # Fix phi and tau, solve model model.phi.fix(0) model.tau.fix(tau) model.TARGET_PRICE = target_bau_average_price_multiple * bau_average_price model.R = R # Solve model for fixed permit price and baseline r = opt.solve(model, keepfiles=keepfiles, tee=stream_solver, options=solver_opt) print('Finished first stage') # Fix lower level primal variables to their current values _fix_LLPRIM_vars() # Free phi model.phi.unfix() # Re-run model to compute baseline that minimise difference between average price and target r = opt.solve(model, keepfiles=keepfiles, tee=stream_solver, options=solver_opt) # Store solutions in results object model.solutions.store_to(r) # Add fixed generator and node data to model object r = _store_output(r) # Convert results object to DataFrame try: df_results =
pd.DataFrame(r['Solution'][0])
pandas.DataFrame
"""Utility functions, mostly for internal use.""" import os import colorsys import warnings from urllib.request import urlopen, urlretrieve from http.client import HTTPException import numpy as np from scipy import stats import pandas as pd import matplotlib as mpl import matplotlib.colors as mplcol import matplotlib.pyplot as plt __all__ = ["desaturate", "saturate", "set_hls_values", "despine", "get_dataset_names", "get_data_home", "load_dataset"] def remove_na(arr): """Helper method for removing NA values from array-like. Parameters ---------- arr : array-like The array-like from which to remove NA values. Returns ------- clean_arr : array-like The original array with NA values removed. """ return arr[pd.notnull(arr)] def sort_df(df, *args, **kwargs): """Wrapper to handle different pandas sorting API pre/post 0.17.""" msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg) try: return df.sort_values(*args, **kwargs) except AttributeError: return df.sort(*args, **kwargs) def ci_to_errsize(cis, heights): """Convert intervals to error arguments relative to plot heights. Parameters ---------- cis: 2 x n sequence sequence of confidence interval limits heights : n sequence sequence of plot heights Returns ------- errsize : 2 x n array sequence of error size relative to height values in correct format as argument for plt.bar """ cis = np.atleast_2d(cis).reshape(2, -1) heights = np.atleast_1d(heights) errsize = [] for i, (low, high) in enumerate(np.transpose(cis)): h = heights[i] elow = h - low ehigh = high - h errsize.append([elow, ehigh]) errsize = np.asarray(errsize).T return errsize def pmf_hist(a, bins=10): """Return arguments to plt.bar for pmf-like histogram of an array. DEPRECATED: will be removed in a future version. Parameters ---------- a: array-like array to make histogram of bins: int number of bins Returns ------- x: array left x position of bars h: array height of bars w: float width of bars """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg) n, x = np.histogram(a, bins) h = n / n.sum() w = x[1] - x[0] return x[:-1], h, w def desaturate(color, prop): """Decrease the saturation channel of a color by some percent. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name prop : float saturation channel of color will be multiplied by this value Returns ------- new_color : rgb tuple desaturated color code in RGB tuple representation """ # Check inputs if not 0 <= prop <= 1: raise ValueError("prop must be between 0 and 1") # Get rgb tuple rep rgb = mplcol.colorConverter.to_rgb(color) # Convert to hls h, l, s = colorsys.rgb_to_hls(*rgb) # Desaturate the saturation channel s *= prop # Convert back to rgb new_color = colorsys.hls_to_rgb(h, l, s) return new_color def saturate(color): """Return a fully saturated color with the same hue. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name Returns ------- new_color : rgb tuple saturated color code in RGB tuple representation """ return set_hls_values(color, s=1) def set_hls_values(color, h=None, l=None, s=None): # noqa """Independently manipulate the h, l, or s channels of a color. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name h, l, s : floats between 0 and 1, or None new values for each channel in hls space Returns ------- new_color : rgb tuple new color code in RGB tuple representation """ # Get an RGB tuple representation rgb = mplcol.colorConverter.to_rgb(color) vals = list(colorsys.rgb_to_hls(*rgb)) for i, val in enumerate([h, l, s]): if val is not None: vals[i] = val rgb = colorsys.hls_to_rgb(*vals) return rgb def axlabel(xlabel, ylabel, **kwargs): """Grab current axis and label it.""" ax = plt.gca() ax.set_xlabel(xlabel, **kwargs) ax.set_ylabel(ylabel, **kwargs) def despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False): """Remove the top and right spines from plot(s). fig : matplotlib figure, optional Figure to despine all axes of, default uses current figure. ax : matplotlib axes, optional Specific axes object to despine. top, right, left, bottom : boolean, optional If True, remove that spine. offset : int or dict, optional Absolute distance, in points, spines should be moved away from the axes (negative values move spines inward). A single value applies to all spines; a dict can be used to set offset values per side. trim : bool, optional If True, limit spines to the smallest and largest major tick on each non-despined axis. Returns ------- None """ # Get references to the axes we want if fig is None and ax is None: axes = plt.gcf().axes elif fig is not None: axes = fig.axes elif ax is not None: axes = [ax] for ax_i in axes: for side in ["top", "right", "left", "bottom"]: # Toggle the spine objects is_visible = not locals()[side] ax_i.spines[side].set_visible(is_visible) if offset is not None and is_visible: try: val = offset.get(side, 0) except AttributeError: val = offset ax_i.spines[side].set_position(('outward', val)) # Potentially move the ticks if left and not right: maj_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.minorTicks ) ax_i.yaxis.set_ticks_position("right") for t in ax_i.yaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.yaxis.minorTicks: t.tick2line.set_visible(min_on) if bottom and not top: maj_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.minorTicks ) ax_i.xaxis.set_ticks_position("top") for t in ax_i.xaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.xaxis.minorTicks: t.tick2line.set_visible(min_on) if trim: # clip off the parts of the spines that extend past major ticks xticks = np.asarray(ax_i.get_xticks()) if xticks.size: firsttick = np.compress(xticks >= min(ax_i.get_xlim()), xticks)[0] lasttick = np.compress(xticks <= max(ax_i.get_xlim()), xticks)[-1] ax_i.spines['bottom'].set_bounds(firsttick, lasttick) ax_i.spines['top'].set_bounds(firsttick, lasttick) newticks = xticks.compress(xticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_xticks(newticks) yticks = np.asarray(ax_i.get_yticks()) if yticks.size: firsttick = np.compress(yticks >= min(ax_i.get_ylim()), yticks)[0] lasttick = np.compress(yticks <= max(ax_i.get_ylim()), yticks)[-1] ax_i.spines['left'].set_bounds(firsttick, lasttick) ax_i.spines['right'].set_bounds(firsttick, lasttick) newticks = yticks.compress(yticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_yticks(newticks) def _kde_support(data, bw, gridsize, cut, clip): """Establish support for a kernel density estimate.""" support_min = max(data.min() - bw * cut, clip[0]) support_max = min(data.max() + bw * cut, clip[1]) return np.linspace(support_min, support_max, gridsize) def percentiles(a, pcts, axis=None): """Like scoreatpercentile but can take and return array of percentiles. DEPRECATED: will be removed in a future version. Parameters ---------- a : array data pcts : sequence of percentile values percentile or percentiles to find score at axis : int or None if not None, computes scores over this axis Returns ------- scores: array array of scores at requested percentiles first dimension is length of object passed to ``pcts`` """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg) scores = [] try: n = len(pcts) except TypeError: pcts = [pcts] n = 0 for i, p in enumerate(pcts): if axis is None: score = stats.scoreatpercentile(a.ravel(), p) else: score = np.apply_along_axis(stats.scoreatpercentile, axis, a, p) scores.append(score) scores = np.asarray(scores) if not n: scores = scores.squeeze() return scores def ci(a, which=95, axis=None): """Return a percentile range from an array of values.""" p = 50 - which / 2, 50 + which / 2 return np.percentile(a, p, axis) def sig_stars(p): """Return a R-style significance string corresponding to p values. DEPRECATED: will be removed in a future version. """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg) if p < 0.001: return "***" elif p < 0.01: return "**" elif p < 0.05: return "*" elif p < 0.1: return "." return "" def iqr(a): """Calculate the IQR for an array of numbers.""" a = np.asarray(a) q1 = stats.scoreatpercentile(a, 25) q3 = stats.scoreatpercentile(a, 75) return q3 - q1 def get_dataset_names(): """Report available example datasets, useful for reporting issues.""" # delayed import to not demand bs4 unless this function is actually used from bs4 import BeautifulSoup http = urlopen('https://github.com/mwaskom/seaborn-data/') gh_list = BeautifulSoup(http) return [l.text.replace('.csv', '') for l in gh_list.find_all("a", {"class": "js-navigation-open"}) if l.text.endswith('.csv')] def get_data_home(data_home=None): """Return a path to the cache directory for example datasets. This directory is then used by :func:`load_dataset`. If the ``data_home`` argument is not specified, it tries to read from the ``SEABORN_DATA`` environment variable and defaults to ``~/seaborn-data``. """ if data_home is None: data_home = os.environ.get('SEABORN_DATA', os.path.join('~', 'seaborn-data')) data_home = os.path.expanduser(data_home) if not os.path.exists(data_home): os.makedirs(data_home) return data_home def load_dataset(name, cache=True, data_home=None, **kws): """Load an example dataset from the online repository (requires internet). This function provides quick access to a small number of example datasets that are useful for documenting seaborn or generating reproducible examples for bug reports. It is not necessary for normal usage. Note that some of the datasets have a small amount of preprocessing applied to define a proper ordering for categorical variables. Use :func:`get_dataset_names` to see a list of available datasets. Parameters ---------- name : str Name of the dataset (``{name}.csv`` on https://github.com/mwaskom/seaborn-data). cache : boolean, optional If True, try to load from the local cache first, and save to the cache if a download is required. data_home : string, optional The directory in which to cache data; see :func:`get_data_home`. kws : keys and values, optional Additional keyword arguments are passed to passed through to :func:`pandas.read_csv`. Returns ------- df : :class:`pandas.DataFrame` Tabular data, possibly with some preprocessing applied. """ path = ("https://raw.githubusercontent.com/" "mwaskom/seaborn-data/master/{}.csv") full_path = path.format(name) if cache: cache_path = os.path.join(get_data_home(data_home), os.path.basename(full_path)) if not os.path.exists(cache_path): urlretrieve(full_path, cache_path) full_path = cache_path df = pd.read_csv(full_path, **kws) if df.iloc[-1].isnull().all(): df = df.iloc[:-1] # Set some columns as a categorical type with ordered levels if name == "tips": df["day"] = pd.Categorical(df["day"], ["Thur", "Fri", "Sat", "Sun"]) df["sex"] = pd.Categorical(df["sex"], ["Male", "Female"]) df["time"] = pd.Categorical(df["time"], ["Lunch", "Dinner"]) df["smoker"] = pd.Categorical(df["smoker"], ["Yes", "No"]) if name == "flights": df["month"] = pd.Categorical(df["month"], df.month.unique()) if name == "exercise": df["time"] = pd.Categorical(df["time"], ["1 min", "15 min", "30 min"]) df["kind"] = pd.Categorical(df["kind"], ["rest", "walking", "running"]) df["diet"] = pd.Categorical(df["diet"], ["no fat", "low fat"]) if name == "titanic": df["class"] =
pd.Categorical(df["class"], ["First", "Second", "Third"])
pandas.Categorical
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import json import matplotlib.pyplot as plt from datetime import datetime from sys import stdout from sklearn.preprocessing import scale from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel, WhiteKernel from sklearn.utils.validation import indexable from sklearn.model_selection import check_cv from sklearn.metrics.scorer import check_scoring from sklearn.model_selection._validation import _fit_and_score from sklearn.externals.joblib import Parallel, delayed def compute_features(): # Load json data with open('json_file.json') as data_file: patients = json.load(data_file) print("JSON file loaded") # Features computation print("Features computation launched") visits = [] for patient in patients.values(): for i in range(1, len(patient['visits']) + 1): visits.append(patient['visits'][str(i)]) n_visits = len(visits) print("n_visits = %s" % n_visits) # Features DataFrame with encounter_nums index encounter_nums = [int(visit.get('encounter_num')) for visit in visits] X = pd.DataFrame(index=encounter_nums) # Time vector & censoring indicator print("Adding labels...", end="") next_visit = [visit.get('next_visit') for visit in visits] T = np.array([1e10 if str(t) == 'none' else t for t in next_visit]).astype( int) end_dates = pd.to_datetime([visit.get('end_date') for visit in visits]) C = pd.to_datetime('2016-01-15 00:00:00') - end_dates days, seconds = C.days, C.seconds C = days * 24 + seconds // 3600 # in hours (discrete) delta = (T <= C).astype(int) Y = T Y[delta == 0] = C[delta == 0] labels = pd.DataFrame({'Y': Y, 'delta': delta}, index=encounter_nums) X = pd.concat([X, labels], axis=1) print(" done") # Basic features print("Adding basic features...", end="") # Add also patient_num & encounter_num for future random choice patient_num, encounter_num = [], [] sex, baseline_HB, genotype_SS, age, transfu_count = [], [], [], [], [] LS_ALONE, LS_INACTIVE, MH_ACS, MH_AVN, MH_DIALISIS = [], [], [], [], [] MH_HEART_FAILURE, MH_ISCHEMIC_STROKE, MH_LEG_ULCER = [], [], [] MH_NEPHROPATHY, MH_PHTN, MH_PRIAPISM, MH_RETINOPATHY = [], [], [], [] OPIOID_TO_DISCHARGE, ORAL_OPIOID, USED_MORPHINE = [], [], [] USED_OXYCODONE, duration, previous_visit, rea = [], [], [], [] for patient in patients.values(): for _ in range(1, len(patient['visits']) + 1): patient_num.append(patient['patient_num']) sex.append(1 if int(patient['sex']) == 1 else 0) baseline_HB.append(patient['baseline_HB']) genotype_SS.append(patient['genotype_SS']) for visit in visits: encounter_num.append(visit.get('encounter_num')) age.append(visit.get('age')) rea.append(visit.get('rea')) LS_ALONE.append(visit.get('LS_ALONE')) LS_INACTIVE.append(visit.get('LS_INACTIVE')) MH_ACS.append(visit.get('MH_ACS')) MH_AVN.append(visit.get('MH_AVN')) MH_DIALISIS.append(visit.get('MH_DIALISIS')) MH_HEART_FAILURE.append(visit.get('MH_HEART_FAILURE')) MH_ISCHEMIC_STROKE.append(visit.get('MH_ISCHEMIC_STROKE')) MH_LEG_ULCER.append(visit.get('MH_LEG_ULCER')) MH_NEPHROPATHY.append(visit.get('MH_NEPHROPATHY')) MH_PHTN.append(visit.get('MH_PHTN')) MH_PRIAPISM.append(visit.get('MH_PRIAPISM')) MH_RETINOPATHY.append(visit.get('MH_RETINOPATHY')) ORAL_OPIOID.append(visit.get('ORAL_OPIOID')) USED_MORPHINE.append(visit.get('USED_MORPHINE')) USED_OXYCODONE.append(visit.get('USED_OXYCODONE')) duration.append(visit.get('duration')) previous_visit.append(visit.get('previous_visit')) transfu_count.append(visit.get('transfu_count')) threshold = 24 * 30 * 18 # 18 months previous_visit = [0 if (t == 'none' or t > threshold) else 1 for t in previous_visit] MH_ACS = [1 if int(x) == 2 else x for x in MH_ACS] MH_AVN = [1 if int(x) == 2 else x for x in MH_AVN] MH_DIALISIS = [1 if int(x) == 2 else x for x in MH_DIALISIS] MH_HEART_FAILURE = [1 if int(x) == 2 else x for x in MH_HEART_FAILURE] MH_ISCHEMIC_STROKE = [1 if int(x) == 2 else x for x in MH_ISCHEMIC_STROKE] MH_LEG_ULCER = [1 if int(x) == 2 else x for x in MH_LEG_ULCER] MH_NEPHROPATHY = [1 if int(x) == 2 else x for x in MH_NEPHROPATHY] MH_PHTN = [1 if int(x) == 2 else x for x in MH_PHTN] MH_PRIAPISM = [1 if int(x) == 2 else x for x in MH_PRIAPISM] MH_RETINOPATHY = [1 if int(x) == 2 else x for x in MH_RETINOPATHY] X_basic = pd.DataFrame( {'patient_num': patient_num, 'encounter_num': encounter_num, 'sex': sex, 'genotype_SS': genotype_SS, 'age': age, 'rea': rea, 'LS_INACTIVE': LS_INACTIVE, 'MH_ACS': MH_ACS, 'MH_AVN': MH_AVN, 'MH_DIALISIS': MH_DIALISIS, 'MH_HEART_FAILURE': MH_HEART_FAILURE, 'MH_ISCHEMIC_STROKE': MH_ISCHEMIC_STROKE, 'MH_LEG_ULCER': MH_LEG_ULCER, 'LS_ALONE': LS_ALONE, 'MH_NEPHROPATHY': MH_NEPHROPATHY, 'MH_PHTN': MH_PHTN, 'MH_PRIAPISM': MH_PRIAPISM, 'MH_RETINOPATHY': MH_RETINOPATHY, 'ORAL_OPIOID': ORAL_OPIOID, 'baseline_HB': baseline_HB, 'USED_MORPHINE': USED_MORPHINE, 'USED_OXYCODONE': USED_OXYCODONE, 'duration': duration, 'previous_visit': previous_visit, 'transfu_count': transfu_count}, index=encounter_nums) X = pd.concat([X, X_basic], axis=1) print(" done") # Bio data print("Adding bio features...", end="") bio_data, bio_names = pd.DataFrame(), [] for visit in visits: encounter_num = int(visit.get('encounter_num')) tmp = pd.DataFrame(index=[encounter_num]) end_date = pd.to_datetime(visit.get('end_date')) for bio_name, bio_values in visit.get('bio').items(): # keep last value bio_names.append(bio_name) values = [val['nval_num'] for val in bio_values.values()] tmp[bio_name] = values[-1] # only keep last 48h values offset = end_date - pd.DateOffset(hours=48) values, index = [], [] for dic in bio_values.values(): val_time = pd.to_datetime(dic['date_bio']) if val_time > offset: values.append(float(dic['nval_num'])) index.append(float( (val_time - offset) / pd.Timedelta( '1 hour'))) # if at least 2 pts, add slope if len(values) > 1: x, y = index, values # least-squares A = np.vstack([np.array(x), np.ones(len(x))]).T slope, _ = np.linalg.lstsq(A, y)[0] else: slope = np.nan bio_names.append(bio_name + ' slope') tmp[bio_name + ' slope'] = slope bio_data = bio_data.append(tmp) bio_names_count = pd.Series( bio_names).value_counts() * 100 / n_visits bio_percentage = 35 bio_param_kept = bio_names_count[bio_names_count > bio_percentage] bio_data = bio_data[bio_param_kept.index] print(" done") X = pd.concat([X, bio_data], axis=1) # Vital parameters data print("\nAdding vital parameters features...") param_no_gp = ['Poids [kg]', 'Taille [cm]', 'Débit O2 [L/min]'] param_gp = ['Fréquence cardiaque [bpm]', 'Fréquence respiratoire [mvt/min]', 'PA max [mmHg]', 'PA min [mmHg]', 'Température [°C]', 'Saturation en oxygène [%]'] plot_curves_for_visits = np.random.randint(1, n_visits + 1, 3) print("\nPlot Gaussian Processes learned for a few random sampled visits") vital_parameter_data =
pd.DataFrame()
pandas.DataFrame
""" Provide the groupby split-apply-combine paradigm. Define the GroupBy class providing the base-class of operations. The SeriesGroupBy and DataFrameGroupBy sub-class (defined in pandas.core.groupby.generic) expose these user-facing objects to provide specific functionality. """ from contextlib import contextmanager import datetime from functools import partial, wraps import inspect import re import types from typing import ( Callable, Dict, FrozenSet, Generic, Hashable, Iterable, List, Mapping, Optional, Tuple, Type, TypeVar, Union, ) import numpy as np from pandas._config.config import option_context from pandas._libs import Timestamp import pandas._libs.groupby as libgroupby from pandas._typing import FrameOrSeries, Scalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution, cache_readonly, doc from pandas.core.dtypes.cast import maybe_cast_result from pandas.core.dtypes.common import ( ensure_float, is_bool_dtype, is_datetime64_dtype, is_extension_array_dtype, is_integer_dtype, is_numeric_dtype, is_object_dtype, is_scalar, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import nanops import pandas.core.algorithms as algorithms from pandas.core.arrays import Categorical, DatetimeArray from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import base, ops from pandas.core.indexes.api import CategoricalIndex, Index, MultiIndex from pandas.core.series import Series from pandas.core.sorting import get_group_index_sorter _common_see_also = """ See Also -------- Series.%(name)s DataFrame.%(name)s """ _apply_docs = dict( template=""" Apply function `func` group-wise and combine the results together. The function passed to `apply` must take a {input} as its first argument and return a DataFrame, Series or scalar. `apply` will then take care of combining the results back together into a single dataframe or series. `apply` is therefore a highly flexible grouping method. While `apply` is a very flexible method, its downside is that using it can be quite a bit slower than using more specific methods like `agg` or `transform`. Pandas offers a wide range of method that will be much faster than using `apply` for their specific purposes, so try to use them before reaching for `apply`. Parameters ---------- func : callable A callable that takes a {input} as its first argument, and returns a dataframe, a series or a scalar. In addition the callable may take positional and keyword arguments. args, kwargs : tuple and dict Optional positional and keyword arguments to pass to `func`. Returns ------- applied : Series or DataFrame See Also -------- pipe : Apply function to the full GroupBy object instead of to each group. aggregate : Apply aggregate function to the GroupBy object. transform : Apply function column-by-column to the GroupBy object. Series.apply : Apply a function to a Series. DataFrame.apply : Apply a function to each row or column of a DataFrame. """, dataframe_examples=""" >>> df = pd.DataFrame({'A': 'a a b'.split(), 'B': [1,2,3], 'C': [4,6, 5]}) >>> g = df.groupby('A') Notice that ``g`` has two groups, ``a`` and ``b``. Calling `apply` in various ways, we can get different grouping results: Example 1: below the function passed to `apply` takes a DataFrame as its argument and returns a DataFrame. `apply` combines the result for each group together into a new DataFrame: >>> g[['B', 'C']].apply(lambda x: x / x.sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0 Example 2: The function passed to `apply` takes a DataFrame as its argument and returns a Series. `apply` combines the result for each group together into a new DataFrame: >>> g[['B', 'C']].apply(lambda x: x.max() - x.min()) B C A a 1 2 b 0 0 Example 3: The function passed to `apply` takes a DataFrame as its argument and returns a scalar. `apply` combines the result for each group together into a Series, including setting the index as appropriate: >>> g.apply(lambda x: x.C.max() - x.B.min()) A a 5 b 2 dtype: int64 """, series_examples=""" >>> s = pd.Series([0, 1, 2], index='a a b'.split()) >>> g = s.groupby(s.index) From ``s`` above we can see that ``g`` has two groups, ``a`` and ``b``. Calling `apply` in various ways, we can get different grouping results: Example 1: The function passed to `apply` takes a Series as its argument and returns a Series. `apply` combines the result for each group together into a new Series: >>> g.apply(lambda x: x*2 if x.name == 'b' else x/2) 0 0.0 1 0.5 2 4.0 dtype: float64 Example 2: The function passed to `apply` takes a Series as its argument and returns a scalar. `apply` combines the result for each group together into a Series, including setting the index as appropriate: >>> g.apply(lambda x: x.max() - x.min()) a 1 b 0 dtype: int64 Notes ----- In the current implementation `apply` calls `func` twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first group. Examples -------- {examples} """, ) _pipe_template = """ Apply a function `func` with arguments to this %(klass)s object and return the function's result. %(versionadded)s Use `.pipe` when you want to improve readability by chaining together functions that expect Series, DataFrames, GroupBy or Resampler objects. Instead of writing >>> h(g(f(df.groupby('group')), arg1=a), arg2=b, arg3=c) # doctest: +SKIP You can write >>> (df.groupby('group') ... .pipe(f) ... .pipe(g, arg1=a) ... .pipe(h, arg2=b, arg3=c)) # doctest: +SKIP which is much more readable. Parameters ---------- func : callable or tuple of (callable, str) Function to apply to this %(klass)s object or, alternatively, a `(callable, data_keyword)` tuple where `data_keyword` is a string indicating the keyword of `callable` that expects the %(klass)s object. args : iterable, optional Positional arguments passed into `func`. kwargs : dict, optional A dictionary of keyword arguments passed into `func`. Returns ------- object : the return type of `func`. See Also -------- Series.pipe : Apply a function with arguments to a series. DataFrame.pipe: Apply a function with arguments to a dataframe. apply : Apply function to each group instead of to the full %(klass)s object. Notes ----- See more `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#piping-function-calls>`_ Examples -------- %(examples)s """ _transform_template = """ Call function producing a like-indexed %(klass)s on each group and return a %(klass)s having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each group. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optionally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.groupby.apply %(klass)s.groupby.aggregate %(klass)s.transform Notes ----- Each group is endowed the attribute 'name' in case you need to know which group you are working on. The current implementation imposes three requirements on f: * f must return a value that either has the same shape as the input subframe or can be broadcast to the shape of the input subframe. For example, if `f` returns a scalar it will be broadcast to have the same shape as the input subframe. * if this is a DataFrame, f must support application column-by-column in the subframe. If f also supports application to the entire subframe, then a fast path is used starting from the second chunk. * f must not mutate groups. Mutation is not supported and may produce unexpected results. When using ``engine='numba'``, there will be no "fall back" behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : ['one', 'one', 'two', 'three', ... 'two', 'two'], ... 'C' : [1, 5, 5, 2, 5, 5], ... 'D' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) C D 0 -1.154701 -0.577350 1 0.577350 0.000000 2 0.577350 1.154701 3 -1.154701 -1.000000 4 0.577350 -0.577350 5 0.577350 1.000000 Broadcast result of the transformation >>> grouped.transform(lambda x: x.max() - x.min()) C D 0 4 6.0 1 3 8.0 2 4 6.0 3 3 8.0 4 4 6.0 5 3 8.0 """ _agg_template = """ Aggregate using one or more operations over the specified axis. Parameters ---------- func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` - dict of axis labels -> functions, function names or list of such. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optionally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.groupby.apply %(klass)s.groupby.transform %(klass)s.aggregate Notes ----- When using ``engine='numba'``, there will be no "fall back" behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. %(examples)s """ class GroupByPlot(PandasObject): """ Class implementing the .plot attribute for groupby objects. """ def __init__(self, groupby): self._groupby = groupby def __call__(self, *args, **kwargs): def f(self): return self.plot(*args, **kwargs) f.__name__ = "plot" return self._groupby.apply(f) def __getattr__(self, name: str): def attr(*args, **kwargs): def f(self): return getattr(self.plot, name)(*args, **kwargs) return self._groupby.apply(f) return attr @contextmanager def _group_selection_context(groupby): """ Set / reset the _group_selection_context. """ groupby._set_group_selection() yield groupby groupby._reset_group_selection() _KeysArgType = Union[ Hashable, List[Hashable], Callable[[Hashable], Hashable], List[Callable[[Hashable], Hashable]], Mapping[Hashable, Hashable], ] class _GroupBy(PandasObject, SelectionMixin, Generic[FrameOrSeries]): _group_selection = None _apply_whitelist: FrozenSet[str] = frozenset() def __init__( self, obj: FrameOrSeries, keys: Optional[_KeysArgType] = None, axis: int = 0, level=None, grouper: "Optional[ops.BaseGrouper]" = None, exclusions=None, selection=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, mutated: bool = False, dropna: bool = True, ): self._selection = selection assert isinstance(obj, NDFrame), type(obj) obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError("as_index=False only valid with DataFrame") if axis != 0: raise ValueError("as_index=False only valid for axis=0") self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze self.observed = observed self.mutated = mutated self.dropna = dropna if grouper is None: from pandas.core.groupby.grouper import get_grouper grouper, exclusions, obj = get_grouper( obj, keys, axis=axis, level=level, sort=sort, observed=observed, mutated=self.mutated, dropna=self.dropna, ) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self) -> int: return len(self.groups) def __repr__(self) -> str: # TODO: Better repr for GroupBy object return object.__repr__(self) def _assure_grouper(self): """ We create the grouper on instantiation sub-classes may have a different policy. """ pass @property def groups(self): """ Dict {group name -> group labels}. """ self._assure_grouper() return self.grouper.groups @property def ngroups(self): self._assure_grouper() return self.grouper.ngroups @property def indices(self): """ Dict {group name -> group indices}. """ self._assure_grouper() return self.grouper.indices def _get_indices(self, names): """ Safe get multiple indices, translate keys for datelike to underlying repr. """ def get_converter(s): # possibly convert to the actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, datetime.datetime): return lambda key: Timestamp(key) elif isinstance(s, np.datetime64): return lambda key: Timestamp(key).asm8 else: return lambda key: key if len(names) == 0: return [] if len(self.indices) > 0: index_sample = next(iter(self.indices)) else: index_sample = None # Dummy sample name_sample = names[0] if isinstance(index_sample, tuple): if not isinstance(name_sample, tuple): msg = "must supply a tuple to get_group with multiple grouping keys" raise ValueError(msg) if not len(name_sample) == len(index_sample): try: # If the original grouper was a tuple return [self.indices[name] for name in names] except KeyError as err: # turns out it wasn't a tuple msg = ( "must supply a same-length tuple to get_group " "with multiple grouping keys" ) raise ValueError(msg) from err converters = [get_converter(s) for s in index_sample] names = (tuple(f(n) for f, n in zip(converters, name)) for name in names) else: converter = get_converter(index_sample) names = (converter(name) for name in names) return [self.indices.get(name, []) for name in names] def _get_index(self, name): """ Safe get index, translate keys for datelike to underlying repr. """ return self._get_indices([name])[0] @cache_readonly def _selected_obj(self): # Note: _selected_obj is always just `self.obj` for SeriesGroupBy if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _reset_group_selection(self): """ Clear group based selection. Used for methods needing to return info on each group regardless of whether a group selection was previously set. """ if self._group_selection is not None: # GH12839 clear cached selection too when changing group selection self._group_selection = None self._reset_cache("_selected_obj") def _set_group_selection(self): """ Create group based selection. Used when selection is not passed directly but instead via a grouper. NOTE: this should be paired with a call to _reset_group_selection """ grp = self.grouper if not ( self.as_index and getattr(grp, "groupings", None) is not None and self.obj.ndim > 1 and self._group_selection is None ): return ax = self.obj._info_axis groupers = [g.name for g in grp.groupings if g.level is None and g.in_axis] if len(groupers): # GH12839 clear selected obj cache when group selection changes self._group_selection = ax.difference(Index(groupers), sort=False).tolist() self._reset_cache("_selected_obj") def _set_result_index_ordered(self, result): # set the result index on the passed values object and # return the new object, xref 8046 # the values/counts are repeated according to the group index # shortcut if we have an already ordered grouper if not self.grouper.is_monotonic: index = Index(np.concatenate(self._get_indices(self.grouper.result_index))) result.set_axis(index, axis=self.axis, inplace=True) result = result.sort_index(axis=self.axis) result.set_axis(self.obj._get_axis(self.axis), axis=self.axis, inplace=True) return result def _dir_additions(self): return self.obj._dir_additions() | self._apply_whitelist def __getattr__(self, attr: str): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( f"'{type(self).__name__}' object has no attribute '{attr}'" ) @Substitution( klass="GroupBy", versionadded=".. versionadded:: 0.21.0", examples="""\ >>> df = pd.DataFrame({'A': 'a b a b'.split(), 'B': [1, 2, 3, 4]}) >>> df A B 0 a 1 1 b 2 2 a 3 3 b 4 To get the difference between each groups maximum and minimum value in one pass, you can do >>> df.groupby('A').pipe(lambda x: x.max() - x.min()) B A a 2 b 2""", ) @Appender(_pipe_template) def pipe(self, func, *args, **kwargs): return com.pipe(self, func, *args, **kwargs) plot = property(GroupByPlot) def _make_wrapper(self, name): assert name in self._apply_whitelist self._set_group_selection() # need to setup the selection # as are not passed directly but in the grouper f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) sig = inspect.signature(f) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument if "axis" in sig.parameters: if kwargs.get("axis", None) is None: kwargs["axis"] = self.axis def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in base.plotting_methods: return self.apply(curried) try: return self.apply(curried) except TypeError as err: if not re.search( "reduction operation '.*' not allowed for this dtype", str(err) ): # We don't have a cython implementation # TODO: is the above comment accurate? raise if self.obj.ndim == 1: # this can be called recursively, so need to raise ValueError raise ValueError # GH#3688 try to operate item-by-item result = self._aggregate_item_by_item(name, *args, **kwargs) return result wrapper.__name__ = name return wrapper def get_group(self, name, obj=None): """ Construct DataFrame from group with provided name. Parameters ---------- name : object The name of the group to get as a DataFrame. obj : DataFrame, default None The DataFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used. Returns ------- group : same type as obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) if not len(inds): raise KeyError(name) return obj._take_with_is_copy(inds, axis=self.axis) def __iter__(self): """ Groupby iterator. Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) @Appender( _apply_docs["template"].format( input="dataframe", examples=_apply_docs["dataframe_examples"] ) ) def apply(self, func, *args, **kwargs): func = self._is_builtin_func(func) # this is needed so we don't try and wrap strings. If we could # resolve functions to their callable functions prior, this # wouldn't be needed if args or kwargs: if callable(func): @wraps(func) def f(g): with np.errstate(all="ignore"): return func(g, *args, **kwargs) elif hasattr(nanops, "nan" + func): # TODO: should we wrap this in to e.g. _is_builtin_func? f = getattr(nanops, "nan" + func) else: raise ValueError( "func must be a callable if args or kwargs are supplied" ) else: f = func # ignore SettingWithCopy here in case the user mutates with option_context("mode.chained_assignment", None): try: result = self._python_apply_general(f) except TypeError: # gh-20949 # try again, with .apply acting as a filtering # operation, by excluding the grouping column # This would normally not be triggered # except if the udf is trying an operation that # fails on *some* columns, e.g. a numeric operation # on a string grouper column with _group_selection_context(self): return self._python_apply_general(f) return result def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output( keys, values, not_indexed_same=mutated or self.mutated ) def _iterate_slices(self) -> Iterable[Series]: raise AbstractMethodError(self) def transform(self, func, *args, **kwargs): raise AbstractMethodError(self) def _cumcount_array(self, ascending: bool = True): """ Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Notes ----- this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ids, _, ngroups = self.grouper.group_info sorter = get_group_index_sorter(ids, ngroups) ids, count = ids[sorter], len(ids) if count == 0: return np.empty(0, dtype=np.int64) run = np.r_[True, ids[:-1] != ids[1:]] rep = np.diff(np.r_[np.nonzero(run)[0], count]) out = (~run).cumsum() if ascending: out -= np.repeat(out[run], rep) else: out = np.repeat(out[np.r_[run[1:], True]], rep) - out rev = np.empty(count, dtype=np.intp) rev[sorter] = np.arange(count, dtype=np.intp) return out[rev].astype(np.int64, copy=False) def _transform_should_cast(self, func_nm: str) -> bool: """ Parameters ---------- func_nm: str The name of the aggregation function being performed Returns ------- bool Whether transform should attempt to cast the result of aggregation """ return (self.size().fillna(0) > 0).any() and ( func_nm not in base.cython_cast_blacklist ) def _cython_transform(self, how: str, numeric_only: bool = True, **kwargs): output: Dict[base.OutputKey, np.ndarray] = {} for idx, obj in enumerate(self._iterate_slices()): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, _ = self.grouper.transform(obj.values, how, **kwargs) except NotImplementedError: continue if self._transform_should_cast(how): result = maybe_cast_result(result, obj, how=how) key = base.OutputKey(label=name, position=idx) output[key] = result if len(output) == 0: raise DataError("No numeric types to aggregate") return self._wrap_transformed_output(output) def _wrap_aggregated_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_transformed_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_applied_output(self, keys, values, not_indexed_same: bool = False): raise AbstractMethodError(self) def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ): output: Dict[base.OutputKey, Union[np.ndarray, DatetimeArray]] = {} # Ideally we would be able to enumerate self._iterate_slices and use # the index from enumeration as the key of output, but ohlc in particular # returns a (n x 4) array. Output requires 1D ndarrays as values, so we # need to slice that up into 1D arrays idx = 0 for obj in self._iterate_slices(): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue result, agg_names = self.grouper.aggregate( obj._values, how, min_count=min_count ) if agg_names: # e.g. ohlc assert len(agg_names) == result.shape[1] for result_column, result_name in zip(result.T, agg_names): key = base.OutputKey(label=result_name, position=idx) output[key] = maybe_cast_result(result_column, obj, how=how) idx += 1 else: assert result.ndim == 1 key = base.OutputKey(label=name, position=idx) output[key] = maybe_cast_result(result, obj, how=how) idx += 1 if len(output) == 0: raise DataError("No numeric types to aggregate") return self._wrap_aggregated_output(output) def _python_agg_general( self, func, *args, engine="cython", engine_kwargs=None, **kwargs ): func = self._is_builtin_func(func) if engine != "numba": f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output: Dict[base.OutputKey, np.ndarray] = {} for idx, obj in enumerate(self._iterate_slices()): name = obj.name if self.grouper.ngroups == 0: # agg_series below assumes ngroups > 0 continue if engine == "numba": result, counts = self.grouper.agg_series( obj, func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs, ) else: try: # if this function is invalid for this dtype, we will ignore it. result, counts = self.grouper.agg_series(obj, f) except TypeError: continue assert result is not None key = base.OutputKey(label=name, position=idx) output[key] = maybe_cast_result(result, obj, numeric_only=True) if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for key, result in output.items(): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = ensure_float(values) output[key] = maybe_cast_result(values[mask], result) return self._wrap_aggregated_output(output) def _concat_objects(self, keys, values, not_indexed_same: bool = False): from pandas.core.reshape.concat import concat def reset_identity(values): # reset the identities of the components # of the values to prevent aliasing for v in com.not_none(*values): ax = v._get_axis(self.axis) ax._reset_identity() return values if not not_indexed_same: result =
concat(values, axis=self.axis)
pandas.concat
import os import pickle import pandas as pd from collections import Counter from numpy.random import choice import random import re import simplejson data_dir = '/home/hsinghal/workspace/DB_AS_A_SERVICE/input_data' store_into = '/home/hsinghal/workspace/DB_AS_A_SERVICE/custom_scripts' # ------------------------------- # Identify the population distribution across cities # ------------------------------- # World cities data world_cities = pd.read_table(os.path.join(data_dir, 'worldcitiespop_sample.txt'), sep=",", index_col=None) # Keep only US cities us_cities = world_cities[world_cities.Country == 'us'] # Keep cities with available population numbers us_cities_with_pop = us_cities[us_cities.Population > 0] # Get population probabilities us_cities_with_pop['population_prob'] = us_cities_with_pop.Population / us_cities_with_pop.Population.sum() # Keep only relevant columns us_cities_data = us_cities_with_pop[['City', 'Region', 'population_prob']] # Create list of (city,state) and a list of probabilities city_state = [] city_state_population_prob = [] for each_row in us_cities_data.iterrows(): row = each_row[1] # city_state.append((row['City'].title(), row['Region'])) city_state.append(row['City'].title()) city_state_population_prob.append(row['population_prob']) choice(city_state, p=city_state_population_prob) # Store pickled with open(os.path.join(store_into, 'city_pop_distr.pkl'), 'wb') as fout: pickle.dump([city_state, city_state_population_prob], fout, -1) # ----------------- # Get Names data # ----------------- # Read all names from NationalNames.csv national_names = pd.read_table(os.path.join(data_dir, 'NationalNames_sample.csv'), sep=",", index_col=False) national_names.columns national_names.head() firstnames_namedb = pd.read_table(os.path.join(data_dir, 'namedb_first_names_us.txt'), header=None) firstnames_namedb.columns = ['firstname'] firstnames_namedb.head() # Get all first names first_names = list(set(national_names.Name.tolist() + firstnames_namedb.firstname.tolist())) # Get last names lastnames_namedb = pd.read_table(os.path.join(data_dir, 'namedb_surnames_us.txt'),header=None) lastnames_namedb.columns = ['lastname'] last_names = list(set(lastnames_namedb.lastname.tolist())) len(last_names) # Get last names for uk lastnames_namedb_uk = pd.read_table(os.path.join(data_dir, 'namedb_surnames_uk.txt'),header=None) lastnames_namedb_uk.columns = ['lastname'] last_names_uk = list(set(lastnames_namedb_uk.lastname.tolist())) len(last_names_uk) last_names_list = list(set(last_names + last_names_uk)) with open(os.path.join(store_into,'first_last_names.pkl'),'wb') as fout: pickle.dump([first_names, last_names_list], fout, -1) # ----------------- # Get Email Address # ----------------- # Get domains popular_domains_distr = [ ("gmail.com", 0.1), ("yahoo.com", 0.08), ("hotmail.com", 0.07), ("aol.com", 0.05), ("msn.com", 0.04)] # ref https://github.com/mailcheck/mailcheck/wiki/List-of-Popular-Domains # the list below is not used email_domains_all = ["aol.com", "att.net", "comcast.net", "facebook.com", "gmail.com", "gmx.com", "googlemail.com", "google.com", "hotmail.com", "hotmail.co.uk", "mac.com", "me.com", "mail.com", "msn.com", "live.com", "sbcglobal.net", "verizon.net", "yahoo.com", "yahoo.co.uk", "email.com", "games.com", "gmx.net", "hush.com", "hushmail.com", "icloud.com", "inbox.com", "lavabit.com", "love.com" , "outlook.com", "pobox.com", "rocketmail.com", "safe-mail.net", "wow.com", "ygm.com" , "ymail.com", "zoho.com", "fastmail.fm", "yandex.com","iname.com", "bellsouth.net", "charter.net", "comcast.net", "cox.net", "earthlink.net", "juno.com", "btinternet.com", "virginmedia.com", "blueyonder.co.uk", "freeserve.co.uk", "live.co.uk", "ntlworld.com", "o2.co.uk", "orange.net", "sky.com", "talktalk.co.uk", "tiscali.co.uk", "virgin.net", "wanadoo.co.uk", "bt.com", "sina.com", "qq.com", "naver.com", "hanmail.net", "daum.net", "nate.com", "yahoo.co.jp", "yahoo.co.kr", "yahoo.co.id", "yahoo.co.in", "yahoo.com.sg", "yahoo.com.ph", "hotmail.fr", "live.fr", "laposte.net", "yahoo.fr", "wanadoo.fr", "orange.fr", "gmx.fr", "sfr.fr", "neuf.fr", "free.fr", "gmx.de", "hotmail.de", "live.de", "online.de", "t-online.de", "web.de", "yahoo.de", "mail.ru", "rambler.ru", "yandex.ru", "ya.ru", "list.ru", "hotmail.be", "live.be", "skynet.be", "voo.be", "tvcablenet.be", "telenet.be", "hotmail.com.ar", "live.com.ar", "yahoo.com.ar", "fibertel.com.ar", "speedy.com.ar", "arnet.com.ar", "hotmail.com", "gmail.com", "yahoo.com.mx", "live.com.mx", "yahoo.com", "hotmail.es", "live.com", "hotmail.com.mx", "prodigy.net.mx", "msn.com", "yahoo.com.br", "hotmail.com.br", "outlook.com.br", "uol.com.br", "bol.com.br", "terra.com.br", "ig.com.br", "itelefonica.com.br", "r7.com", "zipmail.com.br", "globo.com", "globomail.com", "oi.com.br"] email_domains = pd.read_table(os.path.join(data_dir, 'email_domains.txt'), header=None, index_col=False) email_domains.columns = ['email_domain'] email_domains_more = [k for k in email_domains.email_domain.tolist() if re.search("com$", k) and 'mail2' not in k] prob_of_other_domains = (1 - sum([k[1] for k in popular_domains_distr])) / len(email_domains_more) email_domains_items = [k[0] for k in popular_domains_distr] + email_domains_more email_domains_prob = [k[1] for k in popular_domains_distr] + [prob_of_other_domains] * len(email_domains_more) choice(email_domains_items, p=email_domains_prob) with open(os.path.join(store_into,'email_domains_distr.pkl'),'wb') as fout: pickle.dump([email_domains_items, email_domains_prob], fout, -1) # ---------------- # Get Git user name for email address # ---------------- gitdata = open(os.path.join(data_dir, 'git_names.json'), 'r').readlines() git_userids = [] for i in gitdata: i = i.strip() d = simplejson.loads(i) git_userids.append(d['actor']['login']) with open(os.path.join(store_into,'git_user_names.pkl'),'wb') as fout: pickle.dump(git_userids, fout, -1) # *************************************************** # *************************************************** # --------------------- # Create Table Hotels # --------------------- def address_clean(addr): if len(str(addr)) < 4: return '' elif str(addr) == 'NaN': return '' return str(addr) """ CREATE TABLE Hotels ( hotel_id int NOT NULL, hotel_full_name varchar(255) NOT NULL, hotel_latitude decimal(8,3), hotel_longitude decimal(8,3), hotel_address varchar(255) NOT NULL, hotel_country varchar(255) NOT NULL, hotel_currency varchar(10) NOT NULL, hotel_star_rating varchar(10) NOT NULL, hotel_location varchar(255) NOT NULL ); """ # Read Active Properties List df_active_props = pd.read_table(os.path.join(data_dir, 'ActivePropertyList.txt'), sep="|", index_col=None) df_active_props.head(10) # Iterate over each row and only keep US hotels result_rows = [] START_ID = 53689 for each_row in df_active_props.iterrows(): row = each_row[1] temp_dict = { 'hotel_id': each_row[0] + START_ID, 'hotel_full_name': row['Name'], 'hotel_latitude': row['Latitude'], 'hotel_longitude': row['Longitude'], 'hotel_address': ' '.join([address_clean(row['Address1']), address_clean(row['Address2'])]), 'hotel_country': row['Country'], 'hotel_currency': row['PropertyCurrency'], 'hotel_star_rating': row['StarRating'], 'hotel_location': row['Location'] } if row['Country'] == 'US': result_rows.append(temp_dict) # Create pandas data frame hotels_df = pd.DataFrame.from_records(result_rows) hotels_df.head() hotels_df = hotels_df[['hotel_id', 'hotel_full_name', 'hotel_latitude', 'hotel_longitude', 'hotel_address', 'hotel_country', 'hotel_currency','hotel_star_rating','hotel_location']] # Store results in results_data directory hotels_df.to_pickle(os.path.join(store_into, 'hotels.pkl')) # ------------------ # Hotel Facilities Reference List # ----------------- """ CREATE TABLE Ref_Hotel_Facilities ( facility_code int NOT NULL, facility_description varchar(50) NOT NULL ); """ # Read hotel facilities list df_ref_hotel_facilities = pd.read_table(os.path.join(data_dir, 'AttributeList.txt'), sep="|", index_col=None) df_ref_hotel_facilities.head() hotel_facilities_list = df_ref_hotel_facilities['AttributeDesc'].values.tolist() result_rows = [] START_ID = 34213 ctr = 0 for each_row in hotel_facilities_list: temp_dict = { 'facility_code': ctr + START_ID, 'facility_description': each_row } result_rows.append(temp_dict) ctr += 1 # Create pandas data frame ref_hotel_facilities = pd.DataFrame.from_records(result_rows) # Store results in results_data directory ref_hotel_facilities[['facility_code', 'facility_description']].to_pickle(os.path.join(store_into, 'ref_hotel_facilities.pkl')) # ------------------ # Hotel Facilities - For Each Hotel # ----------------- """ CREATE TABLE Hotel_Facilities ( hotel_id int NOT NULL, facility_code int NOT NULL ); """ # Read in hotels.pkl and ref_hotel_facilities.pkl # For each hotel, identify hotel facilities # Read ref_hotel_facilities.pkl ref_hotel_facilities = pd.read_pickle('ref_hotel_facilities.pkl') ref_hotel_facilities.head() # Read hotels.pkl hotels_df = pd.read_pickle('hotels.pkl') # Iterate over each hotel # For each hotel, get a random selection of facilities all_results = [] for each_row in hotels_df.iterrows(): row = each_row[1] # Get a random selection of facilities random_percent = random.uniform(1, 5) / 100 hotels_ref = ref_hotel_facilities.sample(frac=random_percent, replace=False) for each_facility in hotels_ref.iterrows(): temp_dict = { 'hotel_id': row['hotel_id'], 'facility_code': each_facility[1]['facility_code'] } all_results.append(temp_dict) # Create data frame hotel_facilities_df = hotel_facilities =
pd.DataFrame.from_records(all_results)
pandas.DataFrame.from_records
import streamlit as st import numpy as np import pandas as pd #import matplotlib.pyplot as plt from matplotlib import pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report st.title('Machine Learning - CLASSIFICATION') st.sidebar.write(""" This is a web app demo using python libraries such as Streamlit, Sklearn etc """) #st.sidebar.write ("For more info, please contact:") #st.sidebar.write("<a href='https://www.linkedin.com/in/yong-poh-yu/'>Dr. <NAME> </a>", unsafe_allow_html=True) choice = st.sidebar.radio( "Choose a dataset", ('Default', 'User-defined '), index = 0 ) st.write(f"## You Have Selected <font color='Aquamarine'>{choice}</font> Dataset", unsafe_allow_html=True) def get_default_dataset(name): data = None if name == 'Iris': data = datasets.load_iris() elif name == 'Wine': data = datasets.load_wine() else: data = datasets.load_breast_cancer() X = data.data y = data.target return X, y def add_dataset_ui(choice_name): X=[] y=[] X_names = [] X1 = [] if choice_name == 'Default': dataset_name = st.sidebar.selectbox( 'Select Dataset', ('Iris', 'Breast Cancer', 'Wine') ) X, y = get_default_dataset (dataset_name) X_names = X else: uploaded_file = st.sidebar.file_uploader( "Upload a CSV", type='csv' ) if uploaded_file!=None: st.write(uploaded_file) data = pd.read_csv(uploaded_file) y_name = st.sidebar.selectbox( 'Select Label @ y variable', sorted(data) ) X_names = st.sidebar.multiselect( 'Select Predictors @ X variables.', sorted(data), default = sorted(data)[1], help = "You may select more than one predictor" ) y = data.loc[:,y_name] X = data.loc[:,X_names] X1 = X.select_dtypes(include=['object']) X2 = X.select_dtypes(exclude=['object']) if sorted(X1) != []: X1 = X1.apply(LabelEncoder().fit_transform) X = pd.concat([X2,X1],axis=1) y = LabelEncoder().fit_transform(y) else: st.write(f"## <font color='Aquamarine'>Note: Please upload a CSV file to analyze the data.</font>", unsafe_allow_html=True) return X,y, X_names, X1 X, y , X_names, cat_var= add_dataset_ui (choice) classifier_name = st.sidebar.selectbox( 'Select classifier', ('KNN', 'SVM', 'Random Forest') ) test_data_ratio = st.sidebar.slider('Select testing size or ratio', min_value= 0.10, max_value = 0.50, value=0.2) random_state = st.sidebar.slider('Select random state', 1, 9999,value=1234) st.write("## 1: Summary (X variables)") if len(X)==0: st.write("<font color='Aquamarine'>Note: Predictors @ X variables have not been selected.</font>", unsafe_allow_html=True) else: st.write('Shape of predictors @ X variables :', X.shape) st.write('Summary of predictors @ X variables:',
pd.DataFrame(X)
pandas.DataFrame
#!/usr/bin/env python3 import os from collections import defaultdict, namedtuple import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegressionCV from sklearn import metrics from functools import partial import gc import pickle as pkl import gzip import json from datetime import datetime from concurrent.futures import ThreadPoolExecutor from camaptools.EnhancedFutures import EnhancedProcessPoolExecutor, EnhancedMPIPoolExecutor # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html : Note that in binary classification, recall of the positive class is also known as “sensitivity”; recall of the negative class is “specificity”. Results = namedtuple('Results', ['df_results', 'df_results_max', 'df_coef', 'df_scores', 'auc_data']) class RegressionMetaManager(object): """A wrapper around RegressionManagers that also takes care of running and distributing jobs for Datasets """ def __init__(self, datasets, out_dir, workers=0, executor=None): self.out_dir = out_dir self.workers = workers self.executor = EnhancedProcessPoolExecutor if executor is None else executor self.managers = [RegressionManager(dat, self.workers, self.executor) for dat in datasets] for rem in self.managers: rem.dataset.workers = self.workers rem.dataset.executor = self.executor def set_load_peptides_options(self, *args, **kwargs): for rem in self.managers: rem.dataset.load_peptides_options(*args, **kwargs) def run(self): tex = ThreadPoolExecutor(max_workers=1) future = tex.submit(lambda: defaultdict(lambda: defaultdict(list))) for rem in self.managers: print(rem.name) self._run(rem) self.results = future.result() future = tex.submit(self._save, rem, self.results, self.out_dir) self.results = future.result() tex.shutdown() def join(self): results = self.results for subname in results: df_results = pd.concat(results[subname]['df_results'], axis=1) df_results_max = pd.concat(results[subname]['df_results_max'], axis=1) df_coef = pd.concat(results[subname]['df_coef'], axis=0) results[subname] = Results._make([df_results, df_results_max, df_coef, pd.DataFrame(), {}]) self.results = dict(results) self.write(self.results, self.out_dir) @staticmethod def _run(rem): #rem.dataset.pepfiles = [x for x in rem.dataset.pepfiles if 'W9' in x] rem.dataset.load_peptides() rem.dataset.construct_datasets() rem.dataset.clear_unused() rem.initialize_trainers() rem.start(optimize_mem_usage=True) rem.join() @staticmethod def _save(rem, results, out_sub_dir): for subname in list(rem.results.keys()): res = rem.results[subname] out_dir = os.path.join(out_sub_dir, subname) out_bak_dir = os.path.join(out_sub_dir, subname, '_bak') out_scores_dir = os.path.join(out_sub_dir, subname, 'scores') out_auc_dir = os.path.join(out_sub_dir, subname, 'auc') os.makedirs(out_bak_dir, exist_ok=True) os.makedirs(out_scores_dir, exist_ok=True) os.makedirs(out_auc_dir, exist_ok=True) res.df_results.to_csv(os.path.join(out_bak_dir, rem.name + '.results.tsv'), sep='\t', float_format='%g') res.df_results_max.to_csv(os.path.join(out_bak_dir, rem.name + '.results.max.tsv'), sep='\t', float_format='%g') res.df_coef.to_csv(os.path.join(out_bak_dir, rem.name + '.coefficients.tsv'), sep='\t', float_format='%g') res.df_scores.to_csv(os.path.join(out_scores_dir, rem.name + '.scores.tsv.gz'), sep='\t', float_format='%g', compression='gzip') with gzip.open(os.path.join(out_auc_dir, rem.name + '.auc_data.json.gz'), 'wb') as f: f.write(str.encode(json.dumps(res.auc_data) + '\n')) results[subname]['df_results'].append(res.df_results) results[subname]['df_results_max'].append(res.df_results_max) results[subname]['df_coef'].append(res.df_coef) del res del rem.results[subname] gc.collect() return results @staticmethod def write(results, out_base_dir): for subname, res in results.items(): out_dir = os.path.join(out_base_dir, subname) os.makedirs(out_dir, exist_ok=True) out_file_results = os.path.join(out_dir, 'metrics.tsv') out_file_results_max = os.path.join(out_dir, 'metrics.redmax.tsv') out_file_coefficients = os.path.join(out_dir, 'coefficients.tsv') print('Saving %s at %s' % (out_file_results, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))) print('Saving %s at %s' % (out_file_results_max, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))) print('Saving %s at %s' % (out_file_coefficients, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))) res.df_results.to_csv(out_file_results, sep='\t', float_format='%g', na_rep='nan') res.df_results_max.to_csv(out_file_results_max, sep='\t', float_format='%g', na_rep='nan') res.df_coef.to_csv(out_file_coefficients, sep='\t', float_format='%g', na_rep='nan') class RegressionManager(object): """ """ def __init__(self, dataset, workers=0, executor=None): self.dataset = dataset self.workers = workers self.executor = EnhancedProcessPoolExecutor if executor is None else executor self.allele = list(self.dataset.alleles)[0] if len(self.dataset.alleles) == 1 else 'HLA-MinScore' self.name = self.dataset.dataset_name def initialize_trainers(self): self.trainers = [] subgroups = defaultdict(list) for i, (dat, (seed, subname)) in enumerate(zip(self.dataset.datasets, self.dataset.metadata)): self.trainers.append(RegressionTrainer(dat, seed)) subgroups[subname].append(i) self.subgroups = dict(subgroups) def start(self, optimize_mem_usage=False): with self.executor(max_workers=self.workers, use_threads=False) as ex: for t in self.trainers: t.submit(ex) print(ex) if optimize_mem_usage: for t in self.trainers: del t.dataset del self.dataset.datasets gc.collect() def join(self): for t in self.trainers: t.join() self.results = {} for subname, indexes in self.subgroups.items(): trainers = [self.trainers[i] for i in indexes] metadata = [self.dataset.metadata[i] for i in indexes] self.results[subname] = Results._make(self._join(trainers, metadata)) def _join(self, trainers, metadata): results_dct = defaultdict(list) results_max_dct = defaultdict(list) coef_dct = defaultdict(list) auc_data = defaultdict(list) df_scores_list = [] for t, (replicate, subname) in zip(trainers, metadata): for k in t.results_dct: results_dct[k].append(t.results_dct[k]) for k in t.results_max_dct: results_max_dct[k].append(t.results_max_dct[k]) for k in t.coef_dct: coef_dct[k].append(t.coef_dct[k]) for k in t.auc_data: auc_data[k].append(t.auc_data[k]) df_sc = t.df_scores.copy().replace(np.nan, None) df_sc.index = pd.Index([(self.name, self.allele, replicate, x[0], x[1]) for x in df_sc.index], name= ['Dataset', 'Allele', 'N'] + df_sc.index.names) df_scores_list.append(df_sc) df_results = pd.DataFrame(results_dct).sort_index(axis=1) df_results.index = df_results.index + 1 df_results.columns = pd.Index([(self.allele, x[0], x[1]) for x in df_results.columns]) df_results.index = pd.Index([(self.name, x) for x in df_results.index]) df_results = df_results.transpose() df_results.index.names = ['Allele', 'Metric', 'Regression'] df_results_max = pd.DataFrame(results_max_dct).sort_index(axis=1) df_results_max.index = df_results_max.index + 1 df_results_max.columns = pd.Index([(self.allele, x[0], x[1]) for x in df_results_max.columns]) df_results_max.index = pd.Index([(self.name, x) for x in df_results_max.index]) df_results_max = df_results_max.transpose() df_results_max.index.names = ['Allele', 'Metric', 'Regression'] auc_data = {self.name + ':::' + self.allele: dict(auc_data)} dct = {} for prefix, val_lst in coef_dct.items(): for rep, values in enumerate(val_lst): rep += 1 minidct = {var: val for var, val in zip(values['variable'], values['coefficient'])} dct[(self.name, self.allele, prefix, rep)] = minidct df_coef = pd.DataFrame(dct).transpose() df_coef.index.names = ['Dataset', 'Allele', 'Regression', 'N'] df_scores = pd.concat(df_scores_list, copy=False, axis=0).sort_index(axis=1) return df_results, df_results_max, df_coef, df_scores, auc_data class RegressionTrainer(object): """ """ def __init__(self, dataset, seed, workers=0, executor=None): """ NOTE: Cannot fork if using MPIPoolExecutor (must use workers=0) """ self.workers = workers # careful with parallelization as LogisticRegression spawns its own processes with all available CPUs self.executor = EnhancedProcessPoolExecutor if executor is None else executor self.dataset = dataset self.seed = seed self.all_combinations = [ ["BS"], ["TPM"], ["CAMAPShuff"], ["CAMAP"], ["BS", "TPM"], ["BS", "CAMAPShuff"], ["BS", "CAMAP"], ["TPM", "CAMAPShuff"], ["TPM", "CAMAP"], ["BS", "TPM", "CAMAPShuff"], ["BS", "TPM", "CAMAP"] ] def submit(self, ex=None): # expects an active executor ex = EnhancedProcessPoolExecutor(max_workers=0) if ex is None else ex # use sequential pseudo-threads df_training, df_test = self.dataset self.regressions = [] #w = self.workers + 1 #sub_x_labels_groups = [self.all_combinations[n:n+w] for n in range(0, len(self.all_combinations), w)] #for sub_x_labels in sub_x_labels_groups: # p = ex.submit(self._submit, sub_x_labels, df_training, df_test, self.seed, self.executor) # self.regressions.append(p) for x_labels in self.all_combinations: p = ex.submit(self.train_regression, x_labels, df_training, df_test, self.seed) self.regressions.append(p) #@classmethod #def _submit(cls, sub_x_labels, df_training, df_test, seed, executor): # workers = len(sub_x_labels) - 1 # sub_regressions = [] # with executor(max_workers=workers, use_threads=True) as sex: # secondary ex # for x_labels in sub_x_labels: # p = sex.submit(cls.train_regression, x_labels, df_training, df_test, seed) # sub_regressions.append(p) # print(sex) # return [p.result() for p in sub_regressions] def join(self): #regressions = [res for p in self.regressions for res in p.result()] regressions = [p.result() for p in self.regressions] results = {} results_max = {} coef_dct = {} auc_data = {} df_scores = pd.DataFrame() for r, rm, coef, auc, df_sc in regressions: results = {**results, **r} results_max = {**results_max, **rm} coef_dct = {**coef_dct, **coef} auc_data = {**auc_data, **auc} df_scores =
pd.concat([df_scores, df_sc], axis=1)
pandas.concat
#!/usr/bin/env python3 import os import sys import re import pandas as pd, geopandas as gpd import numpy as np import argparse import matplotlib.pyplot as plt import seaborn as sns from functools import reduce from multiprocessing import Pool from os.path import isfile, join import shutil import warnings from pathlib import Path import time warnings.simplefilter(action='ignore', category=FutureWarning) import rasterio from rasterio import features as riofeatures from rasterio import plot as rioplot from shapely.geometry import Polygon """ Plot Rating Curves and Compare to USGS Gages Parameters ---------- fim_dir : str Directory containing FIM output folders. output_dir : str Directory containing rating curve plots and tables. usgs_gages_filename : str File name of USGS rating curves. nwm_flow_dir : str Directory containing NWM recurrence flows files. number_of_jobs : str Number of jobs. stat_groups : str string of columns to group eval metrics. """ def check_file_age(file): ''' Checks if file exists, determines the file age, and recommends updating if older than 1 month. Returns ------- None. ''' file = Path(file) if file.is_file(): modification_time = file.stat().st_mtime current_time = time.time() file_age_days = (current_time - modification_time)/86400 if file_age_days > 30: check = f'{file.name} is {int(file_age_days)} days old, consider updating.\nUpdate with rating_curve_get_usgs_curves.py' else: check = f'{file.name} is {int(file_age_days)} days old.' return check # recurr_intervals = ['recurr_1_5_cms.csv','recurr_5_0_cms.csv','recurr_10_0_cms.csv'] def generate_rating_curve_metrics(args): elev_table_filename = args[0] branches_folder = args[1] usgs_gages_filename = args[2] usgs_recurr_stats_filename = args[3] nwm_recurr_data_filename = args[4] rc_comparison_plot_filename = args[5] nwm_flow_dir = args[6] catfim_flows_filename = args[7] huc = args[8] alt_plot = args[9] elev_table = pd.read_csv(elev_table_filename,dtype={'location_id': object, 'feature_id':object,'HydroID':object, 'levpa_id':object}) elev_table.dropna(subset=['location_id'], inplace=True) usgs_gages = pd.read_csv(usgs_gages_filename,dtype={'location_id': object, 'feature_id':object}) # Aggregate FIM4 hydroTables hydrotable = pd.DataFrame() for branch in elev_table.levpa_id.unique(): branch_elev_table = elev_table.loc[elev_table.levpa_id == branch].copy() branch_hydrotable = pd.read_csv(join(branches_folder, str(branch), f'hydroTable_{branch}.csv'),dtype={'HydroID':object,'feature_id':object}) # Only pull SRC for hydroids that are in this branch branch_hydrotable = branch_hydrotable.loc[branch_hydrotable.HydroID.isin(branch_elev_table.HydroID)] branch_hydrotable.drop(columns=['order_'], inplace=True) # Join SRC with elevation data branch_elev_table.rename(columns={'feature_id':'fim_feature_id'}, inplace=True) branch_hydrotable = branch_hydrotable.merge(branch_elev_table, on="HydroID") # Append to full rating curve dataframe if hydrotable.empty: hydrotable = branch_hydrotable else: hydrotable = hydrotable.append(branch_hydrotable) # Join rating curves with elevation data #elev_table.rename(columns={'feature_id':'fim_feature_id'}, inplace=True) #hydrotable = hydrotable.merge(elev_table, on="HydroID") relevant_gages = list(hydrotable.location_id.unique()) usgs_gages = usgs_gages[usgs_gages['location_id'].isin(relevant_gages)] usgs_gages = usgs_gages.reset_index(drop=True) if len(usgs_gages) > 0: # Adjust rating curve to elevation hydrotable['elevation_ft'] = (hydrotable.stage + hydrotable.dem_adj_elevation) * 3.28084 # convert from m to ft # hydrotable['raw_elevation_ft'] = (hydrotable.stage + hydrotable.dem_elevation) * 3.28084 # convert from m to ft hydrotable['discharge_cfs'] = hydrotable.discharge_cms * 35.3147 usgs_gages = usgs_gages.rename(columns={"flow": "discharge_cfs", "elevation_navd88": "elevation_ft"}) hydrotable['source'] = "FIM" usgs_gages['source'] = "USGS" limited_hydrotable = hydrotable.filter(items=['location_id','elevation_ft','discharge_cfs','source', 'HydroID', 'levpa_id', 'dem_adj_elevation']) select_usgs_gages = usgs_gages.filter(items=['location_id', 'elevation_ft', 'discharge_cfs','source']) if 'default_discharge_cms' in hydrotable.columns: # check if both "FIM" and "FIM_default" SRCs are available hydrotable['default_discharge_cfs'] = hydrotable.default_discharge_cms * 35.3147 limited_hydrotable_default = hydrotable.filter(items=['location_id','elevation_ft', 'default_discharge_cfs']) limited_hydrotable_default['discharge_cfs'] = limited_hydrotable_default.default_discharge_cfs limited_hydrotable_default['source'] = "FIM_default" rating_curves = limited_hydrotable.append(select_usgs_gages) rating_curves = rating_curves.append(limited_hydrotable_default) else: rating_curves = limited_hydrotable.append(select_usgs_gages) # Add stream order stream_orders = hydrotable.filter(items=['location_id','order_']).drop_duplicates() rating_curves = rating_curves.merge(stream_orders, on='location_id') rating_curves['order_'] = rating_curves['order_'].astype('int') # NWM recurr intervals recurr_intervals = ("2","5","10","25","50","100") recurr_dfs = [] for interval in recurr_intervals: recurr_file = join(nwm_flow_dir, 'nwm21_17C_recurr_{}_0_cms.csv'.format(interval)) df =
pd.read_csv(recurr_file, dtype={'feature_id': str})
pandas.read_csv
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import datetime from datetime import timedelta from functools import partial from textwrap import dedent from copy import deepcopy import logbook import toolz from logbook import TestHandler, WARNING from parameterized import parameterized from six import iteritems, itervalues, string_types from six.moves import range from testfixtures import TempDirectory import numpy as np import pandas as pd import pytz from pandas.errors import PerformanceWarning from trading_calendars import get_calendar, register_calendar import zipline.api from zipline.api import FixedSlippage from zipline.assets import Equity, Future, Asset from zipline.assets.continuous_futures import ContinuousFuture from zipline.assets.synthetic import ( make_jagged_equity_info, make_simple_equity_info, ) from zipline.errors import ( AccountControlViolation, CannotOrderDelistedAsset, IncompatibleSlippageModel, RegisterTradingControlPostInit, ScheduleFunctionInvalidCalendar, SetCancelPolicyPostInit, SymbolNotFound, TradingControlViolation, UnsupportedCancelPolicy, UnsupportedDatetimeFormat, ZeroCapitalError ) from zipline.finance.commission import PerShare, PerTrade from zipline.finance.execution import LimitOrder from zipline.finance.order import ORDER_STATUS from zipline.finance.trading import SimulationParameters from zipline.finance.asset_restrictions import ( Restriction, HistoricalRestrictions, StaticRestrictions, RESTRICTION_STATES, ) from zipline.finance.controls import AssetDateBounds from zipline.testing import ( FakeDataPortal, create_daily_df_for_asset, create_data_portal_from_trade_history, create_minute_df_for_asset, make_test_handler, make_trade_data_for_asset_info, parameter_space, str_to_seconds, to_utc, ) from zipline.testing import RecordBatchBlotter import zipline.testing.fixtures as zf from zipline.test_algorithms import ( access_account_in_init, access_portfolio_in_init, api_algo, api_get_environment_algo, api_symbol_algo, handle_data_api, handle_data_noop, initialize_api, initialize_noop, noop_algo, record_float_magic, record_variables, call_with_kwargs, call_without_kwargs, call_with_bad_kwargs_current, call_with_bad_kwargs_history, bad_type_history_assets, bad_type_history_fields, bad_type_history_bar_count, bad_type_history_frequency, bad_type_history_assets_kwarg_list, bad_type_current_assets, bad_type_current_fields, bad_type_can_trade_assets, bad_type_is_stale_assets, bad_type_history_assets_kwarg, bad_type_history_fields_kwarg, bad_type_history_bar_count_kwarg, bad_type_history_frequency_kwarg, bad_type_current_assets_kwarg, bad_type_current_fields_kwarg, call_with_bad_kwargs_get_open_orders, call_with_good_kwargs_get_open_orders, call_with_no_kwargs_get_open_orders, empty_positions, no_handle_data, ) from zipline.testing.predicates import assert_equal from zipline.utils.api_support import ZiplineAPI from zipline.utils.context_tricks import CallbackManager, nop_context from zipline.utils.events import ( date_rules, time_rules, Always, ComposedRule, Never, OncePerDay, ) import zipline.utils.factory as factory # Because test cases appear to reuse some resources. _multiprocess_can_split_ = False class TestRecord(zf.WithMakeAlgo, zf.ZiplineTestCase): ASSET_FINDER_EQUITY_SIDS = (133,) SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False def test_record_incr(self): def initialize(self): self.incr = 0 def handle_data(self, data): self.incr += 1 self.record(incr=self.incr) name = 'name' self.record(name, self.incr) zipline.api.record(name, self.incr, 'name2', 2, name3=self.incr) output = self.run_algorithm( initialize=initialize, handle_data=handle_data, ) np.testing.assert_array_equal(output['incr'].values, range(1, len(output) + 1)) np.testing.assert_array_equal(output['name'].values, range(1, len(output) + 1)) np.testing.assert_array_equal(output['name2'].values, [2] * len(output)) np.testing.assert_array_equal(output['name3'].values, range(1, len(output) + 1)) class TestMiscellaneousAPI(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='UTC') END_DATE = pd.Timestamp('2006-01-05', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'minute' sids = 1, 2 # FIXME: Pass a benchmark source instead of this. BENCHMARK_SID = None @classmethod def make_equity_info(cls): return pd.concat(( make_simple_equity_info(cls.sids, '2002-02-1', '2007-01-01'), pd.DataFrame.from_dict( {3: {'symbol': 'PLAY', 'start_date': '2002-01-01', 'end_date': '2004-01-01', 'exchange': 'TEST'}, 4: {'symbol': 'PLAY', 'start_date': '2005-01-01', 'end_date': '2006-01-01', 'exchange': 'TEST'}}, orient='index', ), )) @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 5: { 'symbol': 'CLG06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2005-12-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-01-20', tz='UTC'), 'exchange': 'TEST' }, 6: { 'root_symbol': 'CL', 'symbol': 'CLK06', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-03-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-04-20', tz='UTC'), 'exchange': 'TEST', }, 7: { 'symbol': 'CLQ06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-06-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-07-20', tz='UTC'), 'exchange': 'TEST', }, 8: { 'symbol': 'CLX06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2006-02-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-09-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-10-20', tz='UTC'), 'exchange': 'TEST', } }, orient='index', ) def test_cancel_policy_outside_init(self): code = """ from zipline.api import cancel_policy, set_cancel_policy def initialize(algo): pass def handle_data(algo, data): set_cancel_policy(cancel_policy.NeverCancel()) """ algo = self.make_algo(script=code) with self.assertRaises(SetCancelPolicyPostInit): algo.run() def test_cancel_policy_invalid_param(self): code = """ from zipline.api import set_cancel_policy def initialize(algo): set_cancel_policy("foo") def handle_data(algo, data): pass """ algo = self.make_algo(script=code) with self.assertRaises(UnsupportedCancelPolicy): algo.run() def test_zipline_api_resolves_dynamically(self): # Make a dummy algo. algo = self.make_algo( initialize=lambda context: None, handle_data=lambda context, data: None, ) # Verify that api methods get resolved dynamically by patching them out # and then calling them for method in algo.all_api_methods(): name = method.__name__ sentinel = object() def fake_method(*args, **kwargs): return sentinel setattr(algo, name, fake_method) with ZiplineAPI(algo): self.assertIs(sentinel, getattr(zipline.api, name)()) def test_sid_datetime(self): algo_text = """ from zipline.api import sid, get_datetime def initialize(context): pass def handle_data(context, data): aapl_dt = data.current(sid(1), "last_traded") assert_equal(aapl_dt, get_datetime()) """ self.run_algorithm( script=algo_text, namespace={'assert_equal': self.assertEqual}, ) def test_datetime_bad_params(self): algo_text = """ from zipline.api import get_datetime from pytz import timezone def initialize(context): pass def handle_data(context, data): get_datetime(timezone) """ algo = self.make_algo(script=algo_text) with self.assertRaises(TypeError): algo.run() @parameterized.expand([ (-1000, 'invalid_base'), (0, 'invalid_base'), ]) def test_invalid_capital_base(self, cap_base, name): """ Test that the appropriate error is being raised and orders aren't filled for algos with capital base <= 0 """ algo_text = """ def initialize(context): pass def handle_data(context, data): order(sid(24), 1000) """ sim_params = SimulationParameters( start_session=pd.Timestamp("2006-01-04", tz='UTC'), end_session=pd.Timestamp("2006-01-06", tz='UTC'), capital_base=cap_base, data_frequency="minute", trading_calendar=self.trading_calendar ) with self.assertRaises(ZeroCapitalError) as exc: # make_algo will trace to TradingAlgorithm, # where the exception will be raised self.make_algo(script=algo_text, sim_params=sim_params) # Make sure the correct error was raised error = exc.exception self.assertEqual(str(error), 'initial capital base must be greater than zero') def test_get_environment(self): expected_env = { 'arena': 'backtest', 'data_frequency': 'minute', 'start': pd.Timestamp('2006-01-04 14:31:00+0000', tz='utc'), 'end': pd.Timestamp('2006-01-05 21:00:00+0000', tz='utc'), 'capital_base': 100000.0, 'platform': 'zipline' } def initialize(algo): self.assertEqual('zipline', algo.get_environment()) self.assertEqual(expected_env, algo.get_environment('*')) def handle_data(algo, data): pass self.run_algorithm(initialize=initialize, handle_data=handle_data) def test_get_open_orders(self): def initialize(algo): algo.minute = 0 def handle_data(algo, data): if algo.minute == 0: # Should be filled by the next minute algo.order(algo.sid(1), 1) # Won't be filled because the price is too low. algo.order( algo.sid(2), 1, style=LimitOrder(0.01, asset=algo.sid(2)) ) algo.order( algo.sid(2), 1, style=LimitOrder(0.01, asset=algo.sid(2)) ) algo.order( algo.sid(2), 1, style=LimitOrder(0.01, asset=algo.sid(2)) ) all_orders = algo.get_open_orders() self.assertEqual(list(all_orders.keys()), [1, 2]) self.assertEqual(all_orders[1], algo.get_open_orders(1)) self.assertEqual(len(all_orders[1]), 1) self.assertEqual(all_orders[2], algo.get_open_orders(2)) self.assertEqual(len(all_orders[2]), 3) if algo.minute == 1: # First order should have filled. # Second order should still be open. all_orders = algo.get_open_orders() self.assertEqual(list(all_orders.keys()), [2]) self.assertEqual([], algo.get_open_orders(1)) orders_2 = algo.get_open_orders(2) self.assertEqual(all_orders[2], orders_2) self.assertEqual(len(all_orders[2]), 3) for order_ in orders_2: algo.cancel_order(order_) all_orders = algo.get_open_orders() self.assertEqual(all_orders, {}) algo.minute += 1 self.run_algorithm(initialize=initialize, handle_data=handle_data) def test_schedule_function_custom_cal(self): # run a simulation on the CMES cal, and schedule a function # using the NYSE cal algotext = """ from zipline.api import ( schedule_function, get_datetime, time_rules, date_rules, calendars, ) def initialize(context): schedule_function( func=log_nyse_open, date_rule=date_rules.every_day(), time_rule=time_rules.market_open(), calendar=calendars.CN_EQUITIES, ) schedule_function( func=log_nyse_close, date_rule=date_rules.every_day(), time_rule=time_rules.market_close(), calendar=calendars.CN_EQUITIES, ) context.nyse_opens = [] context.nyse_closes = [] def log_nyse_open(context, data): context.nyse_opens.append(get_datetime()) def log_nyse_close(context, data): context.nyse_closes.append(get_datetime()) """ algo = self.make_algo( script=algotext, sim_params=self.make_simparams( trading_calendar=get_calendar("XSHG"), ) ) algo.run() nyse = get_calendar("XSHG") for minute in algo.nyse_opens: # each minute should be a nyse session open session_label = nyse.minute_to_session_label(minute) session_open = nyse.session_open(session_label) self.assertEqual(session_open, minute) for minute in algo.nyse_closes: # each minute should be a minute before a nyse session close session_label = nyse.minute_to_session_label(minute) session_close = nyse.session_close(session_label) self.assertEqual(session_close - timedelta(minutes=1), minute) # Test that passing an invalid calendar parameter raises an error. erroring_algotext = dedent( """ from zipline.api import schedule_function from trading_calendars import get_calendar def initialize(context): schedule_function(func=my_func, calendar=get_calendar('XNYS')) def my_func(context, data): pass """ ) algo = self.make_algo( script=erroring_algotext, sim_params=self.make_simparams( trading_calendar=get_calendar("CMES"), ), ) with self.assertRaises(ScheduleFunctionInvalidCalendar): algo.run() def test_schedule_function(self): us_eastern = pytz.timezone('US/Eastern') def incrementer(algo, data): algo.func_called += 1 curdt = algo.get_datetime().tz_convert(pytz.utc) self.assertEqual( curdt, us_eastern.localize( datetime.datetime.combine( curdt.date(), datetime.time(9, 31) ), ), ) def initialize(algo): algo.func_called = 0 algo.days = 1 algo.date = None algo.schedule_function( func=incrementer, date_rule=date_rules.every_day(), time_rule=time_rules.market_open(), ) def handle_data(algo, data): if not algo.date: algo.date = algo.get_datetime().date() if algo.date < algo.get_datetime().date(): algo.days += 1 algo.date = algo.get_datetime().date() algo = self.make_algo( initialize=initialize, handle_data=handle_data, ) algo.run() self.assertEqual(algo.func_called, algo.days) def test_event_context(self): expected_data = [] collected_data_pre = [] collected_data_post = [] function_stack = [] def pre(data): function_stack.append(pre) collected_data_pre.append(data) def post(data): function_stack.append(post) collected_data_post.append(data) def initialize(context): context.add_event(Always(), f) context.add_event(Always(), g) def handle_data(context, data): function_stack.append(handle_data) expected_data.append(data) def f(context, data): function_stack.append(f) def g(context, data): function_stack.append(g) algo = self.make_algo( initialize=initialize, handle_data=handle_data, create_event_context=CallbackManager(pre, post), ) algo.run() self.assertEqual(len(expected_data), 480) self.assertEqual(collected_data_pre, expected_data) self.assertEqual(collected_data_post, expected_data) self.assertEqual( len(function_stack), 2400, 'Incorrect number of functions called: %s != 2400' % len(function_stack), ) expected_functions = [pre, handle_data, f, g, post] * 60030 for n, (f, g) in enumerate(zip(function_stack, expected_functions)): self.assertEqual( f, g, 'function at position %d was incorrect, expected %s but got %s' % (n, g.__name__, f.__name__), ) @parameterized.expand([ ('daily',), ('minute'), ]) def test_schedule_function_rule_creation(self, mode): def nop(*args, **kwargs): return None self.sim_params.data_frequency = mode algo = self.make_algo( initialize=nop, handle_data=nop, sim_params=self.sim_params, ) # Schedule something for NOT Always. # Compose two rules to ensure calendar is set properly. algo.schedule_function(nop, time_rule=Never() & Always()) event_rule = algo.event_manager._events[1].rule self.assertIsInstance(event_rule, OncePerDay) self.assertEqual(event_rule.cal, algo.trading_calendar) inner_rule = event_rule.rule self.assertIsInstance(inner_rule, ComposedRule) self.assertEqual(inner_rule.cal, algo.trading_calendar) first = inner_rule.first second = inner_rule.second composer = inner_rule.composer self.assertIsInstance(first, Always) self.assertEqual(first.cal, algo.trading_calendar) self.assertEqual(second.cal, algo.trading_calendar) if mode == 'daily': self.assertIsInstance(second, Always) else: self.assertIsInstance(second, ComposedRule) self.assertIsInstance(second.first, Never) self.assertEqual(second.first.cal, algo.trading_calendar) self.assertIsInstance(second.second, Always) self.assertEqual(second.second.cal, algo.trading_calendar) self.assertIs(composer, ComposedRule.lazy_and) def test_asset_lookup(self): algo = self.make_algo() # this date doesn't matter start_session = pd.Timestamp("2000-01-01", tz="UTC") # Test before either PLAY existed algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2001-12-01', tz='UTC') ) with self.assertRaises(SymbolNotFound): algo.symbol('PLAY') with self.assertRaises(SymbolNotFound): algo.symbols('PLAY') # Test when first PLAY exists algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2002-12-01', tz='UTC') ) list_result = algo.symbols('PLAY') self.assertEqual(3, list_result[0]) # Test after first PLAY ends algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2004-12-01', tz='UTC') ) self.assertEqual(3, algo.symbol('PLAY')) # Test after second PLAY begins algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2005-12-01', tz='UTC') ) self.assertEqual(4, algo.symbol('PLAY')) # Test after second PLAY ends algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2006-12-01', tz='UTC') ) self.assertEqual(4, algo.symbol('PLAY')) list_result = algo.symbols('PLAY') self.assertEqual(4, list_result[0]) # Test lookup SID self.assertIsInstance(algo.sid(3), Equity) self.assertIsInstance(algo.sid(4), Equity) # Supplying a non-string argument to symbol() # should result in a TypeError. with self.assertRaises(TypeError): algo.symbol(1) with self.assertRaises(TypeError): algo.symbol((1,)) with self.assertRaises(TypeError): algo.symbol({1}) with self.assertRaises(TypeError): algo.symbol([1]) with self.assertRaises(TypeError): algo.symbol({'foo': 'bar'}) def test_future_symbol(self): """ Tests the future_symbol API function. """ algo = self.make_algo() algo.datetime = pd.Timestamp('2006-12-01', tz='UTC') # Check that we get the correct fields for the CLG06 symbol cl = algo.future_symbol('CLG06') self.assertEqual(cl.sid, 5) self.assertEqual(cl.symbol, 'CLG06') self.assertEqual(cl.root_symbol, 'CL') self.assertEqual(cl.start_date, pd.Timestamp('2005-12-01', tz='UTC')) self.assertEqual(cl.notice_date, pd.Timestamp('2005-12-20', tz='UTC')) self.assertEqual(cl.expiration_date, pd.Timestamp('2006-01-20', tz='UTC')) with self.assertRaises(SymbolNotFound): algo.future_symbol('') with self.assertRaises(SymbolNotFound): algo.future_symbol('PLAY') with self.assertRaises(SymbolNotFound): algo.future_symbol('FOOBAR') # Supplying a non-string argument to future_symbol() # should result in a TypeError. with self.assertRaises(TypeError): algo.future_symbol(1) with self.assertRaises(TypeError): algo.future_symbol((1,)) with self.assertRaises(TypeError): algo.future_symbol({1}) with self.assertRaises(TypeError): algo.future_symbol([1]) with self.assertRaises(TypeError): algo.future_symbol({'foo': 'bar'}) class TestSetSymbolLookupDate(zf.WithMakeAlgo, zf.ZiplineTestCase): # January 2006 # Su Mo Tu We Th Fr Sa # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 # 15 16 17 18 19 20 21 # 22 23 24 25 26 27 28 # 29 30 31 START_DATE = pd.Timestamp('2006-01-04', tz='UTC') END_DATE = pd.Timestamp('2006-01-06', tz='UTC') SIM_PARAMS_START_DATE = pd.Timestamp('2006-01-05', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False BENCHMARK_SID = 3 @classmethod def make_equity_info(cls): dates = pd.date_range(cls.START_DATE, cls.END_DATE) assert len(dates) == 4, "Expected four dates." # Two assets with the same ticker, ending on days[1] and days[3], plus # a benchmark that spans the whole period. cls.sids = [1, 2, 3] cls.asset_starts = [dates[0], dates[2]] cls.asset_ends = [dates[1], dates[3]] return pd.DataFrame.from_records([ {'symbol': 'DUP', 'start_date': cls.asset_starts[0], 'end_date': cls.asset_ends[0], 'exchange': 'TEST', 'asset_name': 'FIRST'}, {'symbol': 'DUP', 'start_date': cls.asset_starts[1], 'end_date': cls.asset_ends[1], 'exchange': 'TEST', 'asset_name': 'SECOND'}, {'symbol': 'BENCH', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE, 'exchange': 'TEST', 'asset_name': 'BENCHMARK'}, ], index=cls.sids) def test_set_symbol_lookup_date(self): """ Test the set_symbol_lookup_date API method. """ set_symbol_lookup_date = zipline.api.set_symbol_lookup_date def initialize(context): set_symbol_lookup_date(self.asset_ends[0]) self.assertEqual(zipline.api.symbol('DUP').sid, self.sids[0]) set_symbol_lookup_date(self.asset_ends[1]) self.assertEqual(zipline.api.symbol('DUP').sid, self.sids[1]) with self.assertRaises(UnsupportedDatetimeFormat): set_symbol_lookup_date('foobar') self.run_algorithm(initialize=initialize) class TestPositions(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2020-09-01', tz='utc') END_DATE = pd.Timestamp('2020-09-04', tz='utc') SIM_PARAMS_CAPITAL_BASE = 1000 ASSET_FINDER_EQUITY_SIDS = (1, 133) SIM_PARAMS_DATA_FREQUENCY = 'daily' @classmethod def make_equity_daily_bar_data(cls, country_code, sids): frame = pd.DataFrame( { 'open': [90, 95, 100, 105], 'high': [90, 95, 100, 105], 'low': [90, 95, 100, 105], 'close': [90, 95, 100, 105], 'volume': 100, }, index=cls.equity_daily_bar_days, ) return ((sid, frame) for sid in sids) @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 1000: { 'symbol': 'CLF06', 'root_symbol': 'CL', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE, 'auto_close_date': cls.END_DATE + cls.trading_calendar.day, 'exchange': 'CMES', 'multiplier': 100, }, }, orient='index', ) @classmethod def make_future_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Future] sids = cls.asset_finder.futures_sids minutes = trading_calendar.minutes_for_sessions_in_range( cls.future_minute_bar_days[0], cls.future_minute_bar_days[-1], ) frame = pd.DataFrame( { 'open': 2.0, 'high': 2.0, 'low': 2.0, 'close': 2.0, 'volume': 100, }, index=minutes, ) return ((sid, frame) for sid in sids) def test_portfolio_exited_position(self): # This test ensures ensures that 'phantom' positions do not appear in # context.portfolio.positions in the case that a position has been # entered and fully exited. def initialize(context, sids): context.ordered = False context.exited = False context.sids = sids def handle_data(context, data): if not context.ordered: for s in context.sids: context.order(context.sid(s), 1) context.ordered = True if not context.exited: amounts = [pos.amount for pos in itervalues(context.portfolio.positions)] if ( len(amounts) > 0 and all([(amount == 1) for amount in amounts]) ): for stock in context.portfolio.positions: context.order(context.sid(stock), -1) context.exited = True # Should be 0 when all positions are exited. context.record(num_positions=len(context.portfolio.positions)) result = self.run_algorithm( initialize=initialize, handle_data=handle_data, sids=self.ASSET_FINDER_EQUITY_SIDS, ) expected_position_count = [ 0, # Before entering the first position 2, # After entering, exiting on this date 0, # After exiting 0, ] for i, expected in enumerate(expected_position_count): self.assertEqual(result.iloc[i,:]['num_positions'], expected) def test_noop_orders(self): asset = self.asset_finder.retrieve_asset(1) # Algorithm that tries to buy with extremely low stops/limits and tries # to sell with extremely high versions of same. Should not end up with # any positions for reasonable data. def handle_data(algo, data): ######## # Buys # ######## # Buy with low limit, shouldn't trigger. algo.order(asset, 100, limit_price=1) # But with high stop, shouldn't trigger algo.order(asset, 100, stop_price=10000000) # Buy with high limit (should trigger) but also high stop (should # prevent trigger). algo.order(asset, 100, limit_price=10000000, stop_price=10000000) # Buy with low stop (should trigger), but also low limit (should # prevent trigger). algo.order(asset, 100, limit_price=1, stop_price=1) ######### # Sells # ######### # Sell with high limit, shouldn't trigger. algo.order(asset, -100, limit_price=1000000) # Sell with low stop, shouldn't trigger. algo.order(asset, -100, stop_price=1) # Sell with low limit (should trigger), but also high stop (should # prevent trigger). algo.order(asset, -100, limit_price=1000000, stop_price=1000000) # Sell with low limit (should trigger), but also low stop (should # prevent trigger). algo.order(asset, -100, limit_price=1, stop_price=1) ################### # Rounding Checks # ################### algo.order(asset, 100, limit_price=.00000001) algo.order(asset, -100, stop_price=.00000001) daily_stats = self.run_algorithm(handle_data=handle_data) # Verify that positions are empty for all dates. empty_positions = daily_stats.positions.map(lambda x: len(x) == 0) self.assertTrue(empty_positions.all()) def test_position_weights(self): sids = (1, 133, 1000) equity_1, equity_133, future_1000 = \ self.asset_finder.retrieve_all(sids) def initialize(algo, sids_and_amounts, *args, **kwargs): algo.ordered = False algo.sids_and_amounts = sids_and_amounts algo.set_commission( us_equities=PerTrade(0), us_futures=PerTrade(0), ) algo.set_slippage( us_equities=FixedSlippage(0), us_futures=FixedSlippage(0), ) def handle_data(algo, data): if not algo.ordered: for s, amount in algo.sids_and_amounts: algo.order(algo.sid(s), amount) algo.ordered = True algo.record( position_weights=algo.portfolio.current_portfolio_weights, ) daily_stats = self.run_algorithm( sids_and_amounts=zip(sids, [2, -1, 1]), initialize=initialize, handle_data=handle_data, ) expected_position_weights = [ # No positions held on the first day. pd.Series({}), # Each equity's position value is its price times the number of # shares held. In this example, we hold a long position in 2 shares # of equity_1 so its weight is (95.0 * 2) = 190.0 divided by the # total portfolio value. The total portfolio value is the sum of # cash ($905.00) plus the value of all equity positions. # # For a futures contract, its weight is the unit price times number # of shares held times the multiplier. For future_1000, this is # (2.0 * 1 * 100) = 200.0 divided by total portfolio value. pd.Series({ equity_1: 190.0 / (190.0 - 95.0 + 905.0), equity_133: -95.0 / (190.0 - 95.0 + 905.0), future_1000: 200.0 / (190.0 - 95.0 + 905.0), }), pd.Series({ equity_1: 200.0 / (200.0 - 100.0 + 905.0), equity_133: -100.0 / (200.0 - 100.0 + 905.0), future_1000: 200.0 / (200.0 - 100.0 + 905.0), }), pd.Series({ equity_1: 210.0 / (210.0 - 105.0 + 905.0), equity_133: -105.0 / (210.0 - 105.0 + 905.0), future_1000: 200.0 / (210.0 - 105.0 + 905.0), }), ] for i, expected in enumerate(expected_position_weights): assert_equal(daily_stats.iloc[i]['position_weights'], expected) class TestBeforeTradingStart(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-06', tz='utc') END_DATE = pd.Timestamp('2016-01-07', tz='utc') SIM_PARAMS_CAPITAL_BASE = 10000 SIM_PARAMS_DATA_FREQUENCY = 'minute' EQUITY_DAILY_BAR_LOOKBACK_DAYS = EQUITY_MINUTE_BAR_LOOKBACK_DAYS = 1 DATA_PORTAL_FIRST_TRADING_DAY = pd.Timestamp("2016-01-05", tz='UTC') EQUITY_MINUTE_BAR_START_DATE = pd.Timestamp("2016-01-05", tz='UTC') FUTURE_MINUTE_BAR_START_DATE = pd.Timestamp("2016-01-05", tz='UTC') data_start = ASSET_FINDER_EQUITY_START_DATE = pd.Timestamp( '2016-01-05', tz='utc', ) SPLIT_ASSET_SID = 3 ASSET_FINDER_EQUITY_SIDS = 1, 2, SPLIT_ASSET_SID @classmethod def make_equity_minute_bar_data(cls): asset_minutes = \ cls.trading_calendar.minutes_in_range( cls.data_start, cls.END_DATE, ) minutes_count = len(asset_minutes) minutes_arr = np.arange(minutes_count) + 1 split_data = pd.DataFrame( { 'open': minutes_arr + 1, 'high': minutes_arr + 2, 'low': minutes_arr - 1, 'close': minutes_arr, 'volume': 100 * minutes_arr, }, index=asset_minutes, ) split_data.iloc[480:] = split_data.iloc[480:] / 2.0 for sid in (1, 8554): yield sid, create_minute_df_for_asset( cls.trading_calendar, cls.data_start, cls.END_DATE, ) yield 2, create_minute_df_for_asset( cls.trading_calendar, cls.data_start, cls.END_DATE, 50, ) yield cls.SPLIT_ASSET_SID, split_data @classmethod def make_splits_data(cls): return pd.DataFrame.from_records([ { 'effective_date': str_to_seconds('2016-01-07'), 'ratio': 0.5, 'sid': cls.SPLIT_ASSET_SID, } ]) @classmethod def make_equity_daily_bar_data(cls, country_code, sids): for sid in sids: yield sid, create_daily_df_for_asset( cls.trading_calendar, cls.data_start, cls.END_DATE, ) def test_data_in_bts_minute(self): algo_code = dedent(""" from zipline.api import record, sid def initialize(context): context.history_values = [] def before_trading_start(context, data): record(the_price1=data.current(sid(1), "price")) record(the_high1=data.current(sid(1), "high")) record(the_price2=data.current(sid(2), "price")) record(the_high2=data.current(sid(2), "high")) context.history_values.append(data.history( [sid(1), sid(2)], ["price", "high"], 60, "1m" )) def handle_data(context, data): pass """) algo = self.make_algo(script=algo_code) results = algo.run() # fetching data at midnight gets us the previous market minute's data self.assertEqual(240, results.iloc[0].the_price1) self.assertEqual(242, results.iloc[0].the_high1) # make sure that price is ffilled, but not other fields self.assertEqual(350, results.iloc[0].the_price2) self.assertTrue(np.isnan(results.iloc[0].the_high2)) # 10-minute history # asset1 day1 price should be 331-390 np.testing.assert_array_equal( range(331, 391), algo.history_values[0]["price"][1] ) # asset1 day1 high should be 333-392 np.testing.assert_array_equal( range(333, 393), algo.history_values[0]["high"][1] ) # asset2 day1 price should be 19 300s, then 40 350s np.testing.assert_array_equal( [300] * 19, algo.history_values[0]["price"][2][0:19] ) np.testing.assert_array_equal( [350] * 40, algo.history_values[0]["price"][2][20:] ) # asset2 day1 high should be all NaNs except for the 19th item # = 2016-01-05 20:20:00+00:00 np.testing.assert_array_equal( np.full(19, np.nan), algo.history_values[0]["high"][2][0:19] ) self.assertEqual(352, algo.history_values[0]["high"][2][19]) np.testing.assert_array_equal( np.full(40, np.nan), algo.history_values[0]["high"][2][20:] ) def test_data_in_bts_daily(self): algo_code = dedent(""" from zipline.api import record, sid def initialize(context): context.history_values = [] def before_trading_start(context, data): record(the_price1=data.current(sid(1), "price")) record(the_high1=data.current(sid(1), "high")) record(the_price2=data.current(sid(2), "price")) record(the_high2=data.current(sid(2), "high")) context.history_values.append(data.history( [sid(1), sid(2)], ["price", "high"], 1, "1d", )) def handle_data(context, data): pass """) algo = self.make_algo(script=algo_code) results = algo.run() self.assertEqual(392, results.the_high1[0]) self.assertEqual(390, results.the_price1[0]) # nan because asset2 only trades every 50 minutes self.assertTrue(np.isnan(results.the_high2[0])) self.assertTrue(350, results.the_price2[0]) self.assertEqual(392, algo.history_values[0]["high"][1][0]) self.assertEqual(390, algo.history_values[0]["price"][1][0]) self.assertEqual(352, algo.history_values[0]["high"][2][0]) self.assertEqual(350, algo.history_values[0]["price"][2][0]) def test_portfolio_bts(self): algo_code = dedent(""" from zipline.api import order, sid, record def initialize(context): context.ordered = False context.hd_portfolio = context.portfolio def before_trading_start(context, data): bts_portfolio = context.portfolio # Assert that the portfolio in BTS is the same as the last # portfolio in handle_data assert (context.hd_portfolio == bts_portfolio) record(pos_value=bts_portfolio.positions_value) def handle_data(context, data): if not context.ordered: order(sid(1), 1) context.ordered = True context.hd_portfolio = context.portfolio """) algo = self.make_algo(script=algo_code) results = algo.run() # Asset starts with price 1 on 1/05 and increases by 1 every minute. # Simulation starts on 1/06, where the price in bts is 390, and # positions_value is 0. On 1/07, price is 780, and after buying one # share on the first bar of 1/06, positions_value is 780 self.assertEqual(results.pos_value.iloc[0], 0) self.assertEqual(results.pos_value.iloc[1], 780) def test_account_bts(self): algo_code = dedent(""" from zipline.api import order, sid, record, set_slippage, slippage def initialize(context): context.ordered = False context.hd_account = context.account set_slippage(slippage.VolumeShareSlippage()) def before_trading_start(context, data): bts_account = context.account # Assert that the account in BTS is the same as the last account # in handle_data assert (context.hd_account == bts_account) record(port_value=context.account.equity_with_loan) def handle_data(context, data): if not context.ordered: order(sid(1), 1) context.ordered = True context.hd_account = context.account """) algo = self.make_algo(script=algo_code) results = algo.run() # Starting portfolio value is 10000. Order for the asset fills on the # second bar of 1/06, where the price is 391, and costs the default # commission of 0. On 1/07, the price is 780, and the increase in # portfolio value is 780-392-0 self.assertEqual(results.port_value.iloc[0], 10000) self.assertAlmostEqual(results.port_value.iloc[1], 10000 + 780 - 392 - 0, places=2) def test_portfolio_bts_with_overnight_split(self): algo_code = dedent(""" from zipline.api import order, sid, record def initialize(context): context.ordered = False context.hd_portfolio = context.portfolio def before_trading_start(context, data): bts_portfolio = context.portfolio # Assert that the portfolio in BTS is the same as the last # portfolio in handle_data, except for the positions for k in bts_portfolio.__dict__: if k != 'positions': assert (context.hd_portfolio.__dict__[k] == bts_portfolio.__dict__[k]) record(pos_value=bts_portfolio.positions_value) record(pos_amount=bts_portfolio.positions[sid(3)].amount) record( last_sale_price=bts_portfolio.positions[sid(3)].last_sale_price ) def handle_data(context, data): if not context.ordered: order(sid(3), 1) context.ordered = True context.hd_portfolio = context.portfolio """) results = self.run_algorithm(script=algo_code) # On 1/07, positions value should by 780, same as without split self.assertEqual(results.pos_value.iloc[0], 0) self.assertEqual(results.pos_value.iloc[1], 780) # On 1/07, after applying the split, 1 share becomes 2 self.assertEqual(results.pos_amount.iloc[0], 0) self.assertEqual(results.pos_amount.iloc[1], 2) # On 1/07, after applying the split, last sale price is halved self.assertEqual(results.last_sale_price.iloc[0], 0) self.assertEqual(results.last_sale_price.iloc[1], 390) def test_account_bts_with_overnight_split(self): algo_code = dedent(""" from zipline.api import order, sid, record, set_slippage, slippage def initialize(context): context.ordered = False context.hd_account = context.account set_slippage(slippage.VolumeShareSlippage()) def before_trading_start(context, data): bts_account = context.account # Assert that the account in BTS is the same as the last account # in handle_data assert (context.hd_account == bts_account) record(port_value=bts_account.equity_with_loan) def handle_data(context, data): if not context.ordered: order(sid(1), 1) context.ordered = True context.hd_account = context.account """) results = self.run_algorithm(script=algo_code) # On 1/07, portfolio value is the same as without split self.assertEqual(results.port_value.iloc[0], 10000) self.assertAlmostEqual(results.port_value.iloc[1], 10000 + 780 - 392 - 0, places=2) class TestAlgoScript(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='utc') END_DATE = pd.Timestamp('2006-12-31', tz='utc') SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False EQUITY_DAILY_BAR_LOOKBACK_DAYS = 5 # max history window length STRING_TYPE_NAMES = [s.__name__ for s in string_types] STRING_TYPE_NAMES_STRING = ', '.join(STRING_TYPE_NAMES) ASSET_TYPE_NAME = Asset.__name__ CONTINUOUS_FUTURE_NAME = ContinuousFuture.__name__ ASSET_OR_STRING_TYPE_NAMES = ', '.join([ASSET_TYPE_NAME] + STRING_TYPE_NAMES) ASSET_OR_STRING_OR_CF_TYPE_NAMES = ', '.join([ASSET_TYPE_NAME, CONTINUOUS_FUTURE_NAME] + STRING_TYPE_NAMES) ARG_TYPE_TEST_CASES = ( ('history__assets', (bad_type_history_assets, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('history__fields', (bad_type_history_fields, STRING_TYPE_NAMES_STRING, True)), ('history__bar_count', (bad_type_history_bar_count, 'int', False)), ('history__frequency', (bad_type_history_frequency, STRING_TYPE_NAMES_STRING, False)), ('current__assets', (bad_type_current_assets, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('current__fields', (bad_type_current_fields, STRING_TYPE_NAMES_STRING, True)), ('is_stale__assets', (bad_type_is_stale_assets, 'Asset', True)), ('can_trade__assets', (bad_type_can_trade_assets, 'Asset', True)), ('history_kwarg__assets', (bad_type_history_assets_kwarg, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('history_kwarg_bad_list__assets', (bad_type_history_assets_kwarg_list, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('history_kwarg__fields', (bad_type_history_fields_kwarg, STRING_TYPE_NAMES_STRING, True)), ('history_kwarg__bar_count', (bad_type_history_bar_count_kwarg, 'int', False)), ('history_kwarg__frequency', (bad_type_history_frequency_kwarg, STRING_TYPE_NAMES_STRING, False)), ('current_kwarg__assets', (bad_type_current_assets_kwarg, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('current_kwarg__fields', (bad_type_current_fields_kwarg, STRING_TYPE_NAMES_STRING, True)), ) sids = 0, 1, 3, 133 # FIXME: Pass a benchmark explicitly here. BENCHMARK_SID = None @classmethod def make_equity_info(cls): register_calendar("TEST", get_calendar("NYSE"), force=True) data = make_simple_equity_info( cls.sids, cls.START_DATE, cls.END_DATE, ) data.loc[3, 'symbol'] = 'TEST' return data @classmethod def make_equity_daily_bar_data(cls, country_code, sids): cal = cls.trading_calendars[Equity] sessions = cal.sessions_in_range(cls.START_DATE, cls.END_DATE) frame = pd.DataFrame({ 'close': 10., 'high': 10.5, 'low': 9.5, 'open': 10., 'volume': 100, }, index=sessions) for sid in sids: yield sid, frame def test_noop(self): self.run_algorithm( initialize=initialize_noop, handle_data=handle_data_noop, ) def test_noop_string(self): self.run_algorithm(script=noop_algo) def test_no_handle_data(self): self.run_algorithm(script=no_handle_data) def test_api_calls(self): self.run_algorithm( initialize=initialize_api, handle_data=handle_data_api, ) def test_api_calls_string(self): self.run_algorithm(script=api_algo) def test_api_get_environment(self): platform = 'zipline' algo = self.make_algo( script=api_get_environment_algo, platform=platform, ) algo.run() self.assertEqual(algo.environment, platform) def test_api_symbol(self): self.run_algorithm(script=api_symbol_algo) def test_fixed_slippage(self): # verify order -> transaction -> portfolio position. # -------------- test_algo = self.make_algo( script=""" from zipline.api import (slippage, commission, set_slippage, set_commission, order, record, sid) def initialize(context): model = slippage.FixedSlippage(spread=0.10) set_slippage(model) set_commission(commission.PerTrade(100.00)) context.count = 1 context.incr = 0 def handle_data(context, data): if context.incr < context.count: order(sid(0), -1000) record(price=data.current(sid(0), "price")) context.incr += 1""", ) results = test_algo.run() # flatten the list of txns all_txns = [val for sublist in results["transactions"].tolist() for val in sublist] self.assertEqual(len(all_txns), 1) txn = all_txns[0] expected_spread = 0.05 expected_price = test_algo.recorded_vars["price"] - expected_spread self.assertEqual(expected_price, txn['price']) # make sure that the $100 commission was applied to our cash # the txn was for -1000 shares at 9.95, means -9.95k. our capital_used # for that day was therefore 9.95k, but after the $100 commission, # it should be 9.85k. self.assertEqual(9850, results.capital_used[1]) self.assertEqual(100, results["orders"].iloc[1][0]["commission"]) @parameterized.expand( [ ('no_minimum_commission', 0,), ('default_minimum_commission', 0,), ('alternate_minimum_commission', 2,), ] ) def test_volshare_slippage(self, name, minimum_commission): tempdir = TempDirectory() try: if name == "default_minimum_commission": commission_line = "set_commission(commission.PerShare(0.02))" else: commission_line = \ "set_commission(commission.PerShare(0.02, " \ "min_trade_cost={0}))".format(minimum_commission) # verify order -> transaction -> portfolio position. # -------------- # XXX: This is the last remaining consumer of # create_daily_trade_source. trades = factory.create_daily_trade_source( [0], self.sim_params, self.asset_finder, self.trading_calendar ) data_portal = create_data_portal_from_trade_history( self.asset_finder, self.trading_calendar, tempdir, self.sim_params, {0: trades} ) test_algo = self.make_algo( data_portal=data_portal, script=""" from zipline.api import * def initialize(context): model = slippage.VolumeShareSlippage( volume_limit=.3, price_impact=0.05 ) set_slippage(model) {0} context.count = 2 context.incr = 0 def handle_data(context, data): if context.incr < context.count: # order small lots to be sure the # order will fill in a single transaction order(sid(0), 5000) record(price=data.current(sid(0), "price")) record(volume=data.current(sid(0), "volume")) record(incr=context.incr) context.incr += 1 """.format(commission_line), ) results = test_algo.run() all_txns = [ val for sublist in results["transactions"].tolist() for val in sublist] self.assertEqual(len(all_txns), 67) # all_orders are all the incremental versions of the # orders as each new fill comes in. all_orders = list(toolz.concat(results['orders'])) if minimum_commission == 0: # for each incremental version of each order, the commission # should be its filled amount * 0.02 for order_ in all_orders: self.assertAlmostEqual( order_["filled"] * 0.02, order_["commission"] ) else: # the commission should be at least the min_trade_cost for order_ in all_orders: if order_["filled"] > 0: self.assertAlmostEqual( max(order_["filled"] * 0.02, minimum_commission), order_["commission"] ) else: self.assertEqual(0, order_["commission"]) finally: tempdir.cleanup() def test_incorrectly_set_futures_slippage_model(self): code = dedent( """ from zipline.api import set_slippage, slippage class MySlippage(slippage.FutureSlippageModel): def process_order(self, data, order): return data.current(order.asset, 'price'), order.amount def initialize(context): set_slippage(MySlippage()) """ ) test_algo = self.make_algo(script=code) with self.assertRaises(IncompatibleSlippageModel): # Passing a futures slippage model as the first argument, which is # for setting equity models, should fail. test_algo.run() def test_algo_record_vars(self): test_algo = self.make_algo(script=record_variables) results = test_algo.run() for i in range(1, 252): self.assertEqual(results.iloc[i-1]["incr"], i) def test_algo_record_nan(self): test_algo = self.make_algo(script=record_float_magic % 'nan') results = test_algo.run() for i in range(1, 252): self.assertTrue(np.isnan(results.iloc[i-1]["data"])) def test_batch_market_order_matches_multiple_manual_orders(self): share_counts = pd.Series([50, 100]) multi_blotter = RecordBatchBlotter() multi_test_algo = self.make_algo( script=dedent("""\ from collections import OrderedDict from six import iteritems from zipline.api import sid, order def initialize(context): context.assets = [sid(0), sid(3)] context.placed = False def handle_data(context, data): if not context.placed: it = zip(context.assets, {share_counts}) for asset, shares in it: order(asset, shares) context.placed = True """).format(share_counts=list(share_counts)), blotter=multi_blotter, ) multi_stats = multi_test_algo.run() self.assertFalse(multi_blotter.order_batch_called) batch_blotter = RecordBatchBlotter() batch_test_algo = self.make_algo( script=dedent("""\ import pandas as pd from zipline.api import sid, batch_market_order def initialize(context): context.assets = [sid(0), sid(3)] context.placed = False def handle_data(context, data): if not context.placed: orders = batch_market_order(pd.Series( index=context.assets, data={share_counts} )) assert len(orders) == 2, \ "len(orders) was %s but expected 2" % len(orders) for o in orders: assert o is not None, "An order is None" context.placed = True """).format(share_counts=list(share_counts)), blotter=batch_blotter, ) batch_stats = batch_test_algo.run() self.assertTrue(batch_blotter.order_batch_called) for stats in (multi_stats, batch_stats): stats.orders = stats.orders.apply( lambda orders: [toolz.dissoc(o, 'id') for o in orders] ) stats.transactions = stats.transactions.apply( lambda txns: [toolz.dissoc(txn, 'order_id') for txn in txns] ) assert_equal(multi_stats, batch_stats) def test_batch_market_order_filters_null_orders(self): share_counts = [50, 0] batch_blotter = RecordBatchBlotter() batch_test_algo = self.make_algo( script=dedent("""\ import pandas as pd from zipline.api import sid, batch_market_order def initialize(context): context.assets = [sid(0), sid(3)] context.placed = False def handle_data(context, data): if not context.placed: orders = batch_market_order(pd.Series( index=context.assets, data={share_counts} )) assert len(orders) == 1, \ "len(orders) was %s but expected 1" % len(orders) for o in orders: assert o is not None, "An order is None" context.placed = True """).format(share_counts=share_counts), blotter=batch_blotter, ) batch_test_algo.run() self.assertTrue(batch_blotter.order_batch_called) def test_order_dead_asset(self): # after asset 0 is dead params = SimulationParameters( start_session=pd.Timestamp("2007-01-03", tz='UTC'), end_session=pd.Timestamp("2007-01-05", tz='UTC'), trading_calendar=self.trading_calendar, ) # order method shouldn't blow up self.run_algorithm( script=""" from zipline.api import order, sid def initialize(context): pass def handle_data(context, data): order(sid(0), 10) """, ) # order_value and order_percent should blow up for order_str in ["order_value", "order_percent"]: test_algo = self.make_algo( script=""" from zipline.api import order_percent, order_value, sid def initialize(context): pass def handle_data(context, data): {0}(sid(0), 10) """.format(order_str), sim_params=params, ) with self.assertRaises(CannotOrderDelistedAsset): test_algo.run() def test_portfolio_in_init(self): """ Test that accessing portfolio in init doesn't break. """ self.run_algorithm(script=access_portfolio_in_init) def test_account_in_init(self): """ Test that accessing account in init doesn't break. """ self.run_algorithm(script=access_account_in_init) def test_without_kwargs(self): """ Test that api methods on the data object can be called with positional arguments. """ params = SimulationParameters( start_session=pd.Timestamp("2006-01-10", tz='UTC'), end_session=pd.Timestamp("2006-01-11", tz='UTC'), trading_calendar=self.trading_calendar, ) self.run_algorithm(sim_params=params, script=call_without_kwargs) def test_good_kwargs(self): """ Test that api methods on the data object can be called with keyword arguments. """ params = SimulationParameters( start_session=pd.Timestamp("2006-01-10", tz='UTC'), end_session=pd.Timestamp("2006-01-11", tz='UTC'), trading_calendar=self.trading_calendar, ) self.run_algorithm(script=call_with_kwargs, sim_params=params) @parameterized.expand([('history', call_with_bad_kwargs_history), ('current', call_with_bad_kwargs_current)]) def test_bad_kwargs(self, name, algo_text): """ Test that api methods on the data object called with bad kwargs return a meaningful TypeError that we create, rather than an unhelpful cython error """ algo = self.make_algo(script=algo_text) with self.assertRaises(TypeError) as cm: algo.run() self.assertEqual("%s() got an unexpected keyword argument 'blahblah'" % name, cm.exception.args[0]) @parameterized.expand(ARG_TYPE_TEST_CASES) def test_arg_types(self, name, inputs): keyword = name.split('__')[1] algo = self.make_algo(script=inputs[0]) with self.assertRaises(TypeError) as cm: algo.run() expected = "Expected %s argument to be of type %s%s" % ( keyword, 'or iterable of type ' if inputs[2] else '', inputs[1] ) self.assertEqual(expected, cm.exception.args[0]) def test_empty_asset_list_to_history(self): params = SimulationParameters( start_session=pd.Timestamp("2006-01-10", tz='UTC'), end_session=pd.Timestamp("2006-01-11", tz='UTC'), trading_calendar=self.trading_calendar, ) self.run_algorithm( script=dedent(""" def initialize(context): pass def handle_data(context, data): data.history([], "price", 5, '1d') """), sim_params=params, ) @parameterized.expand( [('bad_kwargs', call_with_bad_kwargs_get_open_orders), ('good_kwargs', call_with_good_kwargs_get_open_orders), ('no_kwargs', call_with_no_kwargs_get_open_orders)] ) def test_get_open_orders_kwargs(self, name, script): algo = self.make_algo(script=script) if name == 'bad_kwargs': with self.assertRaises(TypeError) as cm: algo.run() self.assertEqual('Keyword argument `sid` is no longer ' 'supported for get_open_orders. Use `asset` ' 'instead.', cm.exception.args[0]) else: algo.run() def test_empty_positions(self): """ Test that when we try context.portfolio.positions[stock] on a stock for which we have no positions, we return a Position with values 0 (but more importantly, we don't crash) and don't save this Position to the user-facing dictionary PositionTracker._positions_store """ results = self.run_algorithm(script=empty_positions) num_positions = results.num_positions amounts = results.amounts self.assertTrue(all(num_positions == 0)) self.assertTrue(all(amounts == 0)) def test_schedule_function_time_rule_positionally_misplaced(self): """ Test that when a user specifies a time rule for the date_rule argument, but no rule in the time_rule argument (e.g. schedule_function(func, <time_rule>)), we assume that means assign a time rule but no date rule """ sim_params = factory.create_simulation_parameters( start=pd.Timestamp('2006-01-12', tz='UTC'), end=pd.Timestamp('2006-01-13', tz='UTC'), data_frequency='minute' ) algocode = dedent(""" from zipline.api import time_rules, schedule_function def do_at_open(context, data): context.done_at_open.append(context.get_datetime()) def do_at_close(context, data): context.done_at_close.append(context.get_datetime()) def initialize(context): context.done_at_open = [] context.done_at_close = [] schedule_function(do_at_open, time_rules.market_open()) schedule_function(do_at_close, time_rules.market_close()) def handle_data(algo, data): pass """) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("ignore", PerformanceWarning) algo = self.make_algo(script=algocode, sim_params=sim_params) algo.run() self.assertEqual(len(w), 2) for i, warning in enumerate(w): self.assertIsInstance(warning.message, UserWarning) self.assertEqual( warning.message.args[0], 'Got a time rule for the second positional argument ' 'date_rule. You should use keyword argument ' 'time_rule= when calling schedule_function without ' 'specifying a date_rule' ) # The warnings come from line 13 and 14 in the algocode self.assertEqual(warning.lineno, 13 + i) self.assertEqual( algo.done_at_open, [pd.Timestamp('2006-01-12 14:31:00', tz='UTC'), pd.Timestamp('2006-01-13 14:31:00', tz='UTC')] ) self.assertEqual( algo.done_at_close, [pd.Timestamp('2006-01-12 20:59:00', tz='UTC'), pd.Timestamp('2006-01-13 20:59:00', tz='UTC')] ) class TestCapitalChanges(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='UTC') END_DATE = pd.Timestamp('2006-01-09', tz='UTC') # XXX: This suite only has daily data for sid 0 and only has minutely data # for sid 1. sids = ASSET_FINDER_EQUITY_SIDS = (0, 1) DAILY_SID = 0 MINUTELY_SID = 1 # FIXME: Pass a benchmark source explicitly here. BENCHMARK_SID = None @classmethod def make_equity_minute_bar_data(cls): minutes = cls.trading_calendar.minutes_in_range( cls.START_DATE, cls.END_DATE, ) closes = np.arange(100, 100 + len(minutes), 1) opens = closes highs = closes + 5 lows = closes - 5 frame = pd.DataFrame( index=minutes, data={ 'open': opens, 'high': highs, 'low': lows, 'close': closes, 'volume': 10000, }, ) yield cls.MINUTELY_SID, frame @classmethod def make_equity_daily_bar_data(cls, country_code, sids): days = cls.trading_calendar.sessions_in_range( cls.START_DATE, cls.END_DATE, ) closes = np.arange(10.0, 10.0 + len(days), 1.0) opens = closes highs = closes + 0.5 lows = closes - 0.5 frame = pd.DataFrame( index=days, data={ 'open': opens, 'high': highs, 'low': lows, 'close': closes, 'volume': 10000, }, ) yield cls.DAILY_SID, frame @parameterized.expand([ ('target', 151000.0), ('delta', 50000.0) ]) def test_capital_changes_daily_mode(self, change_type, value): capital_changes = { pd.Timestamp('2006-01-06', tz='UTC'): {'type': change_type, 'value': value} } algocode = """ from zipline.api import set_slippage, set_commission, slippage, commission, \ schedule_function, time_rules, order, sid def initialize(context): set_slippage(slippage.FixedSlippage(spread=0)) set_commission(commission.PerShare(0, 0)) schedule_function(order_stuff, time_rule=time_rules.market_open()) def order_stuff(context, data): order(sid(0), 1000) """ algo = self.make_algo( script=algocode, capital_changes=capital_changes, sim_params=SimulationParameters( start_session=self.START_DATE, end_session=self.END_DATE, trading_calendar=self.nyse_calendar, ) ) # We call get_generator rather than `run()` here because we care about # the raw capital change packets. gen = algo.get_generator() results = list(gen) cumulative_perf = \ [r['cumulative_perf'] for r in results if 'cumulative_perf' in r] daily_perf = [r['daily_perf'] for r in results if 'daily_perf' in r] capital_change_packets = \ [r['capital_change'] for r in results if 'capital_change' in r] self.assertEqual(len(capital_change_packets), 1) self.assertEqual( capital_change_packets[0], {'date': pd.Timestamp('2006-01-06', tz='UTC'), 'type': 'cash', 'target': 151000.0 if change_type == 'target' else None, 'delta': 50000.0}) # 1/03: price = 10, place orders # 1/04: orders execute at price = 11, place orders # 1/05: orders execute at price = 12, place orders # 1/06: +50000 capital change, # orders execute at price = 13, place orders # 1/09: orders execute at price = 14, place orders expected_daily = {} expected_capital_changes = np.array([ 0.0, 0.0, 0.0, 50000.0, 0.0 ]) # Day 1, no transaction. Day 2, we transact, but the price of our stock # does not change. Day 3, we start getting returns expected_daily['returns'] = np.array([ 0.0, 0.0, # 1000 shares * gain of 1 (100000.0 + 1000.0) / 100000.0 - 1.0, # 2000 shares * gain of 1, capital change of +50000 (151000.0 + 2000.0) / 151000.0 - 1.0, # 3000 shares * gain of 1 (153000.0 + 3000.0) / 153000.0 - 1.0, ]) expected_daily['pnl'] = np.array([ 0.0, 0.0, 1000.00, # 1000 shares * gain of 1 2000.00, # 2000 shares * gain of 1 3000.00, # 3000 shares * gain of 1 ]) expected_daily['capital_used'] = np.array([ 0.0, -11000.0, # 1000 shares at price = 11 -12000.0, # 1000 shares at price = 12 -13000.0, # 1000 shares at price = 13 -14000.0, # 1000 shares at price = 14 ]) expected_daily['ending_cash'] = \ np.array([100000.0] * 5) + \ np.cumsum(expected_capital_changes) + \ np.cumsum(expected_daily['capital_used']) expected_daily['starting_cash'] = \ expected_daily['ending_cash'] - \ expected_daily['capital_used'] expected_daily['starting_value'] = np.array([ 0.0, 0.0, 11000.0, # 1000 shares at price = 11 24000.0, # 2000 shares at price = 12 39000.0, # 3000 shares at price = 13 ]) expected_daily['ending_value'] = \ expected_daily['starting_value'] + \ expected_daily['pnl'] - \ expected_daily['capital_used'] expected_daily['portfolio_value'] = \ expected_daily['ending_value'] + \ expected_daily['ending_cash'] stats = [ 'returns', 'pnl', 'capital_used', 'starting_cash', 'ending_cash', 'starting_value', 'ending_value', 'portfolio_value' ] expected_cumulative = { 'returns': np.cumprod(expected_daily['returns'] + 1) - 1, 'pnl': np.cumsum(expected_daily['pnl']), 'capital_used': np.cumsum(expected_daily['capital_used']), 'starting_cash': np.repeat(expected_daily['starting_cash'][0:1], 5), 'ending_cash': expected_daily['ending_cash'], 'starting_value': np.repeat(expected_daily['starting_value'][0:1], 5), 'ending_value': expected_daily['ending_value'], 'portfolio_value': expected_daily['portfolio_value'], } for stat in stats: np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in daily_perf]), expected_daily[stat], err_msg='daily ' + stat, ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in cumulative_perf]), expected_cumulative[stat], err_msg='cumulative ' + stat, ) self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-06', tz='UTC'): 50000.0} ) @parameterized.expand([ ('interday_target', [('2006-01-05', 2388.0)]), ('interday_delta', [('2006-01-05', 1000.0)]), ('intraday_target', [('2006-01-05 17:00', 2184.0), ('2006-01-05 18:00', 2804.0)]), ('intraday_delta', [('2006-01-05 17:00', 500.0), ('2006-01-05 18:00', 500.0)]), ]) def test_capital_changes_minute_mode_daily_emission(self, change, values): change_loc, change_type = change.split('_') sim_params = SimulationParameters( start_session=pd.Timestamp('2006-01-04', tz='UTC'), end_session=pd.Timestamp('2006-01-05', tz='UTC'), data_frequency='minute', capital_base=1000.0, trading_calendar=self.nyse_calendar, ) capital_changes = { pd.Timestamp(datestr, tz='UTC'): { 'type': change_type, 'value': value } for datestr, value in values } algocode = """ from zipline.api import set_slippage, set_commission, slippage, commission, \ schedule_function, time_rules, order, sid def initialize(context): set_slippage(slippage.FixedSlippage(spread=0)) set_commission(commission.PerShare(0, 0)) schedule_function(order_stuff, time_rule=time_rules.market_open()) def order_stuff(context, data): order(sid(1), 1) """ algo = self.make_algo( script=algocode, sim_params=sim_params, capital_changes=capital_changes ) gen = algo.get_generator() results = list(gen) cumulative_perf = \ [r['cumulative_perf'] for r in results if 'cumulative_perf' in r] daily_perf = [r['daily_perf'] for r in results if 'daily_perf' in r] capital_change_packets = \ [r['capital_change'] for r in results if 'capital_change' in r] self.assertEqual(len(capital_change_packets), len(capital_changes)) expected = [ {'date': pd.Timestamp(val[0], tz='UTC'), 'type': 'cash', 'target': val[1] if change_type == 'target' else None, 'delta': 1000.0 if len(values) == 1 else 500.0} for val in values] self.assertEqual(capital_change_packets, expected) # 1/03: place orders at price = 100, execute at 101 # 1/04: place orders at price = 490, execute at 491, # +500 capital change at 17:00 and 18:00 (intraday) # or +1000 at 00:00 (interday), # 1/05: place orders at price = 880, execute at 881 expected_daily = {} expected_capital_changes = np.array([0.0, 1000.0, 0.0]) if change_loc == 'intraday': # Fills at 491, +500 capital change comes at 638 (17:00) and # 698 (18:00), ends day at 879 day2_return = ( (1388.0 + 149.0 + 147.0) / 1388.0 * (2184.0 + 60.0 + 60.0) / 2184.0 * (2804.0 + 181.0 + 181.0) / 2804.0 - 1.0 ) else: # Fills at 491, ends day at 879, capital change +1000 day2_return = (2388.0 + 390.0 + 388.0) / 2388.0 - 1 expected_daily['returns'] = np.array([ # Fills at 101, ends day at 489 (1000.0 + 489 - 101) / 1000.0 - 1.0, day2_return, # Fills at 881, ends day at 1269 (3166.0 + 390.0 + 390.0 + 388.0) / 3166.0 - 1.0, ]) expected_daily['pnl'] = np.array([ 388.0, 390.0 + 388.0, 390.0 + 390.0 + 388.0, ]) expected_daily['capital_used'] = np.array([ -101.0, -491.0, -881.0 ]) expected_daily['ending_cash'] = \ np.array([1000.0] * 3) + \ np.cumsum(expected_capital_changes) + \ np.cumsum(expected_daily['capital_used']) expected_daily['starting_cash'] = \ expected_daily['ending_cash'] - \ expected_daily['capital_used'] if change_loc == 'intraday': # Capital changes come after day start expected_daily['starting_cash'] -= expected_capital_changes expected_daily['starting_value'] = np.array([ 0.0, 489.0, 879.0 * 2 ]) expected_daily['ending_value'] = \ expected_daily['starting_value'] + \ expected_daily['pnl'] - \ expected_daily['capital_used'] expected_daily['portfolio_value'] = \ expected_daily['ending_value'] + \ expected_daily['ending_cash'] stats = [ 'returns', 'pnl', 'capital_used', 'starting_cash', 'ending_cash', 'starting_value', 'ending_value', 'portfolio_value' ] expected_cumulative = { 'returns': np.cumprod(expected_daily['returns'] + 1) - 1, 'pnl': np.cumsum(expected_daily['pnl']), 'capital_used': np.cumsum(expected_daily['capital_used']), 'starting_cash': np.repeat(expected_daily['starting_cash'][0:1], 3), 'ending_cash': expected_daily['ending_cash'], 'starting_value': np.repeat(expected_daily['starting_value'][0:1], 3), 'ending_value': expected_daily['ending_value'], 'portfolio_value': expected_daily['portfolio_value'], } for stat in stats: np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in daily_perf]), expected_daily[stat] ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in cumulative_perf]), expected_cumulative[stat] ) if change_loc == 'interday': self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05', tz='UTC'): 1000.0} ) else: self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05 17:00', tz='UTC'): 500.0, pd.Timestamp('2006-01-05 18:00', tz='UTC'): 500.0} ) @parameterized.expand([ ('interday_target', [('2006-01-05', 2388.0)]), ('interday_delta', [('2006-01-05', 1000.0)]), ('intraday_target', [('2006-01-05 17:00', 2184.0), ('2006-01-05 18:00', 2804.0)]), ('intraday_delta', [('2006-01-05 17:00', 500.0), ('2006-01-05 18:00', 500.0)]), ]) def test_capital_changes_minute_mode_minute_emission(self, change, values): change_loc, change_type = change.split('_') sim_params = SimulationParameters( start_session=pd.Timestamp('2006-01-04', tz='UTC'), end_session=pd.Timestamp('2006-01-05', tz='UTC'), data_frequency='minute', emission_rate='minute', capital_base=1000.0, trading_calendar=self.nyse_calendar, ) capital_changes = {pd.Timestamp(val[0], tz='UTC'): { 'type': change_type, 'value': val[1]} for val in values} algocode = """ from zipline.api import set_slippage, set_commission, slippage, commission, \ schedule_function, time_rules, order, sid def initialize(context): set_slippage(slippage.FixedSlippage(spread=0)) set_commission(commission.PerShare(0, 0)) schedule_function(order_stuff, time_rule=time_rules.market_open()) def order_stuff(context, data): order(sid(1), 1) """ algo = self.make_algo( script=algocode, sim_params=sim_params, capital_changes=capital_changes ) gen = algo.get_generator() results = list(gen) cumulative_perf = \ [r['cumulative_perf'] for r in results if 'cumulative_perf' in r] minute_perf = [r['minute_perf'] for r in results if 'minute_perf' in r] daily_perf = [r['daily_perf'] for r in results if 'daily_perf' in r] capital_change_packets = \ [r['capital_change'] for r in results if 'capital_change' in r] self.assertEqual(len(capital_change_packets), len(capital_changes)) expected = [ {'date': pd.Timestamp(val[0], tz='UTC'), 'type': 'cash', 'target': val[1] if change_type == 'target' else None, 'delta': 1000.0 if len(values) == 1 else 500.0} for val in values] self.assertEqual(capital_change_packets, expected) # 1/03: place orders at price = 100, execute at 101 # 1/04: place orders at price = 490, execute at 491, # +500 capital change at 17:00 and 18:00 (intraday) # or +1000 at 00:00 (interday), # 1/05: place orders at price = 880, execute at 881 # Minute perfs are cumulative for the day expected_minute = {} capital_changes_after_start = np.array([0.0] * 1170) if change_loc == 'intraday': capital_changes_after_start[539:599] = 500.0 capital_changes_after_start[599:780] = 1000.0 expected_minute['pnl'] = np.array([0.0] * 1170) expected_minute['pnl'][:2] = 0.0 expected_minute['pnl'][2:392] = 1.0 expected_minute['pnl'][392:782] = 2.0 expected_minute['pnl'][782:] = 3.0 for start, end in ((0, 390), (390, 780), (780, 1170)): expected_minute['pnl'][start:end] = \ np.cumsum(expected_minute['pnl'][start:end]) expected_minute['capital_used'] = np.concatenate(( [0.0] * 1, [-101.0] * 389, [0.0] * 1, [-491.0] * 389, [0.0] * 1, [-881.0] * 389, )) # +1000 capital changes comes before the day start if interday day2adj = 0.0 if change_loc == 'intraday' else 1000.0 expected_minute['starting_cash'] = np.concatenate(( [1000.0] * 390, # 101 spent on 1/03 [1000.0 - 101.0 + day2adj] * 390, # 101 spent on 1/03, 491 on 1/04, +1000 capital change on 1/04 [1000.0 - 101.0 - 491.0 + 1000] * 390 )) expected_minute['ending_cash'] = \ expected_minute['starting_cash'] + \ expected_minute['capital_used'] + \ capital_changes_after_start expected_minute['starting_value'] = np.concatenate(( [0.0] * 390, [489.0] * 390, [879.0 * 2] * 390 )) expected_minute['ending_value'] = \ expected_minute['starting_value'] + \ expected_minute['pnl'] - \ expected_minute['capital_used'] expected_minute['portfolio_value'] = \ expected_minute['ending_value'] + \ expected_minute['ending_cash'] expected_minute['returns'] = \ expected_minute['pnl'] / \ (expected_minute['starting_value'] + expected_minute['starting_cash']) # If the change is interday, we can just calculate the returns from # the pnl, starting_value and starting_cash. If the change is intraday, # the returns after the change have to be calculated from two # subperiods if change_loc == 'intraday': # The last packet (at 1/04 16:59) before the first capital change prev_subperiod_return = expected_minute['returns'][538] # From 1/04 17:00 to 17:59 cur_subperiod_pnl = \ expected_minute['pnl'][539:599] - expected_minute['pnl'][538] cur_subperiod_starting_value = \ np.array([expected_minute['ending_value'][538]] * 60) cur_subperiod_starting_cash = \ np.array([expected_minute['ending_cash'][538] + 500] * 60) cur_subperiod_returns = cur_subperiod_pnl / \ (cur_subperiod_starting_value + cur_subperiod_starting_cash) expected_minute['returns'][539:599] = \ (cur_subperiod_returns + 1.0) * \ (prev_subperiod_return + 1.0) - \ 1.0 # The last packet (at 1/04 17:59) before the second capital change prev_subperiod_return = expected_minute['returns'][598] # From 1/04 18:00 to 21:00 cur_subperiod_pnl = \ expected_minute['pnl'][599:780] - expected_minute['pnl'][598] cur_subperiod_starting_value = \ np.array([expected_minute['ending_value'][598]] * 181) cur_subperiod_starting_cash = \ np.array([expected_minute['ending_cash'][598] + 500] * 181) cur_subperiod_returns = cur_subperiod_pnl / \ (cur_subperiod_starting_value + cur_subperiod_starting_cash) expected_minute['returns'][599:780] = \ (cur_subperiod_returns + 1.0) * \ (prev_subperiod_return + 1.0) - \ 1.0 # The last minute packet of each day expected_daily = { k: np.array([v[389], v[779], v[1169]]) for k, v in iteritems(expected_minute) } stats = [ 'pnl', 'capital_used', 'starting_cash', 'ending_cash', 'starting_value', 'ending_value', 'portfolio_value', 'returns' ] expected_cumulative = deepcopy(expected_minute) # "Add" daily return from 1/03 to minute returns on 1/04 and 1/05 # "Add" daily return from 1/04 to minute returns on 1/05 expected_cumulative['returns'][390:] = \ (expected_cumulative['returns'][390:] + 1) * \ (expected_daily['returns'][0] + 1) - 1 expected_cumulative['returns'][780:] = \ (expected_cumulative['returns'][780:] + 1) * \ (expected_daily['returns'][1] + 1) - 1 # Add daily pnl/capital_used from 1/03 to 1/04 and 1/05 # Add daily pnl/capital_used from 1/04 to 1/05 expected_cumulative['pnl'][390:] += expected_daily['pnl'][0] expected_cumulative['pnl'][780:] += expected_daily['pnl'][1] expected_cumulative['capital_used'][390:] += \ expected_daily['capital_used'][0] expected_cumulative['capital_used'][780:] += \ expected_daily['capital_used'][1] # starting_cash, starting_value are same as those of the first daily # packet expected_cumulative['starting_cash'] = \ np.repeat(expected_daily['starting_cash'][0:1], 1170) expected_cumulative['starting_value'] = \ np.repeat(expected_daily['starting_value'][0:1], 1170) # extra cumulative packet per day from the daily packet for stat in stats: for i in (390, 781, 1172): expected_cumulative[stat] = np.insert( expected_cumulative[stat], i, expected_cumulative[stat][i-1] ) for stat in stats: np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in minute_perf]), expected_minute[stat] ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in daily_perf]), expected_daily[stat] ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in cumulative_perf]), expected_cumulative[stat] ) if change_loc == 'interday': self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05', tz='UTC'): 1000.0} ) else: self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05 17:00', tz='UTC'): 500.0, pd.Timestamp('2006-01-05 18:00', tz='UTC'): 500.0} ) class TestGetDatetime(zf.WithMakeAlgo, zf.ZiplineTestCase): SIM_PARAMS_DATA_FREQUENCY = 'minute' START_DATE = to_utc('2014-01-02 9:31') END_DATE = to_utc('2014-01-03 9:31') ASSET_FINDER_EQUITY_SIDS = 0, 1 # FIXME: Pass a benchmark source explicitly here. BENCHMARK_SID = None @parameterized.expand( [ ('default', None,), ('utc', 'UTC',), ('us_east', 'US/Eastern',), ] ) def test_get_datetime(self, name, tz): algo = dedent( """ import pandas as pd from zipline.api import get_datetime def initialize(context): context.tz = {tz} or 'UTC' context.first_bar = True def handle_data(context, data): dt = get_datetime({tz}) if dt.tz.zone != context.tz: raise ValueError("Mismatched Zone") if context.first_bar: if dt.tz_convert("US/Eastern").hour != 9: raise ValueError("Mismatched Hour") elif dt.tz_convert("US/Eastern").minute != 31: raise ValueError("Mismatched Minute") context.first_bar = False """.format(tz=repr(tz)) ) algo = self.make_algo(script=algo) algo.run() self.assertFalse(algo.first_bar) class TestTradingControls(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='utc') END_DATE = pd.Timestamp('2006-01-06', tz='utc') sid = 133 sids = ASSET_FINDER_EQUITY_SIDS = 133, 134 SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = True @classmethod def init_class_fixtures(cls): super(TestTradingControls, cls).init_class_fixtures() cls.asset = cls.asset_finder.retrieve_asset(cls.sid) cls.another_asset = cls.asset_finder.retrieve_asset(134) def _check_algo(self, algo, expected_order_count, expected_exc): with self.assertRaises(expected_exc) if expected_exc else nop_context: algo.run() self.assertEqual(algo.order_count, expected_order_count) def check_algo_succeeds(self, algo, order_count=4): # Default for order_count assumes one order per handle_data call. self._check_algo(algo, order_count, None) def check_algo_fails(self, algo, order_count): self._check_algo(algo, order_count, TradingControlViolation) def test_set_max_position_size(self): def initialize(self, asset, max_shares, max_notional): self.set_slippage(FixedSlippage()) self.order_count = 0 self.set_max_position_size(asset=asset, max_shares=max_shares, max_notional=max_notional) # Buy one share four times. Should be fine. def handle_data(algo, data): algo.order(algo.sid(self.sid), 1) algo.order_count += 1 algo = self.make_algo( asset=self.asset, max_shares=10, max_notional=500.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_succeeds(algo) # Buy three shares four times. Should bail on the fourth before it's # placed. def handle_data(algo, data): algo.order(algo.sid(self.sid), 3) algo.order_count += 1 algo = self.make_algo( asset=self.asset, max_shares=10, max_notional=500.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 3) # Buy three shares four times. Should bail due to max_notional on the # third attempt. def handle_data(algo, data): algo.order(algo.sid(self.sid), 3) algo.order_count += 1 algo = self.make_algo( asset=self.asset, max_shares=10, max_notional=67.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 2) # Set the trading control to a different sid, then BUY ALL THE THINGS!. # Should continue normally. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( asset=self.another_asset, max_shares=10, max_notional=67.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_succeeds(algo) # Set the trading control sid to None, then BUY ALL THE THINGS!. Should # fail because setting sid to None makes the control apply to all sids. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( max_shares=10, max_notional=61.0, asset=None, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) def test_set_asset_restrictions(self): def initialize(algo, sid, restrictions, on_error): algo.order_count = 0 algo.set_asset_restrictions(restrictions, on_error) def handle_data(algo, data): algo.could_trade = data.can_trade(algo.sid(self.sid)) algo.order(algo.sid(self.sid), 100) algo.order_count += 1 # Set HistoricalRestrictions for one sid for the entire simulation, # and fail. rlm = HistoricalRestrictions([ Restriction( self.sid, self.sim_params.start_session, RESTRICTION_STATES.FROZEN) ]) algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='fail', initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade) # Set StaticRestrictions for one sid and fail. rlm = StaticRestrictions([self.sid]) algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='fail', initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade) # just log an error on the violation if we choose not to fail. algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='log', initialize=initialize, handle_data=handle_data, ) with make_test_handler(self) as log_catcher: self.check_algo_succeeds(algo) logs = [r.message for r in log_catcher.records] self.assertIn("Order for 100 shares of Equity(133 [A]) at " "2006-01-04 21:00:00+00:00 violates trading constraint " "RestrictedListOrder({})", logs) self.assertFalse(algo.could_trade) # set the restricted list to exclude the sid, and succeed rlm = HistoricalRestrictions([ Restriction( sid, self.sim_params.start_session, RESTRICTION_STATES.FROZEN) for sid in [134, 135, 136] ]) algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='fail', initialize=initialize, handle_data=handle_data, ) self.check_algo_succeeds(algo) self.assertTrue(algo.could_trade) @parameterized.expand([ ('order_first_restricted_sid', 0), ('order_second_restricted_sid', 1) ]) def test_set_multiple_asset_restrictions(self, name, to_order_idx): def initialize(algo, restrictions1, restrictions2, on_error): algo.order_count = 0 algo.set_asset_restrictions(restrictions1, on_error) algo.set_asset_restrictions(restrictions2, on_error) def handle_data(algo, data): algo.could_trade1 = data.can_trade(algo.sid(self.sids[0])) algo.could_trade2 = data.can_trade(algo.sid(self.sids[1])) algo.order(algo.sid(self.sids[to_order_idx]), 100) algo.order_count += 1 rl1 = StaticRestrictions([self.sids[0]]) rl2 = StaticRestrictions([self.sids[1]]) algo = self.make_algo( restrictions1=rl1, restrictions2=rl2, initialize=initialize, handle_data=handle_data, on_error='fail', ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade1) self.assertFalse(algo.could_trade2) def test_set_do_not_order_list(self): def initialize(self, restricted_list): self.order_count = 0 self.set_do_not_order_list(restricted_list, on_error='fail') def handle_data(algo, data): algo.could_trade = data.can_trade(algo.sid(self.sid)) algo.order(algo.sid(self.sid), 100) algo.order_count += 1 rlm = [self.sid] algo = self.make_algo( restricted_list=rlm, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade) def test_set_max_order_size(self): def initialize(algo, asset, max_shares, max_notional): algo.order_count = 0 algo.set_max_order_size(asset=asset, max_shares=max_shares, max_notional=max_notional) # Buy one share. def handle_data(algo, data): algo.order(algo.sid(self.sid), 1) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.asset, max_shares=10, max_notional=500.0, ) self.check_algo_succeeds(algo) # Buy 1, then 2, then 3, then 4 shares. Bail on the last attempt # because we exceed shares. def handle_data(algo, data): algo.order(algo.sid(self.sid), algo.order_count + 1) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.asset, max_shares=3, max_notional=500.0, ) self.check_algo_fails(algo, 3) # Buy 1, then 2, then 3, then 4 shares. Bail on the last attempt # because we exceed notional. def handle_data(algo, data): algo.order(algo.sid(self.sid), algo.order_count + 1) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.asset, max_shares=10, max_notional=40.0, ) self.check_algo_fails(algo, 3) # Set the trading control to a different sid, then BUY ALL THE THINGS!. # Should continue normally. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.another_asset, max_shares=1, max_notional=1.0, ) self.check_algo_succeeds(algo) # Set the trading control sid to None, then BUY ALL THE THINGS!. # Should fail because not specifying a sid makes the trading control # apply to all sids. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=None, max_shares=1, max_notional=1.0, ) self.check_algo_fails(algo, 0) def test_set_max_order_count(self): def initialize(algo, count): algo.order_count = 0 algo.set_max_order_count(count) def handle_data(algo, data): for i in range(5): algo.order(self.asset, 1) algo.order_count += 1 algo = self.make_algo( count=3, initialize=initialize, handle_data=handle_data, ) with self.assertRaises(TradingControlViolation): algo.run() self.assertEqual(algo.order_count, 3) def test_set_max_order_count_minutely(self): sim_params = self.make_simparams(data_frequency='minute') def initialize(algo, max_orders_per_day): algo.minute_count = 0 algo.order_count = 0 algo.set_max_order_count(max_orders_per_day) # Order 5 times twice in a single day, and set a max order count of # 9. The last order of the second batch should fail. def handle_data(algo, data): if algo.minute_count == 0 or algo.minute_count == 100: for i in range(5): algo.order(self.asset, 1) algo.order_count += 1 algo.minute_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_orders_per_day=9, sim_params=sim_params, ) with self.assertRaises(TradingControlViolation): algo.run() self.assertEqual(algo.order_count, 9) # Set a limit of 5 orders per day, and order 5 times in the first # minute of each day. This should succeed because the counter gets # reset each day. def handle_data(algo, data): if (algo.minute_count % 390) == 0: for i in range(5): algo.order(self.asset, 1) algo.order_count += 1 algo.minute_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_orders_per_day=5, sim_params=sim_params, ) algo.run() # 5 orders per day times 4 days. self.assertEqual(algo.order_count, 20) def test_long_only(self): def initialize(algo): algo.order_count = 0 algo.set_long_only() # Sell immediately -> fail immediately. def handle_data(algo, data): algo.order(algo.sid(self.sid), -1) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_fails(algo, 0) # Buy on even days, sell on odd days. Never takes a short position, so # should succeed. def handle_data(algo, data): if (algo.order_count % 2) == 0: algo.order(algo.sid(self.sid), 1) else: algo.order(algo.sid(self.sid), -1) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_succeeds(algo) # Buy on first three days, then sell off holdings. Should succeed. def handle_data(algo, data): amounts = [1, 1, 1, -3] algo.order(algo.sid(self.sid), amounts[algo.order_count]) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_succeeds(algo) # Buy on first three days, then sell off holdings plus an extra share. # Should fail on the last sale. def handle_data(algo, data): amounts = [1, 1, 1, -4] algo.order(algo.sid(self.sid), amounts[algo.order_count]) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_fails(algo, 3) def test_register_post_init(self): def initialize(algo): algo.initialized = True def handle_data(algo, data): with self.assertRaises(RegisterTradingControlPostInit): algo.set_max_position_size(self.sid, 1, 1) with self.assertRaises(RegisterTradingControlPostInit): algo.set_max_order_size(self.sid, 1, 1) with self.assertRaises(RegisterTradingControlPostInit): algo.set_max_order_count(1) with self.assertRaises(RegisterTradingControlPostInit): algo.set_long_only() self.run_algorithm(initialize=initialize, handle_data=handle_data) class TestAssetDateBounds(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2014-01-02', tz='UTC') END_DATE = pd.Timestamp('2014-01-03', tz='UTC') SIM_PARAMS_START_DATE = END_DATE # Only run for one day. SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False BENCHMARK_SID = 3 @classmethod def make_equity_info(cls): T = partial(pd.Timestamp, tz='UTC') return pd.DataFrame.from_records([ {'sid': 1, 'symbol': 'OLD', 'start_date': T('1990'), 'end_date': T('1991'), 'exchange': 'TEST'}, {'sid': 2, 'symbol': 'NEW', 'start_date': T('2017'), 'end_date': T('2018'), 'exchange': 'TEST'}, {'sid': 3, 'symbol': 'GOOD', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE, 'exchange': 'TEST'}, ]) def test_asset_date_bounds(self): def initialize(algo): algo.ran = False algo.register_trading_control(AssetDateBounds(on_error='fail')) def handle_data(algo, data): # This should work because sid 3 is valid during the algo lifetime. algo.order(algo.sid(3), 1) # Sid already expired. with self.assertRaises(TradingControlViolation): algo.order(algo.sid(1), 1) # Sid doesn't exist yet. with self.assertRaises(TradingControlViolation): algo.order(algo.sid(2), 1) algo.ran = True algo = self.make_algo(initialize=initialize, handle_data=handle_data) algo.run() self.assertTrue(algo.ran) class TestAccountControls(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='utc') END_DATE = pd.Timestamp('2006-01-06', tz='utc') sidint, = ASSET_FINDER_EQUITY_SIDS = (133,) BENCHMARK_SID = None SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False @classmethod def make_equity_daily_bar_data(cls, country_code, sids): frame = pd.DataFrame(data={ 'close': [10., 10., 11., 11.], 'open': [10., 10., 11., 11.], 'low': [9.5, 9.5, 10.45, 10.45], 'high': [10.5, 10.5, 11.55, 11.55], 'volume': [100, 100, 100, 300], }, index=cls.equity_daily_bar_days) yield cls.sidint, frame def _check_algo(self, algo, expected_exc): with self.assertRaises(expected_exc) if expected_exc else nop_context: algo.run() def check_algo_succeeds(self, algo): # Default for order_count assumes one order per handle_data call. self._check_algo(algo, None) def check_algo_fails(self, algo): self._check_algo(algo, AccountControlViolation) def test_set_max_leverage(self): def initialize(algo, max_leverage): algo.set_max_leverage(max_leverage=max_leverage) def handle_data(algo, data): algo.order(algo.sid(self.sidint), 1) algo.record(latest_time=algo.get_datetime()) # Set max leverage to 0 so buying one share fails. algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_leverage=0, ) self.check_algo_fails(algo) self.assertEqual( algo.recorded_vars['latest_time'], pd.Timestamp('2006-01-05 21:00:00', tz='UTC'), ) # Set max leverage to 1 so buying one share passes def handle_data(algo, data): algo.order(algo.sid(self.sidint), 1) algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_leverage=1, ) self.check_algo_succeeds(algo) def test_set_min_leverage(self): def initialize(algo, min_leverage, grace_period): algo.set_min_leverage( min_leverage=min_leverage, grace_period=grace_period ) def handle_data(algo, data): algo.order_target_percent(algo.sid(self.sidint), .5) algo.record(latest_time=algo.get_datetime()) # Helper for not having to pass init/handle_data at each callsite. def make_algo(min_leverage, grace_period): return self.make_algo( initialize=initialize, handle_data=handle_data, min_leverage=min_leverage, grace_period=grace_period, ) # Set min leverage to 1. # The algorithm will succeed because it doesn't run for more # than 10 days. offset = pd.Timedelta('10 days') algo = make_algo(min_leverage=1, grace_period=offset) self.check_algo_succeeds(algo) # The algorithm will fail because it doesn't reach a min leverage of 1 # after 1 day. offset = pd.Timedelta('1 days') algo = make_algo(min_leverage=1, grace_period=offset) self.check_algo_fails(algo) self.assertEqual( algo.recorded_vars['latest_time'], pd.Timestamp('2006-01-05 21:00:00', tz='UTC'), ) # Increase the offset to 2 days, and the algorithm fails a day later offset = pd.Timedelta('2 days') algo = make_algo(min_leverage=1, grace_period=offset) self.check_algo_fails(algo) self.assertEqual( algo.recorded_vars['latest_time'], pd.Timestamp('2006-01-05 21:00:00', tz='UTC'), ) # Set the min_leverage to .0001 and the algorithm succeeds. algo = make_algo(min_leverage=.0001, grace_period=offset) self.check_algo_succeeds(algo) class TestFuturesAlgo(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-06', tz='utc') END_DATE = pd.Timestamp('2016-01-07', tz='utc') FUTURE_MINUTE_BAR_START_DATE = pd.Timestamp('2016-01-05', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'minute' TRADING_CALENDAR_STRS = ('us_futures',) TRADING_CALENDAR_PRIMARY_CAL = 'us_futures' BENCHMARK_SID = None @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 1: { 'symbol': 'CLG16', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2015-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2016-01-20', tz='UTC'), 'expiration_date': pd.Timestamp('2016-02-19', tz='UTC'), 'auto_close_date': pd.Timestamp('2016-01-18', tz='UTC'), 'exchange': 'TEST', }, }, orient='index', ) def test_futures_history(self): algo_code = dedent( """ from datetime import time from zipline.api import ( date_rules, get_datetime, schedule_function, sid, time_rules, ) def initialize(context): context.history_values = [] schedule_function( make_history_call, date_rules.every_day(), time_rules.market_open(), ) schedule_function( check_market_close_time, date_rules.every_day(), time_rules.market_close(), ) def make_history_call(context, data): # Ensure that the market open is 6:31am US/Eastern. open_time = get_datetime().tz_convert('US/Eastern').time() assert open_time == time(6, 31) context.history_values.append( data.history(sid(1), 'close', 5, '1m'), ) def check_market_close_time(context, data): # Ensure that this function is called at 4:59pm US/Eastern. # By default, `market_close()` uses an offset of 1 minute. close_time = get_datetime().tz_convert('US/Eastern').time() assert close_time == time(16, 59) """ ) algo = self.make_algo( script=algo_code, trading_calendar=get_calendar('us_futures'), ) algo.run() # Assert that we were able to retrieve history data for minutes outside # of the 6:31am US/Eastern to 5:00pm US/Eastern futures open times. np.testing.assert_array_equal( algo.history_values[0].index, pd.date_range( '2016-01-06 6:27', '2016-01-06 6:31', freq='min', tz='US/Eastern', ), ) np.testing.assert_array_equal( algo.history_values[1].index, pd.date_range( '2016-01-07 6:27', '2016-01-07 6:31', freq='min', tz='US/Eastern', ), ) # Expected prices here are given by the range values created by the # default `make_future_minute_bar_data` method. np.testing.assert_array_equal( algo.history_values[0].values, list(map(float, range(2196, 2201))), ) np.testing.assert_array_equal( algo.history_values[1].values, list(map(float, range(3636, 3641))), ) @staticmethod def algo_with_slippage(slippage_model): return dedent( """ from zipline.api import ( commission, order, set_commission, set_slippage, sid, slippage, get_datetime, ) def initialize(context): commission_model = commission.PerFutureTrade(0) set_commission(us_futures=commission_model) slippage_model = slippage.{model} set_slippage(us_futures=slippage_model) context.ordered = False def handle_data(context, data): if not context.ordered: order(sid(1), 10) context.ordered = True context.order_price = data.current(sid(1), 'price') """ ).format(model=slippage_model) def test_fixed_future_slippage(self): algo_code = self.algo_with_slippage('FixedSlippage(spread=0.10)') algo = self.make_algo( script=algo_code, trading_calendar=get_calendar('us_futures'), ) results = algo.run() # Flatten the list of transactions. all_txns = [ val for sublist in results['transactions'].tolist() for val in sublist ] self.assertEqual(len(all_txns), 1) txn = all_txns[0] # Add 1 to the expected price because the order does not fill until the # bar after the price is recorded. expected_spread = 0.05 expected_price = (algo.order_price + 1) + expected_spread self.assertEqual(txn['price'], expected_price) self.assertEqual(results['orders'][0][0]['commission'], 0.0) def test_volume_contract_slippage(self): algo_code = self.algo_with_slippage( 'VolumeShareSlippage(volume_limit=0.05, price_impact=0.1)', ) algo = self.make_algo( script=algo_code, trading_calendar=get_calendar('us_futures'), ) results = algo.run() # There should be no commissions. self.assertEqual(results['orders'][0][0]['commission'], 0.0) # Flatten the list of transactions. all_txns = [ val for sublist in results['transactions'].tolist() for val in sublist ] # With a volume limit of 0.05, and a total volume of 100 contracts # traded per minute, we should require 2 transactions to order 10 # contracts. self.assertEqual(len(all_txns), 2) for i, txn in enumerate(all_txns): # Add 1 to the order price because the order does not fill until # the bar after the price is recorded. order_price = algo.order_price + i + 1 expected_impact = order_price * 0.1 * (0.05 ** 2) expected_price = order_price + expected_impact self.assertEqual(txn['price'], expected_price) class TestAnalyzeAPIMethod(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-05', tz='utc') END_DATE = pd.Timestamp('2016-01-05', tz='utc') SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False def test_analyze_called(self): self.perf_ref = None def initialize(context): pass def handle_data(context, data): pass def analyze(context, perf): self.perf_ref = perf algo = self.make_algo( initialize=initialize, handle_data=handle_data, analyze=analyze, ) results = algo.run() self.assertIs(results, self.perf_ref) class TestOrderCancelation(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-05', tz='utc') END_DATE = pd.Timestamp('2016-01-07', tz='utc') ASSET_FINDER_EQUITY_SIDS = (1,) ASSET_FINDER_EQUITY_SYMBOLS = ('ASSET1',) BENCHMARK_SID = None code = dedent( """ from zipline.api import ( sid, order, set_slippage, slippage, VolumeShareSlippage, set_cancel_policy, cancel_policy, EODCancel ) def initialize(context): set_slippage( slippage.VolumeShareSlippage( volume_limit=1, price_impact=0 ) ) {0} context.ordered = False def handle_data(context, data): if not context.ordered: order(sid(1), {1}) context.ordered = True """, ) @classmethod def make_equity_minute_bar_data(cls): asset_minutes = \ cls.trading_calendar.minutes_for_sessions_in_range( cls.START_DATE, cls.END_DATE, ) minutes_count = len(asset_minutes) minutes_arr = np.arange(1, 1 + minutes_count) # normal test data, but volume is pinned at 1 share per minute yield 1, pd.DataFrame( { 'open': minutes_arr + 1, 'high': minutes_arr + 2, 'low': minutes_arr - 1, 'close': minutes_arr, 'volume': np.full(minutes_count, 1.0), }, index=asset_minutes, ) @classmethod def make_equity_daily_bar_data(cls, country_code, sids): yield 1, pd.DataFrame( { 'open': np.full(3, 1, dtype=np.float64), 'high': np.full(3, 1, dtype=np.float64), 'low': np.full(3, 1, dtype=np.float64), 'close': np.full(3, 1, dtype=np.float64), 'volume': np.full(3, 1, dtype=np.float64), }, index=cls.equity_daily_bar_days, ) def prep_algo(self, cancelation_string, data_frequency="minute", amount=1000, minute_emission=False): code = self.code.format(cancelation_string, amount) return self.make_algo( script=code, sim_params=self.make_simparams( data_frequency=data_frequency, emission_rate='minute' if minute_emission else 'daily', ) ) @parameter_space( direction=[1, -1], minute_emission=[True, False], ) def test_eod_order_cancel_minute(self, direction, minute_emission): """ Test that EOD order cancel works in minute mode for both shorts and longs, and both daily emission and minute emission """ # order 1000 shares of asset1. the volume is only 1 share per bar, # so the order should be cancelled at the end of the day. algo = self.prep_algo( "set_cancel_policy(cancel_policy.EODCancel())", amount=np.copysign(1000, direction), minute_emission=minute_emission ) log_catcher = TestHandler() with log_catcher: results = algo.run() for daily_positions in results.positions: self.assertEqual(1, len(daily_positions)) self.assertEqual( np.copysign(389, direction), daily_positions[0]["amount"], ) self.assertEqual(1, results.positions[0][0]["sid"]) # should be an order on day1, but no more orders afterwards np.testing.assert_array_equal([1, 0, 0], list(map(len, results.orders))) # should be 389 txns on day 1, but no more afterwards np.testing.assert_array_equal([389, 0, 0], list(map(len, results.transactions))) the_order = results.orders[0][0] self.assertEqual(ORDER_STATUS.CANCELLED, the_order["status"]) self.assertEqual(np.copysign(389, direction), the_order["filled"]) warnings = [record for record in log_catcher.records if record.level == WARNING] self.assertEqual(1, len(warnings)) if direction == 1: self.assertEqual( "Your order for 1000 shares of ASSET1 has been partially " "filled. 389 shares were successfully purchased. " "611 shares were not filled by the end of day and " "were canceled.", str(warnings[0].message) ) elif direction == -1: self.assertEqual( "Your order for -1000 shares of ASSET1 has been partially " "filled. 389 shares were successfully sold. " "611 shares were not filled by the end of day and " "were canceled.", str(warnings[0].message) ) def test_default_cancelation_policy(self): algo = self.prep_algo("") log_catcher = TestHandler() with log_catcher: results = algo.run() # order stays open throughout simulation np.testing.assert_array_equal([1, 1, 1], list(map(len, results.orders))) # one txn per minute. 389 the first day (since no order until the # end of the first minute). 390 on the second day. 221 on the # the last day, sum = 1000. np.testing.assert_array_equal([389, 390, 221], list(map(len, results.transactions))) self.assertFalse(log_catcher.has_warnings) def test_eod_order_cancel_daily(self): # in daily mode, EODCancel does nothing. algo = self.prep_algo( "set_cancel_policy(cancel_policy.EODCancel())", "daily" ) log_catcher = TestHandler() with log_catcher: results = algo.run() # order stays open throughout simulation np.testing.assert_array_equal([1, 1, 1], list(map(len, results.orders))) # one txn per day np.testing.assert_array_equal([0, 1, 1], list(map(len, results.transactions))) self.assertFalse(log_catcher.has_warnings) class TestDailyEquityAutoClose(zf.WithMakeAlgo, zf.ZiplineTestCase): """ Tests if delisted equities are properly removed from a portfolio holding positions in said equities. """ # January 2015 # Su Mo Tu We Th Fr Sa # 1 2 3 # 4 5 6 7 8 9 10 # 11 12 13 14 15 16 17 # 18 19 20 21 22 23 24 # 25 26 27 28 29 30 31 START_DATE = pd.Timestamp('2015-01-05', tz='UTC') END_DATE = pd.Timestamp('2015-01-13', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False BENCHMARK_SID = None @classmethod def init_class_fixtures(cls): super(TestDailyEquityAutoClose, cls).init_class_fixtures() cls.assets = ( cls.asset_finder.retrieve_all(cls.asset_finder.equities_sids) ) @classmethod def make_equity_info(cls): cls.test_days = cls.trading_calendar.sessions_in_range( cls.START_DATE, cls.END_DATE, ) assert len(cls.test_days) == 7, "Number of days in test changed!" cls.first_asset_expiration = cls.test_days[2] # Assets start on start date and delist every two days: # # start_date end_date auto_close_date # 0 2015-01-05 2015-01-07 2015-01-09 # 1 2015-01-05 2015-01-09 2015-01-13 # 2 2015-01-05 2015-01-13 2015-01-15 cls.asset_info = make_jagged_equity_info( num_assets=3, start_date=cls.test_days[0], first_end=cls.first_asset_expiration, frequency=cls.trading_calendar.day, periods_between_ends=2, auto_close_delta=2 * cls.trading_calendar.day, ) return cls.asset_info @classmethod def make_equity_daily_bar_data(cls, country_code, sids): cls.daily_data = make_trade_data_for_asset_info( dates=cls.test_days, asset_info=cls.asset_info, price_start=10, price_step_by_sid=10, price_step_by_date=1, volume_start=100, volume_step_by_sid=100, volume_step_by_date=10, ) return cls.daily_data.items() def daily_prices_on_tick(self, row): return [ trades.iloc[row].close for trades in itervalues(self.daily_data) ] def final_daily_price(self, asset): return self.daily_data[asset.sid].loc[asset.end_date].close def default_initialize(self): """ Initialize function shared between test algos. """ def initialize(context): context.ordered = False context.set_commission(PerShare(0, 0)) context.set_slippage(FixedSlippage(spread=0)) context.num_positions = [] context.cash = [] return initialize def default_handle_data(self, assets, order_size): """ Handle data function shared between test algos. """ def handle_data(context, data): if not context.ordered: for asset in assets: context.order(asset, order_size) context.ordered = True context.cash.append(context.portfolio.cash) context.num_positions.append(len(context.portfolio.positions)) return handle_data @parameter_space( order_size=[10, -10], capital_base=[1, 100000], __fail_fast=True, ) def test_daily_delisted_equities(self, order_size, capital_base): """ Make sure that after an equity gets delisted, our portfolio holds the correct number of equities and correct amount of cash. """ assets = self.assets final_prices = { asset.sid: self.final_daily_price(asset) for asset in assets } # Prices at which we expect our orders to be filled. initial_fill_prices = self.daily_prices_on_tick(1) cost_basis = sum(initial_fill_prices) * order_size # Last known prices of assets that will be auto-closed. fp0 = final_prices[0] fp1 = final_prices[1] algo = self.make_algo( initialize=self.default_initialize(), handle_data=self.default_handle_data(assets, order_size), sim_params=self.make_simparams( capital_base=capital_base, data_frequency='daily', ), ) output = algo.run() initial_cash = capital_base after_fills = initial_cash - cost_basis after_first_auto_close = after_fills + fp0 * (order_size) after_second_auto_close = after_first_auto_close + fp1 * (order_size) # Day 1: Order 10 shares of each equity; there are 3 equities. # Day 2: Order goes through at the day 2 price of each equity. # Day 3: End date of Equity 0. # Day 4: Nothing happens. # Day 5: End date of Equity 1. Auto close of equity 0. # Add cash == (fp0 * size). # Day 6: Nothing happens. # Day 7: End date of Equity 2 and auto-close date of Equity 1. # Add cash equal to (fp1 * size). expected_cash = [ initial_cash, after_fills, after_fills, after_fills, after_first_auto_close, after_first_auto_close, after_second_auto_close, ] expected_num_positions = [0, 3, 3, 3, 2, 2, 1] # Check expected cash. self.assertEqual(expected_cash, list(output['ending_cash'])) # The cash recorded by the algo should be behind by a day from the # computed ending cash. expected_cash.insert(3, after_fills) self.assertEqual(algo.cash, expected_cash[:-1]) # Check expected long/short counts. # We have longs if order_size > 0. # We have shorts if order_size < 0. if order_size > 0: self.assertEqual( expected_num_positions, list(output['longs_count']), ) self.assertEqual( [0] * len(self.test_days), list(output['shorts_count']), ) else: self.assertEqual( expected_num_positions, list(output['shorts_count']), ) self.assertEqual( [0] * len(self.test_days), list(output['longs_count']), ) # The number of positions recorded by the algo should be behind by a # day from the computed long/short counts. expected_num_positions.insert(3, 3) self.assertEqual(algo.num_positions, expected_num_positions[:-1]) # Check expected transactions. # We should have a transaction of order_size shares per sid. transactions = output['transactions'] initial_fills = transactions.iloc[1] self.assertEqual(len(initial_fills), len(assets)) last_minute_of_session = \ self.trading_calendar.session_close(self.test_days[1]) for asset, txn in zip(assets, initial_fills): self.assertDictContainsSubset( { 'amount': order_size, 'commission': None, 'dt': last_minute_of_session, 'price': initial_fill_prices[asset], 'sid': asset, }, txn, ) # This will be a UUID. self.assertIsInstance(txn['order_id'], str) def transactions_for_date(date): return transactions.iloc[self.test_days.get_loc(date)] # We should have exactly one auto-close transaction on the close date # of asset 0. (first_auto_close_transaction,) = transactions_for_date( assets[0].auto_close_date ) self.assertEqual( first_auto_close_transaction, { 'amount': -order_size, 'commission': None, 'dt': self.trading_calendar.session_close( assets[0].auto_close_date, ), 'price': fp0, 'sid': assets[0], 'order_id': None, # Auto-close txns emit Nones for order_id. }, ) (second_auto_close_transaction,) = transactions_for_date( assets[1].auto_close_date ) self.assertEqual( second_auto_close_transaction, { 'amount': -order_size, 'commission': None, 'dt': self.trading_calendar.session_close( assets[1].auto_close_date, ), 'price': fp1, 'sid': assets[1], 'order_id': None, # Auto-close txns emit Nones for order_id. }, ) def test_cancel_open_orders(self): """ Test that any open orders for an equity that gets delisted are canceled. Unless an equity is auto closed, any open orders for that equity will persist indefinitely. """ assets = self.assets first_asset_end_date = assets[0].end_date first_asset_auto_close_date = assets[0].auto_close_date def initialize(context): pass def handle_data(context, data): # The only order we place in this test should never be filled. assert ( context.portfolio.cash == context.portfolio.starting_cash ) today_session = self.trading_calendar.minute_to_session_label( context.get_datetime() ) day_after_auto_close = self.trading_calendar.next_session_label( first_asset_auto_close_date, ) if today_session == first_asset_end_date: # Equity 0 will no longer exist tomorrow, so this order will # never be filled. assert len(context.get_open_orders()) == 0 context.order(context.sid(0), 10) assert len(context.get_open_orders()) == 1 elif today_session == first_asset_auto_close_date: # We do not cancel open orders until the end of the auto close # date, so our open order should still exist at this point. assert len(context.get_open_orders()) == 1 elif today_session == day_after_auto_close: assert len(context.get_open_orders()) == 0 algo = self.make_algo( initialize=initialize, handle_data=handle_data, sim_params=self.make_simparams( data_frequency='daily', ), ) results = algo.run() orders = results['orders'] def orders_for_date(date): return orders.iloc[self.test_days.get_loc(date)] original_open_orders = orders_for_date(first_asset_end_date) assert len(original_open_orders) == 1 last_close_for_asset = \ algo.trading_calendar.session_close(first_asset_end_date) self.assertDictContainsSubset( { 'amount': 10, 'commission': 0.0, 'created': last_close_for_asset, 'dt': last_close_for_asset, 'sid': assets[0], 'status': ORDER_STATUS.OPEN, 'filled': 0, }, original_open_orders[0], ) orders_after_auto_close = orders_for_date(first_asset_auto_close_date) assert len(orders_after_auto_close) == 1 self.assertDictContainsSubset( { 'amount': 10, 'commission': 0.0, 'created': last_close_for_asset, 'dt': algo.trading_calendar.session_close( first_asset_auto_close_date, ), 'sid': assets[0], 'status': ORDER_STATUS.CANCELLED, 'filled': 0, }, orders_after_auto_close[0], ) # NOTE: This suite is almost the same as TestDailyEquityAutoClose, except it # uses minutely data instead of daily data, and the auto_close_date for # equities is one day after their end_date instead of two. class TestMinutelyEquityAutoClose(zf.WithMakeAlgo, zf.ZiplineTestCase): # January 2015 # Su Mo Tu We Th Fr Sa # 1 2 3 # 4 5 6 7 8 9 10 # 11 12 13 14 15 16 17 # 18 19 20 21 22 23 24 # 25 26 27 28 29 30 31 START_DATE = pd.Timestamp('2015-01-05', tz='UTC') END_DATE = pd.Timestamp('2015-01-13', tz='UTC') BENCHMARK_SID = None @classmethod def init_class_fixtures(cls): super(TestMinutelyEquityAutoClose, cls).init_class_fixtures() cls.assets = ( cls.asset_finder.retrieve_all(cls.asset_finder.equities_sids) ) @classmethod def make_equity_info(cls): cls.test_days = cls.trading_calendar.sessions_in_range( cls.START_DATE, cls.END_DATE, ) cls.test_minutes = cls.trading_calendar.minutes_for_sessions_in_range( cls.START_DATE, cls.END_DATE, ) cls.first_asset_expiration = cls.test_days[2] # Assets start on start date and delist every two days: # # start_date end_date auto_close_date # 0 2015-01-05 2015-01-07 2015-01-09 # 1 2015-01-05 2015-01-09 2015-01-13 # 2 2015-01-05 2015-01-13 2015-01-15 cls.asset_info = make_jagged_equity_info( num_assets=3, start_date=cls.test_days[0], first_end=cls.first_asset_expiration, frequency=cls.trading_calendar.day, periods_between_ends=2, auto_close_delta=1 * cls.trading_calendar.day, ) return cls.asset_info # XXX: This test suite uses inconsistent data for minutely and daily bars. @classmethod def make_equity_minute_bar_data(cls): cls.minute_data = make_trade_data_for_asset_info( dates=cls.test_minutes, asset_info=cls.asset_info, price_start=10, price_step_by_sid=10, price_step_by_date=1, volume_start=100, volume_step_by_sid=100, volume_step_by_date=10, ) return cls.minute_data.items() def minute_prices_on_tick(self, row): return [ trades.iloc[row].close for trades in itervalues(self.minute_data) ] def final_minute_price(self, asset): return self.minute_data[asset.sid].loc[ self.trading_calendar.session_close(asset.end_date) ].close def default_initialize(self): """ Initialize function shared between test algos. """ def initialize(context): context.ordered = False context.set_commission(PerShare(0, 0)) context.set_slippage(FixedSlippage(spread=0)) context.num_positions = [] context.cash = [] return initialize def default_handle_data(self, assets, order_size): """ Handle data function shared between test algos. """ def handle_data(context, data): if not context.ordered: for asset in assets: context.order(asset, order_size) context.ordered = True context.cash.append(context.portfolio.cash) context.num_positions.append(len(context.portfolio.positions)) return handle_data def test_minutely_delisted_equities(self): assets = self.assets final_prices = { asset.sid: self.final_minute_price(asset) for asset in assets } backtest_minutes = self.minute_data[0].index.tolist() order_size = 10 capital_base = 100000 algo = self.make_algo( initialize=self.default_initialize(), handle_data=self.default_handle_data(assets, order_size), sim_params=self.make_simparams( capital_base=capital_base, data_frequency='minute', ) ) output = algo.run() initial_fill_prices = self.minute_prices_on_tick(1) cost_basis = sum(initial_fill_prices) * order_size # Last known prices of assets that will be auto-closed. fp0 = final_prices[0] fp1 = final_prices[1] initial_cash = capital_base after_fills = initial_cash - cost_basis after_first_auto_close = after_fills + fp0 * (order_size) after_second_auto_close = after_first_auto_close + fp1 * (order_size) expected_cash = [initial_cash] expected_position_counts = [0] # We have the rest of the first sim day, plus the second, third and # fourth days' worth of minutes with cash spent. expected_cash.extend([after_fills] * (389 + 390 + 390 + 390)) expected_position_counts.extend([3] * (389 + 390 + 390 + 390)) # We then have two days with the cash refunded from asset 0. expected_cash.extend([after_first_auto_close] * (390 + 390)) expected_position_counts.extend([2] * (390 + 390)) # We then have one day with cash refunded from asset 1. expected_cash.extend([after_second_auto_close] * 390) expected_position_counts.extend([1] * 390) # Check list lengths first to avoid expensive comparison self.assertEqual(len(algo.cash), len(expected_cash)) # TODO find more efficient way to compare these lists self.assertEqual(algo.cash, expected_cash) self.assertEqual( list(output['ending_cash']), [ after_fills, after_fills, after_fills, after_first_auto_close, after_first_auto_close, after_second_auto_close, after_second_auto_close, ], ) self.assertEqual(algo.num_positions, expected_position_counts) self.assertEqual( list(output['longs_count']), [3, 3, 3, 2, 2, 1, 1], ) # Check expected transactions. # We should have a transaction of order_size shares per sid. transactions = output['transactions'] # Note that the transactions appear on the first day rather than the # second in minute mode, because the fills happen on the second tick of # the backtest, which is still on the first day in minute mode. initial_fills = transactions.iloc[0] self.assertEqual(len(initial_fills), len(assets)) for asset, txn in zip(assets, initial_fills): self.assertDictContainsSubset( { 'amount': order_size, 'commission': None, 'dt': backtest_minutes[1], 'price': initial_fill_prices[asset], 'sid': asset, }, txn, ) # This will be a UUID. self.assertIsInstance(txn['order_id'], str) def transactions_for_date(date): return transactions.iloc[self.test_days.get_loc(date)] # We should have exactly one auto-close transaction on the close date # of asset 0. (first_auto_close_transaction,) = transactions_for_date( assets[0].auto_close_date ) self.assertEqual( first_auto_close_transaction, { 'amount': -order_size, 'commission': None, 'dt': algo.trading_calendar.session_close( assets[0].auto_close_date, ), 'price': fp0, 'sid': assets[0], 'order_id': None, # Auto-close txns emit Nones for order_id. }, ) (second_auto_close_transaction,) = transactions_for_date( assets[1].auto_close_date ) self.assertEqual( second_auto_close_transaction, { 'amount': -order_size, 'commission': None, 'dt': algo.trading_calendar.session_close( assets[1].auto_close_date, ), 'price': fp1, 'sid': assets[1], 'order_id': None, # Auto-close txns emit Nones for order_id. }, ) class TestOrderAfterDelist(zf.WithMakeAlgo, zf.ZiplineTestCase): start = pd.Timestamp('2016-01-05', tz='utc') day_1 = pd.Timestamp('2016-01-06', tz='utc') day_4 = pd.Timestamp('2016-01-11', tz='utc') end = pd.Timestamp('2016-01-15', tz='utc') # FIXME: Pass a benchmark source here. BENCHMARK_SID = None @classmethod def make_equity_info(cls): return pd.DataFrame.from_dict( { # Asset whose auto close date is after its end date. 1: { 'start_date': cls.start, 'end_date': cls.day_1, 'auto_close_date': cls.day_4, 'symbol': "ASSET1", 'exchange': "TEST", }, # Asset whose auto close date is before its end date. 2: { 'start_date': cls.start, 'end_date': cls.day_4, 'auto_close_date': cls.day_1, 'symbol': 'ASSET2', 'exchange': 'TEST', }, }, orient='index', ) # XXX: This suite doesn't use the data in its DataPortal; it uses a # FakeDataPortal with different mock data. def init_instance_fixtures(self): super(TestOrderAfterDelist, self).init_instance_fixtures() self.data_portal = FakeDataPortal(self.asset_finder) @parameterized.expand([ ('auto_close_after_end_date', 1), ('auto_close_before_end_date', 2), ]) def test_order_in_quiet_period(self, name, sid): asset = self.asset_finder.retrieve_asset(sid) algo_code = dedent(""" from zipline.api import ( sid, order, order_value, order_percent, order_target, order_target_percent, order_target_value ) def initialize(context): pass def handle_data(context, data): order(sid({sid}), 1) order_value(sid({sid}), 100) order_percent(sid({sid}), 0.5) order_target(sid({sid}), 50) order_target_percent(sid({sid}), 0.5) order_target_value(sid({sid}), 50) """).format(sid=sid) # run algo from 1/6 to 1/7 algo = self.make_algo( script=algo_code, sim_params=SimulationParameters( start_session=pd.Timestamp("2016-01-06", tz='UTC'), end_session=
pd.Timestamp("2016-01-07", tz='UTC')
pandas.Timestamp
#!/usr/bin/env python import os import sys import pandas as pd import numpy as np import time from sqlalchemy import create_engine from itertools import repeat import multiprocessing import tqdm import genes import eqtls def find_snps( inter_df, gene_info_df, tissues, output_dir, C, genotypes_fp, _eqtl_project_db, covariates_dir, expression_dir, pval_threshold, maf_threshold, fdr_threshold, num_processes, _db, logger, suppress_intermediate_files=False ): start_time = time.time() global eqtl_project_db eqtl_project_db = _eqtl_project_db global db db = _db enzymes = inter_df['enzyme'].drop_duplicates().tolist() hic_libs = genes.fetch_hic_libs(db) hic_libs = hic_libs.rename(columns={'rep_count': 'cell_line_replicates'}) inter_df = inter_df.merge( hic_libs, how='left', left_on=['cell_line', 'enzyme'], right_on=['library', 'enzyme']) default_chrom = ['chr' + str(i) for i in list(range(1, 23))] + ['X', 'Y', 'M'] chrom_list = inter_df['fragment_chr'].drop_duplicates().tolist() chrom_list = [i for i in default_chrom if i in chrom_list] inter_df = inter_df[inter_df['fragment_chr'].isin(default_chrom)] inter_df = inter_df.astype({'fragment': int}) gene_info_df = gene_info_df.rename( columns={ 'name': 'gene', 'chr': 'gene_chr', 'start': 'gene_start', 'end': 'gene_end', 'fragment': 'gene_fragment', 'id': 'gene_id'}) all_snps = [] all_genes = [] all_eqtls = [] logger.write('Finding SNPs within fragments interacting with genes in...') for chrom in sorted(chrom_list): chrom_dir = os.path.join(output_dir, chrom) #if os.path.exists(os.path.join(chrom_dir, 'eqtls.txt')): # logger.write(' Warning: {} already exists. Skipping.'.format( # os.path.join(chrom_dir, 'eqtls.txt'))) # continue logger.write(' Chromosome {}'.format(chrom)) snp_cols = ['snp', 'variant_id', 'chr', 'locus', 'id', 'fragment', 'enzyme'] chrom_df = inter_df[inter_df['fragment_chr'] == chrom] chrom_df = chrom_df.astype({'fragment': int, 'fragment_chr': object}) enzymes = chrom_df['enzyme'].drop_duplicates().tolist() snp_df = [] for enzyme in enzymes: enzyme_df = chrom_df[chrom_df['enzyme'] == enzyme] enzyme_df = enzyme_df.merge( gene_info_df, how='inner', left_on=['query_chr', 'query_fragment', 'enzyme'], right_on=['chrom', 'gene_fragment', 'enzyme']) fragment_df = enzyme_df[ ['gencode_id', 'fragment_chr', 'fragment']].drop_duplicates() enzyme_df = enzyme_df.sort_values(by=['fragment']) chunksize = 20000 enzyme_chunks = [enzyme_df[i:i+chunksize] for i in range(0, enzyme_df.shape[0], chunksize)] manager = multiprocessing.Manager() snps = manager.list() desc = ' * Hi-C libraries restricted with {}'.format( enzyme) bar_format = '{desc}: {percentage:3.0f}% |{bar}| {n_fmt}/{total_fmt} {unit}' ''' for df in tqdm.tqdm(enzyme_chunks, desc=desc, unit='batches', ncols=80, bar_format=bar_format): find_gene_snps( df, enzyme, snps) ''' with multiprocessing.Pool(processes=4) as pool: for _ in tqdm.tqdm( pool.istarmap( find_gene_snps, zip(enzyme_chunks, repeat(enzyme), repeat(snps)) ), total=len(enzyme_chunks), desc=desc, unit='batches', ncols=80, bar_format=bar_format): pass for df in snps: df['enzyme'] = enzyme snp_df.append(df) if len(snp_df) == 0: continue snp_df = pd.concat(snp_df) logger.verbose = False gene_df, snp_df = filter_snp_fragments( snp_df, logger) snp_df.sort_values(by=['variant_id'], inplace=True) snp_list = snp_df['variant_id'].drop_duplicates().tolist() batchsize = 2000 snp_batches = [snp_list[i:i + batchsize] for i in range(0, len(snp_list), batchsize)] chrom_eqtl_df = [] for batch_num, snp_batch in enumerate(snp_batches): if len(snp_batches) > 1: logger.verbose = True logger.write(' Mapping eQTLs batch {} of {}'.format( batch_num+1, len(snp_batches))) logger.verbose = False batch_gene_df = gene_df[gene_df['variant_id'].isin(snp_batch)] eqtl_df = eqtls.map_eqtls( batch_gene_df, tissues, output_dir, C, genotypes_fp, num_processes, eqtl_project_db, covariates_dir, expression_dir, pval_threshold, maf_threshold, fdr_threshold, logger) if eqtl_df is None: continue chrom_eqtl_df.append(eqtl_df) if len(chrom_eqtl_df) > 0: chrom_eqtl_df = pd.concat(chrom_eqtl_df) else: chrom_eqtl_df = pd.DataFrame() if not suppress_intermediate_files: os.makedirs(chrom_dir, exist_ok=True) snp_df.to_csv(os.path.join(chrom_dir, 'snps.txt'), sep='\t', index=False) gene_df.to_csv(os.path.join(chrom_dir, 'genes.txt'), sep='\t', index=False) chrom_eqtl_df.to_csv(os.path.join(chrom_dir, 'eqtls.txt'), sep='\t', index=False) all_eqtls.append(chrom_eqtl_df) all_snps.append(snp_df) all_genes.append(gene_df) logger.verbose = True if len(all_eqtls) == 0: snp_df =
pd.DataFrame()
pandas.DataFrame
# Author: <NAME> import pandas as pd import sys def create_means_contralateral_average(means_input_file, contralateral_means_output_file): means_df =
pd.read_csv(means_input_file)
pandas.read_csv
""" Tests whether ColumnPropagation works """ from inspect import cleandoc import pandas from pandas import DataFrame from mlinspect._pipeline_inspector import PipelineInspector from mlinspect.inspections import ColumnPropagation def test_propagation_merge(): """ Tests whether ColumnPropagation works for joins """ test_code = cleandoc(""" import pandas as pd df_a = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c', 'cat_b'], 'B': [1, 2, 4, 5, 7]}) df_b = pd.DataFrame({'B': [1, 2, 3, 4, 5], 'C': [1, 5, 4, 11, None]}) df_merged = df_a.merge(df_b, on='B') """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_required_inspection(ColumnPropagation(["A"], 2)) \ .execute() inspection_results = list(inspector_result.dag_node_to_inspection_results.values()) propagation_output = inspection_results[0][ColumnPropagation(["A"], 2)] expected_df = DataFrame([['cat_a', 1, 'cat_a'], ['cat_b', 2, 'cat_b']], columns=['A', 'B', 'mlinspect_A']) pandas.testing.assert_frame_equal(propagation_output.reset_index(drop=True), expected_df.reset_index(drop=True)) propagation_output = inspection_results[1][ColumnPropagation(["A"], 2)] expected_df = DataFrame([[1, 1., None], [2, 5., None]], columns=['B', 'C', 'mlinspect_A']) pandas.testing.assert_frame_equal(propagation_output.reset_index(drop=True), expected_df.reset_index(drop=True)) propagation_output = inspection_results[2][ColumnPropagation(["A"], 2)] expected_df = DataFrame([['cat_a', 1, 1., 'cat_a'], ['cat_b', 2, 5., 'cat_b']], columns=['A', 'B', 'C', 'mlinspect_A']) pandas.testing.assert_frame_equal(propagation_output.reset_index(drop=True), expected_df.reset_index(drop=True)) def test_propagation_projection(): """ Tests whether ColumnPropagation works for projections """ test_code = cleandoc(""" import pandas as pd pandas_df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c', 'cat_b'], 'B': [1, 2, 4, 5, 7], 'C': [2, 2, 10, 5, 7]}) pandas_df = pandas_df[['B', 'C']] pandas_df = pandas_df[['C']] """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_required_inspection(ColumnPropagation(["A"], 2)) \ .execute() inspection_results = list(inspector_result.dag_node_to_inspection_results.values()) propagation_output = inspection_results[0][ColumnPropagation(["A"], 2)] expected_df =
DataFrame([['cat_a', 1, 2, 'cat_a'], ['cat_b', 2, 2, 'cat_b']], columns=['A', 'B', 'C', 'mlinspect_A'])
pandas.DataFrame
import pandas as pd from functools import reduce from pathlib import Path def merge_benefits(cps, year, data_path, export=True): """ Merge the benefit variables onto the CPS files. TaxData use the following variables imputed by C-TAM: Medicaid: MedicaidX Medicare: MedicareX Veterans Benefits: vb_impute SNAP: SNAP_Imputation SSI: ssi_impute Social Security: ss_val (renamed to ss_impute) Housing assistance: housing_impute TANF: tanf_impute Unemployment Insurance: UI_impute WIC: (women, children, infants): wic_impute (renamed wic_women, wic_children, and wic_infants) """ def read_ben(path_prefix, usecols): path = Path(data_path, path_prefix + str(year) + ".csv") return pd.read_csv(path, usecols=usecols) start_len = len(cps) # read in benefit imputations mcaid = read_ben("medicaid", ["MedicaidX", "peridnum"]) mcare = read_ben("medicare", ["MedicareX", "peridnum"]) vb = read_ben("VB_Imputation", ["vb_impute", "peridnum"]) snap = read_ben("SNAP_Imputation_", ["h_seq", "snap_impute"]) ssi = read_ben("SSI_Imputation", ["ssi_impute", "peridnum"]) ss = read_ben("SS_augmentation_", ["ss_val", "peridnum"]).rename( columns={"ss_val": "ss_impute"} ) housing = read_ben( "Housing_Imputation_logreg_", ["fh_seq", "ffpos", "housing_impute"] ) tanf = read_ben("TANF_Imputation_", ["peridnum", "tanf_impute"]) # drop duplicated people in tanf tanf.drop_duplicates("peridnum", inplace=True) ui = read_ben("UI_imputation_logreg_", ["peridnum", "UI_impute"]) WIC_STR = "WIC_imputation_{}_logreg_" wic_children = read_ben( WIC_STR.format("children"), ["peridnum", "WIC_impute"] ).rename(columns={"WIC_impute": "wic_children"}) wic_infants = read_ben( WIC_STR.format("infants"), ["peridnum", "WIC_impute"] ).rename(columns={"WIC_impute": "wic_infants"}) wic_women = read_ben(WIC_STR.format("women"), ["peridnum", "WIC_impute"]).rename( columns={"WIC_impute": "wic_women"} ) # combine all WIC imputation into one variable wic = reduce( lambda left, right: pd.merge(left, right, on="peridnum"), [wic_children, wic_infants, wic_women], ) wic["wic_impute"] = wic[["wic_women", "wic_infants", "wic_children"]].sum(axis=1) # merge housing and snap cps_merged = cps.merge(housing, on=["fh_seq", "ffpos"], how="left") cps_merged = cps_merged.merge(snap, on="h_seq", how="left") # merge other variables peridnum_dfs = [cps_merged, vb, ssi, ss, tanf, ui, wic, mcaid, mcare] cps_merged = reduce( lambda left, right:
pd.merge(left, right, on="peridnum", how="left")
pandas.merge
import pandas as pd from skimage.measure import regionprops from .compute_fsd_features import compute_fsd_features from .compute_gradient_features import compute_gradient_features from .compute_haralick_features import compute_haralick_features from .compute_intensity_features import compute_intensity_features from .compute_morphometry_features import compute_morphometry_features from ..segmentation import label as htk_label def compute_nuclei_features(im_label, im_nuclei, im_cytoplasm=None, fsd_bnd_pts=128, fsd_freq_bins=6, cyto_width=8, num_glcm_levels=32, morphometry_features_flag=True, fsd_features_flag=True, intensity_features_flag=True, gradient_features_flag=True, haralick_features_flag=True ): """ Calculates features for nuclei classification Parameters ---------- im_label : array_like A labeled mask image wherein intensity of a pixel is the ID of the object it belongs to. Non-zero values are considered to be foreground objects. im_nuclei : array_like Nucleus channel intensity image. im_cytoplasm : array_like Cytoplasm channel intensity image. fsd_bnd_pts : int, optional Number of points for boundary resampling to calculate fourier descriptors. Default value = 128. fsd_freq_bins : int, optional Number of frequency bins for calculating FSDs. Default value = 6. cyto_width : float, optional Estimated width of the ring-like neighborhood region around each nucleus to be considered as its cytoplasm. Default value = 8. num_glcm_levels: int, optional An integer specifying the number of gray levels For example, if `NumLevels` is 32, the intensity values of the input image are scaled so they are integers between 0 and 31. The number of gray levels determines the size of the gray-level co-occurrence matrix. Default: 32 morphometry_features_flag : bool, optional A flag that can be used to specify whether or not to compute morphometry (size and shape) features. See histomicstk.features.compute_morphometry_features for more details. fsd_features_flag : bool, optional A flag that can be used to specify whether or not to compute Fouried shape descriptor (FSD) features. See `histomicstk.features.compute_fsd_features` for more details. intensity_features_flag : bool, optional A flag that can be used to specify whether or not to compute intensity features from the nucleus and cytoplasm channels. See `histomicstk.features.compute_fsd_features` for more details. gradient_features_flag : bool, optional A flag that can be used to specify whether or not to compute gradient/edge features from intensity and cytoplasm channels. See `histomicstk.features.compute_gradient_features` for more details. haralick_features_flag : bool, optional A flag that can be used to specify whether or not to compute haralick features from intensity and cytoplasm channels. See `histomicstk.features.compute_haralick_features` for more details. Returns ------- fdata : pandas.DataFrame A pandas data frame containing the features listed below for each object/label Notes ----- List of features computed by this function Morphometry (size and shape) features of the nuclei See histomicstk.features.compute_morphometry_features for more details. Feature names prefixed by *Size.* or *Shape.*. Fourier shape descriptor features See `histomicstk.features.compute_fsd_features` for more details. Feature names are prefixed by *FSD*. Intensity features for the nucleus and cytoplasm channels See `histomicstk.features.compute_fsd_features` for more details. Feature names are prefixed by *Nucleus.Intensity.* for nucleus features and *Cytoplasm.Intensity.* for cytoplasm features. Gradient/edge features for the nucleus and cytoplasm channels See `histomicstk.features.compute_gradient_features` for more details. Feature names are prefixed by *Nucleus.Gradient.* for nucleus features and *Cytoplasm.Gradient.* for cytoplasm features. Haralick features for the nucleus and cytoplasm channels See `histomicstk.features.compute_haralick_features` for more details. Feature names are prefixed by *Nucleus.Haralick.* for nucleus features and *Cytoplasm.Haralick.* for cytoplasm features. See Also -------- histomicstk.features.compute_morphometry_features, histomicstk.features.compute_fsd_features, histomicstk.features.compute_intensity_features, histomicstk.features.compute_gradient_features, histomicstk.features.compute_haralick_features """ feature_list = [] # get the number of objects in im_label nuclei_props = regionprops(im_label) # compute cytoplasm mask if im_cytoplasm is not None: cyto_mask = htk_label.dilate_xor(im_label, neigh_width=cyto_width) cytoplasm_props = regionprops(cyto_mask) # compute morphometry features if morphometry_features_flag: fmorph = compute_morphometry_features(im_label, rprops=nuclei_props) feature_list.append(fmorph) # compute FSD features if fsd_features_flag: ffsd = compute_fsd_features(im_label, fsd_bnd_pts, fsd_freq_bins, cyto_width, rprops=nuclei_props) feature_list.append(ffsd) # compute nuclei intensity features if intensity_features_flag: fint_nuclei = compute_intensity_features(im_label, im_nuclei, rprops=nuclei_props) fint_nuclei.columns = ['Nucleus.' + col for col in fint_nuclei.columns] feature_list.append(fint_nuclei) # compute cytoplasm intensity features if intensity_features_flag and im_cytoplasm is not None: fint_cytoplasm = compute_intensity_features(cyto_mask, im_cytoplasm, rprops=cytoplasm_props) fint_cytoplasm.columns = ['Cytoplasm.' + col for col in fint_cytoplasm.columns] feature_list.append(fint_cytoplasm) # compute nuclei gradient features if gradient_features_flag: fgrad_nuclei = compute_gradient_features(im_label, im_nuclei, rprops=nuclei_props) fgrad_nuclei.columns = ['Nucleus.' + col for col in fgrad_nuclei.columns] feature_list.append(fgrad_nuclei) # compute cytoplasm gradient features if gradient_features_flag and im_cytoplasm is not None: fgrad_cytoplasm = compute_gradient_features(cyto_mask, im_cytoplasm, rprops=cytoplasm_props) fgrad_cytoplasm.columns = ['Cytoplasm.' + col for col in fgrad_cytoplasm.columns] feature_list.append(fgrad_cytoplasm) # compute nuclei haralick features if haralick_features_flag: fharalick_nuclei = compute_haralick_features( im_label, im_nuclei, num_levels=num_glcm_levels, rprops=nuclei_props ) fharalick_nuclei.columns = ['Nucleus.' + col for col in fharalick_nuclei.columns] feature_list.append(fharalick_nuclei) # compute cytoplasm haralick features if haralick_features_flag and im_cytoplasm is not None: fharalick_cytoplasm = compute_haralick_features( cyto_mask, im_cytoplasm, num_levels=num_glcm_levels, rprops=cytoplasm_props ) fharalick_cytoplasm.columns = ['Cytoplasm.' + col for col in fharalick_cytoplasm.columns] feature_list.append(fharalick_cytoplasm) # Merge all features fdata =
pd.concat(feature_list, axis=1)
pandas.concat
### mkwc_util.py : Contains utilities for extracting and processing data from the MKWC website ### Author : <NAME> ### Date : 6/1/2021 import os import numpy as np import pandas as pd from . import times ### NOTE: Seeing data is STORED by UT, with data in HST ### CFHT data is STORED by HST, with data in HST mkwc_url = 'http://mkwc.ifa.hawaii.edu/' year_url = mkwc_url+'archive/wx/cfht/cfht-wx.{}.dat' # Cutoff for daily-vs-yearly CFHT files on MKWC website cfht_cutoff = 55927.41666667 # 01/01/2012 12:00 am HST # Time columns from MKWC data time_cols = ['year', 'month', 'day', 'hour', 'minute', 'second'] # Data-specific fields data_types = { 'cfht': { 'web_pat': mkwc_url+'archive/wx/cfht/indiv-days/cfht-wx.{}.dat', 'file_pat': "{}cfht-wx.{}.dat", 'data_cols': ['wind_speed', 'wind_direction', 'temperature', 'relative_humidity', 'pressure'], }, 'mass': { 'web_pat': mkwc_url+'current/seeing/mass/{}.mass.dat', 'file_pat': '{}mass/{}.mass.dat', 'data_cols': ['mass'], }, 'dimm': { 'web_pat': mkwc_url+'current/seeing/dimm/{}.dimm.dat', 'file_pat': '{}dimm/{}.dimm.dat', 'data_cols': ['dimm'], }, 'masspro': { 'web_pat': mkwc_url+'current/seeing/masspro/{}.masspro.dat', 'file_pat': '{}masspro/{}.masspro.dat', 'data_cols': ['masspro_half', 'masspro_1', 'masspro_2', 'masspro_4', 'masspro_8', 'masspro_16', 'masspro'], }, } # Mix and match data & time columns for dtype in data_types: # CFHT files don't have seconds tcols = time_cols if dtype != 'cfht' else time_cols[:-1] # Format web columns data_types[dtype]['web_cols'] = tcols+data_types[dtype]['data_cols'] # Format file columns data_types[dtype]['cols'] = [dtype+'_mjd']+data_types[dtype]['data_cols'] # Different file storage timezones data_types[dtype]['file_zone'] = 'hst' if dtype=='cfht' else 'utc' ############################# ######### Functions ######### ############################# def cfht_from_year(datestrings, year): """ Gets pre-2012 MKWC data from the year-long file instead of the by-date files. datestrings: dates to pull data from, as {yyyymmdd} strings year: the year to pull datestring data from returns: dataframe with cfht data from requested dates """ # Get year-long file URL url = year_url.format(year) # Read in data try: web_cols = data_types['cfht']['web_cols'] year_data = pd.read_csv(url, delim_whitespace=True, header=None, names=web_cols, usecols=range(len(web_cols))) except: # No data, return blank return pd.DataFrame(columns=data_types['cfht']['cols']) # Full dataset all_data = [pd.DataFrame(columns=data_types['cfht']['cols'])] # Slice up dataframe for ds in datestrings: month, day = int(ds[4:6]), int(ds[6:]) # Get data by month and day df = year_data.loc[(year_data.month==month) & (year_data.day==day)].copy() # Format columns if not df.empty: format_columns(df, 'cfht') # Add to full dataset all_data.append(df) return
pd.concat(all_data)
pandas.concat
# Generate max, mean, and std from computed feature value comparison from __future__ import print_function import csv import pandas as pd # input_file = 'output.csv' # output_file = 'validation.csv' input_file = 'output1.csv' output_file = 'validation1.csv' df1 =
pd.read_csv(input_file)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import xgboost as xgb from sklearn.preprocessing import LabelEncoder import lightgbm as lgb from catboost import CatBoostClassifier from sklearn.model_selection import train_test_split #导入数据集 def read_data(base_info_path, annual_report_info_path, tax_info_path, change_info_path, news_info_path, other_info_path, entprise_info_path, ): base_info = pd.read_csv(base_info_path) # 企业基本信息 annual_report_info = pd.read_csv(annual_report_info_path) tax_info = pd.read_csv(annual_report_info_path) change_info = pd.read_csv(change_info_path) news_info = pd.read_csv(news_info_path) other_info = pd.read_csv(other_info_path) entprise_info =
pd.read_csv(entprise_info_path)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sat Dec 18 11:31:56 2021 @author: nguy0936 I increased the number of layers from conv1 to embedding to see if more layers could result in better performance. I did this for only set 1 - Hallett """ # load packages import pandas as pd import umap import matplotlib.pyplot as plt import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import xgboost as xgb from xgboost import XGBClassifier from xgboost import cv from sklearn.metrics import roc_auc_score from hyperopt import STATUS_OK, Trials, fmin, hp, tpe from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import roc_curve ##========== load low-high level features mdir1 = 'R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\Data set\\set1\\' mdir2 = 'R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\Data set\\set2\\' def load_feature(mdir): # function to load data conv1 = pd.read_csv(mdir + 'result_conv1.csv', header=None) # conv1 conv2 = pd.read_csv(mdir + 'result_conv2.csv', header=None) # conv2 conv3 = pd.read_csv(mdir + 'result_conv3.csv', header=None) # conv3 conv4 = pd.read_csv(mdir + 'result_conv4.csv', header=None) # conv4 embedding = pd.read_csv(mdir + 'result_embedding.csv', header=None) # embedding X_hand = pd.read_csv(mdir + 'X_hand.csv') # bias features X_hand = X_hand.fillna(0) Y = pd.read_csv(mdir + 'Y.csv', header=None) # score y = Y y[:]=np.where(y<3,0,1) # combine data lowd_conv1 = PCA(n_components=10).fit_transform(conv1) lowd_conv2 = PCA(n_components=10).fit_transform(conv2) lowd_embedding = PCA(n_components=20).fit_transform(embedding) lowd_frames = [pd.DataFrame(lowd_conv1), pd.DataFrame(lowd_conv2), pd.DataFrame(lowd_embedding)] lowd_df =
pd.concat(lowd_frames, axis=1)
pandas.concat
# Import python modules import os, sys # data handling libraries import pandas as pd import numpy as np import pickle import json import dask from multiprocessing import Pool # graphical control libraries import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt # shape and layer libraries import fiona from shapely.geometry import MultiPolygon, shape, point, box from descartes import PolygonPatch from matplotlib.collections import PatchCollection from mpl_toolkits.basemap import Basemap from mpl_toolkits.axes_grid1 import make_axes_locatable import geopandas as gpd # data wrangling libraries import ftplib, urllib, wget, bz2 from bs4 import BeautifulSoup as bs class ogh_meta: """ The json file that describes the Gridded climate data products """ def __init__(self): self.__meta_data = dict(json.load(open('ogh_meta.json','rb'))) # key-value retrieval def __getitem__(self, key): return(self.__meta_data[key]) # key list def keys(self): return(self.__meta_data.keys()) # value list def values(self): return(self.__meta_data.values()) # print('Version '+datetime.fromtimestamp(os.path.getmtime('ogh.py')).strftime('%Y-%m-%d %H:%M:%S')+' jp') def saveDictOfDf(outfilename, dictionaryObject): # write a dictionary of dataframes to a json file using pickle with open(outfilename, 'wb') as f: pickle.dump(dictionaryObject, f) f.close() def readDictOfDf(infilename): # read a dictionary of dataframes from a json file using pickle with open(infilename, 'rb') as f: dictionaryObject = pickle.load(f) f.close() return(dictionaryObject) def reprojShapefile(sourcepath, newprojdictionary={'proj':'longlat', 'ellps':'WGS84', 'datum':'WGS84'}, outpath=None): """ sourcepath: (dir) the path to the .shp file newprojdictionary: (dict) the new projection definition in the form of a dictionary (default provided) outpath: (dir) the output path for the new shapefile """ # if outpath is none, treat the reprojection as a file replacement if isinstance(outpath, type(None)): outpath = sourcepath shpfile = gpd.GeoDataFrame.from_file(sourcepath) shpfile = shpfile.to_crs(newprojdictionary) shpfile.to_file(outpath) def getFullShape(shapefile): """ Generate a MultiPolygon to represent each shape/polygon within the shapefile shapefile: (dir) a path to the ESRI .shp shapefile """ shp = fiona.open(shapefile) mp = [shape(pol['geometry']) for pol in shp] mp = MultiPolygon(mp) shp.close() return(mp) def getShapeBbox(polygon): """ Generate a geometric box to represent the bounding box for the polygon, shapefile connection, or MultiPolygon polygon: (geometry) a geometric polygon, MultiPolygon, or shapefile connection """ # identify the cardinal bounds minx, miny, maxx, maxy = polygon.bounds bbox = box(minx, miny, maxx, maxy, ccw=True) return(bbox) def readShapefileTable(shapefile): """ read in the datatable captured within the shapefile properties shapefile: (dir) a path to the ESRI .shp shapefile """ #cent_df = gpd.read_file(shapefile) shp = fiona.open(shapefile) centroid = [eachpol['properties'] for eachpol in shp] cent_df = pd.DataFrame.from_dict(centroid, orient='columns') shp.close() return(cent_df) def filterPointsinShape(shape, points_lat, points_lon, points_elev=None, buffer_distance=0.06, buffer_resolution=16, labels=['LAT', 'LONG_', 'ELEV']): """ filter for datafiles that can be used shape: (geometry) a geometric polygon or MultiPolygon points_lat: (series) a series of latitude points in WGS84 projection points_lon: (series) a series of longitude points in WGS84 projection points_elev: (series) a series of elevation points in meters; optional - default is None buffer_distance: (float64) a numerical multiplier to increase the geodetic boundary area buffer_resolution: (float64) the increments between geodetic longlat degrees labels: (list) a list of preferred labels for latitude, longitude, and elevation """ # add buffer region region = shape.buffer(buffer_distance, resolution=buffer_resolution) # construct points_elev if null if isinstance(points_elev, type(None)): points_elev=np.repeat(np.nan, len(points_lon)) # Intersection each coordinate with the region limited_list = [] for lon, lat, elev in zip(points_lon, points_lat, points_elev): gpoint = point.Point(lon, lat) if gpoint.intersects(region): limited_list.append([lat, lon, elev]) maptable = pd.DataFrame.from_records(limited_list, columns=labels) ## dask approach ## #intersection=[] #for lon, lat, elev in zip(points_lon, points_lat, points_elev): # gpoint = point.Point(lon, lat) # intersection.append(dask.delayed(gpoint.intersects(region))) # limited_list.append([intersection, lat, lon, elev]) # convert to dataframe #maptable = pd.DataFrame({labels[0]:points_lat, labels[1]:points_lon, labels[2]:points_elev} # .loc[dask.compute(intersection)[0],:] # .reset_index(drop=True) return(maptable) def scrapeurl(url, startswith=None, hasKeyword=None): """ scrape the gridded datafiles from a url of interest url: (str) the web folder path to be scraped for hyperlink references startswith: (str) the starting keywords for a webpage element; default is None hasKeyword: (str) keywords represented in a webpage element; default is None """ # grab the html of the url, and prettify the html structure page = urllib2.urlopen(url).read() page_soup = bs(page, 'lxml') page_soup.prettify() # loop through and filter the hyperlinked lines if pd.isnull(startswith): temp = [anchor['href'] for anchor in page_soup.findAll('a', href=True) if hasKeyword in anchor['href']] else: temp = [anchor['href'] for anchor in page_soup.findAll('a', href=True) if anchor['href'].startswith(startswith)] # convert to dataframe then separate the lon and lat as float coordinate values temp = pd.DataFrame(temp, columns = ['filenames']) return(temp) def treatgeoself(shapefile, NAmer, folder_path=os.getcwd(), outfilename='mappingfile.csv', buffer_distance=0.06): """ TreatGeoSelf to some [data] lovin'! shapefile: (dir) the path to an ESRI shapefile for the region of interest Namer: (dir) the path to an ESRI shapefile, which has each 1/16th coordinate and elevation information from a DEM folder_path: (dir) the destination folder path for the mappingfile output; default is the current working directory outfilename: (str) the name of the output file; default name is 'mappingfile.csv' buffer_distance: (float64) the multiplier to be applied for increasing the geodetic boundary area; default is 0.06 """ # conform projections to longlat values in WGS84 reprojShapefile(shapefile, newprojdictionary={'proj':'longlat', 'ellps':'WGS84', 'datum':'WGS84'}, outpath=None) # read shapefile into a multipolygon shape-object shape_mp = getFullShape(shapefile) # read in the North American continental DEM points for the station elevations NAmer_datapoints = readShapefileTable(NAmer).rename(columns={'Lat':'LAT','Long':'LONG_','Elev':'ELEV'}) # generate maptable maptable = filterPointsinShape(shape_mp, points_lat=NAmer_datapoints.LAT, points_lon=NAmer_datapoints.LONG_, points_elev=NAmer_datapoints.ELEV, buffer_distance=buffer_distance, buffer_resolution=16, labels=['LAT', 'LONG_', 'ELEV']) maptable.reset_index(inplace=True) maptable = maptable.rename(columns={"index":"FID"}) print(maptable.shape) print(maptable.tail()) # print the mappingfile mappingfile=os.path.join(folder_path, outfilename) maptable.to_csv(mappingfile, sep=',', header=True, index=False) return(mappingfile) def mapContentFolder(resid): """ map the content folder within HydroShare resid: (str) a string hash that represents the hydroshare resource that has been migrated """ path = os.path.join('/home/jovyan/work/notebooks/data', str(resid), str(resid), 'data/contents') return(path) # ### CIG (DHSVM)-oriented functions def compile_bc_Livneh2013_locations(maptable): """ compile a list of file URLs for bias corrected Livneh et al. 2013 (CIG) maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/Livneh/bcLivneh_WWA_2013/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) def compile_Livneh2013_locations(maptable): """ compile a list of file URLs for Livneh et al. 2013 (CIG) maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://www.cses.washington.edu/rocinante/Livneh/Livneh_WWA_2013/forcs_dhsvm/',basename] locations.append(''.join(url)) return(locations) ### VIC-oriented functions def compile_VICASCII_Livneh2015_locations(maptable): """ compile the list of file URLs for Livneh et al., 2015 VIC.ASCII outputs maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Fluxes_Livneh_NAmerExt_15Oct2014', str(row['LAT']), str(row['LONG_'])]) url=["ftp://192.168.127.12/pub/dcp/archive/OBS/livneh2014.1_16deg/VIC.ASCII/latitude.",str(row['LAT']),'/',loci,'.bz2'] locations.append(''.join(url)) return(locations) def compile_VICASCII_Livneh2013_locations(maptable): """ compile the list of file URLs for Livneh et al., 2013 VIC.ASCII outputs for the USA maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ # identify the subfolder blocks blocks = scrape_domain(domain='livnehpublicstorage.colorado.edu', subdomain='/public/Livneh.2013.CONUS.Dataset/Fluxes.asc.v.1.2.1915.2011.bz2/', startswith='fluxes') # map each coordinate to the subfolder maptable = mapToBlock(maptable, blocks) locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['VIC_fluxes_Livneh_CONUSExt_v.1.2_2013', str(row['LAT']), str(row['LONG_'])]) url='/'.join(["ftp://livnehpublicstorage.colorado.edu/public/Livneh.2013.CONUS.Dataset/Fluxes.asc.v.1.2.1915.2011.bz2", str(row['blocks']), loci+".bz2"]) locations.append(url) return(locations) ### Climate (Meteorological observations)-oriented functions def canadabox_bc(): """ Establish the Canadian (north of the US bounding boxes) Columbia river basin bounding box """ # left, bottom, right top return(box(-138.0, 49.0, -114.0, 53.0)) def scrape_domain(domain, subdomain, startswith=None): """ scrape the gridded datafiles from a url of interest domain: (str) the web folder path subdomain: (str) the subfolder path to be scraped for hyperlink references startswith: (str) the starting keywords for a webpage element; default is None """ # connect to domain ftp = ftplib.FTP(domain) ftp.login() ftp.cwd(subdomain) # scrape for data directories tmp = [dirname for dirname in ftp.nlst() if dirname.startswith(startswith)] geodf = pd.DataFrame(tmp, columns=['dirname']) # conform to bounding box format tmp = geodf['dirname'].apply(lambda x: x.split('.')[1:]) tmp = tmp.apply(lambda x: list(map(float,x)) if len(x)>2 else x) # assemble the boxes geodf['bbox']=tmp.apply(lambda x: box(x[0]*-1, x[2]-1, x[1]*-1, x[3]) if len(x)>2 else canadabox_bc()) return(geodf) def mapToBlock(df_points, df_regions): for index, eachblock in df_regions.iterrows(): for ind, row in df_points.iterrows(): if point.Point(row['LONG_'], row['LAT']).intersects(eachblock['bbox']): df_points.loc[ind, 'blocks'] = str(eachblock['dirname']) return(df_points) def compile_dailyMET_Livneh2013_locations(maptable): """ compile the list of file URLs for Livneh et al., 2013 Daily Meteorology data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ # identify the subfolder blocks blocks = scrape_domain(domain='livnehpublicstorage.colorado.edu', subdomain='/public/Livneh.2013.CONUS.Dataset/Meteorology.asc.v.1.2.1915.2011.bz2/', startswith='data') # map each coordinate to the subfolder maptable = mapToBlock(maptable, blocks) locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Meteorology_Livneh_CONUSExt_v.1.2_2013', str(row['LAT']), str(row['LONG_'])]) url='/'.join(["ftp://livnehpublicstorage.colorado.edu/public/Livneh.2013.CONUS.Dataset/Meteorology.asc.v.1.2.1915.2011.bz2", str(row['blocks']), loci+".bz2"]) locations.append(url) return(locations) def compile_dailyMET_Livneh2015_locations(maptable): """ compile the list of file URLs for Livneh et al., 2015 Daily Meteorology data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Meteorology_Livneh_NAmerExt_15Oct2014', str(row['LAT']), str(row['LONG_'])]) url=["ftp://192.168.127.12/pub/dcp/archive/OBS/livneh2014.1_16deg/ascii/daily/latitude.", str(row['LAT']),"/",loci,".bz2"] locations.append(''.join(url)) return(locations) # ### WRF-oriented functions def compile_wrfnnrp_raw_Salathe2014_locations(maptable): """ compile a list of file URLs for Salathe et al., 2014 raw WRF NNRP data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/WRF/NNRP/vic_16d/WWA_1950_2010/raw/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) def compile_wrfnnrp_bc_Salathe2014_locations(maptable): """ compile a list of file URLs for the Salathe et al., 2014 bias corrected WRF NNRP data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/WRF/NNRP/vic_16d/WWA_1950_2010/bc/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) # ## Data file migration functions def ensure_dir(f): """ check if the destination folder directory exists; if not, create it and set it as the working directory f: (dir) the directory to create and/or set as working directory """ if not os.path.exists(f): os.makedirs(f) os.chdir(f) def wget_download(listofinterest): """ Download files from an http domain listofinterest: (list) a list of urls to request """ # check and download each location point, if it doesn't already exist in the download directory for fileurl in listofinterest: basename = os.path.basename(fileurl) try: ping = urllib.request.urlopen(fileurl) if ping.getcode()!=404: wget.download(fileurl) print('downloaded: ' + basename) except: print('File does not exist at this URL: ' + basename) # Download the files to the subdirectory def wget_download_one(fileurl): """ Download a file from an http domain fileurl: (url) a url to request """ # check and download each location point, if it doesn't already exist in the download directory basename=os.path.basename(fileurl) # if it exists, remove for new download (overwrite mode) if os.path.isfile(basename): os.remove(basename) try: ping = urllib.request.urlopen(fileurl) if ping.getcode()!=404: wget.download(fileurl) print('downloaded: ' + basename) except: print('File does not exist at this URL: ' + basename) def wget_download_p(listofinterest, nworkers=20): """ Download files from an http domain in parallel listofinterest: (list) a list of urls to request nworkers: (int) the number of processors to distribute tasks; default is 10 """ pool = Pool(int(nworkers)) pool.map(wget_download_one, listofinterest) pool.close() pool.terminate() def ftp_download(listofinterest): """ Download and decompress files from an ftp domain listofinterest: (list) a list of urls to request """ for loci in listofinterest: # establish path info fileurl=loci.replace('ftp://','') # loci is already the url with the domain already appended ipaddress=fileurl.split('/',1)[0] # ip address path=os.path.dirname(fileurl.split('/',1)[1]) # folder path filename=os.path.basename(fileurl) # filename # download the file from the ftp server ftp=ftplib.FTP(ipaddress) ftp.login() ftp.cwd(path) try: ftp.retrbinary("RETR " + filename ,open(filename, 'wb').write) ftp.close() # decompress the file decompbz2(filename) except: os.remove(filename) print('File does not exist at this URL: '+fileurl) def ftp_download_one(loci): """ Download and decompress a file from an ftp domain loci: (url) a url to request """ # establish path info fileurl=loci.replace('ftp://','') # loci is already the url with the domain already appended ipaddress=fileurl.split('/',1)[0] # ip address path=os.path.dirname(fileurl.split('/',1)[1]) # folder path filename=os.path.basename(fileurl) # filename # download the file from the ftp server ftp=ftplib.FTP(ipaddress) ftp.login() ftp.cwd(path) try: ftp.retrbinary("RETR " + filename ,open(filename, 'wb').write) ftp.close() # decompress the file decompbz2(filename) except: os.remove(filename) print('File does not exist at this URL: '+fileurl) def ftp_download_p(listofinterest, nworkers=5): """ Download and decompress files from an ftp domain in parallel listofinterest: (list) a list of urls to request nworkers: (int) the number of processors to distribute tasks; default is 5 """ pool = Pool(int(nworkers)) pool.map(ftp_download_one, listofinterest) pool.close() pool.terminate() def decompbz2(filename): """ Extract a file from a bz2 file of the same name, then remove the bz2 file filename: (dir) the file path for a bz2 compressed file """ with open(filename.split(".bz2",1)[0], 'wb') as new_file, open(filename, 'rb') as zipfile: decompressor = bz2.BZ2Decompressor() for data in iter(lambda : zipfile.read(100 * 1024), b''): new_file.write(decompressor.decompress(data)) os.remove(filename) zipfile.close() new_file.close() print(os.path.splitext(filename)[0] + ' unzipped') def catalogfiles(folderpath): """ make a catalog of the gridded files within a folderpath folderpath: (dir) the folder of files to be catalogged, which have LAT and LONG_ as the last two filename features """ # read in downloaded files temp = [eachfile for eachfile in os.listdir(folderpath) if not os.path.isdir(eachfile)] if len(temp)==0: # no files were available; setting default catalog output structure catalog = pd.DataFrame([], columns=['filenames','LAT','LONG_']) else: # create the catalog dataframe and extract the filename components catalog = pd.DataFrame(temp, columns=['filenames']) catalog[['LAT','LONG_']] = catalog['filenames'].apply(lambda x: pd.Series(str(x).rsplit('_',2))[1:3]).astype(float) # convert the filenames column to a filepath catalog['filenames'] = catalog['filenames'].apply(lambda x: os.path.join(folderpath, x)) return(catalog) def addCatalogToMap(outfilepath, maptable, folderpath, catalog_label): """ Update the mappingfile with a new column, a vector of filepaths for the downloaded files outfilepath: (dir) the path for the output file maptable: (dataframe) a dataframe containing the FID, LAT, LONG_, and ELEV information folderpath: (dir) the folder of files to be catalogged, which have LAT and LONG_ as the last two filename features catalog_label: (str) the preferred name for the series of catalogged filepaths """ # assert catalog_label as a string-object catalog_label = str(catalog_label) # catalog the folder directory catalog = catalogfiles(folderpath).rename(columns={'filenames':catalog_label}) # drop existing column if catalog_label in maptable.columns: maptable = maptable.drop(labels=catalog_label, axis=1) # update with a vector for the catalog of files maptable = maptable.merge(catalog, on=['LAT','LONG_'], how='left') # remove blocks, if they were needed if 'blocks' in maptable.columns: maptable = maptable.drop(labels=['blocks'], axis=1) # write the updated mappingfile maptable.to_csv(outfilepath, header=True, index=False) # Wrapper scripts def getDailyMET_livneh2013(homedir, mappingfile, subdir='livneh2013/Daily_MET_1915_2011/raw', catalog_label='dailymet_livneh2013'): """ Get the Livneh el al., 2013 Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate DailyMET livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_dailyMET_Livneh2013_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyMET_livneh2015(homedir, mappingfile, subdir='livneh2015/Daily_MET_1950_2013/raw', catalog_label='dailymet_livneh2015'): """ Get the Livneh el al., 2015 Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate Daily MET livneh 2015 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_dailyMET_Livneh2015_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyMET_bcLivneh2013(homedir, mappingfile, subdir='livneh2013/Daily_MET_1915_2011/bc', catalog_label='dailymet_bclivneh2013'): """ Get the Livneh el al., 2013 bias corrected Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate baseline_corrected livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_bc_Livneh2013_locations(maptable) # download the files wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyVIC_livneh2013(homedir, mappingfile, subdir='livneh2013/Daily_VIC_1915_2011', catalog_label='dailyvic_livneh2013'): """ Get the Livneh el al., 2013 Daily VIC files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # FIRST RUN # check and generate VIC_ASCII Flux model livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points for USA locations = compile_VICASCII_Livneh2013_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyVIC_livneh2015(homedir, mappingfile, subdir='livneh2015/Daily_VIC_1950_2013', catalog_label='dailyvic_livneh2015'): """ Get the Livneh el al., 2015 Daily VIC files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate Daily VIC.ASCII Flux model livneh 2015 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_VICASCII_Livneh2015_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyWRF_salathe2014(homedir, mappingfile, subdir='salathe2014/WWA_1950_2010/raw', catalog_label='dailywrf_salathe2014'): """ Get the Salathe el al., 2014 raw Daily WRF files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate the Daily Meteorology raw WRF Salathe 2014 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # read in the longitude and latitude points from the reference mapping file maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_wrfnnrp_raw_Salathe2014_locations(maptable) # download the data wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyWRF_bcsalathe2014(homedir, mappingfile, subdir='salathe2014/WWA_1950_2010/bc', catalog_label='dailywrf_bcsalathe2014'): """ Get the Salathe el al., 2014 bias corrected Daily WRF files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate the Daily Meteorology bias corrected WRF Salathe 2014 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # read in the longitude and latitude points from the reference mapping file maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_wrfnnrp_bc_Salathe2014_locations(maptable) # download the data wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) # # Data Processing libraries def filesWithPath(folderpath): """ Create a list of filepaths for the files folderpath: (dir) the folder of interest """ files =[os.path.join(folderpath, eachfile) for eachfile in os.listdir(folderpath) if not eachfile.startswith('.') and not os.path.isdir(eachfile)] # exclude hidden files return(files) def compareonvar(map_df, colvar='all'): """ subsetting a dataframe based on some columns of interest map_df: (dataframe) the dataframe of the mappingfile table colvar: (str or list) the column(s) to use for subsetting; 'None' will return an outerjoin, 'all' will return an innerjoin """ # apply row-wise inclusion based on a subset of columns if isinstance(colvar, type(None)): return(map_df) if colvar is 'all': # compare on all columns except the station info return(map_df.dropna()) else: # compare on only the listed columns return(map_df.dropna(subset=colvar)) def mappingfileToDF(mappingfile, colvar='all'): """ read in a dataframe and subset based on columns of interest mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest colvar: (str or list) the column(s) to use for subsetting; 'None' will return an outerjoin, 'all' will return an innerjoin """ # Read in the mappingfile as a data frame map_df = pd.read_csv(mappingfile) # select rows (datafiles) based on the colvar(s) chosen, default is map_df = compareonvar(map_df=map_df, colvar=colvar) # compile summaries print(map_df.head()) print('Number of gridded data files:'+ str(len(map_df))) print('Minimum elevation: ' + str(np.min(map_df.ELEV))+ 'm') print('Mean elevation: '+ str(np.mean(map_df.ELEV))+ 'm') print('Maximum elevation: '+ str(np.max(map_df.ELEV))+ 'm') return(map_df, len(map_df)) def read_in_all_files(map_df, dataset, metadata, file_start_date, file_end_date, file_time_step, file_colnames, file_delimiter, subset_start_date, subset_end_date): """ Read in files based on dataset label map_df: (dataframe) the mappingfile clipped to the subset that will be read-in dataset: (str) the name of the dataset catalogged into map_df metadata (str) the dictionary that contains the metadata explanations; default is None file_colnames: (list) the list of shorthand variables; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest """ # extract metadata if the information are not provided if pd.notnull(metadata): if isinstance(file_start_date, type(None)): file_start_date = metadata[dataset]['start_date'] if isinstance(file_end_date, type(None)): file_end_date = metadata[dataset]['end_date'] if isinstance(file_time_step, type(None)): file_time_step = metadata[dataset]['temporal_resolution'] if isinstance(file_colnames, type(None)): file_colnames = metadata[dataset]['variable_list'] if isinstance(file_delimiter, type(None)): file_delimiter = metadata[dataset]['delimiter'] #initialize dictionary and time sequence df_dict=dict() met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) # daily # import data for all climate stations for ind, row in map_df.iterrows(): tmp = pd.read_table(row[dataset], header=None, delimiter=file_delimiter, names=file_colnames) tmp.set_index(met_daily_dates, inplace=True) # subset to the date range of interest (default is file date range) tmp = tmp.iloc[(met_daily_dates>=subset_start_date) & (met_daily_dates<=subset_end_date),:] # set row indices df_dict[tuple(row[['FID','LAT','LONG_']].tolist())] = tmp return(df_dict) def read_files_to_vardf(map_df, df_dict, gridclimname, dataset, metadata, file_start_date, file_end_date, file_delimiter, file_time_step, file_colnames, subset_start_date, subset_end_date, min_elev, max_elev): """ # reads in the files to generate variables dataframes map_df: (dataframe) the mappingfile clipped to the subset that will be read-in df_dict: (dict) an existing dictionary where new computations will be stored gridclimname: (str) the suffix for the dataset to be named; if None is provided, default to the dataset name dataset: (str) the name of the dataset catalogged into map_df metadata: (str) the dictionary that contains the metadata explanations; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_delimiter: (str) a file parsing character to be used for file reading file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest """ # start time starttime = pd.datetime.now() # date range from ogh_meta file met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) met_daily_subdates=pd.date_range(subset_start_date, subset_end_date, freq=file_time_step) # omit null entries or missing data file map_df = map_df.loc[pd.notnull(map_df[dataset]),:] print('Number of data files within elevation range ('+str(min_elev)+':'+str(max_elev)+'): '+str(len(map_df))) # iterate through each data file for eachvar in metadata[dataset]['variable_list']: # identify the variable column index usecols = [metadata[dataset]['variable_list'].index(eachvar)] # initiate df as a list df_list=[] # loop through each file for ind, row in map_df.iterrows(): # consider rewriting the params to just select one column by index at a time var_series = dask.delayed(pd.read_table)(filepath_or_buffer=row[dataset], delimiter=file_delimiter,header=None,usecols=usecols, names=[tuple(row[['FID','LAT','LONG_']])]) # append the series into the list of series df_list.append(var_series) # concatenate list of series (axis=1 is column-wise) into a dataframe df1 = dask.delayed(pd.concat)(df_list, axis=1) # set and subset date_range index df2 = df1.set_index(met_daily_dates, inplace=False).loc[met_daily_subdates] # end of variable table print(eachvar+ ' dataframe reading to start: ' + str(pd.datetime.now()-starttime)) # assign dataframe to dictionary object df_dict['_'.join([eachvar, gridclimname])] = dask.compute(df2)[0] print(eachvar+ ' dataframe complete:' + str(pd.datetime.now()-starttime)) return(df_dict) def read_daily_streamflow(file_name, drainage_area_m2, file_colnames=None, delimiter='\t', header='infer'): # read in a daily streamflow data set # if file_colnames are supplied, use header=None if file_colnames is not None: header=None # read in the data daily_data=pd.read_table(file_name, delimiter=delimiter, header=header) # set columns, if header=None if file_colnames is not None: daily_data.columns=file_colnames else: file_colnames=list(daily_data.columns) # calculate cfs to cms conversion, or vice versa if 'flow_cfs' in daily_data.columns: flow_cfs=daily_data['flow_cfs'] flow_cms=flow_cfs/(3.28084**3) flow_mmday=flow_cms*1000*3600*24/drainage_area_m2 elif 'flow_cms' in daily_data.columns: flow_cms=daily_data['flow_cms'] flow_cfs=flow_cms*(3.28084**3) flow_mmday=flow_cms*1000*3600*24/drainage_area_m2 # determine the datetime date_index=[file_colnames.index(each) for each in ['year','month','day']] row_dates=pd.to_datetime(daily_data[date_index]) # generate the daily_flow and set the datetime as row indices daily_flow=
pd.concat([flow_cfs, flow_cms, flow_mmday],axis=1)
pandas.concat
""" Authors: <NAME>, <NAME>, <NAME>, <NAME> """ import pandas as pd import numpy as np from scipy.linalg import eig import matplotlib.pyplot as plt import quantecon as qe # == model parameters == # a_0 = 100 a_1 = 0.5 ρ = 0.9 σ_d = 0.05 β = 0.95 c = 2 γ = 50.0 θ = 0.002 ac = (a_0 - c) / 2.0 # == Define LQ matrices == # R = np.array([[0., ac, 0.], [ac, -a_1, 0.5], [0., 0.5, 0.]]) R = -R # For minimization Q = γ / 2 A = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., ρ]]) B = np.array([[0.], [1.], [0.]]) C = np.array([[0.], [0.], [σ_d]]) # -------------------------------------------------------------------------- # # Functions # -------------------------------------------------------------------------- # def evaluate_policy(θ, F): """ Given θ (scalar, dtype=float) and policy F (array_like), returns the value associated with that policy under the worst case path for {w_t}, as well as the entropy level. """ rlq = qe.robustlq.RBLQ(Q, R, A, B, C, β, θ) K_F, P_F, d_F, O_F, o_F = rlq.evaluate_F(F) x0 = np.array([[1.], [0.], [0.]]) value = - x0.T @ P_F @ x0 - d_F entropy = x0.T @ O_F @ x0 + o_F return list(map(float, (value, entropy))) def value_and_entropy(emax, F, bw, grid_size=1000): """ Compute the value function and entropy levels for a θ path increasing until it reaches the specified target entropy value. Parameters ========== emax: scalar The target entropy value F: array_like The policy function to be evaluated bw: str A string specifying whether the implied shock path follows best or worst assumptions. The only acceptable values are 'best' and 'worst'. Returns ======= df: pd.DataFrame A pandas DataFrame containing the value function and entropy values up to the emax parameter. The columns are 'value' and 'entropy'. """ if bw == 'worst': θs = 1 / np.linspace(1e-8, 1000, grid_size) else: θs = -1 / np.linspace(1e-8, 1000, grid_size) df =
pd.DataFrame(index=θs, columns=('value', 'entropy'))
pandas.DataFrame
# -*- coding: utf-8 -*- import os import numpy as np import pandas as pd import scipy.io as sio import matconv import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import Normalize '''################### Set direcotories and open files #####################''' bhalla_paths = matconv.set_paths.Paths('projects/biophys_glm_show', 'bhalla') alon_paths = matconv.set_paths.Paths('projects/biophys_glm_show', 'alon') bhalla_glm0 = sio.loadmat(os.path.join(bhalla_paths.survival, 'kA_1_CV.mat')) bhalla_glm0['model_list'][0, 0]['channel_scalar'] bhalla_glm0['model_list'][0].shape '''notes on how the matlab file is organized matlab['model_list'][0, scale_index][data_type] RIGHT HERE ''' structure = matlab['model_list'][0] n_scales = len(structure) stim_time_index = pd.DataFrame({'parameter': 'kt', 'scale': 1.0}, index=range(1)) stim_time_index = pd.MultiIndex.from_frame(stim_time_index) stim_time = pd.DataFrame(matlab['model_list'][0, 0]['kt'][0][0], columns=stim_time_index) hist_time_index = pd.DataFrame({'parameter': 'ht', 'scale': 1.0}, index=range(1)) hist_time_index = pd.MultiIndex.from_frame(hist_time_index) hist_time = pd.DataFrame(matlab['model_list'][0, 0]['ht'][0][0], columns=hist_time_index) data_list = ['k', 'h', 'dc'] glm_df = pd.DataFrame() for data in data_list: data_df = pd.DataFrame() labels_df = pd.DataFrame() for i in range(n_scales): parameter = matlab['model_list'][0, i][data][0][0] parameter = pd.DataFrame(parameter) scale = matlab['model_list'][0, i]['channel_scalar'][0][0][0][0] label = pd.DataFrame({'parameter': data, 'scale': scale}, index=range(1)) labels_df = pd.concat([labels_df, label]) data_df = pd.concat([data_df, parameter], axis=1) data_index = pd.MultiIndex.from_frame(labels_df) data_df.columns = data_index glm_df = pd.concat([glm_df, data_df], axis=1) glm_df =
pd.concat([stim_time, hist_time, glm_df], axis=1)
pandas.concat
import pandas as pd import numpy as np import matplotlib.pyplot as plt from pathlib import Path import hail as hl '''Module with helper functions used in both projects (and for mt + tRNA).''' def find_subset(df, column_name, factor, condition): '''Returns df subsetted by factor in specified column (==, !=, <, >, <=, >=).''' if condition == "=": return df[df[column_name] == factor] elif condition == "!=": return df[df[column_name] != factor] elif condition == "<": return df[df[column_name] < factor] elif condition == ">": return df[df[column_name] > factor] elif condition == "<=": return df[df[column_name] <= factor] elif condition == ">=": return df[df[column_name] >= factor] def get_geneIDs(file, gene_type, column_name, sheet=None): '''Extracts genes names as series, writes them into csv, and returns it''' #out_file = Path("../data/{}_gene_IDs.csv".format(gene_type)) if sheet is None: df = pd.read_excel(file) else: df = pd.read_excel(file, sheet_name=sheet) gene_IDs = df[column_name].dropna().reset_index(drop=True) #gene_IDs.to_csv(out_file, index=False) return gene_IDs def get_genes_of_interest(dataset_df, gene_df): '''Finds genes of interest, writes them into csv, and returns df''' gene_file = Path(gene_file) out_file = Path("../data/{}_gene_variants.csv".format(gene_type)) gene = get_geneIDs(gene_file, gene_type, column_name, sheet) gene.rename("gene", inplace=True) gene = df.merge(gene, how="inner", on="gene") gene.to_csv(out_file, index=False) return gene def generate_table(df, group_list, index, columns): '''Groups data together based on columns of interest TODO explain index and columns.''' # ex. of how to use: print(generate_table(df, ["gene", "case_control"], "gene", "case_control")) new_df = pd.DataFrame({"count": df.groupby(group_list).size()}).reset_index() return new_df.pivot(index=index, columns=columns).droplevel(0, axis=1) def get_case_control_per_variant(df, file_name=None): '''Returns df with number of cases and controls per gene (and number of samples for mutation type).''' # find case count for each variant case_control = pd.DataFrame({"count": df.groupby(["gene", "consequence", "case_control"]).size()}).reset_index() # merge consequence and case_control column and add to the df case_control["consequence_case_control"] = case_control["case_control"].str.lower() + "_" + case_control["consequence"] # remove unneeded labels, switch consequence_case_control to column header # then drop multilevel index (ie count and consequence_case_control) # rename columns as needed and reorder them case_control = (case_control.drop(labels=["consequence", "case_control"], axis=1) .pivot(index="gene", columns="consequence_case_control") .droplevel(0, axis=1) .rename({"case_lof": "case_PTVs", "control_lof": "control_PTVs"}, axis=1) [["case_synonymous", "control_synonymous", "case_missense", "control_missense", "case_PTVs", "control_PTVs"]] ) # get counts per mutations #mutation_count = pd.DataFrame({"count": df.groupby(["gene", "consequence"]).size()}).reset_index() mutation_count = (generate_table(df, ["gene", "consequence"], "gene", "consequence") .rename({"missense": "sample_missense", "lof": "sample_PTVs", "synonymous": "sample_synonymous"}, axis=1) [["sample_synonymous", "sample_missense", "sample_PTVs"]] ) # merge, fill NaN as 0, and convert everything to type int complete_df = pd.merge(case_control, mutation_count, on="gene").fillna(0).astype(int) # if given a gene_type, write output to file with gene_type as name if gene_type is not None: out_file = Path("../data/{}_case_control_variants_per_gene.csv".format(file_name)) complete_df.to_csv(out_file) return complete_df def get_chr_num(chrom): '''Returns chrom number extracted from hg19 chrom string.''' if "_" in chrom: return chrom[3:chrom.index("_")] return chrom[3:] def fishers_test(df, variant): '''Runs fisher's test on specified column and returns tuple with a list of pvalues, OR, and CI.''' p_list = [] oddsratio_list = [] lowci_list = [] highci_list = [] case = "cases_" + variant control = "control_" + variant for i in range(df.shape[0]): case_carrier = df[case].iloc[i].astype(np.int32) control_carrier = df[control].iloc[i].astype(np.int32) case_noncarrier = int(3864 - df[case].iloc[i].astype(np.int32)) control_noncarrier = int(7839 - df[control].iloc[i].astype(np.int32)) result = hl.eval(hl.fisher_exact_test(case_carrier, case_noncarrier, control_carrier, control_noncarrier)) p_list.append(hl.eval(result["p_value"])) oddsratio_list.append(hl.eval(result["odds_ratio"])) lowci_list.append(hl.eval(result["ci_95_lower"])) highci_list.append(hl.eval(result["ci_95_upper"])) return (p_list, oddsratio_list, lowci_list, highci_list) def all_stats(df, variants=["synonymous", "missense", "PTVs"], out_file=None): '''Runs fisher's on inputted df and returns it''' df_copy = df p_list = [] oddsratio_list = [] lowci_list = [] highci_list = [] for variant in variants: col_p = "pval_" + variant col_or = "OR_" + variant col_lowci = "lowci_" + variant col_highci = "highci_" + variant p_variant, or_variant, low_ci, high_ci = fishers_test(df_copy, variant) df_copy[col_p] = p_variant df_copy[col_or] = or_variant df_copy[col_lowci] = low_ci df_copy[col_highci] = high_ci df_copy.sort_values(by="gene", inplace=True) if out_file is not None: out_file = Path("../data/summaryData/{}_fishers.csv") df_copy.to_csv(out_file, index=False) return df_copy def plot_qq(df, name, variant): '''plots QQ graph of expected vs observed using plt scatter plot. doesn't include CI rn''' # finds relevant column names col_p = "pval_" + variant col_low = "lowci_" + variant col_high = "highci_" + variant # removes all NaN cleaned = df.dropna(subset=[col_p, col_low, col_high]) cleaned = cleaned.sort_values(col_p) # -log to get observed values p_list = cleaned[col_p].to_numpy() obs = -1 * np.log10(p_list) exp = -1 * np.log10(np.arange(1, p_list.shape[0]+1) / p_list.shape[0]) fig, ax = plt.subplots() ax.scatter(exp, obs) xpoints = ypoints = ax.get_xlim() ax.plot(xpoints, ypoints, color='black', scalex=False, scaley=False) plt.title("{} {} Q-Q Plot".format(name, variant)) plt.xlabel("Expected value") plt.ylabel("Observed value") plt.savefig("../data/figures/{}_{}_QQ.png".format(name, variant)) plt.show() def find_significant_genes(df, variant, alpha=0.05, file_name=None): '''find genes less than p value based on mutation variant''' # multiple test correction, divide alpha by # of genes adjusted_p = alpha/df.shape[0] col = "pval_" + variant df.sort_values(col, ignore_index=True, inplace=True) significant_genes = find_subset(df, col, adjusted_p, "<=") significant_genes = find_subset(significant_genes, "pval_synonymous", adjusted_p, ">") if file_name is not None: out_file = Path("../data/datasets/{}_{}_significant_genes.csv".format(file_name, variant)) significant_genes.to_csv(out_file, index=False) return significant_genes def find_sample_variants_for_genes(df, filename, name, variant): all_genes = pd.read_csv(filename, usecols=["gene", "variant", "consequence", "case_control"]) df = df[["gene", "pval_{}".format(variant), "OR_{}".format(variant), "lowci_{}".format(variant), "highci_{}".format(variant)]] signficant_gene_variants =
pd.merge(all_genes, df, how="inner", on="gene")
pandas.merge
import util import numpy as np import pandas as pd # model_1 = pd.read_csv('fold1_boostdt.csv') # model_1 = pd.read_csv('small_boostdt.csv') model_2 = pd.read_csv('~/Desktop/predictions_stiebels/full/predictions_xgboost_fold1.csv', names = ["pred"]) model_1 = pd.read_csv('~/Desktop/predictions_stiebels/full/predictions_nn_fold1.csv', names = ["pred"]) # model_2 = pd.read_csv("~/Desktop/predictions_stiebels/full/predictions_nn_fold1.csv", names = ["pred"]) model_1_label = 'Neural Net' model_2_label = 'XGBoost' if (len(model_1) + len(model_2)) == 2400 * 2: df_all = pd.read_csv('small_boostdt.csv') qid = df_all['qid'] true = df_all['label'] elif (len(model_1) + len(model_2)) == 4800 * 2: df_all =
pd.read_csv('large_boostdt.csv')
pandas.read_csv
""" This module contains methods related to validation of csv data contained in the CSVFile model. """ from collections import namedtuple from marshmallow import fields, post_dump, Schema, validate from pandas import Index, to_numeric from viime.cache import region SEVERITY_VALUES = ['error', 'warning'] CONTEXT_VALUES = ['table', 'column', 'row'] TYPE_VALUES = [ 'primary-key-missing', 'header-missing', 'group-missing', 'invalid-primary-key', 'invalid-header', 'non-numeric-data', 'invalid-group', 'missing-data', 'low-variance' ] _ValidationTuple = namedtuple( '_ValidationTuple', 'type_ title, severity context row_index column_index data') GROUP_MISSING_THRESHOLD = 0.25 LOW_VARIANCE_THRESHOLD = 1e-8 MAX_NAN_THRESHOLD = 0.95 class ValidationTuple(_ValidationTuple): def __new__(cls, **kwargs): kw = cls.defaults.copy() kw.update(kwargs) if kw.get('context') in ('table', 'column'): kw.setdefault('row_index', None) if kw.get('context') in ('table', 'row'): kw.setdefault('column_index', None) return _ValidationTuple.__new__(cls, **kw) class PrimaryKeyMissing(ValidationTuple): defaults = { 'title': 'No identifer column', 'type_': 'primary-key-missing', 'severity': 'error', 'context': 'table', 'data': None } class HeaderMissing(ValidationTuple): defaults = { 'title': 'No header row', 'type_': 'header-missing', 'severity': 'error', 'context': 'table', 'data': None } class GroupMissing(ValidationTuple): defaults = { 'title': 'No group column', 'type_': 'group-missing', 'severity': 'error', 'context': 'table', 'data': None } class InvalidPrimaryKey(ValidationTuple): defaults = { 'title': 'Invalid identifier', 'type_': 'invalid-primary-key', 'severity': 'error', 'context': 'column' } class InvalidHeader(ValidationTuple): defaults = { 'title': 'Invalid header', 'type_': 'invalid-header', 'severity': 'error', 'context': 'row' } class InvalidGroup(ValidationTuple): defaults = { 'title': 'Invalid group', 'type_': 'invalid-group', 'severity': 'error', 'context': 'column' } class NonNumericRow(ValidationTuple): defaults = { 'title': 'Non-numeric row', 'type_': 'non-numeric-row', 'severity': 'error', 'context': 'row' } class NonNumericColumn(ValidationTuple): defaults = { 'title': 'Non-numeric column', 'type_': 'non-numeric-column', 'severity': 'error', 'context': 'column' } class NonNumericData(ValidationTuple): defaults = { 'title': 'Non-numeric data', 'type_': 'non-numeric-data', 'severity': 'warning', 'context': 'table' } class MissingData(ValidationTuple): defaults = { 'title': 'Missing data', 'type_': 'missing-data', 'severity': 'warning' } class LowVariance(ValidationTuple): defaults = { 'title': 'Low data variance', 'type_': 'low-variance', 'severity': 'warning' } class ValidationSchema(Schema): type_ = fields.Str(required=True, data_key='type') title = fields.Str(required=True) severity = fields.Str(required=True, validate=validate.OneOf(SEVERITY_VALUES)) context = fields.Str(required=True, validate=validate.OneOf(CONTEXT_VALUES)) row_index = fields.Int(required=False) column_index = fields.Int(required=False) group = fields.Str(required=False) data = fields.Raw(required=False) @post_dump def remove_null_values(self, data, **kwargs): return {k: v for k, v in data.items() if v is not None} def get_validation_list(csv_file): errors = get_fatal_index_errors(csv_file) if not errors: errors = get_warnings(csv_file) return errors def get_missing_index_errors(csv_file): errors = [] if csv_file.key_column_index is None: errors.append(PrimaryKeyMissing()) if csv_file.header_row_index is None: errors.append(HeaderMissing()) if csv_file.group_column_index is None: errors.append(GroupMissing()) return errors @region.cache_on_arguments() def get_fatal_index_errors(csv_file): errors = get_missing_index_errors(csv_file) if not errors: errors = get_invalid_index_errors(csv_file) if not errors: errors = get_non_numeric_errors(csv_file) return errors def check_valid_index(series): """Check if pandas series can be a valid index.""" index = Index(series) if index.hasnans: return "Contains NaN's" if not index.is_unique: return 'Values are not unique' def check_valid_groups(groups): index = Index(groups.iloc[:, 0]) if index.hasnans or '' in index: return 'Contains empty values' def get_invalid_index_errors(csv_file): from viime.models import TABLE_COLUMN_TYPES, TABLE_ROW_TYPES errors = [] table = csv_file.filter_table_by_types( TABLE_ROW_TYPES.DATA, TABLE_COLUMN_TYPES.INDEX).iloc[:, 0] error_data = check_valid_index(table) if error_data: errors.append(InvalidPrimaryKey(column_index=csv_file.key_column_index, data=error_data)) table = csv_file.filter_table_by_types( TABLE_ROW_TYPES.INDEX, TABLE_COLUMN_TYPES.DATA).iloc[0, :] error_data = check_valid_index(table) if error_data: errors.append(InvalidHeader(row_index=csv_file.header_row_index, data=error_data)) error_data = check_valid_groups(csv_file.groups) if error_data: errors.append(InvalidGroup(column_index=csv_file.group_column_index, data=error_data)) return errors def get_non_numeric_errors(csv_file): errors = [] raw_table = csv_file.raw_measurement_table for index in range(raw_table.shape[0]): row = to_numeric(raw_table.iloc[index, :], errors='coerce') nans = (row != row).sum() if nans / raw_table.shape[1] > MAX_NAN_THRESHOLD: row = csv_file.get_row_by_name(raw_table.index[index]) errors.append( NonNumericRow(row_index=row.row_index, data=f'Contains {nans} non-numeric values') ) for index in range(raw_table.shape[1]): column =
to_numeric(raw_table.iloc[:, index], errors='coerce')
pandas.to_numeric
import os import unittest import pandas as pd from context import technical as ti # Change working directory # This enable running tests from repository root if os.getcwd() != os.path.abspath(os.path.dirname(__file__)): os.chdir('tests/') # Test results class ResultsRSI(unittest.TestCase): # Input data test_data = pd.read_csv('test_data/correct_series.csv') test_data_df = pd.read_csv('test_data/correct_ohlc.csv').drop(columns=['Close']) # Expected results output results_rsi = pd.Series([None, None, None, None, None, None, None, None, None, None, None, None, 47.25280022804261, 46.88077998698816, 47.101267162264016, 47.00929322452039, 46.7165184370504, 47.15738539063636, 46.77617492442675, 46.89141568802567, 47.055962508174325, 46.75436640536967, 47.22730953343007, 48.15725812972951, 48.388571703427004, 48.80045436339292, 49.799615719433724, 50.749816167931876, 51.71693204342112, 52.62985533413443, 53.758601079486596, 53.89482377914421, 54.17495518260089, 54.736926654922605, 55.13423749963049, 55.442951738396005, 56.739537559474186, 57.26885485742762, 57.500127463438524, 57.14236479747808, 57.54149746743077, 57.905820742390425, 58.17383724213553, 59.059331336307984, 60.457448003690054, 61.11872163570835, 61.66694808843557, 62.074080067528016, 62.20694317850205, 63.45076515475267, 64.61890382304387, 66.27248731535836, 67.42124873044372, 67.9395808355508, 68.37488505254538, 68.84210071524612, 69.17189954309868, 70.12209998782939, 70.28368853923217, 70.03506574509129, 68.80640030241051, 67.91980536038358, 66.48142225875074, 64.7679765608068, 62.68677670273754, 61.158316243822775, 59.26206075171424, 57.9066342975084, 56.56970803414393, 55.33354873756501, 54.63870450844905]) # Input paramter ma = 12 def test_result_rsi(self): '''rsi function must return series equal to expected''' results = ti.RSI(self.test_data, self.ma)
pd.testing.assert_series_equal(self.results_rsi, results, check_names=False)
pandas.testing.assert_series_equal
import numpy as np import pandas as pd import scipy as sc import scipy.spatial as spatial from anndata import AnnData from .het import create_grids def lr( adata: AnnData, use_lr: str = "cci_lr", distance: float = None, verbose: bool = True, ) -> AnnData: """Calculate the proportion of known ligand-receptor co-expression among the neighbouring spots or within spots Parameters ---------- adata: AnnData The data object to scan use_lr: str object to keep the result (default: adata.uns['cci_lr']) distance: float Distance to determine the neighbours (default: closest), distance=0 means within spot Returns ------- adata: AnnData The data object including the results """ # automatically calculate distance if not given, won't overwrite distance=0 which is within-spot if not distance and distance != 0: # for arranged-spots scalefactors = next(iter(adata.uns["spatial"].values()))["scalefactors"] library_id = list(adata.uns["spatial"].keys())[0] distance = ( scalefactors["spot_diameter_fullres"] * scalefactors[ "tissue_" + adata.uns["spatial"][library_id]["use_quality"] + "_scalef" ] * 2 ) df = adata.to_df() # expand the LR pairs list by swapping ligand-receptor positions lr_pairs = adata.uns["lr"].copy() lr_pairs += [item.split("_")[1] + "_" + item.split("_")[0] for item in lr_pairs] # get neighbour spots for each spot according to the specified distance coor = adata.obs[["imagerow", "imagecol"]] point_tree = spatial.cKDTree(coor) neighbours = [] for spot in adata.obs_names: if distance == 0: neighbours.append([spot]) else: n_index = point_tree.query_ball_point( np.array( [adata.obs["imagerow"].loc[spot], adata.obs["imagecol"].loc[spot]] ), distance, ) neighbours.append( [item for item in df.index[n_index] if not (item == spot)] ) # filter out those LR pairs that do not exist in the dataset lr1 = [item.split("_")[0] for item in lr_pairs] lr2 = [item.split("_")[1] for item in lr_pairs] avail = [ i for i, x in enumerate(lr1) if lr1[i] in df.columns and lr2[i] in df.columns ] spot_lr1 = df[[lr1[i] for i in avail]] spot_lr2 = df[[lr2[i] for i in avail]] if verbose: print("Altogether " + str(len(avail)) + " valid L-R pairs") # function to calculate mean of lr2 expression between neighbours or within spot (distance==0) for each spot def mean_lr2(x): # get lr2 expressions from the neighbour(s) nbs = spot_lr2.loc[neighbours[df.index.tolist().index(x.name)], :] if nbs.shape[0] > 0: # if neighbour exists return (nbs > 0).sum() / nbs.shape[0] else: return 0 # mean of lr2 expressions from neighbours of each spot nb_lr2 = spot_lr2.apply(mean_lr2, axis=1) # check whether neighbours exist try: nb_lr2.shape[1] except: raise ValueError("No neighbours found within given distance.") # keep value of nb_lr2 only when lr1 is also expressed on the spots spot_lr = pd.DataFrame( spot_lr1.values * (nb_lr2.values > 0) + (spot_lr1.values > 0) * nb_lr2.values, index=df.index, columns=[lr_pairs[i] for i in avail], ).sum(axis=1) adata.obsm[use_lr] = spot_lr.values / 2 if verbose: print( "L-R interactions with neighbours are counted and stored into adata.obsm['" + use_lr + "']" ) # return adata def lr_grid( adata: AnnData, num_row: int = 10, num_col: int = 10, use_lr: str = "cci_lr_grid", radius: int = 1, verbose: bool = True, ) -> AnnData: """Calculate the proportion of known ligand-receptor co-expression among the neighbouring grids or within each grid Parameters ---------- adata: AnnData The data object to scan num_row: int Number of grids on height num_col: int Number of grids on width use_lr: str object to keep the result (default: adata.uns['cci_lr']) radius: int Distance to determine the neighbour grids (default: 1=nearest), radius=0 means within grid Returns ------- adata: AnnData The data object with the cci_lr grid result updated """ # prepare data as pd.dataframe df = adata.to_df() if not isinstance(df, pd.DataFrame): if sc.sparse.issparse(df): df = pd.DataFrame( df.toarray(), index=adata.obs_names, columns=adata.var_names ) else: df =
pd.DataFrame(df, index=adata.obs_names, columns=adata.var_names)
pandas.DataFrame
# routes related to the boba run monitor import os import time import pandas as pd import numpy as np from flask import jsonify, request from .util import read_csv, read_json, write_json from bobaserver import app, socketio, scheduler from bobaserver.bobastats import sampling, sensitivity import bobaserver.common as common class BobaWatcher: # static attributes header_outcome = ['n_samples', 'mean', 'lower', 'upper'] def __init__(self, order, weights=None): self.start_time = None self.prev_time = 0 # for resume # sampling order and weights self.order = [uid - 1 for uid in order] # convert to 0-indexed self.weights = weights # results self.last_merge_index = 0 self.outcomes = [] self.decision_scores = [] @staticmethod def get_fn_outcome(): return os.path.join(app.bobarun.dir_log, 'outcomes.csv') @staticmethod def get_fn_save(): return os.path.join(app.bobarun.dir_log, 'execution_plan.json') @staticmethod def get_fn_sensitivity(): return os.path.join(app.bobarun.dir_log, 'sensitivity.csv') @staticmethod def get_header_sensitivity(): return ['n_samples', 'type'] + common.get_decision_list() def _append_csv(self, fn, header, data): # append to the csv if it exists, or create one if os.path.exists(fn): f = open(fn, 'a') else: f = open(fn, 'w') f.write(','.join(header) + '\n') for r in data: f.write(','.join([str(i) for i in r]) + '\n') f.close() def _impute_null_CI(self, data, previous, col=0): # impute NaN in CIs, assuming data is a 2D list [..., mean, lower, upper] # where col is the column index of mean. Modify data in place. for i, d in enumerate(data): for j in [col + 1, col + 2]: if np.isnan(d[j]): d[j] = data[i - 1][j] if i > 0 else (previous[-1][j] \ if len(previous) else d[col]) def _NaN_to_string(self, arr): # convert NaN to string 'nan'. It will happen in place in the input arr. for i in range(len(arr)): arr[i] = ['nan' if isinstance(r, float) and np.isnan(r) else r \ for r in arr[i]] def _compute_dec_CI(self, df, col, indices, dec_list, i): """ Compute bootstrap CI of decision sensitivity """ res = sampling.bootstrap_sensitivity(df, col, indices, dec_list) out = [[i, c] + res[f'score_{c}'].tolist() for c in ['lower', 'upper']] # convert NaN to string self._NaN_to_string(out) self.decision_scores += out # write results to disk self._append_csv(BobaWatcher.get_fn_sensitivity(), BobaWatcher.get_header_sensitivity(), out) # send to client socketio.emit('update-sensitivity', {'data': self.decision_scores, 'header': BobaWatcher.get_header_sensitivity()}) def update_outcome(self, done): step = min(5, max(1, int(app.bobarun.size / 50))) if len(done) - self.last_merge_index <= step: return # merge result file app.bobarun.run_after_execute() df = common.read_results('point_estimate', float) df = pd.merge(app.summary, df, on='uid', how='left') col = common.get_field_name('point_estimate') dec_list = common.get_decision_list() # compute results since the last index start = (int(self.last_merge_index / step) + 1) * step self.last_merge_index = len(done) - 1 res = [] sen = [] indices = None for i in range(start, len(done), step): indices = self.order[:i+1] # outcome mean out = sampling.bootstrap_outcome(df, col, indices, self.weights) res.append([i] + out) # decision sensitivity, without CI # FIXME: hard coded for AD test ad = [sensitivity.ad_wrapper(df.iloc[indices], dec, col) \ for dec in dec_list] sen.append([i, 'score'] + [s[0] for s in ad]) sen.append([i, 'p'] + [s[1] for s in ad]) # schedule a job to compute the decision CI, for the last index if (not scheduler.get_job('compute_CI')) and (indices is not None): scheduler.add_job(self._compute_dec_CI, id='compute_CI', args=[df, col, indices, dec_list, i]) # impute null in CI and remove null in mean self._impute_null_CI(res, self.outcomes, 1) res = [r for r in res if not np.isnan(r[1])] self.outcomes += res # convert NaN in decision sensitivity to string 'nan' self._NaN_to_string(sen) self.decision_scores += sen # write results to disk self._append_csv(BobaWatcher.get_fn_outcome(), self.header_outcome, res) self._append_csv(BobaWatcher.get_fn_sensitivity(), BobaWatcher.get_header_sensitivity(), sen) # send to client socketio.emit('update-outcome', {'data': self.outcomes, 'header': self.header_outcome}) socketio.emit('update-sensitivity', {'data': self.decision_scores, 'header': BobaWatcher.get_header_sensitivity()}) def check_progress(self): # remove self from scheduled jobs if boba run has finished if not app.bobarun.is_running(): scheduler.remove_job('watcher') print('check progress') # estimate remaining time logs = app.bobarun.exit_code done = max(1, len(logs)) # avoid division by 0 elapsed = self.get_elapsed() remain = app.bobarun.size - done remain = int(elapsed * remain / done) # schedule jobs to compute results if not scheduler.get_job('update_outcome'): scheduler.add_job(self.update_outcome, args=[logs], id='update_outcome') res = {'status': 'success', 'logs': logs, 'time_left': remain, 'is_running': app.bobarun.is_running()} socketio.emit('update', res) def stop(self): # stop timer t = 0 if self.start_time is None else time.time() - self.start_time self.prev_time += t self.start_time = None def start(self): # start timer and add job self.start_time = time.time() scheduler.add_job(self.check_progress, 'interval', seconds=5, id='watcher', replace_existing=True) def get_elapsed(self): t = 0 if self.start_time is None else time.time() - self.start_time return t + self.prev_time def save_to_file(self): # save data to file, so it is possible to resume later data = {'order': list(self.order), 'elapsed': self.get_elapsed()} if self.weights is not None: data['weights'] = list(self.weights) write_json(data, self.get_fn_save()) def init_from_file(self): # resume from the previous save err, data = read_json(self.get_fn_save()) if not err: self.order = data['order'] self.weights = np.asarray(data['weights']) if 'weights' in data else None self.prev_time = data['elapsed'] # read outcome and sensitivity progress fn = BobaWatcher.get_fn_outcome() if os.path.exists(fn): df = pd.read_csv(fn) self.last_merge_index = df['n_samples'].max() self.outcomes = df.values.tolist() fn = BobaWatcher.get_fn_sensitivity() if os.path.exists(fn): # convert NaN to string 'nan'; client needs to convert it back to js NaN df = pd.read_csv(fn).fillna('nan') self.decision_scores = df.values.tolist() def check_stopped(): # after client issued stop command, check if boba has indeed stopped if not app.bobarun.is_running(): scheduler.remove_job('check_stopped') socketio.emit('stopped') def merge_error (): """ Merge the error logs into errors.csv """ fn = os.path.join(app.bobarun.dir_log, 'errors.csv') logs = [] merged = [] df = None # exit code if os.path.exists(app.bobarun.file_log): status = pd.read_csv(app.bobarun.file_log, index_col='uid') logs = status.index.tolist() # previous merged error if os.path.exists(fn): df =
pd.read_csv(fn, na_filter=False)
pandas.read_csv
import pandas as pd import numpy as np import argparse import random def create_context_to_id_map(df, df_sent): context_to_id = {} c_context_id = 0 context_ids = [] relevant_sentence_ids_arr = [] df = df.reset_index() for index, row in df.iterrows(): # add the relevant sentences to the main df relevant_sentence_ids = df_sent.iloc[index]['ranked_matching_sentence_ids'] relevant_sentence_ids_arr.append(relevant_sentence_ids) # map the ids if not row['context'] in context_to_id: context_id = c_context_id context_to_id[row['context']] = c_context_id c_context_id += 1 else: context_id = context_to_id[row['context']] context_ids.append(context_id) print('Num context texts: ', len(context_to_id.keys())) return context_ids, relevant_sentence_ids_arr def train_val_split(df, frac): train_context_ids = [] val_context_ids = [] df_train = pd.DataFrame() df_val = pd.DataFrame() num_in_val = int(np.floor(len(df) * frac)) print('num in validation set: ', num_in_val) num = 0 while num < num_in_val: for index, row in df.iterrows(): context_id = row['context_id'] n = random.random() if context_id in train_context_ids: df_train = df_train.append(row, ignore_index=True) elif context_id in val_context_ids: df_val = df_val.append(row, ignore_index=True) num += 1 elif n < frac: df_val = df_val.append(row, ignore_index=True) val_context_ids.append(context_id) num += 1 else: df_train = df_train.append(row, ignore_index=True) train_context_ids.append(context_id) if num == num_in_val: break return df_train, df_val def main(args): df = pd.read_pickle(args.data_path) df_sent =
pd.read_pickle(args.sent_data_path)
pandas.read_pickle
"""Functions for testing by means of pytest """ import sys sys.path.append("/home/daniel/Schreibtisch/Projekte/avalanche-risk") import pandas as pd import numpy as np from model.functions_model import preprocess_X_values, get_shifted_features import pytest @pytest.fixture def df(): df =
pd.DataFrame([["a", "1"], ["b", "2"], ["c", "3"], ["d", "4"]], index = [1, 2, 3, 4], columns = ["A", "B"])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error as MSE from sklearn import preprocessing import math import re import warnings warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd") acquired_dict = { 'tr':'tr', 'fa':'fa', 'dr':'dr', "Traded": "tr", "Free Agency": "fa", "Amateur Draft": "dr", "Amateur Free Agent": "fa", "Waivers": "tr", "Purchased":"tr", "Rule 5 Draft": "dr", "Expansion Draft": "dr", "Conditional Deal": "tr", "Amateur Draft--no sign": "dr", "MinorLg Draft": "dr", "Rune 5 returned": "tr" } def inflation_calc(row): inf_dict = { 2017: 1.0, 2016: 1.021299290023666, 2015: 1.0341874211554445, 2014: 1.0354149770208165, 2013: 1.0522113523096537, 2012: 1.0676237183898534, 2011: 1.089717656786951, 2010: 1.1241149062626115, 2009: 1.1425534989302544, 2008: 1.1384885486964882, 2007: 1.1822013870802828, 2006: 1.215873015873016, 2005: 1.2550947260624679, 2004: 1.297617787188989, 2003: 1.3324635790389214, 2002: 1.3626862352679565, 2001: 1.3843112893206078, 2000: 1.4234610917537749 } return int(row['salary']*inf_dict[row['year']]) def fixtm(t): if t == '2TM' or t == '3TM' or t == '4TM': return 'multiple' elif t == 'TBD': return 'TBR' elif t == 'MON': return "WSN" elif t == 'ANA': return 'LAA' elif t == 'FLA': return 'MIA' else: return t def fix_name(n): n1 = (' ').join(n.split('\xa0')) n2 = re.sub(r'[^\w\s]','',n1) return n2 def train_and_test(cutoff = 1000000): train_X,train_y,test_X,test_y = load_and_split_data(cutoff) lr = LinearRegression() lr.fit(train_X, train_y) preds = lr.predict(test_X) error = np.sqrt(MSE(test_y,preds)) return round(10**error,2) def train_and_test(cutoff = 1000000): train_X,train_y,test_X,test_y = load_and_split_data(cutoff) lr = LinearRegression() lr.fit(train_X, train_y) preds = lr.predict(test_X) error = np.sqrt(MSE(test_y,preds)) return round(10**error,2) def cutoff_df(df,cutoff): log_10_cut = math.log10(cutoff) df = df[df['log10_adj'] >= log_10_cut] return df def test_cutoffs(): test_cutoffs = [(i+1)*100000 for i in range(20)] error_list = [] for i in test_cutoffs: error = train_and_test(i) error_list.append(error) return test_cutoffs,error_list def test_elastic_cutoffs(): test_cutoffs = [(i+1)*100000 for i in range(20)] error_list = [] for i in test_cutoffs: error = elastic(i) error_list.append(error) return test_cutoffs,error_list def load_data(): train = pd.read_pickle('batting_00_16.pkl') test = pd.read_pickle('batting_17.pkl') return pd.concat([train,test]) def ordered(row): if row['name'] == row['np']: return row['next_sal'] else: return np.nan def get_salary_for_next_year(): df = load_data() df = engineer_features(df) df = df.sort_values(by = ['name','year']) df['next_sal'] = df['log10_adj'].shift(-1) df['np'] = df['name'].shift(-1) df['next_sal'] = df.apply(ordered,axis=1) df = df.dropna() df['log10_adj'] = df['next_sal'] df = df.drop(['next_sal','np'],axis=1) train = df[df['year']<2016] test = df[df['year']==2016] return train,test def engineer_features(df): df = df[df.pa>200] df = df.reset_index() df['pa/g'] = df['pa']/df['g'] df['name'] = df['name'].apply(fix_name) #adjust team names df['tm'] = df['tm'].apply(fixtm) #drop position summary (too many classes), log_sal (unscaled by inflation), rk (same as index) df.drop(['pos\xa0summary','log_sal','rk','index'],axis=1,inplace=True) #map values in acquired to 3 classes df['acquired'] = df['acquired'].map(acquired_dict) #adjust salary for inflation and take the log-10 for target column df['adj_salary'] = df.apply(inflation_calc,axis=1) df['log10_adj'] = np.log10(df['adj_salary']) #get dummy variables for team, hand, and acquired columns df = pd.get_dummies(df,columns = ['acquired','bat_hand','tm']).drop(['tm_multiple','bat_hand_rhb','acquired_tr'],axis=1) #filter datasets for only batters with more than 200 plate appearances in season return df def new_features(df): df['ba'] = df['h']/df['ab'] df['obp'] = (df['h']+df['bb']+df['hbp'])/(df['ab']+df['bb']+df['hbp']+df['sh']) df['slg'] = (df['h']+df['2b']+2*df['3b']+3*df['hr'])/df['ab'] return df def scaleColumns(df, cols_to_scale): min_max_scaler = preprocessing.MinMaxScaler() for col in cols_to_scale: df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col]) return df def rescale_numeric(df): df = df.reset_index().drop(['index'],axis=1) cols = ['g','pa','rbat','rbaser','rdp', 'rfield', 'rpos', 'raa', 'waa', 'rrep', 'rar', 'war', 'waawl%', '162wl%', 'owar', 'dwar', 'orar', 'year', 'ab', 'r', 'h', '2b', '3b', 'hr', 'rbi', 'sb', 'cs', 'bb', 'so', 'ibb', 'hbp', 'sh', 'sf', 'gidp', 'years_in_mlb','pa/g','ba','obp','slg'] df = scaleColumns(df,cols) return df def combine_with_lehman_data(df): players = pd.read_csv('baseballdatabank-master/core/People.csv') #players = players.set_index('playerID') drop_cols = ['deathYear','deathMonth','deathDay','deathCountry','deathState','deathCity', 'birthYear','birthMonth','birthDay','birthCountry','birthState','birthCity', 'nameGiven','weight','height','bats','throws','finalGame','retroID','bbrefID'] players = players.drop(drop_cols,axis=1) players['fullname'] = players['nameFirst'] + ' ' + players['nameLast'] players = players.dropna() players['fullname'] = players['fullname'].apply(lambda x: ''.join(re.sub(r'[^\w\s]','',x).split(' ')).lower()) batting =
pd.read_csv('baseballdatabank-master/core/Batting.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import csv from collections import defaultdict import numpy as np import re from nltk.stem.wordnet import WordNetLemmatizer from nltk.tokenize import word_tokenize from nltk.tokenize.regexp import RegexpTokenizer import pandas as pd def clean_tokens(tokens, to_replace='[^\w\-\+\&\.\'\"]+'): lemma = WordNetLemmatizer() tokens = [re.sub(to_replace, ' ', token) for token in tokens] tokens = [lemma.lemmatize(token) for token in tokens] return tokens def tokenize(mystr): tokenizer = RegexpTokenizer('[^ ]+') return tokenizer.tokenize(mystr) def make_causal_input(lod, map_, silent=True): """ :param lod: list of dictionaries :param map_: mapping of tags and values of interest, i.e. [('cause', 'C'), ('effect', 'E')]. The silent tags are by default taggerd as 'O' :return: dict of list of tuples for each sentence """ dd = defaultdict(list) dd_ = [] rx = re.compile(r"(\b[-']\b)|[\W_]") rxlist = [r'("\\)', r'(\\")'] rx = re.compile('|'.join(rxlist)) for i in range(len(lod)): line_ = lod[i]['sentence'] line = re.sub(rx, '', line_) caus = lod[i]['cause'] caus = re.sub(rx, '', caus) effe = lod[i]['effect'] effe = re.sub(rx, '', effe) d = defaultdict(list) index = 0 for idx, w in enumerate(word_tokenize(line)): index = line.find(w, index) if not index == -1: d[idx].append([w, index]) index += len(w) d_ = defaultdict(list) for idx in d: d_[idx].append([tuple([d[idx][0][0], 'O']), d[idx][0][1]]) init_e = line.find(effe) init_e = 0 if init_e == -1 else init_e init_c = line.find(caus) init_c = 0 if init_c == -1 else init_c for c, cl in enumerate(word_tokenize(caus)): init_c = line.find(cl, init_c) stop = line.find(cl, init_c) + len(cl) word = line[init_c:stop] for idx in d_: if int(init_c) == int(d_[idx][0][1]): und_ = defaultdict(list) und_[idx].append([tuple([word, 'C']), line.find(word, init_c)]) d_[idx] = und_[idx] init_c += len(cl) for e, el in enumerate(word_tokenize(effe)): init_e = line.find(el, init_e) stop = line.find(el, init_e) + len(el) word = line[init_e:stop] for idx in d_: if int(init_e) == int(d_[idx][0][1]): und_ = defaultdict(list) und_[idx].append([tuple([word, 'E']), line.find(word, init_e)]) d_[idx] = und_[idx] init_e += len(word) dd[i].append(d_) for dict_ in dd: dd_.append([item[0][0] for sub in [[j for j in i.values()] for i in lflatten(dd[dict_])] for item in sub]) return dd_ def s2dict(lines, lot): d = defaultdict(list) for line_, tag_ in zip(lines, lot): d[tag_] = line_ return d def make_data(df): lodict_ = [] for rows in df.itertuples(): list_ = [rows[2], rows[3], rows[4]] map1 = ['sentence', 'cause', 'effect'] dict_ = s2dict(list_, map1) lodict_.append(dict_) map_ = [('cause', 'C'), ('effect', 'E')] return zip(*[tuple(zip(*x)) for x in make_causal_input(lodict_, map_)]) def make_data2(df): lodict_ = [] for rows in df.itertuples(): list_ = [rows[2], rows[3], rows[4]] map1 = ['sentence', 'cause', 'effect'] dict_ = s2dict(list_, map1) lodict_.append(dict_) map_ = [('cause', 'C'), ('effect', 'E')] import itertools return list(itertools.chain(*make_causal_input(lodict_, map_))) def create_data_files(input_file_path, validation=False): df = pd.read_csv(input_file_path, delimiter='; ', engine='python', header=0) # Make train and test sets keeping multiple cause / effects blocks together. df['IdxSplit'] = df.Index.apply(lambda x: ''.join(x.split(".")[0:2])) df.set_index('IdxSplit', inplace=True) np.random.seed(0) testrows = np.random.choice(df.index.values, int(len(df) / 4)) test_sents = df.loc[testrows].drop_duplicates(subset='Index') train_sents = df.drop(test_sents.index) if validation is True: validrows = np.random.choice(train_sents.index.values, int(len(train_sents) / 4)) valid_sents = train_sents.loc[validrows] train_sents = df.drop(valid_sents.index) pairs = make_data2(valid_sents) pd.DataFrame(pairs).to_csv('valid_data.csv', sep=' ', index=None, header=False) pairs = make_data2(train_sents) pd.DataFrame(pairs).to_csv('train_data.csv', sep=' ', index=None, header=False) pairs = make_data2(test_sents) pd.DataFrame(pairs).to_csv('test_data.csv', sep=' ', index=None, header=False) def create_data_files2(input_file_path, validation=False): def write_list(lst, outfile): with open(outfile, 'w') as f: for item in lst: f.write("%s\n" % item) df = pd.read_csv(input_file_path, delimiter='; ', engine='python', header=0) # Make train and test sets keeping multiple cause / effects blocks together. df['IdxSplit'] = df.Index.apply(lambda x: ''.join(x.split(".")[0:2])) df.set_index('IdxSplit', inplace=True) np.random.seed(0) testrows = np.random.choice(df.index.values, int(len(df) / 4)) test_sents = df.loc[testrows].drop_duplicates(subset='Index') train_sents = df.drop(test_sents.index) if validation is True: validrows = np.random.choice(train_sents.index.values, int(len(train_sents) / 4)) valid_sents = train_sents.loc[validrows] train_sents = train_sents.drop(valid_sents.index) sentences, tags = make_data(valid_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'testa.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'testa.tags.txt') sentences, tags = make_data(train_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'train.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'train.tags.txt') sentences, tags = make_data(test_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'testb.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'testb.tags.txt') def create_data_files3(input_file_path, test_file_path, validation=False): def write_list(lst, outfile): with open(outfile, 'w') as f: for item in lst: f.write("%s\n" % item) train_sents = pd.read_csv(input_file_path, delimiter='; ', engine='python', header=0) train_sents['IdxSplit'] = train_sents.Index.apply(lambda x: ''.join(x.split(".")[0:2])) train_sents.set_index('IdxSplit', inplace=True) test_sents = pd.read_csv(test_file_path, delimiter='; ', engine='python', header=0) test_sents['IdxSplit'] = test_sents.Index.apply(lambda x: ''.join(x.split(".")[0:2])) test_sents.set_index('IdxSplit', inplace=True) np.random.seed(0) if validation is True: validrows = np.random.choice(train_sents.index.values, int(len(train_sents) / 4)) valid_sents = train_sents.loc[validrows] train_sents = train_sents.drop(valid_sents.index) sentences, tags = make_data(valid_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'testa.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'testa.tags.txt') sentences, tags = make_data(train_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'train.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'train.tags.txt') sentences = [' '.join([ word for idx, word in enumerate(word_tokenize(row[2]))]) for row in test_sents.itertuples()] write_list(sentences, 'testb.words.txt') # Just temp tags tags = [' '.join('O' for _ in word_tokenize(row[2])) for row in test_sents.itertuples()] write_list(tags, 'testb.tags.txt') def evaluate(test_file_path, modelpath='', args_idx = 1): pred_file = '/mnt/DATA/python/tf_ner/models/chars_lstm_lstm_crf/results/score/testb.preds.txt' with open(pred_file, 'r') as f: predicted = [] sent_data = [] for line in f: line = line.strip() if len(line) > 0: items = line.split(' ') sent_data.append((items[0], items[1], items[2])) else: predicted.append(sent_data) sent_data = [] if len(sent_data) > 0: predicted.append(sent_data) labels = {"C": 1, "E": 2, "O": 0} predictions = np.array([labels[pred] for sent in predicted for _, _, pred in sent]) truths = np.array([labels[t] for sent in predicted for _, t, _ in sent]) print(np.sum(truths == predictions) / len(truths)) y_test = [[t for _, t, _ in sent] for sent in predicted] y_pred = [[pred for __, _, pred in sent] for sent in predicted] tokens_test = [[token for token, _, _ in sent] for sent in predicted] ll = [] for i, (pred, token) in enumerate(zip(y_pred, tokens_test)): l = defaultdict(list) for j, (y, word) in enumerate(zip(pred, token)): print(y, word) l[j] = (word, y) ll.append(l) nl = [] for line, yt, yp in zip(ll, y_test, y_pred): d_ = defaultdict(list) d_["truth"] = yt d_["pred"] = yp d_["diverge"] = 0 for k, v in line.items(): d_[v[1]].append(''.join(v[0])) if d_["truth"] != d_["pred"]: d_["diverge"] = 1 d_['Cause'] = ' '.join(el for el in d_['C']) cause_extend = len(d_['Cause']) + 1 # add 1 extra space at start d_[' Cause'] = d_['Cause'].rjust(cause_extend) d_['_'] = ' '.join(el for el in d_['_']) d_['Effect'] = ' '.join(el for el in d_['E']) effect_extend = len(d_['Effect']) + 1 d_[' Effect'] = d_['Effect'].rjust(effect_extend) nl.append(d_) fieldn = sorted(list(set(k for d in nl for k in d))) with open(os.path.join(modelpath, ("controls_" + str(args_idx)) + ".csv"), "w+", encoding='utf-8') as f: writer = csv.DictWriter(f, fieldnames=fieldn, delimiter="~") writer.writeheader() for line in nl: writer.writerow(line) test = pd.read_csv(test_file_path, delimiter='; ', engine='python', header=0) test['IdxSplit'] = test.Index.apply(lambda x: ''.join(x.split(".")[0:2])) test.set_index('IdxSplit', inplace=True) tmp = pd.DataFrame.from_records(nl)[['Cause', 'Effect']].reset_index() idx = pd.DataFrame(test['Index']).reset_index() text =
pd.DataFrame(test['Text'])
pandas.DataFrame
import datetime import os import tempfile from collections import OrderedDict import boto3 import pandas as pd import pytest import yaml from moto import mock_s3 from numpy.testing import assert_almost_equal from pandas.testing import assert_frame_equal from unittest import mock from triage.component.catwalk.storage import ( MatrixStore, CSVMatrixStore, FSStore, S3Store, ProjectStorage, ModelStorageEngine, ) from tests.utils import CallSpy class SomeClass: def __init__(self, val): self.val = val def test_S3Store(): with mock_s3(): client = boto3.client("s3") client.create_bucket(Bucket="test_bucket", ACL="public-read-write") store = S3Store(f"s3://test_bucket/a_path") assert not store.exists() store.write("val".encode("utf-8")) assert store.exists() newVal = store.load() assert newVal.decode("utf-8") == "val" store.delete() assert not store.exists() @mock_s3 def test_S3Store_large(): client = boto3.client('s3') client.create_bucket(Bucket='test_bucket', ACL='public-read-write') store = S3Store('s3://test_bucket/a_path') assert not store.exists() # NOTE: The issue under test (currently) arises when too large a "part" # NOTE: is sent to S3 for upload -- greater than its 5 GiB limit on any # NOTE: single upload request. # # NOTE: Though s3fs uploads file parts as soon as its buffer reaches # NOTE: 5+ MiB, it does not ensure that its buffer -- and resulting # NOTE: upload "parts" -- remain under this limit (as the result of a # NOTE: single "write()"). # # NOTE: Therefore, until s3fs adds handling to ensure it never attempts # NOTE: to upload such large payloads, we'll handle this in S3Store, # NOTE: by chunking out writes to s3fs. # # NOTE: This is all not only to explain the raison d'etre of this test, # NOTE: but also as context for the following warning: The # NOTE: payload we'll attempt to write, below, is far less than 5 GiB!! # NOTE: (Attempting to provision a 5 GiB string in RAM just for this # NOTE: test would be an ENORMOUS drag on test runs, and a conceivable # NOTE: disruption, depending on the test environment's resources.) # # NOTE: As such, this test *may* fall out of sync with either the code # NOTE: that it means to test or with the reality of the S3 API -- even # NOTE: to the point of self-invalidation. (But, this should do the # NOTE: trick; and, we can always increase the payload size here, or # NOTE: otherwise tweak configuration, as necessary.) one_mb = 2 ** 20 payload = b"0" * (10 * one_mb) # 10MiB text of all zeros with CallSpy('botocore.client.BaseClient._make_api_call') as spy: store.write(payload) call_args = [call[0] for call in spy.calls] call_methods = [args[1] for args in call_args] assert call_methods == [ 'CreateMultipartUpload', 'UploadPart', 'UploadPart', 'CompleteMultipartUpload', ] upload_args = call_args[1] upload_body = upload_args[2]['Body'] # NOTE: Why is this a BufferIO rather than the underlying buffer?! # NOTE: (Would have expected the result of BufferIO.read() -- str.) body_length = len(upload_body.getvalue()) assert body_length == 5 * one_mb assert store.exists() assert store.load() == payload store.delete() assert not store.exists() def test_FSStore(): with tempfile.TemporaryDirectory() as tmpdir: tmpfile = os.path.join(tmpdir, "tmpfile") store = FSStore(tmpfile) assert not store.exists() store.write("val".encode("utf-8")) assert store.exists() newVal = store.load() assert newVal.decode("utf-8") == "val" store.delete() assert not store.exists() def test_ModelStorageEngine_nocaching(project_storage): mse = ModelStorageEngine(project_storage) mse.write('testobject', 'myhash') assert mse.exists('myhash') assert mse.load('myhash') == 'testobject' assert 'myhash' not in mse.cache def test_ModelStorageEngine_caching(project_storage): mse = ModelStorageEngine(project_storage) with mse.cache_models(): mse.write('testobject', 'myhash') with mock.patch.object(mse, "_get_store") as get_store_mock: assert mse.load('myhash') == 'testobject' assert not get_store_mock.called assert 'myhash' in mse.cache # when cache_models goes out of scope the cache should be empty assert 'myhash' not in mse.cache DATA_DICT = OrderedDict( [ ("entity_id", [1, 2]), ("as_of_date", [datetime.date(2017, 1, 1), datetime.date(2017, 1, 1)]), ("k_feature", [0.5, 0.4]), ("m_feature", [0.4, 0.5]), ("label", [0, 1]), ] ) METADATA = {"label_name": "label"} def matrix_stores(): df = pd.DataFrame.from_dict(DATA_DICT).set_index(MatrixStore.indices) with tempfile.TemporaryDirectory() as tmpdir: project_storage = ProjectStorage(tmpdir) tmpcsv = os.path.join(tmpdir, "df.csv.gz") tmpyaml = os.path.join(tmpdir, "df.yaml") with open(tmpyaml, "w") as outfile: yaml.dump(METADATA, outfile, default_flow_style=False) df.to_csv(tmpcsv, compression="gzip") csv = CSVMatrixStore(project_storage, [], "df") # first test with caching with csv.cache(): yield csv # with the caching out of scope they will be nuked # and this last version will not have any cache yield csv def test_MatrixStore_empty(): for matrix_store in matrix_stores(): assert not matrix_store.empty def test_MatrixStore_metadata(): for matrix_store in matrix_stores(): assert matrix_store.metadata == METADATA def test_MatrixStore_columns(): for matrix_store in matrix_stores(): assert matrix_store.columns() == ["k_feature", "m_feature"] def test_MatrixStore_resort_columns(): for matrix_store in matrix_stores(): result = matrix_store.matrix_with_sorted_columns( ["m_feature", "k_feature"] ).values.tolist() expected = [[0.4, 0.5], [0.5, 0.4]] assert_almost_equal(expected, result) def test_MatrixStore_already_sorted_columns(): for matrix_store in matrix_stores(): result = matrix_store.matrix_with_sorted_columns( ["k_feature", "m_feature"] ).values.tolist() expected = [[0.5, 0.4], [0.4, 0.5]] assert_almost_equal(expected, result) def test_MatrixStore_sorted_columns_subset(): with pytest.raises(ValueError): for matrix_store in matrix_stores(): matrix_store.matrix_with_sorted_columns(["m_feature"]).values.tolist() def test_MatrixStore_sorted_columns_superset(): with pytest.raises(ValueError): for matrix_store in matrix_stores(): matrix_store.matrix_with_sorted_columns( ["k_feature", "l_feature", "m_feature"] ).values.tolist() def test_MatrixStore_sorted_columns_mismatch(): with pytest.raises(ValueError): for matrix_store in matrix_stores(): matrix_store.matrix_with_sorted_columns( ["k_feature", "l_feature"] ).values.tolist() def test_MatrixStore_labels_idempotency(): for matrix_store in matrix_stores(): assert matrix_store.labels.tolist() == [0, 1] assert matrix_store.labels.tolist() == [0, 1] def test_MatrixStore_save(): data = { "entity_id": [1, 2], "as_of_date": [pd.Timestamp(2017, 1, 1), pd.Timestamp(2017, 1, 1)], "feature_one": [0.5, 0.6], "feature_two": [0.5, 0.6], "label": [1, 0] } df = pd.DataFrame.from_dict(data) labels = df.pop("label") for matrix_store in matrix_stores(): matrix_store.metadata = METADATA matrix_store.matrix_label_tuple = df, labels matrix_store.save() assert_frame_equal( matrix_store.design_matrix, df ) def test_MatrixStore_caching(): for matrix_store in matrix_stores(): with matrix_store.cache(): matrix = matrix_store.design_matrix with mock.patch.object(matrix_store, "_load") as load_mock: assert_frame_equal(matrix_store.design_matrix, matrix) assert not load_mock.called def test_as_of_dates(project_storage): data = { "entity_id": [1, 2, 1, 2], "feature_one": [0.5, 0.6, 0.5, 0.6], "feature_two": [0.5, 0.6, 0.5, 0.6], "as_of_date": [ pd.Timestamp(2016, 1, 1), pd.Timestamp(2016, 1, 1), pd.Timestamp(2017, 1, 1), pd.Timestamp(2017, 1, 1), ], "label": [1, 0, 1, 0] } df =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
''' (c) 2014 <NAME> and <NAME> This module contains functions for parsing various ldsc-defined file formats. ''' import numpy as np import pandas as pd import os from tqdm import tqdm import logging def series_eq(x, y): '''Compare series, return False if lengths not equal.''' return len(x) == len(y) and (x == y).all() def read_csv(fh, **kwargs): if fh.endswith('.hdf'): df = pd.read_hdf(fh) if 'usecols' in kwargs.keys(): df = df[kwargs['usecols']] elif fh.endswith('.parquet'): df = pd.read_parquet(fh) if 'usecols' in kwargs.keys(): df = df[kwargs['usecols']] else: df = pd.read_csv(fh, delim_whitespace=True, na_values='.', **kwargs) return df def set_snpid_index(df): df['A1_first'] = (df['A1'] < df['A2']) | (df['A1'].str.len()>1) | (df['A2'].str.len()>1) df['A1s'] = df['A2'].copy() df.loc[df['A1_first'], 'A1s'] = df.loc[df['A1_first'], 'A1'].copy() df['A2s'] = df['A1'].copy() df.loc[df['A1_first'], 'A2s'] = df.loc[df['A1_first'], 'A2'].copy() df.index = df['CHR'].astype(str) + '.' + df['BP'].astype(str) + '.' + df['A1s'] + '.' + df['A2s'] df.index.name = 'snpid' df.drop(columns=['A1_first', 'A1s', 'A2s'], inplace=True) return df def sub_chr(s, chr): '''Substitute chr for @, else append chr to the end of str.''' if '@' not in s: s += '@' return s.replace('@', str(chr)) def which_compression(fh): '''Given a file prefix, figure out what sort of compression to use.''' #import ipdb; ipdb.set_trace() if os.access(fh + '.parquet', 4): suffix = '.parquet' compression = 'parquet' elif os.access(fh + '.hdf', 4): suffix = '.hdf' compression = 'hdf' elif os.access(fh + '.bz2', 4): suffix = '.bz2' compression = 'bz2' elif os.access(fh + '.gz', 4): suffix = '.gz' compression = 'gzip' elif os.access(fh, 4): suffix = '' compression = None else: raise IOError('Could not open {F}[./gz/bz2/.hdf/.parquet]'.format(F=fh)) return suffix, compression def get_compression(fh): '''Which sort of compression should we use with read_csv?''' if fh.endswith('gz'): compression = 'gzip' elif fh.endswith('bz2'): compression = 'bz2' else: compression = None return compression def read_cts(fh, match_snps): '''Reads files for --cts-bin.''' compression = get_compression(fh) cts = read_csv(fh, compression=compression, header=None, names=['SNP', 'ANNOT']) if not series_eq(cts.SNP, match_snps): raise ValueError('--cts-bin and the .bim file must have identical SNP columns.') return cts.ANNOT.values def sumstats(fh, alleles=True, dropna=True): '''Parses .sumstats files. See docs/file_formats_sumstats.txt.''' dtype_dict = {'SNP': str, 'Z': float, 'N': float, 'A1': str, 'A2': str} compression = get_compression(fh) usecols = ['SNP', 'CHR', 'BP', 'Z', 'N'] #if alleles: usecols += ['A1', 'A2'] try: x = read_csv(fh, usecols=usecols, dtype=dtype_dict, compression=compression) except (AttributeError, ValueError) as e: raise ValueError('Improperly formatted sumstats file: ' + str(e.args)) if dropna: x = x.dropna(how='any') x = set_snpid_index(x) x.drop(columns=['CHR', 'BP'], inplace=True) return x def ldscore_fromlist(flist, num=None): '''Sideways concatenation of a list of LD Score files.''' ldscore_array = [] for fh_i, fh in enumerate(flist): y = ldscore(fh, num) if len(ldscore_array)>0: if (not series_eq(y.SNP, ldscore_array[0].SNP)) or (not series_eq(y.index, ldscore_array[0].index)): raise ValueError('LD Scores for concatenation must have identical SNP columns (and A1/A2 columns if such columns exist).') else: # keep SNP and CHR column from only the first file y = y.drop(columns=['SNP', 'CHR'], axis=1) new_col_dict = {c: c + '_' + str(fh_i) for c in y.columns if c not in ['SNP', 'CHR']} y.rename(columns=new_col_dict, inplace=True) ldscore_array.append(y) if len(ldscore_array)==1: ldscores_all = ldscore_array[0] else: #ldscores_all = pd.concat(ldscore_array, axis=1) ldscores_all =
pd.concat(ldscore_array, axis=1)
pandas.concat
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import re from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD from sklearn import preprocessing, model_selection, metrics import lightgbm as lgb import gc train_df = pd.read_csv('../input/train.csv', parse_dates=["activation_date"]) test_df = pd.read_csv('../input/test.csv', parse_dates=["activation_date"]) import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns import random import nltk nltk.data.path.append("/media/sayantan/Personal/nltk_data") from nltk.stem.snowball import RussianStemmer from fuzzywuzzy import fuzz from nltk.corpus import stopwords from tqdm import tqdm from scipy.stats import skew, kurtosis from scipy.spatial.distance import cosine, cityblock, jaccard, canberra, euclidean, minkowski, braycurtis from nltk import word_tokenize stopwords = stopwords.words('russian') def genFeatures(x): x["activation_weekday"] = x["activation_date"].dt.weekday x["monthday"] = x["activation_date"].dt.day x["weekinmonday"] = x["monthday"] // 7 ##################Added in set 1 - 0.01 Improvement x['price_new'] = np.log1p(x.price) # log transform improves co-relation with deal_price x['count_null_in_row'] = x.isnull().sum(axis=1)# works x['has_description'] = x.description.isnull().astype(int) x['has_image'] = x.image.isnull().astype(int) x['has_image_top'] = x.image_top_1.isnull().astype(int) x['has_param1'] = x.param_1.isnull().astype(int) x['has_param2'] = x.param_2.isnull().astype(int) x['has_param3'] = x.param_3.isnull().astype(int) x['has_price'] = x.price.isnull().astype(int) #################Added in set 2 - 0.00x Improvement x["description"].fillna("NA", inplace=True) x["desc_nwords"] = x["description"].apply(lambda x: len(x.split())) x['len_description'] = x['description'].apply(lambda x: len(x)) x["title_nwords"] = x["title"].apply(lambda x: len(x.split())) x['len_title'] = x['title'].apply(lambda x: len(x)) x['params'] = x['param_1'].fillna('') + ' ' + x['param_2'].fillna('') + ' ' + x['param_3'].fillna('') x['params'] = x['params'].str.strip() x['len_params'] = x['params'].apply(lambda x: len(x)) x['words_params'] = x['params'].apply(lambda x: len(x.split())) x['symbol1_count'] = x['description'].str.count('↓') x['symbol2_count'] = x['description'].str.count('\*') x['symbol3_count'] = x['description'].str.count('✔') x['symbol4_count'] = x['description'].str.count('❀') x['symbol5_count'] = x['description'].str.count('➚') x['symbol6_count'] = x['description'].str.count('ஜ') x['symbol7_count'] = x['description'].str.count('.') x['symbol8_count'] = x['description'].str.count('!') x['symbol9_count'] = x['description'].str.count('\?') x['symbol10_count'] = x['description'].str.count(' ') x['symbol11_count'] = x['description'].str.count('-') x['symbol12_count'] = x['description'].str.count(',') #################### return x train_df = genFeatures(train_df) test_df = genFeatures(test_df) test_df['deal_probability']=10.0 ############################ english_stemmer = nltk.stem.SnowballStemmer('russian') def clean_text(text): #text = re.sub(r'(\d+),(\d+)', r'\1.\2', text) text = text.replace(u'²', '2') text = text.lower() text = re.sub(u'[^a-zа-я0-9]', ' ', text) text = re.sub('\s+', ' ', text) return text.strip() def stem_tokens(tokens, stemmer): stemmed = [] for token in tokens: #stemmed.append(stemmer.lemmatize(token)) stemmed.append(stemmer.stem(token)) return stemmed def preprocess_data(line, exclude_stopword=True, encode_digit=False): ## tokenize line = clean_text(line) tokens = [x.lower() for x in nltk.word_tokenize(line)] ## stem tokens_stemmed = stem_tokens(tokens, english_stemmer)#english_stemmer if exclude_stopword: tokens_stemmed = [x for x in tokens_stemmed if x not in stopwords] return ' '.join(tokens_stemmed) train_test = pd.concat((train_df, test_df), axis = 'rows') ## After cleaning => then find intersection train_test["title_clean"]= list(train_test[["title"]].apply(lambda x: preprocess_data(x["title"]), axis=1)) train_test["desc_clean"]= list(train_test[["description"]].apply(lambda x: preprocess_data(x["description"]), axis=1)) train_test["params_clean"]= list(train_test[["params"]].apply(lambda x: preprocess_data(x["params"]), axis=1)) train_test['count_common_words_title_desc'] = train_test.apply(lambda x: len(set(str(x['title_clean']).lower().split()).intersection(set(str(x['desc_clean']).lower().split()))), axis=1) train_test['count_common_words_title_params'] = train_test.apply(lambda x: len(set(str(x['title_clean']).lower().split()).intersection(set(str(x['params_clean']).lower().split()))), axis=1) train_test['count_common_words_params_desc'] = train_test.apply(lambda x: len(set(str(x['params_clean']).lower().split()).intersection(set(str(x['desc_clean']).lower().split()))), axis=1) print("Cleaned texts..") ################### # Count Nouns import pymorphy2 morph = pymorphy2.MorphAnalyzer(result_type=None) from fastcache import clru_cache as lru_cache @lru_cache(maxsize=1000000) def lemmatize_pos(word): _, tag, norm_form, _, _ = morph.parse(word)[0] return norm_form, tag.POS def getPOS(x, pos1 = 'NOUN'): lemmatized = [] x = clean_text(x) #x = re.sub(u'[.]', ' ', x) for s in x.split(): s, pos = lemmatize_pos(s) if pos != None: if pos1 in pos: lemmatized.append(s) return ' '.join(lemmatized) train_test['get_nouns_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'NOUN'), axis=1)) train_test['get_nouns_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'NOUN'), axis=1)) train_test['get_adj_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'ADJ'), axis=1)) train_test['get_adj_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'ADJ'), axis=1)) train_test['get_verb_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'VERB'), axis=1)) train_test['get_verb_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'VERB'), axis=1)) # Count digits def count_digit(x): x = clean_text(x) return len(re.findall(r'\b\d+\b', x)) train_test['count_of_digit_in_title'] = list(train_test.apply(lambda x: count_digit(x['title']), axis=1)) train_test['count_of_digit_in_desc'] = list(train_test.apply(lambda x: count_digit(x['description']), axis=1)) train_test['count_of_digit_in_params'] = list(train_test.apply(lambda x: count_digit(x['params']), axis=1)) ## get unicode features count_unicode = lambda x: len([c for c in x if ord(c) > 1105]) count_distunicode = lambda x: len({c for c in x if ord(c) > 1105}) train_test['count_of_unicode_in_title'] = list(train_test.apply(lambda x: count_unicode(x['title']), axis=1)) train_test['count_of_unicode_in_desc'] = list(train_test.apply(lambda x: count_distunicode(x['description']), axis=1)) train_test['count_of_distuni_in_title'] = list(train_test.apply(lambda x: count_unicode(x['title']), axis=1)) train_test['count_of_distuni_in_desc'] = list(train_test.apply(lambda x: count_distunicode(x['description']), axis=1)) ### count_caps = lambda x: len([c for c in x if c.isupper()]) train_test['count_caps_in_title'] = list(train_test.apply(lambda x: count_caps(x['title']), axis=1)) train_test['count_caps_in_desc'] = list(train_test.apply(lambda x: count_caps(x['description']), axis=1)) import string count_punct = lambda x: len([c for c in x if c in string.punctuation]) train_test['count_punct_in_title'] = list(train_test.apply(lambda x: count_punct(x['title']), axis=1)) train_test['count_punct_in_desc'] = list(train_test.apply(lambda x: count_punct(x['description']), axis=1)) print("Computed POS Features and others..") train_test['count_common_nouns'] = train_test.apply(lambda x: len(set(str(x['get_nouns_title']).lower().split()).intersection(set(str(x['get_nouns_desc']).lower().split()))), axis=1) train_test['count_common_adj'] = train_test.apply(lambda x: len(set(str(x['get_adj_title']).lower().split()).intersection(set(str(x['get_adj_desc']).lower().split()))), axis=1) train_test['ratio_of_unicode_in_title'] = train_test['count_of_unicode_in_title'] / train_test['len_title'] train_test['ratio_of_unicode_in_desc'] = train_test['count_of_unicode_in_desc'] / train_test['len_description'] train_test['ratio_of_punct_in_title'] = train_test['count_punct_in_title'] / train_test['len_title'] train_test['ratio_of_punct_in_desc'] = train_test['count_punct_in_desc'] / train_test['len_description'] train_test['ratio_of_cap_in_title'] = train_test['count_caps_in_title'] / train_test['len_title'] train_test['ratio_of_cap_in_desc'] = train_test['count_caps_in_desc'] / train_test['len_description'] train_test['count_nouns_in_title'] = train_test["get_nouns_title"].apply(lambda x: len(x.split())) train_test['count_nouns_in_desc'] = train_test['get_nouns_desc'].apply(lambda x: len(x.split())) train_test['count_adj_in_title'] = train_test["get_adj_title"].apply(lambda x: len(x.split())) train_test['count_adj_in_desc'] = train_test['get_adj_desc'].apply(lambda x: len(x.split())) train_test['count_verb_title'] = train_test['get_verb_title'].apply(lambda x: len(x.split())) train_test['count_verb_desc'] = train_test['get_verb_desc'].apply(lambda x: len(x.split())) train_test['ratio_nouns_in_title'] = train_test["count_nouns_in_title"] / train_test["title_nwords"] train_test['ratio_nouns_in_desc'] = train_test["count_nouns_in_desc"] / train_test["desc_nwords"] train_test['ratio_adj_in_title'] = train_test["count_adj_in_title"] / train_test["title_nwords"] train_test['ratio_adj_in_desc'] = train_test["count_adj_in_desc"] / train_test["desc_nwords"] train_test['ratio_vrb_in_title'] = train_test["count_verb_title"] / train_test["title_nwords"] train_test['ratio_vrb_in_desc'] = train_test["count_verb_desc"] / train_test["desc_nwords"] train_test["title"]= list(train_test[["title"]].apply(lambda x: clean_text(x["title"]), axis=1)) train_test["description"]= list(train_test[["description"]].apply(lambda x: clean_text(x["description"]), axis=1)) train_test["params"]= list(train_test[["params"]].apply(lambda x: clean_text(x["params"]), axis=1)) ####################### ### Save ####################### train_df = train_test.loc[train_test.deal_probability != 10].reset_index(drop = True) test_df = train_test.loc[train_test.deal_probability == 10].reset_index(drop = True) for c in train_df.columns: if train_df[c].dtype == 'float64': train_df[c] = train_df[c].astype('float32') test_df[c] = test_df[c].astype('float32') train_df.to_feather('../train_basic_features.pkl') test_df.to_feather('../test__basic_features.pkl') ####################### ### Label Enc ####################### from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler cat_vars = ["user_id", "region", "city", "parent_category_name", "category_name", "user_type", "param_1", "param_2", "param_3"] for col in cat_vars: lbl = preprocessing.LabelEncoder() lbl.fit(list(train_df[col].values.astype('str')) + list(test_df[col].values.astype('str'))) train_df[col] = lbl.transform(list(train_df[col].values.astype('str'))) test_df[col] = lbl.transform(list(test_df[col].values.astype('str'))) train_df.to_feather('../train_basic_features_lblencCats.pkl') test_df.to_feather('../test__basic_features_lblencCats.pkl') ####################### ### One hots ####################### train_df=pd.read_feather('../train_basic_features_lblencCats.pkl') test_df=pd.read_feather('../test__basic_features_lblencCats.pkl') from sklearn.externals import joblib le = OneHotEncoder() X = le.fit_transform(np.array(train_df.user_id.values.tolist() + test_df.user_id.values.tolist()).reshape(-1,1)) joblib.dump(X, "../user_id_onehot.pkl") X = le.fit_transform(np.array(train_df.region.values.tolist() + test_df.region.values.tolist()).reshape(-1,1)) joblib.dump(X, "../region_onehot.pkl") X = le.fit_transform(np.array(train_df.city.values.tolist() + test_df.city.values.tolist()).reshape(-1,1)) joblib.dump(X, "../city_onehot.pkl") X = le.fit_transform(np.array(train_df.parent_category_name.values.tolist() + test_df.parent_category_name.values.tolist()).reshape(-1,1)) joblib.dump(X, "../parent_category_name_onehot.pkl") X = le.fit_transform(np.array(train_df.category_name.values.tolist() + test_df.category_name.values.tolist()).reshape(-1,1)) joblib.dump(X, "../category_name_onehot.pkl") X = le.fit_transform(np.array(train_df.user_type.values.tolist() + test_df.user_type.values.tolist()).reshape(-1,1)) joblib.dump(X, "../user_type_onehot.pkl") X = le.fit_transform(np.array(train_df.param_1.values.tolist() + test_df.param_1.values.tolist()).reshape(-1,1)) joblib.dump(X, "../param_1_onehot.pkl") X = le.fit_transform(np.array(train_df.param_2.values.tolist() + test_df.param_2.values.tolist()).reshape(-1,1)) joblib.dump(X, "../param_2_onehot.pkl") X = le.fit_transform(np.array(train_df.param_3.values.tolist() + test_df.param_3.values.tolist()).reshape(-1,1)) joblib.dump(X, "../param_3_onehot.pkl") train_df.drop(cat_vars, inplace = True, axis = 'columns') test_df.drop(cat_vars, inplace = True, axis = 'columns') train_df.to_feather('../train_basic_features_woCats.pkl') test_df.to_feather('../test__basic_features_woCats.pkl') ####################### ### Tfidf ####################### train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') from sklearn.externals import joblib ### TFIDF Vectorizer ### train_df['params'] = train_df['params'].fillna('NA') test_df['params'] = test_df['params'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000,#min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) #TfidfVectorizer(ngram_range=(1,2)) full_tfidf = tfidf_vec.fit_transform(train_df['params'].values.tolist() + test_df['params'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist()) del full_tfidf print("TDIDF Params UNCLEAN..") joblib.dump([train_tfidf, test_tfidf], "../params_tfidf.pkl") ### TFIDF Vectorizer ### train_df['title_clean'] = train_df['title_clean'].fillna('NA') test_df['title_clean'] = test_df['title_clean'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,2),max_features = 20000,#,min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../title_tfidf.pkl") del full_tfidf print("TDIDF TITLE CLEAN..") ### TFIDF Vectorizer ### train_df['desc_clean'] = train_df['desc_clean'].fillna(' ') test_df['desc_clean'] = test_df['desc_clean'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,2), max_features = 20000, #,min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf.pkl") del full_tfidf print("TDIDF DESC CLEAN..") ### TFIDF Vectorizer ### train_df['get_nouns_title'] = train_df['get_nouns_title'].fillna(' ') test_df['get_nouns_title'] = test_df['get_nouns_title'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_nouns_title'].values.tolist() + test_df['get_nouns_title'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_nouns_title'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_nouns_title'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../nouns_title_tfidf.pkl") del full_tfidf print("TDIDF Title Noun..") ### TFIDF Vectorizer ### train_df['get_nouns_desc'] = train_df['get_nouns_desc'].fillna(' ') test_df['get_nouns_desc'] = test_df['get_nouns_desc'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_nouns_desc'].values.tolist() + test_df['get_nouns_desc'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_nouns_desc'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_nouns_desc'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../nouns_desc_tfidf.pkl") del full_tfidf print("TDIDF Desc Noun..") ### TFIDF Vectorizer ### train_df['get_adj_title'] = train_df['get_adj_title'].fillna(' ') test_df['get_adj_title'] = test_df['get_adj_title'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_adj_title'].values.tolist() + test_df['get_adj_title'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_adj_title'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_adj_title'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../adj_title_tfidf.pkl") del full_tfidf print("TDIDF TITLE Adj..") ### TFIDF Vectorizer ### train_df['get_adj_desc'] = train_df['get_adj_desc'].fillna(' ') test_df['get_adj_desc'] = test_df['get_adj_desc'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_adj_desc'].values.tolist() + test_df['get_adj_desc'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_adj_desc'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_adj_desc'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../adj_desc_tfidf.pkl") del full_tfidf print("TDIDF Desc Adj..") ### TFIDF Vectorizer ### train_df['get_verb_title'] = train_df['get_verb_title'].fillna(' ') test_df['get_verb_title'] = test_df['get_verb_title'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_verb_title'].values.tolist() + test_df['get_verb_title'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_verb_title'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_verb_title'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../verb_title_tfidf.pkl") del full_tfidf print("TDIDF TITLE Verb..") ### TFIDF Vectorizer ### train_df['get_verb_desc'] = train_df['get_verb_desc'].fillna(' ') test_df['get_verb_desc'] = test_df['get_verb_desc'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_verb_desc'].values.tolist() + test_df['get_verb_desc'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_verb_desc'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_verb_desc'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../verb_desc_tfidf.pkl") del full_tfidf print("TDIDF Desc Verb..") ############################### # Sentence to seq ############################### print('Generate Word Sequences') train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences MAX_NUM_OF_WORDS = 100000 TIT_MAX_SEQUENCE_LENGTH = 100 df = pd.concat((train_df, test_df), axis = 'rows') tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS) tokenizer.fit_on_texts(df['title'].tolist()) sequences = tokenizer.texts_to_sequences(df['title'].tolist()) titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH) joblib.dump(titleSequences, "../titleSequences.pkl") MAX_NUM_OF_WORDS = 10000 TIT_MAX_SEQUENCE_LENGTH = 20 tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS) tokenizer.fit_on_texts(df['params'].tolist()) sequences = tokenizer.texts_to_sequences(df['params'].tolist()) titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH) joblib.dump(titleSequences, "../paramSequences.pkl") MAX_NUM_OF_WORDS = 100000 TIT_MAX_SEQUENCE_LENGTH = 100 tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS) tokenizer.fit_on_texts(df['description'].tolist()) sequences = tokenizer.texts_to_sequences(df['description'].tolist()) titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH) joblib.dump(titleSequences, "../descSequences.pkl") #######OHC WeekDay from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler le = OneHotEncoder() X = le.fit_transform(np.array(train_df.activation_weekday.values.tolist() + test_df.activation_weekday.values.tolist()).reshape(-1,1)) ################################################ # Cat encoding ################################################ train_df=pd.read_feather('../train_basic_features.pkl') test_df=pd.read_feather('../test__basic_features.pkl') def catEncode(train_char, test_char, y, colLst = [], nbag = 10, nfold = 20, minCount = 3, postfix = ''): train_df = train_char.copy() test_df = test_char.copy() if not colLst: print("Empty ColLst") for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],4)) enc_mat_test = np.zeros((test_char.shape[0],4)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby([c]).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] # datax = datax.loc[datax.y_len > minCount] ind = c + postfix datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind), 'y_len_': ('y_len' + ind), 'y_median_': ('y_median' + ind),}, inplace = True) # datax[c+'_medshftenc'] = datax['y_median']-med_y # datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(np.mean(y)) datatst = datatst.join(datax,on=[c], how='left').fillna(np.mean(y)) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=enc_mat.columns train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1) test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1) else: print("Not Empty ColLst") data = train_char[colLst].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],4)) enc_mat_test = np.zeros((test_char.shape[0],4)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(colLst).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] # datax = datax.loc[datax.y_len > minCount] ind = '_'.join(colLst) + postfix datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind), 'y_len': ('y_len_' + ind), 'y_median': ('y_median_' + ind),}, inplace = True) datatst = test_char[colLst].copy() val_X = val_X.join(datax,on=colLst, how='left').fillna(np.mean(y)) datatst = datatst.join(datax,on=colLst, how='left').fillna(np.mean(y)) print(val_X[list(set(datax.columns)-set(colLst))].columns) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set(colLst))] enc_mat_test += datatst[list(set(datax.columns)-set(colLst))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=enc_mat.columns train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1) test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1) print(train_df.columns) print(test_df.columns) for c in train_df.columns: if train_df[c].dtype == 'float64': train_df[c] = train_df[c].astype('float32') test_df[c] = test_df[c].astype('float32') return train_df, test_df catCols = ['user_id', 'region', 'city', 'parent_category_name', 'category_name', 'user_type'] train_df, test_df = catEncode(train_df[catCols].copy(), test_df[catCols].copy(), train_df.deal_probability.values, nbag = 10, nfold = 10, minCount = 0) train_df.to_feather('../train_cat_targetenc.pkl') test_df.to_feather('../test_cat_targetenc.pkl') ################################################################ # Tfidf - part 2 ################################################################ import os; os.environ['OMP_NUM_THREADS'] = '1' from sklearn.decomposition import TruncatedSVD import nltk nltk.data.path.append("/media/sayantan/Personal/nltk_data") from nltk.stem.snowball import RussianStemmer from nltk.corpus import stopwords import time from typing import List, Dict from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer as Tfidf from sklearn.model_selection import KFold from sklearn.externals import joblib from scipy.sparse import hstack, csr_matrix import pandas as pd import numpy as np import gc from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler from sklearn import model_selection english_stemmer = nltk.stem.SnowballStemmer('russian') def clean_text(text): #text = re.sub(r'(\d+),(\d+)', r'\1.\2', text) text = text.replace(u'²', '2') text = text.lower() text = re.sub(u'[^a-zа-я0-9]', ' ', text) text = re.sub('\s+', ' ', text) return text.strip() def stem_tokens(tokens, stemmer): stemmed = [] for token in tokens: #stemmed.append(stemmer.lemmatize(token)) stemmed.append(stemmer.stem(token)) return stemmed def preprocess_data(line, exclude_stopword=True, encode_digit=False): ## tokenize line = clean_text(line) tokens = [x.lower() for x in nltk.word_tokenize(line)] ## stem tokens_stemmed = stem_tokens(tokens, english_stemmer)#english_stemmer if exclude_stopword: tokens_stemmed = [x for x in tokens_stemmed if x not in stopwords] return ' '.join(tokens_stemmed) stopwords = stopwords.words('russian') train_per=pd.read_csv('../input/train_active.csv', usecols = ['param_1', 'param_2', 'param_3'])#,'title','description']) test_per=pd.read_csv('../input/test_active.csv', usecols = ['param_1', 'param_2', 'param_3'])#,'title','description']) train_test = pd.concat((train_per, test_per), axis = 'rows') del train_per, test_per; gc.collect() train_test['params'] = train_test['param_1'].fillna('') + ' ' + train_test['param_2'].fillna('') + ' ' + train_test['param_3'].fillna('') import re train_test.drop(['param_1', 'param_2', 'param_3'], axis = 'columns', inplace=True) train_test["params"]= list(train_test[["params"]].apply(lambda x: clean_text(x["params"]), axis=1)) import re train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') from sklearn.externals import joblib ### TFIDF Vectorizer ### train_df['params'] = train_df['params'].fillna('NA') test_df['params'] = test_df['params'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000,#min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) #TfidfVectorizer(ngram_range=(1,2)) full_tfidf = tfidf_vec.fit_transform(train_test['params'].values.tolist() + train_df['params'].values.tolist() + test_df['params'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist()) del full_tfidf print("TDIDF Params UNCLEAN..") joblib.dump([train_tfidf, test_tfidf], "../params_tfidf2.pkl") tfidf_vec = TfidfVectorizer(ngram_range=(1,1),max_features = 10000,max_df=.4,#min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) #TfidfVectorizer(ngram_range=(1,2)) full_tfidf = tfidf_vec.fit_transform(train_test['params'].values.tolist() + train_df['params'].values.tolist() + test_df['params'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist()) del full_tfidf print("TDIDF Params UNCLEAN..") joblib.dump([train_tfidf, test_tfidf], "../params_tfidf3.pkl") del(train_test); gc.collect() train_per=pd.read_csv('../input/train_active.csv', usecols = ['title'])#,'title','description']) test_per=pd.read_csv('../input/test_active.csv', usecols = ['title'])#,'title','description']) train_test = pd.concat((train_per, test_per), axis = 'rows') del train_per, test_per; gc.collect() train_test.fillna('NA', inplace=True) train_test["title_clean"]= list(train_test[["title"]].apply(lambda x: preprocess_data(x["title"]), axis=1)) train_df['title_clean'] = train_df['title_clean'].fillna('NA') test_df['title_clean'] = test_df['title_clean'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,2),max_features = 20000,#,min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['title_clean'].values.tolist()+train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../title_tfidf2.pkl") del full_tfidf print("TDIDF TITLE CLEAN..") train_df['title_clean'] = train_df['title_clean'].fillna('NA') test_df['title_clean'] = test_df['title_clean'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,1),max_features = 20000, max_df=.4,#,min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['title_clean'].values.tolist()+train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../title_tfidf3.pkl") del full_tfidf print("TDIDF TITLE CLEAN..") del(train_test); gc.collect() ###Too slow### ''' train_per=pd.read_csv('../input/train_active.csv', usecols = ['description'])#,'title','description']) test_per=pd.read_csv('../input/test_active.csv', usecols = ['description'])#,'title','description']) train_per.fillna(' ', inplace=True) test_per.fillna(' ', inplace=True) train_test["desc_clean"]= list(train_test[["description"]].apply(lambda x: preprocess_data(x["description"]), axis=1)) ### TFIDF Vectorizer ### train_df['desc_clean'] = train_df['desc_clean'].fillna(' ') test_df['desc_clean'] = test_df['desc_clean'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,2), max_features = 20000, stop_words = stopwords#,min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['desc_clean'].values.tolist()+train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf2.pkl") del full_tfidf print("TDIDF DESC CLEAN..") tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 20000, max_df=.4,#,min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['desc_clean'].values.tolist()+train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf3.pkl") del full_tfidf print("TDIDF DESC CLEAN..") ''' ########################################## # 13. Chargram -- too slow ########################################## from collections import Counter train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') def char_ngrams(s): s = s.lower() s = s.replace(u' ', '') result = Counter() len_s = len(s) for n in [3, 4, 5]: result.update(s[i:i+n] for i in range(len_s - n + 1)) return ' '.join(list(result)) data = pd.concat((train_df, test_df), axis = 'rows') data['param_chargram'] = list(data[['params']].apply(lambda x: char_ngrams(x['params']), axis=1)) data['title_chargram'] = list(data[['title']].apply(lambda x: char_ngrams(x['title']), axis=1)) #data['desc_chargram'] = list(data[['description']].apply(lambda x: char_ngrams(x['description']), axis=1)) #data['count_common_chargram'] = data.apply(lambda x: len(set(str(x['title_chargram']).lower().split()).intersection(set(str(x['desc_chargram']).lower().split()))), axis=1) train_df = data.loc[data.deal_probability != 10].reset_index(drop = True) test_df = data.loc[data.deal_probability == 10].reset_index(drop = True) del(data); gc.collect() #####Chargram -TFIDF tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000, min_df=3, max_df=.75) full_tfidf = tfidf_vec.fit_transform(train_df['title_chargram'].values.tolist() + test_df['title_chargram'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_chargram'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_chargram'].values.tolist()) from sklearn.externals import joblib joblib.dump([train_tfidf, test_tfidf], '../title_chargram_tfidf.pkl') tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000, min_df=3, max_df=.75) full_tfidf = tfidf_vec.fit_transform(train_df['param_chargram'].values.tolist() + test_df['param_chargram'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['param_chargram'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['param_chargram'].values.tolist()) from sklearn.externals import joblib joblib.dump([train_tfidf, test_tfidf], '../param_chargram_tfidf.pkl') #######Chargram of Cat and Parent cat def clean_text(text): #text = re.sub(r'(\d+),(\d+)', r'\1.\2', text) text = text.replace(u'²', '2') text = text.lower() text = re.sub(u'[^a-zа-я0-9]', ' ', text) text = re.sub('\s+', ' ', text) return text.strip() train_df = pd.read_feather('../train_basic_features.pkl') test_df = pd.read_feather('../test__basic_features.pkl') data = pd.concat([train_df, test_df], axis= 'rows') data['categories'] = data["parent_category_name"].fillna(' ') + data["category_name"].fillna(' ') data['cat_chargram'] = list(data[['categories']].apply(lambda x: char_ngrams(x['categories']), axis=1)) train_df = data.loc[data.deal_probability != 10].reset_index(drop = True) test_df = data.loc[data.deal_probability == 10].reset_index(drop = True) del(data); gc.collect() tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 1000, min_df=3, max_df=.75) full_tfidf = tfidf_vec.fit_transform(train_df['cat_chargram'].values.tolist() + test_df['cat_chargram'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['cat_chargram'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['cat_chargram'].values.tolist()) from sklearn.externals import joblib joblib.dump([train_tfidf, test_tfidf], '../cat_chargram_tfidf.pkl') ############################## ## New Kaggle Ftr ############################## import pandas as pd import gc used_cols = ['item_id', 'user_id'] train = pd.read_csv('../input/train.csv', usecols=used_cols) train_active = pd.read_csv('../input/train_active.csv', usecols=used_cols) test = pd.read_csv('../input/test.csv', usecols=used_cols) test_active = pd.read_csv('../input/test_active.csv', usecols=used_cols) train_periods = pd.read_csv('../input/periods_train.csv', parse_dates=['date_from', 'date_to']) test_periods = pd.read_csv('../input/periods_test.csv', parse_dates=['date_from', 'date_to']) train.head() all_samples = pd.concat([ train, train_active, test, test_active ]).reset_index(drop=True) all_samples.drop_duplicates(['item_id'], inplace=True) del train_active del test_active gc.collect() all_periods = pd.concat([ train_periods, test_periods ]) del train_periods del test_periods gc.collect() all_periods.head() all_periods['days_up'] = (all_periods['date_to'] - all_periods['date_from']).dt.days gp = all_periods.groupby(['item_id'])[['days_up']] gp_df = pd.DataFrame() gp_df['days_up_sum'] = gp.sum()['days_up'] gp_df['times_put_up'] = gp.count()['days_up'] gp_df.reset_index(inplace=True) gp_df.rename(index=str, columns={'index': 'item_id'}) gp_df.head() all_periods.drop_duplicates(['item_id'], inplace=True) all_periods = all_periods.merge(gp_df, on='item_id', how='left') all_periods.head() del gp del gp_df gc.collect() all_periods = all_periods.merge(all_samples, on='item_id', how='left') all_periods.head() gp = all_periods.groupby(['user_id'])[['days_up_sum', 'times_put_up']].mean().reset_index() \ .rename(index=str, columns={ 'days_up_sum': 'avg_days_up_user', 'times_put_up': 'avg_times_up_user' }) gp.head() n_user_items = all_samples.groupby(['user_id'])[['item_id']].count().reset_index() \ .rename(index=str, columns={ 'item_id': 'n_user_items' }) gp = gp.merge(n_user_items, on='user_id', how='left') gp.head() train = pd.read_csv('../input/train.csv') test =
pd.read_csv('../input/test.csv')
pandas.read_csv
# -*- coding: utf-8 -*-. """ doi of according publication [preprint]: https://doi.org/10.5194/hess-2021-403 Contact: <EMAIL> ORCID: 0000-0002-0585-9549 https://github.com/AndreasWunsch/CNN_KarstSpringModeling/ MIT License large parts opf the code from <NAME> (https://github.com/andersonsam/cnn_lstm_era) see also: Anderson & Radic (2021): Evaluation and interpretation of convolutional-recurrent networks for regional hydrological modelling """ import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler import tensorflow as tf import pickle from random import seed import os from bayes_opt import BayesianOptimization from bayes_opt.util import load_logs from scipy import interpolate #%% functions def bayesOpt_function(): # just a placeholder needed to load json logs return #%% def make_heat(model, x_test, y_test, style_dict, timesteps, iters_total, iters_one_pass, verbose, tol, p_channel, batch_size): """ Function by <NAME> (2021), slightly modified by <NAME> (2021). model: keras model x_test: tf tensor; test set of ERA data, input to model (shape = Ntest x 365 x height x width x channels) y_test: tf tensor; test set of streamflow data, target output of model (shape = Ntest x 1) style_dict: dictionary: {'style' : 'RISE' or 'gauss', 'params' : [h,w,p_1] or sigma} where [h,w,p_1] are the height/width/probability of perturbation of low-res mask (for RISE algorithm); sigma is the gaussian RMS width timesteps: rangef timesteps in test set to perturb (e.g. timesteps = range(0,365) will perturb the first 365 timesteps in the test set) iters_total: number of total iterations of perturbation to do for each day in timesteps iters_one_pass: number of iterations to do at one time (typically less than iters_total for memory limits) verbose: 0: print nothing 1: print every 50th day tol: relative error threshold (when to stop pertubing model) batch_size: batchsize of the model training process p_channel: number that defines the channel that will be perturbed (others will be used as is) """ #initialize heatmap as 3D numpy array: lat x lon x 1 heat_mean = np.zeros((np.size(x_test[0,0,:,:,0]), 1)) H = np.shape(x_test)[2] #height of input video, in pixels (latitude) W = np.shape(x_test)[3] #width of input video, in pixels (longitude) heat_prev = np.zeros((H*W,1)) #initially, the previous heatmap is 0's (for first pass) heat_curr = np.zeros((H*W,1)) #also initialize the current heatmap as 0's (will fill once calculated at end of first pass) kk = 0 err = tol+1 #just to enter while loop while err > tol: print(kk) #loop through specified timesteps to generate mean sensitivity for ts in timesteps: #for each day that we will perturb #state progress if verbose: if np.mod(ts,iters_one_pass)==0: print(' Timestep ' + str(ts) + '/' + str(len(ts))) #number of iterations of perturbations for one forward pass through model iters = iters_one_pass #define perturbation: rectangular as from RISE, or gaussian if style_dict['style'] == 'RISE': h = style_dict['params'][0] w = style_dict['params'][1] p_1 = style_dict['params'][2] x_int = np.linspace(0,W,w) #low-res x indices y_int = np.linspace(0,H,h) #low-res y indices xnew = np.arange(W) ynew = np.arange(H) perturb_small = np.random.choice([0,1],size = (iters,1,h,w), p = [1-p_1,p_1]) #binary perturbation on coarse grid perturb = np.half([interpolate.interp2d(x_int,y_int,perturb_small[iter][0])(xnew,ynew) for iter in range(iters)]) #perturbation is interpolated to finer grid elif style_dict['style'] == 'gauss': sigma = style_dict['params'] x_int = np.arange(W) y_int = np.arange(H) x_mesh, y_mesh = np.meshgrid(x_int, y_int) #define gaussian perturbation for each iteration being passed perturb = np.half([np.exp( - ( (x_mesh - np.random.randint(0,W))**2 + (y_mesh - np.random.randint(0,H))**2 ) / (2*sigma**2) ) for iter in range(iters)]) #copy/expand dimensions of the perturbation to be added to weather video perturb_2D = np.copy(perturb) #the 2D perturbation for each iteration of this pass perturb = tf.repeat(tf.expand_dims(tf.convert_to_tensor(perturb),3),nchannels, axis = 3) #expand along channels in one image perturb = tf.repeat(tf.expand_dims(tf.convert_to_tensor(perturb),1),steps_in, axis = 1) #expand along images in one video # only perturb one channel mask = np.zeros((perturb.shape)) mask[:,:,:,:,p_channel] = 1 mask = np.half(mask) mask = tf.convert_to_tensor(mask) perturb = perturb*mask xday = x_test[ts] #current timestep in test set xday_iters = [xday for val in range(iters)] #repeat for each iteration (e.g. make copy for each perturbation) factor = np.random.choice([-1,1],p = [0.5,0.5]).astype('float16') #whether to add or subtract perturbation from input video, 50-50 chance of each perturb = factor*perturb x1 = perturb x2 = tf.convert_to_tensor(xday_iters) xday_iters_perturb = tf.math.add(x1,x2) x_all = tf.squeeze(tf.concat((tf.expand_dims(xday, axis = 0),xday_iters_perturb), axis = 0)) #'all' refers to original (xday) and perturbed (xday_iters_perturb) x_all_ds = tf.data.Dataset.from_tensor_slices(x_all).batch(batch_size = batch_size) y_all = model.predict(x_all_ds) yday = y_all[0] #first element is unperturbed model prediction yday_perturb = y_all[1:] #all others are perturbed model predictions for each iteration of perturbation ydiffs = np.abs(np.reshape(yday - yday_perturb[:iters],(-1,1))) #magnitude difference between perturbed and unperturbed streamflow delta = np.ones((len(ydiffs),H,W)) * ydiffs[:,None] #get dimensions to match so delta can be multiplied by perturbation heat_iters = np.asarray(delta[:iters]) * np.asarray(perturb_2D) heat = np.mean(heat_iters[:iters], axis=0) heat_mean[:,0] += heat.flatten() del heat, heat_iters, delta, ydiffs, x_all, xday_iters #delete for memory n_iters = iters_one_pass*(kk+1) heat_curr = np.copy(heat_mean) / n_iters err = np.mean(np.abs(heat_curr - heat_prev)) / np.mean(heat_prev) heat_prev = np.copy(heat_curr) kk += 1 heat_mean = heat_mean /(iters_total * len(timesteps)) return heat_mean #%% Set directories and load data dir_data = './data_pickle' #where to save trained model outputs dir_models = './Results' #where to save trained model outputs dir_output = './heatmaps' # os.chdir(dir_output) # load data, which is already preprocessed and is a pickled dictionary with format: # 'date': Datetimeindex (No_of_timesteps,) # 'Variable': list (No_of_timesteps,) # each line of 'Variable' contains an array with dimensions (X_cells,Y_cells) (grid for each timestep) # one pickle file for each variable pickle_in = open(dir_data + '/' + 'TDict.pickle','rb') tempDict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'TsinDict.pickle','rb') tsinDict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'PDict.pickle','rb') precDict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'SMLTDict.pickle','rb') snowmeltDict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'EDict.pickle','rb') EDict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'SFDict.pickle','rb') SFDict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'SWVL1Dict.pickle','rb') SWVL1Dict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'SWVL2Dict.pickle','rb') SWVL2Dict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'SWVL3Dict.pickle','rb') SWVL3Dict = pickle.load(pickle_in) pickle_in = open(dir_data + '/' + 'SWVL4Dict.pickle','rb') SWVL4Dict = pickle.load(pickle_in) T = np.asarray(tempDict['T']) Tsin = np.asarray(tsinDict['Tsin']) SMLT = np.asarray(snowmeltDict['SMLT']) P = np.asarray(precDict['P']) E = np.asarray(EDict['E']) SF = np.asarray(SFDict['SF']) SWVL1 = np.asarray(SWVL1Dict['SWVL1']) SWVL2 = np.asarray(SWVL2Dict['SWVL2']) SWVL3 = np.asarray(SWVL3Dict['SWVL3']) SWVL4 = np.asarray(SWVL4Dict['SWVL4']) # pickle file for Q contains only an array ('Q' time series) and a datetimeindex ('date') pickle_in = open(dir_data + '/' + 'QDict.pickle','rb') QDict=pickle.load(pickle_in) Q = np.asarray(QDict['Q']) t = QDict['date'] #%% split data #years/indices of testing/training #modify accordingly trainStartYear = 2012 trainFinYear = 2017 valStartYear = 2018 valFinYear = 2018 optStartYear = 2019 optFinYear = 2019 testStartYear = 2020 testFinYear = 2020 trainInds = np.squeeze(np.argwhere((t.year>=trainStartYear) & (t.year<=trainFinYear))) valInds = np.squeeze(np.argwhere((t.year>=valStartYear) & (t.year<=valFinYear))) optInds = np.squeeze(np.argwhere((t.year>=optStartYear) & (t.year<=optFinYear))) testInds = np.squeeze(np.argwhere((t.year>=testStartYear) & (t.year<=testFinYear))) refInds = np.squeeze(np.argwhere((t.year<testStartYear))) Ntrain = len(trainInds) Nval = len(valInds) Nopt = len(optInds) Ntest = len(testInds) #scaling scaler = StandardScaler() Tnorm = scaler.fit_transform(T.reshape(-1, T.shape[-1])).reshape(T.shape) SMLTnorm = scaler.fit_transform(SMLT.reshape(-1, SMLT.shape[-1])).reshape(SMLT.shape) Pnorm = scaler.fit_transform(P.reshape(-1, P.shape[-1])).reshape(P.shape) Tsinnorm = scaler.fit_transform(Tsin.reshape(-1, Tsin.shape[-1])).reshape(Tsin.shape) Enorm = scaler.fit_transform(E.reshape(-1, E.shape[-1])).reshape(E.shape) SFnorm = scaler.fit_transform(SF.reshape(-1, SF.shape[-1])).reshape(SF.shape) SWVL1norm = scaler.fit_transform(SWVL1.reshape(-1, SWVL1.shape[-1])).reshape(SWVL1.shape) SWVL2norm = scaler.fit_transform(SWVL2.reshape(-1, SWVL2.shape[-1])).reshape(SWVL2.shape) SWVL3norm = scaler.fit_transform(SWVL3.reshape(-1, SWVL3.shape[-1])).reshape(SWVL3.shape) SWVL4norm = scaler.fit_transform(SWVL4.reshape(-1, SWVL4.shape[-1])).reshape(SWVL4.shape) Qscaler = StandardScaler() Qscaler.fit(pd.DataFrame(Q)) Qnorm = Qscaler.transform(pd.DataFrame(Q)) #%% Define Bayesian Optimization to be able to load from existing logs: pbounds = {'steps_in': (1,10*4), 'n': (7,7), 'batchsize': (7,7), 'inpTsin': (0,1), 'inpSMLT': (0,1), 'inpE': (0,1), 'inpT': (0,1), 'inpSF': (0,1), 'inpSWVL1': (0,1), 'inpSWVL2': (0,1), 'inpSWVL3': (0,1), 'inpSWVL4': (0,1)} optimizer = BayesianOptimization( f= bayesOpt_function, pbounds=pbounds, random_state=1, verbose = 0 ) # #load existing optimizer log_already_available = 0 if os.path.isfile("./logs.json"): load_logs(optimizer, logs=["./logs.json"]); print("\nExisting optimizer is already aware of {} points.".format(len(optimizer.space))) log_already_available = 1 #get best values from optimizer n = 2**int(optimizer.max.get("params").get("n")) steps_in= 6*int(optimizer.max.get("params").get("steps_in")) batch_size = 2**int(optimizer.max.get("params").get("batchsize")) inpT = int(round(optimizer.max.get("params").get("inpT"))) inpTsin = int(round(optimizer.max.get("params").get("inpTsin"))) inpSMLT = int(round(optimizer.max.get("params").get("inpSMLT"))) inpE = int(round(optimizer.max.get("params").get("inpE"))) inpSF = int(round(optimizer.max.get("params").get("inpSF"))) inpSWVL1 = int(round(optimizer.max.get("params").get("inpSWVL1"))) inpSWVL2 = int(round(optimizer.max.get("params").get("inpSWVL2"))) inpSWVL3 = int(round(optimizer.max.get("params").get("inpSWVL3"))) inpSWVL4 = int(round(optimizer.max.get("params").get("inpSWVL4"))) # correct and print best values to console maxDict = optimizer.max maxDict['params']['n'] = n maxDict['params']['steps_in'] = steps_in maxDict['params']['batchsize'] = batch_size maxDict['params']['steps_in(days)'] = steps_in/24 print("\nBEST:\t{}".format(maxDict)) #%% Compile test data learning_rate = 1e-3 training_epochs = 100 earlystopping_patience = 12 nchannels = 1 + inpT + inpTsin + inpSMLT + inpE + inpSF + inpSWVL1 + inpSWVL2 + inpSWVL3 + inpSWVL4 y_train = np.squeeze([Qnorm[steps_in:trainInds[-1]+1,]]).T y_val = np.squeeze([Qnorm[valInds,] ]).T y_test = np.squeeze([Qnorm[testInds,] ]).T y_train = y_train.astype(dtype = np.float16) y_val = y_val.astype(dtype = np.float16) y_test = y_test.astype(dtype = np.float16) x_intermediate = np.empty(np.shape(Pnorm) + (nchannels,),dtype='single') x_intermediate[:,:,:,0] = Pnorm channel_names = ['P'] idx = 1 if inpT: x_intermediate[:,:,:,idx] = Tnorm channel_names.append('T') idx = idx+1 if inpSMLT: x_intermediate[:,:,:,idx] = SMLTnorm channel_names.append('SMLT') idx = idx+1 if inpTsin: x_intermediate[:,:,:,idx] = Tsinnorm channel_names.append('Tsin') idx = idx+1 if inpE: x_intermediate[:,:,:,idx] = Enorm channel_names.append('E') idx = idx+1 if inpSF: x_intermediate[:,:,:,idx] = SFnorm channel_names.append('SF') idx = idx+1 if inpSWVL1: x_intermediate[:,:,:,idx] = SWVL1norm channel_names.append('SWVL1') idx = idx+1 if inpSWVL2: x_intermediate[:,:,:,idx] = SWVL2norm channel_names.append('SWVL2') idx = idx+1 if inpSWVL3: x_intermediate[:,:,:,idx] = SWVL3norm channel_names.append('SWVL3') idx = idx+1 if inpSWVL4: x_intermediate[:,:,:,idx] = SWVL4norm channel_names.append('SWVL4') idx = idx+1 x_train = np.empty((Ntrain-steps_in, steps_in, ) + np.shape(Tnorm)[1:] + (nchannels,),dtype=np.float16) x_val = np.empty((Nval, steps_in,) + np.shape(Tnorm)[1:] + (nchannels,), dtype = np.float16) x_test = np.empty((Ntest, steps_in,) + np.shape(Tnorm)[1:] + (nchannels,),dtype=np.float16) #training for ii in range(Ntrain-steps_in): x_train[ii] = x_intermediate[ii:ii+steps_in] # #validation for ii in range(Nval): x_val[ii] = x_intermediate[ii + Ntrain - steps_in : ii + Ntrain] # #testing () for ii in range(Ntest): x_test[ii] = x_intermediate[ii + Ntrain + Nval + Nopt - steps_in : ii + Ntrain + Nval + Nopt] # #convert target arrays to tensors x_train = tf.convert_to_tensor(x_train) x_val = tf.convert_to_tensor(x_val) x_test = tf.convert_to_tensor(x_test) y_train = tf.convert_to_tensor(y_train) y_val = tf.convert_to_tensor(y_val) y_test = tf.convert_to_tensor(y_test) #%% Load existing Models and calculate heatmaps with tf.device("/gpu:2"): # adapt to your available device for c in range(nchannels): #perturb one channel at a time inimax = 10 # use 10 different trained models heat = np.zeros((T.shape[1]*T.shape[2],inimax)) # preallocate print(channel_names[c]) for ini in range(inimax): fileName = dir_output + '/heatmap_'+channel_names[c]+'_channel_ini'+str(ini)+'.csv' if os.path.isfile(fileName): # check for previous calculation runs to save time temp_load =
pd.read_csv(fileName,header=None)
pandas.read_csv
from __future__ import division from __future__ import print_function # Preprocessing of Option Quotes # ============================== # # This notebook demonstrates the preprocessing of equity options, in preparation for the estimation of the parameters of a stochastic model. # A number of preliminary calculations must be performed: # # 1. Calculation of implied risk-free rate and dividend yield, and derivation of forward prices # 2. Calculation of forward at-the-money volatility. There is probably no option struck at the forward price, so this item must be computed by interpolation. # 3. Calculation of the Black-=Scholes implied bid and ask volatility, given bid and ask option prices. # 4. Calculation of 'Quick Delta': this is a common measure of moneyness, useful for representing the volatility smile. # # Each step is now described. # # Calculation of implied dividend yield and risk-free rate # -------------------------------------------------------- # # Recall the put-call parity relationship with continuous dividends: # # $$ # C_t - P_t = S_t e^{-d (T-t)} - K e^{-r (T-t)} # $$ # # where # # * $C_t$ price of call at time $t$ # * $P_t$ price of put at time $t$ # * $S_t$ spot price of underlying asset # * $d$ continuous dividend yield # * $r$ risk-free rate # * $T$ Expity # # For each maturity, we estimate the linear regression: # # $$ # C_t - P_t = a_0 + a_1 K # $$ # # which yields # # $$ # r = - \frac{1}{T} \ln (-a_1) # $$ # $$ # d = \frac{1}{T} \ln \left( \frac{S_t}{a_0} \right) # $$ # # Calculation of forward at-the-money volatility # ---------------------------------------------- # # We next want to estimate the implied volatility of an option struck at the forward price. In general, such option is not traded, and the volatility must therefore be estimated. The calculation involves 3 steps, performed separately on calls and puts: # # 1. Estimate the bid ($\sigma_b(K)$) and ask ($\sigma_a(K)$) Black-Scholes volatility for each quote. # 2. Compute a mid-market implied volatility for each quote: # $$ # \sigma(K) = \frac{\sigma_b(K)+\sigma_a(K)}{2} # $$ # 3. Let $F$ be the forward price, the corresponding mid-market implied volatility is computed by linear interpolation between the two quotes bracketing $F$. # # The forward ATM volatility is the average of the volatilities computed on calls and puts. # # Quick Delta # ----------- # # Recall that the delta of a European call is defined as $N(d_1)$, where # # $$ # d_{1} = \frac{1}{\sigma \sqrt{T}} \left[ \ln \left( \frac{S}{K} \right) + \left( r + \frac{1}{2}\sigma^2 \right)T \right] # $$ # # The "Quick Delta" (QD) is a popular measure of moneyness, inspired from the definition of delta: # # $$ # QD(K) = N \left( \frac{1}{\sigma \sqrt{T}} \ln \left( \frac{F_T}{K} \right) \right) # $$ # # Note that $QD(F_T)=0.5$, for all maturities, while the regular forward delta is a function of time to expiry. This property of Quick Delta makes it convenient for representing the volatility smile. # # Data Filters # ------------ # # A number of filters may be applied, in an attempt to exclude inconsistent or erroneous data. # # 1. Exclusion of maturities shorter than $tMin$ # 2. Exclusion of maturities with less than $nMin$ quotes # 3. Exclusion of quotes with Quick Delta less than $QDMin$ or higher than $QDMax$ # # Implementation # -------------- # # This logic is implemented in the function `Compute_IV`, presented below. The function takes as argument a `pandas DataFrame` and returns another # `DataFrame`, with one row per quote and 14 columns: # # 1. Type: 'C'/'P' # 2. Strike # 3. dtExpiry # 4. dtTrade # 5. Spot # 6. IVBid: Black-Scholes implied volatility (bid) # 7. IVAsk: Black-Scholes implied volatility (ask) # 8. QD: Quick Delta # 9. iRate: risk-free rate (continuously compounded) # 10. iDiv: dividend yield (continuously compounded) # 11. Fwd: Forward price # 12. TTM: Time to maturity, in fraction of years (ACT/365) # 13. PBid: Premium (bid) # 14. PAsk: Premium (ask) # <codecell> import pandas import dateutil import re import datetime import numpy as np from pandas import DataFrame from scipy.interpolate import interp1d from scipy.stats import norm from scipy.linalg import lstsq import quantlib.pricingengines.blackformula from quantlib.pricingengines.blackformula import blackFormulaImpliedStdDev from quantlib.instruments.option import Call, Put def Compute_IV(optionDataFrame, tMin=0, nMin=0, QDMin=0, QDMax=1, keepOTMData=True): """ Pre-processing of a standard European option quote file. - Calculation of implied risk-free rate and dividend yield - Calculation of implied volatility - Estimate ATM volatility for each expiry - Compute implied volatility and Quick Delta for each quote Options for filtering the input data set: - maturities with less than nMin strikes are ignored - maturities shorter than tMin (ACT/365 daycount) are ignored - strikes with Quick Delta < qdMin or > qdMax are ignored """ grouped = optionDataFrame.groupby('dtExpiry') isFirst = True for spec, group in grouped: print('processing group %s' % spec) # implied vol for this type/expiry group indx = group.index dtTrade = group['dtTrade'][indx[0]] dtExpiry = group['dtExpiry'][indx[0]] spot = group['Spot'][indx[0]] daysToExpiry = (dtExpiry-dtTrade).days timeToMaturity = daysToExpiry/365.0 # exclude groups with too short time to maturity if timeToMaturity < tMin: continue # exclude groups with too few data points df_call = group[group['Type'] == 'C'] df_put = group[group['Type'] == 'P'] if (len(df_call) < nMin) | (len(df_put) < nMin): continue # calculate forward, implied interest rate and implied div. yield df_C = DataFrame((df_call['PBid']+df_call['PAsk'])/2, columns=['PremiumC']) df_C.index = df_call['Strike'] df_P = DataFrame((df_put['PBid']+df_put['PAsk'])/2, columns=['PremiumP']) df_P.index = df_put['Strike'] # use 'inner' join because some strikes are not quoted for C and P df_all = df_C.join(df_P, how='inner') df_all['Strike'] = df_all.index df_all['C-P'] = df_all['PremiumC'] - df_all['PremiumP'] y = np.array(df_all['C-P']) x = np.array(df_all['Strike']) A = np.vstack((x, np.ones(x.shape))).T b = np.linalg.lstsq(A, y, rcond=None)[0] # intercept is last coef iRate = -np.log(-b[0])/timeToMaturity dRate = np.log(spot/b[1])/timeToMaturity discountFactor = np.exp(-iRate*timeToMaturity) Fwd = spot * np.exp((iRate-dRate)*timeToMaturity) print('Fwd: %f int rate: %f div yield: %f' % (Fwd, iRate, dRate)) # mid-market ATM volatility def impvol(cp, strike, premium): try: vol = blackFormulaImpliedStdDev(cp, strike, forward=Fwd, blackPrice=premium, discount=discountFactor, TTM=timeToMaturity) except RuntimeError: vol = np.nan return vol/np.sqrt(timeToMaturity) # implied bid/ask vol for all options df_call = df_call.assign(IVBid = [impvol(Call, strike, price) for strike, price in zip(df_call['Strike'], df_call['PBid'])], IVAsk = [impvol(Call, strike, price) for strike, price in zip(df_call['Strike'], df_call['PBid'])]) df_call = df_call.assign(IVMid = (df_call.IVBid + df_call.IVAsk)/2) df_put = df_put.assign(IVBid = [impvol(Put, strike, price) for strike, price in zip(df_put['Strike'], df_put['PBid'])], IVAsk = [impvol(Put, strike, price) for strike, price in zip(df_put['Strike'], df_put['PAsk'])]) df_put = df_put.assign(IVMid = (df_put['IVBid'] + df_put['IVAsk'])/2) f_call = interp1d(df_call['Strike'].values, df_call['IVMid'].values) f_put = interp1d(df_put['Strike'].values, df_put['IVMid'].values) atmVol = (f_call(Fwd)+f_put(Fwd))/2 print('ATM vol: %f' % atmVol) # Quick Delta, computed with ATM vol rv = norm() df_call = (df_call. assign(QuickDelta= rv.cdf(np.log(Fwd/df_call.Strike.values) / (atmVol*np.sqrt(timeToMaturity))))) df_put = (df_put. assign(QuickDelta= rv.cdf(np.log(Fwd/df_put.Strike.values)/(atmVol*np.sqrt(timeToMaturity))))) # keep data within QD range df_call = df_call[(df_call['QuickDelta'] >= QDMin) & \ (df_call['QuickDelta'] <= QDMax) ] df_put = df_put[ (df_put['QuickDelta'] >= QDMin) & \ (df_put['QuickDelta'] <= QDMax) ] # final assembly... df_cp = df_call.append(df_put, ignore_index=True) df_cp['iRate'] = iRate df_cp['iDiv'] = dRate df_cp['ATMVol'] = atmVol df_cp['Fwd'] = Fwd df_cp['TTM'] = timeToMaturity df_cp['CP'] = [1 if t == 'C' else -1 for t in df_cp['Type']] # keep only OTM data ? if keepOTMData: df_cp = df_cp[((df_cp['Strike']>=Fwd) & (df_cp['Type'] == 'C')) | ((df_cp['Strike']<Fwd) & (df_cp['Type'] == 'P'))] if isFirst: df_final = df_cp isFirst = False else: df_final = df_final.append(df_cp, ignore_index=True) return df_final # <markdowncell> # Example # ------- # # Using the SPX data set found in the data folder, the above procedure generates a `DataFrame` suited for use in a calibration program. # <codecell> if __name__ == '__main__': option_data_frame =
pandas.read_pickle('../data/df_SPX_24jan2011.pkl')
pandas.read_pickle
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import inspect import numpy as np import pandas as pd import pyspark import databricks.koalas as ks from databricks.koalas.exceptions import PandasNotImplementedError from databricks.koalas.missing.indexes import MissingPandasLikeIndex, MissingPandasLikeMultiIndex from databricks.koalas.testing.utils import ReusedSQLTestCase, TestUtils class IndexesTest(ReusedSQLTestCase, TestUtils): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0],}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) @property def kdf(self): return ks.from_pandas(self.pdf) def test_index(self): for pdf in [ pd.DataFrame(np.random.randn(10, 5), index=list("abcdefghij")), pd.DataFrame( np.random.randn(10, 5), index=pd.date_range("2011-01-01", freq="D", periods=10) ), pd.DataFrame(np.random.randn(10, 5), columns=list("abcde")).set_index(["a", "b"]), ]: kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index, pdf.index) def test_index_getattr(self): kidx = self.kdf.index item = "databricks" expected_error_message = "'Index' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_multi_index_getattr(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) kidx = kdf.index item = "databricks" expected_error_message = "'MultiIndex' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_to_series(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) # With name pidx.name = "Koalas" kidx.name = "Koalas" self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name=("x", "a"))), repr(pidx.to_series(name=("x", "a")))) # With tupled name pidx.name = ("x", "a") kidx.name = ("x", "a") self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) self.assert_eq((kidx + 1).to_series(), (pidx + 1).to_series()) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name="a"), pidx.to_series(name="a")) def test_to_frame(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) pidx.name = "a" kidx.name = "a" self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq(repr(kidx.to_frame(name="x")), repr(pidx.to_frame(name="x"))) self.assert_eq( repr(kidx.to_frame(index=False, name="x")), repr(pidx.to_frame(index=False, name="x")), ) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq( repr(kidx.to_frame(name=["x", "y"])), repr(pidx.to_frame(name=["x", "y"])) ) self.assert_eq( repr(kidx.to_frame(index=False, name=["x", "y"])), repr(pidx.to_frame(index=False, name=["x", "y"])), ) def test_index_names(self): kdf = self.kdf self.assertIsNone(kdf.index.name) idx = pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") pdf = pd.DataFrame(np.random.randn(10, 5), index=idx, columns=list("abcde")) kdf = ks.from_pandas(pdf) pser = pdf.a kser = kdf.a self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.name = "renamed" kidx.name = "renamed" self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) pidx.name = None kidx.name = None self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) with self.assertRaisesRegex(ValueError, "Names must be a list-like"): kidx.names = "hi" expected_error_message = "Length of new names must be {}, got {}".format( len(kdf._internal.index_map), len(["0", "1"]) ) with self.assertRaisesRegex(ValueError, expected_error_message): kidx.names = ["0", "1"] def test_multi_index_names(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.names = ["renamed_number", "renamed_color"] kidx.names = ["renamed_number", "renamed_color"] self.assertEqual(kidx.names, pidx.names) pidx.names = ["renamed_number", None] kidx.names = ["renamed_number", None] self.assertEqual(kidx.names, pidx.names) if LooseVersion(pyspark.__version__) < LooseVersion("2.4"): # PySpark < 2.4 does not support struct type with arrow enabled. with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx, pidx) else: self.assert_eq(kidx, pidx) with self.assertRaises(PandasNotImplementedError): kidx.name with self.assertRaises(PandasNotImplementedError): kidx.name = "renamed" def test_index_rename(self): pdf = pd.DataFrame( np.random.randn(10, 5), index=pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") ) kdf = ks.from_pandas(pdf) pidx = pdf.index kidx = kdf.index self.assert_eq(kidx.rename("y"), pidx.rename("y")) self.assert_eq(kdf.index.names, pdf.index.names) kidx.rename("z", inplace=True) pidx.rename("z", inplace=True) self.assert_eq(kidx, pidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kidx.rename(None), pidx.rename(None)) self.assert_eq(kdf.index.names, pdf.index.names) def test_multi_index_rename(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) pmidx = pdf.index kmidx = kdf.index self.assert_eq(kmidx.rename(["n", "c"]), pmidx.rename(["n", "c"])) self.assert_eq(kdf.index.names, pdf.index.names) kmidx.rename(["num", "col"], inplace=True) pmidx.rename(["num", "col"], inplace=True) self.assert_eq(kmidx, pmidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kmidx.rename([None, None]), pmidx.rename([None, None])) self.assert_eq(kdf.index.names, pdf.index.names) self.assertRaises(TypeError, lambda: kmidx.rename("number")) self.assertRaises(ValueError, lambda: kmidx.rename(["number"])) def test_multi_index_levshape(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2)]) kidx = ks.from_pandas(pidx) self.assertEqual(pidx.levshape, kidx.levshape) def test_index_unique(self): kidx = self.kdf.index # here the output is different than pandas in terms of order expected = [0, 1, 3, 5, 6, 8, 9] self.assert_eq(expected, sorted(kidx.unique().to_pandas())) self.assert_eq(expected, sorted(kidx.unique(level=0).to_pandas())) expected = [1, 2, 4, 6, 7, 9, 10] self.assert_eq(expected, sorted((kidx + 1).unique().to_pandas())) with self.assertRaisesRegex(IndexError, "Too many levels*"): kidx.unique(level=1) with self.assertRaisesRegex(KeyError, "Requested level (hi)*"): kidx.unique(level="hi") def test_multi_index_copy(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index.copy(), pdf.index.copy()) def test_drop_duplicates(self): pidx = pd.Index([4, 2, 4, 1, 4, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.drop_duplicates().sort_values(), pidx.drop_duplicates().sort_values()) self.assert_eq( (kidx + 1).drop_duplicates().sort_values(), (pidx + 1).drop_duplicates().sort_values() ) def test_dropna(self): pidx = pd.Index([np.nan, 2, 4, 1, np.nan, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.dropna(), pidx.dropna()) self.assert_eq((kidx + 1).dropna(), (pidx + 1).dropna()) def test_index_symmetric_difference(self): pidx1 = pd.Index([1, 2, 3, 4]) pidx2 = pd.Index([2, 3, 4, 5]) kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq( kidx1.symmetric_difference(kidx2).sort_values(), pidx1.symmetric_difference(pidx2).sort_values(), ) self.assert_eq( (kidx1 + 1).symmetric_difference(kidx2).sort_values(), (pidx1 + 1).symmetric_difference(pidx2).sort_values(), ) pmidx1 = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) pmidx2 = pd.MultiIndex( [["koalas", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) kmidx1 = ks.from_pandas(pmidx1) kmidx2 = ks.from_pandas(pmidx2) self.assert_eq( kmidx1.symmetric_difference(kmidx2).sort_values(), pmidx1.symmetric_difference(pmidx2).sort_values(), ) idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): idx.symmetric_difference(midx) def test_multi_index_symmetric_difference(self): idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) midx_ = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) self.assert_eq( midx.symmetric_difference(midx_), midx.to_pandas().symmetric_difference(midx_.to_pandas()), ) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): midx.symmetric_difference(idx) def test_missing(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) # Index functions missing_functions = inspect.getmembers(MissingPandasLikeIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name)() # MultiIndex functions missing_functions = inspect.getmembers(MissingPandasLikeMultiIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name)() # Index properties missing_properties = inspect.getmembers( MissingPandasLikeIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name) # MultiIndex properties missing_properties = inspect.getmembers( MissingPandasLikeMultiIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name) def test_index_has_duplicates(self): indexes = [("a", "b", "c"), ("a", "a", "c"), (1, 3, 3), (1, 2, 3)] names = [None, "ks", "ks", None] has_dup = [False, True, True, False] for idx, name, expected in zip(indexes, names, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(idx, name=name)) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multiindex_has_duplicates(self): indexes = [ [list("abc"), list("edf")], [list("aac"), list("edf")], [list("aac"), list("eef")], [[1, 4, 4], [4, 6, 6]], ] has_dup = [False, False, True, True] for idx, expected in zip(indexes, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multi_index_not_supported(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) with self.assertRaisesRegex(TypeError, "cannot perform any with this index type"): kdf.set_index(["a", "b"]).index.any() with self.assertRaisesRegex(TypeError, "cannot perform all with this index type"): kdf.set_index(["a", "b"]).index.all() def test_index_nlevels(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(["a", "b", "c"])) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 1) def test_multiindex_nlevel(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=[list("abc"), list("def")]) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 2) def test_multiindex_from_arrays(self): arrays = [["a", "a", "b", "b"], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays) kidx = ks.MultiIndex.from_arrays(arrays) self.assert_eq(pidx, kidx) def test_multiindex_swaplevel(self): pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", "number"]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(-2, -1), kidx.swaplevel(-2, -1)) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) self.assert_eq(pidx.swaplevel("word", 1), kidx.swaplevel("word", 1)) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(-3, "word") with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, 2) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, -3) with self.assertRaisesRegex(KeyError, "Level work not found"): kidx.swaplevel(0, "work") def test_multiindex_droplevel(self): pidx = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2)], names=["level1", "level2", "level3"] ) kidx = ks.from_pandas(pidx) with self.assertRaisesRegex(IndexError, "Too many levels: Index has only 3 levels, not 5"): kidx.droplevel(4) with self.assertRaisesRegex(KeyError, "Level level4 not found"): kidx.droplevel("level4") with self.assertRaisesRegex(KeyError, "Level.*level3.*level4.*not found"): kidx.droplevel([("level3", "level4")]) with self.assertRaisesRegex( ValueError, "Cannot remove 4 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 0, 1, 2]) with self.assertRaisesRegex( ValueError, "Cannot remove 3 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 1, 2]) self.assert_eq(pidx.droplevel(0), kidx.droplevel(0)) self.assert_eq(pidx.droplevel([0, 1]), kidx.droplevel([0, 1])) self.assert_eq(pidx.droplevel([0, "level2"]), kidx.droplevel([0, "level2"])) def test_index_fillna(self): pidx = pd.Index([1, 2, None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.fillna(0), kidx.fillna(0)) self.assert_eq(pidx.rename("name").fillna(0), kidx.rename("name").fillna(0)) with self.assertRaisesRegex(TypeError, "Unsupported type <class 'list'>"): kidx.fillna([1, 2]) def test_index_drop(self): pidx = pd.Index([1, 2, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop(1), kidx.drop(1)) self.assert_eq(pidx.drop([1, 2]), kidx.drop([1, 2])) def test_multiindex_drop(self): pidx = pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z")], names=["level1", "level2"] ) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop("a"), kidx.drop("a")) self.assert_eq(pidx.drop(["a", "b"]), kidx.drop(["a", "b"])) self.assert_eq(pidx.drop(["x", "y"], level=1), kidx.drop(["x", "y"], level=1)) self.assert_eq(pidx.drop(["x", "y"], level="level2"), kidx.drop(["x", "y"], level="level2")) pidx.names = ["lv1", "lv2"] kidx.names = ["lv1", "lv2"] self.assert_eq(pidx.drop(["x", "y"], level="lv2"), kidx.drop(["x", "y"], level="lv2")) self.assertRaises(IndexError, lambda: kidx.drop(["a", "b"], level=2)) self.assertRaises(KeyError, lambda: kidx.drop(["a", "b"], level="level")) kidx.names = ["lv", "lv"] self.assertRaises(ValueError, lambda: kidx.drop(["x", "y"], level="lv")) def test_sort_values(self): pidx = pd.Index([-10, -100, 200, 100]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx.name = "koalas" kidx.name = "koalas" self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx.names = ["hello", "koalas", "goodbye"] kidx.names = ["hello", "koalas", "goodbye"] self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) def test_index_drop_duplicates(self): pidx = pd.Index([1, 1, 2]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) pidx = pd.MultiIndex.from_tuples([(1, 1), (1, 1), (2, 2)], names=["level1", "level2"]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) def test_index_sort(self): idx = ks.Index([1, 2, 3, 4, 5]) midx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2)]) with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead" ): idx.sort() with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead" ): midx.sort() def test_multiindex_isna(self): kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex(NotImplementedError, "isna is not defined for MultiIndex"): kidx.isna() with self.assertRaisesRegex(NotImplementedError, "isna is not defined for MultiIndex"): kidx.isnull() with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notna() with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_index_nunique(self): pidx = pd.Index([1, 1, 2, None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.nunique(), kidx.nunique()) self.assert_eq(pidx.nunique(dropna=True), kidx.nunique(dropna=True)) def test_multiindex_nunique(self): kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_multiindex_rename(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx = pidx.rename(list("ABC")) kidx = kidx.rename(list("ABC")) self.assert_eq(pidx, kidx) pidx = pidx.rename(["my", "name", "is"]) kidx = kidx.rename(["my", "name", "is"]) self.assert_eq(pidx, kidx) def test_multiindex_set_names(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx = pidx.set_names(["set", "new", "names"]) kidx = kidx.set_names(["set", "new", "names"]) self.assert_eq(pidx, kidx) pidx.set_names(["set", "new", "names"], inplace=True) kidx.set_names(["set", "new", "names"], inplace=True) self.assert_eq(pidx, kidx) pidx = pidx.set_names("first", level=0) kidx = kidx.set_names("first", level=0) self.assert_eq(pidx, kidx) pidx = pidx.set_names("second", level=1) kidx = kidx.set_names("second", level=1) self.assert_eq(pidx, kidx) pidx = pidx.set_names("third", level=2) kidx = kidx.set_names("third", level=2) self.assert_eq(pidx, kidx) pidx.set_names("first", level=0, inplace=True) kidx.set_names("first", level=0, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names("second", level=1, inplace=True) kidx.set_names("second", level=1, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names("third", level=2, inplace=True) kidx.set_names("third", level=2, inplace=True) self.assert_eq(pidx, kidx) def test_multiindex_from_tuples(self): tuples = [(1, "red"), (1, "blue"), (2, "red"), (2, "blue")] pidx = pd.MultiIndex.from_tuples(tuples) kidx = ks.MultiIndex.from_tuples(tuples) self.assert_eq(pidx, kidx) def test_multiindex_from_product(self): iterables = [[0, 1, 2], ["green", "purple"]] pidx = pd.MultiIndex.from_product(iterables) kidx = ks.MultiIndex.from_product(iterables) self.assert_eq(pidx, kidx) def test_multiindex_tuple_column_name(self): column_labels = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")]) pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=column_labels) pdf.set_index(("a", "x"), append=True, inplace=True) kdf = ks.from_pandas(pdf) self.assert_eq(pdf, kdf) def test_len(self): pidx = pd.Index(range(10000)) kidx = ks.from_pandas(pidx) self.assert_eq(len(pidx), len(kidx)) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) self.assert_eq(len(pidx), len(kidx)) def test_delete(self): pidx = pd.Index([10, 9, 8, 7, 6, 7, 8, 9, 10]) kidx = ks.Index([10, 9, 8, 7, 6, 7, 8, 9, 10]) self.assert_eq(pidx.delete(5).sort_values(), kidx.delete(5).sort_values()) self.assert_eq(pidx.delete(-5).sort_values(), kidx.delete(-5).sort_values()) if LooseVersion(np.__version__) < LooseVersion("1.19"): self.assert_eq( pidx.delete([0, 10000]).sort_values(), kidx.delete([0, 10000]).sort_values() ) self.assert_eq( pidx.delete([10000, 20000]).sort_values(), kidx.delete([10000, 20000]).sort_values() ) else: self.assert_eq(pidx.delete([0]).sort_values(), kidx.delete([0, 10000]).sort_values()) self.assert_eq(pidx.delete([]).sort_values(), kidx.delete([10000, 20000]).sort_values()) with self.assertRaisesRegex(IndexError, "index 10 is out of bounds for axis 0 with size 9"): kidx.delete(10) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) self.assert_eq(pidx.delete(1).sort_values(), kidx.delete(1).sort_values()) self.assert_eq(pidx.delete(-1).sort_values(), kidx.delete(-1).sort_values()) if LooseVersion(np.__version__) < LooseVersion("1.19"): self.assert_eq( pidx.delete([0, 10000]).sort_values(), kidx.delete([0, 10000]).sort_values() ) self.assert_eq( pidx.delete([10000, 20000]).sort_values(), kidx.delete([10000, 20000]).sort_values() ) else: self.assert_eq(pidx.delete([0]).sort_values(), kidx.delete([0, 10000]).sort_values()) self.assert_eq(pidx.delete([]).sort_values(), kidx.delete([10000, 20000]).sort_values()) def test_append(self): # Index pidx = pd.Index(range(10000)) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.append(pidx), kidx.append(kidx)) # Index with name pidx1 = pd.Index(range(10000), name="a") pidx2 = pd.Index(range(10000), name="b") kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["a", "b", "c"]) pdf2 = pd.DataFrame({"a": [7, 8, 9], "d": [10, 11, 12]}, index=["x", "y", "z"]) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index("a").index pidx2 = pdf2.set_index("d").index kidx1 = kdf1.set_index("a").index kidx2 = kdf2.set_index("d").index self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame with MultiIndex columns pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) pdf2 = pd.DataFrame({"a": [7, 8, 9], "d": [10, 11, 12]}) pdf1.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y")]) pdf2.columns = pd.MultiIndex.from_tuples([("a", "x"), ("d", "y")]) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index(("a", "x")).index pidx2 = pdf2.set_index(("d", "y")).index kidx1 = kdf1.set_index(("a", "x")).index kidx2 = kdf2.set_index(("d", "y")).index self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # MultiIndex pmidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kmidx = ks.from_pandas(pmidx) self.assert_eq(pmidx.append(pmidx), kmidx.append(kmidx)) # MultiIndex with names pmidx1 = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["x", "y", "z"] ) pmidx2 = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["p", "q", "r"] ) kmidx1 = ks.from_pandas(pmidx1) kmidx2 = ks.from_pandas(pmidx2) self.assert_eq(pmidx1.append(pmidx2), kmidx1.append(kmidx2)) self.assert_eq(pmidx2.append(pmidx1), kmidx2.append(kmidx1)) self.assert_eq(pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) self.assert_eq(pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) # Index & MultiIndex currently is not supported expected_error_message = r"append\(\) between Index & MultiIndex currently is not supported" with self.assertRaisesRegex(NotImplementedError, expected_error_message): kidx.append(kmidx) with self.assertRaisesRegex(NotImplementedError, expected_error_message): kmidx.append(kidx) def test_argmin(self): pidx = pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.argmin(), kidx.argmin()) # MultiIndex kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex( TypeError, "reduction operation 'argmin' not allowed for this dtype" ): kidx.argmin() def test_argmax(self): pidx = pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.argmax(), kidx.argmax()) # MultiIndex kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex( TypeError, "reduction operation 'argmax' not allowed for this dtype" ): kidx.argmax() def test_monotonic(self): # test monotonic_increasing & monotonic_decreasing for MultiIndex. # Since the Behavior for null value was changed in pandas >= 1.0.0, # several cases are tested differently. datas = [] # increasing / decreasing ordered each index level with string datas.append([("w", "a"), ("x", "b"), ("y", "c"), ("z", "d")]) datas.append([("w", "d"), ("x", "c"), ("y", "b"), ("z", "a")]) datas.append([("z", "a"), ("y", "b"), ("x", "c"), ("w", "d")]) datas.append([("z", "d"), ("y", "c"), ("x", "b"), ("w", "a")]) # mixed order each index level with string datas.append([("z", "a"), ("x", "b"), ("y", "c"), ("w", "d")]) datas.append([("z", "a"), ("y", "c"), ("x", "b"), ("w", "d")]) # increasing / decreasing ordered each index level with integer datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 500), (2, 400), (3, 300), (4, 200), (5, 100)]) datas.append([(5, 100), (4, 200), (3, 300), (2, 400), (1, 500)]) datas.append([(5, 500), (4, 400), (3, 300), (2, 200), (1, 100)]) # mixed order each index level with integer datas.append([(1, 500), (3, 400), (2, 300), (4, 200), (5, 100)]) datas.append([(1, 100), (2, 300), (3, 200), (4, 400), (5, 500)]) # integer / negative mixed tests datas.append([("a", -500), ("b", -400), ("c", -300), ("d", -200), ("e", -100)]) datas.append([("e", -500), ("d", -400), ("c", -300), ("b", -200), ("a", -100)]) datas.append([(-5, "a"), (-4, "b"), (-3, "c"), (-2, "d"), (-1, "e")]) datas.append([(-5, "e"), (-4, "d"), (-3, "c"), (-2, "b"), (-1, "a")]) datas.append([(-5, "e"), (-3, "d"), (-2, "c"), (-4, "b"), (-1, "a")]) datas.append([(-5, "e"), (-4, "c"), (-3, "b"), (-2, "d"), (-1, "a")]) # None type tests (None type is treated as the smallest value) datas.append([(1, 100), (2, 200), (None, 300), (4, 400), (5, 500)]) datas.append([(5, None), (4, 200), (3, 300), (2, 400), (1, 500)]) datas.append([(5, 100), (4, 200), (3, None), (2, 400), (1, 500)]) datas.append([(5, 100), (4, 200), (3, 300), (2, 400), (1, None)]) datas.append([(1, 100), (2, 200), (None, None), (4, 400), (5, 500)]) datas.append([(-5, None), (-4, None), (-3, None), (-2, None), (-1, None)]) datas.append([(None, "e"), (None, "c"), (None, "b"), (None, "d"), (None, "a")]) datas.append([(None, None), (None, None), (None, None), (None, None), (None, None)]) # duplicated index value tests datas.append([("x", "d"), ("y", "c"), ("y", "b"), ("z", "a")]) datas.append([("x", "d"), ("y", "b"), ("y", "c"), ("z", "a")]) datas.append([("x", "d"), ("y", "c"), ("y", None), ("z", "a")]) datas.append([("x", "d"), ("y", None), ("y", None), ("z", "a")]) datas.append([("x", "d"), ("y", "c"), ("y", "b"), (None, "a")]) datas.append([("x", "d"), ("y", "b"), ("y", "c"), (None, "a")]) # more depth tests datas.append([("x", "d", "o"), ("y", "c", "p"), ("y", "c", "q"), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", "q"), ("y", "c", "p"), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", "p"), ("y", "c", None), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", None), ("y", "c", None), ("z", "a", "r")]) for data in datas: with self.subTest(data=data): pmidx = pd.MultiIndex.from_tuples(data) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.is_monotonic_increasing, pmidx.is_monotonic_increasing) self.assert_eq(kmidx.is_monotonic_decreasing, pmidx.is_monotonic_decreasing) # The datas below are showing different result depends on pandas version. # Because the behavior of handling null values is changed in pandas >= 1.0.0. datas = [] datas.append([(None, 100), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (None, 500)]) datas.append([(None, None), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (None, None)]) datas.append([("x", "d"), ("y", None), ("y", "c"), ("z", "a")]) datas.append([("x", "d", "o"), ("y", "c", None), ("y", "c", "q"), ("z", "a", "r")]) for data in datas: with self.subTest(data=data): pmidx = pd.MultiIndex.from_tuples(data) kmidx = ks.from_pandas(pmidx) expected_increasing_result = pmidx.is_monotonic_increasing if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): expected_increasing_result = not expected_increasing_result self.assert_eq(kmidx.is_monotonic_increasing, expected_increasing_result) self.assert_eq(kmidx.is_monotonic_decreasing, pmidx.is_monotonic_decreasing) def test_difference(self): # Index kidx1 = ks.Index([1, 2, 3, 4], name="koalas") kidx2 = ks.Index([3, 4, 5, 6], name="koalas") pidx1 = kidx1.to_pandas() pidx2 = kidx2.to_pandas() self.assert_eq(kidx1.difference(kidx2).sort_values(), pidx1.difference(pidx2).sort_values()) self.assert_eq( kidx1.difference([3, 4, 5, 6]).sort_values(), pidx1.difference([3, 4, 5, 6]).sort_values(), ) self.assert_eq( kidx1.difference((3, 4, 5, 6)).sort_values(), pidx1.difference((3, 4, 5, 6)).sort_values(), ) self.assert_eq( kidx1.difference({3, 4, 5, 6}).sort_values(), pidx1.difference({3, 4, 5, 6}).sort_values(), ) self.assert_eq( kidx1.difference({3: 1, 4: 2, 5: 3, 6: 4}).sort_values(), pidx1.difference({3: 1, 4: 2, 5: 3, 6: 4}).sort_values(), ) # Exceptions for Index with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference("1234") with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(1234) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(12.34) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(None) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(np.nan) with self.assertRaisesRegex( ValueError, "The 'sort' keyword only takes the values of None or True; 1 was passed." ): kidx1.difference(kidx2, sort=1) # MultiIndex kidx1 = ks.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["hello", "koalas", "world"] ) kidx2 = ks.MultiIndex.from_tuples( [("a", "x", 1), ("b", "z", 2), ("k", "z", 3)], names=["hello", "koalas", "world"] ) pidx1 = kidx1.to_pandas() pidx2 = kidx2.to_pandas() self.assert_eq(kidx1.difference(kidx2).sort_values(), pidx1.difference(pidx2).sort_values()) self.assert_eq( kidx1.difference({("a", "x", 1)}).sort_values(), pidx1.difference({("a", "x", 1)}).sort_values(), ) self.assert_eq( kidx1.difference({("a", "x", 1): [1, 2, 3]}).sort_values(), pidx1.difference({("a", "x", 1): [1, 2, 3]}).sort_values(), ) # Exceptions for MultiIndex with self.assertRaisesRegex(TypeError, "other must be a MultiIndex or a list of tuples"): kidx1.difference(["b", "z", "2"]) def test_repeat(self): pidx = pd.Index(["a", "b", "c"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.repeat(3).sort_values(), pidx.repeat(3).sort_values()) self.assert_eq(kidx.repeat(0).sort_values(), pidx.repeat(0).sort_values()) self.assert_eq((kidx + "x").repeat(3).sort_values(), (pidx + "x").repeat(3).sort_values()) self.assertRaises(ValueError, lambda: kidx.repeat(-1)) self.assertRaises(ValueError, lambda: kidx.repeat("abc")) pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.repeat(3).sort_values(), pmidx.repeat(3).sort_values()) self.assert_eq(kmidx.repeat(0).sort_values(), pmidx.repeat(0).sort_values()) self.assertRaises(ValueError, lambda: kmidx.repeat(-1)) self.assertRaises(ValueError, lambda: kmidx.repeat("abc")) def test_unique(self): pidx =
pd.Index(["a", "b", "a"])
pandas.Index
import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin #Custom Transformer Class class NewFeatureTransformer(BaseEstimator, TransformerMixin): def fit(self, x, y=None): return self def transform(self, x): x['ratio'] = x['thalach']/x['trestbps'] x=
pd.DataFrame(x.loc[:, 'ratio'])
pandas.DataFrame
import torch from lib import utils from lib.dataloaders.dataloader import Dataset from lib.metrics import metrics_torch, metrics_np import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from model.pytorch import supervisor from model.pytorch.engine import Evaluator from model.pytorch.gwnet_model import gwnet from model.pytorch.lstm_model import LSTMNet import torch.nn.functional as F from model.pytorch.supervisor import Supervisor def main(args): torch.manual_seed(args.seed) np.random.seed(args.seed) device = torch.device(args.device) sensor_ids, sensor_id_to_ind, adj_mx = utils.load_adj(args.adjdata, args.adjtype) ds = Dataset(args.data) ds.load_category('test', args.batch_size) dataloader = ds.data scaler = dataloader['scaler'] # Model loading print(args) sv = Supervisor(adj_mx, args) # Testing yhat, realy = sv.show_multiple_horizon(scaler, dataloader['test_loader']) if args.plotheatmap == "True": adp = F.softmax(F.relu(torch.mm(sv.model.nodevec1, sv.model.nodevec2)), dim=1) device = torch.device('cpu') adp.to(device) adp = adp.cpu().detach().numpy() adp = adp*(1/np.max(adp)) df = pd.DataFrame(adp) sns.heatmap(df, cmap="RdYlBu") ds.experiment_save_plot(plt, 'viz/gwnet_emb.pdf') y12 = realy[:,99,11].cpu().detach().numpy() yhat12 = scaler.inverse_transform(yhat[:,99,11]).cpu().detach().numpy() y3 = realy[:,99,2].cpu().detach().numpy() yhat3 = scaler.inverse_transform(yhat[:,99,2]).cpu().detach().numpy() df2 =
pd.DataFrame({'real12':y12,'pred12':yhat12, 'real3': y3, 'pred3':yhat3})
pandas.DataFrame
import pandas as pd import numpy as np import sandy from sandy.core.endf6 import _FormattedFile __author__ = "<NAME>" __all__ = [ "Errorr", ] pd.options.display.float_format = '{:.5e}'.format class Errorr(_FormattedFile): """ Container for ERRORR file text grouped by MAT, MF and MT numbers. """ def get_energy_grid(self, **kwargs): """ Obtaining the energy grid. Parameters ---------- mat : `int`, optional MAT number. The default is None. Returns ------- `np.array` The energy grid of the `sandy.Errorr` object. Examples -------- >>> endf6_2 = sandy.get_endf6_file("jeff_33", "xs", 942410) >>> err = endf6_2.get_errorr(ek_errorr=sandy.energy_grids.CASMO12, err=1, ek_groupr=sandy.energy_grids.CASMO12) >>> err.get_energy_grid() array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, 3.5000e-01, 6.2500e-01, 4.0000e+00, 4.8052e+01, 5.5300e+03, 8.2100e+05, 2.2310e+06, 1.0000e+07]) >>> err.get_energy_grid(mat=9443) array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, 3.5000e-01, 6.2500e-01, 4.0000e+00, 4.8052e+01, 5.5300e+03, 8.2100e+05, 2.2310e+06, 1.0000e+07]) """ mat_ = kwargs.get('mat', self.mat[0]) mf1 = read_mf1(self, mat_) return mf1["EG"] def get_xs(self, **kwargs): """ Obtain the xs values across the energy grid. Returns ------- xs : `pd.Series` For a given mat and mt, the xs values in the energy grid. Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> err = endf6.get_errorr(ek_errorr=sandy.energy_grids.CASMO12, err=1) >>> err.get_xs() MAT 125 MT 1 2 102 E (1e-05, 0.03] 2.10540e+01 2.04363e+01 6.17622e-01 (0.03, 0.058] 2.06986e+01 2.04363e+01 2.62307e-01 (0.058, 0.14] 2.06134e+01 2.04363e+01 1.77108e-01 (0.14, 0.28] 2.05574e+01 2.04363e+01 1.21068e-01 (0.28, 0.35] 2.05377e+01 2.04363e+01 1.01449e-01 (0.35, 0.625] 2.05156e+01 2.04363e+01 7.93598e-02 (0.625, 4.0] 2.04756e+01 2.04360e+01 3.95521e-02 (4.0, 48.052] 2.04452e+01 2.04328e+01 1.23376e-02 (48.052, 5530.0] 2.00727e+01 2.00714e+01 1.31829e-03 (5530.0, 821000.0] 8.05810e+00 8.05804e+00 6.41679e-05 (821000.0, 2231000.0] 3.48867e+00 3.48863e+00 3.54246e-05 (2231000.0, 10000000.0] 1.52409e+00 1.52406e+00 3.44005e-05 >>> err.get_xs(mt=[1, 2]) MAT 125 MT 1 2 E (1e-05, 0.03] 2.10540e+01 2.04363e+01 (0.03, 0.058] 2.06986e+01 2.04363e+01 (0.058, 0.14] 2.06134e+01 2.04363e+01 (0.14, 0.28] 2.05574e+01 2.04363e+01 (0.28, 0.35] 2.05377e+01 2.04363e+01 (0.35, 0.625] 2.05156e+01 2.04363e+01 (0.625, 4.0] 2.04756e+01 2.04360e+01 (4.0, 48.052] 2.04452e+01 2.04328e+01 (48.052, 5530.0] 2.00727e+01 2.00714e+01 (5530.0, 821000.0] 8.05810e+00 8.05804e+00 (821000.0, 2231000.0] 3.48867e+00 3.48863e+00 (2231000.0, 10000000.0] 1.52409e+00 1.52406e+00 >>> err.get_xs(mt=1) MAT 125 MT 1 E (1e-05, 0.03] 2.10540e+01 (0.03, 0.058] 2.06986e+01 (0.058, 0.14] 2.06134e+01 (0.14, 0.28] 2.05574e+01 (0.28, 0.35] 2.05377e+01 (0.35, 0.625] 2.05156e+01 (0.625, 4.0] 2.04756e+01 (4.0, 48.052] 2.04452e+01 (48.052, 5530.0] 2.00727e+01 (5530.0, 821000.0] 8.05810e+00 (821000.0, 2231000.0] 3.48867e+00 (2231000.0, 10000000.0] 1.52409e+00 """ data = [] listmt_ = kwargs.get('mt', range(1, 10000)) listmt_ = [listmt_] if isinstance(listmt_, int) else listmt_ listmat_ = kwargs.get('mat', range(1, 10000)) listmat_ = [listmat_] if isinstance(listmat_, int) else listmat_ for mat, mf, mt in self.filter_by(listmf=[3], listmt=listmt_, listmat=listmat_).data: mf1 = sandy.errorr.read_mf1(self, mat) egn = pd.IntervalIndex.from_breaks(mf1["EG"]) mf3 = sandy.errorr.read_mf3(self, mat, mt) columns = pd.MultiIndex.from_tuples([(mat, mt)], names=["MAT", "MT"]) index = pd.Index(egn, name="E") data.append(pd.DataFrame(mf3["XS"], index=index, columns=columns)) data = pd.concat(data, axis=1).fillna(0) return sandy.Xs(data) def get_cov(self, multigroup=True): """ Extract cross section/nubar covariance from `Errorr` instance. Returns ------- data : `sandy CategoryCov` xs/nubar covariance matrix for all cross section/nubar MAT/MT in ERRORR file. Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> err = endf6.get_errorr(ek_errorr=[1e-2, 1e1, 2e7], err=1) >>> err.get_cov().data MAT1 125 MT1 1 2 102 E1 (0.01, 10.0] (10.0, 20000000.0] (0.01, 10.0] (10.0, 20000000.0] (0.01, 10.0] (10.0, 20000000.0] MAT MT E 125 1 (0.01, 10.0] 8.74838e-06 4.62556e-05 8.76101e-06 4.62566e-05 1.07035e-06 5.58627e-07 (10.0, 20000000.0] 4.62556e-05 2.47644e-04 4.63317e-05 2.47650e-04 7.58742e-09 1.49541e-06 2 (0.01, 10.0] 8.76101e-06 4.63317e-05 8.77542e-06 4.63327e-05 0.00000e+00 0.00000e+00 (10.0, 20000000.0] 4.62566e-05 2.47650e-04 4.63327e-05 2.47655e-04 0.00000e+00 0.00000e+00 102 (0.01, 10.0] 1.07035e-06 7.58742e-09 0.00000e+00 0.00000e+00 6.51764e-04 3.40163e-04 (10.0, 20000000.0] 5.58627e-07 1.49541e-06 0.00000e+00 0.00000e+00 3.40163e-04 6.70431e-02 >>> err.get_cov(multigroup=False).data MAT1 125 MT1 1 2 102 E1 1.00000e-02 1.00000e+01 2.00000e+07 1.00000e-02 1.00000e+01 2.00000e+07 1.00000e-02 1.00000e+01 2.00000e+07 MAT MT E 125 1 1.00000e-02 8.74838e-06 4.62556e-05 0.00000e+00 8.76101e-06 4.62566e-05 0.00000e+00 1.07035e-06 5.58627e-07 0.00000e+00 1.00000e+01 4.62556e-05 2.47644e-04 0.00000e+00 4.63317e-05 2.47650e-04 0.00000e+00 7.58742e-09 1.49541e-06 0.00000e+00 2.00000e+07 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2 1.00000e-02 8.76101e-06 4.63317e-05 0.00000e+00 8.77542e-06 4.63327e-05 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+01 4.62566e-05 2.47650e-04 0.00000e+00 4.63327e-05 2.47655e-04 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+07 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 102 1.00000e-02 1.07035e-06 7.58742e-09 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 6.51764e-04 3.40163e-04 0.00000e+00 1.00000e+01 5.58627e-07 1.49541e-06 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.40163e-04 6.70431e-02 0.00000e+00 2.00000e+07 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 """ eg = self.get_energy_grid() if multigroup: eg =
pd.IntervalIndex.from_breaks(eg)
pandas.IntervalIndex.from_breaks
import pandas as pd import glob import os import re import phyphy from ete3 import Tree import numpy as np absrel = glob.glob("families_absrel/logs/*.ABSREL.log") family_list = [] branch_list = [] pvalue_list = [] for file in absrel: with open(file) as myfile: for line in myfile: if re.search(r'^\* \w.+ p-value', line): family, branch, pvalue = file[21:].split(".")[0], line[2:].split(",")[0], line.split()[-1] family_list.append(family) branch_list.append(branch) pvalue_list.append(pvalue) ps = pd.DataFrame({"family": family_list, 'branch': branch_list, 'p-value': pvalue_list}) # ps: dataframe that includes all families, branches and pvalues of the ABSREL analysis absrel_json = glob.glob("families_absrel/codon_alns/*.ABSREL.json") tree_list = [] family_list = [] for file in absrel_json: if os.stat(file).st_size > 0: tree, family = phyphy.Extractor(file).extract_input_tree(), file[27:].split(".")[0] tree_list.append(tree) family_list.append(family) tdf = pd.DataFrame({"tree": tree_list, "family": family_list}) # tdf: dataframe that includes all trees from ABSREL positives and their family ps = ps.merge(tdf) children_list = [] for i in range(0, len(ps)): t = Tree(ps.tree[i], format=1) node = t.search_nodes(name=ps.branch[i])[0] children_list.append(node.get_leaf_names()) ps["children"] = children_list # children list includes all children from the nodes under selection lst_col = 'children' r = pd.DataFrame({ col: np.repeat(ps[col].values, ps[lst_col].str.len()) for col in ps.columns.drop(lst_col)} ).assign(**{lst_col: np.concatenate(ps[lst_col].values)})[ps.columns] r_dd = r.drop_duplicates(subset=['family', 'children']) files = os.listdir("samples/") taxa = [] for file in files: if file.endswith(".faa"): taxa.append(file.split(".")[0]) spec_name_list = [] for t in taxa: with open("samples/" + t + ".faa",'r') as file: for line in file: if line.startswith(">"): spec_name_list.append([line[1:].strip(), t]) spec_name = pd.DataFrame(spec_name_list, columns=["index", "species"]).set_index("index") spec_name["children"] = spec_name.index spec_name.replace(r"\.", "_", regex=True, inplace=True) spec_name.replace(r"-", "_", regex=True, inplace=True) spec_name["ps"] = spec_name["children"].isin(r_dd["children"]) spec_name.to_csv(snakemake.output[0], index=False) proteome = glob.glob("samples/*.tsv") col_names = ["protein_accession", "md5", "length", "analysis", "signature_accession", "signature_description", "start", "stop", "score", "status", "date", "ip_accession", "ip_description", "go", "pathway"] annotations = [] for infile in proteome: data =
pd.read_csv(infile, sep='\t', names=col_names)
pandas.read_csv
# Import python modules import os, sys # data handling libraries import pandas as pd import numpy as np import pickle import json import dask from multiprocessing import Pool # graphical control libraries import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt # shape and layer libraries import fiona from shapely.geometry import MultiPolygon, shape, point, box from descartes import PolygonPatch from matplotlib.collections import PatchCollection from mpl_toolkits.basemap import Basemap from mpl_toolkits.axes_grid1 import make_axes_locatable import geopandas as gpd # data wrangling libraries import ftplib, urllib, wget, bz2 from bs4 import BeautifulSoup as bs class ogh_meta: """ The json file that describes the Gridded climate data products """ def __init__(self): self.__meta_data = dict(json.load(open('ogh_meta.json','rb'))) # key-value retrieval def __getitem__(self, key): return(self.__meta_data[key]) # key list def keys(self): return(self.__meta_data.keys()) # value list def values(self): return(self.__meta_data.values()) # print('Version '+datetime.fromtimestamp(os.path.getmtime('ogh.py')).strftime('%Y-%m-%d %H:%M:%S')+' jp') def saveDictOfDf(outfilename, dictionaryObject): # write a dictionary of dataframes to a json file using pickle with open(outfilename, 'wb') as f: pickle.dump(dictionaryObject, f) f.close() def readDictOfDf(infilename): # read a dictionary of dataframes from a json file using pickle with open(infilename, 'rb') as f: dictionaryObject = pickle.load(f) f.close() return(dictionaryObject) def reprojShapefile(sourcepath, newprojdictionary={'proj':'longlat', 'ellps':'WGS84', 'datum':'WGS84'}, outpath=None): """ sourcepath: (dir) the path to the .shp file newprojdictionary: (dict) the new projection definition in the form of a dictionary (default provided) outpath: (dir) the output path for the new shapefile """ # if outpath is none, treat the reprojection as a file replacement if isinstance(outpath, type(None)): outpath = sourcepath shpfile = gpd.GeoDataFrame.from_file(sourcepath) shpfile = shpfile.to_crs(newprojdictionary) shpfile.to_file(outpath) def getFullShape(shapefile): """ Generate a MultiPolygon to represent each shape/polygon within the shapefile shapefile: (dir) a path to the ESRI .shp shapefile """ shp = fiona.open(shapefile) mp = [shape(pol['geometry']) for pol in shp] mp = MultiPolygon(mp) shp.close() return(mp) def getShapeBbox(polygon): """ Generate a geometric box to represent the bounding box for the polygon, shapefile connection, or MultiPolygon polygon: (geometry) a geometric polygon, MultiPolygon, or shapefile connection """ # identify the cardinal bounds minx, miny, maxx, maxy = polygon.bounds bbox = box(minx, miny, maxx, maxy, ccw=True) return(bbox) def readShapefileTable(shapefile): """ read in the datatable captured within the shapefile properties shapefile: (dir) a path to the ESRI .shp shapefile """ #cent_df = gpd.read_file(shapefile) shp = fiona.open(shapefile) centroid = [eachpol['properties'] for eachpol in shp] cent_df = pd.DataFrame.from_dict(centroid, orient='columns') shp.close() return(cent_df) def filterPointsinShape(shape, points_lat, points_lon, points_elev=None, buffer_distance=0.06, buffer_resolution=16, labels=['LAT', 'LONG_', 'ELEV']): """ filter for datafiles that can be used shape: (geometry) a geometric polygon or MultiPolygon points_lat: (series) a series of latitude points in WGS84 projection points_lon: (series) a series of longitude points in WGS84 projection points_elev: (series) a series of elevation points in meters; optional - default is None buffer_distance: (float64) a numerical multiplier to increase the geodetic boundary area buffer_resolution: (float64) the increments between geodetic longlat degrees labels: (list) a list of preferred labels for latitude, longitude, and elevation """ # add buffer region region = shape.buffer(buffer_distance, resolution=buffer_resolution) # construct points_elev if null if isinstance(points_elev, type(None)): points_elev=np.repeat(np.nan, len(points_lon)) # Intersection each coordinate with the region limited_list = [] for lon, lat, elev in zip(points_lon, points_lat, points_elev): gpoint = point.Point(lon, lat) if gpoint.intersects(region): limited_list.append([lat, lon, elev]) maptable = pd.DataFrame.from_records(limited_list, columns=labels) ## dask approach ## #intersection=[] #for lon, lat, elev in zip(points_lon, points_lat, points_elev): # gpoint = point.Point(lon, lat) # intersection.append(dask.delayed(gpoint.intersects(region))) # limited_list.append([intersection, lat, lon, elev]) # convert to dataframe #maptable = pd.DataFrame({labels[0]:points_lat, labels[1]:points_lon, labels[2]:points_elev} # .loc[dask.compute(intersection)[0],:] # .reset_index(drop=True) return(maptable) def scrapeurl(url, startswith=None, hasKeyword=None): """ scrape the gridded datafiles from a url of interest url: (str) the web folder path to be scraped for hyperlink references startswith: (str) the starting keywords for a webpage element; default is None hasKeyword: (str) keywords represented in a webpage element; default is None """ # grab the html of the url, and prettify the html structure page = urllib2.urlopen(url).read() page_soup = bs(page, 'lxml') page_soup.prettify() # loop through and filter the hyperlinked lines if pd.isnull(startswith): temp = [anchor['href'] for anchor in page_soup.findAll('a', href=True) if hasKeyword in anchor['href']] else: temp = [anchor['href'] for anchor in page_soup.findAll('a', href=True) if anchor['href'].startswith(startswith)] # convert to dataframe then separate the lon and lat as float coordinate values temp = pd.DataFrame(temp, columns = ['filenames']) return(temp) def treatgeoself(shapefile, NAmer, folder_path=os.getcwd(), outfilename='mappingfile.csv', buffer_distance=0.06): """ TreatGeoSelf to some [data] lovin'! shapefile: (dir) the path to an ESRI shapefile for the region of interest Namer: (dir) the path to an ESRI shapefile, which has each 1/16th coordinate and elevation information from a DEM folder_path: (dir) the destination folder path for the mappingfile output; default is the current working directory outfilename: (str) the name of the output file; default name is 'mappingfile.csv' buffer_distance: (float64) the multiplier to be applied for increasing the geodetic boundary area; default is 0.06 """ # conform projections to longlat values in WGS84 reprojShapefile(shapefile, newprojdictionary={'proj':'longlat', 'ellps':'WGS84', 'datum':'WGS84'}, outpath=None) # read shapefile into a multipolygon shape-object shape_mp = getFullShape(shapefile) # read in the North American continental DEM points for the station elevations NAmer_datapoints = readShapefileTable(NAmer).rename(columns={'Lat':'LAT','Long':'LONG_','Elev':'ELEV'}) # generate maptable maptable = filterPointsinShape(shape_mp, points_lat=NAmer_datapoints.LAT, points_lon=NAmer_datapoints.LONG_, points_elev=NAmer_datapoints.ELEV, buffer_distance=buffer_distance, buffer_resolution=16, labels=['LAT', 'LONG_', 'ELEV']) maptable.reset_index(inplace=True) maptable = maptable.rename(columns={"index":"FID"}) print(maptable.shape) print(maptable.tail()) # print the mappingfile mappingfile=os.path.join(folder_path, outfilename) maptable.to_csv(mappingfile, sep=',', header=True, index=False) return(mappingfile) def mapContentFolder(resid): """ map the content folder within HydroShare resid: (str) a string hash that represents the hydroshare resource that has been migrated """ path = os.path.join('/home/jovyan/work/notebooks/data', str(resid), str(resid), 'data/contents') return(path) # ### CIG (DHSVM)-oriented functions def compile_bc_Livneh2013_locations(maptable): """ compile a list of file URLs for bias corrected Livneh et al. 2013 (CIG) maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/Livneh/bcLivneh_WWA_2013/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) def compile_Livneh2013_locations(maptable): """ compile a list of file URLs for Livneh et al. 2013 (CIG) maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://www.cses.washington.edu/rocinante/Livneh/Livneh_WWA_2013/forcs_dhsvm/',basename] locations.append(''.join(url)) return(locations) ### VIC-oriented functions def compile_VICASCII_Livneh2015_locations(maptable): """ compile the list of file URLs for Livneh et al., 2015 VIC.ASCII outputs maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Fluxes_Livneh_NAmerExt_15Oct2014', str(row['LAT']), str(row['LONG_'])]) url=["ftp://192.168.127.12/pub/dcp/archive/OBS/livneh2014.1_16deg/VIC.ASCII/latitude.",str(row['LAT']),'/',loci,'.bz2'] locations.append(''.join(url)) return(locations) def compile_VICASCII_Livneh2013_locations(maptable): """ compile the list of file URLs for Livneh et al., 2013 VIC.ASCII outputs for the USA maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ # identify the subfolder blocks blocks = scrape_domain(domain='livnehpublicstorage.colorado.edu', subdomain='/public/Livneh.2013.CONUS.Dataset/Fluxes.asc.v.1.2.1915.2011.bz2/', startswith='fluxes') # map each coordinate to the subfolder maptable = mapToBlock(maptable, blocks) locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['VIC_fluxes_Livneh_CONUSExt_v.1.2_2013', str(row['LAT']), str(row['LONG_'])]) url='/'.join(["ftp://livnehpublicstorage.colorado.edu/public/Livneh.2013.CONUS.Dataset/Fluxes.asc.v.1.2.1915.2011.bz2", str(row['blocks']), loci+".bz2"]) locations.append(url) return(locations) ### Climate (Meteorological observations)-oriented functions def canadabox_bc(): """ Establish the Canadian (north of the US bounding boxes) Columbia river basin bounding box """ # left, bottom, right top return(box(-138.0, 49.0, -114.0, 53.0)) def scrape_domain(domain, subdomain, startswith=None): """ scrape the gridded datafiles from a url of interest domain: (str) the web folder path subdomain: (str) the subfolder path to be scraped for hyperlink references startswith: (str) the starting keywords for a webpage element; default is None """ # connect to domain ftp = ftplib.FTP(domain) ftp.login() ftp.cwd(subdomain) # scrape for data directories tmp = [dirname for dirname in ftp.nlst() if dirname.startswith(startswith)] geodf = pd.DataFrame(tmp, columns=['dirname']) # conform to bounding box format tmp = geodf['dirname'].apply(lambda x: x.split('.')[1:]) tmp = tmp.apply(lambda x: list(map(float,x)) if len(x)>2 else x) # assemble the boxes geodf['bbox']=tmp.apply(lambda x: box(x[0]*-1, x[2]-1, x[1]*-1, x[3]) if len(x)>2 else canadabox_bc()) return(geodf) def mapToBlock(df_points, df_regions): for index, eachblock in df_regions.iterrows(): for ind, row in df_points.iterrows(): if point.Point(row['LONG_'], row['LAT']).intersects(eachblock['bbox']): df_points.loc[ind, 'blocks'] = str(eachblock['dirname']) return(df_points) def compile_dailyMET_Livneh2013_locations(maptable): """ compile the list of file URLs for Livneh et al., 2013 Daily Meteorology data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ # identify the subfolder blocks blocks = scrape_domain(domain='livnehpublicstorage.colorado.edu', subdomain='/public/Livneh.2013.CONUS.Dataset/Meteorology.asc.v.1.2.1915.2011.bz2/', startswith='data') # map each coordinate to the subfolder maptable = mapToBlock(maptable, blocks) locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Meteorology_Livneh_CONUSExt_v.1.2_2013', str(row['LAT']), str(row['LONG_'])]) url='/'.join(["ftp://livnehpublicstorage.colorado.edu/public/Livneh.2013.CONUS.Dataset/Meteorology.asc.v.1.2.1915.2011.bz2", str(row['blocks']), loci+".bz2"]) locations.append(url) return(locations) def compile_dailyMET_Livneh2015_locations(maptable): """ compile the list of file URLs for Livneh et al., 2015 Daily Meteorology data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Meteorology_Livneh_NAmerExt_15Oct2014', str(row['LAT']), str(row['LONG_'])]) url=["ftp://192.168.127.12/pub/dcp/archive/OBS/livneh2014.1_16deg/ascii/daily/latitude.", str(row['LAT']),"/",loci,".bz2"] locations.append(''.join(url)) return(locations) # ### WRF-oriented functions def compile_wrfnnrp_raw_Salathe2014_locations(maptable): """ compile a list of file URLs for Salathe et al., 2014 raw WRF NNRP data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/WRF/NNRP/vic_16d/WWA_1950_2010/raw/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) def compile_wrfnnrp_bc_Salathe2014_locations(maptable): """ compile a list of file URLs for the Salathe et al., 2014 bias corrected WRF NNRP data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/WRF/NNRP/vic_16d/WWA_1950_2010/bc/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) # ## Data file migration functions def ensure_dir(f): """ check if the destination folder directory exists; if not, create it and set it as the working directory f: (dir) the directory to create and/or set as working directory """ if not os.path.exists(f): os.makedirs(f) os.chdir(f) def wget_download(listofinterest): """ Download files from an http domain listofinterest: (list) a list of urls to request """ # check and download each location point, if it doesn't already exist in the download directory for fileurl in listofinterest: basename = os.path.basename(fileurl) try: ping = urllib.request.urlopen(fileurl) if ping.getcode()!=404: wget.download(fileurl) print('downloaded: ' + basename) except: print('File does not exist at this URL: ' + basename) # Download the files to the subdirectory def wget_download_one(fileurl): """ Download a file from an http domain fileurl: (url) a url to request """ # check and download each location point, if it doesn't already exist in the download directory basename=os.path.basename(fileurl) # if it exists, remove for new download (overwrite mode) if os.path.isfile(basename): os.remove(basename) try: ping = urllib.request.urlopen(fileurl) if ping.getcode()!=404: wget.download(fileurl) print('downloaded: ' + basename) except: print('File does not exist at this URL: ' + basename) def wget_download_p(listofinterest, nworkers=20): """ Download files from an http domain in parallel listofinterest: (list) a list of urls to request nworkers: (int) the number of processors to distribute tasks; default is 10 """ pool = Pool(int(nworkers)) pool.map(wget_download_one, listofinterest) pool.close() pool.terminate() def ftp_download(listofinterest): """ Download and decompress files from an ftp domain listofinterest: (list) a list of urls to request """ for loci in listofinterest: # establish path info fileurl=loci.replace('ftp://','') # loci is already the url with the domain already appended ipaddress=fileurl.split('/',1)[0] # ip address path=os.path.dirname(fileurl.split('/',1)[1]) # folder path filename=os.path.basename(fileurl) # filename # download the file from the ftp server ftp=ftplib.FTP(ipaddress) ftp.login() ftp.cwd(path) try: ftp.retrbinary("RETR " + filename ,open(filename, 'wb').write) ftp.close() # decompress the file decompbz2(filename) except: os.remove(filename) print('File does not exist at this URL: '+fileurl) def ftp_download_one(loci): """ Download and decompress a file from an ftp domain loci: (url) a url to request """ # establish path info fileurl=loci.replace('ftp://','') # loci is already the url with the domain already appended ipaddress=fileurl.split('/',1)[0] # ip address path=os.path.dirname(fileurl.split('/',1)[1]) # folder path filename=os.path.basename(fileurl) # filename # download the file from the ftp server ftp=ftplib.FTP(ipaddress) ftp.login() ftp.cwd(path) try: ftp.retrbinary("RETR " + filename ,open(filename, 'wb').write) ftp.close() # decompress the file decompbz2(filename) except: os.remove(filename) print('File does not exist at this URL: '+fileurl) def ftp_download_p(listofinterest, nworkers=5): """ Download and decompress files from an ftp domain in parallel listofinterest: (list) a list of urls to request nworkers: (int) the number of processors to distribute tasks; default is 5 """ pool = Pool(int(nworkers)) pool.map(ftp_download_one, listofinterest) pool.close() pool.terminate() def decompbz2(filename): """ Extract a file from a bz2 file of the same name, then remove the bz2 file filename: (dir) the file path for a bz2 compressed file """ with open(filename.split(".bz2",1)[0], 'wb') as new_file, open(filename, 'rb') as zipfile: decompressor = bz2.BZ2Decompressor() for data in iter(lambda : zipfile.read(100 * 1024), b''): new_file.write(decompressor.decompress(data)) os.remove(filename) zipfile.close() new_file.close() print(os.path.splitext(filename)[0] + ' unzipped') def catalogfiles(folderpath): """ make a catalog of the gridded files within a folderpath folderpath: (dir) the folder of files to be catalogged, which have LAT and LONG_ as the last two filename features """ # read in downloaded files temp = [eachfile for eachfile in os.listdir(folderpath) if not os.path.isdir(eachfile)] if len(temp)==0: # no files were available; setting default catalog output structure catalog = pd.DataFrame([], columns=['filenames','LAT','LONG_']) else: # create the catalog dataframe and extract the filename components catalog = pd.DataFrame(temp, columns=['filenames']) catalog[['LAT','LONG_']] = catalog['filenames'].apply(lambda x: pd.Series(str(x).rsplit('_',2))[1:3]).astype(float) # convert the filenames column to a filepath catalog['filenames'] = catalog['filenames'].apply(lambda x: os.path.join(folderpath, x)) return(catalog) def addCatalogToMap(outfilepath, maptable, folderpath, catalog_label): """ Update the mappingfile with a new column, a vector of filepaths for the downloaded files outfilepath: (dir) the path for the output file maptable: (dataframe) a dataframe containing the FID, LAT, LONG_, and ELEV information folderpath: (dir) the folder of files to be catalogged, which have LAT and LONG_ as the last two filename features catalog_label: (str) the preferred name for the series of catalogged filepaths """ # assert catalog_label as a string-object catalog_label = str(catalog_label) # catalog the folder directory catalog = catalogfiles(folderpath).rename(columns={'filenames':catalog_label}) # drop existing column if catalog_label in maptable.columns: maptable = maptable.drop(labels=catalog_label, axis=1) # update with a vector for the catalog of files maptable = maptable.merge(catalog, on=['LAT','LONG_'], how='left') # remove blocks, if they were needed if 'blocks' in maptable.columns: maptable = maptable.drop(labels=['blocks'], axis=1) # write the updated mappingfile maptable.to_csv(outfilepath, header=True, index=False) # Wrapper scripts def getDailyMET_livneh2013(homedir, mappingfile, subdir='livneh2013/Daily_MET_1915_2011/raw', catalog_label='dailymet_livneh2013'): """ Get the Livneh el al., 2013 Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate DailyMET livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_dailyMET_Livneh2013_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyMET_livneh2015(homedir, mappingfile, subdir='livneh2015/Daily_MET_1950_2013/raw', catalog_label='dailymet_livneh2015'): """ Get the Livneh el al., 2015 Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate Daily MET livneh 2015 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_dailyMET_Livneh2015_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyMET_bcLivneh2013(homedir, mappingfile, subdir='livneh2013/Daily_MET_1915_2011/bc', catalog_label='dailymet_bclivneh2013'): """ Get the Livneh el al., 2013 bias corrected Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate baseline_corrected livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_bc_Livneh2013_locations(maptable) # download the files wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyVIC_livneh2013(homedir, mappingfile, subdir='livneh2013/Daily_VIC_1915_2011', catalog_label='dailyvic_livneh2013'): """ Get the Livneh el al., 2013 Daily VIC files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # FIRST RUN # check and generate VIC_ASCII Flux model livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points for USA locations = compile_VICASCII_Livneh2013_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyVIC_livneh2015(homedir, mappingfile, subdir='livneh2015/Daily_VIC_1950_2013', catalog_label='dailyvic_livneh2015'): """ Get the Livneh el al., 2015 Daily VIC files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate Daily VIC.ASCII Flux model livneh 2015 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_VICASCII_Livneh2015_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyWRF_salathe2014(homedir, mappingfile, subdir='salathe2014/WWA_1950_2010/raw', catalog_label='dailywrf_salathe2014'): """ Get the Salathe el al., 2014 raw Daily WRF files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate the Daily Meteorology raw WRF Salathe 2014 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # read in the longitude and latitude points from the reference mapping file maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_wrfnnrp_raw_Salathe2014_locations(maptable) # download the data wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyWRF_bcsalathe2014(homedir, mappingfile, subdir='salathe2014/WWA_1950_2010/bc', catalog_label='dailywrf_bcsalathe2014'): """ Get the Salathe el al., 2014 bias corrected Daily WRF files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate the Daily Meteorology bias corrected WRF Salathe 2014 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # read in the longitude and latitude points from the reference mapping file maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_wrfnnrp_bc_Salathe2014_locations(maptable) # download the data wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) # # Data Processing libraries def filesWithPath(folderpath): """ Create a list of filepaths for the files folderpath: (dir) the folder of interest """ files =[os.path.join(folderpath, eachfile) for eachfile in os.listdir(folderpath) if not eachfile.startswith('.') and not os.path.isdir(eachfile)] # exclude hidden files return(files) def compareonvar(map_df, colvar='all'): """ subsetting a dataframe based on some columns of interest map_df: (dataframe) the dataframe of the mappingfile table colvar: (str or list) the column(s) to use for subsetting; 'None' will return an outerjoin, 'all' will return an innerjoin """ # apply row-wise inclusion based on a subset of columns if isinstance(colvar, type(None)): return(map_df) if colvar is 'all': # compare on all columns except the station info return(map_df.dropna()) else: # compare on only the listed columns return(map_df.dropna(subset=colvar)) def mappingfileToDF(mappingfile, colvar='all'): """ read in a dataframe and subset based on columns of interest mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest colvar: (str or list) the column(s) to use for subsetting; 'None' will return an outerjoin, 'all' will return an innerjoin """ # Read in the mappingfile as a data frame map_df = pd.read_csv(mappingfile) # select rows (datafiles) based on the colvar(s) chosen, default is map_df = compareonvar(map_df=map_df, colvar=colvar) # compile summaries print(map_df.head()) print('Number of gridded data files:'+ str(len(map_df))) print('Minimum elevation: ' + str(np.min(map_df.ELEV))+ 'm') print('Mean elevation: '+ str(np.mean(map_df.ELEV))+ 'm') print('Maximum elevation: '+ str(np.max(map_df.ELEV))+ 'm') return(map_df, len(map_df)) def read_in_all_files(map_df, dataset, metadata, file_start_date, file_end_date, file_time_step, file_colnames, file_delimiter, subset_start_date, subset_end_date): """ Read in files based on dataset label map_df: (dataframe) the mappingfile clipped to the subset that will be read-in dataset: (str) the name of the dataset catalogged into map_df metadata (str) the dictionary that contains the metadata explanations; default is None file_colnames: (list) the list of shorthand variables; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest """ # extract metadata if the information are not provided if pd.notnull(metadata): if isinstance(file_start_date, type(None)): file_start_date = metadata[dataset]['start_date'] if isinstance(file_end_date, type(None)): file_end_date = metadata[dataset]['end_date'] if isinstance(file_time_step, type(None)): file_time_step = metadata[dataset]['temporal_resolution'] if isinstance(file_colnames, type(None)): file_colnames = metadata[dataset]['variable_list'] if isinstance(file_delimiter, type(None)): file_delimiter = metadata[dataset]['delimiter'] #initialize dictionary and time sequence df_dict=dict() met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) # daily # import data for all climate stations for ind, row in map_df.iterrows(): tmp = pd.read_table(row[dataset], header=None, delimiter=file_delimiter, names=file_colnames) tmp.set_index(met_daily_dates, inplace=True) # subset to the date range of interest (default is file date range) tmp = tmp.iloc[(met_daily_dates>=subset_start_date) & (met_daily_dates<=subset_end_date),:] # set row indices df_dict[tuple(row[['FID','LAT','LONG_']].tolist())] = tmp return(df_dict) def read_files_to_vardf(map_df, df_dict, gridclimname, dataset, metadata, file_start_date, file_end_date, file_delimiter, file_time_step, file_colnames, subset_start_date, subset_end_date, min_elev, max_elev): """ # reads in the files to generate variables dataframes map_df: (dataframe) the mappingfile clipped to the subset that will be read-in df_dict: (dict) an existing dictionary where new computations will be stored gridclimname: (str) the suffix for the dataset to be named; if None is provided, default to the dataset name dataset: (str) the name of the dataset catalogged into map_df metadata: (str) the dictionary that contains the metadata explanations; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_delimiter: (str) a file parsing character to be used for file reading file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest """ # start time starttime = pd.datetime.now() # date range from ogh_meta file met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) met_daily_subdates=pd.date_range(subset_start_date, subset_end_date, freq=file_time_step) # omit null entries or missing data file map_df = map_df.loc[pd.notnull(map_df[dataset]),:] print('Number of data files within elevation range ('+str(min_elev)+':'+str(max_elev)+'): '+str(len(map_df))) # iterate through each data file for eachvar in metadata[dataset]['variable_list']: # identify the variable column index usecols = [metadata[dataset]['variable_list'].index(eachvar)] # initiate df as a list df_list=[] # loop through each file for ind, row in map_df.iterrows(): # consider rewriting the params to just select one column by index at a time var_series = dask.delayed(pd.read_table)(filepath_or_buffer=row[dataset], delimiter=file_delimiter,header=None,usecols=usecols, names=[tuple(row[['FID','LAT','LONG_']])]) # append the series into the list of series df_list.append(var_series) # concatenate list of series (axis=1 is column-wise) into a dataframe df1 = dask.delayed(pd.concat)(df_list, axis=1) # set and subset date_range index df2 = df1.set_index(met_daily_dates, inplace=False).loc[met_daily_subdates] # end of variable table print(eachvar+ ' dataframe reading to start: ' + str(pd.datetime.now()-starttime)) # assign dataframe to dictionary object df_dict['_'.join([eachvar, gridclimname])] = dask.compute(df2)[0] print(eachvar+ ' dataframe complete:' + str(pd.datetime.now()-starttime)) return(df_dict) def read_daily_streamflow(file_name, drainage_area_m2, file_colnames=None, delimiter='\t', header='infer'): # read in a daily streamflow data set # if file_colnames are supplied, use header=None if file_colnames is not None: header=None # read in the data daily_data=pd.read_table(file_name, delimiter=delimiter, header=header) # set columns, if header=None if file_colnames is not None: daily_data.columns=file_colnames else: file_colnames=list(daily_data.columns) # calculate cfs to cms conversion, or vice versa if 'flow_cfs' in daily_data.columns: flow_cfs=daily_data['flow_cfs'] flow_cms=flow_cfs/(3.28084**3) flow_mmday=flow_cms*1000*3600*24/drainage_area_m2 elif 'flow_cms' in daily_data.columns: flow_cms=daily_data['flow_cms'] flow_cfs=flow_cms*(3.28084**3) flow_mmday=flow_cms*1000*3600*24/drainage_area_m2 # determine the datetime date_index=[file_colnames.index(each) for each in ['year','month','day']] row_dates=pd.to_datetime(daily_data[date_index]) # generate the daily_flow and set the datetime as row indices daily_flow=pd.concat([flow_cfs, flow_cms, flow_mmday],axis=1) daily_flow.set_index(row_dates, inplace=True) daily_flow.columns=['flow_cfs', 'flow_cms', 'flow_mmday'] return(daily_flow) def read_daily_precip(file_name, file_colnames=None, header='infer', delimiter='\s+'): # read in a daily precipitation data set # if file_colnames are supplied, use header=None if ps.notnull(file_colnames): header=None # read in the data daily_data=pd.read_table(file_name, delimiter=delimiter, header=header) # set columns, if header=None if pd.notnull(file_colnames): daily_data.columns=file_colnames else: file_colnames=list(daily_data.columns) # calculate cfs to cms conversion, or vice versa if 'precip_m' in daily_data.columns: precip_m=daily_data['precip_m'] precip_mm=precip_m*1000 # determine the datetime date_index=[file_colnames.index(each) for each in ['year','month','day']] row_dates=pd.to_datetime(daily_data[date_index]) # generate the daily_flow and set the datetime as row indices daily_precip=pd.concat([precip_m, precip_mm],axis=1) daily_precip.set_index(row_dates, inplace=True) daily_precip.columns=['precip_m', 'precip_mm'] return(daily_precip) def read_daily_snotel(file_name, file_colnames=None, usecols=None, delimiter=',', header='infer'): # read in a daily SNOTEL observation data set # if file_colnames are supplied, use header=None if file_colnames is not None: header=None # read in the data daily_data=pd.read_table(file_name, usecols=usecols, header=header, delimiter=delimiter) # reset the colnames daily_data.columns=['Date', 'Tmax_C', 'Tmin_C', 'Tavg_C', 'Precip_mm'] # transform the data daily_data['Tmax_C']=(daily_data['Tmax_C'] -32)/1.8 daily_data['Tmin_C']=(daily_data['Tmin_C'] -32)/1.8 daily_data['Tavg_C']=(daily_data['Tavg_C'] -32)/1.8 daily_data['Precip_mm']=daily_data['Precip_mm'] *25.4 # determine the datetime row_dates=pd.to_datetime(daily_data.Date) # generate the daily_flow and set the datetime as row indices daily_snotel=daily_data[['Tmax_C', 'Tmin_C', 'Tavg_C', 'Precip_mm']] daily_snotel.set_index(row_dates, inplace=True) return(daily_snotel) def read_daily_coop(file_name, file_colnames=None, usecols=None, delimiter=',', header='infer'): # read in a daily COOP observation data set # if file_colnames are supplied, use header=None if file_colnames is not None: header=None # read in the data daily_data=pd.read_table(file_name, usecols=usecols, header=header, delimiter=delimiter, date_parser=lambda x: pd.datetime.strptime(x, '%Y%m%d'), parse_dates=[0], na_values=-9999) # reset the colnames daily_data.columns=['Date', 'Precip_mm','Tmax_C', 'Tmin_C', 'Tavg_C'] # transform the data daily_data['Tmax_C']=(daily_data['Tmax_C'] -32)/1.8 daily_data['Tmin_C']=(daily_data['Tmin_C'] -32)/1.8 daily_data['Tavg_C']=(daily_data['Tavg_C'] -32)/1.8 daily_data['Precip_mm']=daily_data['Precip_mm'] *25.4 # determine the datetime row_dates=pd.to_datetime(daily_data.Date) # generate the daily_flow and set the datetime as row indices daily_coop=daily_data[['Precip_mm','Tmax_C', 'Tmin_C', 'Tavg_C']] daily_coop.set_index(row_dates, inplace=True) return(daily_coop) # ### Data Processing functions def generateVarTables(file_dict, gridclimname, dataset, metadata, df_dict=None): """ Slice the files by their common variable all_files: (dict) a dictionary of dataframes for each tabular datafile dataset: (str) the name of the dataset metadata (dict) the dictionary that contains the metadata explanations; default is None """ # combine the files into a pandas panel panel = pd.Panel.from_dict(file_dict) # initiate output dictionary if pd.isnull(df_dict): df_dict = dict() # slice the panel for each variable in list for eachvar in metadata[dataset]['variable_list']: df_dict['_'.join([eachvar, gridclimname])] = panel.xs(key=eachvar, axis=2) return(df_dict) # compare two date sets for the start and end of the overlapping dates def overlappingDates(date_set1, date_set2): # find recent date if date_set1[0] > date_set2[0]: start_date = date_set1[0] else: start_date = date_set2[0] # find older date if date_set1[-1] < date_set2[-1]: end_date = date_set1[-1] else: end_date = date_set2[-1] return(start_date, end_date) # Calculate means by 8 different methods def multigroupMeans(VarTable, n_stations, start_date, end_date): Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # e.g., Mean monthly temperature at each station month_daily=Var_daily.groupby(Var_daily.index.month).mean() # average monthly minimum temperature at each station # e.g., Mean monthly temperature averaged for all stations in analysis meanmonth_daily=month_daily.mean(axis=1) # e.g., Mean monthly temperature for minimum and maximum elevation stations meanmonth_min_maxelev_daily=Var_daily.loc[:,analysis_elev_max_station].groupby(Var_daily.index.month).mean() meanmonth_min_minelev_daily=Var_daily.loc[:,analysis_elev_min_station].groupby(Var_daily.index.month).mean() # e.g., Mean annual temperature year_daily=Var_daily.groupby(Var_daily.index.year).mean() # e.g., mean annual temperature each year for all stations meanyear_daily=year_daily.mean(axis=1) # e.g., mean annual min temperature for all years, for all stations meanallyear_daily=np.nanmean(meanyear_daily) # e.g., anomoly per year compared to average anom_year_daily=meanyear_daily-meanallyear_daily return(month_daily, meanmonth_daily, meanmonth_min_maxelev_daily, meanmonth_min_minelev_daily, year_daily, meanyear_daily, meanallyear_daily, anom_year_daily) def specialTavgMeans(VarTable): Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # Average temperature for each month at each station permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).mean() # Average temperature each month averaged at all stations meanpermonth_daily=permonth_daily.mean(axis=1) # Average monthly temperature for all stations meanallpermonth_daily=meanpermonth_daily.mean(axis=0) # anomoly per year compared to average anom_month_daily=(meanpermonth_daily-meanallpermonth_daily)/1000 return(permonth_daily, meanpermonth_daily, meanallpermonth_daily, anom_month_daily) def aggregate_space_time_average(VarTable, df_dict, suffix, start_date, end_date): """ VarTable: (dataframe) a dataframe with date ranges as the index df_dict: (dict) a dictionary to which computed outputs will be stored suffix: (str) a string representing the name of the original table start_date: (date) the start of the date range within the original table end_date: (date) the end of the date range within the original table """ starttime = pd.datetime.now() # subset dataframe to the date range of interest Var_daily = VarTable.loc[start_date:end_date,:] # Mean monthly temperature at each station df_dict['month_'+suffix] = Var_daily.groupby(Var_daily.index.month).mean() # Mean monthly temperature averaged for all stations in analysis df_dict['meanmonth_'+suffix] = Var_daily.groupby(Var_daily.index.month).mean().mean(axis=1) # Mean annual temperature df_dict['year_'+suffix] = Var_daily.groupby(Var_daily.index.year).mean() # mean annual temperature each year for all stations df_dict['meanyear_'+suffix] = Var_daily.groupby(Var_daily.index.year).mean().mean(axis=1) # mean annual temperature for all years, for all stations df_dict['meanallyear_'+suffix] = Var_daily.mean(axis=1).mean(axis=0) # anomaly per year compared to average df_dict['anom_year_'+suffix] = df_dict['meanyear_'+suffix] - df_dict['meanallyear_'+suffix] print(suffix+ ' calculations completed in ' + str(pd.datetime.now()-starttime)) return(df_dict) def aggregate_space_time_sum(VarTable, n_stations, start_date, end_date): Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # Average precipitation per month at each station permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).sum() # Average precipitation per month averaged at all stations meanpermonth_daily=permonth_daily.mean(axis=1) # Average monthly precipitation averaged at all stations meanmonth_daily= meanpermonth_daily.groupby(meanpermonth_daily.index.month).mean() return(Var_daily, permonth_daily, meanpermonth_daily, meanmonth_daily) #def aggregate_space_time_sum(VarTable, n_stations, start_date, end_date): # Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # # # Average precipitation per month at each station # permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).sum() # # # Average precipitation per month averaged at all stations # meanpermonth_daily=permonth_daily.mean(axis=1) # # # Average monthly precipitation averaged at all stations # meanmonth_daily= meanpermonth_daily.groupby(meanpermonth_daily.index.month).mean() # # return(Var_daily, # permonth_daily, # meanpermonth_daily, # meanmonth_daily) #def specialTavgMeans(VarTable): # Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # # # Average temperature for each month at each station # permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).mean() # # # Average temperature each month averaged at all stations # meanpermonth_daily=permonth_daily.mean(axis=1) # # # Average monthly temperature for all stations # meanallpermonth_daily=meanpermonth_daily.mean(axis=0) # # # anomoly per year compared to average # anom_month_daily=(meanpermonth_daily-meanallpermonth_daily)/1000 # # return(permonth_daily, # meanpermonth_daily, # meanallpermonth_daily, # anom_month_daily) def plotTavg(dictionary, loc_name, start_date, end_date): # Plot 1: Monthly temperature analysis of Livneh data if 'meanmonth_temp_avg_liv2013_met_daily' and 'meanmonth_temp_avg_wrf2014_met_daily' not in dictionary.keys(): pass # generate month indices wy_index=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] wy_numbers=[10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9] month_strings=[ 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept'] # initiate the plot object fig, ax=plt.subplots(1,1,figsize=(10, 6)) if 'meanmonth_temp_avg_liv2013_met_daily' in dictionary.keys(): # Liv2013 plt.plot(wy_index, dictionary['meanmonth_maxelev_temp_avg_liv2013_met_daily'][wy_numbers],'r*--',linewidth=1, label='Liv Tavg- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_temp_avg_liv2013_met_daily'][wy_numbers],'r-', linewidth=1, label='Liv Tavg- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_temp_avg_liv2013_met_daily'][wy_numbers],'rX--',linewidth=1, label='Liv Tavg- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_wrf2014_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_temp_avg_wrf2014_met_daily'][wy_numbers],'b^--',linewidth=1, label='WRF Tavg- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_temp_avg_wrf2014_met_daily'][wy_numbers],'b-',linewidth=1, label='WRF Tavg- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_temp_avg_wrf2014_met_daily'][wy_numbers],'bo--',linewidth=1, label='WRF Tavg- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_livneh2013_wrf2014bc_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_temp_avg_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g^--',linewidth=1, label='WRFbc Tavg- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_temp_avg_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g-',linewidth=1, label='WRFbc Tavg- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_temp_avg_livneh2013_wrf2014bc_met_daily'][wy_numbers],'go--',linewidth=1, label='WRFbc Tavg- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') # add reference line at y=0 plt.plot([1, 12],[0, 0], 'k-',linewidth=1) plt.ylabel('Temperature (deg C)',fontsize=14) plt.xlabel('Month',fontsize=14) plt.xlim(1,12); plt.xticks(wy_index, month_strings); plt.tick_params(labelsize=12) plt.legend(loc='best') plt.grid(which='both') plt.title(str(loc_name)+'\nAverage Temperature\n Years: '+str(start_date.year)+'-'+str(end_date.year)+'; Elevation: '+str(dictionary['analysis_elev_min'])+'-'+str(dictionary['analysis_elev_max'])+'m', fontsize=16) plt.savefig('avg_monthly_temp'+str(loc_name)+'.png') plt.show() def plotPavg(dictionary, loc_name, start_date, end_date): # Plot 1: Monthly temperature analysis of Livneh data if 'meanmonth_precip_liv2013_met_daily' and 'meanmonth_precip_wrf2014_met_daily' not in dictionary.keys(): pass # generate month indices wy_index=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] wy_numbers=[10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9] month_strings=[ 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept'] # initiate the plot object fig, ax=plt.subplots(1,1,figsize=(10, 6)) if 'meanmonth_precip_liv2013_met_daily' in dictionary.keys(): # Liv2013 plt.plot(wy_index, dictionary['meanmonth_maxelev_precip_liv2013_met_daily'][wy_numbers],'r^--',linewidth=1, label='Liv Precip- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_precip_liv2013_met_daily'][wy_numbers],'r-', linewidth=1, label='Liv Precip- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_precip_liv2013_met_daily'][wy_numbers],'ro--',linewidth=1, label='Liv Precip- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_wrf2014_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_precip_wrf2014_met_daily'][wy_numbers],'b^--',linewidth=1, label='WRF Precip- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_precip_wrf2014_met_daily'][wy_numbers],'b-',linewidth=1, label='WRF Precip- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_precip_wrf2014_met_daily'][wy_numbers],'bo--',linewidth=1, label='WRF Precip- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_livneh2013_wrf2014bc_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_precip_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g^--',linewidth=1, label='WRFbc Precip- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_precip_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g-',linewidth=1, label='WRFbc Precip- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_precip_livneh2013_wrf2014bc_met_daily'][wy_numbers],'go--',linewidth=1, label='WRFbc Precip- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') # add reference line at y=0 plt.plot([1, 12],[0, 0], 'k-',linewidth=1) plt.ylabel('Precip (mm)',fontsize=14) plt.xlabel('Month',fontsize=14) plt.xlim(1,12); plt.xticks(wy_index, month_strings); plt.tick_params(labelsize=12) plt.legend(loc='best') plt.grid(which='both') plt.title(str(loc_name)+'\nAverage Precipitation\n Years: '+str(start_date.year)+'-'+str(end_date.year)+'; Elevation: '+str(dictionary['analysis_elev_min'])+'-'+str(dictionary['analysis_elev_max'])+'m', fontsize=16) plt.savefig('avg_monthly_precip'+str(loc_name)+'.png') plt.show() def gridclim_dict(mappingfile, dataset, gridclimname=None, metadata=None, min_elev=None, max_elev=None, file_start_date=None, file_end_date=None, file_time_step=None, file_colnames=None, file_delimiter=None, subset_start_date=None, subset_end_date=None, df_dict=None, colvar='all'): """ # pipelined operation for assimilating data, processing it, and standardizing the plotting mappingfile: (dir) the path directory to the mappingfile dataset: (str) the name of the dataset within mappingfile to use gridclimname: (str) the suffix for the dataset to be named; if None is provided, default to the dataset name metadata: (str) the dictionary that contains the metadata explanations; default is None min_elev: (float) the minimum elevation criteria; default is None max_elev: (float) the maximum elevation criteria; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None file_delimiter: (str) a file parsing character to be used for file reading subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest df_dict: (dict) an existing dictionary where new computations will be stored """ # generate the climate locations and n_stations locations_df, n_stations = mappingfileToDF(mappingfile, colvar=colvar) # generate the climate station info if pd.isnull(min_elev): min_elev = locations_df.ELEV.min() if pd.isnull(max_elev): max_elev = locations_df.ELEV.max() # extract metadata if the information are not provided if not isinstance(metadata, type(None)): if isinstance(file_start_date, type(None)): file_start_date = metadata[dataset]['start_date'] if isinstance(file_end_date, type(None)): file_end_date = metadata[dataset]['end_date'] if isinstance(file_time_step, type(None)): file_time_step = metadata[dataset]['temporal_resolution'] if isinstance(file_colnames, type(None)): file_colnames = metadata[dataset]['variable_list'] if isinstance(file_delimiter, type(None)): file_delimiter = metadata[dataset]['delimiter'] # take all defaults if subset references are null if pd.isnull(subset_start_date): subset_start_date = file_start_date if pd.isnull(subset_end_date): subset_end_date = file_end_date # initiate output dictionary df_dict was null if pd.isnull(df_dict): df_dict = dict() if pd.isnull(gridclimname): if
pd.notnull(dataset)
pandas.notnull
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import explained_variance_score from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from scipy.interpolate import interp1d from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline # -------------------------------------------------------------------------------- 5.1 Approximation Demand and Supply # ---------- Demand and Supply Functions ---------- def demand(p): """Vectorized Function to determine *demand*. Args: p (np.array): Price vector for demand. Raises: ValueError: Argument p has to be an array. AssertionError: Type of q and p has to be identical. Returns: np.array: Returns demand quantity. """ if not isinstance(p, np.ndarray): raise TypeError("Price vector has to be an array!") r = np.random.rand() * 2 n = abs(np.random.randn()) * 2 q = ( 40 / (p + n) + 1 / (1 + np.exp(p - 75 + r)) + 2 / (1 + np.exp(p - 50 + r)) + 3 / (1 + np.exp(p - 25 + r)) ) q[q > 20] = np.nan assert type(q) == type(p), "Type of output does not equal type of input!" return q def supply(p): """Vectorized Function to determine *supply.* Args: p (np.array): Price vector for supply. Raises: ValueError: Argument p has to be an array. AssertionError: Type of q and p has to be identical. Returns: np.array: Returns supply quantity. """ if not isinstance(p, np.ndarray): raise TypeError("Price vector has to be an array!") q = np.zeros(p.shape) for i, c in enumerate(p): if (c > 0) and (c < 10): q[i] = 1.0 elif (c >= 10) and (c < 20): q[i] = 1.5 elif (c >= 20) and (c < 25): q[i] = 3.0 elif (c >= 25) and (c < 35): q[i] = 3.6 elif (c >= 35) and (c < 45): q[i] = 4.2 elif (c >= 45) and (c < 60): q[i] = 5.0 elif (c >= 60) and (c < 75): q[i] = 8.0 elif (c >= 75) and (c < 85): q[i] = 12.0 elif (c >= 85) and (c < 90): q[i] = 16.5 elif (c >= 90) and (c < 95): q[i] = 18.5 elif c >= 95: q[i] = 20.0 assert type(q) == type(p), "Type of output does not equals type of input!" return q # ---------- Approximation using scipy ---------- class PolynomialDS: """Object that approximates supply and demand functions using sicpy interpolate method. Args: a (int): Lower bound of prices. b (int): Upper bound of prices. nodes (int): Interpolation nodes for demand and supply. demand (function): Benchmark function supply. supply (function): Benchmark function demand. Raises: AssertionError: Price must be non-negative. AssertionError: By Assumption: price cannot exceed 100. """ def __init__(self, a, b, nodes, demand, supply): """Constructor method. """ self.a = a self.b = b assert a >= 0, "Price cannot be negative!" assert (b > a) and (b <= 100), "By Assumption: Price cannot exceed 100!" self.nodes = nodes self.demand = demand self.supply = supply self.p = np.linspace(a, b, nodes) self.qd = demand(self.p) self.qs = supply(self.p) def __len__(self): """Returns number of interpolation nodes. Returns: int: Number of known prices. """ return len(self.p) def __repr__(self): """String representation of object. """ p = np.around(self.p, decimals=2) qd = np.around(self.qd, decimals=2) qs = np.around(self.qs, decimals=2) return f"{len(self)} known values for Demand and Supply:\n\nPrices={p} \n\nDemand={qd} \nSupply={qs}" def __call__(self, p): """Returns true and approximated value of demand and supply for a given price. Args: p (np.array): Price vector. Returns: : Comparison. """ self.apprx_qd = interp1d(self.p, self.qd) self.apprx_qs = interp1d(self.p, self.qs) return f"-- Real value -- at price {p}: \n\nDemand = {self.demand(p)} \nSupply = {self.supply(p)} \n\n-- Approximated value -- at price {p}: \n\nDemand = {self.apprx_qd(p)} \nSupply = {self.apprx_qs(p)}" @staticmethod def __name__(): """Returns the name of the object. """ return "Demand and Supply Interpolator" def plt_approx(self, fs=(14, 7), num1=16.1, num2=16.2, num3=16.3, num4=16.4): """Plots Approximation and true supply as well as demand. Args: fs (tuple, optional): Figuresize. Defaults to (14, 7). num1 (float, optional): Number first figure. Defaults to 16.1. num2 (float, optional): Number second figure. Defaults to 16.2. num3 (float, optional): Number third figure. Defaults to 16.3. num4 (float, optional): Number fourth figure. Defaults to 16.4. """ prices = np.linspace(self.a, self.b, self.nodes * 150) apprx_qd = self.apprx_qd(prices) apprx_qs = self.apprx_qs(prices) qd = self.demand(prices) qs = self.supply(prices) fig, (ax1, ax2) = plt.subplots(2, 2, figsize=fs) ax1[0].plot(self.qd, self.p, "o", label="Nodes Demand", color="#4B045D") ax1[0].plot( apprx_qd, prices, label="Interpolation Demand", ls="--", color="#8E0C08" ) ax1[0].plot(qd, prices, label="Real Demand", alpha=0.7, color="#D98D08") ax1[0].set_title(f"Figure {num1}: Approximation of Demand") ax1[0].legend(loc="center right") ax1[0].grid() ax1[1].plot(self.qs, self.p, "o", label="Nodes Supply", color="#4B045D") ax1[1].plot( apprx_qs, prices, label="Interpolation Supply", ls="--", color="#0C5BCD" ) ax1[1].plot(qs, prices, label="Real Supply", alpha=0.7, color="#67853E") ax1[1].set_title(f"Figure {num2}: Approximation of Supply") ax1[1].legend(loc="center right") ax1[1].grid() ax2[0].plot( apprx_qd, prices, label="Interpolation Demand", ls="--", color="#8E0C08" ) ax2[0].plot( apprx_qs, prices, label="Interpolation Supply", ls="--", color="#0C5BCD" ) ax2[0].set_title(f"Figure {num3}: Approximated Demand and Supply") ax2[0].legend(loc="center right") ax2[0].grid() ax2[1].plot(qd, prices, label="Real Demand", color="#D98D08") ax2[1].plot(qs, prices, label="Real Supply", color="#67853E") ax2[1].set_title(f"Figure {num4}: True Demand and Supply") ax2[1].legend(loc="center right") ax2[1].grid() plt.show() abs_error_qd = np.array(abs(qd - apprx_qd)) abs_error_qd = abs_error_qd[~np.isnan(abs_error_qd)] abs_error_qs = np.array(abs(qs - apprx_qs)) print( f"Mean Absolute Error: \n\nDemand = {abs_error_qd.mean():.4f} \nSupply = {abs_error_qs.mean():.4f}" ) def close_intersection(self, nodes=1000000): """Returns true and approximated market equilibrium. Args: nodes (int, optional): Number of interpolation nodes. Defaults to 1000000. """ prices = np.linspace(self.a, self.b, nodes) f = lambda p: self.demand(p) - self.supply(p) abs_sd = f(prices) abs_sd = abs_sd[~np.isnan(abs_sd)] argmin = abs(abs_sd).argmin() pe = prices[argmin] qe_demand = np.around(demand(np.array([pe])), decimals=3) qe_supply = np.around(supply(np.array([pe])), decimals=3) g = lambda p: self.apprx_qd(p) - self.apprx_qs(p) abs_asd = f(prices) abs_asd = abs_asd[~np.isnan(abs_asd)] argmin_a = abs(abs_asd).argmin() pea = prices[argmin_a] aqe_demand = np.around(self.apprx_qd(np.array([pea])), decimals=3) aqe_supply = np.around(self.apprx_qs(np.array([pea])), decimals=3) print( f"Equilibrium True (Quantity, Price) \n*** *** *** *** \nDemand: {(qe_demand[0], np.around(pe, decimals=3))} \nSupply: {(qe_supply[0], np.around(pe, decimals=3))}\n" ) print( f"Equilibrium Approximation (Quantity, Price) \n*** *** *** *** \nDemand: {(aqe_demand[0], np.around(pea, decimals=3))} \nSupply: {(aqe_supply[0], np.around(pea, decimals=3))}" ) # ---------- Approximation using ML ---------- class AISupplyDemandApprox: """Object that approximates supply and demand using various ML methods. Args: nodes (int): Number of known nodes. supply (function): Unknown supply function. demand (function): Unknown demand function. a (int, optional): Lower bound of prices. Defaults to 0. b (int, optional): Upper bound of prices. Defaults to 100. ts (float, optional): Size of testing data. Defaults to 0.4. rs (int, optional): Random state. Defaults to 42. Raises: AssertionError: Price must be non-negative. AssertionError: Training data includes nan values. AssertionError: Testing data includes nan values. """ def __init__(self, nodes, supply, demand, a=0, b=100, ts=0.4, rs=42): """Constructor method. """ assert a >= 0, "Price must be Non Negative!" p = np.linspace(a, b, nodes) q = supply(p) qd = demand(p) p_train, p_test, q_train, q_test = train_test_split( p, q, test_size=ts, random_state=rs ) pd_train, pd_test, qd_train, qd_test = train_test_split( p, qd, test_size=ts, random_state=rs ) self.p_train = p_train.reshape(-1, 1) # reshape data self.p_test = p_test.reshape(-1, 1) # reshape data self.q_train = q_train.reshape(-1, 1) # reshape data self.q_test = q_test.reshape(-1, 1) # reshape data nan_ind = np.argwhere(np.isnan(qd_train)) # select index of nan values qd_train_mod = np.delete(qd_train, nan_ind) # delete nan index value pd_train_mod = np.delete(pd_train, nan_ind) self.pd_train = pd_train_mod.reshape(-1, 1) self.pd_test = pd_test.reshape(-1, 1) self.qd_train = qd_train_mod.reshape(-1, 1) self.qd_test = qd_test.reshape(-1, 1) assert np.isnan(self.pd_train).all() == False, "There are nan Values!" assert np.isnan(self.pd_test).all() == False, "There are nan Values!" @staticmethod def __name__(): """Returns name of AISupplyDemandApprox object. """ return "Modern-ML Demand and Supply Interpolator" def plots( self, colors=["teal", "yellowgreen", "gold"], label=["Training Values", "Testing Values"] * 2, markers=["x", "*", "v"], n_neighbors=4, degrees=[3, 6], weight="distance", fs=(15, 10), num1=17.1, num2=17.2, num3=17.3, num4=17.4, ): """Plots approximation results as well as training and testing data. Args: colors (list, optional): Colors of approximation results. Defaults to ["teal", "yellowgreen", "gold"]. label (list, optional): Labels of training and testing data. Defaults to ["Training Values", "Testing Values"]*2. markers (list, optional): Markers of approximation. Defaults to ["x", "*", "v"]. n_neighbors (int, optional): Number of k-nearest neighbors. Defaults to 4. degrees (list, optional): Number of degrees for Linear Regression. Defaults to [3, 6]. weight (str, optional): Weight of KNN Regression. Defaults to "distance". fs (tuple, optional): Figuresize. Defaults to (15, 10) num1 (float, optional): Number of first Figure. Defaults to 17.1. num2 (float, optional): Number of second Figure. Defaults to 17.2. num3 (float, optional): Number of third Figure. Defaults to 17.3. num4 (float, optional): Number of fourth Figure. Defaults to 17.4. Raises: AssertionError: Length of degrees is out of range. """ self.degrees = degrees assert len(degrees) == 2, "List out of range!" qsup, psup = [self.q_train, self.q_test], [self.p_train, self.p_test] qdem, pdem = [self.qd_train, self.qd_test], [self.pd_train, self.pd_test] fig, (ax1, ax2) = plt.subplots(2, 2, figsize=fs) for i, (qs, ps, qd, pd) in enumerate(zip(qsup, psup, qdem, pdem)): for ax in [ax1[0], ax1[1]]: ax.plot(qs, ps, "o", ms=4, label=label[i]) for ax in [ax2[0], ax2[1]]: ax.plot(qd, pd, "o", ms=4, label=label[i]) self.maes, self.maed = [], [] self.mses, self.msed = [], [] self.evss, self.evsd = [], [] self.r2s, self.r2d = [], [] for i, ax in enumerate([ax1, ax2]): for j, d in enumerate(degrees): model = make_pipeline(PolynomialFeatures(d), LinearRegression()) if i == 0: model.fit(self.p_train, self.q_train) pred = model.predict(self.p_test) ax[i].plot( pred, self.p_test, markers[j], color=colors[j], ms=5, label=f"Approximation Degree {d}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.p_test.ravel()[indexs_to_order_by] ax[i].plot(pred_ordered, ptest_ordered, color=colors[j], alpha=0.5) ax[i].set_title( f"Figure {num1}: Linear Regression Approximation Supply" ) ax[i].grid(True) ax[i].legend(loc="center right") self.maes.append(mean_absolute_error(pred, self.q_test)) self.mses.append(mean_squared_error(pred, self.q_test)) self.evss.append(explained_variance_score(pred, self.q_test)) self.r2s.append(r2_score(pred, self.q_test)) elif i == 1: model.fit(self.pd_train, self.qd_train) pred = model.predict(self.pd_test) ax[i - 1].plot( pred, self.pd_test, markers[j], color=colors[j], ms=5, label=f"Approximation Degree {d}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.pd_test.ravel()[indexs_to_order_by] ax[i - 1].plot( pred_ordered, ptest_ordered, color=colors[j], alpha=0.5 ) ax[i - 1].set_title( f"Figure {num3}: Linear Regression Approximation Demand" ) ax[i - 1].grid(True) ax[i - 1].legend(loc="center right") self.maed.append(mean_absolute_error(pred, self.qd_test)) self.msed.append(mean_squared_error(pred, self.qd_test)) self.evsd.append(explained_variance_score(pred, self.qd_test)) self.r2d.append(r2_score(pred, self.qd_test)) methods = ["KNN", "DecisionTree"] knn = KNeighborsRegressor(n_neighbors, weights=weight) tree = DecisionTreeRegressor() for i, ax in enumerate([ax1, ax2]): for j, m in enumerate([knn, tree]): if i == 0: m.fit(self.p_train, self.q_train) pred = m.predict(self.p_test) ax[i + 1].plot( pred, self.p_test, markers[j], color=colors[j], ms=4, label=f"Approximation using {methods[j]}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.pd_test.ravel()[indexs_to_order_by] ax[i + 1].plot( pred_ordered, ptest_ordered, color=colors[j], alpha=0.5 ) ax[i + 1].set_title( f"Figure {num2}: KNN and DT Approximation Supply" ) ax[i + 1].grid(True) ax[i + 1].legend(loc="center right") self.maes.append(mean_absolute_error(pred, self.q_test)) self.mses.append(mean_squared_error(pred, self.q_test)) self.evss.append(explained_variance_score(pred, self.q_test)) self.r2s.append(r2_score(pred, self.q_test)) elif i == 1: m.fit(self.pd_train, self.qd_train) pred = m.predict(self.pd_test) ax[i].plot( pred, self.pd_test, markers[j], color=colors[j], ms=4, label=f"Approximation using {methods[j]}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.pd_test.ravel()[indexs_to_order_by] ax[i].plot(pred_ordered, ptest_ordered, color=colors[j], alpha=0.5) ax[i].set_title(f"Figure {num4}: KNN and DT Approximation Demand") ax[i].grid(True) ax[i].legend(loc="center right") self.maed.append(mean_absolute_error(pred, self.qd_test)) self.msed.append(mean_squared_error(pred, self.qd_test)) self.evsd.append(explained_variance_score(pred, self.qd_test)) self.r2d.append(r2_score(pred, self.qd_test)) plt.show() def reslts_as_frame(self, num=14): """Returns accuracy of approximation using ML. Args: num (int, float, optional): Number of dataframe. Defaults to 14. Returns: pd.DataFrame: Accuracy of approximation. """ d1, d2 = self.degrees[0], self.degrees[1] index_as_array_sup = [ np.array(["Supply"] * 4), np.array(["Linear Regression"] * 2 + ["KNN Regression", "DTR"]), np.array([f"{d1} Degrees", f"{d2} Degrees", "", ""]), ] index_as_array_dem = [ np.array(["Demand"] * 4), np.array(["Linear Regression"] * 2 + ["KNN Regression", "DTR"]), np.array([f"{d1} Degrees", f"{d2} Degrees", "", ""]), ] col = [ "Mean Absolute Error", "Mean Squared Error", "Explained Variance Score", "$R^2$-Score", ] data_supply = pd.concat( [
pd.DataFrame(self.maes, index=index_as_array_sup)
pandas.DataFrame
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, _NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = pd.DataFrame({"A": ii, "B": ii}) ser = pd.Series([0, 0]) res = df.eq(ser, axis=0) expected = pd.DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = pd.Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not _NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) def test_flex_add_scalar_fill_value(self): # GH#12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") df = pd.DataFrame({"foo": dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_frame_equal(res, exp) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = pd.DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = pd.DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({"A": [1, 1], "B": [1, 1]}) expected = pd.DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df["two"]) added = pd.DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = pd.DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis="index"), added) val3 = np.random.rand(*df.shape) added = pd.DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added) def test_operations_with_interval_categories_index(self, all_arithmetic_operators): # GH#27415 op = all_arithmetic_operators ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) data = [1, 2] df = pd.DataFrame([data], columns=ind) num = 10 result = getattr(df, op)(num) expected = pd.DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) tm.assert_frame_equal(result, expected) def test_frame_with_frame_reindex(self): # GH#31623 df = pd.DataFrame( { "foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], "bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], }, columns=["foo", "bar"], ) df2 = df[["foo"]] result = df - df2 expected = pd.DataFrame( {"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, columns=["bar", "foo"], ) tm.assert_frame_equal(result, expected) def test_frame_with_zero_len_series_corner_cases(): # GH#28600 # easy all-float case df = pd.DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "B"]) ser = pd.Series(dtype=np.float64) result = df + ser expected = pd.DataFrame(df.values * np.nan, columns=df.columns) tm.assert_frame_equal(result, expected) result = df == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # non-float case should not raise on comparison df2 = pd.DataFrame(df.values.view("M8[ns]"), columns=df.columns) result = df2 == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_zero_len_frame_with_series_corner_cases(): # GH#28600 df = pd.DataFrame(columns=["A", "B"], dtype=np.float64) ser = pd.Series([1, 2], index=["A", "B"]) result = df + ser expected = df tm.assert_frame_equal(result, expected) def test_frame_single_columns_object_sum_axis_1(): # GH 13758 data = { "One": pd.Series(["A", 1.2, np.nan]), } df = pd.DataFrame(data) result = df.sum(axis=1) expected = pd.Series(["A", 1.2, 0]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------- # Unsorted # These arithmetic tests were previously in other files, eventually # should be parametrized and put into tests.arithmetic class TestFrameArithmeticUnsorted: def test_frame_add_tz_mismatch_converts_to_utc(self): rng = pd.date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern") df = pd.DataFrame(np.random.randn(len(rng)), index=rng, columns=["a"]) df_moscow = df.tz_convert("Europe/Moscow") result = df + df_moscow assert result.index.tz is pytz.utc result = df_moscow + df assert result.index.tz is pytz.utc def test_align_frame(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = pd.DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts + ts[::2] expected = ts + ts expected.values[1::2] = np.nan tm.assert_frame_equal(result, expected) half = ts[::2] result = ts + half.take(np.random.permutation(len(half))) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "op", [operator.add, operator.sub, operator.mul, operator.truediv] ) def test_operators_none_as_na(self, op): df = DataFrame( {"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object ) # since filling converts dtypes from object, changed expected to be # object filled = df.fillna(np.nan) result = op(df, 3) expected = op(filled, 3).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df) expected = op(filled, filled).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df.fillna(7)) tm.assert_frame_equal(result, expected) result = op(df.fillna(7), df) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("op,res", [("__eq__", False), ("__ne__", True)]) # TODO: not sure what's correct here. @pytest.mark.filterwarnings("ignore:elementwise:FutureWarning") def test_logical_typeerror_with_non_valid(self, op, res, float_frame): # we are comparing floats vs a string result = getattr(float_frame, op)("foo") assert bool(result.all().all()) is res def test_binary_ops_align(self): # test aligning binary ops # GH 6681 index = MultiIndex.from_product( [list("abc"), ["one", "two", "three"], [1, 2, 3]], names=["first", "second", "third"], ) df = DataFrame( np.arange(27 * 3).reshape(27, 3), index=index, columns=["value1", "value2", "value3"], ).sort_index() idx = pd.IndexSlice for op in ["add", "sub", "mul", "div", "truediv"]: opa = getattr(operator, op, None) if opa is None: continue x = Series([1.0, 10.0, 100.0], [1, 2, 3]) result = getattr(df, op)(x, level="third", axis=0) expected = pd.concat( [opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()] ).sort_index() tm.assert_frame_equal(result, expected) x = Series([1.0, 10.0], ["two", "three"]) result = getattr(df, op)(x, level="second", axis=0) expected = ( pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()]) .reindex_like(df) .sort_index() ) tm.assert_frame_equal(result, expected) # GH9463 (alignment level of dataframe with series) midx = MultiIndex.from_product([["A", "B"], ["a", "b"]]) df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx) s = pd.Series({"a": 1, "b": 2}) df2 = df.copy() df2.columns.names = ["lvl0", "lvl1"] s2 = s.copy() s2.index.name = "lvl1" # different cases of integer/string level names: res1 = df.mul(s, axis=1, level=1) res2 = df.mul(s2, axis=1, level=1) res3 = df2.mul(s, axis=1, level=1) res4 = df2.mul(s2, axis=1, level=1) res5 = df2.mul(s, axis=1, level="lvl1") res6 = df2.mul(s2, axis=1, level="lvl1") exp = DataFrame( np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx ) for res in [res1, res2]: tm.assert_frame_equal(res, exp) exp.columns.names = ["lvl0", "lvl1"] for res in [res3, res4, res5, res6]: tm.assert_frame_equal(res, exp) def test_add_with_dti_mismatched_tzs(self): base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC") idx1 = base.tz_convert("Asia/Tokyo")[:2] idx2 = base.tz_convert("US/Eastern")[1:] df1 = DataFrame({"A": [1, 2]}, index=idx1) df2 = DataFrame({"A": [1, 1]}, index=idx2) exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base) tm.assert_frame_equal(df1 + df2, exp) def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame): frame_copy = float_frame.reindex(float_frame.index[::2]) del frame_copy["D"] frame_copy["C"][:5] = np.nan added = float_frame + frame_copy indexer = added["A"].dropna().index exp = (float_frame["A"] * 2).copy() tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer]) exp.loc[~exp.index.isin(indexer)] = np.nan tm.assert_series_equal(added["A"], exp.loc[added["A"].index]) assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all() # assert(False) assert np.isnan(added["D"]).all() self_added = float_frame + float_frame tm.assert_index_equal(self_added.index, float_frame.index) added_rev = frame_copy + float_frame assert np.isnan(added["D"]).all() assert np.isnan(added_rev["D"]).all() # corner cases # empty plus_empty = float_frame + DataFrame() assert np.isnan(plus_empty.values).all() empty_plus = DataFrame() + float_frame assert np.isnan(empty_plus.values).all() empty_empty = DataFrame() + DataFrame() assert empty_empty.empty # out of order reverse = float_frame.reindex(columns=float_frame.columns[::-1]) tm.assert_frame_equal(reverse + float_frame, float_frame * 2) # mix vs float64, upcast added = float_frame + mixed_float_frame _check_mixed_float(added, dtype="float64") added = mixed_float_frame + float_frame _check_mixed_float(added, dtype="float64") # mix vs mix added = mixed_float_frame + mixed_float_frame _check_mixed_float(added, dtype=dict(C=None)) # with int added = float_frame + mixed_int_frame _check_mixed_float(added, dtype="float64") def test_combine_series( self, float_frame, mixed_float_frame, mixed_int_frame, datetime_frame ): # Series series = float_frame.xs(float_frame.index[0]) added = float_frame + series for key, s in added.items(): tm.assert_series_equal(s, float_frame[key] + series[key]) larger_series = series.to_dict() larger_series["E"] = 1 larger_series = Series(larger_series) larger_added = float_frame + larger_series for key, s in float_frame.items(): tm.assert_series_equal(larger_added[key], s + series[key]) assert "E" in larger_added assert np.isnan(larger_added["E"]).all() # no upcast needed added = mixed_float_frame + series assert np.all(added.dtypes == series.dtype) # vs mix (upcast) as needed added = mixed_float_frame + series.astype("float32") _check_mixed_float(added, dtype=dict(C=None)) added = mixed_float_frame + series.astype("float16") _check_mixed_float(added, dtype=dict(C=None)) # FIXME: don't leave commented-out # these raise with numexpr.....as we are adding an int64 to an # uint64....weird vs int # added = mixed_int_frame + (100*series).astype('int64') # _check_mixed_int(added, dtype = dict(A = 'int64', B = 'float64', C = # 'int64', D = 'int64')) # added = mixed_int_frame + (100*series).astype('int32') # _check_mixed_int(added, dtype = dict(A = 'int32', B = 'float64', C = # 'int32', D = 'int64')) # TimeSeries ts = datetime_frame["A"] # 10890 # we no longer allow auto timeseries broadcasting # and require explicit broadcasting added = datetime_frame.add(ts, axis="index") for key, col in datetime_frame.items(): result = col + ts tm.assert_series_equal(added[key], result, check_names=False) assert added[key].name == key if col.name == ts.name: assert result.name == "A" else: assert result.name is None smaller_frame = datetime_frame[:-5] smaller_added = smaller_frame.add(ts, axis="index") tm.assert_index_equal(smaller_added.index, datetime_frame.index) smaller_ts = ts[:-5] smaller_added2 = datetime_frame.add(smaller_ts, axis="index") tm.assert_frame_equal(smaller_added, smaller_added2) # length 0, result is all-nan result = datetime_frame.add(ts[:0], axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # Frame is all-nan result = datetime_frame[:0].add(ts, axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # empty but with non-empty index frame = datetime_frame[:1].reindex(columns=[]) result = frame.mul(ts, axis="index") assert len(result) == len(ts) def test_combineFunc(self, float_frame, mixed_float_frame): result = float_frame * 2 tm.assert_numpy_array_equal(result.values, float_frame.values * 2) # vs mix result = mixed_float_frame * 2 for c, s in result.items(): tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2) _check_mixed_float(result, dtype=dict(C=None)) result = DataFrame() * 2 assert result.index.equals(DataFrame().index) assert len(result.columns) == 0 def test_comparisons(self, simple_frame, float_frame): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() row = simple_frame.xs("a") ndim_5 = np.ones(df1.shape + (1, 1, 1)) def test_comp(func): result = func(df1, df2) tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) msg = ( "Unable to coerce to Series/DataFrame, " "dimension must be <= 2: (30, 4, 1, 1, 1)" ) with pytest.raises(ValueError, match=re.escape(msg)): func(df1, ndim_5) result2 = func(simple_frame, row) tm.assert_numpy_array_equal( result2.values, func(simple_frame.values, row.values) ) result3 = func(float_frame, 0) tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0)) msg = "Can only compare identically-labeled DataFrame" with pytest.raises(ValueError, match=msg): func(simple_frame, simple_frame[:2]) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne): # GH 11565 df = DataFrame( {x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]} ) f = getattr(operator, compare_operators_no_eq_ne) msg = "'[<>]=?' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): f(df, 0) def test_comparison_protected_from_errstate(self): missing_df = tm.makeDataFrame() missing_df.iloc[0]["A"] = np.nan with np.errstate(invalid="ignore"): expected = missing_df.values < 0 with np.errstate(invalid="raise"): result = (missing_df < 0).values tm.assert_numpy_array_equal(result, expected) def test_boolean_comparison(self): # GH 4576 # boolean comparisons with a tuple/list give unexpected results df = DataFrame(np.arange(6).reshape((3, 2))) b = np.array([2, 2]) b_r = np.atleast_2d([2, 2]) b_c = b_r.T lst = [2, 2, 2] tup = tuple(lst) # gt expected = DataFrame([[False, False], [False, True], [True, True]]) result = df > b tm.assert_frame_equal(result, expected) result = df.values > b tm.assert_numpy_array_equal(result, expected.values) msg1d = "Unable to coerce to Series, length must be 2: given 3" msg2d = "Unable to coerce to DataFrame, shape must be" msg2db = "operands could not be broadcast together with shapes" with pytest.raises(ValueError, match=msg1d): # wrong shape df > lst with pytest.raises(ValueError, match=msg1d): # wrong shape result = df > tup # broadcasts like ndarray (GH#23000) result = df > b_r tm.assert_frame_equal(result, expected) result = df.values > b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df > b_c with pytest.raises(ValueError, match=msg2db): df.values > b_c # == expected = DataFrame([[False, False], [True, False], [False, False]]) result = df == b tm.assert_frame_equal(result, expected) with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup # broadcasts like ndarray (GH#23000) result = df == b_r tm.assert_frame_equal(result, expected) result = df.values == b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df == b_c assert df.values.shape != b_c.shape # with alignment df = DataFrame( np.arange(6).reshape((3, 2)), columns=list("AB"), index=list("abc") ) expected.index = df.index expected.columns = df.columns with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup def test_inplace_ops_alignment(self): # inplace ops / ops alignment # GH 8511 columns = list("abcdefg") X_orig = DataFrame( np.arange(10 * len(columns)).reshape(-1, len(columns)), columns=columns, index=range(10), ) Z = 100 * X_orig.iloc[:, 1:-1].copy() block1 = list("bedcf") subs = list("bcdef") # add X = X_orig.copy() result1 = (X[block1] + Z).reindex(columns=subs) X[block1] += Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] + Z[block1]).reindex(columns=subs) X[block1] += Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) # sub X = X_orig.copy() result1 = (X[block1] - Z).reindex(columns=subs) X[block1] -= Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] - Z[block1]).reindex(columns=subs) X[block1] -= Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) def test_inplace_ops_identity(self): # GH 5104 # make sure that we are actually changing the object s_orig = Series([1, 2, 3]) df_orig = DataFrame(np.random.randint(0, 5, size=10).reshape(-1, 5)) # no dtype change s = s_orig.copy() s2 = s s += 1 tm.assert_series_equal(s, s2) tm.assert_series_equal(s_orig + 1, s) assert s is s2 assert s._mgr is s2._mgr df = df_orig.copy() df2 = df df += 1 tm.assert_frame_equal(df, df2) tm.assert_frame_equal(df_orig + 1, df) assert df is df2 assert df._mgr is df2._mgr # dtype change s = s_orig.copy() s2 = s s += 1.5
tm.assert_series_equal(s, s2)
pandas._testing.assert_series_equal
import pandas as pd import numpy as np import unittest import decipy.executors as exe import decipy.normalizers as norm import decipy.weigtings as wgt matrix = np.array([ [4, 3, 2, 4], [5, 4, 3, 7], [6, 5, 5, 3], ]) alts = ['A1', 'A2', 'A3'] crits = ['C1', 'C2', 'C3', 'C4'] beneficial = [True, True, True, True] weights = [0.10, 0.20, 0.30, 0.40] xij =
pd.DataFrame(matrix, index=alts, columns=crits)
pandas.DataFrame
import librosa import numpy as np import pandas as pd from os import listdir from os.path import isfile, join from audioread import NoBackendError def extract_features(path, label, emotionId, startid): """ 提取path目录下的音频文件的特征,使用librosa库 :param path: 文件路径 :param label: 情绪类型 :param startid: 开始的序列号 :return: 特征矩阵 pandas.DataFrame """ id = startid # 序列号 feature_set = pd.DataFrame() # 特征矩阵 # 单独的特征向量 labels = pd.Series() emotion_vector = pd.Series() songname_vector = pd.Series() tempo_vector = pd.Series() total_beats = pd.Series() average_beats = pd.Series() chroma_stft_mean = pd.Series() # chroma_stft_std = pd.Series() chroma_stft_var = pd.Series() # chroma_cq_mean = pd.Series() # chroma_cq_std = pd.Series() # chroma_cq_var = pd.Series() # chroma_cens_mean = pd.Series() # chroma_cens_std = pd.Series() # chroma_cens_var = pd.Series() mel_mean = pd.Series() # mel_std = pd.Series() mel_var = pd.Series() mfcc_mean = pd.Series() # mfcc_std = pd.Series() mfcc_var = pd.Series() mfcc_delta_mean = pd.Series() # mfcc_delta_std = pd.Series() mfcc_delta_var = pd.Series() rmse_mean = pd.Series() # rmse_std = pd.Series() rmse_var = pd.Series() cent_mean =
pd.Series()
pandas.Series
import os import pprint as pp from collections import OrderedDict, defaultdict import diff_viewer import pandas as pd import streamlit as st from datasets import load_from_disk DATASET_DIR_PATH_BEFORE_CLEAN_SELECT = os.getenv("DATASET_DIR_PATH_BEFORE_CLEAN_SELECT") OPERATION_TYPES = [ "Applied filter", "Applied deduplication function", "Applied map function", ] MAX_LEN_DS_CHECKS = os.getenv("MAX_LEN_DS_CHECKS") def get_ds(ds_path): ds = load_from_disk(ds_path) return ds def next_idx(idx: int): idx += 1 return idx % len(st.session_state["ds"]) def previous_idx(idx: int): idx -= 1 return idx % len(st.session_state["ds"]) def on_click_next(): st.session_state["idx_1"] = next_idx(st.session_state["idx_1"]) st.session_state["idx_2"] = next_idx(st.session_state["idx_2"]) def on_click_previous(): st.session_state["idx_1"] = previous_idx(st.session_state["idx_1"]) st.session_state["idx_2"] = previous_idx(st.session_state["idx_2"]) def on_ds_change(ds_path): st.session_state["ds"] = get_ds(ds_path) st.session_state["idx_1"] = 0 st.session_state["idx_2"] = 1 if len(st.session_state["ds"]) > 1 else 0 st.session_state["ds_name"] = ds_path def get_log_stats_df(raw_log): data = OrderedDict( { "Order": [], "Name": [], "Initial number of samples": [], "Final number of samples": [], "Initial size in bytes": [], "Final size in bytes": [], } ) metric_dict = defaultdict(lambda: {}) order = 0 for line in raw_log.split("\n"): for metric_name in list(data.keys()) + OPERATION_TYPES: if metric_name == "Name" or metric_name == "Order": continue if metric_name not in line: continue if ( metric_name == "Removed percentage" and "Removed percentage in bytes" in line ): continue if ( metric_name == "Deduplicated percentage" and "Deduplicated percentage in bytes" in line ): continue value = line.split(metric_name)[1].split(" ")[1] if metric_name in OPERATION_TYPES: operation_name = value metric_dict[operation_name]["Order"] = order order += 1 continue assert ( metric_name not in metric_dict[operation_name] ), f"operation_name: {operation_name}\n\nvalue: {value}\n\nmetric_dict: {pp.pformat(metric_dict)} \n\nmetric_name: {metric_name} \n\nline: {line}" metric_dict[operation_name][metric_name] = value for name, data_dict in metric_dict.items(): for metric_name in data.keys(): if metric_name == "Name": data[metric_name].append(name) continue data[metric_name].append(data_dict[metric_name]) df =
pd.DataFrame(data)
pandas.DataFrame
# Procurement Charts - chart data # -*- coding: latin-1 -*- # A set of functions to calculate the chart data for procurement # dashboards import pandas as pd import numpy as np import sys import settings def generate_overview(df): """ Generate an overview of the whole dataset. :param df: Pandas dataframe :type df: Dataframe :returns: List labels and values :example: [ { 'label': 'Total procurement procedures', 'value': 2105446 }, { 'label': 'Total amount spent', 'value': 210544616548924 }, ... ] """ total_contracts = df['contract_id'].nunique() total_spent = (int(df['contract_value_amount'].sum()) / 1000000) overview = [ { 'label': 'Total contracts', 'value': '{:,}'.format(total_contracts) }, { 'label': 'Total amount contracted', 'value': '$ ' + '{:,}'.format(total_spent) + ' mm (' + settings.desired_currency + ')' }, { 'label': 'Contract start dates between', 'value': df[settings.main_date_contract].min().strftime("%d-%m-%Y") + ' and ' + df[settings.main_date_contract].max().strftime("%d-%m-%Y") }, { 'label': 'Most active supplier', 'value': df['award_suppliers_0_name'].value_counts().index[0] }, { 'label': 'Most active buyer', 'value': df['buyer_name'].value_counts().index[0] } ] return overview def contracts_time(df): """ Generate chart data for total amount of contracts per month Receives sliced data :param df: Pandas dataframe :type df: Dataframe :returns: Object with the domains and data :example: { 'xdomain': ['2015-02-01', '2105-03-01', '2015-04-01'], 'xdomain': [0, 100], 'data': [ { 'date': '2015-02-01', 'value': 100 }, { 'date': '2015-03-01', 'value': 200 } ] } """ chart_data = { 'domain': { 'x': [], 'y': [] }, 'data': [] } # Prep the dataframe chart_df = df.loc[:,['contract_period_startDate','contract_id']].set_index('contract_period_startDate') chart_df = chart_df.groupby(pd.Grouper(level='contract_period_startDate',freq='1M')).contract_id.nunique() # Calculate the data # Improve this. Shouldn't have to use iterrows for ind, val in chart_df.iteritems(): formatted_date = ind.strftime('%Y-%m-%d') if np.isnan(val): val = None else: val = int(val) chart_data['data'].append({'date': formatted_date, 'value': val}) # Calculate the domains of this slice chart_data['domain']['x'] = [dt.strftime("%Y-%m-%d") for dt in chart_df.index.tolist()] chart_data['domain']['y'] = [0, int(chart_df.max())] return chart_data def amount_time(df): """ Generate chart data for total amount of money spent per month Receives sliced data :param df: Pandas dataframe :type df: Dataframe :returns: Object with the domains and data :example: { 'xdomain': ['2015-02-01', '2105-03-01', '2015-04-01'], 'xdomain': [0, 100], 'data': [ { 'date': '2015-02-01', 'value': 100 }, { 'date': '2015-03-01', 'value': 200 } ] } """ chart_data = { 'domain': { 'x': [], 'y': [] }, 'data': [] } # Prep the dataframe chart_df = df.loc[:,['contract_period_startDate','contract_value_amount']].set_index('contract_period_startDate') xdf = chart_df.groupby(pd.Grouper(level='contract_period_startDate',freq='1M')).sum() # Calculate the data # Improve this. Shouldn't have to use iterrows for ind, row in xdf.iterrows(): formatted_date = ind.strftime('%Y-%m-%d') if np.isnan(row[0]): val = None else: val = int(row[0]) chart_data['data'].append({'date': formatted_date, 'value': val}) # Calculate the domains of this slice chart_data['domain']['x'] = [dt.strftime("%Y-%m-%d") for dt in xdf.index.tolist()] chart_data['domain']['y'] = [0, int(xdf.max())] return chart_data def average_timeline(df): """ Generate chart data for the average timeline Receives sliced data :param df: Pandas dataframe :type df: Dataframe :returns: Object with the domains and data :example: { 'data': [ 100, 200, 300 ] } """ chart_data = { 'data': [] } # Prep the dataframe # To calculate a correct mean, we convert the timedelta to hours p1 = (df['tender_tenderPeriod_startDate'] - df['tender_publicationDate']).astype('timedelta64[h]') p2 = (df['award_date'] - df['tender_tenderPeriod_startDate']).astype('timedelta64[h]') p3 = (df['contract_period_startDate'] - df['award_date']).astype('timedelta64[h]') # Calculate the data chart_data['data'].append(int(p1.mean() / 24)) chart_data['data'].append(int(p2.mean() / 24)) chart_data['data'].append(int(p3.mean() / 24)) return chart_data def price_variation(df): """ Generate chart data for a box and whisker plot about price variation Receives sliced data :param df: Pandas dataframe :type df: Dataframe :returns: (Dict) with the chart data :example: [ { 'min': '590', 'max': 8090, 'whisker1': 590, 'q1': 1090 } ] """ chart_data = { 'domain': { 'x': [], 'y': [] }, 'data': [] } # Prep the dataframe s = df.loc[:,['contract_value_amount']] # Calculate the data qr1 = int(s.quantile(0.25)) median = int(s.median(numeric_only=True)) qr3 = int(s.quantile(0.75)) iqr = qr3 - qr1 # Outlier = less than Q1 or greater than Q3 by more than 1.5 the IQR outlier_min = qr1 - (iqr * 1.5) outlier_max = qr3 + (iqr * 1.5) ol_series = s[(s > outlier_min) & (s < outlier_max)] boxplot = {} boxplot['min'] = int(s.min(numeric_only=True)) boxplot['max'] = int(s.max(numeric_only=True)) boxplot['whisker1'] = int(ol_series.min()) boxplot['q1'] = qr1 boxplot['median'] = median boxplot['q3'] = qr3 boxplot['whisker2'] = int(ol_series.max()) # Calculate the domains of this slice chart_data['data'] = boxplot chart_data['domain']['x'] = [int(ol_series.min()), int(ol_series.max())] chart_data['domain']['y'] = None return chart_data def price_distribution(df): """ :param df: Pandas dataframe, the full dataset or a slice of it :type df: Dataframe :returns: :example: """ chart_data = { 'domain': { 'x': [], 'y': [] }, 'data': [] } # Prep the dataframe # Cut off data above 95 percentile df_perc = df[(df['contract_value_amount'] <= df['contract_value_amount'].quantile(.95))] maxcontr = df_perc['contract_value_amount'].max() # Determine bins # Equally spaced bins bin_limits = np.arange(0, int(maxcontr) +1, int(maxcontr / 10)) # Generate the chart data binned = pd.cut(df_perc['contract_value_amount'], bin_limits, labels=False) dist =
pd.value_counts(binned)
pandas.value_counts
import pandas as pd import numpy as np #主要针对时间序列动量和hp6-8 这几个没法分组 adjust_price=pd.read_csv("../adjust_price/adjust_price.csv") adjust_price=adjust_price.set_index('date') cat_list=pd.read_csv("../data_extraction/cat_list.csv",header=None) cat_list=pd.Series(cat_list[0]) #新建一个数据框记录持仓信息 port=pd.DataFrame(index=adjust_price.index,columns=adjust_price.columns) #读入筛选条件 check_vol=pd.read_csv("../check_vol/check_vol.csv") check_vol=check_vol.set_index('date') check_vol=check_vol[check_vol==1] def set_port(df): df_return=
pd.DataFrame(index=check_vol.index,columns=check_vol.columns)
pandas.DataFrame
from unittest import TestCase from unittest.mock import ANY, Mock, call, patch import pandas as pd from mlblocks import MLPipeline from orion import benchmark from orion.evaluation import CONTEXTUAL_METRICS as METRICS from orion.evaluation import contextual_confusion_matrix def test__sort_leaderboard_rank(): rank = 'f1' metrics = METRICS score = pd.DataFrame({ 'pipeline': range(5), 'f1': range(5), }) expected_return = pd.DataFrame({ 'pipeline': range(5)[::-1], 'rank': range(1, 6), 'f1': range(5)[::-1], }) returned = benchmark._sort_leaderboard(score, rank, metrics)
pd.testing.assert_frame_equal(returned, expected_return)
pandas.testing.assert_frame_equal
from collections import OrderedDict import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike import pandas as pd from pandas import Index, MultiIndex, date_range import pandas.util.testing as tm def test_constructor_single_level(): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], codes=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(): msg = "non-zero number of levels/codes" with pytest.raises(ValueError, match=msg): MultiIndex(levels=[], codes=[]) msg = "Must pass both levels and codes" with pytest.raises(TypeError, match=msg): MultiIndex(levels=[]) with pytest.raises(TypeError, match=msg): MultiIndex(codes=[]) def test_constructor_nonhashable_names(): # GH 20527 levels = [[1, 2], ['one', 'two']] codes = [[0, 0, 1, 1], [0, 1, 0, 1]] names = (['foo'], ['bar']) msg = r"MultiIndex\.name must be a hashable type" with pytest.raises(TypeError, match=msg): MultiIndex(levels=levels, codes=codes, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] with pytest.raises(TypeError, match=msg): mi.rename(names=renamed) # With .set_names() with pytest.raises(TypeError, match=msg): mi.set_names(names=renamed) def test_constructor_mismatched_codes_levels(idx): codes = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] msg = "Length of levels and codes must be the same" with pytest.raises(ValueError, match=msg): MultiIndex(levels=levels, codes=codes) length_error = (r"On level 0, code max \(3\) >= length of level \(1\)\." " NOTE: this index is in an inconsistent state") label_error = r"Unequal code lengths: \[4, 2\]" code_value_error = r"On level 0, code value \(-2\) < -1" # important to check that it's looking at the right thing. with pytest.raises(ValueError, match=length_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, 1, 2, 3], [0, 3, 4, 1]]) with pytest.raises(ValueError, match=label_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, 0, 0, 0], [0, 0]]) # external API with pytest.raises(ValueError, match=length_error): idx.copy().set_levels([['a'], ['b']]) with pytest.raises(ValueError, match=label_error): idx.copy().set_codes([[0, 0, 0, 0], [0, 0]]) # test set_codes with verify_integrity=False # the setting should not raise any value error idx.copy().set_codes(codes=[[0, 0, 0, 0], [0, 0]], verify_integrity=False) # code value smaller than -1 with pytest.raises(ValueError, match=code_value_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, -2], [0, 0]]) def test_na_levels(): # GH26408 # test if codes are re-assigned value -1 for levels # with mising values (NaN, NaT, None) result = MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[0, -1, 1, 2, 3, 4]]) expected = MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[-1, -1, -1, -1, 3, 4]]) tm.assert_index_equal(result, expected) result = MultiIndex(levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[0, -1, 1, 2, 3, 4]]) expected = MultiIndex(levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[-1, -1, 1, -1, 3, -1]]) tm.assert_index_equal(result, expected) # verify set_levels and set_codes result = MultiIndex( levels=[[1, 2, 3, 4, 5]], codes=[[0, -1, 1, 2, 3, 4]]).set_levels( [[np.nan, 's', pd.NaT, 128, None]]) tm.assert_index_equal(result, expected) result = MultiIndex( levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[1, 2, 2, 2, 2, 2]]).set_codes( [[0, -1, 1, 2, 3, 4]]) tm.assert_index_equal(result, expected) def test_labels_deprecated(idx): # GH23752 with tm.assert_produces_warning(FutureWarning): MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) with tm.assert_produces_warning(FutureWarning): idx.labels def test_copy_in_constructor(): levels = np.array(["a", "b", "c"]) codes = np.array([1, 1, 2, 0, 0, 1, 1]) val = codes[0] mi = MultiIndex(levels=[levels, levels], codes=[codes, codes], copy=True) assert mi.codes[0][0] == val codes[0] = 15 assert mi.codes[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val # ---------------------------------------------------------------------------- # from_arrays # ---------------------------------------------------------------------------- def test_from_arrays(idx): arrays = [np.asarray(lev).take(level_codes) for lev, level_codes in zip(idx.levels, idx.codes)] # list of arrays as input result = MultiIndex.from_arrays(arrays, names=idx.names) tm.assert_index_equal(result, idx) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(idx): # GH 18434 arrays = [np.asarray(lev).take(level_codes) for lev, level_codes in zip(idx.levels, idx.codes)] # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=idx.names) tm.assert_index_equal(result, idx) # invalid iterator input msg = "Input must be a list / sequence of array-likes." with pytest.raises(TypeError, match=msg): MultiIndex.from_arrays(0) def test_from_arrays_tuples(idx): arrays = tuple(tuple(np.asarray(lev).take(level_codes)) for lev, level_codes in zip(idx.levels, idx.codes)) # tuple of tuples as input result = MultiIndex.from_arrays(arrays, names=idx.names) tm.assert_index_equal(result, idx) def test_from_arrays_index_series_datetimetz(): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(): # 0 levels msg = "Must pass non-zero number of levels/codes" with pytest.raises(ValueError, match=msg): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, codes=[[]] * N, names=names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('invalid_sequence_of_arrays', [ 1, [1], [1, 2], [[1], 2], [1, [2]], 'a', ['a'], ['a', 'b'], [['a'], 'b'], (1,), (1, 2), ([1], 2), (1, [2]), 'a', ('a',), ('a', 'b'), (['a'], 'b'), [(1,), 2], [1, (2,)], [('a',), 'b'], ((1,), 2), (1, (2,)), (('a',), 'b') ]) def test_from_arrays_invalid_input(invalid_sequence_of_arrays): msg = "Input must be a list / sequence of array-likes" with pytest.raises(TypeError, match=msg): MultiIndex.from_arrays(arrays=invalid_sequence_of_arrays) @pytest.mark.parametrize('idx1, idx2', [ ([1, 2, 3], ['a', 'b']), ([], ['a', 'b']), ([1, 2, 3], []) ]) def test_from_arrays_different_lengths(idx1, idx2): # see gh-13599 msg = '^all arrays must be same length$' with pytest.raises(ValueError, match=msg): MultiIndex.from_arrays([idx1, idx2]) # ---------------------------------------------------------------------------- # from_tuples # ---------------------------------------------------------------------------- def test_from_tuples(): msg = 'Cannot infer number of levels from empty list' with pytest.raises(TypeError, match=msg): MultiIndex.from_tuples([]) expected = MultiIndex(levels=[[1, 3], [2, 4]], codes=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], codes=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables msg = 'Input must be a list / sequence of tuple-likes.' with pytest.raises(TypeError, match=msg): MultiIndex.from_tuples(0) def test_from_tuples_empty(): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_index_values(idx): result = MultiIndex.from_tuples(idx) assert (result.values == idx.values).all() def test_tuples_with_name_string(): # GH 15110 and GH 14848 li = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] msg = "Names should be list-like for a MultiIndex" with pytest.raises(ValueError, match=msg): pd.Index(li, name='abc') with pytest.raises(ValueError, match=msg): pd.Index(li, name='a') def test_from_tuples_with_tuple_label(): # GH 15457 expected = pd.DataFrame([[2, 1, 2], [4, (1, 2), 3]], columns=['a', 'b', 'c']).set_index(['a', 'b']) idx = pd.MultiIndex.from_tuples([(2, 1), (4, (1, 2))], names=('a', 'b')) result = pd.DataFrame([2, 3], columns=['c'], index=idx) tm.assert_frame_equal(expected, result) # ---------------------------------------------------------------------------- # from_product # ---------------------------------------------------------------------------- def test_from_product_empty_zero_levels(): # 0 levels msg = "Must pass non-zero number of levels/codes" with pytest.raises(ValueError, match=msg): MultiIndex.from_product([]) def test_from_product_empty_one_level(): result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) @pytest.mark.parametrize('first, second', [ ([], []), (['foo', 'bar', 'baz'], []), ([], ['a', 'b', 'c']), ]) def test_from_product_empty_two_levels(first, second): names = ['A', 'B'] result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], codes=[[], []], names=names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('N', list(range(4))) def test_from_product_empty_three_levels(N): # GH12258 names = ['A', 'B', 'C'] lvl2 = list(range(N)) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], codes=[[], [], []], names=names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('invalid_input', [ 1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b'], ]) def test_from_product_invalid_input(invalid_input): msg = (r"Input must be a list / sequence of iterables|" "Input must be list-like") with pytest.raises(TypeError, match=msg): MultiIndex.from_product(iterables=invalid_input) def test_from_product_datetimeindex(): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([ (1, pd.Timestamp('2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp('2000-01-01')), (2, pd.Timestamp('2000-01-02')), ]) tm.assert_numpy_array_equal(mi.values, etalon) @pytest.mark.parametrize('ordered', [False, True]) @pytest.mark.parametrize('f', [ lambda x: x, lambda x: pd.Series(x), lambda x: x.values ]) def test_from_product_index_series_categorical(ordered, f): # GH13743 first = ['foo', 'bar'] idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) result = pd.MultiIndex.from_product([first, f(idx)]) tm.assert_index_equal(result.get_level_values(1), expected) def test_from_product(): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input msg = "Input must be a list / sequence of iterables." with pytest.raises(TypeError, match=msg): MultiIndex.from_product(0) def test_create_index_existing_name(idx): # GH11193, when an existing index is passed, and a new name is not # specified, the new index should inherit the previous object name index = idx index.names = ['foo', 'bar'] result = pd.Index(index) expected = Index( Index([ ('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object' ), names=['foo', 'bar'] ) tm.assert_index_equal(result, expected) result = pd.Index(index, names=['A', 'B']) expected = Index( Index([ ('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object' ), names=['A', 'B'] ) tm.assert_index_equal(result, expected) # ---------------------------------------------------------------------------- # from_frame # ---------------------------------------------------------------------------- def test_from_frame(): # GH 22420 df = pd.DataFrame([['a', 'a'], ['a', 'b'], ['b', 'a'], ['b', 'b']], columns=['L1', 'L2']) expected = pd.MultiIndex.from_tuples([('a', 'a'), ('a', 'b'), ('b', 'a'), ('b', 'b')], names=['L1', 'L2']) result = pd.MultiIndex.from_frame(df) tm.assert_index_equal(expected, result) @pytest.mark.parametrize('non_frame', [ pd.Series([1, 2, 3, 4]), [1, 2, 3, 4], [[1, 2], [3, 4], [5, 6]], pd.Index([1, 2, 3, 4]), np.array([[1, 2], [3, 4], [5, 6]]), 27 ]) def test_from_frame_error(non_frame): # GH 22420 with pytest.raises(TypeError, match='Input must be a DataFrame'): pd.MultiIndex.from_frame(non_frame) def test_from_frame_dtype_fidelity(): # GH 22420 df = pd.DataFrame(OrderedDict([ ('dates', pd.date_range('19910905', periods=6, tz='US/Eastern')), ('a', [1, 1, 1, 2, 2, 2]), ('b', pd.Categorical(['a', 'a', 'b', 'b', 'c', 'c'], ordered=True)), ('c', ['x', 'x', 'y', 'z', 'x', 'y']) ])) original_dtypes = df.dtypes.to_dict() expected_mi = pd.MultiIndex.from_arrays([ pd.date_range('19910905', periods=6, tz='US/Eastern'), [1, 1, 1, 2, 2, 2], pd.Categorical(['a', 'a', 'b', 'b', 'c', 'c'], ordered=True), ['x', 'x', 'y', 'z', 'x', 'y'] ], names=['dates', 'a', 'b', 'c']) mi = pd.MultiIndex.from_frame(df) mi_dtypes = {name: mi.levels[i].dtype for i, name in enumerate(mi.names)} tm.assert_index_equal(expected_mi, mi) assert original_dtypes == mi_dtypes @pytest.mark.parametrize('names_in,names_out', [ (None, [('L1', 'x'), ('L2', 'y')]), (['x', 'y'], ['x', 'y']), ]) def test_from_frame_valid_names(names_in, names_out): # GH 22420 df = pd.DataFrame([['a', 'a'], ['a', 'b'], ['b', 'a'], ['b', 'b']], columns=pd.MultiIndex.from_tuples([('L1', 'x'), ('L2', 'y')])) mi =
pd.MultiIndex.from_frame(df, names=names_in)
pandas.MultiIndex.from_frame
""" Contains all functions that are needed in intermediary steps in order to obtain certain tables and figures of the thesis. """ import os import pickle import numpy as np import pandas as pd import scipy.io from ruspy.estimation.estimation import estimate from ruspy.estimation.estimation_transitions import create_transition_matrix from ruspy.model_code.cost_functions import calc_obs_costs if os.environ.get("TRAVIS"): pass else: from ruspy.model_code.demand_function import get_demand from ruspy.model_code.fix_point_alg import calc_fixp from ruspy.simulation.simulation import simulate def get_iskhakov_results( discount_factor, approach, starting_cost_params, starting_expected_value_fun, number_runs, number_buses, number_periods, number_states, number_cost_params, ): """ Run the Monte Carlo Simulation to replicate Iskhakov et al. (2016) Parameters ---------- discount_factor : list beta vector for which to run the simulation. approach : list run with NFXP and/or MPEC. starting_cost_params : numpy.array contains the starting values for the cost parameters. starting_expected_value_fun : numpy.array contains the starting values of the expected values for MPEC. number_runs : float number of runs per beta and starting vector combination. number_buses : int number of buses per data set. number_periods : int number of months per data set. number_states : int number of grid points in which the mileage state is discretized. number_cost_params : int number of cost parameters. Returns ------- results : pd.DataFrame contains the estimates for the structural parameters per run. """ # Initialize the set up for the nested fixed point algorithm stopping_crit_fixed_point = 1e-13 switch_tolerance_fixed_point = 1e-2 # Initialize the set up for MPEC lower_bound = np.concatenate( (np.full(number_states, -np.inf), np.full(number_cost_params, 0.0)) ) upper_bound = np.concatenate( (np.full(number_states, 50.0), np.full(number_cost_params, np.inf)) ) rel_ipopt_stopping_tolerance = 1e-6 init_dict_nfxp = { "model_specifications": { "number_states": number_states, "maint_cost_func": "linear", "cost_scale": 1e-3, }, "optimizer": { "approach": "NFXP", "algorithm": "estimagic_bhhh", # implies that we use analytical first order derivatives as opposed # to numerical ones "gradient": "Yes", }, "alg_details": { "threshold": stopping_crit_fixed_point, "switch_tol": switch_tolerance_fixed_point, }, } init_dict_mpec = { "model_specifications": { "number_states": number_states, "maint_cost_func": "linear", "cost_scale": 1e-3, }, "optimizer": { "approach": "MPEC", "algorithm": "ipopt", # implies that we use analytical first order derivatives as opposed # to numerical ones "gradient": "Yes", "tol": rel_ipopt_stopping_tolerance, "set_lower_bounds": lower_bound, "set_upper_bounds": upper_bound, }, } # Initialize DataFrame to store the results of each run of the Monte Carlo simulation index = pd.MultiIndex.from_product( [ discount_factor, range(number_runs), range(starting_cost_params.shape[1]), approach, ], names=["Discount Factor", "Run", "Start", "Approach"], ) columns = [ "RC", "theta_11", "theta_30", "theta_31", "theta_32", "theta_33", "CPU Time", "Converged", "# of Major Iter.", "# of Func. Eval.", "# of Bellm. Iter.", "# of N-K Iter.", ] results = pd.DataFrame(index=index, columns=columns) # Main loop to calculate the results for each run for factor in discount_factor: # load simulated data mat = scipy.io.loadmat( "data/RustBusTableXSimDataMC250_beta" + str(int(100000 * factor)) ) for run in range(number_runs): if run in np.arange(10, number_runs, 10): results.to_pickle("data/intermediate/results_" + str(factor)) data = process_data(mat, run, number_buses, number_periods) for start in range(starting_cost_params.shape[1]): # Adapt the Initiation Dictionairy of NFXP for this run init_dict_nfxp["model_specifications"]["discount_factor"] = factor init_dict_nfxp["optimizer"]["params"] = pd.DataFrame( starting_cost_params[:, start], columns=["value"] ) # Run NFXP using ruspy transition_result_nfxp, cost_result_nfxp = estimate( init_dict_nfxp, data ) # store the results of this run results.loc[factor, run, start, "NFXP"] = process_result_iskhakov( "NFXP", transition_result_nfxp, cost_result_nfxp, number_states ) # Adapt the Initiation Dictionairy of MPEC for this run init_dict_mpec["model_specifications"]["discount_factor"] = factor init_dict_mpec["optimizer"]["params"] = np.concatenate( (starting_expected_value_fun, starting_cost_params[:, start]) ) # Run MPEC using ruspy transition_result_mpec, cost_result_mpec = estimate( init_dict_mpec, data ) # store the results of this run results.loc[factor, run, start, "MPEC"].loc[ ~results.columns.isin(["# of Bellm. Iter.", "# of N-K Iter."]) ] = process_result_iskhakov( "MPEC", transition_result_mpec, cost_result_mpec, number_states ) return results def process_data(df, run, number_buses, number_periods): """ prepare the raw data set from matlab for the Monte Carlo simulation in ``get_iskhakov_results``. Parameters ---------- df : pd.DataFrame contains the raw data of Iskhakov et al. created with their original matlab code. run : int indicates the run in the Monte Carlo simulation. number_buses : int number of buses per data set. number_periods : int number of months per data set. Returns ------- data : pd.DataFrame the processed data set that can be used in the ruspy estimate function. """ state = df["MC_xt"][:, :, run] - 1 decision = df["MC_dt"][:, :, run] usage = df["MC_dx"][:-1, :, run] - 1 first_usage = np.full((1, usage.shape[1]), np.nan) usage = np.vstack((first_usage, usage)) data = pd.DataFrame() state_new = state[:, 0] decision_new = decision[:, 0] usage_new = usage[:, 0] for i in range(0, len(state[0, :]) - 1): state_new = np.hstack((state_new, state[:, i + 1])) decision_new = np.hstack((decision_new, decision[:, i + 1])) usage_new = np.hstack((usage_new, usage[:, i + 1])) data["state"] = state_new data["decision"] = decision_new data["usage"] = usage_new iterables = [range(number_buses), range(number_periods)] index = pd.MultiIndex.from_product(iterables, names=["Bus_ID", "period"]) data.set_index(index, inplace=True) return data def process_result_iskhakov(approach, transition_result, cost_result, number_states): """ process the raw results from a Monte Carlo simulation run in the ``get_iskhakov_results`` function. Parameters ---------- approach : string indicates whether the raw results were created from the NFXP or MPEC. transition_result : dict the result dictionairy of ruspy for the tranisition parameters. cost_result : dict the result dictionairy of ruspy for the cost parameters. number_states : int number of grid points in which the mileage state is discretized. Returns ------- result : numpy.array contains the transformed results of a Monte Carlo simulation run. """ if approach == "NFXP": result = np.concatenate((cost_result["x"], transition_result["x"][:4])) for name in [ "time", "status", "n_iterations", "n_evaluations", "n_contraction_steps", "n_newt_kant_steps", ]: result = np.concatenate((result, np.array([cost_result[name]]))) else: result = np.concatenate( (cost_result["x"][number_states:], transition_result["x"][:4]) ) for name in ["time", "status", "n_iterations", "n_evaluations"]: result = np.concatenate((result, np.array([cost_result[name]]))) return result def simulate_figure_3_and_4(results, beta, number_states, number_buses): """ Get the implied demand function for certain parameter estimates for Figure 3 and 4. Parameters ---------- results : pd.DataFrame the results of the Monte Carlo simulation in Iskhakov et al. (2016) created by ``get_iskhakov_results``. beta : float indicates for which of the beta the demand function is supposed to be derived. number_states : int number of grid points in which the mileage state is discretized. number_buses : int number of buses per data set. Returns ------- demand : pd.DataFrame contains the demand over a range of replacement costs depending on the estimated structural parameters of a Monte Carlo run. rc_range : np.array range over which the demand is calculated. true_demand : pd.DataFrame contains the demand derived from true structural parameters. correlation : pd.DataFrame the correlation matrix of the estimated structural parameters across all Monte Carlo runs. """ init_dict = { "model_specifications": { "discount_factor": beta, "number_states": number_states, "maint_cost_func": "linear", "cost_scale": 1e-3, }, "optimizer": { "approach": "NFXP", "algorithm": "estimagic_bhhh", "gradient": "Yes", }, "alg_details": {"threshold": 1e-13, "switch_tol": 1e-2}, } demand_dict = { "RC_lower_bound": 2, "RC_upper_bound": 13, "demand_evaluations": 100, "tolerance": 1e-10, "num_periods": 12, "num_buses": number_buses, } # get true demand function true_params = np.array([0.0937, 0.4475, 0.4459, 0.0127, 0.0002, 11.7257, 2.4569]) true_demand = get_demand(init_dict, demand_dict, true_params)[0]["demand"].astype( float ) # setup loop for demand calculation results_beta = ( results.loc[ (beta, slice(None), 0, "MPEC"), ("RC", "theta_11", "theta_30", "theta_31", "theta_32", "theta_33"), ] .astype(float) .to_numpy() ) rc_range = np.linspace( demand_dict["RC_lower_bound"], demand_dict["RC_upper_bound"], demand_dict["demand_evaluations"], ) demand = pd.DataFrame(index=rc_range) demand.index.name = "RC" for j in range(len(results_beta)): trans_params = results_beta[j, 2:] trans_params = np.append(trans_params, 1 - sum(trans_params)) params = np.concatenate((trans_params, results_beta[j, :2])) demand[str(j)] = get_demand(init_dict, demand_dict, params)[0]["demand"] # save the data demand.to_pickle("data/demand.pickle") # get correlation results_beta = results.loc[ (beta, slice(None), 0, "MPEC"), ("RC", "theta_11", "theta_30", "theta_31", "theta_32", "theta_33"), ].astype(float) correlation = results_beta.corr() values = [demand, rc_range, true_demand, correlation] names = ["demand", "rc_range", "true_demand", "correlation"] for value, name in zip(values, names): pd.to_pickle(value, f"data/{name}.pickle") return demand, rc_range, true_demand, correlation def simulate_data( seed, disc_fac, num_buses, num_periods, num_states, cost_params, trans_params, cost_func, scale, ): """ simulates a single data set with a given specification using the ``simulate`` function of ruspy. Parameters ---------- seed : int seed for the simulation function. disc_fac : float the discount factor in the Rust Model. num_buses : int the amount of buses that should be simulated. num_periods : int The number of periods that should be simulated for each bus. num_states : int the number of states for the which the mileage state is discretized. cost_params : np.array the cost parameters for which the data is simulated. trans_params : np.array the cost parameters for which the data is simulated.. cost_func : callable the cost function that underlies the data generating process. scale : float the scale of the cost function. Returns ------- df : pd.DataFrame Simulated data set for the given data generating process. """ init_dict = { "simulation": { "discount_factor": disc_fac, "periods": num_periods, "seed": seed, "buses": num_buses, }, } costs = calc_obs_costs(num_states, cost_func, cost_params, scale) trans_mat = create_transition_matrix(num_states, trans_params) ev = calc_fixp(trans_mat, costs, disc_fac)[0] df = simulate(init_dict["simulation"], ev, costs, trans_mat) return df def transform_grid(column): """ transforms the grid state for lower grid size. Parameters ---------- column : pd.Series column that contains the discretized mileage of a data set. Returns ------- column : pd.Series transformed column for state corresping to half of the grid size. """ if column.name == "state": column = np.floor(column / 2) return column def process_result(approach, cost_result, alg_nfxp): """ process the raw results from a Monte Carlo simulation run in the ``sensitivity_simulation`` function. Parameters ---------- approach : string indicates whether the raw results were created from the NFXP or MPEC. cost_result : dict the result dictionairy of ruspy for the cost parameters. Returns ------- result : numpy.array contains the transformed results of a Monte Carlo simulation run. """ if approach == "NFXP": result = np.array([]) for name in [ "fun", "time", "status", "n_iterations", "n_evaluations", "n_contraction_steps", "n_newt_kant_steps", ]: result = np.concatenate((result, np.array([cost_result[name]]))) if alg_nfxp == "scipy_L-BFGS-B": if result[2] == "success": result[2] = 1 else: result[2] = 0 else: result = np.array([]) for name in [ "fun", "time", "status", "n_iterations", "n_evaluations", "n_evaluations_total", ]: result = np.concatenate((result, np.array([cost_result[name]]))) return result def get_qoi(init_dict, params): """ calculates the quantitiy of interest for a given estimated parameter vector in a certain specification. Parameters ---------- init_dict : dict dictionairy needed for the estimation procedure which gives info about the model specification to the demand function calculation. params : np.array contains the estimated transition and cost parameters. Returns ------- demand : float the resulting quantitiy of interest. """ demand_dict = { "RC_lower_bound": 11, "RC_upper_bound": 11, "demand_evaluations": 1, "tolerance": 1e-10, "num_periods": 12, "num_buses": 50, } demand = get_demand(init_dict, demand_dict, params) demand = demand["demand"].astype(float).to_numpy()[0] return demand def sensitivity_simulation( specification, number_runs, alg_nfxp, tolerance=None, max_cont=20, max_nk=20 ): """ performs a certain number of estimations with certain specifications on simulated data. Parameters ---------- specification : tuple contains the information about which discount factor, cost function, grid size, derivative and approach is used for the estimation. number_runs : int number of runs per specification. alg_nfxp : string the algorithm used for the NFXP. tolerance : dict specifies the stopping tolerance for the optimizer of the NFXP. max_cont : int maximum number of contraction steps for the NFXP. max_nk : int maximum number of Newton-Kantorovich steps for the NFXP. Returns ------- results : pd.DataFrame contains results such as likelihood, estimated parameters etc per run. """ # set default tolerance if tolerance is None: if alg_nfxp == "estimagic_bhhh": tolerance = {"tol": {"abs": 1e-05, "rel": 1e-08}} elif alg_nfxp == "scipy_L-BFGS-B": tolerance = {"gtol": 1e-05} # Initialize the set up for the nested fixed point algorithm stopping_crit_fixed_point = 1e-13 switch_tolerance_fixed_point = 1e-2 # Initialize the set up for MPEC rel_ipopt_stopping_tolerance = 1e-6 # get specifications in order index_names = [ "Discount Factor", "Cost Function", "Grid Size", "Analytical Gradient", "Approach", ] identifier = specification[1] indexer = list(specification[0]) indexer[1] = list(indexer[1])[0] specification = dict(zip(index_names, specification[0])) # load data data_sets = pickle.load( open("data/simulated_data_" + str(specification["Grid Size"]) + ".pickle", "rb") ) # set up empty dataframe for results index = pd.MultiIndex.from_product( [*[[element] for element in indexer], range(number_runs)], names=[*index_names, "Run"], ) columns = [ "RC", "theta_11", "theta_12", "theta_13", "theta_30", "theta_31", "theta_32", "theta_33", "theta_34", "theta_35", "theta_36", "theta_37", "theta_38", "theta_39", "theta_310", "Likelihood", "Demand", "CPU Time", "Converged", "# of Major Iter.", "# of Func. Eval.", "# of Func. Eval. (Total)", "# of Bellm. Iter.", "# of N-K Iter.", ] results = pd.DataFrame(index=index, columns=columns) if specification["Approach"] == "NFXP": init_dict_nfxp = { "model_specifications": { "discount_factor": specification["Discount Factor"], "number_states": specification["Grid Size"], "maint_cost_func": specification["Cost Function"][0], "cost_scale": specification["Cost Function"][1], }, "optimizer": { "approach": "NFXP", "algorithm": alg_nfxp, "gradient": specification["Analytical Gradient"], "algo_options": tolerance, }, "alg_details": { "threshold": stopping_crit_fixed_point, "switch_tol": switch_tolerance_fixed_point, "max_contr_steps": max_cont, "max_newt_kant_steps": max_nk, }, } column_slicer_nfxp = [ "Likelihood", "CPU Time", "Converged", "# of Major Iter.", "# of Func. Eval.", "# of Bellm. Iter.", "# of N-K Iter.", ] for run in np.arange(number_runs): print(specification, run) # Run estimation data = data_sets[run] try: transition_result_nfxp, cost_result_nfxp = estimate( init_dict_nfxp, data ) results.loc[(*indexer, run), (slice("RC", "theta_13"))][ : len(cost_result_nfxp["x"]) ] = cost_result_nfxp["x"] results.loc[(*indexer, run), (slice("theta_30", "theta_310"))][ : len(transition_result_nfxp["x"]) ] = transition_result_nfxp["x"] results.loc[(*indexer, run), column_slicer_nfxp] = process_result( specification["Approach"], cost_result_nfxp, alg_nfxp ) results.loc[(*indexer, run), "Demand"] = get_qoi( init_dict_nfxp, np.concatenate( (transition_result_nfxp["x"], cost_result_nfxp["x"]) ), ) # the N-K step sometimes cannot be found due to a LinAlgError # somehow estimagic cannot handle this and translate it into nonconvergence # instead it raises a ValueError # below I manually translate this into nonconvergence except ValueError: results.loc[(*indexer, run), :] = results.shape[1] * np.nan results.loc[(*indexer, run), "Converged"] = 0 results.to_pickle( "data/sensitivity/sensitivity_specification_" + alg_nfxp + str(identifier) + ".pickle" ) elif specification["Approach"] == "MPEC": if specification["Cost Function"][0] in ["linear", "square root", "hyperbolic"]: num_cost_params = 2 elif specification["Cost Function"][0] == "quadratic": num_cost_params = 3 else: num_cost_params = 4 init_dict_mpec = { "model_specifications": { "discount_factor": specification["Discount Factor"], "number_states": specification["Grid Size"], "maint_cost_func": specification["Cost Function"][0], "cost_scale": specification["Cost Function"][1], }, "optimizer": { "approach": "MPEC", "algorithm": "ipopt", "gradient": specification["Analytical Gradient"], "tol": rel_ipopt_stopping_tolerance, "set_lower_bounds": np.concatenate( ( np.full(specification["Grid Size"], -np.inf), np.full(num_cost_params, 0.0), ) ), "set_upper_bounds": np.concatenate( ( np.full(specification["Grid Size"], 50.0), np.full(num_cost_params, np.inf), ) ), }, } column_slicer_mpec = [ "Likelihood", "CPU Time", "Converged", "# of Major Iter.", "# of Func. Eval.", "# of Func. Eval. (Total)", ] for run in np.arange(number_runs): # Run estimation data = data_sets[run] transition_result_mpec, cost_result_mpec = estimate(init_dict_mpec, data) results.loc[(*indexer, run), (slice("RC", "theta_13"))][ : len(cost_result_mpec["x"][specification["Grid Size"] :]) ] = cost_result_mpec["x"][specification["Grid Size"] :] results.loc[(*indexer, run), (slice("theta_30", "theta_310"))][ : len(transition_result_mpec["x"]) ] = transition_result_mpec["x"] results.loc[(*indexer, run), column_slicer_mpec] = process_result( specification["Approach"], cost_result_mpec, alg_nfxp ) results.loc[(*indexer, run), "Demand"] = get_qoi( init_dict_mpec, np.concatenate( ( transition_result_mpec["x"], cost_result_mpec["x"][specification["Grid Size"] :], ) ), ) results.to_pickle( "data/sensitivity/sensitivity_specification_" + str(identifier) + ".pickle" ) return results def partial_sensitivity(sensitivity_results, axis, axis_name): """ creates a table with mean and standard deviation of the statistics in the sensititvity_results table when changing only one part of the specification, namely the axis. Parameters ---------- sensitivity_results : pd.DataFrame table with all runs of the sensitivity simulation. axis : list the values of one ingredient of the specification. axis_name : string the name of the specification part that is supposed to be changed. Returns ------- table : pd.DataFrame table that contains the mean and standard deviation of some variables across NFXP and MPEC when changing one part of the specifications. """ table_temp = ( sensitivity_results.loc[sensitivity_results["Converged"] == 1] .astype(float) .groupby(level=[axis_name, "Approach"]) ) approaches = ["NFXP", "MPEC"] statistics = ["Mean", "Standard Deviation"] index = pd.MultiIndex.from_product( [axis, approaches, statistics], names=[axis_name, "Approach", "Statistic"] ) table = pd.DataFrame(index=index, columns=sensitivity_results.columns) table.loc(axis=0)[:, :, "Mean"] = table_temp.mean() table.loc(axis=0)[:, :, "Standard Deviation"] = table_temp.std() table_temp = ( sensitivity_results["Converged"] .astype(float) .groupby(level=[axis_name, "Approach"]) ) table.loc[(slice(None), slice(None), "Mean"), "Converged"] = table_temp.mean() table.loc[ (slice(None), slice(None), "Standard Deviation"), "Converged" ] = table_temp.std() table = table.astype(float) return table def get_difference_approach(sensitivity_results): """ obtain the averages and standard deviations across all specifications and runs for MPEC and NFXP, respectively. Parameters ---------- sensitivity_results : pd.DataFrame table with all runs of the sensitivity simulation. Returns ------- table : pd.DataFrame table that contains the means and standard deviations. """ table_temp = ( sensitivity_results.loc[sensitivity_results["Converged"] == 1] .astype(float) .groupby(level=["Approach"]) ) approaches = ["NFXP", "MPEC"] statistics = ["Mean", "Standard Deviation"] index = pd.MultiIndex.from_product( [approaches, statistics], names=["Approach", "Statistic"] ) table = pd.DataFrame(index=index, columns=sensitivity_results.columns) table.loc(axis=0)["MPEC", "Mean"] = table_temp.mean().loc["MPEC"] table.loc(axis=0)["NFXP", "Mean"] = table_temp.mean().loc["NFXP"] table.loc(axis=0)["MPEC", "Standard Deviation"] = table_temp.std().loc["MPEC"] table.loc(axis=0)["NFXP", "Standard Deviation"] = table_temp.std().loc["NFXP"] table_temp = ( sensitivity_results["Converged"].astype(float).groupby(level=["Approach"]) ) table.loc[("NFXP", "Mean"), "Converged"] = table_temp.mean().loc["NFXP"] table.loc[("NFXP", "Standard Deviation"), "Converged"] = table_temp.std().loc[ "NFXP" ] table.loc[("MPEC", "Mean"), "Converged"] = table_temp.mean().loc["MPEC"] table.loc[("MPEC", "Standard Deviation"), "Converged"] = table_temp.std().loc[ "MPEC" ] table = table.astype(float) return table def get_specific_sensitivity(sensitivity_results, specifications): """ get mean and standard deviations for small pertubations in model specification and numerical approach. Parameters ---------- sensitivity_results : pd.DataFrame table with all runs of the sensitivity simulation. specifications : list contains the model specifications for which the means and standard deviations are calculated. Returns ------- sensitivity_results_new : pd.DataFrame contains the results per run for the given specifications. table : pd.DataFrame contains the means and standard devaitions across different variables. """ indexes = [] original_index = sensitivity_results.index for index in original_index: if list(index[:4]) in specifications: indexes.append(index) sensitivity_results_new = sensitivity_results.loc[indexes, :] index_table = [] for spec in np.arange(int(len(indexes) / 250)): temp_index = list(indexes[250 * spec][:5]) for statistic in [["Mean"], ["Standard Deviation"]]: temp = temp_index.copy() temp.extend(statistic) index_table.append(tuple(temp)) index_table = pd.MultiIndex.from_tuples(index_table) table =
pd.DataFrame(index=index_table, columns=sensitivity_results.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'CT_Viewer.ui' # # Created by: PyQt5 UI code generator 5.14.1 # # WARNING! All changes made in this file will be lost! import os from moviepy.editor import ImageSequenceClip from PyQt5 import QtCore, QtGui, QtWidgets import pylidc as pl from matplotlib.patches import Circle from PIL import Image import glob import settings import helpers import sys import glob import random import pandas import ntpath import cv2 import numpy from typing import List, Tuple from keras.optimizers import Adam, SGD from keras.layers import Input, Convolution2D, MaxPooling2D, UpSampling2D, merge, Convolution3D, MaxPooling3D, UpSampling3D, LeakyReLU, BatchNormalization, Flatten, Dense, Dropout, ZeroPadding3D, AveragePooling3D, Activation from keras.models import Model, load_model, model_from_json from keras.metrics import binary_accuracy, binary_crossentropy, mean_squared_error, mean_absolute_error from keras import backend as K from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter import math from step3_predict_nodules import * # limit memory usage.. import tensorflow as tf from keras.backend.tensorflow_backend import set_session import step2_train_nodule_detector import shutil import SimpleITK # conda install -c https://conda.anaconda.org/simpleitk SimpleITK #from bs4 import BeautifulSoup # conda install beautifulsoup4, coda install lxml from plotting_functions import * random.seed(1321) numpy.random.seed(1321) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=config)) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1681, 1056) MainWindow.setStyleSheet("background-color: rgb(100, 100,100)") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(310, -10, 240, 51)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(110, 40, 631, 591)) self.label_2.setText("") self.label_2.setObjectName("label_2") self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(400, 700, 121, 61)) self.pushButton_2.setStyleSheet("background-color :rgb(80,80,80)") self.pushButton_2.setObjectName("pushButton_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(1000, 40, 631, 591)) self.label_3.setText("") self.label_3.setObjectName("label_3") self.tableView = QtWidgets.QTableWidget(self.centralwidget) self.tableView.setGeometry(QtCore.QRect(680, 720, 350, 140)) self.tableView.setObjectName("tableView") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(1140, -10, 240, 51)) self.label_4.setObjectName("label_4") self.pushButton_4 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_4.setGeometry(QtCore.QRect(1350, 700, 121, 61)) self.pushButton_4.setStyleSheet("background-color :rgb(80,80,80)") self.pushButton_4.setObjectName("pushButton_4") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(1240, 900, 191, 71)) self.pushButton.setStyleSheet("background-color :rgb(80,80,80)") self.pushButton.setObjectName("pushButton") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(350, 660, 101, 31)) self.label_5.setText("") self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(1300, 660, 101, 31)) self.label_6.setText("") self.label_6.setObjectName("label_6") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1681, 26)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_3.setGeometry(QtCore.QRect(280, 700, 121, 61)) self.pushButton_3.setStyleSheet("background-color :rgb(80,80,80)") self.pushButton_3.setObjectName("pushButton_3") self.pushButton_5 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_5.setGeometry(QtCore.QRect(1230, 700, 121, 61)) self.pushButton_5.setStyleSheet("background-color :rgb(80,80,80)") self.pushButton_5.setObjectName("pushButton_5") self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.pushButton.clicked.connect(self.browse_data1) self.pushButton_4.clicked.connect(self.plot_next_gif_real) self.pushButton_2.clicked.connect(self.plot_next_gif_pred) self.pushButton_3.clicked.connect(self.plot_next_frame_pred) self.pushButton_5.clicked.connect(self.plot_next_frame_real) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.label.setText(_translate("MainWindow", " Predicted Scan Nodules")) self.label.setFont(QtGui.QFont("Arial", 10)) palette = self.label.palette() palette.setColor(self.label.foregroundRole(), QtGui.QColor(255,255,255)) self.label.setPalette(palette) self.pushButton_2.setText(_translate("MainWindow", "Next Nodule")) self.pushButton_2.setStyleSheet('QPushButton {color: white;}') self.label_4.setText(_translate("MainWindow", " Real Scan Nodules")) self.label_4.setPalette(palette) self.label_4.setFont(QtGui.QFont("Arial", 10)) self.pushButton_4.setText(_translate("MainWindow", "Next Nodule")) self.pushButton_4.setStyleSheet('QPushButton {color: white;}') self.pushButton_3.setText(_translate("MainWindow", "Next Frame")) self.pushButton_5.setText(_translate("MainWindow", "Next Frame")) self.pushButton_5.setStyleSheet('QPushButton {color: white;}') self.pushButton_3.setStyleSheet('QPushButton {color: white;}') self.pushButton.setText(_translate("MainWindow", "Browse/Process CT")) self.pushButton.setStyleSheet('QPushButton {color: white;}') def browse_data1(self): data_path , _=QtWidgets.QFileDialog.getOpenFileName(None,'Open File',r"C:\Users\Ahmed\Desktop\CT_Gui") self.data_path = data_path if not os.path.exists('Predicted/{}'.format(self.data_path.split('/')[-1][:-4])): os.mkdir('Predicted/{}'.format(self.data_path.split('/')[-1][:-4])) os.mkdir('Real/{}'.format(self.data_path.split('/')[-1][:-4])) #for magnification in [1, 1.5, 2]: if True: #for magnification in [1]: version = 2 holdout = 0 CONTINUE_JOB = True only_patient_id = None # "ebd601d40a18634b100c92e7db39f585" magnification = 1 # predict_cubes("models/model_luna_posnegndsb_v" + str(version) + "__fs_h" + str(holdout) + "_end.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=True, holdout_no=holdout, ext_name="luna_posnegndsb_v" + str(version), fold_count=2) # if holdout == 0: self.process_images(self.data_path) predict_cubes("models/model_luna_posnegndsb_v" + str(version) + "__fs_h" + str(holdout) + "_end.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=False, holdout_no=holdout, ext_name="luna_posnegndsb_v" + str(version), fold_count=2) #os.copy(self.data_path, 'Luna/luna16_extracted_images') # if True: #for magnification in [1]: # #predict_cubes("models/model_luna16_full__fs_best.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=True, holdout_no=None, ext_name="luna16_fs") # predict_cubes("models/model_luna16_full__fs_best.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=False, holdout_no=None, ext_name="luna16_fs") #self.predict_cubes(self.data_path[:-4],"models/model_luna16_full__fs_best.hd5", magnification=magnification, holdout_no=None, ext_name="luna16_fs") radii , centroids,chances,image_array = get_nodules(self.data_path.split('/')[-1]) paths, self.sub_dfs = plot(radii,centroids,image_array,self.data_path.split('/')[-1][:-4],chances = chances) #print("Done") self.sub_dfs_gen_pred = (df_ for df_ in self.sub_dfs) frames = [] self.n_pred = len(paths) self.current_pred = 0 print('Predicted are',self.n_pred) for i in range(len(paths)): frames = [] for path in paths[i]: frames.append(cv2.imread(path)) print(self.data_path) print(paths[i]) gif('Predicted/{}/{}_{}.gif'.format(self.data_path.split('/')[-1][:-4],paths[i][0].split('\\')[-1].split('.')[0],paths[i][-1].split('\\')[-1].split('.')[0]),np.array(frames)) self.gif_ls_pred = glob.iglob("Predicted\\{}\\*.gif".format(self.data_path.split('/')[-1][:-4])) self.plot_next_gif_pred() # Query for all CT scans with desired traits. scan = pl.query(pl.Scan).filter(pl.Scan.series_instance_uid == self.data_path.split('/')[-1][:-4]).first() nods = scan.cluster_annotations() print("%s has %d nodules." % (scan, len(nods))) nnods = len(nods) centroids = [np.array([a.centroid for a in group]).mean(0) for group in nods] radii = [np.mean([a.diameter/2 for a in group]) for group in nods] itk_img = SimpleITK.ReadImage(self.data_path) img_array = SimpleITK.GetArrayFromImage(itk_img) # indexes are z,y,x (notice the ordering) paths_real,self.sub_dfs_real = plot(radii,centroids,img_array,self.data_path.split('/')[-1][:-4],real = True) self.sub_dfs_gen_real = (df_ for df_ in self.sub_dfs_real) self.n_real = len(paths_real) self.current_real = 0 for i in range(len(paths_real)): frames = [] for path in paths_real[i]: frames.append(cv2.imread(path)) gif('Real\\{}\\{}_{}.gif'.format(self.data_path.split('/')[-1][:-4],paths[i][0].split('\\')[-1].split('.')[0],paths[i][-1].split('\\')[-1].split('.')[0]),np.array(frames)) self.gif_ls_real = glob.iglob("Real\\{}\\*.gif".format(self.data_path.split('/')[-1][:-4])) self.plot_next_gif_real() def plot_next_frame_pred(self): try: img_path = next(self.frames_pred) except: self.frames_pred = glob.iglob("Real\\{}\\{}\\*".format(self.data_path.split('/')[-1][:-4],str(self.current_real))) img_path = next(self.frames_pred) print(img_path) pixmap = QtGui.QPixmap(img_path) #self.Pic_Label.setPixmap(pixmap) #image = QtGui.QImage(img, img.shape[1], img.shape[0],img.strides[0], QtGui.QImage.Format_RGB888) self.label_2.setPixmap(pixmap.scaled(631, 591)) def plot_next_frame_real(self): try: img_path = next(self.frames_real) except: self.frames_real = glob.iglob("Real\\{}\\{}\\*".format(self.data_path.split('/')[-1][:-4],str(self.current_real))) img_path = next(self.frames_real) print(img_path) pixmap = QtGui.QPixmap(img_path) #self.Pic_Label.setPixmap(pixmap) #image = QtGui.QImage(img, img.shape[1], img.shape[0],img.strides[0], QtGui.QImage.Format_RGB888) self.label_3.setPixmap(pixmap.scaled(631, 591)) def plot_next_gif_pred(self): try: movie = QtGui.QMovie(next(self.gif_ls_pred)) self.current_pred += 1 self.frames_pred = glob.iglob("Predicted\\{}\\{}\\*".format(self.data_path.split('/')[-1][:-4],str(self.current_pred))) print(self.frames_pred) except: self.gif_ls_pred = glob.iglob("Predicted\\{}\\*.gif".format(self.data_path.split('/')[-1][:-4])) self.sub_dfs_gen_pred = (df_ for df_ in self.sub_dfs) movie = QtGui.QMovie(next(self.gif_ls_pred)) self.current_pred = 1 self.frames_pred = glob.iglob("Predicted\\{}\\{}\\*".format(self.data_path.split('/')[-1][:-4],str(self.current_pred))) movie.setScaledSize(QtCore.QSize(631, 591)) self.label_2.setMovie(movie) movie.start() df_tmp = next(self.sub_dfs_gen_pred) chance = df_tmp['chances'].values[0] radius = df_tmp['rad'].values[0] self.label_5.setText('{}/{}'.format(self.current_pred,self.n_pred)) self.label_5.setFont(QtGui.QFont("Arial", 10)) palette = self.label_5.palette() palette.setColor(self.label_5.foregroundRole(), QtGui.QColor(255,255,255)) self.label_5.setPalette(palette) self.tableView.setRowCount(2) fg = QtGui.QColor(255, 255, 255) # set column count self.tableView.setColumnCount(5) self.tableView.setItem(0,0, QtWidgets.QTableWidgetItem("X")) self.tableView.setItem(0,1, QtWidgets.QTableWidgetItem("Y")) self.tableView.setItem(0,2, QtWidgets.QTableWidgetItem("Z")) self.tableView.setItem(0,3, QtWidgets.QTableWidgetItem("rad")) self.tableView.setItem(0,4, QtWidgets.QTableWidgetItem("chance")) self.tableView.setItem(1,0, QtWidgets.QTableWidgetItem(str(round(df_tmp['X'].values[0],2)) + 'mm')) self.tableView.setItem(1,1, QtWidgets.QTableWidgetItem(str(round(df_tmp['Y'].values[0],2)) + 'mm')) self.tableView.setItem(1,2, QtWidgets.QTableWidgetItem(str(round(df_tmp['Z'].values[0],2)) + 'mm')) self.tableView.setItem(1,3, QtWidgets.QTableWidgetItem(str(round(df_tmp['rad'].values[0],2)) + 'mm')) self.tableView.setItem(1,4, QtWidgets.QTableWidgetItem(str(round(100*df_tmp['chances'].values[0])) +'%')) self.tableView.resizeRowsToContents() self.tableView.resizeColumnsToContents() for i in range(2): for j in range(5): self.tableView.item(i,j).setForeground(fg) #self.textBrowser.setText('This nodule has a probability of {} to be Malignant, and its radius is {}'.format(chance,radius)) def plot_next_gif_real(self): try: movie = QtGui.QMovie(next(self.gif_ls_real)) self.current_real += 1 self.frames_real = glob.iglob("Real\\{}\\{}\\*".format(self.data_path.split('/')[-1][:-4],str(self.current_real))) print(self.frames_real) except: self.gif_ls_real = glob.iglob("Real\\{}\\*.gif".format(self.data_path.split('/')[-1][:-4])) self.sub_dfs_gen_real = (df_ for df_ in self.sub_dfs_real) movie = QtGui.QMovie(next(self.gif_ls_real)) self.current_real = 1 self.frames_real = glob.iglob("Real\\{}\\{}\\*".format(self.data_path.split('/')[-1][:-4],str(self.current_real))) movie.setScaledSize(QtCore.QSize(631, 591)) self.label_3.setMovie(movie) movie.start() df_tmp = next(self.sub_dfs_gen_real) chance = df_tmp['chances'].values[0] radius = df_tmp['rad'].values[0] print(df_tmp) self.label_6.setText('{}/{}'.format(self.current_real,self.n_real)) self.label_6.setFont(QtGui.QFont("Arial", 10)) palette = self.label_6.palette() palette.setColor(self.label_6.foregroundRole(), QtGui.QColor(255,255,255)) self.label_6.setPalette(palette) def prepare_image_for_net3D(self,img): img = img.astype(numpy.float32) img -= MEAN_PIXEL_VALUE img /= 255. img = img.reshape(1, img.shape[0], img.shape[1], img.shape[2], 1) return img def filter_patient_nodules_predictions(self,df_nodule_predictions: pandas.DataFrame, patient_id, view_size): src_dir = '' patient_mask = helpers.load_patient_images('Luna\\luna16_extracted_images\\' + patient_id + '\\', src_dir, "*_m.png") delete_indices = [] for index, row in df_nodule_predictions.iterrows(): z_perc = row["coord_z"] y_perc = row["coord_y"] center_x = int(round(row["coord_x"] * patient_mask.shape[2])) center_y = int(round(y_perc * patient_mask.shape[1])) center_z = int(round(z_perc * patient_mask.shape[0])) mal_score = row["diameter_mm"] start_y = center_y - view_size / 2 start_x = center_x - view_size / 2 nodule_in_mask = False for z_index in [-1, 0, 1]: img = patient_mask[z_index + center_z] start_x = int(start_x) start_y = int(start_y) view_size = int(view_size) img_roi = img[start_y:start_y+view_size, start_x:start_x + view_size] if img_roi.sum() > 255: # more than 1 pixel of mask. nodule_in_mask = True if not nodule_in_mask: print("Nodule not in mask: ", (center_x, center_y, center_z)) if mal_score > 0: mal_score *= -1 df_nodule_predictions.loc[index, "diameter_mm"] = mal_score else: if center_z < 30: print("Z < 30: ", patient_id, " center z:", center_z, " y_perc: ", y_perc) if mal_score > 0: mal_score *= -1 df_nodule_predictions.loc[index, "diameter_mm"] = mal_score if (z_perc > 0.75 or z_perc < 0.25) and y_perc > 0.85: print("SUSPICIOUS FALSEPOSITIVE: ", patient_id, " center z:", center_z, " y_perc: ", y_perc) if center_z < 50 and y_perc < 0.30: print("SUSPICIOUS FALSEPOSITIVE OUT OF RANGE: ", patient_id, " center z:", center_z, " y_perc: ", y_perc) df_nodule_predictions.drop(df_nodule_predictions.index[delete_indices], inplace=True) return df_nodule_predictions def filter_nodule_predictions(self,only_patient_id=None): src_dir = settings.LUNA_NODULE_DETECTION_DIR for csv_index, csv_path in enumerate(glob.glob(src_dir + "*.csv")): file_name = ntpath.basename(csv_path) patient_id = file_name.replace(".csv", "") print(csv_index, ": ", patient_id) if only_patient_id is not None and patient_id != only_patient_id: continue df_nodule_predictions = pandas.read_csv(csv_path) self.filter_patient_nodules_predictions(df_nodule_predictions, patient_id, CUBE_SIZE) df_nodule_predictions.to_csv(csv_path, index=False) def make_negative_train_data_based_on_predicted_luna_nodules(): src_dir = settings.LUNA_NODULE_DETECTION_DIR pos_labels_dir = settings.LUNA_NODULE_LABELS_DIR keep_dist = CUBE_SIZE + CUBE_SIZE / 2 total_false_pos = 0 for csv_index, csv_path in enumerate(glob.glob(src_dir + "*.csv")): file_name = ntpath.basename(csv_path) patient_id = file_name.replace(".csv", "") # if not "273525289046256012743471155680" in patient_id: # continue df_nodule_predictions = pandas.read_csv(csv_path) pos_annos_manual = None manual_path = settings.MANUAL_ANNOTATIONS_LABELS_DIR + patient_id + ".csv" if os.path.exists(manual_path): pos_annos_manual = pandas.read_csv(manual_path) self.filter_patient_nodules_predictions(df_nodule_predictions, patient_id, CUBE_SIZE, luna16=True) pos_labels = pandas.read_csv(pos_labels_dir + patient_id + "_annos_pos_lidc.csv") print(csv_index, ": ", patient_id, ", pos", len(pos_labels)) patient_imgs = helpers.load_patient_images(patient_id, settings.LUNA16_EXTRACTED_IMAGE_DIR, "*_m.png") for nod_pred_index, nod_pred_row in df_nodule_predictions.iterrows(): if nod_pred_row["diameter_mm"] < 0: continue nx, ny, nz = helpers.percentage_to_pixels(nod_pred_row["coord_x"], nod_pred_row["coord_y"], nod_pred_row["coord_z"], patient_imgs) diam_mm = nod_pred_row["diameter_mm"] for label_index, label_row in pos_labels.iterrows(): px, py, pz = helpers.percentage_to_pixels(label_row["coord_x"], label_row["coord_y"], label_row["coord_z"], patient_imgs) dist = math.sqrt(math.pow(nx - px, 2) + math.pow(ny - py, 2) + math.pow(nz- pz, 2)) if dist < keep_dist: if diam_mm >= 0: diam_mm *= -1 df_nodule_predictions.loc[nod_pred_index, "diameter_mm"] = diam_mm break if pos_annos_manual is not None: for index, label_row in pos_annos_manual.iterrows(): px, py, pz = helpers.percentage_to_pixels(label_row["x"], label_row["y"], label_row["z"], patient_imgs) diameter = label_row["d"] * patient_imgs[0].shape[1] # print((pos_coord_x, pos_coord_y, pos_coord_z)) # print(center_float_rescaled) dist = math.sqrt(math.pow(px - nx, 2) + math.pow(py - ny, 2) + math.pow(pz - nz, 2)) if dist < (diameter + 72): # make sure we have a big margin if diam_mm >= 0: diam_mm *= -1 df_nodule_predictions.loc[nod_pred_index, "diameter_mm"] = diam_mm print("#Too close", (nx, ny, nz)) break df_nodule_predictions.to_csv(csv_path, index=False) df_nodule_predictions = df_nodule_predictions[df_nodule_predictions["diameter_mm"] >= 0] df_nodule_predictions.to_csv(pos_labels_dir + patient_id + "_candidates_falsepos.csv", index=False) total_false_pos += len(df_nodule_predictions) print("Total false pos:", total_false_pos) def predict_cubes(self,path,model_path, magnification=1, holdout_no=-1, ext_name="", fold_count=2): dst_dir = settings.LUNA_NODULE_DETECTION_DIR if not os.path.exists(dst_dir): os.makedirs(dst_dir) holdout_ext = "" dst_dir += "predictions" + str(int(magnification * 10)) + holdout_ext + "_" + ext_name + "/" if not os.path.exists(dst_dir): os.makedirs(dst_dir) sw = helpers.Stopwatch.start_new() model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) patient_id = path all_predictions_csv = [] if holdout_no is not None: patient_fold = helpers.get_patient_fold(patient_id) patient_fold %= fold_count print( ": ", patient_id) csv_target_path = dst_dir + patient_id.split('/')[-1] + ".csv" print(patient_id) try: patient_img = helpers.load_patient_images('Luna\\luna16_extracted_images\\' + patient_id + '\\', '', "*_i.png", []) except: print('Please Re-Process the dicom file again') if magnification != 1: patient_img = helpers.rescale_patient_images(patient_img, (1, 1, 1), magnification) patient_mask = helpers.load_patient_images('Luna\\luna16_extracted_images\\' + patient_id + '\\','', "*_m.png", []) if magnification != 1: patient_mask = helpers.rescale_patient_images(patient_mask, (1, 1, 1), magnification, is_mask_image=True) # patient_img = patient_img[:, ::-1, :] # patient_mask = patient_mask[:, ::-1, :] step = PREDICT_STEP CROP_SIZE = CUBE_SIZE # CROP_SIZE = 48 predict_volume_shape_list = [0, 0, 0] for dim in range(3): dim_indent = 0 while dim_indent + CROP_SIZE < patient_img.shape[dim]: predict_volume_shape_list[dim] += 1 dim_indent += step predict_volume_shape = (predict_volume_shape_list[0], predict_volume_shape_list[1], predict_volume_shape_list[2]) predict_volume = numpy.zeros(shape=predict_volume_shape, dtype=float) print("Predict volume shape: ", predict_volume.shape) done_count = 0 skipped_count = 0 batch_size = 128 batch_list = [] batch_list_coords = [] patient_predictions_csv = [] cube_img = None annotation_index = 0 for z in range(0, predict_volume_shape[0]): for y in range(0, predict_volume_shape[1]): for x in range(0, predict_volume_shape[2]): #if cube_img is None: cube_img = patient_img[z * step:z * step+CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step+CROP_SIZE] cube_mask = patient_mask[z * step:z * step+CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step+CROP_SIZE] if cube_mask.sum() < 2000: skipped_count += 1 if CROP_SIZE != CUBE_SIZE: cube_img = helpers.rescale_patient_images2(cube_img, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) # helpers.save_cube_img("c:/tmp/cube.png", cube_img, 8, 4) # cube_mask = helpers.rescale_patient_images2(cube_mask, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) img_prep = self.prepare_image_for_net3D(cube_img) batch_list.append(img_prep) batch_list_coords.append((z, y, x)) if len(batch_list) % batch_size == 0: batch_data = numpy.vstack(batch_list) p = model.predict(batch_data, batch_size=batch_size) for i in range(len(p[0])): p_z = batch_list_coords[i][0] p_y = batch_list_coords[i][1] p_x = batch_list_coords[i][2] nodule_chance = p[0][i][0] predict_volume[p_z, p_y, p_x] = nodule_chance if nodule_chance > P_TH: p_z = p_z * step + CROP_SIZE / 2 p_y = p_y * step + CROP_SIZE / 2 p_x = p_x * step + CROP_SIZE / 2 p_z_perc = round(p_z / patient_img.shape[0], 4) p_y_perc = round(p_y / patient_img.shape[1], 4) p_x_perc = round(p_x / patient_img.shape[2], 4) diameter_mm = round(p[1][i][0], 4) # diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round(diameter_mm / patient_img.shape[2], 4) nodule_chance = round(nodule_chance, 4) patient_predictions_csv_line = [annotation_index, p_x_perc, p_y_perc, p_z_perc, diameter_perc, nodule_chance, diameter_mm] patient_predictions_csv.append(patient_predictions_csv_line) all_predictions_csv.append([patient_id] + patient_predictions_csv_line) annotation_index += 1 batch_list = [] batch_list_coords = [] done_count += 1 if done_count % 10000 == 0: print("Done: ", done_count, " skipped:", skipped_count) df = pandas.DataFrame(patient_predictions_csv, columns=["anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) print("Started Filtering") print(all_predictions_csv) #print(batch_data) self.filter_patient_nodules_predictions(df, patient_id, CROP_SIZE * magnification) df.to_csv(csv_target_path, index=False) print(predict_volume.mean()) print("Done in : ", sw.get_elapsed_seconds(), " seconds") def find_mhd_file(self,patient_id): for subject_no in range(settings.LUNA_SUBSET_START_INDEX, 10): src_dir = settings.LUNA16_RAW_SRC_DIR + "subset" + str(subject_no) + "/" for src_path in glob.glob(src_dir + "*.mhd"): if patient_id in src_path: return src_path return None def load_lidc_xml(self,xml_path, agreement_threshold=0, only_patient=None, save_nodules=False): pos_lines = [] neg_lines = [] extended_lines = [] with open(xml_path, 'r') as xml_file: markup = xml_file.read() xml = BeautifulSoup(markup, features="xml") if xml.LidcReadMessage is None: return None, None, None patient_id = xml.LidcReadMessage.ResponseHeader.SeriesInstanceUid.text if only_patient is not None: if only_patient != patient_id: return None, None, None src_path = self.find_mhd_file(patient_id) if src_path is None: return None, None, None print(patient_id) itk_img = SimpleITK.ReadImage(src_path) img_array = SimpleITK.GetArrayFromImage(itk_img) num_z, height, width = img_array.shape #heightXwidth constitute the transverse plane origin = numpy.array(itk_img.GetOrigin()) # x,y,z Origin in world coordinates (mm) spacing = numpy.array(itk_img.GetSpacing()) # spacing of voxels in world coor. (mm) rescale = spacing / settings.TARGET_VOXEL_MM reading_sessions = xml.LidcReadMessage.find_all("readingSession") for reading_session in reading_sessions: # print("Sesion") nodules = reading_session.find_all("unblindedReadNodule") for nodule in nodules: nodule_id = nodule.noduleID.text # print(" ", nodule.noduleID) rois = nodule.find_all("roi") x_min = y_min = z_min = 999999 x_max = y_max = z_max = -999999 if len(rois) < 2: continue for roi in rois: z_pos = float(roi.imageZposition.text) z_min = min(z_min, z_pos) z_max = max(z_max, z_pos) edge_maps = roi.find_all("edgeMap") for edge_map in edge_maps: x = int(edge_map.xCoord.text) y = int(edge_map.yCoord.text) x_min = min(x_min, x) y_min = min(y_min, y) x_max = max(x_max, x) y_max = max(y_max, y) if x_max == x_min: continue if y_max == y_min: continue x_diameter = x_max - x_min x_center = x_min + x_diameter / 2 y_diameter = y_max - y_min y_center = y_min + y_diameter / 2 z_diameter = z_max - z_min z_center = z_min + z_diameter / 2 z_center -= origin[2] z_center /= spacing[2] x_center_perc = round(x_center / img_array.shape[2], 4) y_center_perc = round(y_center / img_array.shape[1], 4) z_center_perc = round(z_center / img_array.shape[0], 4) diameter = max(x_diameter , y_diameter) diameter_perc = round(max(x_diameter / img_array.shape[2], y_diameter / img_array.shape[1]), 4) if nodule.characteristics is None: print("!!!!Nodule:", nodule_id, " has no charecteristics") continue if nodule.characteristics.malignancy is None: print("!!!!Nodule:", nodule_id, " has no malignacy") continue malignacy = nodule.characteristics.malignancy.text sphericiy = nodule.characteristics.sphericity.text margin = nodule.characteristics.margin.text spiculation = nodule.characteristics.spiculation.text texture = nodule.characteristics.texture.text calcification = nodule.characteristics.calcification.text internal_structure = nodule.characteristics.internalStructure.text lobulation = nodule.characteristics.lobulation.text subtlety = nodule.characteristics.subtlety.text line = [nodule_id, x_center_perc, y_center_perc, z_center_perc, diameter_perc, malignacy] extended_line = [patient_id, nodule_id, x_center_perc, y_center_perc, z_center_perc, diameter_perc, malignacy, sphericiy, margin, spiculation, texture, calcification, internal_structure, lobulation, subtlety ] pos_lines.append(line) extended_lines.append(extended_line) nonNodules = reading_session.find_all("nonNodule") for nonNodule in nonNodules: z_center = float(nonNodule.imageZposition.text) z_center -= origin[2] z_center /= spacing[2] x_center = int(nonNodule.locus.xCoord.text) y_center = int(nonNodule.locus.yCoord.text) nodule_id = nonNodule.nonNoduleID.text x_center_perc = round(x_center / img_array.shape[2], 4) y_center_perc = round(y_center / img_array.shape[1], 4) z_center_perc = round(z_center / img_array.shape[0], 4) diameter_perc = round(max(6 / img_array.shape[2], 6 / img_array.shape[1]), 4) # print("Non nodule!", z_center) line = [nodule_id, x_center_perc, y_center_perc, z_center_perc, diameter_perc, 0] neg_lines.append(line) if agreement_threshold > 1: filtered_lines = [] for pos_line1 in pos_lines: id1 = pos_line1[0] x1 = pos_line1[1] y1 = pos_line1[2] z1 = pos_line1[3] d1 = pos_line1[4] overlaps = 0 for pos_line2 in pos_lines: id2 = pos_line2[0] if id1 == id2: continue x2 = pos_line2[1] y2 = pos_line2[2] z2 = pos_line2[3] d2 = pos_line1[4] dist = math.sqrt(math.pow(x1 - x2, 2) + math.pow(y1 - y2, 2) + math.pow(z1 - z2, 2)) if dist < d1 or dist < d2: overlaps += 1 if overlaps >= agreement_threshold: filtered_lines.append(pos_line1) # else: # print("Too few overlaps") pos_lines = filtered_lines df_annos = pandas.DataFrame(pos_lines, columns=["anno_index", "coord_x", "coord_y", "coord_z", "diameter", "malscore"]) df_annos.to_csv(settings.LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" + patient_id + "_annos_pos_lidc.csv", index=False) df_neg_annos = pandas.DataFrame(neg_lines, columns=["anno_index", "coord_x", "coord_y", "coord_z", "diameter", "malscore"]) df_neg_annos.to_csv(settings.LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" + patient_id + "_annos_neg_lidc.csv", index=False) # return [patient_id, spacing[0], spacing[1], spacing[2]] return pos_lines, neg_lines, extended_lines def normalize(self,image): MIN_BOUND = -1000.0 MAX_BOUND = 400.0 image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image > 1] = 1. image[image < 0] = 0. return image def process_image(self,src_path): patient_id = ntpath.basename(src_path).replace(".mhd", "") print("Patient: ", patient_id) dst_dir = 'Luna\\luna16_extracted_images\\' + patient_id + "\\" if not os.path.exists(dst_dir): os.mkdir(dst_dir) itk_img = SimpleITK.ReadImage(src_path) img_array = SimpleITK.GetArrayFromImage(itk_img) print("Img array: ", img_array.shape) origin = numpy.array(itk_img.GetOrigin()) # x,y,z Origin in world coordinates (mm) print("Origin (x,y,z): ", origin) direction = numpy.array(itk_img.GetDirection()) # x,y,z Origin in world coordinates (mm) print("Direction: ", direction) spacing = numpy.array(itk_img.GetSpacing()) # spacing of voxels in world coor. (mm) print("Spacing (x,y,z): ", spacing) rescale = spacing / settings.TARGET_VOXEL_MM print("Rescale: ", rescale) img_array = helpers.rescale_patient_images(img_array, spacing, settings.TARGET_VOXEL_MM) img_list = [] for i in range(img_array.shape[0]): img = img_array[i] seg_img, mask = helpers.get_segmented_lungs(img.copy()) img_list.append(seg_img) img = self.normalize(img) cv2.imwrite(dst_dir + "img_" + str(i).rjust(4, '0') + "_i.png", img * 255) cv2.imwrite(dst_dir + "img_" + str(i).rjust(4, '0') + "_m.png", mask * 255) def process_pos_annotations_patient(src_path, patient_id): df_node = pandas.read_csv("resources/luna16_annotations/annotations.csv") dst_dir = settings.LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" if not os.path.exists(dst_dir): os.mkdir(dst_dir) dst_dir = dst_dir + patient_id + "/" if not os.path.exists(dst_dir): os.mkdir(dst_dir) itk_img = SimpleITK.ReadImage(src_path) img_array = SimpleITK.GetArrayFromImage(itk_img) print("Img array: ", img_array.shape) df_patient = df_node[df_node["seriesuid"] == patient_id] print("Annos: ", len(df_patient)) num_z, height, width = img_array.shape #heightXwidth constitute the transverse plane origin = numpy.array(itk_img.GetOrigin()) # x,y,z Origin in world coordinates (mm) print("Origin (x,y,z): ", origin) spacing = numpy.array(itk_img.GetSpacing()) # spacing of voxels in world coor. (mm) print("Spacing (x,y,z): ", spacing) rescale = spacing /settings.TARGET_VOXEL_MM print("Rescale: ", rescale) direction = numpy.array(itk_img.GetDirection()) # x,y,z Origin in world coordinates (mm) print("Direction: ", direction) flip_direction_x = False flip_direction_y = False if round(direction[0]) == -1: origin[0] *= -1 direction[0] = 1 flip_direction_x = True print("Swappint x origin") if round(direction[4]) == -1: origin[1] *= -1 direction[4] = 1 flip_direction_y = True print("Swappint y origin") print("Direction: ", direction) assert abs(sum(direction) - 3) < 0.01 patient_imgs = helpers.load_patient_images(patient_id, settings.LUNA16_EXTRACTED_IMAGE_DIR, "*_i.png") pos_annos = [] df_patient = df_node[df_node["seriesuid"] == patient_id] anno_index = 0 for index, annotation in df_patient.iterrows(): node_x = annotation["coordX"] if flip_direction_x: node_x *= -1 node_y = annotation["coordY"] if flip_direction_y: node_y *= -1 node_z = annotation["coordZ"] diam_mm = annotation["diameter_mm"] print("Node org (x,y,z,diam): ", (round(node_x, 2), round(node_y, 2), round(node_z, 2), round(diam_mm, 2))) center_float = numpy.array([node_x, node_y, node_z]) center_int = numpy.rint((center_float-origin) / spacing) # center_int = numpy.rint((center_float - origin) ) print("Node tra (x,y,z,diam): ", (center_int[0], center_int[1], center_int[2])) # center_int_rescaled = numpy.rint(((center_float-origin) / spacing) * rescale) center_float_rescaled = (center_float - origin) / settings.TARGET_VOXEL_MM center_float_percent = center_float_rescaled / patient_imgs.swapaxes(0, 2).shape # center_int = numpy.rint((center_float - origin) ) print("Node sca (x,y,z,diam): ", (center_float_rescaled[0], center_float_rescaled[1], center_float_rescaled[2])) diameter_pixels = diam_mm / settings.TARGET_VOXEL_MM diameter_percent = diameter_pixels / float(patient_imgs.shape[1]) pos_annos.append([anno_index, round(center_float_percent[0], 4), round(center_float_percent[1], 4), round(center_float_percent[2], 4), round(diameter_percent, 4), 1]) anno_index += 1 df_annos = pandas.DataFrame(pos_annos, columns=["anno_index", "coord_x", "coord_y", "coord_z", "diameter", "malscore"]) df_annos.to_csv(settings.LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" + patient_id + "_annos_pos.csv", index=False) return [patient_id, spacing[0], spacing[1], spacing[2]] def process_excluded_annotations_patient(src_path, patient_id): df_node = pandas.read_csv("resources/luna16_annotations/annotations_excluded.csv") dst_dir = settings.LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" if not os.path.exists(dst_dir): os.mkdir(dst_dir) dst_dir = dst_dir + patient_id + "/" if not os.path.exists(dst_dir): os.mkdir(dst_dir) # pos_annos_df = pandas.read_csv(TRAIN_DIR + "metadata/" + patient_id + "_annos_pos_lidc.csv") pos_annos_df = pandas.read_csv(settings.LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" + patient_id + "_annos_pos.csv") pos_annos_manual = None manual_path = settings.EXTRA_DATA_DIR + "luna16_manual_labels/" + patient_id + ".csv" if os.path.exists(manual_path): pos_annos_manual = pandas.read_csv(manual_path) dmm = pos_annos_manual["dmm"] # check itk_img = SimpleITK.ReadImage(src_path) img_array = SimpleITK.GetArrayFromImage(itk_img) print("Img array: ", img_array.shape) df_patient = df_node[df_node["seriesuid"] == patient_id] print("Annos: ", len(df_patient)) num_z, height, width = img_array.shape #heightXwidth constitute the transverse plane origin = numpy.array(itk_img.GetOrigin()) # x,y,z Origin in world coordinates (mm) print("Origin (x,y,z): ", origin) spacing = numpy.array(itk_img.GetSpacing()) # spacing of voxels in world coor. (mm) print("Spacing (x,y,z): ", spacing) rescale = spacing / settings.TARGET_VOXEL_MM print("Rescale: ", rescale) direction = numpy.array(itk_img.GetDirection()) # x,y,z Origin in world coordinates (mm) print("Direction: ", direction) flip_direction_x = False flip_direction_y = False if round(direction[0]) == -1: origin[0] *= -1 direction[0] = 1 flip_direction_x = True print("Swappint x origin") if round(direction[4]) == -1: origin[1] *= -1 direction[4] = 1 flip_direction_y = True print("Swappint y origin") print("Direction: ", direction) assert abs(sum(direction) - 3) < 0.01 patient_imgs = helpers.load_patient_images(patient_id, settings.LUNA16_EXTRACTED_IMAGE_DIR, "*_i.png") neg_annos = [] df_patient = df_node[df_node["seriesuid"] == patient_id] anno_index = 0 for index, annotation in df_patient.iterrows(): node_x = annotation["coordX"] if flip_direction_x: node_x *= -1 node_y = annotation["coordY"] if flip_direction_y: node_y *= -1 node_z = annotation["coordZ"] center_float = numpy.array([node_x, node_y, node_z]) center_int = numpy.rint((center_float-origin) / spacing) center_float_rescaled = (center_float - origin) / settings.TARGET_VOXEL_MM center_float_percent = center_float_rescaled / patient_imgs.swapaxes(0, 2).shape # center_int = numpy.rint((center_float - origin) ) # print("Node sca (x,y,z,diam): ", (center_float_rescaled[0], center_float_rescaled[1], center_float_rescaled[2])) diameter_pixels = 6 / settings.TARGET_VOXEL_MM diameter_percent = diameter_pixels / float(patient_imgs.shape[1]) ok = True for index, row in pos_annos_df.iterrows(): pos_coord_x = row["coord_x"] * patient_imgs.shape[2] pos_coord_y = row["coord_y"] * patient_imgs.shape[1] pos_coord_z = row["coord_z"] * patient_imgs.shape[0] diameter = row["diameter"] * patient_imgs.shape[2] print((pos_coord_x, pos_coord_y, pos_coord_z)) print(center_float_rescaled) dist = math.sqrt(math.pow(pos_coord_x - center_float_rescaled[0], 2) + math.pow(pos_coord_y - center_float_rescaled[1], 2) + math.pow(pos_coord_z - center_float_rescaled[2], 2)) if dist < (diameter + 64): # make sure we have a big margin ok = False print("################### Too close", center_float_rescaled) break if pos_annos_manual is not None and ok: for index, row in pos_annos_manual.iterrows(): pos_coord_x = row["x"] * patient_imgs.shape[2] pos_coord_y = row["y"] * patient_imgs.shape[1] pos_coord_z = row["z"] * patient_imgs.shape[0] diameter = row["d"] * patient_imgs.shape[2] print((pos_coord_x, pos_coord_y, pos_coord_z)) print(center_float_rescaled) dist = math.sqrt(math.pow(pos_coord_x - center_float_rescaled[0], 2) + math.pow(pos_coord_y - center_float_rescaled[1], 2) + math.pow(pos_coord_z - center_float_rescaled[2], 2)) if dist < (diameter + 72): # make sure we have a big margin ok = False print("################### Too close", center_float_rescaled) break if not ok: continue neg_annos.append([anno_index, round(center_float_percent[0], 4), round(center_float_percent[1], 4), round(center_float_percent[2], 4), round(diameter_percent, 4), 1]) anno_index += 1 df_annos = pandas.DataFrame(neg_annos, columns=["anno_index", "coord_x", "coord_y", "coord_z", "diameter", "malscore"]) df_annos.to_csv(settings.LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" + patient_id + "_annos_excluded.csv", index=False) return [patient_id, spacing[0], spacing[1], spacing[2]] def process_luna_candidates_patient(src_path, patient_id): dst_dir = settings.LUNA16_EXTRACTED_IMAGE_DIR + "/_labels/" img_dir = dst_dir + patient_id + "/" df_pos_annos =
pandas.read_csv(dst_dir + patient_id + "_annos_pos_lidc.csv")
pandas.read_csv
import pandas as pd def find_ms(df): subset_index = df[['BMI', 'Systolic', 'Diastolic', 'Triglyceride', 'HDL-C', 'Glucose', 'Total Cholesterol', 'Gender']].dropna().index df = df.ix[subset_index] df_bmi_lo = df.loc[df['BMI']<25.0,:] df_bmi_hi = df.loc[df['BMI']>=25.0,:] df_bmi_hi['TG-s'] = df_bmi_hi['Triglyceride']>=150.0 df_bmi_hi['Gluc-s'] = df_bmi_hi['Glucose'] >= 100.0 df_bmi_hi['Systolic-s'] = df_bmi_hi['Systolic']>=130.0 df_bmi_hi['Diastolic-s'] = df_bmi_hi['Diastolic'] >=85.0 df_bmi_hi['TG-s'] = df_bmi_hi['TG-s'].astype(int) df_bmi_hi['Gluc-s'] = df_bmi_hi['Gluc-s'].astype(int) df_bmi_hi['BP-s'] = df_bmi_hi['Systolic-s'] | df_bmi_hi['Diastolic-s'] df_bmi_hi['BP-s'] = df_bmi_hi['BP-s'].astype(int) male_df_bmi_hi = df_bmi_hi[df_bmi_hi['Gender'] == 1] female_df_bmi_hi = df_bmi_hi[df_bmi_hi['Gender'] == 2] male_df_bmi_hi['HDL-C-s'] = male_df_bmi_hi['HDL-C'] < 40.0 female_df_bmi_hi['HDL-C-s'] = female_df_bmi_hi['HDL-C'] < 50.0 female_df_bmi_hi['HDL-C-s'] = female_df_bmi_hi['HDL-C-s'].astype(int) male_df_bmi_hi['HDL-C-s'] = male_df_bmi_hi['HDL-C-s'].astype(int) male_df_bmi_hi['MS'] = male_df_bmi_hi[['BP-s', 'Gluc-s', 'TG-s', 'HDL-C-s']].sum(axis=1) female_df_bmi_hi['MS'] = female_df_bmi_hi[['BP-s', 'Gluc-s', 'TG-s', 'HDL-C-s']].sum(axis=1) df_bmi_lo['MS'] = 0 return
pd.concat([df_bmi_lo, male_df_bmi_hi, female_df_bmi_hi])
pandas.concat
# -*- coding:utf-8 -*- # =========================================================================== # # Project : Data Mining # # File : \mymain.py # # Python : 3.9.1 # # --------------------------------------------------------------------------- # # Author : <NAME> # # Company : nov8.ai # # Email : <EMAIL> # # URL : https://github.com/john-james-sf/Data-Mining/ # # --------------------------------------------------------------------------- # # Created : Tuesday, March 9th 2021, 12:24:24 am # # Last Modified : Tuesday, March 9th 2021, 12:24:24 am # # Modified By : <NAME> (<EMAIL>) # # --------------------------------------------------------------------------- # # License : BSD # # Copyright (c) 2021 nov8.ai # # =========================================================================== # # =========================================================================== # # 1. LIBRARIES # # =========================================================================== # #%% # System and python libraries from abc import ABC, abstractmethod import datetime import glob import itertools from joblib import dump, load import os import pickle import time import uuid # Manipulating, analyzing and processing data from collections import OrderedDict import numpy as np import pandas as pd import scipy as sp from scipy.stats.stats import pearsonr, f_oneway from sklearn.base import BaseEstimator, TransformerMixin from sklearn.compose import ColumnTransformer from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer, SimpleImputer from sklearn.neighbors import LocalOutlierFactor from sklearn.preprocessing import FunctionTransformer, StandardScaler from sklearn.preprocessing import OneHotEncoder, PowerTransformer from category_encoders import TargetEncoder, LeaveOneOutEncoder # Feature and model selection and evaluation from sklearn.feature_selection import RFECV, SelectKBest from sklearn.feature_selection import VarianceThreshold, f_regression from sklearn.metrics import make_scorer, mean_squared_error from sklearn.model_selection import KFold from sklearn.pipeline import make_pipeline, Pipeline, FeatureUnion from sklearn.model_selection import GridSearchCV # Regression based estimators from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet # Tree-based estimators from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import AdaBoostRegressor, BaggingRegressor, ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.tree import DecisionTreeRegressor # Visualizing data import seaborn as sns import matplotlib.pyplot as plt from tabulate import tabulate # Utilities from utils import notify, PersistEstimator, comment, print_dict, print_dict_keys # Data Source from data import AmesData pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pandas.set_option
""" The SamplesFrame class is an extended Pandas DataFrame, offering additional methods for validation of hydrochemical data, calculation of relevant ratios and classifications. """ import logging import numpy as np import pandas as pd from phreeqpython import PhreeqPython from hgc.constants import constants from hgc.constants.constants import mw @pd.api.extensions.register_dataframe_accessor("hgc") class SamplesFrame(object): """ DataFrame with additional hydrochemistry-specific methods. All HGC methods and attributes defined in this class are available in the namespace 'hgc' of the Dataframe. Examples -------- To use HGC methods, we always start from a Pandas DataFrame:: import pandas as pd import hgc # We start off with an ordinary DataFrame df = pd.DataFrame({'Cl': [1,2,3], 'Mg': [11,12,13]}) # Since we imported hgc, the HGC-methods become available # on the DataFrame. This allows for instance to use HGC's # validation function df.hgc.is_valid False df.hgc.make_valid() """ def __init__(self, pandas_obj): self._obj = pandas_obj self._pp = PhreeqPython() # bind 1 phreeqpython instance to the dataframe self._valid_atoms = constants.atoms self._valid_ions = constants.ions self._valid_properties = constants.properties @staticmethod def _clean_up_phreeqpython_solutions(solutions): """ This is a convenience function that removes all the phreeqpython solution in `solutions` from memory. Parameters ---------- solutions : list python list containing of phreeqpython solutions """ _ = [s.forget() for s in solutions] def _check_validity(self, verbose=True): """ Check if the dataframe is a valid HGC dataframe Notes ----- Checks are: 1. Are there any columns names in the recognized parameter set? 2. Are there no strings in the recognized columns (except '<' and '>')? 3. Are there negative concentrations in the recognized columns? """ obj = self._obj if verbose: logging.info("Checking validity of DataFrame for HGC...") # Define allowed columns that contain concentration values allowed_concentration_columns = (list(constants.atoms.keys()) + list(constants.ions.keys())) hgc_cols = self.hgc_cols neg_conc_cols = [] invalid_str_cols = [] # Check the columns for (in)valid values for col in hgc_cols: # check for only numeric values if obj[col].dtype in ('object', 'str'): if not all(obj[col].str.isnumeric()): invalid_str_cols.append(col) # check for non-negative concentrations elif (col in allowed_concentration_columns) and (any(obj[col] < 0)): neg_conc_cols.append(col) is_valid = ((len(hgc_cols) > 0) and (len(neg_conc_cols) == 0) and (len(invalid_str_cols) == 0)) if verbose: logging.info(f"DataFrame contains {len(hgc_cols)} HGC-columns") if len(hgc_cols) > 0: logging.info(f"Recognized HGC columns are: {','.join(hgc_cols)}") logging.info(f'These columns of the dataframe are not used by HGC: {set(obj.columns)-set(hgc_cols)}') logging.info(f"DataFrame contains {len(neg_conc_cols)} HGC-columns with negative concentrations") if len(neg_conc_cols) > 0: logging.info(f"Columns with negative concentrations are: {','.join(neg_conc_cols)}") logging.info(f"DataFrame contains {len(invalid_str_cols)} HGC-columns with invalid values") if len(invalid_str_cols) > 0: logging.info(f"Columns with invalid strings are: {','.join(invalid_str_cols)}. Only '<' and '>' and numeric values are allowed.") if is_valid: logging.info("DataFrame is valid") else: logging.info("DataFrame is not HGC valid. Use the 'make_valid' method to automatically resolve issues") return is_valid @property def allowed_hgc_columns(self): """ Returns allowed columns of the hgc SamplesFrame""" return (list(constants.atoms.keys()) + list(constants.ions.keys()) + list(constants.properties.keys())) @property def hgc_cols(self): """ Return the columns that are used by hgc """ return [item for item in self.allowed_hgc_columns if item in self._obj.columns] @property def is_valid(self): """ returns a boolean indicating that the columns used by hgc have valid values """ is_valid = self._check_validity(verbose=False) return is_valid def _make_input_df(self, cols_req): """ Make input DataFrame for calculations. This DataFrame contains columns for each required parameter, which is 0 in case the parameter is not present in original HGC frame. It also replaces all NaN with 0. """ if not self.is_valid: raise ValueError("Method can only be used on validated HGC frames, use 'make_valid' to validate") df_in = pd.DataFrame(columns=cols_req) for col_req in cols_req: if col_req in self._obj: df_in[col_req] = self._obj[col_req] else: logging.info(f"Column {col_req} is not present in DataFrame, assuming concentration 0 for this compound for now.") df_in = df_in.fillna(0.0) return df_in def _replace_detection_lim(self, rule="half"): """ Substitute detection limits according to one of the available rules. Cells that contain for example '<0.3' or '> 0.3' will be replaced with 0.15 and 0.45 respectively (in case of rule "half"). Parameters ---------- rule : str, default 'half' Can be any of "half" or "at"... Rule "half" replaces cells with detection limit for half of the value. Rule "at" replaces detection limit cells with the exact value of the detection limit. """ for col in self.hgc_cols: if self._obj[col].dtype in ('object', 'str'): is_below_dl = self._obj[col].str.contains(pat=r'^[<]\s*\d').fillna(False) is_above_dl = self._obj[col].str.contains(pat=r'^[>]\s*\d').fillna(False) if rule == 'half': self._obj.loc[is_below_dl, col] = self._obj.loc[is_below_dl, col].str.extract(r'(\d+)').astype(np.float64) / 2 self._obj.loc[is_above_dl, col] = self._obj.loc[is_above_dl, col].str.extract(r'(\d+)').astype(np.float64) + \ (self._obj.loc[is_above_dl, col].str.extract(r'(\d+)').astype(np.float64) / 2) elif rule == 'on': self._obj[col] = self._obj.loc[col].str.extract(r'(\d+)').astype(np.float64) def _replace_negative_concentrations(self): """ Replace any negative concentrations with 0. """ # Get all columns that represent chemical compounds # Replace negatives with 0 for col in self.hgc_cols: self._obj.loc[self._obj[col] < 0, col] = 0 def _cast_datatypes(self): """ Convert all HGC-columns to their correct data type. """ for col in self.hgc_cols: if self._obj[col].dtype in ('object', 'str'): self._obj[col] = pd.to_numeric(self._obj[col], errors='coerce') def consolidate(self, use_ph='field', use_ec='lab', use_so4='ic', use_o2='field', use_temp='field', use_alkalinity='alkalinity', merge_on_na=False, inplace=True): """ Consolidate parameters measured with different methods to one single parameter. Parameters such as EC and pH are frequently measured both in the lab and field, and SO4 and PO4 are frequently measured both by IC and ICP-OES. Normally we prefer the field data for EC and pH, but ill calibrated sensors or tough field circumstances may prevent these readings to be superior to the lab measurement. This method allows for quick selection of the preferred measurement method for each parameter and select that for further analysis. For each consolidated parameter HGC adds a new column that is either filled with the lab measurements or the field measurements. It is also possible to fill it with the preferred method, and fill remaining NaN's with measurements gathered with the other possible method. Parameters ---------- use_ph : {'lab', 'field', None}, default 'field' Which pH to use? Ignored if None. use_ec : {'lab', 'field', None}, default 'lab' Which EC to use? use_so4 : {'ic', 'field', None}, default 'ic' Which SO4 to use? use_o2 : {'lab', 'field', None}, default 'field' Which O2 to use? use_alkalinity: str, default 'alkalinity' name of the column to use for alkalinity merge_on_na : bool, default False Fill NaN's from one measurement method with measurements from other method. inplace : bool, default True Modify SamplesFrame in place. inplace=False is not allowed Raises ------ ValueError: if one of the `use_` parameters is set to a column that is not in the dataframe *or* if one of the default parameters is not in the dataframe while it is not set to None. """ if not self.is_valid: raise ValueError("Method can only be used on validated HGC frames, use 'make_valid' to validate") if inplace is False: raise NotImplementedError('inplace=False is not (yet) implemented.') param_mapping = { 'ph': use_ph, 'ec': use_ec, 'SO4': use_so4, 'O2': use_o2, 'temp': use_temp, } if not (use_alkalinity in ['alkalinity', None]): try: self._obj['alkalinity'] = self._obj[use_alkalinity] self._obj.drop(columns=[use_alkalinity], inplace=True) except KeyError: raise ValueError(f"Invalid value for argument 'use_alkalinity': " + f"{use_alkalinity}. It is not a column name of " + f"the dataframe") for param, method in param_mapping.items(): if not method: # user did not specify source, ignore continue if not isinstance(method, str): raise ValueError(f"Invalid method {method} for parameter {param}. Arg should be a string.") if param in self._obj.columns: logging.info(f"Parameter {param} already present in DataFrame, ignoring. Remove column manually to enable consolidation.") continue source = f"{param}_{method}" if source in self._obj.columns: source_val = self._obj[source] if any(np.isnan(source_val)): raise ValueError('Nan value for column {source}') self._obj[param] = np.NaN self._obj[param].fillna(source_val, inplace=True) if merge_on_na: raise NotImplementedError('merge_on_na is True is not implemented (yet).') # Drop source columns suffixes = ('_field', '_lab', '_ic') cols = [param + suffix for suffix in suffixes] self._obj.drop(columns=cols, inplace=True, errors='ignore') else: raise ValueError(f"Column {source} not present in DataFrame. Use " + f"use_{param.lower()}=None to explicitly ignore consolidating " + f"this column.") def get_bex(self, watertype="G", inplace=True): """ Get Base Exchange Index (meq/L). By default this is the BEX without dolomite. Parameters ---------- watertype : {'G', 'P'}, default 'G' Watertype (Groundwater or Precipitation) Returns ------- pandas.Series Series with for each row in the original. """ cols_req = ('Na', 'K', 'Mg', 'Cl') df = self._make_input_df(cols_req) df_out = pd.DataFrame() #TODO: calculate alphas on the fly from SMOW constants alpha_na = 0.556425145165362 # ratio of Na to Cl in SMOW alpha_k = 0.0206 # ratio of K to Cl in SMOW alpha_mg = 0.0667508204998738 # ratio of Mg to Cl in SMOW only_p_and_t = True if watertype == "P" and only_p_and_t: df_out['Na_nonmarine'] = df['Na'] - 1.7972 * alpha_na*df['Na'] df_out['K_nonmarine'] = df['K'] - 1.7972 * alpha_k*df['Na'] df_out['Mg_nonmarine'] = df['Mg'] - 1.7972 * alpha_mg*df['Na'] else: df_out['Na_nonmarine'] = df['Na'] - alpha_na*df['Cl'] df_out['K_nonmarine'] = df['K'] - alpha_k*df['Cl'] df_out['Mg_nonmarine'] = df['Mg'] - alpha_mg*df['Cl'] df_out['bex'] = df_out['Na_nonmarine']/22.99 + df_out['K_nonmarine']/39.098 + df_out['Mg_nonmarine']/12.153 if inplace: self._obj['bex'] = df_out['bex'] else: return df_out['bex'] def get_ratios(self, inplace=True): """ Calculate common hydrochemical ratios, will ignore any ratios in case their constituents are not present in the SamplesFrame. It is assumed that only HCO<sub>3</sub><sup>-</sup> contributes to the alkalinity. Notes ----- HGC will attempt to calculate the following ratios: * Cl/Br * Cl/Na * Cl/Mg * Ca/Sr * Fe/Mn * HCO3/Ca * 2H/18O * SUVA: UVA254/DOC * HCO3/Sum of anions * HCO3/Sum of Ca and Mg * MONC * COD/DOC Returns ------- pandas.DataFrame DataFrame with computed ratios. """ if not self.is_valid: raise ValueError("Method can only be used on validated HGC frames, use 'make_valid' to validate") df_ratios = pd.DataFrame() ratios = { 'cl_to_br': ['Cl', 'Br'], 'cl_to_na': ['Cl', 'Na'], 'ca_to_mg': ['Cl', 'Mg'], 'ca_to_sr': ['Ca', 'Sr'], 'fe_to_mn': ['Fe', 'Mn'], 'hco3_to_ca': ['alkalinity', 'Ca'], '2h_to_18o': ['2H', '18O'], 'suva': ['uva254', 'doc'], 'hco3_to_sum_anions': ['alkalinity', 'sum_anions'], 'hco3_to_ca_and_mg': ['alkalinity', 'Ca', 'Mg'], 'monc': ['cod', 'Fe', 'NO2', 'doc'], 'cod_to_doc': ['cod', 'Fe', 'NO2', 'doc'] } for ratio, constituents in ratios.items(): has_cols = [const in self._obj.columns for const in constituents] if all(has_cols): if ratio == 'hco3_to_sum_anions': df_ratios[ratio] = self._obj['alkalinity'] / self.get_sum_anions(inplace=False) elif ratio == 'hco3_to_ca_and_mg': df_ratios[ratio] = self._obj['alkalinity'] / (self._obj['Ca'] + self._obj['Mg']) elif ratio == 'monc': df_ratios[ratio] = 4 - 1.5 * (self._obj['cod'] - 0.143 * self._obj['Fe'] - 0.348 * self._obj['NO2']) / (3.95 * self._obj['doc']) elif ratio == 'cod_to_doc': df_ratios[ratio] = ((0.2532 * self._obj['cod'] - 0.143 * self._obj['Fe'] - 0.348 * self._obj['NO2']) / 32) / (self._obj['doc'] / 12) else: df_ratios[ratio] = self._obj[constituents[0]] / self._obj[constituents[1]] else: missing_cols = [i for (i, v) in zip(constituents, has_cols) if not v] logging.info(f"Cannot calculate ratio {ratio} since columns {','.join(missing_cols)} are not present.") if inplace: self._obj[df_ratios.columns] = df_ratios else: return df_ratios def get_stuyfzand_water_type(self, inplace=True): """ Get Stuyfzand water type. This water type classification contains 5 components: Salinity, Alkalinity, Dominant Cation, Dominant Anion and Base Exchange Index. This results in a classification such as for example 'F3CaMix+'. It is assumed that only HCO<sub>3</sub><sup>-</sup> contributes to the alkalinity. Returns ------- pandas.Series Series with Stuyfzand water type of each row in original SamplesFrame. """ if not self.is_valid: raise ValueError("Method can only be used on validated HGC frames, use 'make_valid' to validate") # Create input dataframe containing all required columns # Inherit column values from HGC frame, assume 0 if column # is not present cols_req = ('Al', 'Ba', 'Br', 'Ca', 'Cl', 'Co', 'Cu', 'doc', 'F', 'Fe', 'alkalinity', 'K', 'Li', 'Mg', 'Mn', 'Na', 'Ni', 'NH4', 'NO2', 'NO3', 'Pb', 'PO4', 'ph', 'SO4', 'Sr', 'Zn') df_in = self._make_input_df(cols_req) df_out = pd.DataFrame(index=df_in.index) # Salinity df_out['swt_s'] = 'G' df_out.loc[df_in['Cl'] > 5, 'swt_s'] = 'g' df_out.loc[df_in['Cl'] > 30, 'swt_s'] = 'F' df_out.loc[df_in['Cl'] > 150, 'swt_s'] = 'f' df_out.loc[df_in['Cl'] > 300, 'swt_s'] = 'B' df_out.loc[df_in['Cl'] > 1000, 'swt_s'] = 'b' df_out.loc[df_in['Cl'] > 10000, 'swt_s'] = 'S' df_out.loc[df_in['Cl'] > 20000, 'swt_s'] = 'H' #Alkalinity df_out['swt_a'] = '*' df_out.loc[df_in['alkalinity'] > 31, 'swt_a'] = '0' df_out.loc[df_in['alkalinity'] > 61, 'swt_a'] = '1' df_out.loc[df_in['alkalinity'] > 122, 'swt_a'] = '2' df_out.loc[df_in['alkalinity'] > 244, 'swt_a'] = '3' df_out.loc[df_in['alkalinity'] > 488, 'swt_a'] = '4' df_out.loc[df_in['alkalinity'] > 976, 'swt_a'] = '5' df_out.loc[df_in['alkalinity'] > 1953, 'swt_a'] = '6' df_out.loc[df_in['alkalinity'] > 3905, 'swt_a'] = '7' #Dominant cation s_sum_cations = self.get_sum_cations(inplace=False) df_out['swt_domcat'] = self._get_dominant_anions_of_df(df_in) # Dominant anion s_sum_anions = self.get_sum_anions(inplace=False) cl_mmol = df_in.Cl/mw('Cl') hco3_mmol = df_in.alkalinity/(mw('H') + mw('C') + 3*mw('O')) no3_mmol = df_in.NO3/(mw('N') + 3*mw('O')) so4_mmol = df_in.SO4/(mw('S') + 4*mw('O')) # TODO: consider renaming doman to dom_an or dom_anion is_doman_cl = (cl_mmol > s_sum_anions/2) df_out.loc[is_doman_cl, 'swt_doman'] = "Cl" is_doman_hco3 = ~is_doman_cl & (hco3_mmol > s_sum_anions/2) df_out.loc[is_doman_hco3, 'swt_doman'] = "HCO3" is_doman_so4_or_no3 = ~is_doman_cl & ~is_doman_hco3 & (2*so4_mmol + no3_mmol > s_sum_anions/2) is_doman_so4 = (2*so4_mmol > no3_mmol) df_out.loc[is_doman_so4_or_no3 & is_doman_so4, 'swt_doman'] = "SO4" df_out.loc[is_doman_so4_or_no3 & ~is_doman_so4, 'swt_doman'] = "NO3" is_mix = ~is_doman_cl & ~is_doman_hco3 & ~is_doman_so4_or_no3 df_out.loc[is_mix, 'swt_doman'] = "Mix" # Base Exchange Index s_bex = self.get_bex(inplace=False) threshold1 = 0.5 + 0.02*cl_mmol threshold2 = -0.5-0.02*cl_mmol is_plus = (s_bex > threshold1) & (s_bex > 1.5*(s_sum_cations-s_sum_anions)) is_minus = ~is_plus & (s_bex < threshold2) & (s_bex < 1.5*(s_sum_cations-s_sum_anions)) is_neutral = (~is_plus & ~is_minus & (s_bex > threshold2) & (s_bex < threshold1) & ((s_sum_cations == s_sum_anions) | ((abs(s_bex + threshold1*(s_sum_cations-s_sum_anions))/abs(s_sum_cations-s_sum_anions)) > abs(1.5*(s_sum_cations-s_sum_anions))) ) ) is_none = ~is_plus & ~is_minus & ~is_neutral df_out.loc[is_plus, 'swt_bex'] = '+' df_out.loc[is_minus, 'swt_bex'] = '-' df_out.loc[is_neutral, 'swt_bex'] = 'o' df_out.loc[is_none, 'swt_bex'] = '' #Putting it all together df_out['swt'] = df_out['swt_s'].str.cat(df_out[['swt_a', 'swt_domcat', 'swt_doman', 'swt_bex']]) if inplace: self._obj['water_type'] = df_out['swt'] else: return df_out['swt'] def _get_dominant_anions_of_df(self, df_in): """ calculates the dominant anions of the dataframe df_in """ s_sum_cations = self.get_sum_cations(inplace=False) cols_req = ('ph', 'Na', 'K', 'Ca', 'Mg', 'Fe', 'Mn', 'NH4', 'Al', 'Ba', 'Co', 'Cu', 'Li', 'Ni', 'Pb', 'Sr', 'Zn') df_in = df_in.hgc._make_input_df(cols_req) na_mmol = df_in.Na/mw('Na') k_mmol = df_in.K/mw('K') nh4_mmol = df_in.NH4/(mw('N')+4*mw('H')) ca_mmol = df_in.Ca/mw('Ca') mg_mmol = df_in.Mg/mw('Mg') fe_mmol = df_in.Fe/mw('Fe') mn_mmol = df_in.Mn/mw('Mn') h_mmol = (10**-df_in.ph) / 1000 # ph -> mol/L -> mmol/L al_mmol = 1000. * df_in.Al/mw('Al') # ug/L ->mg/L -> mmol/L # - Na, K, NH4 # select rows that do not have Na, K or NH4 as dominant cation is_no_domcat_na_nh4_k = (na_mmol + k_mmol + nh4_mmol) < (s_sum_cations/2) is_domcat_nh4 = ~is_no_domcat_na_nh4_k & (nh4_mmol > (na_mmol + k_mmol)) is_domcat_na = ~is_no_domcat_na_nh4_k & ~is_domcat_nh4 & (na_mmol > k_mmol) is_domcat_k = ~is_no_domcat_na_nh4_k & ~is_domcat_nh4 & ~is_domcat_na # abbreviation is_domcat_na_nh4_k = is_domcat_na | is_domcat_nh4 | is_domcat_k # - Ca, Mg is_domcat_ca_mg = ( # not na or nh4 or k dominant ~is_domcat_na_nh4_k & ( # should be any of Ca or Mg available ((ca_mmol > 0) | (mg_mmol > 0)) | # should be more of Ca or Mg then sum of H, Fe, Al, Mn # (compensated for charge) (2*ca_mmol+2*mg_mmol < h_mmol+3*al_mmol+2*fe_mmol+2*mn_mmol))) is_domcat_ca = is_domcat_ca_mg & (ca_mmol >= mg_mmol) is_domcat_mg = is_domcat_ca_mg & (ca_mmol < mg_mmol) # - H, Al, Fe, Mn # IF(IF(h_mmol+3*IF(al_mmol)>2*(fe_mol+mn_mol),IF(h_mmol>3*al_mmol,"H","Al"),IF(fe_mol>mn_mol,"Fe","Mn"))) is_domcat_fe_mn_al_h = ( # not na, nh4, k, ca or Mg dominant ~is_domcat_na_nh4_k & ~is_domcat_ca & ~is_domcat_mg & ( # should be any of Fe, Mn, Al or H available (fe_mmol > 0) | (mn_mmol > 0) | (h_mmol > 0) | (al_mmol > 0) # | # # should be more of Ca or Mg then sum of H, Fe, Al, Mn # # (compensated for charge) # (2*ca_mmol+2*mg_mmol < h_mmol+3*al_mmol+2*fe_mmol+2*mn_mmol) ) ) is_domcat_h_al=is_domcat_fe_mn_al_h & ((h_mmol + 3*al_mmol) > (2*fe_mmol + 2*mn_mmol)) is_domcat_h = is_domcat_h_al & (h_mmol > al_mmol) is_domcat_al = is_domcat_h_al & (al_mmol > h_mmol) is_domcat_fe_mn = is_domcat_fe_mn_al_h & ~is_domcat_h_al is_domcat_fe = is_domcat_fe_mn & (fe_mmol > mn_mmol) is_domcat_mn = is_domcat_fe_mn & (mn_mmol > fe_mmol) sr_out = pd.Series(index=df_in.index, dtype='object') sr_out[:] = "" sr_out[is_domcat_nh4] = "NH4" sr_out[is_domcat_na] = "Na" sr_out[is_domcat_k] = "K" sr_out[is_domcat_ca] = 'Ca' sr_out[is_domcat_mg] = 'Mg' sr_out[is_domcat_fe] = 'Fe' sr_out[is_domcat_mn] = 'Mn' sr_out[is_domcat_al] = 'Al' sr_out[is_domcat_h] = 'H' return sr_out def get_dominant_anions(self, inplace=True): """ returns a series with the dominant anions.""" if inplace: self._obj['dominant_anion'] = self._get_dominant_anions_of_df(self._obj) else: return self._get_dominant_anions_of_df(self._obj) def fillna_concentrations(self, how="phreeqc"): """ Calculate missing concentrations based on the charge balance. Parameters ---------- how : {'phreeqc', 'analytic'}, default 'phreeqc' Method to compute missing concentrations. """ raise NotImplementedError() def fillna_ec(self, use_phreeqc=True): """ Calculate missing Electrical Conductivity measurements using known anions and cations. """ if use_phreeqc: # use get_specific_conductance method on # all N/A rows of EC columns raise NotImplementedError() else: raise NotImplementedError() def make_valid(self): """ Try to convert the DataFrame into a valid HGC-SamplesFrame. """ # Conduct conversions here. If they fail, raise error (e.g. when not a single valid column is present) # Important: order is important, first convert strings to double, then replace negative concentrations self._replace_detection_lim() self._cast_datatypes() self._replace_negative_concentrations() self._check_validity(verbose=True) def get_sum_anions(self, inplace=True): """ Calculate sum of anions according to the Stuyfzand method. It is assumed that only HCO<sub>3</sub><sup>-</sup> contributes to the alkalinity. Returns ------- pandas.Series Series with sum of cations for each row in SamplesFrame. """ cols_req = ('Br', 'Cl', 'doc', 'F', 'alkalinity', 'NO2', 'NO3', 'PO4', 'SO4', 'ph') df_in = self._make_input_df(cols_req) s_sum_anions =
pd.Series(index=df_in.index,dtype='float64')
pandas.Series
import tensorflow as tf import tensorflow_graphics.geometry.transformation as tfg import numpy as np import pandas as pd import random import datetime from tensorflow.keras import Input from typing import Generator, Tuple, Dict from pandas import DataFrame from string import Template from loguru import logger from app.resources.constants import ( POS_NET_LOSS, POS_NET_OPTIMIZER, POS_NET_METRICS ) from app.core.config import ( POS_NET_EPOCHS, POS_NET_LEARNING_RATE, SEED ) from app.nn_models.nn_position import build_position random.seed(SEED) np.random.seed(SEED) tf.random.set_seed(SEED) class PosTrainer(object): def __init__(self, building_num: int, df: DataFrame, is_reduced: bool = False): """Constructor for PosTrainer Args: building_num (int): the building number df (DataFrame): a data fram containing the data points. is_reduced (bool, optional): used to do training on a reduced sample. Defaults to False. """ self.building_num = building_num if is_reduced: length = int(df.shape[0] / 12) self.df = df[:length] else: self.df = df self._preprocess_data(self.df) def _preprocess_data(self, df: DataFrame): """_preprocess_data will take data frame and apply quaternion rotations to the accelerometer and gyroscope data. Args: df (DataFrame): a data frame containing the orientation and position data. """ acc = tf.convert_to_tensor(df[["iphoneAccX", "iphoneAccY", "iphoneAccZ"]]) gyro = tf.convert_to_tensor(df[["iphoneGyroX", "iphoneGyroY", "iphoneGyroZ"]]) quats = tf.convert_to_tensor(df[["orientX", "orientY", "orientZ", "orientW"]]) #print(acc[:5,:]) new_acc = tfg.quaternion.rotate(acc, quats).numpy() new_gyro = tfg.quaternion.rotate(gyro, quats).numpy() #print(new_acc[:5,:]) new_df_acc =
pd.DataFrame(data=new_acc, columns=["iphoneAccX", "iphoneAccY", "iphoneAccZ"])
pandas.DataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ @author: rz @email: """ #%% imports import itertools, time, copy from tqdm import tqdm import numpy as np import pandas as pd import torch from torch.autograd import Variable import Levenshtein as Lev from sklearn import metrics from .etdata import ETData from .utils import convertToOneHot #%% setup parameters #%% code def calc_k(gt, pr): ''' Handles error if all samples are from the same class ''' k = 1. if (gt == pr).all() else metrics.cohen_kappa_score(gt, pr) return k def calc_f1(gt, pr): f1 = 1. if (gt == pr).all() else metrics.f1_score(gt, pr) return f1 def calc_KE(etdata_gt, etdata_pr): #calculate event level matches gt_evt_index = [ind for i, n in enumerate(np.diff(etdata_gt.evt[['s', 'e']]).squeeze()) for ind in itertools.repeat(i, n)] pr_evt_index = [ind for i, n in enumerate(np.diff(etdata_pr.evt[['s', 'e']]).squeeze()) for ind in itertools.repeat(i, n)] overlap = np.vstack((gt_evt_index, pr_evt_index)).T overlap_matrix = [_k + [len(list(_g)), False, False] for _k, _g in itertools.groupby(overlap.tolist())] overlap_matrix = pd.DataFrame(overlap_matrix, columns=['gt', 'pr', 'l', 'matched', 'selected']) overlap_matrix['gt_evt'] = etdata_gt.evt.loc[overlap_matrix['gt'], 'evt'].values overlap_matrix['pr_evt'] = etdata_pr.evt.loc[overlap_matrix['pr'], 'evt'].values while not(overlap_matrix['matched'].all()): #select longest overlap ind = overlap_matrix.loc[~overlap_matrix['matched'], 'l'].argmax() overlap_matrix.loc[ind, ['selected']]=True mask_matched = (overlap_matrix['gt']==overlap_matrix.loc[ind, 'gt']).values |\ (overlap_matrix['pr']==overlap_matrix.loc[ind, 'pr']).values overlap_matrix.loc[mask_matched, 'matched'] = True overlap_events = overlap_matrix.loc[overlap_matrix['selected'], ['gt', 'pr', 'gt_evt', 'pr_evt']] #sanity check evt_gt = etdata_gt.evt.loc[overlap_events['gt'], 'evt'] evt_pr = etdata_pr.evt.loc[overlap_events['pr'], 'evt'] #assert (evt_gt.values == evt_pr.values).all() #add not matched events set_gt = set(etdata_gt.evt.index.values) - set(evt_gt.index.values) set_pr = set(etdata_pr.evt.index.values) - set(evt_pr.index.values) evt_gt =
pd.concat((evt_gt, etdata_gt.evt.loc[set_gt, 'evt']))
pandas.concat
#!/usr/bin/env python # coding: utf-8 import argparse from fastai.vision import * from tqdm import tqdm from pathlib import Path import pandas as pd import os import sys from fastai.callbacks import CSVLogger # suppress anoying and irrelevant warning, see https://forums.fast.ai/t/warnings-when-trying-to-make-an-imagedatabunch/56323/9 import warnings warnings.filterwarnings("ignore", category=UserWarning, module="torch.nn.functional") parser = argparse.ArgumentParser() parser.add_argument('--size', dest='size', help='scale images to size', default=256, type=int) parser.add_argument('--bs', dest='bs', help='batch size', default=32, type=int) parser.add_argument('--cuda_device', dest='cuda_device', help='cuda device index', default=0, type=int) parser.add_argument('--confidence', dest='confidence', help='confidence cutoff in percent', default=10, type=int) parser.add_argument('--model', dest='model', help='model, one of resnet34, resnet50, vgg16', default='resnet34', type=str) parser.add_argument('--tfms', dest='tfms', help='transformations, one of the presets no, normal, extreme', default='normal', type=str) parser.add_argument('--loss', dest='loss', help='loss function, one of the presets ce, focal, softdice', default='ce', type=str) args = parser.parse_args() our_models = {"resnet34": models.resnet34, "resnet50": models.resnet50, "vgg16": models.vgg16_bn} our_tfms = { "no": None, "normal": get_transforms(do_flip=False,max_rotate=20,max_lighting=.4,max_zoom=1.2), "extreme": get_transforms(do_flip=True,max_rotate=90,max_lighting=.4,max_zoom=1.2) } if args.loss not in ["ce", "focal", "softdice"]: sys.exit("Unknown loss function") size = args.size bs = args.bs cuda_device = args.cuda_device confidence_cutoff = args.confidence/100 model = our_models[args.model] tfms = our_tfms[args.tfms] name = "noPretrain_{}_{}percent_size{}_{}Tfms_{}Loss".format(args.model,args.confidence,size,args.tfms,args.loss) torch.cuda.set_device(cuda_device) os.mkdir(name) get_y_fn = lambda x: str(x).replace("images", "masks_2class") imgList = pd.read_csv("nifti/image_list_filtered_score.tsv", sep="\t") filteredList = imgList[imgList.score<=confidence_cutoff] src = (SegmentationItemList.from_df(filteredList,path="nifti",cols="file") .split_from_df(col='is_val') .label_from_func(get_y_fn, classes=np.array(["background","left_ventricle","myocardium"]))) data = (src.transform(tfms,size=size,padding_mode="zeros",resize_method=ResizeMethod.PAD,tfm_y=True) .databunch(bs=bs) .normalize(imagenet_stats)) def acc_seg(input, target): target = target.squeeze(1) return (input.argmax(dim=1)==target).float().mean() def multi_dice(input:Tensor, targs:Tensor, class_id=0, inverse=False)->Rank0Tensor: n = targs.shape[0] input = input.argmax(dim=1).view(n,-1) # replace all with class_id with 1 all else with 0 to have binary case output = (input == class_id).float() # same for targs targs = (targs.view(n,-1) == class_id).float() if inverse: output = 1 - output targs = 1 - targs intersect = (output * targs).sum(dim=1).float() union = (output+targs).sum(dim=1).float() res = 2. * intersect / union res[torch.isnan(res)] = 1 return res.mean() dice0inv = partial(multi_dice, class_id=0, inverse=True) dice1 = partial(multi_dice, class_id=1) dice2 = partial(multi_dice, class_id=2) dice0inv.__name__ = 'diceComb' dice1.__name__ = 'diceLV' dice2.__name__ = 'diceMY' class SoftDiceLoss(nn.Module): ''' WARNING: this implementation does not work in our case, assumes one hot and channel last - need to restructure or re-write Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions. Assumes the `channels_last` format. # Arguments targets: b x X x Y( x Z...) x c One hot encoding of ground truth inputs: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax) epsilon: Used for numerical stability to avoid divide by zero errors # References https://www.jeremyjordan.me/semantic-segmentation/ (https://gist.github.com/jeremyjordan/9ea3032a32909f71dd2ab35fe3bacc08#file-soft_dice_loss-py) V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation https://arxiv.org/abs/1606.04797 More details on Dice loss formulation https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72) Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022 ''' def __init__(self, epsilon=1e-8): super().__init__() self.epsilon = epsilon def forward(self, inputs, targets): # skip the batch and class axis for calculating Dice score print(inputs.shape) print(inputs) print(targets.shape) print(targets) axes = tuple(range(1, len(inputs.shape)-1)) numerator = 2. * np.sum(inputs * targets, axes) denominator = np.sum(np.square(inputs) + np.square(targets), axes) return 1 - np.mean(numerator / (denominator + self.epsilon)) # average over classes and batch # adjusted from https://forums.fast.ai/t/loss-function-of-unet-learner-flattenedloss-of-crossentropyloss/51605 class FocalLoss(nn.Module): def __init__(self, gamma=2., reduction='mean'): super().__init__() self.gamma = gamma self.reduction = reduction def forward(self, inputs, targets): CE_loss = CrossEntropyFlat(axis=1,reduction='none')(inputs, targets) pt = torch.exp(-CE_loss) F_loss = ((1 - pt)**self.gamma) * CE_loss if self.reduction == 'sum': return F_loss.sum() elif self.reduction == 'mean': return F_loss.mean() learn = unet_learner(data, model, pretrained=False, metrics=[acc_seg,dice0inv,dice1,dice2], callback_fns=[partial(CSVLogger, append=True, filename="train_log")], path=name) if args.loss == "focal": learn.loss_func = FocalLoss() if args.loss == "softdice": learn.loss_func = SoftDiceLoss() learn.unfreeze() lr_find(learn) fig = learn.recorder.plot(return_fig=True) fig.savefig(name+"/lrfind_unfreeze.png") lr=1e-5 learn.fit_one_cycle(5, lr) learn.save(name+'-unfreeze-5') fig = learn.recorder.plot_losses(return_fig=True) fig.savefig(name+"/unfreeze-5.png") learn.fit_one_cycle(10, lr) learn.save(name+'-unfreeze-15') fig = learn.recorder.plot_losses(return_fig=True) fig.savefig(name+"/unfreeze-15.png") learn.fit_one_cycle(15, lr) learn.save(name+'-unfreeze-30') fig = learn.recorder.plot_losses(return_fig=True) fig.savefig(name+"/unfreeze-30.png") learn.export('model.pkl') # Make Predictions fullImgList =
pd.read_csv("nifti/image_list.tsv", sep="\t", header=None, names=["pid","file"])
pandas.read_csv
import pandas as pd import os.path import datetime data_path=os.path.dirname(__file__)+'/' #combined_df = pd.read_csv(data_path+"combined_duty-b2nb_nb2b.csv") combined_df = pd.read_csv(data_path+"combined_duty-b2b.csv") #combined_df=combined_df.head(91) j=1 final_df=pd.DataFrame() combined_df["pairID"]="" toggle=True hour_8=datetime.timedelta(hours=+8) temp1="" combined_df['OrgUTC'] =
pd.to_datetime(combined_df['OrgUTC'])
pandas.to_datetime
import pymongo from PyQt5 import QtCore import pandas as pd import time from bson.objectid import ObjectId from nspyre.utils import get_mongo_client import traceback class DropEvent(): """Represents a drop of a collection in a certain database""" def __init__(self, db, col): self.db, self.col = db, col def modify_df(df, change): # print(change) if change['operationType'] == 'drop': return DropEvent(change['ns']['db'], change['ns']['coll']), None key = change['documentKey']['_id'] if change['operationType'] == 'update': for k, val in change['updateDescription']['updatedFields'].items(): ks = k.split('.') if len(ks) == 1: df.loc[key, k] = val elif len(ks) == 2: # TODO: Figure out a more reliable way of doing this if ks[1].isdigit(): # Assume an array here... Will see if we can get away with this df.loc[key,ks[0]][int(ks[1])] = val else: df.loc[key,ks[0]][ks[1]] = val else: raise NotImplementedError('Cannot use a dept of more then 2 in the documents') elif change['operationType'] == 'insert': doc = change['fullDocument'] _id = doc.pop('_id') s = pd.Series(doc, name=_id) df = df.append(s) else: raise NotImplementedError('Cannot modify df with operationType: {}'.format(change['operationType'])) return df, df.loc[key] class Mongo_Listenner(QtCore.QThread): """Qt Thread which monitors for changes to qither a collection or a database and emits a signal when something happens""" updated = QtCore.pyqtSignal(object) def __init__(self, db_name, col_name=None, mongodb_addr=None): super().__init__() self.db_name = db_name self.col_name = col_name self.mongodb_addr = mongodb_addr self.exit_flag = False def run(self): self.exit_flag = False # Connect client = get_mongo_client(self.mongodb_addr) mongo_obj = client[self.db_name] if not self.col_name is None: mongo_obj = mongo_obj[self.col_name] with mongo_obj.watch() as stream: while stream.alive: doc = stream.try_next() if doc is not None: self.updated.emit(doc) if self.exit_flag: return if not self.exit_flag: self.run() #This takes care of the invalidate event which stops the change_stream cursor class Synched_Mongo_Collection(QtCore.QObject): updated_row = QtCore.pyqtSignal(object) # Emit the updated row # mutex = QtCore.QMutex() def __init__(self, db_name, col_name, mongodb_addr=None): super().__init__() self.watcher = Mongo_Listenner(db_name, col_name=col_name, mongodb_addr=mongodb_addr) self.col = get_mongo_client(mongodb_addr)[db_name][col_name] self.refresh_all() self.watcher.start() self.watcher.updated.connect(self._update_df) def refresh_all(self): col = list(self.col.find()) if col == []: self.df = None else: self.df = pd.DataFrame(col) self.df.set_index('_id', inplace=True) def get_df(self): # self.mutex.lock() return self.df @QtCore.pyqtSlot(object) def _update_df(self, change): if self.db is None: self.refresh_all() # print(change) try: self.df, row = modify_df(self.df, change) self.updated_row.emit(row) except: traceback.print_exc() print('Refreshing the entire collection') self.refresh_all() # self.refresh_all() #I will make this a little more efficient later on def __del__(self): self.watcher.exit_flag = True class Synched_Mongo_Database(QtCore.QObject): updated_row = QtCore.pyqtSignal(object, object) # Emit the updated row in the format (col_name, row) col_added = QtCore.pyqtSignal(object) # Emit the name of the collection which was added col_dropped = QtCore.pyqtSignal(object) # Emit the name of the collection which was dropped db_dropped = QtCore.pyqtSignal() #Emitted when the database is dropped def __init__(self, db_name, mongodb_addr=None): super().__init__() self.watcher = Mongo_Listenner(db_name, col_name=None, mongodb_addr=mongodb_addr) self.db = get_mongo_client(mongodb_addr)[db_name] self.refresh_all() self.watcher.start() self.watcher.updated.connect(self._update) def refresh_all(self): self.dfs = dict() for col in self.db.list_collection_names(): col_data = list(self.db[col].find()) if not col_data == []: self.dfs[col] = pd.DataFrame(col_data) self.dfs[col].set_index('_id', inplace=True) def get_df(self, col_name, timeout=0.1): try: if not self.dfs[col_name] is None: return self.dfs[col_name] finally: t = time.time() while time.time()-t<timeout: if col_name in self.dfs: return self.dfs[col_name] @QtCore.pyqtSlot(object) def _update(self, change): # print(change) try: if change['operationType'] == 'dropDatabase': self.dfs = dict() self.db_dropped.emit() return elif change['operationType'] == 'invalidate': return col = change['ns']['coll'] if col in self.dfs: df, row = modify_df(self.dfs[col], change) if isinstance(df, DropEvent): self.dfs.pop(col) self.col_dropped.emit(col) return self.dfs[col] = df self.updated_row.emit(col, row) else: doc = change['fullDocument'] row =
pd.Series(doc)
pandas.Series
# -*- coding: utf-8 -*- """Primary wepy simulation database driver and access API using the HDF5 format. The HDF5 Format Specification ============================= As part of the wepy framework this module provides a fully-featured API for creating and accessing data generated in weighted ensemble simulations run with wepy. The need for a special purpose format is many-fold but primarily it is the nonlinear branching structure of walker trajectories coupled with weights. That is for standard simulations data is organized as independent linear trajectories of frames each related linearly to the one before it and after it. In weighted ensemble due to the resampling (i.e. cloning and merging) of walkers, a single frame may have multiple 'child' frames. This is the primary motivation for this format. However, in practice it solves several other issues and itself is a more general and flexible format than for just weighted ensemble simulations. Concretely the WepyHDF5 format is simply an informally described schema that is commensurable with the HDF5 constructs of hierarchical groups (similar to unix filesystem directories) arranged as a tree with datasets as the leaves. The hierarchy is fairly deep and so we will progress downwards from the top and describe each broad section in turn breaking it down when necessary. Header ------ The items right under the root of the tree are: - runs - topology - _settings The first item 'runs' is itself a group that contains all of the primary data from simulations. In WepyHDF5 the run is the unit dataset. All data internal to a run is self contained. That is for multiple dependent trajectories (e.g. from cloning and merging) all exist within a single run. This excludes metadata-like things that may be needed for interpreting this data, such as the molecular topology that imposes structure over a frame of atom positions. This information is placed in the 'topology' item. The topology field has no specified internal structure at this time. However, with the current implementation of the WepyHDF5Reporter (which is the principal implementation of generating a WepyHDF5 object/file from simulations) this is simply a string dataset. This string dataset should be a JSON compliant string. The format of which is specified elsewhere and was borrowed from the mdtraj library. Warning! this format and specification for the topology is subject to change in the future and will likely be kept unspecified indefinitely. For most intents and purposes (which we assume to be for molecular or molecular-like simulations) the 'topology' item (and perhaps any other item at the top level other than those proceeded by and underscore, such as in the '_settings' item) is merely useful metadata that applies to ALL runs and is not dynamical. In the language of the orchestration module all data in 'runs' uses the same 'apparatus' which is the function that takes in the initial conditions for walkers and produces new walkers. The apparatus may differ in the specific values of parameters but not in kind. This is to facilitate runs that are continuations of other runs. For these kinds of simulations the state of the resampler, boundary conditions, etc. will not be as they were initially but are the same in kind or type. All of the necessary type information of data in runs is kept in the '_settings' group. This is used to serialize information about the data types, shapes, run to run continuations etc. This allows for the initialization of an empty (no runs) WepyHDF5 database at one time and filling of data at another time. Otherwise types of datasets would have to be inferred from the data itself, which may not exist yet. As a convention items which are preceeded by an underscore (following the python convention) are to be considered hidden and mechanical to the proper functioning of various WepyHDF5 API features, such as sparse trajectory fields. The '_settings' is specified as a simple key-value structure, however values may be arbitrarily complex. Runs ---- The meat of the format is contained within the runs group: - runs - 0 - 1 - 2 - ... Under the runs group are a series of groups for each run. Runs are named according to the order in which they were added to the database. Within a run (say '0' from above) we have a number of items: - 0 - init_walkers - trajectories - decision - resampling - resampler - warping - progress - boundary_conditions Trajectories ^^^^^^^^^^^^ The 'trajectories' group is where the data for the frames of the walker trajectories is stored. Even though the tree-like trajectories of weighted ensemble data may be well suited to having a tree-like storage topology we have opted to use something more familiar to the field, and have used a collection of linear "trajectories". This way of breaking up the trajectory data coupled with proper records of resampling (see below) allows for the imposition of a tree structure without committing to that as the data storage topology. This allows the WepyHDF5 format to be easily used as a container format for collections of linear trajectories. While this is not supported in any real capacity it is one small step to convergence. We feel that a format that contains multiple trajectories is important for situations like weighted ensemble where trajectories are interdependent. The transition to a storage format like HDF5 however opens up many possibilities for new features for trajectories that have not occurred despite several attempts to forge new formats based on HDF5 (TODO: get references right; see work in mdtraj and MDHDF5). Perhaps these formats have not caught on because the existing formats (e.g. XTC, DCD) for simple linear trajectories are good enough and there is little motivation to migrate. However, by making the WepyHDF5 format (and related sub-formats to be described e.g. record groups and the trajectory format) both cover a new use case which can't be achieved with old formats and old ones with ease. Once users see the power of using a format like HDF5 from using wepy they may continue to use it for simpler simulations. In any case the 'trajectories' in the group for weighted ensemble simulations should be thought of only as containers and not literally as trajectories. That is frame 4 does not necessarily follow from frame 3. So one may think of them more as "lanes" or "slots" for trajectory data that needs to be stitched together with the appropriate resampling records. The routines and methods for generating contiguous trajectories from the data in WepyHDF5 are given through the 'analysis' module, which generates "traces" through the dataset. With this in mind we will describe the sub-format of a trajectory now. The 'trajectories' group is similar to the 'runs' group in that it has sub-groups whose names are numbers. These numbers however are not the order in which they are created but an index of that trajectory which are typically laid out all at once. For a wepy simulation with a constant number of walkers you will only ever need as many trajectories/slots as there are walkers. So if you have 8 walkers then you will have trajectories 0 through 7. Concretely: - runs - 0 - trajectories - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 If we look at trajectory 0 we might see the following groups within: - positions - box_vectors - velocities - weights Which is what you would expect for a constant pressure molecular dynamics simulation where you have the positions of the atoms, the box size, and velocities of the atoms. The particulars for what "fields" a trajectory in general has are not important but this important use-case is directly supported in the WepyHDF5 format. In any such simulation, however, the 'weights' field will appear since this is the weight of the walker of this frame and is a value important to weighted ensemble and not the underlying dynamics. The naive approach to these fields is that each is a dataset of dimension (n_frames, feature_vector_shape[0], ...) where the first dimension is the cycle_idx and the rest of the dimensions are determined by the atomic feature vector for each field for a single frame. For example, the positions for a molecular simulation with 100 atoms with x, y, and z coordinates that ran for 1000 cycles would be a dataset of the shape (1000, 100, 3). Similarly the box vectors would be (1000, 3, 3) and the weights would be (1000, 1). This uniformity vastly simplifies accessing and adding new variables and requires that individual state values in walkers always be arrays with shapes, even when they are single values (e.g. energy). The exception being the weight which is handled separately. However, this situation is actually more complex to allow for special features. First of all is the presence of compound fields which allow nesting of multiple groups. The above "trajectory fields" would have identifiers such as the literal strings 'positions' and 'box_vectors', while a compound field would have an identifier 'observables/rmsd' or 'alt_reps/binding_site'. Use of trajectory field names using the '/' path separator will automatically make a field a group and the last element of the field name the dataset. So for the observables example we might have: - 0 - observables - rmsd - sasa Where the rmsd would be accessed as a trajectory field of trajectory 0 as 'observables/rmsd' and the solvent accessible surface area as 'observables/sasa'. This example introduces how the WepyHDF5 format is not only useful for storing data produced by simulation but also in the analysis of that data and computation of by-frame quantities. The 'observables' compound group key prefix is special and will be used in the 'compute_observables' method. The other special compound group key prefix is 'alt_reps' which is used for particle simulations to store "alternate representation" of the positions. This is useful in cooperation with the next feature of wepy trajectory fields to allow for more economical storage of data. The next feature (and complication of the format) is the allowance for sparse fields. As the fields were introduced we said that they should have as many feature vectors as there are frames for the simulation. In the example however, you will notice that storing both the full atomic positions and velocities for a long simulation requires a heavy storage burden. So perhaps you only want to store the velocities (or forces) every 100 frames so that you can be able to restart a simulation form midway through the simulation. This is achieved through sparse fields. A sparse field is no longer a dataset but a group with two items: - _sparse_idxs - data The '_sparse_idxs' are simply a dataset of integers that assign each element of the 'data' dataset to a frame index. Using the above example we run a simulation for 1000 frames with 100 atoms and we save the velocities every 100 frames we would have a 'velocities/data' dataset of shape (100, 100, 3) which is 10 times less data than if it were saved every frame. While this complicates the storage format use of the proper API methods should be transparent whether you are returning a sparse field or not. As alluded to above the use of sparse fields can be used for more than just accessory fields. In many simulations, such as those with full atomistic simulations of proteins in solvent we often don't care about the dynamics of most of the atoms in the simulation and so would like to not have to save them. The 'alt_reps' compound field is meant to solve this. For example, the WepyHDF5Reporter supports a special option to save only a subset of the atoms in the main 'positions' field but also to save the full atomic system as an alternate representation, which is the field name 'alt_reps/all_atoms'. So that you can still save the full system every once in a while but be economical in what positions you save every single frame. Note that there really isn't a way to achieve this with other formats. You either make a completely new trajectory with only the atoms of interest and now you are duplicating those in two places, or you duplicate and then filter your full systems trajectory file and rely on some sort of index to always live with it in the filesystem, which is a very precarious scenario. The situation is particularly hopeless for weighted ensemble trajectories. Init Walkers ^^^^^^^^^^^^ The data stored in the 'trajectories' section is the data that is returned after running dynamics in a cycle. Since we view the WepyHDF5 as a completely self-contained format for simulations it seems negligent to rely on outside sources (such as the filesystem) for the initial structures that seeded the simulations. These states (and weights) can be stored in this group. The format of this group is identical to the one for trajectories except that there is only one frame for each slot and so the shape of the datasets for each field is just the shape of the feature vector. Record Groups ^^^^^^^^^^^^^ TODO: add reference to reference groups The last five items are what are called 'record groups' and all follow the same format. Each record group contains itself a number of datasets, where the names of the datasets correspond to the 'field names' from the record group specification. So each record groups is simply a key-value store where the values must be datasets. For instance the fields in the 'resampling' (which is particularly important as it encodes the branching structure) record group for a WExplore resampler simulation are: - step_idx - walker_idx - decision_id - target_idxs - region_assignment Where the 'step_idx' is an integer specifying which step of resampling within the cycle the resampling action took place (the cycle index is metadata for the group). The 'walker_idx' is the index of the walker that this action was assigned to. The 'decision_id' is an integer that is related to an enumeration of decision types that encodes which discrete action is to be taken for this resampling event (the enumeration is in the 'decision' item of the run groups). The 'target_idxs' is a variable length 1-D array of integers which assigns the results of the action to specific target 'slots' (which was discussed for the 'trajectories' run group). And the 'region_assignment' is specific to WExplore which reports on which region the walker was in at that time, and is a variable length 1-D array of integers. Additionally, record groups are broken into two types: - continual - sporadic Continual records occur once per cycle and so there is no extra indexing necessary. Sporadic records can happen multiple or zero times per cycle and so require a special index for them which is contained in the extra dataset '_cycle_idxs'. It is worth noting that the underlying methods for each record group are general. So while these are the official wepy record groups that are supported if there is a use-case that demands a new record group it is a fairly straightforward task from a developers perspective. """ import os.path as osp from collections import Sequence, namedtuple, defaultdict, Counter import itertools as it import json from warnings import warn from copy import copy import logging import gc import numpy as np import h5py import networkx as nx from wepy.analysis.parents import resampling_panel from wepy.util.mdtraj import mdtraj_to_json_topology, json_to_mdtraj_topology, \ traj_fields_to_mdtraj from wepy.util.util import traj_box_vectors_to_lengths_angles from wepy.util.json_top import json_top_subset, json_top_atom_count # optional dependencies try: import mdtraj as mdj except ModuleNotFoundError: warn("mdtraj is not installed and that functionality will not work", RuntimeWarning) try: import pandas as pd except ModuleNotFoundError: warn("pandas is not installed and that functionality will not work", RuntimeWarning) ## h5py settings # we set the libver to always be the latest (which should be 1.10) so # that we know we can always use SWMR and the newest features. We # don't care about backwards compatibility with HDF5 1.8. Just update # in a new virtualenv if this is a problem for you H5PY_LIBVER = 'latest' ## Header and settings keywords TOPOLOGY = 'topology' """Default header apparatus dataset. The molecular topology dataset.""" SETTINGS = '_settings' """Name of the settings group in the header group.""" RUNS = 'runs' """The group name for runs.""" ## metadata fields RUN_IDX = 'run_idx' """Metadata field for run groups for the run index within this file.""" RUN_START_SNAPSHOT_HASH = 'start_snapshot_hash' """Metadata field for a run that corresponds to the hash of the starting simulation snapshot in orchestration.""" RUN_END_SNAPSHOT_HASH = 'end_snapshot_hash' """Metadata field for a run that corresponds to the hash of the ending simulation snapshot in orchestration.""" TRAJ_IDX = 'traj_idx' """Metadata field for trajectory groups for the trajectory index in that run.""" ## Misc. Names CYCLE_IDX = 'cycle_idx' """String for setting the names of cycle indices in records and miscellaneous situations.""" ## Settings field names SPARSE_FIELDS = 'sparse_fields' """Settings field name for sparse field trajectory field flags.""" N_ATOMS = 'n_atoms' """Settings field name group for the number of atoms in the default positions field.""" N_DIMS_STR = 'n_dims' """Settings field name for positions field spatial dimensions.""" MAIN_REP_IDXS = 'main_rep_idxs' """Settings field name for the indices of the full apparatus topology in the default positions trajectory field.""" ALT_REPS_IDXS = 'alt_reps_idxs' """Settings field name for the different 'alt_reps'. The indices of the atoms from the full apparatus topology for each.""" FIELD_FEATURE_SHAPES_STR = 'field_feature_shapes' """Settings field name for the trajectory field shapes.""" FIELD_FEATURE_DTYPES_STR = 'field_feature_dtypes' """Settings field name for the trajectory field data types.""" UNITS = 'units' """Settings field name for the units of the trajectory fields.""" RECORD_FIELDS = 'record_fields' """Settings field name for the record fields that are to be included in the truncated listing of record group fields.""" CONTINUATIONS = 'continuations' """Settings field name for the continuations relationships between runs.""" ## Run Fields Names TRAJECTORIES = 'trajectories' """Run field name for the trajectories group.""" INIT_WALKERS = 'init_walkers' """Run field name for the initial walkers group.""" DECISION = 'decision' """Run field name for the decision enumeration group.""" ## Record Groups Names RESAMPLING = 'resampling' """Record group run field name for the resampling records """ RESAMPLER = 'resampler' """Record group run field name for the resampler records """ WARPING = 'warping' """Record group run field name for the warping records """ PROGRESS = 'progress' """Record group run field name for the progress records """ BC = 'boundary_conditions' """Record group run field name for the boundary conditions records """ ## Record groups constants # special datatypes strings NONE_STR = 'None' """String signifying a field of unspecified shape. Used for serializing the None python object.""" CYCLE_IDXS = '_cycle_idxs' """Group name for the cycle indices of sporadic records.""" # records can be sporadic or continual. Continual records are # generated every cycle and are saved every cycle and are for all # walkers. Sporadic records are generated conditional on specific # events taking place and thus may or may not be produced each # cycle. There also is not a single record for each (cycle, step) like # there would be for continual ones because they can occur for single # walkers, boundary conditions, or resamplers. SPORADIC_RECORDS = (RESAMPLER, WARPING, RESAMPLING, BC) """Enumeration of the record groups that are sporadic.""" ## Trajectories Group # Default Trajectory Constants N_DIMS = 3 """Number of dimensions for the default positions.""" # Required Trajectory Fields WEIGHTS = 'weights' """The field name for the frame weights.""" # default fields for trajectories POSITIONS = 'positions' """The field name for the default positions.""" BOX_VECTORS = 'box_vectors' """The field name for the default box vectors.""" VELOCITIES = 'velocities' """The field name for the default velocities.""" FORCES = 'forces' """The field name for the default forces.""" TIME = 'time' """The field name for the default time.""" KINETIC_ENERGY = 'kinetic_energy' """The field name for the default kinetic energy.""" POTENTIAL_ENERGY = 'potential_energy' """The field name for the default potential energy.""" BOX_VOLUME = 'box_volume' """The field name for the default box volume.""" PARAMETERS = 'parameters' """The field name for the default parameters.""" PARAMETER_DERIVATIVES = 'parameter_derivatives' """The field name for the default parameter derivatives.""" ALT_REPS = 'alt_reps' """The field name for the default compound field observables.""" OBSERVABLES = 'observables' """The field name for the default compound field observables.""" ## Trajectory Field Constants WEIGHT_SHAPE = (1,) """Weights feature vector shape.""" WEIGHT_DTYPE = np.float """Weights feature vector data type.""" # Default Trajectory Field Constants FIELD_FEATURE_SHAPES = ((TIME, (1,)), (BOX_VECTORS, (3,3)), (BOX_VOLUME, (1,)), (KINETIC_ENERGY, (1,)), (POTENTIAL_ENERGY, (1,)), ) """Default shapes for the default fields.""" FIELD_FEATURE_DTYPES = ((POSITIONS, np.float), (VELOCITIES, np.float), (FORCES, np.float), (TIME, np.float), (BOX_VECTORS, np.float), (BOX_VOLUME, np.float), (KINETIC_ENERGY, np.float), (POTENTIAL_ENERGY, np.float), ) """Default data types for the default fields.""" # Positions (and thus velocities and forces) are determined by the # N_DIMS (which can be customized) and more importantly the number of # particles which is always different. All the others are always wacky # and different. POSITIONS_LIKE_FIELDS = (VELOCITIES, FORCES) """Default trajectory fields which are the same shape as the main positions field.""" ## Trajectory field features keys # sparse trajectory fields DATA = 'data' """Name of the dataset in sparse trajectory fields.""" SPARSE_IDXS = '_sparse_idxs' """Name of the dataset that indexes sparse trajectory fields.""" # utility for paths def _iter_field_paths(grp): """Return all subgroup field name paths from a group. Useful for compound fields. For example if you have the group observables with multiple subfields: - observables - rmsd - sasa Passing the h5py group 'observables' will return the full field names for each subfield: - 'observables/rmsd' - 'observables/sasa' Parameters ---------- grp : h5py.Group The group to enumerate subfield names for. Returns ------- subfield_names : list of str The full names for the subfields of the group. """ field_paths = [] for field_name in grp: if isinstance(grp[field_name], h5py.Group): for subfield in grp[field_name]: # if it is a sparse field don't do the subfields since # they will be _sparse_idxs and data which are not # what we want here if field_name not in grp.file['_settings/sparse_fields']: field_paths.append(field_name + '/' + subfield) else: field_paths.append(field_name) return field_paths class WepyHDF5(object): """Wrapper for h5py interface to an HDF5 file object for creation and access of WepyHDF5 data. This is the primary implementation of the API for creating, accessing, and modifying data in an HDF5 file that conforms to the WepyHDF5 specification. """ MODES = ('r', 'r+', 'w', 'w-', 'x', 'a') """The recognized modes for opening the WepyHDF5 file.""" WRITE_MODES = ('r+', 'w', 'w-', 'x', 'a') #### dunder methods def __init__(self, filename, mode='x', topology=None, units=None, sparse_fields=None, feature_shapes=None, feature_dtypes=None, n_dims=None, alt_reps=None, main_rep_idxs=None, swmr_mode=False, expert_mode=False ): """Constructor for the WepyHDF5 class. Initialize a new Wepy HDF5 file. This will create an h5py.File object. The File will be closed after construction by default. mode: r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists x or w- Create file, fail if exists a Read/write if exists, create otherwise Parameters ---------- filename : str File path mode : str Mode specification for opening the HDF5 file. topology : str JSON string representing topology of system being simulated. units : dict of str : str, optional Mapping of trajectory field names to string specs for units. sparse_fields : list of str, optional List of trajectory fields that should be initialized as sparse. feature_shapes : dict of str : shape_spec, optional Mapping of trajectory fields to their shape spec for initialization. feature_dtypes : dict of str : dtype_spec, optional Mapping of trajectory fields to their shape spec for initialization. n_dims : int, default: 3 Set the number of spatial dimensions for the default positions trajectory field. alt_reps : dict of str : list of int, optional Specifies that there will be 'alt_reps' of positions each named by the keys of this mapping and containing the indices in each value list. main_rep_idxs : list of int, optional The indices of atom positions to save as the main 'positions' trajectory field. Defaults to all atoms. expert_mode : bool If True no initialization is performed other than the setting of the filename. Useful mainly for debugging. Raises ------ AssertionError If the mode is not one of the supported mode specs. AssertionError If a topology is not given for a creation mode. Warns ----- If initialization data was given but the file was opened in a read mode. """ self._filename = filename self._swmr_mode = swmr_mode if expert_mode is True: self._h5 = None self._wepy_mode = None self._h5py_mode = None self.closed = None # terminate the constructor here return None assert mode in self.MODES, \ "mode must be either one of: {}".format(', '.join(self.MODES)) # the top level mode enforced by wepy.hdf5 self._wepy_mode = mode # the lower level h5py mode. THis was originally different to # accomodate different modes at teh wepy level for # concatenation. I will leave these separate because this is # used elsewhere and could be a feature in the future. self._h5py_mode = mode # Temporary metadata: used to initialize the object but not # used after that self._topology = topology self._units = units self._n_dims = n_dims self._n_coords = None # set hidden feature shapes and dtype, which are only # referenced if needed when trajectories are created. These # will be saved in the settings section in the actual HDF5 # file self._field_feature_shapes_kwarg = feature_shapes self._field_feature_dtypes_kwarg = feature_dtypes self._field_feature_dtypes = None self._field_feature_shapes = None # save the sparse fields as a private variable for use in the # create constructor if sparse_fields is None: self._sparse_fields = [] else: self._sparse_fields = sparse_fields # if we specify an atom subset of the main POSITIONS field # we must save them self._main_rep_idxs = main_rep_idxs # a dictionary specifying other alt_reps to be saved if alt_reps is not None: self._alt_reps = alt_reps # all alt_reps are sparse alt_rep_keys = ['{}/{}'.format(ALT_REPS, key) for key in self._alt_reps.keys()] self._sparse_fields.extend(alt_rep_keys) else: self._alt_reps = {} # open the file and then run the different constructors based # on the mode with h5py.File(filename, mode=self._h5py_mode, libver=H5PY_LIBVER, swmr=self._swmr_mode) as h5: self._h5 = h5 # set SWMR mode if asked for if we are in write mode also if self._swmr_mode is True and mode in self.WRITE_MODES: self._h5.swmr_mode = swmr_mode # create file mode: 'w' will create a new file or overwrite, # 'w-' and 'x' will not overwrite but will create a new file if self._wepy_mode in ['w', 'w-', 'x']: self._create_init() # read/write mode: in this mode we do not completely overwrite # the old file and start again but rather write over top of # values if requested elif self._wepy_mode in ['r+']: self._read_write_init() # add mode: read/write create if doesn't exist elif self._wepy_mode in ['a']: if osp.exists(self._filename): self._read_write_init() else: self._create_init() # read only mode elif self._wepy_mode == 'r': # if any data was given, warn the user if any([kwarg is not None for kwarg in [topology, units, sparse_fields, feature_shapes, feature_dtypes, n_dims, alt_reps, main_rep_idxs]]): warn("Data was given but opening in read-only mode", RuntimeWarning) # then run the initialization process self._read_init() # flush the buffers self._h5.flush() # set the h5py mode to the value in the actual h5py.File # object after creation self._h5py_mode = self._h5.mode # get rid of the temporary variables del self._topology del self._units del self._n_dims del self._n_coords del self._field_feature_shapes_kwarg del self._field_feature_dtypes_kwarg del self._field_feature_shapes del self._field_feature_dtypes del self._sparse_fields del self._main_rep_idxs del self._alt_reps # variable to reflect if it is closed or not, should be closed # after initialization self.closed = True # end of the constructor return None # TODO is this right? shouldn't we actually delete the data then close def __del__(self): self.close() # context manager methods def __enter__(self): self.open() # self._h5 = h5py.File(self._filename, # libver=H5PY_LIBVER, swmr=self._swmr_mode) # self.closed = False return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() @property def swmr_mode(self): return self._swmr_mode @swmr_mode.setter def swmr_mode(self, val): self._swmr_mode = val # TODO custom deepcopy to avoid copying the actual HDF5 object #### hidden methods (_method_name) ### constructors def _create_init(self): """Creation mode constructor. Completely overwrite the data in the file. Reinitialize the values and set with the new ones if given. """ assert self._topology is not None, \ "Topology must be given for a creation constructor" # initialize the runs group runs_grp = self._h5.create_group(RUNS) # initialize the settings group settings_grp = self._h5.create_group(SETTINGS) # create the topology dataset self._h5.create_dataset(TOPOLOGY, data=self._topology) # sparse fields if self._sparse_fields is not None: # make a dataset for the sparse fields allowed. this requires # a 'special' datatype for variable length strings. This is # supported by HDF5 but not numpy. vlen_str_dt = h5py.special_dtype(vlen=str) # create the dataset with empty values for the length of the # sparse fields given sparse_fields_ds = settings_grp.create_dataset(SPARSE_FIELDS, (len(self._sparse_fields),), dtype=vlen_str_dt, maxshape=(None,)) # set the flags for i, sparse_field in enumerate(self._sparse_fields): sparse_fields_ds[i] = sparse_field # field feature shapes and dtypes # initialize to the defaults, this gives values to # self._n_coords, and self.field_feature_dtypes, and # self.field_feature_shapes self._set_default_init_field_attributes(n_dims=self._n_dims) # save the number of dimensions and number of atoms in settings settings_grp.create_dataset(N_DIMS_STR, data=np.array(self._n_dims)) settings_grp.create_dataset(N_ATOMS, data=np.array(self._n_coords)) # the main rep atom idxs settings_grp.create_dataset(MAIN_REP_IDXS, data=self._main_rep_idxs, dtype=np.int) # alt_reps settings alt_reps_idxs_grp = settings_grp.create_group(ALT_REPS_IDXS) for alt_rep_name, idxs in self._alt_reps.items(): alt_reps_idxs_grp.create_dataset(alt_rep_name, data=idxs, dtype=np.int) # if both feature shapes and dtypes were specified overwrite # (or initialize if not set by defaults) the defaults if (self._field_feature_shapes_kwarg is not None) and\ (self._field_feature_dtypes_kwarg is not None): self._field_feature_shapes.update(self._field_feature_shapes_kwarg) self._field_feature_dtypes.update(self._field_feature_dtypes_kwarg) # any sparse field with unspecified shape and dtype must be # set to None so that it will be set at runtime for sparse_field in self.sparse_fields: if (not sparse_field in self._field_feature_shapes) or \ (not sparse_field in self._field_feature_dtypes): self._field_feature_shapes[sparse_field] = None self._field_feature_dtypes[sparse_field] = None # save the field feature shapes and dtypes in the settings group shapes_grp = settings_grp.create_group(FIELD_FEATURE_SHAPES_STR) for field_path, field_shape in self._field_feature_shapes.items(): if field_shape is None: # set it as a dimensionless array of NaN field_shape = np.array(np.nan) shapes_grp.create_dataset(field_path, data=field_shape) dtypes_grp = settings_grp.create_group(FIELD_FEATURE_DTYPES_STR) for field_path, field_dtype in self._field_feature_dtypes.items(): if field_dtype is None: dt_str = NONE_STR else: # make a json string of the datatype that can be read # in again, we call np.dtype again because there is no # np.float.descr attribute dt_str = json.dumps(np.dtype(field_dtype).descr) dtypes_grp.create_dataset(field_path, data=dt_str) # initialize the units group unit_grp = self._h5.create_group(UNITS) # if units were not given set them all to None if self._units is None: self._units = {} for field_path in self._field_feature_shapes.keys(): self._units[field_path] = None # set the units for field_path, unit_value in self._units.items(): # ignore the field if not given if unit_value is None: continue unit_path = '{}/{}'.format(UNITS, field_path) unit_grp.create_dataset(unit_path, data=unit_value) # create the group for the run data records records_grp = settings_grp.create_group(RECORD_FIELDS) # create a dataset for the continuation run tuples # (continuation_run, base_run), where the first element # of the new run that is continuing the run in the second # position self._init_continuations() def _read_write_init(self): """Read-write mode constructor.""" self._read_init() def _add_init(self): """The addition mode constructor. Create the dataset if it doesn't exist and put it in r+ mode, otherwise, just open in r+ mode. """ if not any(self._exist_flags): self._create_init() else: self._read_write_init() def _read_init(self): """Read mode constructor.""" pass def _set_default_init_field_attributes(self, n_dims=None): """Sets the feature_shapes and feature_dtypes to be the default for this module. These will be used to initialize field datasets when no given during construction (i.e. for sparse values) Parameters ---------- n_dims : int """ # we use the module defaults for the datasets to initialize them field_feature_shapes = dict(FIELD_FEATURE_SHAPES) field_feature_dtypes = dict(FIELD_FEATURE_DTYPES) # get the number of coordinates of positions. If there is a # main_reps then we have to set the number of atoms to that, # if not we count the number of atoms in the topology if self._main_rep_idxs is None: self._n_coords = json_top_atom_count(self.topology) self._main_rep_idxs = list(range(self._n_coords)) else: self._n_coords = len(self._main_rep_idxs) # get the number of dimensions as a default if n_dims is None: self._n_dims = N_DIMS # feature shapes for positions and positions-like fields are # not known at the module level due to different number of # coordinates (number of atoms) and number of dimensions # (default 3 spatial). We set them now that we know this # information. # add the postitions shape field_feature_shapes[POSITIONS] = (self._n_coords, self._n_dims) # add the positions-like field shapes (velocities and forces) as the same for poslike_field in POSITIONS_LIKE_FIELDS: field_feature_shapes[poslike_field] = (self._n_coords, self._n_dims) # set the attributes self._field_feature_shapes = field_feature_shapes self._field_feature_dtypes = field_feature_dtypes def _get_field_path_grp(self, run_idx, traj_idx, field_path): """Given a field path for the trajectory returns the group the field's dataset goes in and the key for the field name in that group. The field path for a simple field is just the name of the field and for a compound field it is the compound field group name with the subfield separated by a '/' like 'observables/observable1' where 'observables' is the compound field group and 'observable1' is the subfield name. Parameters ---------- run_idx : int traj_idx : int field_path : str Returns ------- group : h5py.Group field_name : str """ # check if it is compound if '/' in field_path: # split it grp_name, field_name = field_path.split('/') # get the hdf5 group grp = self.h5['{}/{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx, grp_name)] # its simple so just return the root group and the original path else: grp = self.h5 field_name = field_path return grp, field_name def _init_continuations(self): """This will either create a dataset in the settings for the continuations or if continuations already exist it will reinitialize them and delete the data that exists there. Returns ------- continuation_dset : h5py.Dataset """ # if the continuations dset already exists we reinitialize the # data if CONTINUATIONS in self.settings_grp: cont_dset = self.settings_grp[CONTINUATIONS] cont_dset.resize( (0,2) ) # otherwise we just create the data else: cont_dset = self.settings_grp.create_dataset(CONTINUATIONS, shape=(0,2), dtype=np.int, maxshape=(None, 2)) return cont_dset def _add_run_init(self, run_idx, continue_run=None): """Routines for creating a run includes updating and setting object global variables, increasing the counter for the number of runs. Parameters ---------- run_idx : int continue_run : int Index of the run to continue. """ # add the run idx as metadata in the run group self._h5['{}/{}'.format(RUNS, run_idx)].attrs[RUN_IDX] = run_idx # if this is continuing another run add the tuple (this_run, # continues_run) to the continutations settings if continue_run is not None: self.add_continuation(run_idx, continue_run) def _add_init_walkers(self, init_walkers_grp, init_walkers): """Adds the run field group for the initial walkers. Parameters ---------- init_walkers_grp : h5py.Group The group to add the walker data to. init_walkers : list of objects implementing the Walker interface The walkers to save in the group """ # add the initial walkers to the group by essentially making # new trajectories here that will only have one frame for walker_idx, walker in enumerate(init_walkers): walker_grp = init_walkers_grp.create_group(str(walker_idx)) # weights # get the weight from the walker and make a feature array of it weights = np.array([[walker.weight]]) # then create the dataset and set it walker_grp.create_dataset(WEIGHTS, data=weights) # state fields data for field_key, field_value in walker.state.dict().items(): # values may be None, just ignore them if field_value is not None: # just create the dataset by making it a feature array # (wrapping it in another list) walker_grp.create_dataset(field_key, data=np.array([field_value])) def _init_run_sporadic_record_grp(self, run_idx, run_record_key, fields): """Initialize a sporadic record group for a run. Parameters ---------- run_idx : int run_record_key : str The record group name. fields : list of field specs Each field spec is a 3-tuple of (field_name : str, field_shape : shape_spec, field_dtype : dtype_spec) Returns ------- record_group : h5py.Group """ # create the group run_grp = self.run(run_idx) record_grp = run_grp.create_group(run_record_key) # initialize the cycles dataset that maps when the records # were recorded record_grp.create_dataset(CYCLE_IDXS, (0,), dtype=np.int, maxshape=(None,)) # for each field simply create the dataset for field_name, field_shape, field_dtype in fields: # initialize this field self._init_run_records_field(run_idx, run_record_key, field_name, field_shape, field_dtype) return record_grp def _init_run_continual_record_grp(self, run_idx, run_record_key, fields): """Initialize a continual record group for a run. Parameters ---------- run_idx : int run_record_key : str The record group name. fields : list of field specs Each field spec is a 3-tuple of (field_name : str, field_shape : shape_spec, field_dtype : dtype_spec) Returns ------- record_group : h5py.Group """ # create the group run_grp = self.run(run_idx) record_grp = run_grp.create_group(run_record_key) # for each field simply create the dataset for field_name, field_shape, field_dtype in fields: self._init_run_records_field(run_idx, run_record_key, field_name, field_shape, field_dtype) return record_grp def _init_run_records_field(self, run_idx, run_record_key, field_name, field_shape, field_dtype): """Initialize a single field for a run record group. Parameters ---------- run_idx : int run_record_key : str The name of the record group. field_name : str The name of the field in the record group. field_shape : tuple of int The shape of the dataset for the field. field_dtype : dtype_spec An h5py recognized data type. Returns ------- dataset : h5py.Dataset """ record_grp = self.run(run_idx)[run_record_key] # check if it is variable length if field_shape is Ellipsis: # make a special dtype that allows it to be # variable length vlen_dt = h5py.special_dtype(vlen=field_dtype) # this is only allowed to be a single dimension # since no real shape was given dset = record_grp.create_dataset(field_name, (0,), dtype=vlen_dt, maxshape=(None,)) # its not just make it normally else: # create the group dset = record_grp.create_dataset(field_name, (0, *field_shape), dtype=field_dtype, maxshape=(None, *field_shape)) return dset def _is_sporadic_records(self, run_record_key): """Tests whether a record group is sporadic or not. Parameters ---------- run_record_key : str Record group name. Returns ------- is_sporadic : bool True if the record group is sporadic False if not. """ # assume it is continual and check if it is in the sporadic groups if run_record_key in SPORADIC_RECORDS: return True else: return False def _init_traj_field(self, run_idx, traj_idx, field_path, feature_shape, dtype): """Initialize a trajectory field. Initialize a data field in the trajectory to be empty but resizeable. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name specification. feature_shape : shape_spec Specification of shape of a feature vector of the field. dtype : dtype_spec Specification of the feature vector datatype. """ # check whether this is a sparse field and create it # appropriately if field_path in self.sparse_fields: # it is a sparse field self._init_sparse_traj_field(run_idx, traj_idx, field_path, feature_shape, dtype) else: # it is not a sparse field (AKA simple) self._init_contiguous_traj_field(run_idx, traj_idx, field_path, feature_shape, dtype) def _init_contiguous_traj_field(self, run_idx, traj_idx, field_path, shape, dtype): """Initialize a contiguous (non-sparse) trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name specification. feature_shape : tuple of int Shape of the feature vector of the field. dtype : dtype_spec H5py recognized datatype """ traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] # create the empty dataset in the correct group, setting # maxshape so it can be resized for new feature vectors to be added traj_grp.create_dataset(field_path, (0, *[0 for i in shape]), dtype=dtype, maxshape=(None, *shape)) def _init_sparse_traj_field(self, run_idx, traj_idx, field_path, shape, dtype): """ Parameters ---------- run_idx : int traj_idx : int field_path : str Field name specification. feature_shape : shape_spec Specification for the shape of the feature. dtype : dtype_spec Specification for the dtype of the feature. """ traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] # check to see that neither the shape and dtype are # None which indicates it is a runtime defined value and # should be ignored here if (shape is None) or (dtype is None): # do nothing pass else: # only create the group if you are going to add the # datasets so the extend function can know if it has been # properly initialized easier sparse_grp = traj_grp.create_group(field_path) # create the dataset for the feature data sparse_grp.create_dataset(DATA, (0, *[0 for i in shape]), dtype=dtype, maxshape=(None, *shape)) # create the dataset for the sparse indices sparse_grp.create_dataset(SPARSE_IDXS, (0,), dtype=np.int, maxshape=(None,)) def _init_traj_fields(self, run_idx, traj_idx, field_paths, field_feature_shapes, field_feature_dtypes): """Initialize a number of fields for a trajectory. Parameters ---------- run_idx : int traj_idx : int field_paths : list of str List of field names. field_feature_shapes : list of shape_specs field_feature_dtypes : list of dtype_specs """ for i, field_path in enumerate(field_paths): self._init_traj_field(run_idx, traj_idx, field_path, field_feature_shapes[i], field_feature_dtypes[i]) def _add_traj_field_data(self, run_idx, traj_idx, field_path, field_data, sparse_idxs=None, ): """Add a trajectory field to a trajectory. If the sparse indices are given the field will be created as a sparse field otherwise a normal one. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name. field_data : numpy.array The data array to set for the field. sparse_idxs : arraylike of int of shape (1,) List of cycle indices that the data corresponds to. """ # get the traj group traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] # if it is a sparse dataset we need to add the data and add # the idxs in a group if sparse_idxs is None: # first require that the dataset exist and is exactly the # same as the one that already exists (if indeed it # does). If it doesn't raise a specific error letting the # user know that they will have to delete the dataset if # they want to change it to something else try: dset = traj_grp.require_dataset(field_path, shape=field_data.shape, dtype=field_data.dtype, exact=True, maxshape=(None, *field_data.shape[1:])) except TypeError: raise TypeError("For changing the contents of a trajectory field it must be the same shape and dtype.") # if that succeeds then go ahead and set the data to the # dataset (overwriting if it is still there) dset[...] = field_data else: sparse_grp = traj_grp.create_group(field_path) # add the data to this group sparse_grp.create_dataset(DATA, data=field_data, maxshape=(None, *field_data.shape[1:])) # add the sparse idxs sparse_grp.create_dataset(SPARSE_IDXS, data=sparse_idxs, maxshape=(None,)) def _extend_contiguous_traj_field(self, run_idx, traj_idx, field_path, field_data): """Add multiple new frames worth of data to the end of an existing contiguous (non-sparse)trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name field_data : numpy.array The frames of data to add. """ traj_grp = self.h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] field = traj_grp[field_path] # make sure this is a feature vector assert len(field_data.shape) > 1, \ "field_data must be a feature vector with the same number of dimensions as the number" # of datase new frames n_new_frames = field_data.shape[0] # check the field to make sure it is not empty if all([i == 0 for i in field.shape]): # check the feature shape against the maxshape which gives # the feature dimensions for an empty dataset assert field_data.shape[1:] == field.maxshape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # if it is empty resize it to make an array the size of # the new field_data with the maxshape for the feature # dimensions feature_dims = field.maxshape[1:] field.resize( (n_new_frames, *feature_dims) ) # set the new data to this field[0:, ...] = field_data else: # make sure the new data has the right dimensions against # the shape it already has assert field_data.shape[1:] == field.shape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # append to the dataset on the first dimension, keeping the # others the same, these must be feature vectors and therefore # must exist field.resize( (field.shape[0] + n_new_frames, *field.shape[1:]) ) # add the new data field[-n_new_frames:, ...] = field_data def _extend_sparse_traj_field(self, run_idx, traj_idx, field_path, values, sparse_idxs): """Add multiple new frames worth of data to the end of an existing contiguous (non-sparse)trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name values : numpy.array The frames of data to add. sparse_idxs : list of int The cycle indices the values correspond to. """ field = self.h5['{}/{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx, field_path)] field_data = field[DATA] field_sparse_idxs = field[SPARSE_IDXS] # number of new frames n_new_frames = values.shape[0] # if this sparse_field has been initialized empty we need to resize if all([i == 0 for i in field_data.shape]): # check the feature shape against the maxshape which gives # the feature dimensions for an empty dataset assert values.shape[1:] == field_data.maxshape[1:], \ "input value features have shape {}, expected {}".format( values.shape[1:], field_data.maxshape[1:]) # if it is empty resize it to make an array the size of # the new values with the maxshape for the feature # dimensions feature_dims = field_data.maxshape[1:] field_data.resize( (n_new_frames, *feature_dims) ) # set the new data to this field_data[0:, ...] = values else: # make sure the new data has the right dimensions assert values.shape[1:] == field_data.shape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # append to the dataset on the first dimension, keeping the # others the same, these must be feature vectors and therefore # must exist field_data.resize( (field_data.shape[0] + n_new_frames, *field_data.shape[1:]) ) # add the new data field_data[-n_new_frames:, ...] = values # add the sparse idxs in the same way field_sparse_idxs.resize( (field_sparse_idxs.shape[0] + n_new_frames, *field_sparse_idxs.shape[1:]) ) # add the new data field_sparse_idxs[-n_new_frames:, ...] = sparse_idxs def _add_sparse_field_flag(self, field_path): """Register a trajectory field as sparse in the header settings. Parameters ---------- field_path : str Name of the trajectory field you want to flag as sparse """ sparse_fields_ds = self._h5['{}/{}'.format(SETTINGS, SPARSE_FIELDS)] # make sure it isn't already in the sparse_fields if field_path in sparse_fields_ds[:]: warn("sparse field {} already a sparse field, ignoring".format(field_path)) sparse_fields_ds.resize( (sparse_fields_ds.shape[0] + 1,) ) sparse_fields_ds[sparse_fields_ds.shape[0] - 1] = field_path def _add_field_feature_shape(self, field_path, field_feature_shape): """Add the shape to the header settings for a trajectory field. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_shape : shape_spec The shape spec to serialize as a dataset. """ shapes_grp = self._h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_SHAPES_STR)] shapes_grp.create_dataset(field_path, data=np.array(field_feature_shape)) def _add_field_feature_dtype(self, field_path, field_feature_dtype): """Add the data type to the header settings for a trajectory field. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_dtype : dtype_spec The dtype spec to serialize as a dataset. """ feature_dtype_str = json.dumps(field_feature_dtype.descr) dtypes_grp = self._h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_DTYPES_STR)] dtypes_grp.create_dataset(field_path, data=feature_dtype_str) def _set_field_feature_shape(self, field_path, field_feature_shape): """Add the trajectory field shape to header settings or set the value. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_shape : shape_spec The shape spec to serialize as a dataset. """ # check if the field_feature_shape is already set if field_path in self.field_feature_shapes: # check that the shape was previously saved as "None" as we # won't overwrite anything else if self.field_feature_shapes[field_path] is None: full_path = '{}/{}/{}'.format(SETTINGS, FIELD_FEATURE_SHAPES_STR, field_path) # we have to delete the old data and set new data del self.h5[full_path] self.h5.create_dataset(full_path, data=field_feature_shape) else: raise AttributeError( "Cannot overwrite feature shape for {} with {} because it is {} not {}".format( field_path, field_feature_shape, self.field_feature_shapes[field_path], NONE_STR)) # it was not previously set so we must create then save it else: self._add_field_feature_shape(field_path, field_feature_shape) def _set_field_feature_dtype(self, field_path, field_feature_dtype): """Add the trajectory field dtype to header settings or set the value. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_dtype : dtype_spec The dtype spec to serialize as a dataset. """ feature_dtype_str = json.dumps(field_feature_dtype.descr) # check if the field_feature_dtype is already set if field_path in self.field_feature_dtypes: # check that the dtype was previously saved as "None" as we # won't overwrite anything else if self.field_feature_dtypes[field_path] is None: full_path = '{}/{}/{}'.format(SETTINGS, FIELD_FEATURE_DTYPES_STR, field_path) # we have to delete the old data and set new data del self.h5[full_path] self.h5.create_dataset(full_path, data=feature_dtype_str) else: raise AttributeError( "Cannot overwrite feature dtype for {} with {} because it is {} not ".format( field_path, field_feature_dtype, self.field_feature_dtypes[field_path], NONE_STR)) # it was not previously set so we must create then save it else: self._add_field_feature_dtype(field_path, field_feature_dtype) def _extend_run_record_data_field(self, run_idx, run_record_key, field_name, field_data): """Primitive record append method. Adds data for a single field dataset in a run records group. This is done without paying attention to whether it is sporadic or continual and is supposed to be only the data write method. Parameters ---------- run_idx : int run_record_key : str Name of the record group. field_name : str Name of the field in the record group to add to. field_data : arraylike The data to add to the field. """ records_grp = self.h5['{}/{}/{}'.format(RUNS, run_idx, run_record_key)] field = records_grp[field_name] # make sure this is a feature vector assert len(field_data.shape) > 1, \ "field_data must be a feature vector with the same number of dimensions as the number" # of datase new frames n_new_frames = field_data.shape[0] # check whether it is a variable length record, by getting the # record dataset dtype and using the checker to see if it is # the vlen special type in h5py if h5py.check_dtype(vlen=field.dtype) is not None: # if it is we have to treat it differently, since it # cannot be multidimensional # if the dataset has no data in it we need to reshape it if all([i == 0 for i in field.shape]): # initialize this array # if it is empty resize it to make an array the size of # the new field_data with the maxshape for the feature # dimensions field.resize( (n_new_frames,) ) # set the new data to this for i, row in enumerate(field_data): field[i] = row # otherwise just add the data else: # resize the array but it is only of rank because # of variable length data field.resize( (field.shape[0] + n_new_frames, ) ) # add each row to the newly made space for i, row in enumerate(field_data): field[(field.shape[0] - 1) + i] = row # if it is not variable length we don't have to treat it # differently else: # if this is empty we need to reshape the dataset to accomodate data if all([i == 0 for i in field.shape]): # check the feature shape against the maxshape which gives # the feature dimensions for an empty dataset assert field_data.shape[1:] == field.maxshape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # if it is empty resize it to make an array the size of # the new field_data with the maxshape for the feature # dimensions feature_dims = field.maxshape[1:] field.resize( (n_new_frames, *feature_dims) ) # set the new data to this field[0:, ...] = field_data # otherwise just add the data else: # append to the dataset on the first dimension, keeping the # others the same, these must be feature vectors and therefore # must exist field.resize( (field.shape[0] + n_new_frames, *field.shape[1:]) ) # add the new data field[-n_new_frames:, ...] = field_data def _run_record_namedtuple(self, run_record_key): """Generate a namedtuple record type for a record group. The class name will be formatted like '{}_Record' where the {} will be replaced with the name of the record group. Parameters ---------- run_record_key : str Name of the record group Returns ------- RecordType : namedtuple The record type to generate records for this record group. """ Record = namedtuple('{}_Record'.format(run_record_key), [CYCLE_IDX] + self.record_fields[run_record_key]) return Record def _convert_record_field_to_table_column(self, run_idx, run_record_key, record_field): """Converts a dataset of feature vectors to more palatable values for use in external datasets. For single value feature vectors it unwraps them into single values. For 1-D feature vectors it casts them as tuples. Anything of higher rank will raise an error. Parameters ---------- run_idx : int run_record_key : str Name of the record group record_field : str Name of the field of the record group Returns ------- record_dset : list Table-ified values Raises ------ TypeError If the field feature vector shape rank is greater than 1. """ # get the field dataset rec_grp = self.records_grp(run_idx, run_record_key) dset = rec_grp[record_field] # if it is variable length or if it has more than one element # cast all elements to tuples if h5py.check_dtype(vlen=dset.dtype) is not None: rec_dset = [tuple(value) for value in dset[:]] # if it is not variable length make sure it is not more than a # 1D feature vector elif len(dset.shape) > 2: raise TypeError( "cannot convert fields with feature vectors more than 1 dimension," " was given {} for {}/{}".format( dset.shape[1:], run_record_key, record_field)) # if it is only a rank 1 feature vector and it has more than # one element make a tuple out of it elif dset.shape[1] > 1: rec_dset = [tuple(value) for value in dset[:]] # otherwise just get the single value instead of keeping it as # a single valued feature vector else: rec_dset = [value[0] for value in dset[:]] return rec_dset def _convert_record_fields_to_table_columns(self, run_idx, run_record_key): """Convert record group data to truncated namedtuple records. This uses the specified record fields from the header settings to choose which record group fields to apply this to. Does no checking to make sure the fields are "table-ifiable". If a field is not it will raise a TypeError. Parameters ---------- run_idx : int run_record_key : str The name of the record group Returns ------- table_fields : dict of str : list Mapping of the record group field to the table-ified values. """ fields = {} for record_field in self.record_fields[run_record_key]: fields[record_field] = self._convert_record_field_to_table_column( run_idx, run_record_key, record_field) return fields def _make_records(self, run_record_key, cycle_idxs, fields): """Generate a list of proper (nametuple) records for a record group. Parameters ---------- run_record_key : str Name of the record group cycle_idxs : list of int The cycle indices you want to get records for. fields : list of str The fields to make record entries for. Returns ------- records : list of namedtuple objects """ Record = self._run_record_namedtuple(run_record_key) # for each record we make a tuple and yield it records = [] for record_idx in range(len(cycle_idxs)): # make a record for this cycle record_d = {CYCLE_IDX : cycle_idxs[record_idx]} for record_field, column in fields.items(): datum = column[record_idx] record_d[record_field] = datum record = Record(*(record_d[key] for key in Record._fields)) records.append(record) return records def _run_records_sporadic(self, run_idxs, run_record_key): """Generate records for a sporadic record group for a multi-run contig. If multiple run indices are given assumes that these are a contig (e.g. the second run index is a continuation of the first and so on). This method is considered low-level and does no checking to make sure this is true. The cycle indices of records from "continuation" runs will be modified so as the records will be indexed as if they are a single run. Uses the record fields settings to decide which fields to use. Parameters ---------- run_idxs : list of int The indices of the runs in the order they are in the contig run_record_key : str Name of the record group Returns ------- records : list of namedtuple objects """ # we loop over the run_idxs in the contig and get the fields # and cycle idxs for the whole contig fields = None cycle_idxs = np.array([], dtype=int) # keep a cumulative total of the runs cycle idxs prev_run_cycle_total = 0 for run_idx in run_idxs: # get all the value columns from the datasets, and convert # them to something amenable to a table run_fields = self._convert_record_fields_to_table_columns(run_idx, run_record_key) # we need to concatenate each field to the end of the # field in the master dictionary, first we need to # initialize it if it isn't already made if fields is None: # if it isn't initialized we just set it as this first # run fields dictionary fields = run_fields else: # if it is already initialized we need to go through # each field and concatenate for field_name, field_data in run_fields.items(): # just add it to the list of fields that will be concatenated later fields[field_name].extend(field_data) # get the cycle idxs for this run rec_grp = self.records_grp(run_idx, run_record_key) run_cycle_idxs = rec_grp[CYCLE_IDXS][:] # add the total number of cycles that came before this run # to each of the cycle idxs to get the cycle_idxs in terms # of the full contig run_contig_cycle_idxs = run_cycle_idxs + prev_run_cycle_total # add these cycle indices to the records for the whole contig cycle_idxs = np.hstack( (cycle_idxs, run_contig_cycle_idxs) ) # add the total number of cycle_idxs from this run to the # running total prev_run_cycle_total += self.num_run_cycles(run_idx) # then make the records from the fields records = self._make_records(run_record_key, cycle_idxs, fields) return records def _run_records_continual(self, run_idxs, run_record_key): """Generate records for a continual record group for a multi-run contig. If multiple run indices are given assumes that these are a contig (e.g. the second run index is a continuation of the first and so on). This method is considered low-level and does no checking to make sure this is true. The cycle indices of records from "continuation" runs will be modified so as the records will be indexed as if they are a single run. Uses the record fields settings to decide which fields to use. Parameters ---------- run_idxs : list of int The indices of the runs in the order they are in the contig run_record_key : str Name of the record group Returns ------- records : list of namedtuple objects """ cycle_idxs = np.array([], dtype=int) fields = None prev_run_cycle_total = 0 for run_idx in run_idxs: # get all the value columns from the datasets, and convert # them to something amenable to a table run_fields = self._convert_record_fields_to_table_columns(run_idx, run_record_key) # we need to concatenate each field to the end of the # field in the master dictionary, first we need to # initialize it if it isn't already made if fields is None: # if it isn't initialized we just set it as this first # run fields dictionary fields = run_fields else: # if it is already initialized we need to go through # each field and concatenate for field_name, field_data in run_fields.items(): # just add it to the list of fields that will be concatenated later fields[field_name].extend(field_data) # get one of the fields (if any to iterate over) record_fields = self.record_fields[run_record_key] main_record_field = record_fields[0] # make the cycle idxs from that run_rec_grp = self.records_grp(run_idx, run_record_key) run_cycle_idxs = np.array(range(run_rec_grp[main_record_field].shape[0])) # add the total number of cycles that came before this run # to each of the cycle idxs to get the cycle_idxs in terms # of the full contig run_contig_cycle_idxs = run_cycle_idxs + prev_run_cycle_total # add these cycle indices to the records for the whole contig cycle_idxs = np.hstack( (cycle_idxs, run_contig_cycle_idxs) ) # add the total number of cycle_idxs from this run to the # running total prev_run_cycle_total += self.num_run_cycles(run_idx) # then make the records from the fields records = self._make_records(run_record_key, cycle_idxs, fields) return records def _get_contiguous_traj_field(self, run_idx, traj_idx, field_path, frames=None): """Access actual data for a trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Trajectory field name to access frames : list of int, optional The indices of the frames to return if you don't want all of them. Returns ------- field_data : arraylike The data requested for the field. """ full_path = '{}/{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx, field_path) if frames is None: field = self._h5[full_path][:] else: field = self._h5[full_path][list(frames)] return field def _get_sparse_traj_field(self, run_idx, traj_idx, field_path, frames=None, masked=True): """Access actual data for a trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Trajectory field name to access frames : list of int, optional The indices of the frames to return if you don't want all of them. masked : bool If True returns the array data as numpy masked array, and only the available values if False. Returns ------- field_data : arraylike The data requested for the field. """ traj_path = '{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx) traj_grp = self.h5[traj_path] field = traj_grp[field_path] n_frames = traj_grp[POSITIONS].shape[0] if frames is None: data = field[DATA][:] # if it is to be masked make the masked array if masked: sparse_idxs = field[SPARSE_IDXS][:] filled_data = np.full( (n_frames, *data.shape[1:]), np.nan) filled_data[sparse_idxs] = data mask = np.full( (n_frames, *data.shape[1:]), True) mask[sparse_idxs] = False data = np.ma.masked_array(filled_data, mask=mask) else: # get the sparse idxs and the frames to slice from the # data sparse_idxs = field[SPARSE_IDXS][:] # we get a boolean array of the rows of the data table # that we are to slice from sparse_frame_idxs = np.argwhere(np.isin(sparse_idxs, frames)) data = field[DATA][list(sparse_frame_idxs)] # if it is to be masked make the masked array if masked: # the empty arrays the size of the number of requested frames filled_data = np.full( (len(frames), *field[DATA].shape[1:]), np.nan) mask = np.full( (len(frames), *field[DATA].shape[1:]), True ) # take the data which exists and is part of the frames # selection, and put it into the filled data where it is # supposed to be filled_data[np.isin(frames, sparse_idxs)] = data # unmask the present values mask[np.isin(frames, sparse_idxs)] = False data = np.ma.masked_array(filled_data, mask=mask) return data def _add_run_field(self, run_idx, field_path, data, sparse_idxs=None, force=False): """Add a trajectory field to all trajectories in a run. By enforcing adding it to all trajectories at one time we promote in-run consistency. Parameters ---------- run_idx : int field_path : str Name to set the trajectory field as. Can be compound. data : arraylike of shape (n_trajectories, n_cycles, feature_vector_shape[0],...) The data for all trajectories to be added. sparse_idxs : list of int If the data you are adding is sparse specify which cycles to apply them to. If 'force' is turned on, no checking for constraints will be done. """ # TODO, SNIPPET: check that we have the right permissions # if field_exists: # # if we are in a permissive write mode we delete the # # old dataset and add the new one, overwriting old data # if self.mode in ['w', 'w-', 'x', 'r+']: # logging.info("Dataset already present. Overwriting.") # del obs_grp[field_name] # obs_grp.create_dataset(field_name, data=results) # # this will happen in 'c' and 'c-' modes # else: # raise RuntimeError( # "Dataset already exists and file is in concatenate mode ('c' or 'c-')") # check that the data has the correct number of trajectories if not force: assert len(data) == self.num_run_trajs(run_idx),\ "The number of trajectories in data, {}, is different than the number"\ "of trajectories in the run, {}.".format(len(data), self.num_run_trajs(run_idx)) # for each trajectory check that the data is compliant for traj_idx, traj_data in enumerate(data): if not force: # check that the number of frames is not larger than that for the run if traj_data.shape[0] > self.num_run_cycles(run_idx): raise ValueError("The number of frames in data for traj {} , {}," "is larger than the number of frames" "for this run, {}.".format( traj_idx, data.shape[1], self.num_run_cycles(run_idx))) # if the number of frames given is the same or less than # the number of frames in the run elif (traj_data.shape[0] <= self.num_run_cycles(run_idx)): # if sparse idxs were given we check to see there is # the right number of them # and that they match the number of frames given if data.shape[0] != len(sparse_idxs[traj_idx]): raise ValueError("The number of frames provided for traj {}, {}," "was less than the total number of frames, {}," "but an incorrect number of sparse idxs were supplied, {}."\ .format(traj_idx, traj_data.shape[0], self.num_run_cycles(run_idx), len(sparse_idxs[traj_idx]))) # if there were strictly fewer frames given and the # sparse idxs were not given we need to raise an error elif (traj_data.shape[0] < self.num_run_cycles(run_idx)): raise ValueError("The number of frames provided for traj {}, {}," "was less than the total number of frames, {}," "but sparse_idxs were not supplied.".format( traj_idx, traj_data.shape[0], self.num_run_cycles(run_idx))) # add it to each traj for i, idx_tup in enumerate(self.run_traj_idx_tuples([run_idx])): if sparse_idxs is None: self._add_traj_field_data(*idx_tup, field_path, data[i]) else: self._add_traj_field_data(*idx_tup, field_path, data[i], sparse_idxs=sparse_idxs[i]) def _add_field(self, field_path, data, sparse_idxs=None, force=False): """Add a trajectory field to all runs in a file. Parameters ---------- field_path : str Name of trajectory field data : list of arraylike Each element of this list corresponds to a single run. The elements of which are arraylikes of shape (n_trajectories, n_cycles, feature_vector_shape[0],...) for each run. sparse_idxs : list of list of int The list of cycle indices to set for the sparse fields. If None, no trajectories are set as sparse. """ for i, run_idx in enumerate(self.run_idxs): if sparse_idxs is not None: self._add_run_field(run_idx, field_path, data[i], sparse_idxs=sparse_idxs[i], force=force) else: self._add_run_field(run_idx, field_path, data[i], force=force) #### Public Methods ### File Utilities @property def filename(self): """The path to the underlying HDF5 file.""" return self._filename def open(self, mode=None): """Open the underlying HDF5 file for access. Parameters ---------- mode : str Valid mode spec. Opens the HDF5 file in this mode if given otherwise uses the existing mode. """ if mode is None: mode = self.mode if self.closed: self.set_mode(mode) self._h5 = h5py.File(self._filename, mode, libver=H5PY_LIBVER, swmr=self.swmr_mode) self.closed = False else: raise IOError("This file is already open") def close(self): """Close the underlying HDF5 file. """ if not self.closed: self._h5.flush() self._h5.close() self.closed = True @property def mode(self): """The WepyHDF5 mode this object was created with.""" return self._wepy_mode @mode.setter def mode(self, mode): """Set the mode for opening the file with.""" self.set_mode(mode) def set_mode(self, mode): """Set the mode for opening the file with.""" if not self.closed: raise AttributeError("Cannot set the mode while the file is open.") self._set_h5_mode(mode) self._wepy_mode = mode @property def h5_mode(self): """The h5py.File mode the HDF5 file currently has.""" return self._h5.mode def _set_h5_mode(self, h5_mode): """Set the mode to open the HDF5 file with. This really shouldn't be set without using the main wepy mode as they need to be aligned. """ if not self.closed: raise AttributeError("Cannot set the mode while the file is open.") self._h5py_mode = h5_mode @property def h5(self): """The underlying h5py.File object.""" return self._h5 ### h5py object access def run(self, run_idx): """Get the h5py.Group for a run. Parameters ---------- run_idx : int Returns ------- run_group : h5py.Group """ return self._h5['{}/{}'.format(RUNS, int(run_idx))] def traj(self, run_idx, traj_idx): """Get an h5py.Group trajectory group. Parameters ---------- run_idx : int traj_idx : int Returns ------- traj_group : h5py.Group """ return self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] def run_trajs(self, run_idx): """Get the trajectories group for a run. Parameters ---------- run_idx : int Returns ------- trajectories_grp : h5py.Group """ return self._h5['{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES)] @property def runs(self): """The runs group.""" return self.h5[RUNS] def run_grp(self, run_idx): """A group for a single run.""" return self.runs["{}".format(run_idx)] def run_start_snapshot_hash(self, run_idx): """Hash identifier for the starting snapshot of a run from orchestration. """ return self.run_grp(run_idx).attrs[RUN_START_SNAPSHOT_HASH] def run_end_snapshot_hash(self, run_idx): """Hash identifier for the ending snapshot of a run from orchestration. """ return self.run_grp(run_idx).attrs[RUN_END_SNAPSHOT_HASH] def set_run_start_snapshot_hash(self, run_idx, snaphash): """Set the starting snapshot hash identifier for a run from orchestration. """ if RUN_START_SNAPSHOT_HASH not in self.run_grp(run_idx).attrs: self.run_grp(run_idx).attrs[RUN_START_SNAPSHOT_HASH] = snaphash else: raise AttributeError("The snapshot has already been set.") def set_run_end_snapshot_hash(self, run_idx, snaphash): """Set the ending snapshot hash identifier for a run from orchestration. """ if RUN_END_SNAPSHOT_HASH not in self.run_grp(run_idx).attrs: self.run_grp(run_idx).attrs[RUN_END_SNAPSHOT_HASH] = snaphash else: raise AttributeError("The snapshot has already been set.") @property def settings_grp(self): """The header settings group.""" settings_grp = self.h5[SETTINGS] return settings_grp def decision_grp(self, run_idx): """Get the decision enumeration group for a run. Parameters ---------- run_idx : int Returns ------- decision_grp : h5py.Group """ return self.run(run_idx)[DECISION] def init_walkers_grp(self, run_idx): """Get the group for the initial walkers for a run. Parameters ---------- run_idx : int Returns ------- init_walkers_grp : h5py.Group """ return self.run(run_idx)[INIT_WALKERS] def records_grp(self, run_idx, run_record_key): """Get a record group h5py.Group for a run. Parameters ---------- run_idx : int run_record_key : str Name of the record group Returns ------- run_record_group : h5py.Group """ path = '{}/{}/{}'.format(RUNS, run_idx, run_record_key) return self.h5[path] def resampling_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, RESAMPLING) def resampler_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, RESAMPLER) def warping_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, WARPING) def bc_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, BC) def progress_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, PROGRESS) def iter_runs(self, idxs=False, run_sel=None): """Generator for iterating through the runs of a file. Parameters ---------- idxs : bool If True yields the run index in addition to the group. run_sel : list of int, optional If not None should be a list of the runs you want to iterate over. Yields ------ run_idx : int, if idxs is True run_group : h5py.Group """ if run_sel is None: run_sel = self.run_idxs for run_idx in self.run_idxs: if run_idx in run_sel: run = self.run(run_idx) if idxs: yield run_idx, run else: yield run def iter_trajs(self, idxs=False, traj_sel=None): """Generator for iterating over trajectories in a file. Parameters ---------- idxs : bool If True returns a tuple of the run index and trajectory index in addition to the trajectory group. traj_sel : list of int, optional If not None is a list of tuples of (run_idx, traj_idx) selecting which trajectories to iterate over. Yields ------ traj_id : tuple of int, if idxs is True A tuple of (run_idx, traj_idx) for the group trajectory : h5py.Group """ # set the selection of trajectories to iterate over if traj_sel is None: idx_tups = self.run_traj_idx_tuples() else: idx_tups = traj_sel # get each traj for each idx_tup and yield them for the generator for run_idx, traj_idx in idx_tups: traj = self.traj(run_idx, traj_idx) if idxs: yield (run_idx, traj_idx), traj else: yield traj def iter_run_trajs(self, run_idx, idxs=False): """Iterate over the trajectories of a run. Parameters ---------- run_idx : int idxs : bool If True returns a tuple of the run index and trajectory index in addition to the trajectory group. Returns ------- iter_trajs_generator : generator for the iter_trajs method """ run_sel = self.run_traj_idx_tuples([run_idx]) return self.iter_trajs(idxs=idxs, traj_sel=run_sel) ### Settings @property def defined_traj_field_names(self): """A list of the settings defined field names all trajectories have in the file.""" return list(self.field_feature_shapes.keys()) @property def observable_field_names(self): """Returns a list of the names of the observables that all trajectories have. If this encounters observable fields that don't occur in all trajectories (inconsistency) raises an inconsistency error. """ n_trajs = self.num_trajs field_names = Counter() for traj in self.iter_trajs(): for name in list(traj['observables']): field_names[name] += 1 # if any of the field names has not occured for every # trajectory we raise an error for field_name, count in field_names.items(): if count != n_trajs: raise TypeError("observable field names are inconsistent") # otherwise return the field names for the observables return list(field_names.keys()) def _check_traj_field_consistency(self, field_names): """Checks that every trajectory has the given fields across the entire dataset. Parameters ---------- field_names : list of str The field names to check for. Returns ------- consistent : bool True if all trajs have the fields, False otherwise """ n_trajs = self.num_trajs field_names = Counter() for traj in self.iter_trajs(): for name in field_names: if name in traj: field_names[name] += 1 # if any of the field names has not occured for every # trajectory we raise an error for field_name, count in field_names: if count != n_trajs: return False return True @property def record_fields(self): """The record fields for each record group which are selected for inclusion in the truncated records. These are the fields which are considered to be table-ified. Returns ------- record_fields : dict of str : list of str Mapping of record group name to alist of the record group fields. """ record_fields_grp = self.settings_grp[RECORD_FIELDS] record_fields_dict = {} for group_name, dset in record_fields_grp.items(): record_fields_dict[group_name] = list(dset) return record_fields_dict @property def sparse_fields(self): """The trajectory fields that are sparse.""" return self.h5['{}/{}'.format(SETTINGS, SPARSE_FIELDS)][:] @property def main_rep_idxs(self): """The indices of the atoms included from the full topology in the default 'positions' trajectory """ if '{}/{}'.format(SETTINGS, MAIN_REP_IDXS) in self.h5: return self.h5['{}/{}'.format(SETTINGS, MAIN_REP_IDXS)][:] else: return None @property def alt_reps_idxs(self): """Mapping of the names of the alt reps to the indices of the atoms from the topology that they include in their datasets.""" idxs_grp = self.h5['{}/{}'.format(SETTINGS, ALT_REPS_IDXS)] return {name : ds[:] for name, ds in idxs_grp.items()} @property def alt_reps(self): """Names of the alt reps.""" idxs_grp = self.h5['{}/{}'.format(SETTINGS, ALT_REPS_IDXS)] return {name for name in idxs_grp.keys()} @property def field_feature_shapes(self): """Mapping of the names of the trajectory fields to their feature vector shapes.""" shapes_grp = self.h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_SHAPES_STR)] field_paths = _iter_field_paths(shapes_grp) shapes = {} for field_path in field_paths: shape = shapes_grp[field_path][()] if np.isnan(shape).all(): shapes[field_path] = None else: shapes[field_path] = shape return shapes @property def field_feature_dtypes(self): """Mapping of the names of the trajectory fields to their feature vector numpy dtypes.""" dtypes_grp = self.h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_DTYPES_STR)] field_paths = _iter_field_paths(dtypes_grp) dtypes = {} for field_path in field_paths: dtype_str = dtypes_grp[field_path][()] # if there is 'None' flag for the dtype then return None if dtype_str == NONE_STR: dtypes[field_path] = None else: dtype_obj = json.loads(dtype_str) dtype_obj = [tuple(d) for d in dtype_obj] dtype = np.dtype(dtype_obj) dtypes[field_path] = dtype return dtypes @property def continuations(self): """The continuation relationships in this file.""" return self.settings_grp[CONTINUATIONS][:] @property def metadata(self): """File metadata (h5py.attrs).""" return dict(self._h5.attrs) def decision_enum(self, run_idx): """Mapping of decision enumerated names to their integer representations. Parameters ---------- run_idx : int Returns ------- decision_enum : dict of str : int Mapping of the decision ID string to the integer representation. See Also -------- WepyHDF5.decision_value_names : for the reverse mapping """ enum_grp = self.decision_grp(run_idx) enum = {} for decision_name, dset in enum_grp.items(): enum[decision_name] = dset[()] return enum def decision_value_names(self, run_idx): """Mapping of the integer values for decisions to the decision ID strings. Parameters ---------- run_idx : int Returns ------- decision_enum : dict of int : str Mapping of the decision integer to the decision ID string representation. See Also -------- WepyHDF5.decision_enum : for the reverse mapping """ enum_grp = self.decision_grp(run_idx) rev_enum = {} for decision_name, dset in enum_grp.items(): value = dset[()] rev_enum[value] = decision_name return rev_enum ### Topology def get_topology(self, alt_rep=POSITIONS): """Get the JSON topology for a particular represenation of the positions. By default gives the topology for the main 'positions' field (when alt_rep 'positions'). To get the full topology the file was initialized with set `alt_rep` to `None`. Topologies for alternative representations (subfields of 'alt_reps') can be obtained by passing in the key for that alt_rep. For example, 'all_atoms' for the field in alt_reps called 'all_atoms'. Parameters ---------- alt_rep : str The base name of the alternate representation, or 'positions', or None. Returns ------- topology : str The JSON topology string for the representation. """ top = self.topology # if no alternative representation is given we just return the # full topology if alt_rep is None: pass # otherwise we either give the main representation topology # subset elif alt_rep == POSITIONS: top = json_top_subset(top, self.main_rep_idxs) # or choose one of the alternative representations elif alt_rep in self.alt_reps_idxs: top = json_top_subset(top, self.alt_reps_idxs[alt_rep]) # and raise an error if the given alternative representation # is not given else: raise ValueError("alt_rep {} not found".format(alt_rep)) return top @property def topology(self): """The topology for the full simulated system. May not be the main representation in the POSITIONS field; for that use the `get_topology` method. Returns ------- topology : str The JSON topology string for the full representation. """ return self._h5[TOPOLOGY][()] def get_mdtraj_topology(self, alt_rep=POSITIONS): """Get an mdtraj.Topology object for a system representation. By default gives the topology for the main 'positions' field (when alt_rep 'positions'). To get the full topology the file was initialized with set `alt_rep` to `None`. Topologies for alternative representations (subfields of 'alt_reps') can be obtained by passing in the key for that alt_rep. For example, 'all_atoms' for the field in alt_reps called 'all_atoms'. Parameters ---------- alt_rep : str The base name of the alternate representation, or 'positions', or None. Returns ------- topology : str The JSON topology string for the full representation. """ json_top = self.get_topology(alt_rep=alt_rep) return json_to_mdtraj_topology(json_top) ## Initial walkers def initial_walker_fields(self, run_idx, fields, walker_idxs=None): """Get fields from the initial walkers of the simulation. Parameters ---------- run_idx : int Run to get initial walkers for. fields : list of str Names of the fields you want to retrieve. walker_idxs : None or list of int If None returns all of the walkers fields, otherwise a list of ints that are a selection from those walkers. Returns ------- walker_fields : dict of str : array of shape Dictionary mapping fields to the values for all walkers. Frames will be either in counting order if no indices were requested or the order of the walker indices as given. """ # set the walker indices if not specified if walker_idxs is None: walker_idxs = range(self.num_init_walkers(run_idx)) init_walker_fields = {field : [] for field in fields} # for each walker go through and add the selected fields for walker_idx in walker_idxs: init_walker_grp = self.init_walkers_grp(run_idx)[str(walker_idx)] for field in fields: # we remove the first dimension because we just want # them as a single frame init_walker_fields[field].append(init_walker_grp[field][:][0]) # convert the field values to arrays init_walker_fields = {field : np.array(val) for field, val in init_walker_fields.items()} return init_walker_fields def initial_walkers_to_mdtraj(self, run_idx, walker_idxs=None, alt_rep=POSITIONS): """Generate an mdtraj Trajectory from a trace of frames from the runs. Uses the default fields for positions (unless an alternate representation is specified) and box vectors which are assumed to be present in the trajectory fields. The time value for the mdtraj trajectory is set to the cycle indices for each trace frame. This is useful for converting WepyHDF5 data to common molecular dynamics data formats accessible through the mdtraj library. Parameters ---------- run_idx : int Run to get initial walkers for. fields : list of str Names of the fields you want to retrieve. walker_idxs : None or list of int If None returns all of the walkers fields, otherwise a list of ints that are a selection from those walkers. alt_rep : None or str If None uses default 'positions' representation otherwise chooses the representation from the 'alt_reps' compound field. Returns ------- traj : mdtraj.Trajectory """ rep_path = self._choose_rep_path(alt_rep) init_walker_fields = self.initial_walker_fields(run_idx, [rep_path, BOX_VECTORS], walker_idxs=walker_idxs) return self.traj_fields_to_mdtraj(init_walker_fields, alt_rep=alt_rep) ### Counts and Indexing @property def num_atoms(self): """The number of atoms in the full topology representation.""" return self.h5['{}/{}'.format(SETTINGS, N_ATOMS)][()] @property def num_dims(self): """The number of spatial dimensions in the positions and alt_reps trajectory fields.""" return self.h5['{}/{}'.format(SETTINGS, N_DIMS_STR)][()] @property def num_runs(self): """The number of runs in the file.""" return len(self._h5[RUNS]) @property def num_trajs(self): """The total number of trajectories in the entire file.""" return len(list(self.run_traj_idx_tuples())) def num_init_walkers(self, run_idx): """The number of initial walkers for a run. Parameters ---------- run_idx : int Returns ------- n_walkers : int """ return len(self.init_walkers_grp(run_idx)) def num_walkers(self, run_idx, cycle_idx): """Get the number of walkers at a given cycle in a run. Parameters ---------- run_idx : int cycle_idx : int Returns ------- n_walkers : int """ if cycle_idx >= self.num_run_cycles(run_idx): raise ValueError( f"Run {run_idx} has {self.num_run_cycles(run_idx)} cycles, {cycle_idx} requested") # TODO: currently we do not have a well-defined mechanism for # actually storing variable number of walkers in the # trajectory data so just return the number of trajectories return self.num_run_trajs(run_idx) def num_run_trajs(self, run_idx): """The number of trajectories in a run. Parameters ---------- run_idx : int Returns ------- n_trajs : int """ return len(self._h5['{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES)]) def num_run_cycles(self, run_idx): """The number of cycles in a run. Parameters ---------- run_idx : int Returns ------- n_cycles : int """ return self.num_traj_frames(run_idx, 0) def num_traj_frames(self, run_idx, traj_idx): """The number of frames in a given trajectory. Parameters ---------- run_idx : int traj_idx : int Returns ------- n_frames : int """ return self.traj(run_idx, traj_idx)[POSITIONS].shape[0] @property def run_idxs(self): """The indices of the runs in the file.""" return list(range(len(self._h5[RUNS]))) def run_traj_idxs(self, run_idx): """The indices of trajectories in a run. Parameters ---------- run_idx : int Returns ------- traj_idxs : list of int """ return list(range(len(self._h5['{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES)]))) def run_traj_idx_tuples(self, runs=None): """Get identifier tuples (run_idx, traj_idx) for all trajectories in all runs. Parameters ---------- runs : list of int, optional If not None, a list of run indices to restrict to. Returns ------- run_traj_tuples : list of tuple of int A listing of all trajectories by their identifying tuple of (run_idx, traj_idx). """ tups = [] if runs is None: run_idxs = self.run_idxs else: run_idxs = runs for run_idx in run_idxs: for traj_idx in self.run_traj_idxs(run_idx): tups.append((run_idx, traj_idx)) return tups def get_traj_field_cycle_idxs(self, run_idx, traj_idx, field_path): """Returns the cycle indices for a sparse trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Name of the trajectory field Returns ------- cycle_idxs : arraylike of int """ traj_path = '{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx) if not field_path in self._h5[traj_path]: raise KeyError("key for field {} not found".format(field_path)) # if the field is not sparse just return the cycle indices for # that run if field_path not in self.sparse_fields: cycle_idxs = np.array(range(self.num_run_cycles(run_idx))) else: cycle_idxs = self._h5[traj_path][field_path][SPARSE_IDXS][:] return cycle_idxs def next_run_idx(self): """The index of the next run if it were to be added. Because runs are named as the integer value of the order they were added this gives the index of the next run that would be added. Returns ------- next_run_idx : int """ return self.num_runs def next_run_traj_idx(self, run_idx): """The index of the next trajectory for this run. Parameters ---------- run_idx : int Returns ------- next_traj_idx : int """ return self.num_run_trajs(run_idx) ### Aggregation def is_run_contig(self, run_idxs): """This method checks that if a given list of run indices is a valid contig or not. Parameters ---------- run_idxs : list of int The run indices that would make up the contig in order. Returns ------- is_contig : bool """ run_idx_continuations = [np.array([run_idxs[idx+1], run_idxs[idx]]) for idx in range(len(run_idxs)-1)] #gets the contigs array continuations = self.settings_grp[CONTINUATIONS][:] # checks if sub contigs are in contigs list or not. for run_continuous in run_idx_continuations: contig = False for continuous in continuations: if np.array_equal(run_continuous, continuous): contig = True if not contig: return False return True def clone(self, path, mode='x'): """Clone the header information of this file into another file. Clones this WepyHDF5 file without any of the actual runs and run data. This includes the topology, units, sparse_fields, feature shapes and dtypes, alt_reps, and main representation information. This method will flush the buffers for this file. Does not preserve metadata pertaining to inter-run relationships like continuations. Parameters ---------- path : str File path to save the new file. mode : str The mode to open the new file with. Returns ------- new_file : h5py.File The handle to the new file. It will be closed. """ assert mode in ['w', 'w-', 'x'], "must be opened in a file creation mode" # we manually construct an HDF5 and copy the groups over new_h5 = h5py.File(path, mode=mode, libver=H5PY_LIBVER) new_h5.require_group(RUNS) # flush the datasets buffers self.h5.flush() new_h5.flush() # copy the existing datasets to the new one h5py.h5o.copy(self._h5.id, TOPOLOGY.encode(), new_h5.id, TOPOLOGY.encode()) h5py.h5o.copy(self._h5.id, UNITS.encode(), new_h5.id, UNITS.encode()) h5py.h5o.copy(self._h5.id, SETTINGS.encode(), new_h5.id, SETTINGS.encode()) # now make a WepyHDF5 object in "expert_mode" which means it # is just empy and we construct it manually, "surgically" as I # like to call it new_wepy_h5 = WepyHDF5(path, expert_mode=True) # perform the surgery: # attach the h5py.File new_wepy_h5._h5 = new_h5 # set the wepy mode to read-write since the creation flags # were already used in construction of the h5py.File object new_wepy_h5._wepy_mode = 'r+' new_wepy_h5._h5py_mode = 'r+' # for the settings we need to get rid of the data for interun # relationships like the continuations, so we reinitialize the # continuations for the new file new_wepy_h5._init_continuations() # close the h5py.File and set the attribute to closed new_wepy_h5._h5.close() new_wepy_h5.closed = True # return the runless WepyHDF5 object return new_wepy_h5 def link_run(self, filepath, run_idx, continue_run=None, **kwargs): """Add a run from another file to this one as an HDF5 external link. Parameters ---------- filepath : str File path to the HDF5 file that the run is on. run_idx : int The run index from the target file you want to link. continue_run : int, optional The run from the linking WepyHDF5 file you want the target linked run to continue. kwargs : dict Adds metadata (h5py.attrs) to the linked run. Returns ------- linked_run_idx : int The index of the linked run in the linking file. """ # link to the external run ext_run_link = h5py.ExternalLink(filepath, '{}/{}'.format(RUNS, run_idx)) # the run index in this file, as determined by the counter here_run_idx = self.next_run_idx() # set the local run as the external link to the other run self._h5['{}/{}'.format(RUNS, here_run_idx)] = ext_run_link # run the initialization routines for adding a run self._add_run_init(here_run_idx, continue_run=continue_run) run_grp = self._h5['{}/{}'.format(RUNS, here_run_idx)] # add metadata if given for key, val in kwargs.items(): if key != RUN_IDX: run_grp.attrs[key] = val else: warn('run_idx metadata is set by wepy and cannot be used', RuntimeWarning) return here_run_idx def link_file_runs(self, wepy_h5_path): """Link all runs from another WepyHDF5 file. This preserves continuations within that file. This will open the file if not already opened. Parameters ---------- wepy_h5_path : str Filepath to the file you want to link runs from. Returns ------- new_run_idxs : list of int The new run idxs from the linking file. """ wepy_h5 = WepyHDF5(wepy_h5_path, mode='r') with wepy_h5: ext_run_idxs = wepy_h5.run_idxs continuations = wepy_h5.continuations # add the runs new_run_idxs = [] for ext_run_idx in ext_run_idxs: # link the next run, and get its new run index new_run_idx = self.link_run(wepy_h5_path, ext_run_idx) # save that run idx new_run_idxs.append(new_run_idx) # copy the continuations over translating the run idxs, # for each continuation in the other files continuations for continuation in continuations: # translate each run index from the external file # continuations to the run idxs they were just assigned in # this file self.add_continuation(new_run_idxs[continuation[0]], new_run_idxs[continuation[1]]) return new_run_idxs def extract_run(self, filepath, run_idx, continue_run=None, run_slice=None, **kwargs): """Add a run from another file to this one by copying it and truncating it if necessary. Parameters ---------- filepath : str File path to the HDF5 file that the run is on. run_idx : int The run index from the target file you want to link. continue_run : int, optional The run from the linking WepyHDF5 file you want the target linked run to continue. run_slice : kwargs : dict Adds metadata (h5py.attrs) to the linked run. Returns ------- linked_run_idx : int The index of the linked run in the linking file. """ # close ourselves if not already done, so we can write using # the lower level API was_open = False if not self.closed: self.close() was_open = True # do the copying # open the other file and get the runs in it and the # continuations it has wepy_h5 = WepyHDF5(filepath, mode='r') with self: # normalize our HDF5s path self_path = osp.realpath(self.filename) # the run index in this file, as determined by the counter here_run_idx = self.next_run_idx() # get the group name for the new run in this HDF5 target_grp_path = "/runs/{}".format(here_run_idx) with wepy_h5: # link the next run, and get its new run index new_h5 = wepy_h5.copy_run_slice(run_idx, self_path, target_grp_path, run_slice=run_slice, mode='r+') # close it since we are done new_h5.close() with self: # run the initialization routines for adding a run, just # sets some metadata self._add_run_init(here_run_idx, continue_run=continue_run) run_grp = self._h5['{}/{}'.format(RUNS, here_run_idx)] # add metadata if given for key, val in kwargs.items(): if key != RUN_IDX: run_grp.attrs[key] = val else: warn('run_idx metadata is set by wepy and cannot be used', RuntimeWarning) if was_open: self.open() return here_run_idx def extract_file_runs(self, wepy_h5_path, run_slices=None): """Extract (copying and truncating appropriately) all runs from another WepyHDF5 file. This preserves continuations within that file. This will open the file if not already opened. Parameters ---------- wepy_h5_path : str Filepath to the file you want to link runs from. Returns ------- new_run_idxs : list of int The new run idxs from the linking file. """ if run_slices is None: run_slices = {} # open the other file and get the runs in it and the # continuations it has wepy_h5 = WepyHDF5(wepy_h5_path, mode='r') with wepy_h5: # the run idx in the external file ext_run_idxs = wepy_h5.run_idxs continuations = wepy_h5.continuations # then for each run in it copy them to this file new_run_idxs = [] for ext_run_idx in ext_run_idxs: # get the run_slice spec for the run in the other file run_slice = run_slices[ext_run_idx] # get the index this run should be when it is added new_run_idx = self.extract_run(wepy_h5_path, ext_run_idx, run_slice=run_slice) # save that run idx new_run_idxs.append(new_run_idx) was_closed = False if self.closed: self.open() was_closed = True # copy the continuations over translating the run idxs, # for each continuation in the other files continuations for continuation in continuations: # translate each run index from the external file # continuations to the run idxs they were just assigned in # this file self.add_continuation(new_run_idxs[continuation[0]], new_run_idxs[continuation[1]]) if was_closed: self.close() return new_run_idxs def join(self, other_h5): """Given another WepyHDF5 file object does a left join on this file, renumbering the runs starting from this file. This function uses the H5O function for copying. Data will be copied not linked. Parameters ---------- other_h5 : h5py.File File handle to the file you want to join to this one. """ with other_h5 as h5: for run_idx in h5.run_idxs: # the other run group handle other_run = h5.run(run_idx) # copy this run to this file in the next run_idx group self.h5.copy(other_run, '{}/{}'.format(RUNS, self.next_run_idx())) ### initialization and data generation def add_metadata(self, key, value): """Add metadata for the whole file. Parameters ---------- key : str value : h5py value h5py valid metadata value. """ self._h5.attrs[key] = value def init_record_fields(self, run_record_key, record_fields): """Initialize the settings record fields for a record group in the settings group. Save which records are to be considered from a run record group's datasets to be in the table like representation. This exists to allow there to large and small datasets for records to be stored together but allow for a more compact single table like representation to be produced for serialization. Parameters ---------- run_record_key : str Name of the record group you want to set this for. record_fields : list of str Names of the fields you want to set as record fields. """ record_fields_grp = self.settings_grp[RECORD_FIELDS] # make a dataset for the sparse fields allowed. this requires # a 'special' datatype for variable length strings. This is # supported by HDF5 but not numpy. vlen_str_dt = h5py.special_dtype(vlen=str) # create the dataset with the strings of the fields which are records record_group_fields_ds = record_fields_grp.create_dataset(run_record_key, (len(record_fields),), dtype=vlen_str_dt, maxshape=(None,)) # set the flags for i, record_field in enumerate(record_fields): record_group_fields_ds[i] = record_field def init_resampling_record_fields(self, resampler): """Initialize the record fields for this record group. Parameters ---------- resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. """ self.init_record_fields(RESAMPLING, resampler.resampling_record_field_names()) def init_resampler_record_fields(self, resampler): """Initialize the record fields for this record group. Parameters ---------- resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. """ self.init_record_fields(RESAMPLER, resampler.resampler_record_field_names()) def init_bc_record_fields(self, bc): """Initialize the record fields for this record group. Parameters ---------- bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. """ self.init_record_fields(BC, bc.bc_record_field_names()) def init_warping_record_fields(self, bc): """Initialize the record fields for this record group. Parameters ---------- bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. """ self.init_record_fields(WARPING, bc.warping_record_field_names()) def init_progress_record_fields(self, bc): """Initialize the record fields for this record group. Parameters ---------- bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. """ self.init_record_fields(PROGRESS, bc.progress_record_field_names()) def add_continuation(self, continuation_run, base_run): """Add a continuation between runs. Parameters ---------- continuation_run : int The run index of the run that will be continuing another base_run : int The run that is being continued. """ continuations_dset = self.settings_grp[CONTINUATIONS] continuations_dset.resize((continuations_dset.shape[0] + 1, continuations_dset.shape[1],)) continuations_dset[continuations_dset.shape[0] - 1] = np.array([continuation_run, base_run]) def new_run(self, init_walkers, continue_run=None, **kwargs): """Initialize a new run. Parameters ---------- init_walkers : list of objects implementing the Walker interface The walkers that will be the start of this run. continue_run : int, optional If this run is a continuation of another set which one it is continuing. kwargs : dict Metadata to set for the run. Returns ------- run_grp : h5py.Group The group of the newly created run. """ # check to see if the continue_run is actually in this file if continue_run is not None: if continue_run not in self.run_idxs: raise ValueError("The continue_run idx given, {}, is not present in this file".format( continue_run)) # get the index for this run new_run_idx = self.next_run_idx() # create a new group named the next integer in the counter run_grp = self._h5.create_group('{}/{}'.format(RUNS, new_run_idx)) # set the initial walkers group init_walkers_grp = run_grp.create_group(INIT_WALKERS) self._add_init_walkers(init_walkers_grp, init_walkers) # initialize the walkers group traj_grp = run_grp.create_group(TRAJECTORIES) # run the initialization routines for adding a run self._add_run_init(new_run_idx, continue_run=continue_run) # add metadata if given for key, val in kwargs.items(): if key != RUN_IDX: run_grp.attrs[key] = val else: warn('run_idx metadata is set by wepy and cannot be used', RuntimeWarning) return run_grp # application level methods for setting the fields for run record # groups given the objects themselves def init_run_resampling(self, run_idx, resampler): """Initialize data for resampling records. Initialized the run record group as well as settings for the fields. This method also creates the decision group for the run. Parameters ---------- run_idx : int resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ # set the enumeration of the decisions self.init_run_resampling_decision(0, resampler) # set the data fields that can be used for table like records resampler.resampler_record_field_names() resampler.resampling_record_field_names() # then make the records group fields = resampler.resampling_fields() grp = self.init_run_record_grp(run_idx, RESAMPLING, fields) return grp def init_run_resampling_decision(self, run_idx, resampler): """Initialize the decision group for the run resampling records. Parameters ---------- run_idx : int resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. """ self.init_run_fields_resampling_decision(run_idx, resampler.DECISION.enum_dict_by_name()) def init_run_resampler(self, run_idx, resampler): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = resampler.resampler_fields() grp = self.init_run_record_grp(run_idx, RESAMPLER, fields) return grp def init_run_warping(self, run_idx, bc): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = bc.warping_fields() grp = self.init_run_record_grp(run_idx, WARPING, fields) return grp def init_run_progress(self, run_idx, bc): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = bc.progress_fields() grp = self.init_run_record_grp(run_idx, PROGRESS, fields) return grp def init_run_bc(self, run_idx, bc): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = bc.bc_fields() grp = self.init_run_record_grp(run_idx, BC, fields) return grp # application level methods for initializing the run records # groups with just the fields and without the objects def init_run_fields_resampling(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, RESAMPLING, fields) return grp def init_run_fields_resampling_decision(self, run_idx, decision_enum_dict): """Initialize the decision group for this run. Parameters ---------- run_idx : int decision_enum_dict : dict of str : int Mapping of decision ID strings to integer representation. """ decision_grp = self.run(run_idx).create_group(DECISION) for name, value in decision_enum_dict.items(): decision_grp.create_dataset(name, data=value) def init_run_fields_resampler(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, RESAMPLER, fields) return grp def init_run_fields_warping(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, WARPING, fields) return grp def init_run_fields_progress(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, PROGRESS, fields) return grp def init_run_fields_bc(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, BC, fields) return grp def init_run_record_grp(self, run_idx, run_record_key, fields): """Initialize a record group for a run. Parameters ---------- run_idx : int run_record_key : str The name of the record group. fields : list of str The names of the fields to set for the record group. """ # initialize the record group based on whether it is sporadic # or continual if self._is_sporadic_records(run_record_key): grp = self._init_run_sporadic_record_grp(run_idx, run_record_key, fields) else: grp = self._init_run_continual_record_grp(run_idx, run_record_key, fields) # TODO: should've been removed already just double checking things are good without it # def traj_n_frames(self, run_idx, traj_idx): # """ # Parameters # ---------- # run_idx : # traj_idx : # Returns # ------- # """ # return self.traj(run_idx, traj_idx)[POSITIONS].shape[0] def add_traj(self, run_idx, data, weights=None, sparse_idxs=None, metadata=None): """Add a full trajectory to a run. Parameters ---------- run_idx : int data : dict of str : arraylike Mapping of trajectory fields to the data for them to add. weights : 1-D arraylike of float The weights of each frame. If None defaults all frames to 1.0. sparse_idxs : list of int Cycle indices the data corresponds to. metadata : dict of str : value Metadata for the trajectory. Returns ------- traj_grp : h5py.Group """ # convenient alias traj_data = data # initialize None kwargs if sparse_idxs is None: sparse_idxs = {} if metadata is None: metadata = {} # positions are mandatory assert POSITIONS in traj_data, "positions must be given to create a trajectory" assert isinstance(traj_data[POSITIONS], np.ndarray) n_frames = traj_data[POSITIONS].shape[0] # if weights are None then we assume they are 1.0 if weights is None: weights = np.ones((n_frames, 1), dtype=float) else: assert isinstance(weights, np.ndarray), "weights must be a numpy.ndarray" assert weights.shape[0] == n_frames,\ "weights and the number of frames must be the same length" # current traj_idx traj_idx = self.next_run_traj_idx(run_idx) # make a group for this trajectory, with the current traj_idx # for this run traj_grp = self._h5.create_group( '{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)) # add the run_idx as metadata traj_grp.attrs[RUN_IDX] = run_idx # add the traj_idx as metadata traj_grp.attrs[TRAJ_IDX] = traj_idx # add the rest of the metadata if given for key, val in metadata.items(): if not key in [RUN_IDX, TRAJ_IDX]: traj_grp.attrs[key] = val else: warn("run_idx and traj_idx are used by wepy and cannot be set", RuntimeWarning) # check to make sure the positions are the right shape assert traj_data[POSITIONS].shape[1] == self.num_atoms, \ "positions given have different number of atoms: {}, should be {}".format( traj_data[POSITIONS].shape[1], self.num_atoms) assert traj_data[POSITIONS].shape[2] == self.num_dims, \ "positions given have different number of dims: {}, should be {}".format( traj_data[POSITIONS].shape[2], self.num_dims) # add datasets to the traj group # weights traj_grp.create_dataset(WEIGHTS, data=weights, dtype=WEIGHT_DTYPE, maxshape=(None, *WEIGHT_SHAPE)) # positions positions_shape = traj_data[POSITIONS].shape # add the rest of the traj_data for field_path, field_data in traj_data.items(): # if there were sparse idxs for this field pass them in if field_path in sparse_idxs: field_sparse_idxs = sparse_idxs[field_path] # if this is a sparse field and no sparse_idxs were given # we still need to initialize it as a sparse field so it # can be extended properly so we make sparse_idxs to match # the full length of this initial trajectory data elif field_path in self.sparse_fields: field_sparse_idxs = np.arange(positions_shape[0]) # otherwise it is not a sparse field so we just pass in None else: field_sparse_idxs = None self._add_traj_field_data(run_idx, traj_idx, field_path, field_data, sparse_idxs=field_sparse_idxs) ## initialize empty sparse fields # get the sparse field datasets that haven't been initialized traj_init_fields = list(sparse_idxs.keys()) + list(traj_data.keys()) uninit_sparse_fields = set(self.sparse_fields).difference(traj_init_fields) # the shapes uninit_sparse_shapes = [self.field_feature_shapes[field] for field in uninit_sparse_fields] # the dtypes uninit_sparse_dtypes = [self.field_feature_dtypes[field] for field in uninit_sparse_fields] # initialize the sparse fields in the hdf5 self._init_traj_fields(run_idx, traj_idx, uninit_sparse_fields, uninit_sparse_shapes, uninit_sparse_dtypes) return traj_grp def extend_traj(self, run_idx, traj_idx, data, weights=None): """Extend a trajectory with data for all fields. Parameters ---------- run_idx : int traj_idx : int data : dict of str : arraylike The data to add for each field of the trajectory. Must all have the same first dimension. weights : arraylike Weights for the frames of the trajectory. If None defaults all frames to 1.0. """ if self._wepy_mode == 'c-': assert self._append_flags[dataset_key], "dataset is not available for appending to" # convenient alias traj_data = data # number of frames to add n_new_frames = traj_data[POSITIONS].shape[0] n_frames = self.num_traj_frames(run_idx, traj_idx) # calculate the new sparse idxs for sparse fields that may be # being added sparse_idxs = np.array(range(n_frames, n_frames + n_new_frames)) # get the trajectory group traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] ## weights # if weights are None then we assume they are 1.0 if weights is None: weights = np.ones((n_new_frames, 1), dtype=float) else: assert isinstance(weights, np.ndarray), "weights must be a numpy.ndarray" assert weights.shape[0] == n_new_frames,\ "weights and the number of frames must be the same length" # add the weights weights_ds = traj_grp[WEIGHTS] # append to the dataset on the first dimension, keeping the # others the same, if they exist if len(weights_ds.shape) > 1: weights_ds.resize( (weights_ds.shape[0] + n_new_frames, *weights_ds.shape[1:]) ) else: weights_ds.resize( (weights_ds.shape[0] + n_new_frames, ) ) # add the new data weights_ds[-n_new_frames:, ...] = weights # add the other fields for field_path, field_data in traj_data.items(): # if the field hasn't been initialized yet initialize it, # unless we are in SWMR mode if not field_path in traj_grp: # if in SWMR mode you cannot create groups so if we # are in SWMR mode raise a warning that the data won't # be recorded if self.swmr_mode: warn("New datasets cannot be created while in SWMR mode. The field {} will" "not be saved. If you want to save this it must be" "previously created".format(field_path)) else: feature_shape = field_data.shape[1:] feature_dtype = field_data.dtype # not specified as sparse_field, no settings if (not field_path in self.field_feature_shapes) and \ (not field_path in self.field_feature_dtypes) and \ not field_path in self.sparse_fields: # only save if it is an observable is_observable = False if '/' in field_path: group_name = field_path.split('/')[0] if group_name == OBSERVABLES: is_observable = True if is_observable: warn("the field '{}' was received but not previously specified" " but is being added because it is in observables.".format(field_path)) # save sparse_field flag, shape, and dtype self._add_sparse_field_flag(field_path) self._set_field_feature_shape(field_path, feature_shape) self._set_field_feature_dtype(field_path, feature_dtype) else: raise ValueError("the field '{}' was received but not previously specified" "it is being ignored because it is not an observable.".format(field_path)) # specified as sparse_field but no settings given elif (self.field_feature_shapes[field_path] is None and self.field_feature_dtypes[field_path] is None) and \ field_path in self.sparse_fields: # set the feature shape and dtype since these # should be 0 in the settings self._set_field_feature_shape(field_path, feature_shape) self._set_field_feature_dtype(field_path, feature_dtype) # initialize self._init_traj_field(run_idx, traj_idx, field_path, feature_shape, feature_dtype) # extend it either as a sparse field or a contiguous field if field_path in self.sparse_fields: self._extend_sparse_traj_field(run_idx, traj_idx, field_path, field_data, sparse_idxs) else: self._extend_contiguous_traj_field(run_idx, traj_idx, field_path, field_data) ## application level append methods for run records groups def extend_cycle_warping_records(self, run_idx, cycle_idx, warping_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. warping_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, WARPING, cycle_idx, warping_data) def extend_cycle_bc_records(self, run_idx, cycle_idx, bc_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. bc_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, BC, cycle_idx, bc_data) def extend_cycle_progress_records(self, run_idx, cycle_idx, progress_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. progress_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, PROGRESS, cycle_idx, progress_data) def extend_cycle_resampling_records(self, run_idx, cycle_idx, resampling_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. resampling_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, RESAMPLING, cycle_idx, resampling_data) def extend_cycle_resampler_records(self, run_idx, cycle_idx, resampler_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. resampler_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, RESAMPLER, cycle_idx, resampler_data) def extend_cycle_run_group_records(self, run_idx, run_record_key, cycle_idx, fields_data): """Extend data for a whole records group. This must have the cycle index for the data it is appending as this is done for sporadic and continual datasets. Parameters ---------- run_idx : int run_record_key : str Name of the record group. cycle_idx : int The cycle index these records correspond to. fields_data : dict of str : arraylike Mapping of the field name to the values for the records being added. """ record_grp = self.records_grp(run_idx, run_record_key) # if it is sporadic add the cycle idx if self._is_sporadic_records(run_record_key): # get the cycle idxs dataset record_cycle_idxs_ds = record_grp[CYCLE_IDXS] # number of old and new records n_new_records = len(fields_data) n_existing_records = record_cycle_idxs_ds.shape[0] # make a new chunk for the new records record_cycle_idxs_ds.resize( (n_existing_records + n_new_records,) ) # add an array of the cycle idx for each record record_cycle_idxs_ds[n_existing_records:] = np.full((n_new_records,), cycle_idx) # then add all the data for the field for record_dict in fields_data: for field_name, field_data in record_dict.items(): self._extend_run_record_data_field(run_idx, run_record_key, field_name, np.array([field_data])) ### Analysis Routines ## Record Getters def run_records(self, run_idx, run_record_key): """Get the records for a record group for a single run. Parameters ---------- run_idx : int run_record_key : str The name of the record group. Returns ------- records : list of namedtuple objects The list of records for the run's record group. """ # wrap this in a list since the underlying functions accept a # list of records run_idxs = [run_idx] return self.run_contig_records(run_idxs, run_record_key) def run_contig_records(self, run_idxs, run_record_key): """Get the records for a record group for the contig that is formed by the run indices. This alters the cycle indices for the records so that they appear to have come from a single run. That is they are the cycle indices of the contig. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) run_record_key : str Name of the record group. Returns ------- records : list of namedtuple objects The list of records for the contig's record group. """ # if there are no fields return an empty list record_fields = self.record_fields[run_record_key] if len(record_fields) == 0: return [] # get the iterator for the record idxs, if the group is # sporadic then we just use the cycle idxs if self._is_sporadic_records(run_record_key): records = self._run_records_sporadic(run_idxs, run_record_key) else: records = self._run_records_continual(run_idxs, run_record_key) return records def run_records_dataframe(self, run_idx, run_record_key): """Get the records for a record group for a single run in the form of a pandas DataFrame. Parameters ---------- run_idx : int run_record_key : str Name of record group. Returns ------- record_df : pandas.DataFrame """ records = self.run_records(run_idx, run_record_key) return pd.DataFrame(records) def run_contig_records_dataframe(self, run_idxs, run_record_key): """Get the records for a record group for a contig of runs in the form of a pandas DataFrame. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) run_record_key : str The name of the record group. Returns ------- records_df : pandas.DataFrame """ records = self.run_contig_records(run_idxs, run_record_key) return
pd.DataFrame(records)
pandas.DataFrame
""" Binary Transport ================ Example of binary transport in pydeck. This notebook renders 10k points via the web sockets within a Jupyter notebook if you run with ``generate_vis(notebook_display=True)`` Since binary transfer relies on Jupyter's kernel communication, note that the .html in the pydeck documentation does not use binary transfer and is just for illustration. """ import pydeck import pandas as pd NODES_URL = "https://raw.githubusercontent.com/ajduberstein/geo_datasets/master/social_nodes.csv" def generate_graph_data(num_nodes, random_seed): """Generates a graph of 10k nodes with a 3D force layout This function is unused but serves as an example of how the data in this visualization was generated """ import networkx as nx # noqa g = nx.random_internet_as_graph(num_nodes, random_seed) node_positions = nx.fruchterman_reingold_layout(g, dim=3) force_layout_df =
pd.DataFrame.from_records(node_positions)
pandas.DataFrame.from_records
import pandas as pd import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Input, Dense, LSTM, GRU, Dropout from tensorflow.keras.models import load_model from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras import backend as K from tensorflow.keras import optimizers from bayes_opt import BayesianOptimization import random import time from manipulate_data import * def divide_data(reshaped_x, reshaped_y, look_back, study_periods): train_size, valid_size, test_size = data_split(study_periods) train_size -= look_back train_x = reshaped_x[:train_size, :, :] train_y = reshaped_y[:train_size] valid_x = reshaped_x[train_size:train_size + valid_size, :, :] valid_y = reshaped_y[train_size:train_size + valid_size] test_x = reshaped_x[train_size + valid_size:, :, :] test_y = reshaped_y[train_size + valid_size:] return train_x, train_y, valid_x, valid_y, test_x, test_y def reshape(Returns, look_back): # Ensure all data is float values = Returns.astype('float32') # Reshape the data values = values.reshape(np.size(values, 0), 1, 1) reshaped = np.empty([np.size(values, 0)-look_back+1, 0, np.size(values, 2)]) # Timesteps in order of time for i in range(1, look_back+1): reshaped = np.concatenate((reshaped, np.roll(values, look_back-i, axis=0)[look_back-1:, :, :]), axis=1) return reshaped def GRU_network(input_dim,layers,dropout): model_input = Input(shape=input_dim) x = GRU(layers[0], input_shape=input_dim,\ return_sequences=False if np.size(layers,0)==1 else True)(model_input) x = Dropout(dropout)(x) if np.size(layers,0) > 2: for i in range(1,np.size(layers,0)-1): x = GRU(layers[i], return_sequences=True)(x) x = Dropout(dropout)(x) if np.size(layers,0) > 1: x = GRU(layers[-1])(x) x = Dropout(dropout)(x) model_output = Dense(1)(x) return Model(inputs=model_input, outputs=model_output) def LSTM_network(input_dim,layers,dropout): model_input = Input(shape=input_dim) x = LSTM(layers[0], input_shape=input_dim,\ return_sequences=False if np.size(layers,0)==1 else True)(model_input) x = Dropout(dropout)(x) if np.size(layers,0) > 2: for i in range(1,np.size(layers,0)-1): x = LSTM(layers[i], return_sequences=True)(x) x = Dropout(dropout)(x) if np.size(layers,0) > 1: x = LSTM(layers[-1])(x) x = Dropout(dropout)(x) model_output = Dense(1)(x) return Model(inputs=model_input, outputs=model_output) def train_recurrent_model(cell_type, number_of_study_periods, study_periods, frequency_index, frequencies, frequencies_number_of_samples): class recurrent_model(): def __init__(self, cell_type, number_of_study_periods, study_periods, frequency_index, frequencies, frequencies_number_of_samples): self.cell_type = cell_type self.number_of_study_periods = number_of_study_periods self.study_periods = study_periods self.frequency_index = frequency_index self.frequencies = frequencies self.frequencies_number_of_samples = frequencies_number_of_samples self.recurrent_start_time = time.time() self.init_points = 1 self.n_iter = 2 self.model_results = np.ones((number_of_study_periods,4))*np.Inf self.model_names = [None]*number_of_study_periods self.model_predictions = np.zeros((number_of_study_periods,study_periods.shape[2])) self.model_predictions[:] = np.nan def black_box_function(self, look_back, batch_size, optimizer, dropout, n_layers, first_layer, layer_decay, learning_rate): # start_time = time.time() # Convert hyperparameters look_back = int(look_back) batch_size = 2**int(batch_size) n_epochs = batch_size optimizer = ['sgd','rmsprop','adam'][int(optimizer)] n_layers = int(n_layers) first_layer = int(first_layer) learning_rate = np.exp(-learning_rate) layers = [] for k in range(0,n_layers): layers = np.append(layers, [first_layer*layer_decay**k+0.5]).astype(int) layers = np.clip(layers,1,None).tolist() # Reshape the data Reshaped = reshape(self.study_periods[0,self.period], look_back) # Get X and Y reshaped_x = Reshaped[:-1, :, :] reshaped_y = Reshaped[1:, -1, 0] # Divide in train, valid and test set train_x, train_y, valid_x, valid_y, test_x, test_y =\ divide_data(reshaped_x, reshaped_y, look_back, self.study_periods) mean = np.mean(np.append(train_x[0], train_y)) std = np.std(np.append(train_x[0], train_y)) train_norm_x, valid_norm_x, test_norm_x = (train_x-mean)/std, (valid_x-mean)/std, (test_x-mean)/std train_norm_y, valid_norm_y, test_norm_y = (train_y-mean)/std, (valid_y-mean)/std, (test_y-mean)/std train_valid_x = np.concatenate((train_x, valid_x)) train_valid_y = np.concatenate((train_y, valid_y)) mean_tv = np.mean(np.append(train_valid_x[0], train_valid_y)) std_tv = np.std(np.append(train_valid_x[0], train_valid_y)) train_valid_norm_x, test_norm_tv_x = (train_valid_x-mean_tv)/std_tv, (test_x-mean_tv)/std_tv train_valid_norm_y, test_norm_tv_y = (train_valid_y-mean_tv)/std_tv, (test_y-mean_tv)/std_tv # Name the model NAME = 'look_back-'+str(look_back)+\ ', n_epochs-'+str(n_epochs)+\ ', batch_size-'+str(batch_size)+\ ', optimizer-'+optimizer+\ ', layers-'+str(layers)+\ ', dropout-'+str(dropout) # print('Model name:', NAME) #Design model if optimizer == 'sgd': optimizer_k = optimizers.SGD(lr=learning_rate) elif optimizer == 'rmsprop': optimizer_k = optimizers.RMSprop(lr=learning_rate) elif optimizer == 'adam': optimizer_k = optimizers.Adam(lr=learning_rate) input_dim = (look_back, np.size(Reshaped,2)) if cell_type == 'LSTM': model = LSTM_network(input_dim,layers,dropout) else: model = GRU_network(input_dim,layers,dropout) model.compile(loss='mse', optimizer=optimizer) # Print model summary #model.summary() # Train model # Fit network earlystopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=8,\ verbose=0, mode='auto', baseline=None, restore_best_weights=True) # print(f'Time: {np.round((time.time()-start_time)/60,2)}') history = model.fit(train_norm_x, train_norm_y, epochs=n_epochs, batch_size=batch_size,\ validation_data=(valid_norm_x, valid_norm_y), verbose=0, shuffle=False, callbacks=[earlystopping]) # print(f'Time: {np.round((time.time()-start_time)/60,2)}') # plt.plot(history.history['loss'],label='loss') # plt.plot(history.history['val_loss'],label='val loss') # plt.legend() # plt.show() mse = np.mean(np.square((model.predict(valid_norm_x)*std+mean).flatten()-valid_y)) if mse < self.model_results[self.period,1]: self.model_names[self.period] = NAME self.model_results[self.period, 0] = np.mean(np.square((model.predict(train_norm_x)*std+mean).flatten()-train_y)) self.model_results[self.period, 1] = mse #Design model del model K.clear_session() input_dim = (look_back, np.size(Reshaped,2)) if cell_type == 'LSTM': model = LSTM_network(input_dim,layers,dropout) else: model = GRU_network(input_dim,layers,dropout) model.compile(loss='mse', optimizer=optimizer) model.fit(train_valid_norm_x, train_valid_norm_y, epochs=n_epochs, batch_size=batch_size,\ validation_data=(test_norm_tv_x, test_norm_tv_y), verbose=0, shuffle=False, callbacks=[earlystopping]) self.model_results[self.period, 2] = np.mean(np.square((model.predict(train_valid_norm_x)*std_tv+mean_tv)\ .flatten()-train_valid_y)) self.model_results[self.period, 3] = np.mean(np.square((model.predict(test_norm_tv_x)*std_tv+mean_tv).flatten()-test_y)) self.model_predictions[self.period, -len(test_x):] = (model.predict(test_norm_tv_x)*std_tv+mean_tv)[:,0] # Clear model del model K.clear_session() # print(f'Time: {np.round((time.time()-start_time)/60,2)}') return -mse def train(self): for self.period in range(self.number_of_study_periods): print(f'Period: {self.period}') pbounds = {'look_back' : (1, 40),\ 'batch_size' : (4, 10),\ 'optimizer' : (0, 2),\ 'dropout' : (0, 0.5),\ 'n_layers' : (1, 4),\ 'first_layer' : (1, 40),\ 'layer_decay' : (0.3, 1),\ 'learning_rate' : (0, 15)} optimizer = BayesianOptimization(f=self.black_box_function, pbounds=pbounds, random_state=None) start_time = time.time() optimizer.maximize(init_points=self.init_points, n_iter=self.n_iter) print(f'Period time: {np.round((time.time()-start_time)/60,2)} minutes') pd.DataFrame(self.model_names).to_csv('results/'+str(self.cell_type)+'_names_frequency_'\ +str(self.frequencies[self.frequency_index])+'.csv',index=False, header=False)
pd.DataFrame(self.model_results)
pandas.DataFrame