prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# coding: utf-8 # Copyright (c) Materials Virtual Lab # Distributed under the terms of the BSD License. from __future__ import division, print_function, unicode_literals, \ absolute_import import itertools import subprocess import io import re import numpy as np import pandas as pd from monty.io import zopen from monty.os.path import which from monty.tempfile import ScratchDir from pymatgen.core.periodic_table import get_el_sp from veidt.abstract import Describer from veidt.potential.processing import pool_from class BispectrumCoefficients(Describer): """ Bispectrum coefficients to describe the local environment of each atom in a quantitative way. """ def __init__(self, rcutfac, twojmax, element_profile, rfac0=0.99363, rmin0=0, diagonalstyle=3, quadratic=False, pot_fit=False): """ Args: rcutfac (float): Global cutoff distance. twojmax (int): Band limit for bispectrum components. element_profile (dict): Parameters (cutoff factor 'r' and weight 'w') related to each element, e.g., {'Na': {'r': 0.3, 'w': 0.9}, 'Cl': {'r': 0.7, 'w': 3.0}} rfac0 (float): Parameter in distance to angle conversion. Set between (0, 1), default to 0.99363. rmin0 (float): Parameter in distance to angle conversion. Default to 0. diagonalstyle (int): Parameter defining which bispectrum components are generated. Choose among 0, 1, 2 and 3, default to 3. quadratic (bool): Whether including quadratic terms. Default to False. pot_fit (bool): Whether to output in potential fitting format. Default to False, i.e., returning the bispectrum coefficients for each site. """ from veidt.potential.lammps.calcs import SpectralNeighborAnalysis self.calculator = SpectralNeighborAnalysis(rcutfac, twojmax, element_profile, rfac0, rmin0, diagonalstyle, quadratic) self.rcutfac = rcutfac self.twojmax = twojmax self.element_profile = element_profile self.rfac0 = rfac0 self.rmin0 = rmin0 self.diagonalstyle = diagonalstyle self.elements = sorted(element_profile.keys(), key=lambda sym: get_el_sp(sym).X) self.quadratic = quadratic self.pot_fit = pot_fit @property def subscripts(self): """ The subscripts (2j1, 2j2, 2j) of all bispectrum components involved. """ return self.calculator.get_bs_subscripts(self.twojmax, self.diagonalstyle) def describe(self, structure, include_stress=False): """ Returns data for one input structure. Args: structure (Structure): Input structure. include_stress (bool): Whether to include stress descriptors. Returns: DataFrame. In regular format, the columns are the subscripts of bispectrum components, while indices are the site indices in input structure. In potential fitting format, to match the sequence of [energy, f_x[0], f_y[0], ..., f_z[N], v_xx, ..., v_xy], the bispectrum coefficients are summed up by each specie and normalized by a factor of No. of atoms (in the 1st row), while the derivatives in each direction are preserved, with the columns being the subscripts of bispectrum components with each specie and the indices being [0, '0_x', '0_y', ..., 'N_z'], and the virial contributions (in GPa) are summed up for all atoms for each component in the sequence of ['xx', 'yy', 'zz', 'yz', 'xz', 'xy']. """ return self.describe_all([structure], include_stress).xs(0, level='input_index') def describe_all(self, structures, include_stress=False): """ Returns data for all input structures in a single DataFrame. Args: structures (Structure): Input structures as a list. include_stress (bool): Whether to include stress descriptors. Returns: DataFrame with indices of input list preserved. To retrieve the data for structures[i], use df.xs(i, level='input_index'). """ columns = list(map(lambda s: '-'.join(['%d' % i for i in s]), self.subscripts)) if self.quadratic: columns += list(map(lambda s: '-'.join(['%d%d%d' % (i, j, k) for i, j, k in s]), itertools.combinations_with_replacement(self.subscripts, 2))) raw_data = self.calculator.calculate(structures) def process(output, combine, idx, include_stress): b, db, vb, e = output df = pd.DataFrame(b, columns=columns) if combine: df_add = pd.DataFrame({'element': e, 'n': np.ones(len(e))}) df_b = df_add.join(df) n_atoms = df_b.shape[0] b_by_el = [df_b[df_b['element'] == e] for e in self.elements] sum_b = [df[df.columns[1:]].sum(axis=0) for df in b_by_el] hstack_b = pd.concat(sum_b, keys=self.elements) hstack_b = hstack_b.to_frame().T / n_atoms hstack_b.fillna(0, inplace=True) dbs = np.split(db, len(self.elements), axis=1) dbs = np.hstack([np.insert(d.reshape(-1, len(columns)), 0, 0, axis=1) for d in dbs]) db_index = ['%d_%s' % (i, d) for i in df_b.index for d in 'xyz'] df_db = pd.DataFrame(dbs, index=db_index, columns=hstack_b.columns) if include_stress: vbs = np.split(vb.sum(axis=0), len(self.elements)) vbs = np.hstack([np.insert(v.reshape(-1, len(columns)), 0, 0, axis=1) for v in vbs]) volume = structures[idx].volume vbs = vbs / volume * 160.21766208 # from eV to GPa vb_index = ['xx', 'yy', 'zz', 'yz', 'xz', 'xy'] df_vb = pd.DataFrame(vbs, index=vb_index, columns=hstack_b.columns) df = pd.concat([hstack_b, df_db, df_vb]) else: df = pd.concat([hstack_b, df_db]) return df df = pd.concat([process(d, self.pot_fit, i, include_stress) for i, d in enumerate(raw_data)], keys=range(len(raw_data)), names=["input_index", None]) return df class AGNIFingerprints(Describer): """ Fingerprints for AGNI (Adaptive, Generalizable and Neighborhood Informed) force field. Elemental systems only. """ def __init__(self, r_cut, etas): """ Args: r_cut (float): Cutoff distance. etas (numpy.array): All eta parameters in 1D array. """ self.r_cut = r_cut self.etas = etas def describe(self, structure): """ Calculate fingerprints for all sites in a structure. Args: structure (Structure): Input structure. Returns: DataFrame. """ all_neighbors = structure.get_all_neighbors(self.r_cut) fingerprints = [] for i, an in enumerate(all_neighbors): center = structure[i].coords coords, distances = zip(*[(site.coords, d) for (site, d) in an]) v = (np.array(coords) - center)[:, :, None] d = np.array(distances)[:, None, None] e = np.array(self.etas)[None, None, :] cf = 0.5 * (np.cos(np.pi * d / self.r_cut) + 1) fpi = np.sum(v / d * np.exp(-(d / e) ** 2) * cf, axis=0) fingerprints.append(fpi) index = ["%d_%s" % (i, d) for i in range(len(structure)) for d in "xyz"] df = pd.DataFrame(np.vstack(fingerprints), index=index, columns=self.etas) return df def describe_all(self, structures): return pd.concat([self.describe(s) for s in structures], keys=range(len(structures)), names=['input_index', None]) class SOAPDescriptor(Describer): """ Smooth Overlap of Atomic Position (SOAP) descriptor. """ def __init__(self, cutoff, l_max=8, n_max=8, atom_sigma=0.5): """ Args: cutoff (float): Cutoff radius. l_max (int): The band limit of spherical harmonics basis function. Default to 8. n_max (int): The number of radial basis function. Default to 8. atom_sigma (float): The width of gaussian atomic density. Default to 0.5. """ from veidt.potential.soap import SOAPotential self.cutoff = cutoff self.l_max = l_max self.n_max = n_max self.atom_sigma = atom_sigma self.operator = SOAPotential() def describe(self, structure): """ Returns data for one input structure. Args: structure (Structure): Input structure. """ if not which('quip'): raise RuntimeError("quip has not been found.\n", "Please refer to https://github.com/libAtoms/QUIP for ", "further detail.") atoms_filename = 'structure.xyz' exe_command = ['quip'] exe_command.append('atoms_filename={}'.format(atoms_filename)) descriptor_command = ['soap'] descriptor_command.append("cutoff" + '=' + '{}'.format(self.cutoff)) descriptor_command.append("l_max" + '=' + '{}'.format(self.l_max)) descriptor_command.append("n_max" + '=' + '{}'.format(self.n_max)) descriptor_command.append("atom_sigma" + '=' + '{}'.format(self.atom_sigma)) atomic_numbers = [str(num) for num in np.unique(structure.atomic_numbers)] n_Z = len(atomic_numbers) n_species = len(atomic_numbers) Z = '{' + '{}'.format(' '.join(atomic_numbers)) + '}' species_Z = '{' + '{}'.format(' '.join(atomic_numbers)) + '}' descriptor_command.append("n_Z" + '=' + str(n_Z)) descriptor_command.append("Z" + '=' + Z) descriptor_command.append("n_species" + '=' + str(n_species)) descriptor_command.append("species_Z" + '=' + species_Z) exe_command.append("descriptor_str=" + "{" + "{}".format(' '.join(descriptor_command)) + "}") with ScratchDir('.'): atoms_filename = self.operator.write_cfgs(filename=atoms_filename, cfg_pool=pool_from([structure])) descriptor_output = 'output' p = subprocess.Popen(exe_command, stdout=open(descriptor_output, 'w')) stdout = p.communicate()[0] rc = p.returncode if rc != 0: error_msg = 'QUIP exited with return code %d' % rc msg = stdout.decode("utf-8").split('\n')[:-1] try: error_line = [i for i, m in enumerate(msg) if m.startswith('ERROR')][0] error_msg += ', '.join([e for e in msg[error_line:]]) except Exception: error_msg += msg[-1] raise RuntimeError(error_msg) with zopen(descriptor_output, 'rt') as f: lines = f.read() descriptor_pattern = re.compile('DESC(.*?)\n', re.S) descriptors = pd.DataFrame([np.array(c.split(), dtype=np.float) for c in descriptor_pattern.findall(lines)]) return descriptors def describe_all(self, structures): return pd.concat([self.describe(s) for s in structures], keys=range(len(structures)), names=['input_index', None]) class BPSymmetryFunctions(Describer): """ Behler-Parrinello symmetry function descriptor. """ def __init__(self, dmin, cutoff, num_symm2, a_etas): """ Args: dmin (float): The minimum interatomic distance accepted. cutoff (float): Cutoff radius. num_symm2 (int): The number of radial symmetry functions. a_etas (list): The choice of η' in angular symmetry functions. """ from veidt.potential.nnp import NNPotential self.dmin = dmin self.cutoff = cutoff self.num_symm2 = num_symm2 self.a_etas = a_etas self.operator = NNPotential() def describe(self, structure): """ Returns data for one input structure. Args: structure (Structure): Input structure. """ if not which('RuNNer'): raise RuntimeError("RuNNer has not been found.") if not which("RuNNerMakesym"): raise RuntimeError("RuNNerMakesym has not been found.") def read_functions_data(filename): """ Read structure features from file. Args: filename (str): The functions file to be read. """ with zopen(filename, 'rt') as f: lines = f.read() block_pattern = re.compile(r'(\n\s+\d+\n|^\s+\d+\n)(.+?)(?=\n\s+\d+\n|$)', re.S) points_features = [] for (num_neighbor, block) in block_pattern.findall(lines): point_features = pd.DataFrame([feature.split()[1:] for feature in block.split('\n')[:-1]], dtype=np.float32) points_features.append(point_features) points_features = pd.concat(points_features, keys=range(len(block_pattern.findall(lines))), names=['point_index', None]) return points_features dmin = sorted(set(structure.distance_matrix.ravel()))[1] r_etas = self.operator.generate_eta(dmin=self.dmin, r_cut=self.cutoff, num_symm2=self.num_symm2) atoms_filename = 'input.data' mode_output = 'mode.out' with ScratchDir('.'): atoms_filename = self.operator.write_cfgs(filename=atoms_filename, cfg_pool=pool_from([structure])) input_filename = self.operator.write_input(mode=1, r_cut=self.cutoff, r_etas=r_etas, a_etas=self.a_etas, scale_feature=False) p = subprocess.Popen(['RuNNer'], stdout=open(mode_output, 'w')) stdout = p.communicate()[0] descriptors = read_functions_data('function.data') return
pd.DataFrame(descriptors)
pandas.DataFrame
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with tm.assert_raises_regex(ValueError, msg): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # mismatched closed inferred from intervals vs constructor. msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): iv = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] IntervalIndex(iv, closed='neither') # no point in nesting periods in an IntervalIndex msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) # decreasing breaks/arrays msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks(range(10, -1, -1)) with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(range(10, -1, -1), range(9, -2, -1)) def test_constructors_datetimelike(self, closed): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx, closed=closed) expected = IntervalIndex.from_breaks(idx.values, closed=closed) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert not index.hasnans result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) def test_astype(self, closed): idx = self.create_index(closed=closed) for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond))
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import time import argparse import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as patches from pathlib import Path import context from mhealth.utils.plotter_helper import save_figure from mhealth.utils.commons import create_progress_bar # Used if command-line option --parameters is not provided. DEFAULT_PARAMETERS = ["Temperatur", "Herzfrequenz", "Atemfrequenz"] # Data sources included in HF-AF_25052021.csv. VALIDATION_DATA_SOURCES = ["WELCHALLYN_MONITOR", "PHILIPS_GATEWAY"] # Half-ranges relevant for the validation: x +/- delta DELTAS = { "Atemfrequenz": 3, # ±3bpm "Herzfrequenz": 10, # ±10bpm "Temperatur": 0.5 # ±0.5°C } # Half-range of the for the timestamp delta, in minutes. DELTA_TS = 2.5 # ±2.5min # Devices are identified by the bed number they are used with. # In case of device breakdown (or other problems), some devices # were replaced by a device of another room. The below lookup # specifies which the bed ids (devices) must be renamed, as well # as the time range, between which the lookup applies. DEVICE_REPLACEMENT_LOOKUP = { # Alias True From To "2653F" : ("2655F", "2021-05-14 12:00:00+02:00", None), "2652F" : ("2656FL", "2021-05-18 00:00:00+02:00", None), "2661TL" : ("2661FL", "2021-05-20 00:00:00+02:00", None), "2664T" : ("2664F", "2021-05-12 00:00:00+02:00", None), "2665T" : ("2665F", None, "2021-05-19 10:30:00+02:00"), } # Expected value ranges per vital parameter. VALUE_RANGES = { "Atemfrequenz": [0, 35], "Herzfrequenz": [30, 130], "Temperatur": [35, 40], } BIN_WIDTHS = { "Atemfrequenz": 0.5, "Herzfrequenz": 1, "Temperatur": 0.01, } BIN_WIDTHS_VALID = { "Atemfrequenz": 1, "Herzfrequenz": 2, "Temperatur": 0.1, } def tic(): return time.time() def toc(label, start): diff = time.time()-start print(label + (": %.3f" % diff)) def check_dir(path): if not path.is_dir(): msg = "Requested folder does not exist: %s" raise FileNotFoundError(msg % path) def ensure_dir(path, exist_ok=True): path = Path(path) if not path.is_dir(): path.mkdir(parents=True, exist_ok=exist_ok) return path.is_dir() def apply_replacement_lookup(df): print("Applying device replacements...") def dt_to_str(dt): return "--" if dt is None else dt.strftime("%m.%d.%y %H:%M") for id_alias, replace_data in DEVICE_REPLACEMENT_LOOKUP.items(): id_true, repl_start, repl_stop = replace_data repl_start = pd.to_datetime(repl_start) repl_stop = pd.to_datetime(repl_stop) mask = ((df["Bettenstellplatz"]==id_alias) & ((repl_start is None) or df["Timestamp"]>=repl_start) & ((repl_stop is None) or df["Timestamp"]<=repl_stop)) df.loc[mask, "Bettenstellplatz"] = id_true print("%-6s => %-6s: %6d affected values in time range (%s, %s)" % (id_alias, id_true, mask.sum(), dt_to_str(repl_start), dt_to_str(repl_stop))) print() def read_validation_data(data_dir): def no_whitespace(s): return s.replace(" ", "") def fix_time(s): return s.replace(".", ":") def form_timestamp(df, col_date, col_time): timestamp = df[col_date] + " " + df[col_time] timestamp = pd.to_datetime(timestamp, dayfirst=True) timestamp = timestamp.dt.tz_localize("Europe/Zurich").copy() timestamp[(df[col_date]=="") | (df[col_time]=="")] = None return timestamp def format_manual(df, timestamp, parameter): df_ret = df[["Bettenstellplatz", parameter, "Bemerkungen", "Abweichung_Trageort"]].copy() df_ret = df_ret.rename({parameter: "Wert"}, axis=1) icol = df_ret.columns.get_loc("Wert") df_ret.insert(loc=icol, column="Vitalparameter", value=parameter) df_ret.insert(loc=0, column="Timestamp", value=timestamp) df_ret = df_ret[~df_ret["Wert"].isna()].copy() return df_ret def read_station_data(valid_dir): file_path = valid_dir/"HF-AF_25052021.csv" df = pd.read_csv(file_path, converters={"Signatur": str.strip, "Bettenstellplatz": str.strip}) df = df[df["Signatur"].isin(VALIDATION_DATA_SOURCES)] timestamp = form_timestamp(df=df, col_date="Datum", col_time="Zeit") df.insert(loc=0, column="Timestamp", value=timestamp) df = df.drop(["Datum", "Zeit"], axis=1) # Transform to long format. df = df.melt(id_vars=["Timestamp", "Bettenstellplatz", "Signatur"], value_vars=["Herzfrequenz", "Atemfrequenz", "Temperatur"], var_name="Vitalparameter", value_name="Wert") df = df[~df["Wert"].isna()].copy() df["Bemerkungen"] = "" df["Abweichung_Trageort"] = "" return df def read_manual_data(valid_dir): file_path = valid_dir/"Validierung_Daten_manuell_Mai2021_alle.csv" df = pd.read_csv(file_path, converters={"Bettenstellplatz": no_whitespace, "Zeit_AF": fix_time, "Zeit_HF": fix_time, "Bemerkungen": str.strip, "Abweichung_Trageort": str.strip}) # Atemfrequenz ts = form_timestamp(df=df, col_date="Datum", col_time="Zeit_AF") df_a = format_manual(df=df, timestamp=ts, parameter="Atemfrequenz") # Herzfrequenz ts = form_timestamp(df=df, col_date="Datum", col_time="Zeit_HF") df_h = format_manual(df=df, timestamp=ts, parameter="Herzfrequenz") # Temperatur (Zeit_Temp, use Zeit_HF is missing!) ts = form_timestamp(df=df, col_date="Datum", col_time="Zeit_HF") df_t = format_manual(df=df, timestamp=ts, parameter="Temperatur") df = pd.concat((df_a, df_h, df_t), axis=0) df["Signatur"] = "MANUELL" return df print("Reading Validation data...") valid_dir = data_dir/"original"/"validation" check_dir(valid_dir) df_station = read_station_data(valid_dir=valid_dir) df_manual = read_manual_data(valid_dir=valid_dir) df_valid = pd.concat((df_station, df_manual), axis=0) df_valid = df_valid.sort_values(["Bettenstellplatz", "Timestamp"]) return df_valid def read_baslerband_data(data_dir, n_max=None): def read_bb_file(path): # Sample path: # ../2021-05-25/2617_FL/basler_band_DB_B4_2C_E5_CC_45_activity_file.csv bed_id = path.parent.name.replace("_", "") if bed_id == "2668": bed_id = "2668E" device_id = path.stem device_id = device_id.replace("basler_band_", "") device_id = device_id.replace("_activity_file", "") df = pd.read_csv(path, index_col=[0], parse_dates=[0], sep=";") df.index.name = "Timestamp" # Filter by quality as specified df = df[df["wearing"]==4] df = df[["resp_filtered", "hrm_filtered",]] df = df.rename({"resp_filtered": "Atemfrequenz", "hrm_filtered": "Herzfrequenz"}, axis=1) df["Bettenstellplatz"] = bed_id df["DeviceID"] = device_id df["Signatur"] = "BASLER_BAND" df = df.reset_index(drop=False) return df print("Reading Basler Band data...") bb_dir = data_dir/"original"/"basler_band" check_dir(bb_dir) files = bb_dir.glob("**/basler_band*activity_file.csv") files = sorted(files) dfs = [] progress = create_progress_bar(size=len(files), label="Processing...") for i, path in enumerate(files): if i>=n_max: break progress.update(i) df = read_bb_file(path=path) dfs.append(df) progress.finish() df = pd.concat(dfs, axis=0) df = df.melt(id_vars=["Timestamp", "Bettenstellplatz", "Signatur", "DeviceID"], value_vars=["Herzfrequenz", "Atemfrequenz"], var_name="Vitalparameter", value_name="Wert") apply_replacement_lookup(df) df = df.sort_values(["Bettenstellplatz", "Timestamp"]) return df def read_core_data(data_dir, n_max=None): def read_core_file(path, columns): # Sample path: # ../2021-05-17/2617_FL/core_D6_BE_C5_06_B3_48_storage-cbta_d.csv bed_id = path.parent.name.replace("_", "") if bed_id == "2668": bed_id = "2668E" device_id = path.stem device_id = device_id.replace("core_", "") device_id = device_id.replace("_storage-cbta_d", "") df = pd.read_csv(path, index_col=[0], parse_dates=[0], sep=";") df.index.name = "Timestamp" df = df.rename(columns.to_dict(), axis=1) # Filter by quality as specified df = df[df["quality (core only)"]==4] df = df[["cbt [mC]",]] df = df.rename({"cbt [mC]": "Temperatur"}, axis=1) df["Temperatur"] /= 1000 # from °mC to °C df["Bettenstellplatz"] = bed_id df["DeviceID"] = device_id df["Signatur"] = "CORE" df = df.reset_index(drop=False) return df print("Reading Core data...") core_dir = data_dir/"original"/"core" check_dir(core_dir) columns = pd.read_csv(core_dir/"0_storage-cbta_d_columns.csv", skipinitialspace=True, index_col=[0], header=None, squeeze=True) columns.index = columns.index.astype(str) files = core_dir.glob("**/core_*storage-cbta_d.csv") files = sorted(files) progress = create_progress_bar(size=len(files), label="Processing...") dfs = [] for i, path in enumerate(files): if i>=n_max: break progress.update(i) df = read_core_file(path=path, columns=columns) dfs.append(df) progress.finish() df =
pd.concat(dfs, axis=0)
pandas.concat
# -*- coding: utf-8 -*- """Test the views for the scheduler pages.""" import json import os from django.conf import settings from django.db import IntegrityError import pandas as pd from ontask import tests from ontask.table import serializers class TableTestSerializers(tests.OnTaskTestCase): """Test stat views.""" fixtures = ['simple_table'] filename = os.path.join(settings.ONTASK_FIXTURE_DIR, 'simple_table.sql') user_email = '<EMAIL>' user_pwd = '<PASSWORD>' workflow_name = 'wflow1' def test_serializer_view(self): """Test the view serialization.""" # Try to create a view with a name that already exists. try: views = serializers.ViewSerializer( data=[{ "columns": [ {"name": "email"}, {"name": "one"}, {"name": "registered"}, {"name": "when"}], "name": "simple view", "description_text": "", "formula": { "not": False, "rules": [], "valid": True, "condition": "AND"}, }], many=True, context={ 'workflow': self.workflow, 'columns': self.workflow.columns.all() }, ) self.assertTrue(views.is_valid()) views.save() except IntegrityError as exc: self.assertTrue('duplicate key value violates' in str(exc)) else: raise Exception('Incorrect serializer operation.') # Try to create a view with a different name views = serializers.ViewSerializer( data=[{ "columns": [ {"name": "email"}, {"name": "one"}, {"name": "registered"}, {"name": "when"}], "name": "simple view 2", "description_text": "", "formula": { "not": False, "rules": [], "valid": True, "condition": "AND"}, }], many=True, context={ 'workflow': self.workflow, 'columns': self.workflow.columns.all() }, ) self.assertTrue(views.is_valid()) views.save() self.assertEqual(self.workflow.views.count(), 2) def test_serializer_pandas(self): """Test the data frame serialization.""" df = pd.DataFrame( { 'key': ['k1', 'k2'], 't1': ['t1', 't2'], 'i2': [5, 6], 'f3': [7.0, 8.0], 'b4': [True, False], 'd5': [ '2018-10-11 21:12:04+10:30', '2018-10-12 21:12:04+10:30'], }) df_str = serializers.df_to_string(df) new_df = serializers.DataFramePandasSerializer( data={'data_frame': df_str}, many=False, ) self.assertTrue(new_df.is_valid()) new_df = new_df.validated_data['data_frame'] self.assertTrue(df.equals(new_df)) def test_serializer_json(self): """Test the data frame serialization with a json object""" df = pd.DataFrame( { 'key': ['k1', 'k2'], 't1': ['t1', 't2'], 'i2': [5, 6], 'f3': [7.0, 8.0], 'b4': [True, False], 'd5': [ '2018-10-11 21:12:04+00:00', '2018-10-12 21:12:04+00:00'], }) df['d5'] =
pd.to_datetime(df['d5'], infer_datetime_format=True)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This script saves bid and ask data for specified ETFs to files for each day during market open hours. It assumes the computer is at US East Coast Time. @author: mark """ import os import pandas as pd import numpy as np from itertools import product import streamlit as st from bokeh.plotting import figure from bokeh.models.tools import HoverTool from bokeh.models import NumeralTickFormatter, DatetimeTickFormatter, Rect, ColumnDataSource, VBar, LabelSet from streamlit_metrics import metric_row def display_method_to_choose_etfs(selected_method_choose_dates, all_etfs, etf_data, sl_obj): """ Generates various streamlit options for selecting which ETFs to display. Parameters ---------- selected_method_choose_dates : list of str Strings of the various methods of selecting ETFs. all_etfs : list of str List of all ETF tickers. etf_data : pd.DataFrame Dataframe containing bulk data about ETFs. sl_obj : streamlit Stremlit object to place the elements. Returns ------- selected_etfs : list of str List of str tickers chosen by users. """ selected_etfs = all_etfs if 'By volume traded' in selected_method_choose_dates: selection_data = etf_data['volume (shares/day)'] log_min = float(np.floor(np.log10(selection_data.min()))) log_max = float(np.ceil(np.log10(selection_data.max()))) min_vol, max_vol = sl_obj.slider('Average Volume (shares/day)', min_value=float(log_min), max_value=float(log_max), value=(float(log_min), float(log_max)), step=float(log_min - log_max) / 100, format='10^%.1f' ) selected = (selection_data >= 10**min_vol) & (selection_data <= 10**max_vol) selected_etfs = list(set(selected_etfs) & set(selection_data[selected].index)) if 'By market cap' in selected_method_choose_dates: selection_data = etf_data['net assets (million USD)'] log_min = float(np.floor(np.log10(selection_data.min()))) log_max = float(np.ceil(np.log10(selection_data.max()))) min_vol, max_vol = sl_obj.slider('Market Cap as of 2021-02-21 (million USD)', min_value=float(log_min), max_value=float(log_max), value=(float(log_min), float(log_max)), step=float(log_min - log_max) / 100, format='10^%.1f' ) selected = (selection_data >= 10**min_vol) & (selection_data <= 10**max_vol) selected_etfs = list(set(selected_etfs) & set(selection_data[selected].index)) if 'Only ESG ETFs' in selected_method_choose_dates: esg_etfs = etf_data[etf_data['esg'] == True].index selected_etfs = list(set(selected_etfs) & set(esg_etfs)) if 'choose specific ETFs' in selected_method_choose_dates: selected_etfs = sl_obj.multiselect('Which ETFs do you want to look at', list(selected_etfs), ['ESGV','VTI','BND', 'VCEB', 'VSGX']) return selected_etfs def get_averages(data, selected_dates, selected_etfs): """ Obtain average values of various ETFs across the trading day. Parameters ---------- data : pd.DataFrame data of various days and ETFs. selected_dates : list of str list of dates in format YYYY-MM-DD. selected_etfs : list of str list of ETF tickers. Returns ------- pd.Series Data frame of average values in ETFs at various times during tradiing day. """ potential_columns = product(selected_dates, selected_etfs) actual_columns = [x for x in potential_columns if x in data.columns] return data[actual_columns].T.groupby(level=['etf']).mean().T def add_trade_windows(p, t_new, t_old, ymax): """ Add trade windows to plot Parameters ---------- p : Bokeh figure Figure to add trading windows to. t_new : tuple of timestamps Starting and ending timestamp of the old trading window. t_old : tuple of timestamps Starting and ending timestamp of the new trading window. ymax : float Maxs value to extend trading windows. Returns ------- None. """ source = ColumnDataSource(dict(x=[t_old[0]+0.5*(t_old[1]-t_old[0]),t_new[0]+0.5*(t_new[1]-t_new[0])], y=[ymax-0.0002, ymax-0.0002 ], w=[t_old[1]-t_old[0], t_new[1]-t_new[0]], h =[2,2], desc=['Old', 'New'])) if ymax > 2: patch = {'h' : [ (0, ymax), (1, ymax) ],} source.patch(patch) boxes = Rect(x='x',y='y',width='w', height='h', fill_color='grey', fill_alpha=0.1, line_width=0) boxes_select = Rect(x='x',y='y',width='w', height='h', fill_color='grey', fill_alpha=.2, line_width=0) box_rend = p.add_glyph(source, boxes) box_rend.hover_glyph = boxes_select tooltips = [('trade window','@desc')] p.add_tools(HoverTool(tooltips=tooltips, renderers=[box_rend])) def format_plots(p, ymax=None): """ Format bokeh plots for quoted spreads across market times Parameters ---------- p : Bokeh figure plot Bokeh plot object to format ymax : TYPE, optional Max yaxis value. The default is None. Returns ------- None """ if ymax is None: num_formatter='0.00%' else: num_zeros = int(np.log10(1/ymax)-.4) num_formatter = '0.'+''.join(['0' for x in range(num_zeros)])+'%' p.yaxis.formatter = NumeralTickFormatter(format=num_formatter) p.xaxis.formatter = DatetimeTickFormatter(hours='%H:%M') p.xaxis.axis_label = 'Market Time' p.xgrid.grid_line_color = None p.ygrid.grid_line_color = None p.toolbar.autohide = True def make_multi_etf_plot(selected_etfs, selected_dates, t_new, t_old, quoted_spread): """ Make plot with multiple ETF averages Parameters ---------- selected_etfs : list of str List of ETF tickers selected_dates : list of str List of dates to obtain averages of. In format YYYY-MM-DD. t_new : tuple of timestamps Starting and ending timestamp of the old trading window. t_old : tuple of timestamps Starting and ending timestamp of the new trading window. quoted_spread : pd.DataFrame Quoted spread data for various times, days, and ETFs. Returns ------- p : Bokeh figure Plot of multiple ETF averages. """ t_all = t_new + t_old average_data = get_averages(quoted_spread, selected_dates, selected_etfs) p = figure(plot_width=400, plot_height=400, x_axis_type="datetime", toolbar_location='below', title='quoted Bid-Ask Spread for various ETFs', x_range=(pd.Timestamp('2021-01-01 9:30'), max(t_all)+pd.Timedelta(hours=1.5)), y_range=(0, average_data.max().max()+0.0001)) #trading windows add_trade_windows(p, t_new, t_old, average_data.max().max()) # etf lines renders = [] for etf in selected_etfs: renders.append(p.line(average_data.index, average_data[etf],# set visual properties for selected glyphs hover_color="firebrick", hover_alpha=1, # set visual properties for non-selected glyphs color="grey", alpha=0.5, name=etf)) tooltips = [('etf','$name'), ('time','$x{%H:%M}'), ('Bid-Ask spread', '$y{"0.00%"}')] formatters = { "$x": "datetime",} p.add_tools(HoverTool(tooltips=tooltips, renderers=renders, formatters=formatters)) format_plots(p, ymax=average_data.max().max()+0.0001) return p def make_single_etf_plot(selected_etf, selected_dates, t_new, t_old, quoted_spread, supress_hover_after= 10000): """ Plots data for a single ETF for multiple days. Parameters ---------- selected_etfs : list of str List of ETF tickers selected_dates : list of str List of dates to plot. In format YYYY-MM-DD. t_new : tuple of timestamps Starting and ending timestamp of the old trading window. t_old : tuple of timestamps Starting and ending timestamp of the new trading window. quoted_spread : pd.DataFrame Quoted spread data for various times, days, and ETFs. supress_hover_after : int, optional Do not show hover functionality if there are more than this number of days. The default is 10000. Returns ------- p : Bokeh figure Plot of single ETF over various days. """ t_all = t_new + t_old average_data = get_averages(quoted_spread, selected_dates, [selected_etf]) p = figure(plot_width=400, plot_height=400, x_axis_type="datetime", toolbar_location='below', title='Quoted spread for {}'.format(selected_etf), x_range=(pd.Timestamp('2021-01-01 9:30'), max(t_all)+pd.Timedelta(hours=1.5)), y_range=(0, average_data.max().max()+0.0001)) add_trade_windows(p, t_new, t_old, average_data.max().max()) # etf lines renders = [] if len(selected_dates) > 1: for date in selected_dates: try: render = p.line(quoted_spread.index, quoted_spread.loc[:,(date,selected_etf)],# set visual properties for selected glyphs hover_color="firebrick", hover_alpha=0.33, color="grey", alpha=0.25, name=date) except KeyError: continue if len(selected_dates) < supress_hover_after: renders.append(render) average_name = 'average' else: average_name = selected_dates[0] renders.append(p.line(average_data.index, average_data[selected_etf],# set visual properties for selected glyphs hover_color="firebrick", hover_alpha=0.75, color="black", alpha=0.5, name=average_name)) tooltips = [('date','$name'), ('time','$x{%H:%M}'), ('Bid-Ask spread', '$y{"0.00%"}')] formatters = { "$x": "datetime",} p.add_tools(HoverTool(tooltips=tooltips, renderers=renders, formatters=formatters)) format_plots(p) return p def make_bid_ask_plot(selected_etf, selected_date, t_new, t_old, directory): """ Plots bid and ask prices over one trading day for one ETF. Parameters ---------- selected_etf : str ETF ticker of data to show. selected_date : str Date of data to show. In format YYYY-MM-DD. t_new : tuple of timestamps Starting and ending timestamp of the old trading window. t_old : tuple of timestamps Starting and ending timestamp of the new trading window. directory : str Folder containing ETF bid and ask price data. File must be in format date_etf.csv. Returns ------- p : Bokeh figure Plot of bid and ask prices. """ data = pd.read_csv(os.path.join(directory, '{}_{}.csv'.format(selected_date, selected_etf)), index_col=0) basetime = pd.to_datetime('2021-01-01') + pd.Timedelta(hours=9, minutes=30) timedeltas = pd.TimedeltaIndex([pd.Timedelta(seconds=x) for x in data.index]) data.index = timedeltas + basetime t_all = t_new + t_old bid = data.bid ask = data.ask p = figure(plot_width=400, plot_height=400, x_axis_type="datetime", toolbar_location='below', title='Bid & ask prices for {} on {}'.format(selected_etf, selected_date), x_range=(pd.Timestamp('2021-01-01 9:30'), max(t_all)+pd.Timedelta(hours=1.5)), y_range=(min(bid.min(),ask.min())-0.2, max(bid.max(),ask.max())+0.2)) add_trade_windows(p, t_new, t_old, max(bid.max(),ask.max())) renders = [] renders.append(p.line(bid.index, bid.values,# set visual properties for selected glyphs hover_color="blue", hover_alpha=1, color="blue", alpha=.5, name='bid')) renders.append(p.line(ask.index, ask.values,# set visual properties for selected glyphs hover_color="firebrick", hover_alpha=1, color="firebrick", alpha=0.5, name='ask')) tooltips = [('type','$name'), ('time','$x{%H:%M}'), ('price', '$y{"$0.00"}')] formatters = { "$x": "datetime",} p.add_tools(HoverTool(tooltips=tooltips, renderers=renders, formatters=formatters)) format_plots(p) p.yaxis.formatter = NumeralTickFormatter(format="$0.00") return p def make_relative_fee_amount(selected_ratios, t_new_text = ''): """ Generate a bar plot for the ratio of quoted spread to expense ratio. Parameters ---------- selected_ratios : pd.Series Data of ratio of quoted spread to expense ratio. t_new_text : str Time range to place in title of plot. Returns ------- p : Bokeh figure Produced plot. """ p = figure(plot_width=400, plot_height=400, x_axis_label="ETFs", x_minor_ticks=len(selected_ratios), toolbar_location='below', title='Ratio of quoted spread to expense ratio {}'.format(t_new_text)) source = ColumnDataSource(dict(x=range(len(selected_ratios)), top=selected_ratios.values, desc=selected_ratios.index,)) glyph = VBar(x='x', top='top', bottom=0, width=0.5, fill_color='grey', line_width=0, fill_alpha=0.5) glyph_hover = VBar(x='x', top='top', bottom=0, width=0.5, fill_color='firebrick', line_width=0, fill_alpha=1) rend = p.add_glyph(source, glyph) rend.hover_glyph = glyph_hover labels = LabelSet(x='x', level='glyph', source=source, render_mode='canvas') tooltips = [('etf','@desc'), ('ratio','@top')] p.add_tools(HoverTool(tooltips=tooltips, renderers=[rend])) num_zeros = int(np.log10(1/selected_ratios.max())-.4) num_formatter = '0.'+''.join(['0' for x in range(num_zeros)])+'%' p.yaxis.formatter = NumeralTickFormatter(format=num_formatter) p.xgrid.grid_line_color = None p.ygrid.grid_line_color = None p.toolbar.autohide = True p.xaxis.bounds = (-.5,len(selected_ratios)-.5) p.xaxis.ticker = list(range(len(selected_ratios))) p.xaxis.major_label_overrides = dict(zip(range(len(selected_ratios)), list(selected_ratios.index))) p.xaxis.major_label_orientation = 3.14/2 return p def get_quoted_spread_change(selected_etfs, selected_dates, t_old, t_new, quoted_spread): """ Get the relative change in average quoted spread between the two time windows. Parameters ---------- selected_etfs : list of str List of ETF tickers selected_dates : list of str List of dates to obtain averages of. In format YYYY-MM-DD. t_new : tuple of timestamps Starting and ending timestamp of the old trading window. t_old : tuple of timestamps Starting and ending timestamp of the new trading window. quoted_spread : pd.DataFrame Quoted spread data for various times, days, and ETFs. Returns ------- pd.Series The relative change in average quoted spread between the two time windows. """ df = get_averages(quoted_spread, selected_dates, selected_etfs) old_quotes = df[(df.index > t_old[0]) & (df.index < t_old[1])].mean(0) new_quotes = df[(df.index > t_new[0]) & (df.index < t_new[1])].mean(0) return (new_quotes / old_quotes).sort_values(ascending=False) def create_metrics(fractional_increase, nwide=4, container=st, max_rows=2): """ Print information about fractional change in quoted spreads in metric form Parameters ---------- fractional_increase : pd.Series Data of the increase in fees between two windows. nwide : int, optional Number of metrics to print side-by-side. The default is 4. container : streamlit object, optional Object to display metrics. The default is st. max_rows : int, optional Max number of rows to present data for. The default is 2. Returns ------- None. """ metrics = {} rows = 0 for etf, val in dict(fractional_increase).items(): if len(metrics) == nwide: with container: metric_row(metrics) metrics = {} rows += 1 if rows == max_rows: break metrics[etf] = '{:.0f}%'.format((val-1)*100) if len(metrics) > 0: with container: metric_row(metrics) st.write("# Bid-Ask spreads. Does time of day matter?") st.write("#### By <NAME>") st.write('first published March 10, 2021') intro = st.beta_expander("Introduction") data_selection = st.beta_expander("Data selection") results = st.beta_expander("Results") conclusion = st.beta_expander("Conclusion") methods = st.beta_expander("Methods") disclaimer = st.beta_expander("Disclaimer") quoted_spread = pd.read_pickle('data/quoted_spread.pkl') # remove outliers that impact average del quoted_spread[('2020-12-16', 'SPCX')] # high value on second day of trading del quoted_spread[('2020-03-12', 'ESGU')] # short high value on during large uncertainty del quoted_spread[('2020-03-17', 'DRIV')] # short high value on during large uncertainty del quoted_spread[('2020-02-03', 'EAGG')] # short high value on during large uncertainty all_dates = list(quoted_spread.columns.levels[0]) all_dates.sort() all_etfs = list(quoted_spread.columns.levels[1]) etf_data = pd.read_csv('etf.csv', index_col='Symbol') etf_data = etf_data[etf_data['for_data'] == True] start, end = data_selection.select_slider('Dates to analyze', all_dates, (all_dates[0], all_dates[-1])) selected_dates = all_dates[all_dates.index(start):all_dates.index(end)] method_choose_etfs = data_selection.multiselect('Methods for selecting ETFs', ['By volume traded', 'By market cap', 'Only ESG ETFs', 'choose specific ETFs'], ['choose specific ETFs']) selected_etfs = display_method_to_choose_etfs(method_choose_etfs, all_etfs,etf_data,sl_obj=data_selection) left_column, right_column = data_selection.beta_columns(2) t_old = right_column.slider('Old trading window timing', min_value=pd.Timestamp('2021-01-01 9:30').to_pydatetime(), max_value=pd.Timestamp('2021-01-01 16:00').to_pydatetime(), value=(pd.Timestamp('2021-01-01 10:00').to_pydatetime(), pd.Timestamp('2021-01-01 10:15').to_pydatetime()), step=
pd.Timedelta(minutes=5)
pandas.Timedelta
# Train fastText model import argparse import csv import multiprocessing import os import sys import time csv.field_size_limit(sys.maxsize) import fasttext import numpy as np import pandas as pd from sklearn.metrics import roc_curve, auc, average_precision_score VERBOSITY = 2 WORDNGRAMS = 1 MINN = 0 MAXN = 0 MAXTHREADS = min(16, multiprocessing.cpu_count() - 1) LOSS = 'ova' def ft_to_toplevel(fasttext_lbl): return fasttext_lbl.replace('__label__','').split('.')[0] def grid_search(train_fn, val_fn, learning_rates, minCounts, epochs, ws, wvs, ndims): best_lr = None best_ndim = None best_minCount = None best_epochs = None best_ws = None best_wv = None highest_f1 = float("-inf") label_counts_val = {} with open(val_fn) as fin: for line in fin: lbls = [l for l in line.strip().split(" ") if l.startswith('__label__')] for lbl in lbls: label_counts_val[lbl] = label_counts_val.get(lbl, 0) + 1 label_counts_train = {} with open(train_fn) as fin: for line in fin: lbls = [l for l in line.strip().split(" ") if l.startswith('__label__')] for lbl in lbls: label_counts_train[lbl] = label_counts_train.get(lbl, 0) + 1 grid_search_results = [] wv = wvs for lr in learning_rates: for minCount in minCounts: for epoch in epochs: for w in ws: for i in range(0, len(ndims)): ndim = ndims[i] print("Building fasttext model: {0} lr; {1} dim; {2} min count; {3} epochs. {4} ws. wv: {5}.".format( lr, ndim, minCount, epoch, w, wv)) # train model model = fasttext.train_supervised(input=train_fn, minCount=minCount, wordNgrams=WORDNGRAMS, pretrainedVectors=wv, lr=lr, epoch=epoch, dim=ndim, ws=w, minn=MINN, maxn=MAXN, thread=MAXTHREADS, loss=LOSS, verbose=VERBOSITY) # val results_by_lbl = model.test_label(val_fn, threshold=0.5, k=-1) f1_scores, support = zip(*[(res['f1score'], label_counts_val[lbl]) for lbl, res in results_by_lbl.items() if lbl in label_counts_val]) macro_f1 = np.average(f1_scores) micro_f1 = np.average(f1_scores, weights=support) f1_avg = np.average([micro_f1, macro_f1]) if f1_avg > highest_f1: best_lr = lr best_ndim = ndim best_minCount = minCount best_epochs = epoch best_ws = w best_wv = wv highest_f1 = f1_avg # train (check overfitting) results_by_lbl = model.test_label(train_fn, threshold=0.5, k=-1) f1_scores, support = zip( *[(res['f1score'], label_counts_train[lbl]) for lbl, res in results_by_lbl.items() if lbl in label_counts_train]) tr_macro_f1 = np.average(f1_scores) tr_micro_f1 = np.average(f1_scores, weights=support) print("{0:.3f} micro f1. {1:.3f} macro f1. {2:.3f} train micro f1. {3:.3f} train macro f1".format( micro_f1, macro_f1, tr_micro_f1, tr_macro_f1)) grid_search_results.append({'lr':lr, 'ndim':ndim, 'minCount':minCount, 'epoch':epoch, 'ws':w, 'val_micro_f1':micro_f1, 'val_macro_f1':macro_f1, 'tra_micro_f1':tr_micro_f1, 'tra_macro_f1':tr_macro_f1, 'wv':wv}) print("\n==== Grid Search Results====\n") print(pd.DataFrame(grid_search_results)[ ['lr','ndim','minCount','epoch','ws','val_micro_f1','tra_micro_f1', 'val_macro_f1', 'tra_macro_f1', 'wv']]) print("\nBest: {0} lr; {1} dim; {2} min count; {3} epochs; {4} ws; {5} wv\n".format(best_lr, best_ndim, best_minCount, best_epochs, best_ws, best_wv)) return best_lr, best_ndim, best_minCount, best_epochs, best_ws, best_wv def main(): parser = argparse.ArgumentParser() parser.add_argument("--training_data", default="/home/isaacj/fastText/drafttopic/wikitext/enwiki.balanced_article_sample.w_article_text_50413_train_data.txt") parser.add_argument("--val_data", default="/home/isaacj/fastText/drafttopic/wikitext/enwiki.balanced_article_sample.w_article_text_6301_val_data.txt") parser.add_argument("--test_data", default="/home/isaacj/fastText/drafttopic/wikitext/enwiki.balanced_article_sample.w_article_text_6303_test_data.txt") parser.add_argument("--false_negatives_fn") parser.add_argument("--output_model") parser.add_argument("--word_vectors", default='') parser.add_argument("--learning_rates", nargs="+", default=[0.1], type=float) parser.add_argument("--minCounts", nargs="+", default=[3], type=int) parser.add_argument("--epochs", nargs="+", default=[25], type=int) parser.add_argument("--ws", nargs="+", default=[20], type=int) parser.add_argument("--ndims", nargs="+", default=[50], type=int) parser.add_argument("--mlc_res_tsv") args = parser.parse_args() if os.path.exists(args.output_model): print("Loading model:", args.output_model) model = fasttext.load_model(args.output_model) else: if args.val_data and len(args.learning_rates + args.minCounts + args.epochs + args.ws + args.ndims) > 5: lr, ndim, minCount, epochs, ws, wv = grid_search( args.training_data, args.val_data, args.learning_rates, args.minCounts, args.epochs, args.ws, args.word_vectors, args.ndims) else: lr = args.learning_rates[0] minCount = args.minCounts[0] epochs = args.epochs[0] ws = args.ws[0] wv = args.word_vectors ndim = args.ndims[0] print("Building fasttext model: {0} lr; {1} min count; {2} epochs; {3} ws; wv: {4}".format( lr, minCount, epochs, ws, wv)) start = time.time() model = fasttext.train_supervised(input=args.training_data, minCount=minCount, wordNgrams=WORDNGRAMS, lr=lr, epoch=epochs, pretrainedVectors=wv, ws=ws, dim=ndim, minn=MINN, maxn=MAXN, thread=MAXTHREADS, loss=LOSS, verbose=VERBOSITY) print("{0} seconds elapsed in training.".format(time.time() - start)) if args.output_model: print("Dumping fasttext model to {0}".format(args.output_model)) model.save_model(args.output_model) if args.test_data: # build statistics dataframe for printing print("==== test statistics ====") lbl_statistics = {} toplevel_statistics = {} threshold = 0.5 all_lbls = model.get_labels() for lbl in all_lbls: lbl_statistics[lbl] = {'n': 0, 'FP': 0, 'TP': 0, 'FN': 0, 'TN': 0, 'true':[], 'pred':[]} toplevel_statistics[ft_to_toplevel(lbl)] = {'n': 0, 'FP': 0, 'TP': 0, 'FN': 0, 'TN': 0} with open(args.test_data, 'r') as fin: for line_no, datapoint in enumerate(fin): _, topics = model.get_line(datapoint.strip()) prediction = model.predict(datapoint.strip(), k=-1) predicted_labels = [] for idx in range(len(prediction[0])): prob = prediction[1][idx] lbl = prediction[0][idx] lbl_statistics[lbl]['true'].append(int(lbl in topics)) lbl_statistics[lbl]['pred'].append(prob) if prob > threshold: predicted_labels.append(lbl) for lbl in all_lbls: if lbl in topics and lbl in predicted_labels: lbl_statistics[lbl]['n'] += 1 lbl_statistics[lbl]['TP'] += 1 elif lbl in topics: lbl_statistics[lbl]['n'] += 1 lbl_statistics[lbl]['FN'] += 1 elif lbl in predicted_labels: lbl_statistics[lbl]['FP'] += 1 else: lbl_statistics[lbl]['TN'] += 1 toplevel_topics = [ft_to_toplevel(l) for l in topics] toplevel_predictions = [ft_to_toplevel(l) for l in predicted_labels] for lbl in toplevel_statistics: if lbl in toplevel_topics and lbl in toplevel_predictions: toplevel_statistics[lbl]['n'] += 1 toplevel_statistics[lbl]['TP'] += 1 elif lbl in toplevel_topics: toplevel_statistics[lbl]['n'] += 1 toplevel_statistics[lbl]['FN'] += 1 elif lbl in toplevel_predictions: toplevel_statistics[lbl]['FP'] += 1 else: toplevel_statistics[lbl]['TN'] += 1 for lbl in all_lbls: s = lbl_statistics[lbl] fpr, tpr, _ = roc_curve(s['true'], s['pred']) s['pr-auc'] = auc(fpr, tpr) s['avg_pre'] = average_precision_score(s['true'], s['pred']) try: s['precision'] = s['TP'] / (s['TP'] + s['FP']) except ZeroDivisionError: s['precision'] = 0 try: s['recall'] = s['TP'] / (s['TP'] + s['FN']) except ZeroDivisionError: s['recall'] = 0 try: s['f1'] = 2 * (s['precision'] * s['recall']) / (s['precision'] + s['recall']) except ZeroDivisionError: s['f1'] = 0 for lbl in toplevel_statistics: s = toplevel_statistics[lbl] try: s['precision'] = s['TP'] / (s['TP'] + s['FP']) except ZeroDivisionError: s['precision'] = 0 try: s['recall'] = s['TP'] / (s['TP'] + s['FN']) except ZeroDivisionError: s['recall'] = 0 try: s['f1'] = 2 * (s['precision'] * s['recall']) / (s['precision'] + s['recall']) except ZeroDivisionError: s['f1'] = 0 print("\n=== Mid Level Categories ===") mlc_statistics =
pd.DataFrame(lbl_statistics)
pandas.DataFrame
from os import abort from requests import get from bs4 import BeautifulSoup from pandas import read_html, concat, DataFrame, read_csv from .utils import url_daerah, total_page, _baseurl_ def get_daerah() -> list: page = get(_baseurl_) data = [] soup = BeautifulSoup(page.text, 'lxml') table = soup.find_all('td') for i in table: name = i.find('a').text.strip() link = i.find('a')['href'].strip().split('/')[-2] data.append({ "Nama" : name, "Link": link }) return data def setup_provinsi(): list_url = url_daerah() for i in list_url: tpage = total_page('{}/{}'.format(_baseurl_, i)) data = [] for j in range(tpage+1): url = 'https://carikodepos.com/daerah/{}/page/{}/'.format(i,j) r = get(url) res = read_html(r.text) data.append(res) tail1 = data[len(data)-1][0] try: tail2 = data[len(data)-1][1] except: tail2 = DataFrame() for k in range(len(data[:-1])): data1 = data[k][0].convert_dtypes() data2 = data[k][1].convert_dtypes() if k == 0: df1 = concat([tail1, data1]) df2 =
concat([tail2, data2])
pandas.concat
import os import random import sys import pandas as pd from ATM import welcome from Validate import validateDetails2, validateLogin filePath = r".\{}.csv".format("atm") if not os.path.isfile(filePath) or os.path.getsize(filePath) == 0: df = pd.DataFrame({"firstName": [], "lastName": [], "email": [], "address": [], "accountNumber": [], "password": [], "contact": []}) df.to_csv(filePath, index=False) def generateAccountNumber(): accountNumber = random.randrange(1000000000, 9999999999) boolAccount = validateDetails2(accountNumber=accountNumber) # Checks if account number has been used or not. if not boolAccount: # Recreates account number until un-used account generated generateAccountNumber() print("Account number Validated!") return accountNumber # Returns generated un-used account number. def register(): # To register, we need Name, Email, Account number, Password, Address, contact print("\n" + "-" * 15 + "REGISTRATION" + "-" * 15) welcomePrompt = "\nTake a few minutes to register an account with us.\n" \ "Please fill the following details as accurately as possible\n" print(welcomePrompt) firstName = input("Enter your First name: ") lastName = input("Enter your Last name: ") email = input("Enter your Email Address: ") address = input("Enter your Home Address: ") while True: # Get contact until up to 11 digits is entered contact = input("Enter your Phone number: ") if len(contact) == 11: break else: print("Incorrect Phone number, try again.") boolValue = validateDetails2(contact=contact, email=email) # Check if details exist if boolValue: print("\nGenerating Account Number...") accountNumber = str(generateAccountNumber()) print("Your Account Number is", accountNumber) while True: password = input("Enter password (must be 8 digits or more): ") if len(password) >= 8: break print("\nPlease take note of your account number and password.\n") registration = {"firstName": firstName, "lastName": lastName, "email": email, "address": address, "accountNumber": accountNumber, "password": password, "contact": contact, "Balance": 0} data = pd.read_csv(filePath, dtype=str) data = data.append(pd.DataFrame([registration])) data.to_csv(filePath, index=False) print("Registration Successful.\nRedirecting you to Login.") else: print("\nUser already exists, try login.") return login() def login(): print("\n" + "-" * 15 + "LOGIN" + "-" * 15) print("\nPlease fill in the following details.\n") accountNumber = input("Enter your account number: ") password = input("Enter your password: ") boolValue, userPosition = validateLogin(accountNumber=accountNumber, password=password) if boolValue: welcome(userPosition) else: retrieveAccount = input("Retrieve account number (yes/no): ") if retrieveAccount == 'yes': suggestion = retrieveAccountNumber() if suggestion: login() else: register() return main() def retrieveAccountNumber(): getEmail = input("Enter your email: ") getContact = input("Enter your Phone number: ") data =
pd.read_csv(filePath, dtype=str)
pandas.read_csv
import os from itertools import product import altair as alt import arviz as az import matplotlib.pyplot as plt import numpy as np import pandas as pd from bayes_window import BayesRegression, LMERegression, BayesConditions from bayes_window import models from bayes_window import utils from bayes_window.fitting import fit_numpyro from bayes_window.generative_models import generate_fake_lfp from jax import random from joblib import Parallel, delayed from numpyro.infer import Predictive from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tqdm import tqdm trans = LabelEncoder().fit_transform def make_confusion_matrix(res, groups): df = [] for _, this_res in res.groupby(list(groups)): try: this_res['score'] = this_res['score'].replace({'': None}).astype(float) except TypeError: pass this_res['true_slope'] = this_res['true_slope'] > 0 this_res['score'] = this_res['score'] > 0 cm = confusion_matrix(this_res['true_slope'], this_res['score'], labels=this_res['true_slope'].unique()) cm = [y for i in cm for y in i] roll = list(product(np.unique(this_res['true_slope']), repeat=2)) this_res = this_res.drop(['true_slope', 'score'], axis=1) for i in range(len(roll)): rez = {'actual': roll[i][0], 'predicted': roll[i][1], 'Occurences': cm[i], } rez.update(this_res.iloc[0].to_dict()) df.append(rez) # Remove raw scores to reduce confusion return pd.DataFrame.from_records(df) def plot_confusion(df): # plot base = alt.Chart(df) heat = base.mark_rect().encode( x="predicted", y="actual", color='Occurences:O' ).properties(width=180, height=180) # Configure text # Doesnt work without mean; mean is meaningless without groupby # text = base.mark_text(baseline='middle').encode( # text=alt.Text('mean(Occurences)', format=",.1f", ), # x="predicted", # y="actual", # # color=alt.condition( # # alt.datum.Occurences > df['Occurences'].mean(), # # alt.value('black'), # # alt.value('white') # # ) # ) return heat def make_roc_auc(res, binary=True, groups=('method', 'y', 'randomness', 'n_trials')): """ Vary as function of true_slope """ df = [] for head, this_res in res.groupby(list(groups)): try: this_res['score'] = this_res['score'].replace({'': None}).astype(float) except TypeError: pass if binary: this_res['score'] = this_res['score'] > 0 else: this_res = this_res.dropna(subset=['score']) # drop nans to prevent errors fprs = [] tprs = [] slopes = [] # Loop over true_slopes for ts in this_res[this_res['true_slope'] > 0]['true_slope'].unique(): # Select all no-slopes and this slope: x = this_res[(this_res['true_slope'] == 0) | (this_res['true_slope'] == ts)] # Binarize: x['true_slope'] = x['true_slope'] > 0 fpr, tpr, _ = roc_curve(x['true_slope'], x['score']) # print(f"Yes for {head} {round(ts, 2)}: {fpr, tpr}") # print(f"{x['true_slope'].values},\n {x['score'].values}") fprs.extend(fpr) tprs.extend(tpr) slopes.extend(np.repeat(ts, len(fpr))) rocs = {'False positive rate': fprs, 'True positive rate': tprs, 'AUC': round(auc(fpr, tpr), 5), 'true_slope': slopes } rocs =
pd.DataFrame(rocs)
pandas.DataFrame
import requests import pandas as pd import pickle import datetime import guithread import numpy as np import concurrent.futures import time from os import makedirs from config import text_width, max_thread_count class Acquisition(guithread.GUIThread): def __init__(self, filename='default.csv', brain_region='All', species='All', cell_type='All'): self.filename = filename self.brain_region, self.species, self.cell_type = brain_region, species, cell_type self.session = requests.Session() self.params_widg = {} if brain_region != 'All': self.params_widg['brain_region'] = 'brain_region:' + brain_region if species != 'All': self.params_widg['species'] = 'species:' + species if cell_type != 'All': self.params_widg['cell_type'] = 'cell_type:' + cell_type self.params = {} self.params['page'] = 0 self.params['size'] = 500 fq = [] first = 0 for key, value in self.params_widg.items(): if first == 0: first = 1 self.params['q'] = value else: fq.append(value) self.params['fq'] = fq if brain_region == 'All' and species == 'All' and cell_type == 'All': self.url = 'http://neuromorpho.org/api/neuron' else: self.url = 'http://neuromorpho.org/api/neuron/select' super().__init__() def get_first_page(self): brain_region, species, cell_type = self.brain_region, self.species, self.cell_type s = self.session first_page_response = s.get(self.url, params=self.params) print(first_page_response.json()) if first_page_response.status_code == 404 or first_page_response.status_code == 500: self.print_to_textbox("Unable to get CSV! Status code: " + str(first_page_response.status_code)) return 0 elif 'status' in first_page_response.json() and first_page_response.json()['status'] == 500: self.print_to_textbox("Unable to get CSV! Status code: " + str(first_page_response.json()['status'])) return 0 print(str(first_page_response.request.url)) print(first_page_response.status_code) return first_page_response.json()['page']['totalPages'], first_page_response.json()['page']['totalElements'] def get_morphometry(self, np_array): morphometry = [] for i in np_array: url = "http://neuromorpho.org/api/morphometry/id/" + str(i) response = self.session.get(url) response.raise_for_status() json_data = response.json() morphometry.append(json_data) if response.status_code == 200: text_status_code = '\u2705' else: text_status_code = '\u274C' self.print_to_textbox('Querying cells {} -> status code: {} {}'.format( str(i), response.status_code, text_status_code) ) return morphometry def run(self): file_name = "" try: brain_region, species, cell_type = self.brain_region, self.species, self.cell_type s = self.session starttime = datetime.datetime.now() self.set_progress(0) self.print_to_textbox(brain_region + '\n' + species + '\n' + cell_type + '\n') totalPages, totalElements = self.get_first_page() self.print_to_textbox("Getting Neurons - total elements:" + str(totalElements) + "\nDo you want to continue?") timer = 10 while self.is_paused and not self.is_killed: time.sleep(1) timer -= 1 self.print_to_textbox("Will continue in: " + str(timer) + " seconds") if timer == 0: break if self.is_killed: self.print_to_textbox("CANCELLED!!!") self.print_to_textbox("\n" + "#" * text_width + "\n") self.set_progress(0) return 0 self.print_to_textbox("Continuing...") df_dict = { 'NeuronID': list(), 'Neuron Name': list(), 'Archive': list(), 'Note': list(), 'Age Scale': list(), 'Gender': list(), 'Age Classification': list(), 'Brain Region': list(), 'Cell Type': list(), 'Species': list(), 'Strain': list(), 'Scientific Name': list(), 'Stain': list(), 'Experiment Condition': list(), 'Protocol': list(), 'Slicing Direction': list(), 'Reconstruction Software': list(), 'Objective Type': list(), 'Original Format': list(), 'Domain': list(), 'Attributes': list(), 'Magnification': list(), 'Upload Date': list(), 'Deposition Date': list(), 'Shrinkage Reported': list(), 'Shrinkage Corrected': list(), 'Reported Value': list(), 'Reported XY': list(), 'Reported Z': list(), 'Corrected Value': list(), 'Corrected XY': list(), 'Corrected Z': list(), 'Slicing Thickness': list(), 'Min Age': list(), 'Max Age': list(), 'Min Weight': list(), 'Max Weight': list(), 'Png URL': list(), 'Reference PMID': list(), 'Reference DOI': list(), 'Physical Integrity': list()} self.print_to_textbox("Getting Neurons - total pages:" + str(totalPages)) progress_step = 20.0/totalPages for pageNum in range(totalPages): self.params['page'] = pageNum response = s.get(self.url, params=self.params) if response.status_code == 200: text_status_code = '\u2705' else: text_status_code = '\u274C' self.print_to_textbox('Querying page {} -> status code: {} {}'.format( pageNum, response.status_code, text_status_code)) if response.status_code == 200: # only parse successful requests data = response.json() for row in data['_embedded']['neuronResources']: df_dict['NeuronID'].append(str(row['neuron_id'])) df_dict['Neuron Name'].append(str(row['neuron_name'])) df_dict['Archive'].append(str(row['archive'])) df_dict['Note'].append(str(row['note'])) df_dict['Age Scale'].append(str(row['age_scale'])) df_dict['Gender'].append(str(row['gender'])) df_dict['Age Classification'].append(str(row['age_classification'])) df_dict['Brain Region'].append(str(row['brain_region'])) df_dict['Cell Type'].append(str(row['cell_type'])) df_dict['Species'].append(str(row['species'])) df_dict['Strain'].append(str(row['strain'])) df_dict['Scientific Name'].append(str(row['scientific_name'])) df_dict['Stain'].append(str(row['stain'])) df_dict['Experiment Condition'].append(str(row['experiment_condition'])) df_dict['Protocol'].append(str(row['protocol'])) df_dict['Slicing Direction'].append(str(row['slicing_direction'])) df_dict['Reconstruction Software'].append(str(row['reconstruction_software'])) df_dict['Objective Type'].append(str(row['objective_type'])) df_dict['Original Format'].append(str(row['original_format'])) df_dict['Domain'].append(str(row['domain'])) df_dict['Attributes'].append(str(row['attributes'])) df_dict['Magnification'].append(str(row['magnification'])) df_dict['Upload Date'].append(str(row['upload_date'])) df_dict['Deposition Date'].append(str(row['deposition_date'])) df_dict['Shrinkage Reported'].append(str(row['shrinkage_reported'])) df_dict['Shrinkage Corrected'].append(str(row['shrinkage_corrected'])) df_dict['Reported Value'].append(str(row['reported_value'])) df_dict['Reported XY'].append(str(row['reported_xy'])) df_dict['Reported Z'].append(str(row['reported_z'])) df_dict['Corrected Value'].append(str(row['corrected_value'])) df_dict['Corrected XY'].append(str(row['corrected_xy'])) df_dict['Corrected Z'].append(str(row['corrected_z'])) df_dict['Slicing Thickness'].append(str(row['slicing_thickness'])) df_dict['Min Age'].append(str(row['min_age'])) df_dict['Max Age'].append(str(row['max_age'])) df_dict['Min Weight'].append(str(row['min_weight'])) df_dict['Max Weight'].append(str(row['max_weight'])) df_dict['Png URL'].append(str(row['png_url'])) df_dict['Reference PMID'].append(str(row['reference_pmid'])) df_dict['Reference DOI'].append(str(row['reference_doi'])) df_dict['Physical Integrity'].append(str(row['physical_Integrity'])) self.set_progress(pageNum * progress_step) self.set_progress(20) self.print_to_textbox("Creating neuron Data Frame") neurons_df = pd.DataFrame(df_dict) self.set_progress(25) self.print_to_textbox("Pickling neurons") makedirs("./output", exist_ok=True) neurons_df.to_pickle("./output/neurons.pkl") self.set_progress(30) # the ID number of previously obtained neurons is used to obtain their morphometric details np_array = neurons_df['NeuronID'].to_numpy() np_arrays = np.array_split(np_array, max_thread_count) self.print_to_textbox("Getting morphometry") morphometry = [] progress_step = 40.0 / np_array.size progress_value = 0.0 with concurrent.futures.ThreadPoolExecutor(max_workers=max_thread_count) as executor: futures = [] for n in np_arrays: futures.append(executor.submit(self.get_morphometry, np_array=n)) for future in concurrent.futures.as_completed(futures): morphometry.extend(future.result()) print(morphometry) self.set_progress(70) self.print_to_textbox("Creating morphometry Data Frame") df_dict = {} df_dict['NeuronID'] = [] df_dict['Surface'] = [] df_dict['Volume'] = [] df_dict['Soma surface'] = [] df_dict['Number of stems'] = [] df_dict['Number of bifurcations'] = [] df_dict['Number of branches'] = [] df_dict['Width'] = [] df_dict['Height'] = [] df_dict['Depth'] = [] df_dict['Diameter'] = [] df_dict['Euclidian distance'] = [] df_dict['Path distance'] = [] df_dict['Branch order'] = [] df_dict['Contraction'] = [] df_dict['Fragmentation'] = [] df_dict['Partition asymmetry'] = [] df_dict['Pk classic'] = [] df_dict['Bifurcation angle local'] = [] df_dict['Fractal dimension'] = [] df_dict['Bifurcation angle remote'] = [] df_dict['Length'] = [] for row in morphometry: df_dict['NeuronID'].append(str(row['neuron_id'])) df_dict['Surface'].append(str(row['surface'])) df_dict['Volume'].append(str(row['volume'])) df_dict['Soma surface'].append(str(row['soma_Surface'])) df_dict['Number of stems'].append(str(row['n_stems'])) df_dict['Number of bifurcations'].append(str(row['n_bifs'])) df_dict['Number of branches'].append(str(row['n_branch'])) df_dict['Width'].append(str(row['width'])) df_dict['Height'].append(str(row['height'])) df_dict['Depth'].append(str(row['depth'])) df_dict['Diameter'].append(str(row['diameter'])) df_dict['Euclidian distance'].append(str(row['eucDistance'])) df_dict['Path distance'].append(str(row['pathDistance'])) df_dict['Branch order'].append(str(row['branch_Order'])) df_dict['Contraction'].append(str(row['contraction'])) df_dict['Fragmentation'].append(str(row['fragmentation'])) df_dict['Partition asymmetry'].append(str(row['partition_asymmetry'])) df_dict['Pk classic'].append(str(row['pk_classic'])) df_dict['Bifurcation angle local'].append(str(row['bif_ampl_local'])) df_dict['Fractal dimension'].append(str(row['fractal_Dim'])) df_dict['Bifurcation angle remote'].append(str(row['bif_ampl_remote'])) df_dict['Length'].append(str(row['length'])) morphometry_df = pd.DataFrame(df_dict) self.set_progress(75) self.print_to_textbox("Pickling morphometry") morphometry_df.to_pickle("./output/morphometry.pkl") # the following is a list of steps used to currate the morphometric data # and merge the two obtained dataframes (general neuron parameters and morphometric data) # this results in the creation of final .pkl and .csv files at the end of the notebook neurons = open("./output/morphometry.pkl", "rb") neurons_df = pickle.load(neurons) neurons.close() self.set_progress(80) self.print_to_textbox(neurons_df) neurons_df = neurons_df.replace({'Soma surface': {'None': ''}}, regex=True) neurons_df["Surface"] = pd.to_numeric(neurons_df["Surface"], downcast="float") neurons_df["Volume"] = pd.to_numeric(neurons_df["Volume"], downcast="float") neurons_df["Soma surface"] = pd.to_numeric(neurons_df["Soma surface"], downcast="float") neurons_df["Number of stems"] = pd.to_numeric(neurons_df["Number of stems"], downcast="float") neurons_df["Number of bifurcations"] = pd.to_numeric(neurons_df["Number of bifurcations"], downcast="float") neurons_df["Number of branches"] = pd.to_numeric(neurons_df["Number of branches"], downcast="float") neurons_df["Width"] = pd.to_numeric(neurons_df["Width"], downcast="float") neurons_df["Height"] = pd.to_numeric(neurons_df["Height"], downcast="float") neurons_df["Depth"] = pd.to_numeric(neurons_df["Depth"], downcast="float") neurons_df["Diameter"] = pd.to_numeric(neurons_df["Diameter"], downcast="float") neurons_df["Euclidian distance"] = pd.to_numeric(neurons_df["Euclidian distance"], downcast="float") neurons_df["Path distance"] = pd.to_numeric(neurons_df["Path distance"], downcast="float") neurons_df["Branch order"] = pd.to_numeric(neurons_df["Branch order"], downcast="float") neurons_df["Contraction"] = pd.to_numeric(neurons_df["Contraction"], downcast="float") neurons_df["Fragmentation"] = pd.to_numeric(neurons_df["Fragmentation"], downcast="float") neurons_df["Partition asymmetry"] = pd.to_numeric(neurons_df["Partition asymmetry"], downcast="float") neurons_df["Pk classic"] = pd.to_numeric(neurons_df["Pk classic"], downcast="float") neurons_df["Bifurcation angle local"] = pd.to_numeric(neurons_df["Bifurcation angle local"], downcast="float") neurons_df["Fractal dimension"] = pd.to_numeric(neurons_df["Fractal dimension"], downcast="float") neurons_df["Number of branches"] = pd.to_numeric(neurons_df["Number of branches"], downcast="float") neurons_df["Bifurcation angle remote"] =
pd.to_numeric(neurons_df["Bifurcation angle remote"], downcast="float")
pandas.to_numeric
# Search the TSX web site to get a list of all listed companies import os import sys import getopt import datetime # from numpy.lib.function_base import append import pandas as pd import sqlalchemy import logging from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException import pandas_datareader.data as web from dotenv import load_dotenv from sqlalchemy import engine load_dotenv() class TSX_Browser(): def __init__(self, chrome_driver_path=None): self.url_ticker= "https://www.tsx.com/listings/listing-with-us/listed-company-directory" self.__OPTIONS = webdriver.ChromeOptions() self.__OPTIONS.add_experimental_option('excludeSwitches', ['enable-logging']) if chrome_driver_path is None: self.__CHROME_DRIVER_LOCATION = "C:\Program Files (x86)\chromedriver.exe" else: self.__CHROME_DRIVER_LOCATION = chrome_driver_path self.driver = None #self.driver = webdriver.Chrome(executable_path=self.__CHROME_DRIVER_LOCATION,options=self.__OPTIONS) self.seconds_to_wait = 10 def close(self): try: self.driver.quit() except Exception as e: logging.info(f"Unable to quit() Chrome Driver, Error: {e}") def set_exchange(self, exchange) -> bool: # Make sure we have a driver available if self.driver is None: try: self.driver = webdriver.Chrome(executable_path=self.__CHROME_DRIVER_LOCATION,options=self.__OPTIONS) except Exception as e: logging.critical(f"Unable to create Chrome Browser Driver, Error: {e}") raise return False self.driver.get(self.url_ticker) self.driver.minimize_window() tsx_css_selectors = {"tsx":".tsx.on", "tsxv":".tsxv.on"} if exchange.lower() in tsx_css_selectors.keys(): tsx_flag = tsx_css_selectors.get(exchange) else: # Use tsx by default if bad exchange passed tsx_flag = tsx_css_selectors.get('tsx') # Check if TSX Browser is already on desired exchange page try: WebDriverWait(self.driver, self.seconds_to_wait).until( EC.visibility_of_element_located((By.CSS_SELECTOR, tsx_flag))) return True except: # Switch Exchange using TSX Browser button switch_btn_xpath = '//*[@id="exchange-toggle"]' switch_btn = self.driver.find_element_by_xpath(switch_btn_xpath) switch_btn.click() # Make sure the switch worked correctly or fail try: WebDriverWait(self.driver, self.seconds_to_wait).until( EC.visibility_of_element_located((By.CSS_SELECTOR, tsx_flag))) return True except Exception as e: logging.warning(f"Unable to switch TSX Echange page, Error: {e}") raise return False class TSX_Company_Info(): def __init__(self, name, ticker, exchange='tsx'): self.name = name.upper().strip() self.ticker = ticker.upper().strip() self.exchange = exchange self.url = f"https://money.tmx.com/en/quote/{self.ticker}" self.yahoo = self.create_yahoo_ticker(self.ticker, self.exchange) @property def dict(self) -> dict: data ={} data["ticker"] = self.ticker data["name"] = self.name data["exchange"] = self.exchange data["url"] = self.url data["yahoo"] = self.yahoo return data def create_yahoo_ticker(self, ticker, exchange): yahoo_ticker = ticker.replace('.','-') # TODO: fix the doube "-" not found on yahoo exchange yahoo_extension = "TO" if exchange == "tsx" else "V" yahoo_ticker = f"{yahoo_ticker}.{yahoo_extension}" return yahoo_ticker class TSX: def __init__(self): self.chrome_browser = None def dispose(self): if self.chrome_browser is not None: self.chrome_browser.close() # Return a DataFrame with a list of TSX Company Info def extract_tickers_for_str(self, search_str, exchange="tsx", progress=False) -> pd.DataFrame: companies = [] if self.chrome_browser is None: try: chrome_browser = TSX_Browser() self.chrome_browser = chrome_browser except Exception as e: logging.critical(f"Unable to create Chrome Browser, Error: {e}") return None # Make sur the TSX Page is on the desired stock exchange try: self.chrome_browser.set_exchange(exchange) except Exception as e: logging.warning(f"Unable to set TSX Exchange Page to: {exchange}, Error: {e}") return None if progress: print(f"\n\n Extracting data for : {search_str}") # Send letter into the search box of the page search_box_xpath = '//*[@id="query"]' search_box = self.chrome_browser.driver.find_element_by_xpath(search_box_xpath) search_box.send_keys(search_str) # Click the search button to send search request search_btn_xpath = '//*[@id="btn-search-listed-company-directory"]' search_btn = self.chrome_browser.driver.find_element_by_xpath(search_btn_xpath) search_btn.click() try: # By.ID, By.xpath, BY.cssSelector result_data_xpath = '//*[@id="tresults"]/tbody' WebDriverWait(self.chrome_browser.driver, 10).until( EC.visibility_of_element_located((By.XPATH, result_data_xpath))) datagrid = self.chrome_browser.driver.find_element_by_xpath(result_data_xpath) #progress_msg(f"Received response for letter {search_str} ") except TimeoutException: return None data = datagrid.find_elements_by_tag_name("tr") # progress_msg(f"Extracting table data for letter {search_str} ") companies = [] for row in data: cells = row.find_elements_by_tag_name("td") # Skip the line with no ticker symbol if (cells[1].text != ""): ticker = cells[1].text name = cells[0].text company = TSX_Company_Info(name, ticker, exchange=exchange) companies.append(company.dict) if progress: print(f"-- Extracted : {exchange}, {ticker.ljust(10)}, {name.strip()} ") df_companies = pd.DataFrame(companies) df_companies.set_index('ticker') return df_companies def save_tickers_in_DB(self, DB, df_tickers, overwrite=False) -> bool: try: engine = sqlalchemy.create_engine(f"sqlite:///{DB}") except Exception as e: logging.critical(f"Unable to create DB Engine, Error: {e}") raise return False save_type = "append" if not overwrite else "replace" try: df_tickers.to_sql('tsx_symbols', engine, if_exists=save_type) saved = True except Exception as e: logging.warning(f"Unable to save DataFrame ({df_tickers}) using .to_sql() probably empty DataFrame, Error: {e}") saved = False # Raise an error finally: engine.dispose() return saved def update_all_tickers(self, DB, progess=False): alphabet = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','0-9'] overwrite = True # Extract data from TSX for letter in alphabet: df_tickers = self.extract_tickers_for_str(letter,exchange='tsx', progress=progess) self.save_tickers_in_DB(DB, df_tickers, overwrite=overwrite) overwrite = False # Extract data from TSX Venture for letter in alphabet: df_tickers = self.extract_tickers_for_str(letter,exchange='tsxv', progress=progess) self.save_tickers_in_DB(DB, df_tickers, overwrite=overwrite) def remove_duplicates(self, DB): os.popen(f"copy {DB} {DB}.BK") engine1 = sqlalchemy.create_engine(f"sqlite:///{DB}") engine2 = sqlalchemy.create_engine(f"sqlite:///{DB}-cleaned") tables =
pd.read_sql("SELECT name FROM sqlite_master WHERE type='table'", engine1)
pandas.read_sql
""" core.py Created by <NAME> at 31/08/2020, University of Milano-Bicocca. (<EMAIL>) All rights reserved. This file is part of the EcoFin-Library (https://github.com/LucaCamerani/EcoFin-Library), and is released under the "BSD Open Source License". """ from collections import namedtuple import numpy as np import pandas as pd import requests from EcoFin.dataDownload import functions as fc from EcoFin.dataDownload import shared try: from urllib.parse import quote as urlencode except ImportError: from urllib import quote as urlencode class TickerCore(): def __init__(self, ticker): self.ticker = ticker.upper() self.history = None self.baseUrl = shared.baseUrl self.fundamentals = False self._info = None self._sustainability = None self._recommendations = None self._majorHolders = None self._institutionalHolders = None self._ISIN = None self._calendar = None self._expirations = {} self._earnings = { "Y": fc.emptyDataSerie(), "Q": fc.emptyDataSerie()} self._financials = { "Y": fc.emptyDataSerie(), "Q": fc.emptyDataSerie()} self._balancesheet = { "Y": fc.emptyDataSerie(), "Q": fc.emptyDataSerie()} self._cashflow = { "Y": fc.emptyDataSerie(), "Q": fc.emptyDataSerie()} def getHistory(self, interval="1d", start=None, end=None, actions=True, autoAdjust=True, backAdjust=False, proxy=None, rounding=True, **kwargs): """ :Parameters: period : str Valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max Either Use period parameter or use start and end interval : str Valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo Intraday data cannot extend last 60 days start: str Download start date string (YYYY-MM-DD) or datetime. Default is 1900-01-01 end: str Download end date string (YYYY-MM-DD) or datetime. Default is now prepost : bool Include Pre and Post market data in results? Default is False autoAdjust: bool Adjust all OHLC automatically? Default is True backAdjust: bool Back-adjusted data to mimic true historical prices proxy: str Optional. Proxy server URL scheme. Default is None rounding: bool Round values to 2 decimal places? Optional. Default is False = precision suggested by Yahoo! tz: str Optional timezone locale for dates. (default data is returned as non-localized dates) **kwargs: dict debug: bool Optional. If passed as False, will suppress error message printing to console. """ params = {"period1": start, "period2": end} params["events"] = "div,splits" # setup proxy in requests format if proxy is not None: if isinstance(proxy, dict) and "https" in proxy: proxy = proxy["https"] proxy = {"https": proxy} # Getting data from json url = "{}/v8/finance/chart/{}".format(self.baseUrl, self.ticker) key = '{}?{}'.format(url, '&'.join(['{}={}'.format(k, d) for k, d in params.items()])) if shared.show_url: print('Connection request: {}'.format(key)) if shared.use_cache & shared.session_cache.keyExists(key): data = shared.session_cache.read(key) else: data = requests.get(url=url, params=params, proxies=proxy) if "Server" in data.text: raise RuntimeError("Data provider is currently down!") data = data.json() shared.session_cache.add(key=key, var=data) # Clean up errors debug_mode = True if "debug" in kwargs and isinstance(kwargs["debug"], bool): debug_mode = kwargs["debug"] err_msg = "No data found for this date range" if "chart" in data and data["chart"]["error"]: err_msg = data["chart"]["error"]["description"] shared.DFS[self.ticker] = fc.emptyDataSerie() shared.ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared.DFS[self.ticker] elif "chart" not in data or data["chart"]["result"] is None or not data["chart"]["result"]: shared.DFS[self.ticker] = fc.emptyDataSerie() shared.ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared.DFS[self.ticker] # parse quotes try: quotes = fc.parseQuotes(data["chart"]["result"][0]) except Exception: shared.DFS[self.ticker] = fc.emptyDataSerie() shared.ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared.DFS[self.ticker] # 2) fix weired bug with Yahoo! - returning 60m for 30m bars if interval.lower() == "30m": quotes2 = quotes.resample('30T') quotes = pd.DataFrame(index=quotes2.last().index, data={ 'Open': quotes2['Open'].first(), 'High': quotes2['High'].max(), 'Low': quotes2['Low'].min(), 'Close': quotes2['Close'].last(), 'Adj Close': quotes2['Adj Close'].last(), 'Volume': quotes2['Volume'].sum() }) try: quotes['Dividends'] = quotes2['Dividends'].max() except Exception: pass try: quotes['Stock Splits'] = quotes2['Dividends'].max() except Exception: pass if autoAdjust: quotes = fc.autoAdjust(quotes) elif backAdjust: quotes = fc.backAdjust(quotes) if rounding: quotes = np.round(quotes, data["chart"]["result"][0]["meta"]["priceHint"]) quotes['Volume'] = quotes['Volume'].fillna(0).astype(np.int64) quotes.dropna(inplace=True) # actions dividends, splits = fc.parseEvents(data["chart"]["result"][0]) # combine df = pd.concat([quotes, dividends, splits], axis=1, sort=True) df["Dividends"].fillna(0, inplace=True) df["Stock Splits"].fillna(0, inplace=True) # index eod/intraday df.index = df.index.tz_localize("UTC").tz_convert( data["chart"]["result"][0]["meta"]["exchangeTimezoneName"]) df.index =
pd.to_datetime(df.index.date)
pandas.to_datetime
import re import math import pandas as pd import numpy as np import nltk import heapq import pickle import datetime from nltk.corpus import stopwords from operator import itemgetter # Loading the dictionary with open('dictionary.pkl', 'rb') as f: data = pickle.load(f) # Loading the dictionary with term count with open('newdictionary.pkl', 'rb') as f: newdata = pickle.load(f) # Read the csv file ff = pd.DataFrame(pd.read_csv('Airbnb_Texas_Rentals.csv')) ff = ff.fillna('0') ff = ff.drop(['Unnamed: 0'], axis=1) # Insert the date_post_1 column based on the date of listing ff['month']=[(x.split()[0]).lower() for x in ff['date_of_listing']] ff['month_number']=np.where(ff['month']=='may',"-05-01", np.where(ff['month']=='june',"-06-01", np.where(ff['month']=='july',"-07-01", np.where(ff['month']=="august","-08-01", np.where(ff['month']=="september","-09-01", np.where(ff['month']=="october","-10-01", np.where(ff['month']=="november","-11-01", np.where(ff['month']=="december","-12-01", np.where(ff['month']=="january","-01-01", np.where(ff['month']=="february","-02-01", np.where(ff['month']=="march","-03-01", np.where(ff['month']=="april","-04-01","-01-01")))))))))))) ff['year']=[x.split()[1] for x in ff['date_of_listing']] ff['date_post']=ff['year']+ff['month_number'] ff['date_post_1']=[pd.to_datetime(x) for x in ff['date_post']] # calculate the room rate for each listing and merge it to the data frame ff['rate_num']=[str(d).replace("$","") for d in ff['average_rate_per_night']] ff=ff.fillna('0') ff['rate_num_1']=[pd.to_numeric(x) if x!="nan" else 0 for x in ff['rate_num'] ] ff_means=pd.DataFrame(ff.groupby(['city'])['rate_num_1'].mean()) ff_means.columns=['Average_in_this_city'] ff=ff.merge(ff_means, left_on='city', right_on='city', how='left') # FUNCTIONS----FUNCTIONS----FUNCTIONS------------------------------ #input = [word1, word2, ...] #output = {word1: [pos1, pos2], word2: [pos1, pos2], ...} def index_one_file(termlist): fileIndex = {} words = list(set(termlist)) word_list = [x for x in termlist] for i in range(len(word_list)): for item in words: if item == word_list[i]: fileIndex.setdefault(item, []).append(i) return fileIndex #input = {filename: [word1, word2, ...], ...} #ouput = {filename: {word: [pos1, pos2, ...]}, ...} def make_indices(dictionary): total = {} for filename in dictionary.keys(): new = dictionary[filename] total[filename] = index_one_file(new) return total # Dict reversal #input = {filename: {word: [pos1, pos2, ...], ... }} #output = {word: {filename: [pos1, pos2]}, ...}, ...} def fullIndex(regdex): total_index = {} for filename in regdex.keys(): for word in regdex[filename].keys(): if word in total_index.keys(): if filename in total_index[word].keys(): total_index[word][filename].extend(regdex[filename][word][:]) else: total_index[word][filename] = regdex[filename][word] else: total_index[word] = {filename: regdex[filename][word]} return total_index # Search Engine # Preprocess the search def preprocess(search): search = search.lower().split() stop_words = set(stopwords.words('english')) lemma = nltk.wordnet.WordNetLemmatizer() search_lst = [] for x in search: if not x in stop_words: x = re.sub("[^a-zA-Z]+", "*", x) if "*" in x: y = x.split('*') y[0]=lemma.lemmatize(y[0]) search_lst.append(y[0]) if len(y)>1: y[1]=lemma.lemmatize(y[1]) search_lst.append(y[1]) else: x = lemma.lemmatize(x) search_lst.append(x) search_lst = (' '.join(search_lst)) return search_lst #Input for the search def search_eng_input(phrase): phrase = phrase.lower().split() n = len(phrase) list1, list2, list3 = [], [], [] for x in phrase: x = preprocess(x) list1.append(x) for x in list1: if x in data.keys(): list2.append(set(data[x].keys())) b = list2[0] for i in range(0,len(list2)): b = (b & list2[i]) for x in b: list3.append(int(re.sub("[^0-9]+", "", x))-1) return list3 # Executing the query and return the result for conjunctive search def exec_query_s_1(search): pd.set_option('display.max_colwidth', -1) l = [] df = pd.DataFrame() l = (search_eng_input(search)) if len(l)>0: df = ff[['title','description','city', 'url']].loc[l] if df.empty == False: df.set_index('title', inplace=True) return df # TF-IDF def tf(term_count, total_count): return term_count / total_count def idf(doc_count, contain_count): return math.log(doc_count / contain_count) def tf_idf(term_count, total_count, doc_count, contain_count): if total_count == 0: total_count = 1 if contain_count == 0: contain_count = 1 return round(tf(term_count, total_count) * idf(doc_count, contain_count),2) # return the number of words in a document when input in the name def total_count(filename): total = 0 inverse_data = fullIndex(data) #inverse the data if filename in inverse_data.keys(): value = inverse_data.get(filename, 0) #get the sub_dict for k, v in value.items(): total += len(v) # count the number of term in a document return total else: return 0 # return the number of documents that contain a certain word when input in a term def contain_count(term): if term in data.keys(): return len(data[term].keys()) else: return 0 # functions for returning the search with ranking similarity scores #creating doc vectors def doc_vec(query): lemma = nltk.wordnet.WordNetLemmatizer() querylist = query.split() query = search_eng_input_1(query) # return the list of documents matched first query = [x+1 for x in query] # +1 for the correct position doc = {} docvec = [0] * len(querylist) for index, word in enumerate(querylist): word = lemma.lemmatize(word) word = word.lower() try: subvec = [] value = newdata[word]# get {doc1:tf-idf, doc2: tf-idf} of each word in search query for k, v in value.items(): for i in query: # loop all the documents'ids that search gives key = ('filtered_doc_%s'%str(i)) if key == k: # if the id is in the dict subvec.append(v) # append the score to the vector = [[tf-idf1,tf-idf2,..],[tf-idf1,tf-idf2,..],..] subvec += [0] * (len(query) - len(subvec)) # make the vectors equal in length for not found instances docvec[index] = subvec del subvec except KeyError: docvec[index] = [0]*len(value.keys()) # if the word not in dict, create a zero vector # this loop return the dict with format {doc1:vector1,doc2:vector2,...} for the query for index in range(len(docvec[0])): sub_vec = [item[index] for item in docvec] doc.update({query[index]:sub_vec}) return doc #create query vector def query_vec(query): pattern = re.compile('[\W_]+') # for faster search function query = pattern.sub(' ',query) querylist = query.split() b = len(querylist) c = 18259 #total number of documents queryvec = [0]*b for index,word in enumerate(querylist): a = querylist.count(word) d = contain_count(word) wordtfidf = tf_idf(a,b,c,d) # tf-idf score for each word queryvec[index] = wordtfidf return queryvec def dotproduct(vec1, vec2): if len(vec1) != len(vec2): return 0 return sum([x*y for x,y in zip(vec1, vec2)]) def magnitude(vec): return pow(sum(map(lambda x: x**2, vec)),.5) # calculate the score of the results based on query def generatescore(query): queryvec = query_vec(query) doc_vecs_dict = doc_vec(query) score_dict = {} for k, v in doc_vecs_dict.items(): score = round(dotproduct(queryvec, v)/(magnitude(queryvec)*magnitude(v)),2) score_dict.update({k:score}) return score_dict # heap data structure to keep top k def heappq(mysearch): query = search_eng_input(mysearch) k = 10 # default top k-element if k >= len(query): k = len(query) d = generatescore(mysearch) k_keys_sorted = heapq.nlargest(k, d.items(), key = itemgetter(1)) key_lst, score_lst = [], [] for i in range(k): key_lst.append(k_keys_sorted[i][0]) score_lst.append(k_keys_sorted[i][1]) return key_lst, score_lst # executing tf_idf conjunctive search def exec_tfidf_search(mysearch): key_lst, score_lst = heappq(mysearch) key_lst = [x-1 for x in key_lst] # to get the correct row in df pd.set_option('display.max_colwidth', -1) df = pd.DataFrame() if len(key_lst)>0: df = ff[['title','description','city', 'url']].loc[key_lst] df['similarity'] = score_lst if df.empty == False: df.set_index('title', inplace=True) return df #function for scoring for Step 4 of the task def search_eng_input_1(search): search=search.lower().split() n=len(search) list1, list2, list3=[],[],[] for x in search: x=preprocess(x) list1.append(x) for x in list1: if x in data.keys(): list2.append(set(data[x].keys())) if len(list2)>0: b=list2[0] for i in range(0,len(list2)): a=b b=(b & list2[i]) if len(b)==0: b=a break else: a=b for x in b: list3.append(int(re.sub("[^0-9]+", "", x))-1) if len(list3)==0: list3=[1,2,3] return (list3) # Executing search query def exec_query_s_2(s):
pd.set_option('display.max_colwidth', -1)
pandas.set_option
#!/usr/bin/env python # coding: utf-8 # # Machine Learning analysis # # - This is a Python base notebook # # Kaggle's [Spotify Song Attributes](https://www.kaggle.com/geomack/spotifyclassification/home) dataset contains a number of features of songs from 2017 and a binary variable `target` that represents whether the user liked the song (encoded as 1) or not (encoded as 0). See the documentation of all the features [here](https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/). # ## Imports # ### Import libraries # In[1]: import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.model_selection import ( RandomizedSearchCV, cross_validate, train_test_split, ) from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.dummy import DummyClassifier from sklearn.linear_model import LogisticRegression, Ridge from sklearn.ensemble import RandomForestClassifier from lightgbm.sklearn import LGBMClassifier from xgboost import XGBClassifier from catboost import CatBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import VotingClassifier from sklearn.metrics import ( classification_report, roc_curve, RocCurveDisplay, roc_auc_score ) import shap from pylyrics import clean_text as ct # In[2]: def mean_std_cross_val_scores(model, X_train, y_train, **kwargs): """ Returns mean and std of cross validation Parameters ---------- model : scikit-learn model X_train : numpy array or pandas DataFrame X in the training data y_train : y in the training data Returns ---------- pandas Series with mean scores from cross_validation """ scores = cross_validate(model, X_train, y_train, **kwargs) mean_scores = pd.DataFrame(scores).mean() std_scores = pd.DataFrame(scores).std() out_col = [] for i in range(len(mean_scores)): out_col.append((f"%0.3f (+/- %0.3f)" % (mean_scores[i], std_scores[i]))) return
pd.Series(data=out_col, index=mean_scores.index)
pandas.Series
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2017-2019 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # <NAME> - http://herve.niderb.fr """ Evaluation Usage: pyannote-metrics.py detection [--subset=<subset> --collar=<seconds> --skip-overlap] <database.task.protocol> <hypothesis.rttm> pyannote-metrics.py segmentation [--subset=<subset> --tolerance=<seconds>] <database.task.protocol> <hypothesis.rttm> pyannote-metrics.py diarization [--subset=<subset> --greedy --collar=<seconds> --skip-overlap] <database.task.protocol> <hypothesis.rttm> pyannote-metrics.py identification [--subset=<subset> --collar=<seconds> --skip-overlap] <database.task.protocol> <hypothesis.rttm> pyannote-metrics.py spotting [--subset=<subset> --latency=<seconds>... --filter=<expression>...] <database.task.protocol> <hypothesis.json> pyannote-metrics.py -h | --help pyannote-metrics.py --version Options: <database.task.protocol> Set evaluation protocol (e.g. "Etape.SpeakerDiarization.TV") --subset=<subset> Evaluated subset (train|developement|test) [default: test] --collar=<seconds> Collar, in seconds [default: 0.0]. --skip-overlap Do not evaluate overlap regions. --tolerance=<seconds> Tolerance, in seconds [default: 0.5]. --greedy Use greedy diarization error rate. --latency=<seconds> Evaluate with fixed latency. --filter=<expression> Filter out target trials that do not match the expression; e.g. use --filter="speech>10" to skip target trials with less than 10s of speech from the target. -h --help Show this screen. --version Show version. All modes but "spotting" expect hypothesis using the RTTM file format. RTTM files contain one line per speech turn, using the following convention: SPEAKER {uri} 1 {start_time} {duration} <NA> <NA> {speaker_id} <NA> <NA> * uri: file identifier (as given by pyannote.database protocols) * start_time: speech turn start time in seconds * duration: speech turn duration in seconds * speaker_id: speaker identifier "spotting" mode expects hypothesis using the following JSON file format. It should contain a list of trial hypothesis, using the same trial order as pyannote.database speaker spotting protocols (e.g. protocol.test_trial()) [ {'uri': '<uri>', 'model_id': '<model_id>', 'scores': [[<t1>, <v1>], [<t2>, <v2>], ... [<tn>, <vn>]]}, {'uri': '<uri>', 'model_id': '<model_id>', 'scores': [[<t1>, <v1>], [<t2>, <v2>], ... [<tn>, <vn>]]}, {'uri': '<uri>', 'model_id': '<model_id>', 'scores': [[<t1>, <v1>], [<t2>, <v2>], ... [<tn>, <vn>]]}, ... {'uri': '<uri>', 'model_id': '<model_id>', 'scores': [[<t1>, <v1>], [<t2>, <v2>], ... [<tn>, <vn>]]}, ] * uri: file identifier (as given by pyannote.database protocols) * model_id: target identifier (as given by pyannote.database protocols) * [ti, vi]: [time, value] pair indicating that the system has output the score vi at time ti (e.g. [10.2, 0.2] means that the system gave a score of 0.2 at time 10.2s). Calling "spotting" mode will create a bunch of files. * <hypothesis.det.txt> contains DET curve using the following raw file format: <threshold> <fpr> <fnr> * <hypothesis.lcy.txt> contains latency curves using this format: <threshold> <fpr> <fnr> <speaker_latency> <absolute_latency> """ # command line parsing from docopt import docopt import sys import json import warnings import functools import numpy as np import pandas as pd from tabulate import tabulate # import multiprocessing as mp from pyannote.core import Annotation from pyannote.database.util import load_rttm # evaluation protocols from pyannote.database import get_protocol from pyannote.database.util import get_annotated from pyannote.metrics.detection import DetectionErrorRate from pyannote.metrics.detection import DetectionAccuracy from pyannote.metrics.detection import DetectionRecall from pyannote.metrics.detection import DetectionPrecision from pyannote.metrics.segmentation import SegmentationPurity from pyannote.metrics.segmentation import SegmentationCoverage from pyannote.metrics.segmentation import SegmentationPrecision from pyannote.metrics.segmentation import SegmentationRecall from pyannote.metrics.diarization import GreedyDiarizationErrorRate from pyannote.metrics.diarization import DiarizationErrorRate from pyannote.metrics.diarization import DiarizationPurity from pyannote.metrics.diarization import DiarizationCoverage from pyannote.metrics.identification import IdentificationErrorRate from pyannote.metrics.identification import IdentificationPrecision from pyannote.metrics.identification import IdentificationRecall from pyannote.metrics.spotting import LowLatencySpeakerSpotting showwarning_orig = warnings.showwarning def showwarning(message, category, *args, **kwargs): import sys print(category.__name__ + ':', str(message)) warnings.showwarning = showwarning def get_hypothesis(hypotheses, current_file): """Get hypothesis for given file Parameters ---------- hypotheses : `dict` Speaker diarization hypothesis provided by `load_rttm`. current_file : `dict` File description as given by pyannote.database protocols. Returns ------- hypothesis : `pyannote.core.Annotation` Hypothesis corresponding to `current_file`. """ uri = current_file['uri'] if uri in hypotheses: return hypotheses[uri] # if the exact 'uri' is not available in hypothesis, # look for matching substring tmp_uri = [u for u in hypotheses if u in uri] # no matching speech turns. return empty annotation if len(tmp_uri) == 0: msg = f'Could not find hypothesis for file "{uri}"; assuming empty file.' warnings.warn(msg) return Annotation(uri=uri, modality='speaker') # exactly one matching file. return it if len(tmp_uri) == 1: hypothesis = hypotheses[tmp_uri[0]] hypothesis.uri = uri return hypothesis # more that one matching file. error. msg = f'Found too many hypotheses matching file "{uri}" ({uris}).' raise ValueError(msg.format(uri=uri, uris=tmp_uri)) def process_one(item, hypotheses=None, metrics=None): reference = item['annotation'] hypothesis = get_hypothesis(hypotheses, item) uem = get_annotated(item) return {key: metric(reference, hypothesis, uem=uem) for key, metric in metrics.items()} def get_reports(protocol, subset, hypotheses, metrics): process = functools.partial(process_one, hypotheses=hypotheses, metrics=metrics) # get items and their number progress = protocol.progress protocol.progress = False items = list(getattr(protocol, subset)()) protocol.progress = progress n_items = len(items) for item in items: process(item) # HB. 2018-02-05: parallel processing was removed because it is not clear # how to handle the case where the same 'uri' is processed several times # in a possibly different order for each sub-metric... # # heuristic to estimate the optimal number of processes # chunksize = 20 # processes = max(1, min(mp.cpu_count(), n_items // chunksize)) # pool = mp.Pool(processes) # _ = pool.map(process, items, chunksize=chunksize) return {key: metric.report(display=False) for key, metric in metrics.items()} def reindex(report): """Reindex report so that 'TOTAL' is the last row""" index = list(report.index) i = index.index('TOTAL') return report.reindex(index[:i] + index[i+1:] + ['TOTAL']) def detection(protocol, subset, hypotheses, collar=0.0, skip_overlap=False): options = {'collar': collar, 'skip_overlap': skip_overlap, 'parallel': True} metrics = { 'error': DetectionErrorRate(**options), 'accuracy': DetectionAccuracy(**options), 'precision': DetectionPrecision(**options), 'recall': DetectionRecall(**options)} reports = get_reports(protocol, subset, hypotheses, metrics) report = metrics['error'].report(display=False) accuracy = metrics['accuracy'].report(display=False) precision = metrics['precision'].report(display=False) recall = metrics['recall'].report(display=False) report['accuracy', '%'] = accuracy[metrics['accuracy'].name, '%'] report['precision', '%'] = precision[metrics['precision'].name, '%'] report['recall', '%'] = recall[metrics['recall'].name, '%'] report = reindex(report) columns = list(report.columns) report = report[[columns[0]] + columns[-3:] + columns[1:-3]] summary = 'Detection (collar = {0:g} ms{1})'.format( 1000*collar, ', no overlap' if skip_overlap else '') headers = [summary] + \ [report.columns[i][0] for i in range(4)] + \ ['%' if c[1] == '%' else c[0] for c in report.columns[4:]] print(tabulate(report, headers=headers, tablefmt="simple", floatfmt=".2f", numalign="decimal", stralign="left", missingval="", showindex="default", disable_numparse=False)) def segmentation(protocol, subset, hypotheses, tolerance=0.5): options = {'tolerance': tolerance, 'parallel': True} metrics = {'coverage': SegmentationCoverage(**options), 'purity': SegmentationPurity(**options), 'precision': SegmentationPrecision(**options), 'recall': SegmentationRecall(**options)} reports = get_reports(protocol, subset, hypotheses, metrics) coverage = metrics['coverage'].report(display=False) purity = metrics['purity'].report(display=False) precision = metrics['precision'].report(display=False) recall = metrics['recall'].report(display=False) coverage = coverage[metrics['coverage'].name] purity = purity[metrics['purity'].name] precision = precision[metrics['precision'].name] recall = recall[metrics['recall'].name] report =
pd.concat([coverage, purity, precision, recall], axis=1)
pandas.concat
#! /usr/bin/env python # -*- coding: utf-8 -*- """Make dataset for the End-to-End model (CSJ corpus). Note that feature extraction depends on transcripts. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from os.path import join, isfile import sys import argparse from tqdm import tqdm import numpy as np import pandas as pd import pickle sys.path.append('../') from csj.path import Path from csj.input_data import read_audio from csj.labels.transcript import read_sdb from utils.util import mkdir_join from utils.inputs.wav_split import split_wav from utils.dataset import add_element parser = argparse.ArgumentParser() parser.add_argument('--data_path', type=str, help='path to CSJ dataset') parser.add_argument('--dataset_save_path', type=str, help='path to save dataset') parser.add_argument('--feature_save_path', type=str, help='path to save input features') parser.add_argument('--wav_save_path', type=str, help='path to save wav files (per utterance)') parser.add_argument('--tool', type=str, choices=['htk', 'python_speech_features', 'librosa']) parser.add_argument('--htk_save_path', type=str, help='path to save features') parser.add_argument('--normalize', type=str, choices=['global', 'speaker', 'utterance', 'no']) parser.add_argument('--save_format', type=str, choices=['numpy', 'htk', 'wav']) parser.add_argument('--feature_type', type=str, choices=['fbank', 'mfcc']) parser.add_argument('--channels', type=int, help='the number of frequency channels') parser.add_argument('--window', type=float, help='window width to extract features') parser.add_argument('--slide', type=float, help='extract features per slide') parser.add_argument('--energy', type=int, help='if 1, add the energy feature') parser.add_argument('--delta', type=int, help='if 1, add the energy feature') parser.add_argument('--deltadelta', type=int, help='if 1, double delta features are also extracted') parser.add_argument('--subset', type=int, help='If True, create small dataset.') parser.add_argument('--fullset', type=int, help='If True, create full-size dataset.') args = parser.parse_args() path = Path(data_path=args.data_path, config_path='./config', htk_save_path=args.htk_save_path) CONFIG = { 'feature_type': args.feature_type, 'channels': args.channels, 'sampling_rate': 16000, 'window': args.window, 'slide': args.slide, 'energy': bool(args.energy), 'delta': bool(args.delta), 'deltadelta': bool(args.deltadelta) } if args.save_format == 'htk': assert args.tool == 'htk' def main(data_size): speaker_dict_dict = {} # dict of speaker_dict for data_type in ['train', 'eval1', 'eval2', 'eval3']: print('=' * 50) print(' ' * 20 + data_type + ' (' + data_size + ')' + ' ' * 20) print('=' * 50) ######################################## # labels ######################################## if data_type == 'train': label_paths = path.trans(data_type='train_' + data_size) else: label_paths = path.trans(data_type=data_type) save_vocab_file = True if data_type == 'train' else False is_test = True if 'eval' in data_type else False print('=> Processing transcripts...') speaker_dict_dict[data_type] = read_sdb( label_paths=label_paths, data_size=data_size, vocab_file_save_path=mkdir_join('./config', 'vocab_files'), save_vocab_file=save_vocab_file, is_test=is_test, data_type=data_type) ######################################## # inputs ######################################## print('\n=> Processing input data...') input_save_path = mkdir_join( args.feature_save_path, args.save_format, data_size) if isfile(join(input_save_path, data_type, 'complete.txt')): print('Already exists.') else: if args.save_format == 'wav': ######################################## # Split WAV files per utterance ######################################## if data_type == 'train': wav_paths = path.wav(corpus='train' + data_size) else: wav_paths = path.wav(corpus=data_type) split_wav(wav_paths=wav_paths, speaker_dict=speaker_dict_dict[data_type], save_path=mkdir_join(input_save_path, data_type)) # NOTE: ex.) save_path: # csj/feature/save_format/data_size/data_type/speaker/utt_name.npy elif args.save_format in ['numpy', 'htk']: if data_type == 'train': if args.tool == 'htk': audio_paths = path.htk(data_type='train_' + data_size) else: audio_paths = path.wav(data_type='train_' + data_size) is_training = True global_mean_male, global_std_male, global_mean_female, global_std_female = None, None, None, None else: if args.tool == 'htk': audio_paths = path.htk(data_type=data_type) else: audio_paths = path.wav(data_type=data_type) is_training = False # Load statistics over train dataset global_mean_male = np.load( join(input_save_path, 'train/global_mean_male.npy')) global_std_male = np.load( join(input_save_path, 'train/global_std_male.npy')) global_mean_female = np.load( join(input_save_path, 'train/global_mean_female.npy')) global_std_female = np.load( join(input_save_path, 'train/global_std_female.npy')) read_audio(audio_paths=audio_paths, speaker_dict=speaker_dict_dict[data_type], tool=args.tool, config=CONFIG, normalize=args.normalize, is_training=is_training, save_path=mkdir_join(input_save_path, data_type), save_format=args.save_format, global_mean_male=global_mean_male, global_std_male=global_std_male, global_mean_female=global_mean_female, global_std_female=global_std_female) # NOTE: ex.) save_path: # csj/feature/save_format/data_size/data_type/speaker/*.npy # Make a confirmation file to prove that dataset was saved # correctly with open(join(input_save_path, data_type, 'complete.txt'), 'w') as f: f.write('') ######################################## # dataset (csv) ######################################## print('\n=> Saving dataset files...') dataset_save_path = mkdir_join( args.dataset_save_path, args.save_format, data_size, data_type) df_columns = ['frame_num', 'input_path', 'transcript'] df_kanji = pd.DataFrame([], columns=df_columns) df_kanji_divide = pd.DataFrame([], columns=df_columns) df_kana = pd.DataFrame([], columns=df_columns) df_kana_divide = pd.DataFrame([], columns=df_columns) df_phone = pd.DataFrame([], columns=df_columns) df_phone_divide = pd.DataFrame([], columns=df_columns) df_word_freq1 = pd.DataFrame([], columns=df_columns) df_word_freq5 = pd.DataFrame([], columns=df_columns) df_word_freq10 = pd.DataFrame([], columns=df_columns) df_word_freq15 = pd.DataFrame([], columns=df_columns) with open(join(input_save_path, data_type, 'frame_num.pickle'), 'rb') as f: frame_num_dict = pickle.load(f) utt_count = 0 df_kanji_list, df_kanji_divide_list = [], [] df_kana_list, df_kana_divide_list = [], [] df_phone_list, df_phone_divide_list = [], [] df_word_freq1_list, df_word_freq5_list = [], [] df_word_freq10_list, df_word_freq15_list = [], [] speaker_dict = speaker_dict_dict[data_type] for speaker, utt_dict in tqdm(speaker_dict.items()): for utt_index, utt_info in utt_dict.items(): kanji_indices, kanji_divide_indices = utt_info[2:4] kana_indices, kana_divide_indices = utt_info[4:6] phone_indices, phone_divide_indices = utt_info[6:8] word_freq1_indices, word_freq5_indices = utt_info[8:10] word_freq10_indices, word_freq15_indices = utt_info[10:12] if args.save_format == 'numpy': input_utt_save_path = join( input_save_path, data_type, speaker, speaker + '_' + utt_index + '.npy') elif args.save_format == 'htk': input_utt_save_path = join( input_save_path, data_type, speaker, speaker + '_' + utt_index + '.htk') elif args.save_format == 'wav': input_utt_save_path = path.utt2wav(utt_index) else: raise ValueError('save_format is numpy or htk or wav.') assert isfile(input_utt_save_path) frame_num = frame_num_dict[speaker + '_' + utt_index] df_kanji = add_element( df_kanji, [frame_num, input_utt_save_path, kanji_indices]) df_kanji_divide = add_element( df_kanji_divide, [frame_num, input_utt_save_path, kanji_divide_indices]) df_kana = add_element( df_kana, [frame_num, input_utt_save_path, kana_indices]) df_kana_divide = add_element( df_kana_divide, [frame_num, input_utt_save_path, kana_divide_indices]) df_phone = add_element( df_phone, [frame_num, input_utt_save_path, phone_indices]) df_phone_divide = add_element( df_phone_divide, [frame_num, input_utt_save_path, phone_divide_indices]) df_word_freq1 = add_element( df_word_freq1, [frame_num, input_utt_save_path, word_freq1_indices]) df_word_freq5 = add_element( df_word_freq5, [frame_num, input_utt_save_path, word_freq5_indices]) df_word_freq10 = add_element( df_word_freq10, [frame_num, input_utt_save_path, word_freq10_indices]) df_word_freq15 = add_element( df_word_freq15, [frame_num, input_utt_save_path, word_freq15_indices]) utt_count += 1 # Reset if utt_count == 10000: df_kanji_list.append(df_kanji) df_kanji_divide_list.append(df_kanji_divide) df_kana_list.append(df_kana) df_kana_divide_list.append(df_kana_divide) df_phone_list.append(df_phone) df_phone_divide_list.append(df_phone_divide) df_word_freq1_list.append(df_word_freq1) df_word_freq5_list.append(df_word_freq5) df_word_freq10_list.append(df_word_freq10) df_word_freq15_list.append(df_word_freq15) df_kanji = pd.DataFrame([], columns=df_columns) df_kanji_divide = pd.DataFrame([], columns=df_columns) df_kana = pd.DataFrame([], columns=df_columns) df_kana_divide = pd.DataFrame([], columns=df_columns) df_phone = pd.DataFrame([], columns=df_columns) df_phone_divide = pd.DataFrame([], columns=df_columns) df_word_freq1 = pd.DataFrame([], columns=df_columns) df_word_freq5 = pd.DataFrame([], columns=df_columns) df_word_freq10 = pd.DataFrame([], columns=df_columns) df_word_freq15 = pd.DataFrame([], columns=df_columns) utt_count = 0 # Last dataframe df_kanji_list.append(df_kanji) df_kanji_divide_list.append(df_kanji_divide) df_kana_list.append(df_kana) df_kana_divide_list.append(df_kana_divide) df_phone_list.append(df_phone) df_phone_divide_list.append(df_phone_divide) df_word_freq1_list.append(df_word_freq1) df_word_freq5_list.append(df_word_freq5) df_word_freq10_list.append(df_word_freq10) df_word_freq15_list.append(df_word_freq15) # Concatenate all dataframes df_kanji = df_kanji_list[0] df_kanji_divide = df_kanji_divide_list[0] df_kana = df_kana_list[0] df_kana_divide = df_kana_divide_list[0] df_phone = df_phone_list[0] df_phone_divide = df_phone_divide_list[0] df_word_freq1 = df_word_freq1_list[0] df_word_freq5 = df_word_freq5_list[0] df_word_freq10 = df_word_freq10_list[0] df_word_freq15 = df_word_freq15_list[0] for df_i in df_kanji_list[1:]: df_kanji =
pd.concat([df_kanji, df_i], axis=0)
pandas.concat
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.exceptions import ConvergenceWarning from glob import glob from multiprocessing import Pool import sys, getopt, warnings, traceback import pandas as pd import numpy as np import re warnings.filterwarnings('error') def classify(X, ys, label, outpath): y = ys[label].dropna().astype(bool) common_subjs = X.index.intersection(y.index) X_label = X.loc[common_subjs] y = y.loc[common_subjs] X_monkey = X_label.sample(frac=1) X_monkey.index = X_label.index X_monkey[['age', 'gender']] = X_label[['age', 'gender']] features = X_label.columns.drop(['age', 'gender']) all_preds = pd.DataFrame() weights_mine = [] weights_monkey = [] for fold in range(20): try: X_train, X_test, y_train, y_test = train_test_split(X_label, y) preds = pd.DataFrame() preds['truth'] = y_test preds['gender'] = X_test['gender'] preds['age'] = X_test['age'] preds['monkey'] = 'NA' preds['my_preds'] = 'NA' preds['fold'] = fold preds['warning'] = None preds['my_preds_prob'] = None preds['monkey_prob'] = None clf_mine = LogisticRegression(solver='lbfgs', max_iter=5000) clf_monkey = LogisticRegression(solver='lbfgs', max_iter=5000) clf_mine.fit(X_train, y_train) clf_monkey.fit(X_monkey.loc[X_train.index], y_train) preds['my_preds'] = clf_mine.predict(X_test) preds['monkey'] = clf_monkey.predict(X_test) preds['my_preds_prob'] = clf_mine.predict_proba(X_test)[:,0] preds['monkey_prob'] = clf_monkey.predict_proba(X_test)[:,0] all_preds = pd.concat([all_preds, preds]) weights_monkey.append(clf_monkey.coef_[0]) weights_mine.append(clf_mine.coef_[0]) except ConvergenceWarning: preds['warning'] = 'ConvergenceWarning' all_preds = pd.concat([all_preds, preds]) label = label.replace('/', '_') all_preds.to_csv('%s/%s.tsv' % (outpath, label), sep='\t') pd.DataFrame(weights_mine).to_csv('%s/%s_weights_mine.csv' % (outpath, label)) pd.DataFrame(weights_monkey).to_csv('%s/%s_weights_monkey.csv' % (outpath, label)) def process(X, ys, label, outpath): try: n_preds = classify(X, ys, label, outpath) except Exception as e: label = label.replace('/', '') f = open('%s/exceptions_%s.txt' % (outpath, label), 'w') print(str(e)+'\n') f.write(str(label)+'\n') f.write(str(e)+'\n') f.write(traceback.format_exc()) f.close() def main(argv): features, labels, outpath = '', '', '' try: opts, args = getopt.getopt(argv,"h:x:y:o:",\ ["features=","labels=","outpath="]) except getopt.GetoptError: print('classify.py -x <featuresfile> -y <labelsfile> -o <outputspath>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('classify.py -x <featuresfile> -y <labelsfile> -o <outputspath>') sys.exit() elif opt in ("-x", "--features"): features = arg elif opt in ("-y", "--labels"): labels = arg elif opt in ("-o", "--outpath"): outpath = arg print('Features file is ', features) print('Labels file is ', labels) print('Output file is ', outpath) X = pd.read_csv(features, index_col=0) ys =
pd.read_csv(labels, index_col=0)
pandas.read_csv
from ontobio.io import assocparser, gpadparser from ontobio import ecomap import click import pandas as pd import datetime from ontobio.io import qc from ontobio.io.assocparser import Report from ontobio.model.association import GoAssociation from ontobio.model import collections from typing import List import warnings from pandas.core.common import SettingWithCopyWarning warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) @click.command() @click.option("--file1", "-file1", type=click.Path(), required=True, help='file1 is the source file.') @click.option("--file2", "-file2", type=click.Path(), required=True, help='file2 is the file that is the result of a transformation, or the target file.') @click.option("--output", "-o", type=click.STRING, required=True, help='the name of the prefix for all files generated by this tool.') @click.option("--group_by_column", "-gb", type=click.Choice(['evidence_code', 'subject', 'object']), multiple=True, required=False, help='Options to group by include: subject, object, and/or evidence_code.') @click.option("--restrict_to_decreases", "-rtd", type=click.BOOL, required=False, help='Only report group by results when the second file shows a decrease in number by grouping column') def compare_files(file1, file2, output, group_by_column, restrict_to_decreases): """ Method to compare two GPAD or GAF files and report differences on a file level and via converting file-based rows to GoAssociation objects. :param file1: Name of the source file to compare :type file1: str :param file2: Name of the target/second file to compare :type file2: str :param output: The prefix that will be appended to all the output files/reports created by this script. :type output: str :param group_by_column: Name of the target/second file to compare :type group_by_column: List :param restrict_to_decreases: An optional boolean flag that allows the grouping column counts to be returned only if they show a decrease in number beteween file1 and file2 :type restrict_to_decreases: bool """ pd.set_option('display.max_rows', 35000) df_file1, df_file2, assocs1, assocs2 = get_parser(file1, file2) generate_count_report(df_file1, df_file2, file1, file2, output) compare_associations(assocs1, assocs2, output, file1, file2) generate_group_report(df_file1, df_file2, group_by_column, file1, file2, restrict_to_decreases, output) def generate_count_report(df_file1, df_file2, file1, file2, output): """ Method to generate a report of the number of distinct values of each of the columns in a GAF or GPAD file. Currently restricted to the following columns: subject, qualifiers, object, evidence_code and reference. Uses pandas internal functions like merge and nunique to count and display metrics. :param df_file1: data frame representing a normalized columnar represenation of file1 :type df_file1: pd :param df_file2: data frame representing a normalized columnar represenation of file2 :type df_file2: pd :param file1: The file name of the file provided in the click for reporting purposes. :type file1: str :param file2: The file name of the file provided in the click for reporting purposes. :type file2: str :param output: Prefix of the reported files for reporting purposes. :type output: str """ file1_groups, counts_frame1 = get_column_count(df_file1, file1) file2_groups, counts_frame2 = get_column_count(df_file2, file2) merged_frame =
pd.concat([counts_frame1, counts_frame2], axis=1)
pandas.concat
# encoding: utf-8 # copyright: GeoDS Lab, University of Wisconsin-Madison # authors: <NAME>, <NAME>, <NAME> import requests import os import pandas as pd import numpy as np import argparse parser = argparse.ArgumentParser(description='Start month, start day, and output_folder are necessary') parser.add_argument('--start_year', type=str, required=True, help='Start year') parser.add_argument('--start_month', type=str, required=True, help='Start month') parser.add_argument('--start_day', type=str, required=True, help='Start day') parser.add_argument('--end_year', type=str, help='End year') parser.add_argument('--end_month', type=str, help='End month') parser.add_argument('--end_day', type=str, help='End day') parser.add_argument('--output_folder', type=str, required=True, help='Output folder: ./') parser.add_argument('--ct', action = 'store_true', help='ct2ct') parser.add_argument('--county', action = 'store_true', help='county2county') parser.add_argument('--state', action = 'store_true', help='state2state') args = parser.parse_args() start_year = str(args.start_year).zfill(4) start_month = str(args.start_month).zfill(2) start_day = str(args.start_day).zfill(2) output_folder = args.output_folder if args.end_year == None: end_year = str(args.start_year).zfill(4) else: end_year = str(args.end_year).zfill(4) if args.end_month == None: end_month = str(args.start_month).zfill(2) else: end_month = str(args.end_month).zfill(2) if args.end_day == None: end_day = str(args.start_day).zfill(2) else: end_day = str(args.end_day).zfill(2) # Download files of one day def download_file(scale, year, month, day, output_folder): try: if os.path.exists(f"{output_folder}/") == False: os.mkdir(f"{output_folder}/") if os.path.exists(f"{output_folder}/{scale}/") == False: os.mkdir(f"{output_folder}/{scale}/") if scale == "ct2ct": if os.path.exists(f"{output_folder}/{scale}/{year}_{month}_{day}/") == False: os.mkdir(f"{output_folder}/{scale}/{year}_{month}_{day}/") except Exception as e: print(e) print("There is no output folder. Please create the output folder first!") try: if scale == "ct2ct": for i in range(20): if year == "2019": if (month == "01") or (month == "02") or (month == "03") or (month == "04"): repo = "DailyFlows-Ct2019-1" elif (month == "05") or (month == "06") or (month == "07") or (month == "08"): repo = "DailyFlows-Ct2019-2" elif (month == "09") or (month == "10") or (month == "11") or (month == "12"): repo = "DailyFlows-Ct2019-3" elif year == "2020": if (month == "01") or (month == "02") or (month == "03") or (month == "04"): repo = "DailyFlows-Ct2020-1" elif (month == "05") or (month == "06") or (month == "07") or (month == "08"): repo = "DailyFlows-Ct2020-2" elif (month == "09") or (month == "10") or (month == "11") or (month == "12"): repo = "DailyFlows-Ct2020-3" elif year == "2021": repo = "DailyFlows-Ct2021" r = requests.get(url=f"https://raw.githubusercontent.com/GeoDS/COVID19USFlows-{repo}/master/daily_flows/{scale}/{year}_{month}_{day}/daily_{scale}_{year}_{month}_{day}_{i}.csv") with open(f"{output_folder}/{scale}/{year}_{month}_{day}/daily_{scale}_{year}_{month}_{day}_{i}.csv", 'wb') as file: file.write(r.content) else: r = requests.get(url=f"https://raw.githubusercontent.com/GeoDS/COVID19USFlows-DailyFlows/master/daily_flows/{scale}/daily_{scale}_{year}_{month}_{day}.csv") with open(f"{output_folder}/{scale}/daily_{scale}_{year}_{month}_{day}.csv", 'wb') as file: file.write(r.content) return True except Exception as e: print(e) return False # Create time series dataframe time_df = pd.date_range(start=f'{start_year}-{start_month}-{start_day}', end=f'{end_year}-{end_month}-{end_day}') time_df =
pd.DataFrame(time_df, columns=["date"])
pandas.DataFrame
from abc import ABC, abstractproperty from collections import namedtuple import numpy as np import pandas as pd from loguru import logger #from helpers import persist_model @logger.catch def persist_model(name,clf=None, method='load'): 'Pass in the file name, object to be saved or loaded' import dill if method == 'load': with open(name,'rb') as f: return dill.load(f) elif method == 'save': logger.info(f'[+] Persisting {name} ...') if clf is None: raise ValueError('Pass Model/Pipeline/Transformation') with open(name,'wb') as f: dill.dump(clf,f) logger.info(f'[+] Persistence Complete. Model {name} is saved') else: raise ValeuError('Wrong arguments') MODEL_PATH='hisia/models/base_model.pkl' pre_load_model = persist_model(MODEL_PATH, method='load') Sentiment = namedtuple('Sentiment', ['sentiment','positive_probability', 'negative_probability']) class HisiaLoad(ABC): def __init__(self, model_path=None): if model_path is None: self.model = pre_load_model else: self.model = persist_model(model_path, method='load') def __repr__(self): return f'{self.__class__.__name__}(Model=Logistic Regression)' @abstractproperty def sentiment(self): pass class Hisia(HisiaLoad): def __init__(self, text, model_path=None): super().__init__(model_path) self.text = text self.sentiment def __repr__(self): return (f'Sentiment(sentiment={self.sentiment.sentiment}, ' f'positive_probability={self.sentiment.positive_probability}, ' f'negative_probability={self.sentiment.negative_probability})') @property def sentiment(self): if isinstance(self.text, str): self.X = [self.text] else: self.X = self.text response = self.model.predict_proba(self.X) response = pd.DataFrame(response) response.columns = ['negative_probability','positive_probability'] response['sentiment'] = np.where(response['negative_probability'] > .5, 'negative', 'positive') self.results = Sentiment(**response.round(3).to_dict(orient='index')[0]) return self.results @property def explain(self): feature_names = self.model.named_steps['count_verctorizer'].get_feature_names() best_features = [feature_names[i] for i in \ self.model.named_steps['feature_selector'].get_support(indices=True)] coefficients = self.model.named_steps['logistic_regression'].coef_[0] index_range = range(len(best_features)) look_table = {index:(token,coef) for index, coef, token in zip(index_range, coefficients, best_features)} v = self.model.named_steps['count_verctorizer'].transform(self.X) v = self.model.named_steps['feature_selector'].transform(v) v =
pd.DataFrame.sparse.from_spmatrix(v)
pandas.DataFrame.sparse.from_spmatrix
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-05'), 'CLF5')]) rets = pd.Series([0.02, -0.03, 0.06, 0.05], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights2) def test_to_notional_empty(): instrs = pd.Series() prices = pd.Series() multipliers = pd.Series() res_exp = pd.Series() res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_same_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_extra_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2, 13.1], index=['CLZ6', 'COZ6', 'GCZ6', 'extra']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_missing_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, pd.np.NaN], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_different_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) res_exp = pd.Series([-30.20, 2 * 30.5 / 1.32, 10.2 * 0.8], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) assert_series_equal(res, res_exp) def test_to_notional_duplicates(): instrs = pd.Series([1, 1], index=['A', 'A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37, 200.37], index=['A', 'A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100, 100], index=['A', 'A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD', 'USD'], index=['A', 'A']) fx_rate = pd.Series([1.32], index=['USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD'], index=['A']) fx_rate = pd.Series([1.32, 1.32], index=['USDCAD', 'USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) def test_to_notional_bad_fx(): instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) instr_fx = pd.Series(['JPY'], index=['A']) fx_rates = pd.Series([1.32], index=['GBPCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) def test_to_contracts_rounder(): prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) multipliers = pd.Series([1, 1], index=['CLZ6', 'COZ6']) # 30.19 / 30.20 is slightly less than 1 so will round to 0 notional = pd.Series([30.19, 2 * 30.5], index=['CLZ6', 'COZ6']) res = util.to_contracts(notional, prices, multipliers, rounder=pd.np.floor) res_exp = pd.Series([0, 2], index=['CLZ6', 'COZ6']) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier(): notionals = pd.Series([-30.20, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier_rounding(): # won't work out to integer number of contracts so this tests rounding notionals = pd.Series([-30.21, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_trade_with_zero_amount(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, 0], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) + 0 * 0.5 / (50.41*100) - 1, # 0 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 19], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_trade_all_zero_amount_return_empty(): wts = pd.DataFrame([1], index=["CLX16"], columns=[0]) desired_holdings = pd.Series([13], index=[0]) current_contracts = 0 prices = pd.Series([50.32], index=['CLX16']) multiplier = pd.Series([100], index=['CLX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) exp_trades = pd.Series(dtype="int64") assert_series_equal(trades, exp_trades) def test_trade_one_asset(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_multi_asset(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=["CL0", "CL1"]) wts2 = pd.DataFrame([1], index=["COX16"], columns=["CO0"]) wts = {"CL": wts1, "CO": wts2} desired_holdings = pd.Series([200000, -50000, 100000], index=["CL0", "CL1", "CO0"]) current_contracts = pd.Series([0, 1, 0, 5], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) prices = pd.Series([50.32, 50.41, 50.48, 49.50], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) multiplier = pd.Series([100, 100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, # 100000 * 1 / (49.50*100) - 5, exp_trades = pd.Series([20, 14, -5, 15], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_extra_desired_holdings_without_weights(): wts = pd.DataFrame([0], index=["CLX16"], columns=["CL0"]) desired_holdings = pd.Series([200000, 10000], index=["CL0", "CL1"]) current_contracts = pd.Series([0], index=['CLX16']) prices = pd.Series([50.32], index=['CLX16']) multipliers = pd.Series([1], index=['CLX16']) with pytest.raises(ValueError): util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers) def test_trade_extra_desired_holdings_without_current_contracts(): # this should treat the missing holdings as 0, since this would often # happen when adding new positions without any current holdings wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() # non existent contract holdings result in fill value being a float, # which casts to float64 assert_series_equal(trades, exp_trades, check_dtype=False) def test_trade_extra_weights(): # extra weights should be ignored wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000], index=[0]) current_contracts = pd.Series([0, 2], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41], index=['CLX16', 'CLZ16']) multiplier = pd.Series([100, 100], index=['CLX16', 'CLZ16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 2, exp_trades = pd.Series([20, 18], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_get_multiplier_dataframe_weights(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000], index=["CL"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dict_weights(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) wts2 = pd.DataFrame([0.5, 0.5], index=["COX16", "COZ16"], columns=[0]) wts = {"CL": wts1, "CO": wts2} ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16", "COX16", "COZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dataframe_weights_multiplier_asts_error(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) with pytest.raises(ValueError): util.get_multiplier(wts, ast_mult) def test_weighted_expiration_two_generics(): vals = [[1, 0, 1/2, 1/2, 0, 1, 0], [0, 1, 0, 1/2, 1/2, 0, 1]] idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF15'), (TS('2015-01-03'), 'CLG15'), (TS('2015-01-04'), 'CLF15'), (TS('2015-01-04'), 'CLG15'), (TS('2015-01-04'), 'CLH15'), (TS('2015-01-05'), 'CLG15'), (TS('2015-01-05'), 'CLH15')]) weights = pd.DataFrame({"CL1": vals[0], "CL2": vals[1]}, index=idx) contract_dates = pd.Series([TS('2015-01-20'), TS('2015-02-21'), TS('2015-03-20')], index=['CLF15', 'CLG15', 'CLH15']) wexp = util.weighted_expiration(weights, contract_dates) exp_wexp = pd.DataFrame([[17.0, 49.0], [32.0, 61.5], [47.0, 74.0]], index=[TS('2015-01-03'), TS('2015-01-04'), TS('2015-01-05')], columns=["CL1", "CL2"]) assert_frame_equal(wexp, exp_wexp) def test_flatten(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_dict(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5')]) weights2 = pd.DataFrame(1, index=widx, columns=["CO1"]) weights = {"CL": weights1, "CO": weights2} flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4 + [TS('2015-01-03')]), "contract": (['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2 + ["COF5"]), "generic": ["CL1", "CL2"] * 4 + ["CO1"], "weight": [1, 0, 0, 1, 1, 0, 0, 1, 1], "key": ["CL"] * 8 + ["CO"]} ).loc[:, ["date", "contract", "generic", "weight", "key"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_bad_input(): dummy = 0 with pytest.raises(ValueError): util.flatten(dummy) def test_unflatten(): flat_wts = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] wts = util.unflatten(flat_wts) vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')], names=("date", "contract")) cols = pd.Index(["CL1", "CL2"], name="generic") wts_exp = pd.DataFrame(vals, index=widx, columns=cols) assert_frame_equal(wts, wts_exp) def test_unflatten_dict(): flat_wts = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4 + [TS('2015-01-03')]), "contract": (['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2 + ["COF5"]), "generic": ["CL1", "CL2"] * 4 + ["CO1"], "weight": [1, 0, 0, 1, 1, 0, 0, 1, 1], "key": ["CL"] * 8 + ["CO"]} ).loc[:, ["date", "contract", "generic", "weight", "key"]] wts = util.unflatten(flat_wts) vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')], names=("date", "contract")) cols = pd.Index(["CL1", "CL2"], name="generic") weights1 = pd.DataFrame(vals, index=widx, columns=cols) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5')], names=("date", "contract")) cols = pd.Index(["CO1"], name="generic") weights2 = pd.DataFrame(1, index=widx, columns=cols) wts_exp = {"CL": weights1, "CO": weights2} assert_dict_of_frames(wts, wts_exp) def test_reindex(): # related to https://github.com/matthewgilbert/mapping/issues/11 # no op idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLH5')]) prices = pd.Series([103, 101, 102, 100], index=idx) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLH5')]) new_prices = util.reindex(prices, widx, limit=0) exp_prices = prices assert_series_equal(exp_prices, new_prices) # missing front prices error idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5')]) prices = pd.Series([100], index=idx) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5')]) with pytest.raises(ValueError): util.reindex(prices, widx, 0) # NaN returns introduced and filled idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (
TS('2015-01-04')
pandas.Timestamp
import networkx as nx import pandas as pd def apply(df, prev, curr, prev_type, curr_type): prev_nodes = set(df.dropna(subset=[prev], how="any")[prev].unique()) succ_nodes = set(df.dropna(subset=[curr], how="any")[curr].unique()) all_nodes = prev_nodes.union(succ_nodes) edges = set() df = df.dropna(subset=[prev, curr], how="any") stream = df[[prev, curr, prev_type, curr_type]].to_dict('records') types = {} for el in stream: source = el[prev] target = el[curr] type_source = el[prev_type] type_target = el[curr_type] types[source] = type_source types[target] = type_target if source is not None and target is not None: if str(source).lower() != "nan" and str(target).lower(): edges.add((source, target)) G = nx.DiGraph() for node in all_nodes: G.add_node(node) for edge in edges: G.add_edge(edge[0], edge[1]) return G, types def get_conn_comp(df, prev, curr, prev_type, curr_type, ref_type=""): G, types = apply(df, prev, curr, prev_type, curr_type) conn_comp = nx.connected_components(nx.Graph(G)) list_corresp = [] for index, cc in enumerate(conn_comp): for n2 in cc: this_type = types[n2] if n2 in types else "" list_corresp.append({"node": n2, "type": this_type, "case:concept:name": str(index)}) dataframe = pd.DataFrame(list_corresp).sort_values("node") return dataframe def get_ancestors_successors(df, prev, curr, prev_type, curr_type, ref_type="", all_docs=None): G, types = apply(df, prev, curr, prev_type, curr_type) return get_ancestors_successors_from_graph(G, types, ref_type=ref_type, all_docs=all_docs) def get_ancestors_successors_from_graph(G, types, ref_type="", all_docs=None): list_corresp = [] nodes_ref_type = {x for x,y in types.items() if y == ref_type} index = 0 for node in nodes_ref_type: all_ancestors = set(nx.ancestors(G, node)) all_descendants = set(nx.descendants(G, node)) all_nodes = all_ancestors.union(all_descendants).union({node}) for n2 in all_nodes: new_el = {"node": n2, "type": types[n2], "case:concept:name": str(index)} list_corresp.append(new_el) index = index + 1 if all_docs is not None: all_docs = all_docs.difference(nodes_ref_type) for node in all_docs: new_el = {"node": node, "type": "", "case:concept:name": str(index)} list_corresp.append(new_el) index = index + 1 if list_corresp: dataframe = pd.DataFrame(list_corresp).sort_values("node") else: dataframe =
pd.DataFrame({"node": []})
pandas.DataFrame
import pymongo from pymongo import MongoClient from tkinter import * import time; import datetime import random from tkinter import messagebox import numpy as np import pandas as pd from tkinter import simpledialog #GLOBAL VALUES d_c = [] x = pd.DataFrame() y = pd.DataFrame() X_train = pd.DataFrame() X_test = pd.DataFrame() y_train = pd.DataFrame() y_test = pd.DataFrame() X_poly = pd.DataFrame() y_pred = pd.DataFrame() alldata = pd.DataFrame() radio = [] radio1 = [] Values2 = [] Values1 = [] Values = [] ScaleV = 0 SplitV = 0 size = 0 algs = str(0) answer = str(0) def fourth(): root4 = Tk() root4.overrideredirect(True) root4.geometry("{0}x{1}+0+0".format(root4.winfo_screenwidth(), root4.winfo_screenheight())) root4.title("Store Name") #------------------------------------------------------------------------------------------------------------------------------------------- global y_pred,x,y,X_train, X_test, y_train, y_test,X_poly,ScaleV,SplitV,Yscale,algs,answer,size predictor = StringVar() predicted = StringVar() k = [] tp = [] try: col = list(y.columns) col1 = list(y) for i in range(0,10): for j in col1: k.append(y[j][i]) t = y_pred[i][0] tp.append(round(t,2)) except: print("went wrong") pass #------------------------------------------------------------------------------------------------------------------------------------------- Titlecard = Frame(root4, width = 1280, height = 100, bd = 7, bg = 'dodgerblue', relief = GROOVE) Titlecard.pack(side = 'top', anchor = CENTER, fill = X) rt = time.strftime("%d/%m/%y") body = Frame(root4, width = 1280, height = 600, bd = 9, bg = 'dodgerblue3', relief = FLAT) body.pack(side = 'top',expand = 1 ,fill = BOTH) login = Frame(body, width = 600, height = 400, bd = 7, bg = 'Steelblue2', relief = RAISED) login.pack(side = TOP, anchor = CENTER ,expand = 1, fill = BOTH, ipady = 20,ipadx = 10) loginbtns = Frame(body, width = 700, height = 30, bd = 7, bg = 'Steelblue2', relief = RAISED) loginbtns.pack(side = BOTTOM,anchor = CENTER, fill = X) #------------------------------------------------------------------------------------------------------------------------------------------- def predictor1(): global y_pred,x,y,X_train, X_test, y_train, y_test,X_poly,ScaleV,SplitV,Yscale,algs,answer,size pro = round(float(predictor.get()),2) pru = str(str(pro) + ',') lsp = pru.split(',') prel = lsp[:-1] pre = pd.DataFrame(prel) if len(x) != 0 and len(y) != 0: if SplitV == 1 and ScaleV == 1 : size1 = size yscale = Yscale from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = size1, random_state = 0) from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) if yscale > 0: y_train = sc_X.fit_transform(y_train) y_test = sc_X.transform(y_test) if str(algs) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,np.ravel(y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Multiple Linear Regression": pass elif str(algs) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X_train,y_train) from sklearn.preprocessing import PolynomialFeatures ## answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(X_train) reg2 = LinearRegression() reg2.fit(X_poly, np.ravel(y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Support Vector Regression": ## answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(X_train,np.ravel(y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Decision Tree Regression": ## answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(X_train,np.ravel(y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Random Forest Regression": ## answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(X_train,np.ravel( y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) predicted.set(predicted1) elif SplitV == 1 and ScaleV == 0: size1 = size from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = size1, random_state = 0) if str(algs) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,np.ravel(y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Multiple Linear Regression": pass elif str(algs) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X_train,np.ravel(y_train)) from sklearn.preprocessing import PolynomialFeatures ## answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(X_train) reg2 = LinearRegression() reg2.fit(X_poly,np.ravel( y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Support Vector Regression": ## answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(X_train,np.ravel(y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Decision Tree Regression": ## answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(X_train,np.ravel(y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Random Forest Regression": ## answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(X_train,np.ravel( y_train)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) predicted.set(predicted1) elif SplitV == 0 and ScaleV == 1: yscale1 = Yscale from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() x = sc_X.fit_transform(x) if yscale1 > 0: y = sc_X.fit_transform(y) if str(algs) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x,np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Multiple Linear Regression": pass elif str(algs) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(x,np.ravel(y)) from sklearn.preprocessing import PolynomialFeatures ## answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(x) reg2 = LinearRegression() reg2.fit(X_poly, np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Support Vector Regression": ## answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(x,np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Decision Tree Regression": ## answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(x,np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Random Forest Regression": ## answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(x, np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) predicted.set(predicted1) else: if str(algs) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x,np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Multiple Linear Regression": pass elif str(algs) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(x,np.ravel(y)) from sklearn.preprocessing import PolynomialFeatures ## answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(x) reg2 = LinearRegression() reg2.fit(X_poly, np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Support Vector Regression": ## answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(x,np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Decision Tree Regression": ## answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(x,np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) elif str(algs) == "Random Forest Regression": ## answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(x, np.ravel(y)) y_pred1 = regressor.predict(pre) predicted1 = str(y_pred1) predicted.set(predicted1) def backk(): global y_pred,x,y,X_train, X_test, y_train, y_test,X_poly,ScaleV,SplitV,Yscale,algs,answer,size,tp,k y_pred = pd.DataFrame() X_train = pd.DataFrame() X_test = pd.DataFrame() y_train = pd.DataFrame() y_test = pd.DataFrame() ScaleV = 0 SplitV = 0 size = 0 algs = str(0) answer = str(0) tp = [] k = [] root4.destroy() third() def exiit(): qexit = messagebox.askyesno("GUI","DO YOU WISH TO EXIT") if qexit > 0: root4.destroy() #------------------------------------------------------------------------------------------------------------------------------------------- date1 = Label(Titlecard, text = "DATE:" + rt,relief = GROOVE, width = 17, bd = 7,bg = 'white', fg = 'black',font = ('arial', 15, 'italic')) date1.pack(side = RIGHT, anchor = NW, pady = 15) Title = Label(Titlecard, text = "SHOP NAME", relief = GROOVE, width = 15 , bd = 7, bg = 'dodgerblue4', fg = 'lightSkyblue2', font = ('arial', 20, 'italic')) Title.pack(side = LEFT,pady = 15, ipadx = 35, padx =45) logintitle = Label(login, text = "Predicted values :", relief = FLAT, width = 10 , bd = 6, bg = 'black', fg = 'Steelblue', font = ('arial', 20, 'italic')) logintitle.grid(row = 0, column = 0, columnspan = 3) #------------------------------------------------------------------------------------------------------------------------------------------- Label(login, text = "Predicted values :", relief = FLAT, width = 15 , bd = 6, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = 0, column = 1) Label(login, text = "Dependent values :", relief = FLAT, width = 15 , bd = 6, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = 0, column = 2) Label(login, text = "Enter the value \nto predict :", relief = FLAT, width = 15 , bd = 6, bg = 'Steelblue2', fg = 'Steelblue2', font = ('arial', 20, 'italic')).grid(row = 0, column = 3) Label(login, text = "Enter the value \nto predict :", relief = FLAT, width = 15 , bd = 6, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = 0, column = 4) Entry(login, relief=SUNKEN,font = ('arial', 15, 'italic'), textvariable = predictor, bd = 9, insertwidth = 3).grid(row=1,column=4,pady = 20) Label(login, text = "Predicted value :", relief = FLAT, width = 15 , bd = 6, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = 2, column = 4) Label(login, textvariable = predicted, relief=FLAT,font = ('arial', 15, 'italic'),width = 15 , bd = 6, bg = 'white', fg = 'black').grid(row=3,column=4,pady = 20) btn1 = Button(login, text = "PREDICT",command=predictor1, relief = GROOVE, width = 10 , bd = 5, bg = 'Steelblue2', fg = 'blue2', font = ('arial', 20, 'italic')).grid(row = 1, column = 5) btn1 = Button(loginbtns, text = "BACK" ,command = backk, relief = RAISED, width = 10 , bd = 6, bg = 'Steelblue2', fg = 'blue2', font = ('arial', 20, 'italic')).pack(side =LEFT, anchor = CENTER,expand = 2, fill = X,ipady = 6) btn2 = Button(loginbtns, text = "EXIT",command = exiit, relief = RAISED, width = 10 , bd = 6, bg = 'Steelblue2', fg = 'blue2', font = ('arial', 20, 'italic')).pack(side =LEFT, anchor = CENTER,expand = 2, fill = X,ipady = 6) try: r = 1 for i in range(6): Label(login, text = str(tp[i]), relief = GROOVE, width = 15 , bd = 4, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = r, column = 1) r = r + 1 r = 1 for i in range(6): Label(login, text = str(round(k[i],2)), relief = GROOVE, width = 15 , bd = 4, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = r, column = 2) r = r + 1 except: print("something here went wrong") Label(login, text = "Couldn't\n import \ndata", relief = GROOVE, width = 15 , bd = 4, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = 1, column = 1) Label(login, text = "Couldn't\n import \ndata", relief = GROOVE, width = 15 , bd = 4, bg = 'Steelblue2', fg = 'black', font = ('arial', 20, 'italic')).grid(row = 1, column = 2) pass root4.mainloop() #------------------------------------------------------------------------------------------------------------------------------------------- def third(): root2 = Tk() root2.overrideredirect(True) root2.geometry("{0}x{1}+0+0".format(root2.winfo_screenwidth(), root2.winfo_screenheight())) root2.title("GUI for ML algorithims") #------------------------------------------------------------------------------------------------------------------------------------------- Titlecard = Frame(root2, width = 1280, height = 100, bd = 7, bg = 'blue', relief = GROOVE) Titlecard.pack(side = 'top', anchor = CENTER, fill = X) rt = time.strftime("%d/%m/%y") body = Frame(root2, width = 1280, height = 600, bd = 9, bg = 'dodgerblue3', relief = FLAT) body.pack(side = 'top',expand=1,fill = BOTH) login = Frame(body, width = 1000, height = 600, bd = 7, bg = 'dodgerblue3', relief = RAISED) login.pack(side = TOP,expand=1, anchor = CENTER, fill = BOTH, ipady = 40,ipadx = 10) loginbtns = Frame(body, width = 700, height = 50, bd = 7, bg = 'Steelblue2', relief = RAISED) loginbtns.pack(side = BOTTOM,anchor = CENTER, fill = X) #------------------------------------------------------------------------------------------------------------------------------------------- Scale = IntVar() Split = IntVar() Spsize = StringVar() tkvar = StringVar() #------------------------------------------------------------------------------------------------------------------------------------------- def back(): global d_c,alldata,x,y,radio,radio1,Values,Values1,Values2,X_train, X_test, y_train, y_test,y_pred radio = [] radio1 = [] Values2 = [] Values1 = [] Values = [] X_train = pd.DataFrame() X_test = pd.DataFrame() y_train = pd.DataFrame() y_test = pd.DataFrame() y_pred = pd.DataFrame() root2.destroy() second() def okay(): global x,y,X_train, X_test, y_train, y_test,X_poly,ScaleV,SplitV,Yscale,algs,answer,size,y_pred if len(x) != 0 and len(y) != 0: ScaleV = Scale.get() SplitV = Split.get() algs = str(tkvar.get()) if Split.get() == 1 and Scale.get() == 1 : size = float(Spsize.get()) yscale = messagebox.askyesno("GUI","Do you want to scale dependent variable?") Yscale = yscale from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = size, random_state = 0) from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) if yscale > 0: y_train = sc_X.fit_transform(y_train) y_test = sc_X.transform(y_test) algs = str(tkvar().get) if str(tkvar.get()) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Multiple Linear Regression": pass elif str(tkvar.get()) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X_train,np.ravel(y_train)) from sklearn.preprocessing import PolynomialFeatures answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(X_train) reg2 = LinearRegression() reg2.fit(X_poly, np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Support Vector Regression": answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(X_train,np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Decision Tree Regression": answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(X_train,np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Random Forest Regression": answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(X_train, np.ravel(y_train)) y_pred = regressor.predict(X_test) root2.destroy() fourth() elif Split.get() == 1 and Scale.get() == 0: size = float(Spsize.get()) from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = size, random_state = 0) if str(tkvar.get()) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Multiple Linear Regression": pass elif str(tkvar.get()) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X_train,y_train) from sklearn.preprocessing import PolynomialFeatures answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(X_train) reg2 = LinearRegression() reg2.fit(X_poly, np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Support Vector Regression": answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(X_train,np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Decision Tree Regression": answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(X_train,np.ravel(y_train)) y_pred = regressor.predict(X_test) elif str(tkvar.get()) == "Random Forest Regression": answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(X_train, np.ravel(y_train)) y_pred = regressor.predict(X_test) root2.destroy() fourth() elif Split.get() == 0 and Scale.get() == 1: yscale1 = messagebox.askyesno("GUI","Do you want to scale dependent variable?") Yscale = yscale1 from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() x = sc_X.fit_transform(x) if yscale1 > 0: y = sc_X.fit_transform(y) if str(tkvar.get()) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x,y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Multiple Linear Regression": pass elif str(tkvar.get()) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(x,y) from sklearn.preprocessing import PolynomialFeatures answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(x) reg2 = LinearRegression() reg2.fit(X_poly, y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Support Vector Regression": answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(x,y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Decision Tree Regression": answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(x,y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Random Forest Regression": answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(x, y) y_pred = regressor.predict(x) root2.destroy() fourth() else: if str(tkvar.get()) == "Simple Linear Regression": from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x,y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Multiple Linear Regression": pass elif str(tkvar.get()) == "Polynomial Regression": from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(x,y) from sklearn.preprocessing import PolynomialFeatures answer = simpledialog.askstring("GUI", ["Degree:"]) poly_reg = PolynomialFeatures(degree = int(answer)) X_poly = poly_reg.fit_transform(x) reg2 = LinearRegression() reg2.fit(X_poly, y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Support Vector Regression": answer = simpledialog.askstring("GUI", ["Kernel:"]) from sklearn.svm import SVR regressor = SVR(kernel = answer) regressor.fit(x,y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Decision Tree Regression": answer = simpledialog.askstring("GUI", ["Random state:"]) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = int(answer)) regressor.fit(x,y) y_pred = regressor.predict(x) elif str(tkvar.get()) == "Random Forest Regression": answer = simpledialog.askstring("GUI", ["n_estimators:"]) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = int(answer), random_state = 0) regressor.fit(x, y) y_pred = regressor.predict(x) root2.destroy() fourth() #------------------------------------------------------------------------------------------------------------------------------------------- date1 = Label(Titlecard, text = "DATE:" + rt,relief = GROOVE, width = 17, bd = 7,bg = 'white', fg = 'black',font = ('arial', 15, 'italic')) date1.pack(side = RIGHT, anchor = NW, pady = 15) Title = Label(Titlecard, text = "GUI for ML algorithims", relief = GROOVE, width = 15 , bd = 7, bg = 'dodgerblue4', fg = 'lightSkyblue2', font = ('arial', 20, 'italic')) Title.pack(side = LEFT,pady = 15, ipadx = 35, padx =45) #dummy Label(login, text="Do you wish to scale the datas? ", relief=FLAT,width=20, bd = 4, fg = 'dodgerblue3',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=0,column=0,padx = 25, pady = 15,ipady = 2) #dummy Label(login, text="Do you wish to scale the datas? ", relief=FLAT,width=20, bd = 4, fg = 'dodgerblue3',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=1,column=0,padx = 25, pady = 15,ipady = 2) #heading Label(login, text="Do you wish to scale the datas? ", relief=FLAT,width=25, bd = 4, fg = 'black',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=1,column=0,padx = 25, pady = 15,ipady = 2) #dummy Label(login, text="Do you wish to scale the datas? ", relief=FLAT,width=20, bd = 4, fg = 'dodgerblue3',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=1,column=2,padx = 25, pady = 15,ipady = 2) #dummy Label(login, text="Do you wish to scale the datas? ", relief=FLAT,width=20, bd = 4, fg = 'dodgerblue3',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=3,column=2,padx = 25, pady = 15,ipady = 2) Radiobutton(login, text = "YES",value = 1,variable=Scale,indicatoron=0 ,bg = 'steelblue',font = ('arial', 15, 'bold')).grid(row = 2,column = 0,padx =5, ipadx =15) Radiobutton(login, text = "NO",value = 2,variable=Scale,indicatoron=0 ,bg = 'steelblue',font = ('arial', 15, 'bold')).grid(row = 4,column = 0,padx =5, ipadx =15) #heading Label(login, text="Do you wish to split the data? ", relief=FLAT,width=25, bd = 4, fg = 'black',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=1,column=2,padx = 25, pady = 15,ipady = 2) Radiobutton(login, text = "YES",value = 1,variable=Split,indicatoron=0 ,bg = 'steelblue',font = ('arial', 15, 'bold')).grid(row = 2,column = 2,padx =5, ipadx =15) Radiobutton(login, text = "NO",value = 2,variable=Split,indicatoron=0 ,bg = 'steelblue',font = ('arial', 15, 'bold')).grid(row = 4,column = 2,padx =5, ipadx =15) #heading Label(login, text="Enter split size : ", relief=FLAT,width=25, bd = 4, fg = 'black',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=1,column=4,padx = 25, pady = 15,ipady = 2) Entry(login,relief=SUNKEN,font = ('arial', 15, 'italic'), textvariable = Spsize, bd = 9, insertwidth = 3).grid(row=2,column=4) #dummy Label(login, text="Do you wish to scale the datas? ", relief=FLAT,width=20, bd = 4, fg = 'dodgerblue3',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=5,column=0,padx = 25, pady = 7,ipady = 2) #dummy Label(login, text="Do you wish to scale the datas? ", relief=FLAT,width=20, bd = 4, fg = 'dodgerblue3',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=7,column=0,padx = 25, pady = 7,ipady = 2) #heading Label(login, text="Select your algorithim : ", relief=FLAT,width=30, bd = 4, fg = 'black',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=6,column=0,padx = 25, pady = 7,ipady = 2) #heading_under construction Label(login, text="Select your error correction : ", relief=FLAT,width=30, bd = 4, fg = 'dodgerblue3',bg = 'dodgerblue3', font = ('arial', 15, 'bold')).grid(row=8,column=0,padx = 25, pady = 7,ipady = 2) choices = { 'Simple Linear Regression','Multiple Linear Regression','Polynomial Regression', 'Support Vector Regression','Decision Tree Regression','Random Forest Regression'} tkvar.set('Simple Linear Regression') # set the default option popupMenu = OptionMenu(login, tkvar, *choices) popupMenu.config(fg = 'black',bg = 'dodgerblue3', relief=GROOVE, bd = 7) popupMenu["menu"].config(fg = 'black',bg = 'dodgerblue3', relief=FLAT ,bd = 10) popupMenu.grid(row=6,column=3,columnspan=4,padx = 30, pady = 7,ipadx = 25) btn1 = Button(loginbtns, text = "OKAY",command=okay, relief = RAISED, width = 10 , bd = 6, bg = 'Steelblue2', fg = 'blue2', font = ('arial', 20, 'italic')).pack(side =LEFT, anchor = CENTER,expand = 2, fill = X) btn3 = Button(loginbtns, text = "BACK",command=back, relief = RAISED, width = 10 , bd = 6, bg = 'Steelblue2', fg = 'blue2', font = ('arial', 20, 'italic')).pack(side =LEFT, anchor = CENTER,expand = 2, fill = X) root2.mainloop() def second(): root1 = Tk() root1.overrideredirect(True) root1.geometry("{0}x{1}+0+0".format(root1.winfo_screenwidth(), root1.winfo_screenheight())) root1.title("GUI for ML algorithims") #------------------------------------------------------------------------------------------------------------------------------------------- Titlecard = Frame(root1, width = 1280, height = 100, bd = 7, bg = 'blue', relief = GROOVE) Titlecard.pack(side = 'top', anchor = CENTER, fill = X) rt = time.strftime("%d/%m/%y") body = Frame(root1, width = 1280, height = 600, bd = 9, bg = 'dodgerblue3', relief = FLAT) body.pack(side = 'top',expand = 1,fill = BOTH) login = Frame(body, width = 1000, height = 600, bd = 7, bg = 'dodgerblue3', relief = RAISED) login.pack(side = TOP, anchor = CENTER,expand=1, fill = X, ipady = 40,ipadx = 10) #------------------------------------------------------------------------------------------------------------------------------------------- var = IntVar() var1 = IntVar() global d_c,radio,radio1,Values,Values1,Values2 for i in range(len(d_c)): text = str(d_c[i]) Values.append(text) length = len(alldata[text]) Values1.append(length) if length != len(alldata): g = len(alldata) - length Values2.append(g) else: Values2.append('NULL') text1 = str(str(text) + "1") text1 = IntVar() radio.append(text1) text2 = str(str(text) + "2") text2 = IntVar() radio1.append(text2) rn = len(d_c) #------------------------------------------------------------------------------------------------------------------------------------------- def back(): global d_c,alldata,x,y,radio,radio1,Values,Values1,Values2 root1.destroy() d_c = [] x = pd.DataFrame() y = pd.DataFrame() alldata =
pd.DataFrame()
pandas.DataFrame
import os from collections import Counter from os import listdir from os.path import isfile, join from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np from matplotlib.pyplot import figure from matplotlib import style style.use('ggplot') import scipy from matplotlib.ticker import MaxNLocator from mpl_toolkits.mplot3d import Axes3D from matplotlib.collections import PolyCollection from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm, ticker import numpy as np from sys import argv import Orange import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import colors as mcolors, cm from matplotlib.collections import PolyCollection from classifiers import classifiers_list from datasetsDelaunay import dataset_list_bi, dataset_list_mult from folders import output_dir, dir_pca_biclasse, metricas_biclasse, dir_pca_multiclasse, metricas_multiclasse from parameters import order, alphas order_dict = {'area': 1, 'volume': 2, 'area_volume_ratio': 3, 'edge_ratio': 4, 'radius_ratio': 5, 'aspect_ratio': 6, 'max_solid_angle': 7, 'min_solid_angle': 8, 'solid_angle': 9} class Statistics: def __init__(self): pass def compute_CD_customizado(self, avranks, n, alpha="0.05", test="nemenyi"): """ Returns critical difference for Nemenyi or Bonferroni-Dunn test according to given alpha (either alpha="0.05" or alpha="0.1") for average ranks and number of tested datasets N. Test can be either "nemenyi" for for Nemenyi two tailed test or "bonferroni-dunn" for Bonferroni-Dunn test. """ k = len(avranks) d = {("nemenyi", "0.05"): [1.960, 2.344, 2.569, 2.728, 2.850, 2.948, 3.031, 3.102, 3.164, 3.219, 3.268, 3.313, 3.354, 3.391, 3.426, 3.458, 3.489, 3.517, 3.544, 3.569, 3.593, 3.616, 3.637, 3.658, 3.678, 3.696, 3.714, 3.732, 3.749, 3.765, 3.780, 3.795, 3.810, 3.824, 3.837, 3.850, 3.863, 3.876, 3.888, 3.899, 3.911, 3.922, 3.933, 3.943, 3.954, 3.964, 3.973, 3.983, 3.992], ("nemenyi", "0.1"): [0, 0, 1.644854, 2.052293, 2.291341, 2.459516, 2.588521, 2.692732, 2.779884, 2.854606, 2.919889, 2.977768, 3.029694, 3.076733, 3.119693, 3.159199, 3.195743, 3.229723, 3.261461, 3.291224, 3.319233], ("bonferroni-dunn", "0.05"): [0, 0, 1.960, 2.241, 2.394, 2.498, 2.576, 2.638, 2.690, 2.724, 2.773], ("bonferroni-dunn", "0.1"): [0, 0, 1.645, 1.960, 2.128, 2.241, 2.326, 2.394, 2.450, 2.498, 2.539]} q = d[(test, alpha)] cd = q[k] * (k * (k + 1) / (6.0 * n)) ** 0.5 return cd def calcula_media_folds_biclasse(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_biclasse_' + mode + '.csv', index=False) def calcula_media_folds_multiclass(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_multiclass_' + mode + '.csv', index=False) def separa_delaunay_biclass(self, filename): df = pd.read_csv(filename) list_base = [] for p in np.arange(0, len(preproc_type)): list_base.append(df[(df['PREPROC'] == preproc_type[p])]) df_base = list_base.pop(0) for i in np.arange(0, len(list_base)): df_base = pd.concat([df_base, list_base[i]], ignore_index=True) for o in order: for a in alphas: dfr = df[(df['ORDER'] == o)] dfr1 = dfr[(dfr['ALPHA'] == str(a))] df_file = pd.concat([df_base, dfr1], ignore_index=True) df_file.to_csv('./../output_dir/result_biclass' + '_' + o + '_' + str(a) + '.csv', index=False) def read_dir_files(self, dir_name): f = [f for f in listdir(dir_name) if isfile(join(dir_name, f))] return f def find_best_rank(self, results_dir, tipo): results = self.read_dir_files(results_dir) df = pd.DataFrame(columns=[['ARQUIVO', 'WINER']]) i = 0 for f in results: df_temp = pd.read_csv(results_dir + f) df.at[i, 'ARQUIVO'] = f df.at[i, 'WINER'] = df_temp.iloc[0, 0] i += 1 df.to_csv(output_dir + tipo) def find_best_delaunay(self, results_dir, tipo): df = pd.read_csv(results_dir + tipo) i = 0 j = 0 df_best = pd.DataFrame(columns=['ARQUIVO', 'WINER']) win = list(df['WINER']) for w in win: if w == 'DELAUNAY': df_best.at[i, 'ARQUIVO'] = df.iloc[j, 1] df_best.at[i, 'WINER'] = df.iloc[j, 2] i += 1 j += 1 df_best.to_csv(output_dir + 'only_best_delaunay_pca_biclass_media_rank.csv') def rank_by_algorithm(self, df, tipo, wd, reducao, order, alpha): ''' Calcula rank :param df: :param tipo: :param wd: :param delaunay_type: :return: ''' df_tabela = pd.DataFrame( columns=['DATASET', 'ALGORITHM', 'ORIGINAL', 'RANK_ORIGINAL', 'SMOTE', 'RANK_SMOTE', 'SMOTE_SVM', 'RANK_SMOTE_SVM', 'BORDERLINE1', 'RANK_BORDERLINE1', 'BORDERLINE2', 'RANK_BORDERLINE2', 'GEOMETRIC_SMOTE', 'RANK_GEOMETRIC_SMOTE', 'DELAUNAY', 'RANK_DELAUNAY', 'DELAUNAY_TYPE', 'ALPHA', 'unit']) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df.to_csv(dir_pca_biclasse + reducao + '_' + tipo + '_' + order + '_' + str(alpha) + '.csv') j = 0 for d in dataset_list_bi: for m in metricas_biclasse: aux = group[group['DATASET'] == d] aux = aux.reset_index() df_tabela.at[j, 'DATASET'] = d df_tabela.at[j, 'ALGORITHM'] = name indice = aux.PREPROC[aux.PREPROC == '_train'].index.tolist()[0] df_tabela.at[j, 'ORIGINAL'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_SMOTE'].index.tolist()[0] df_tabela.at[j, 'SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_smoteSVM'].index.tolist()[0] df_tabela.at[j, 'SMOTE_SVM'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline1'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE1'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline2'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE2'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Geometric_SMOTE'].index.tolist()[0] df_tabela.at[j, 'GEOMETRIC_SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.ORDER == order].index.tolist()[0] df_tabela.at[j, 'DELAUNAY'] = aux.at[indice, m] df_tabela.at[j, 'DELAUNAY_TYPE'] = order df_tabela.at[j, 'ALPHA'] = alpha df_tabela.at[j, 'unit'] = m j += 1 df_pre = df_tabela[df_tabela['unit'] == 'PRE'] df_rec = df_tabela[df_tabela['unit'] == 'REC'] df_spe = df_tabela[df_tabela['unit'] == 'SPE'] df_f1 = df_tabela[df_tabela['unit'] == 'F1'] df_geo = df_tabela[df_tabela['unit'] == 'GEO'] df_iba = df_tabela[df_tabela['unit'] == 'IBA'] df_auc = df_tabela[df_tabela['unit'] == 'AUC'] pre = df_pre[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] rec = df_rec[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] spe = df_spe[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] f1 = df_f1[['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] geo = df_geo[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] iba = df_iba[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] auc = df_auc[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] pre = pre.reset_index() pre.drop('index', axis=1, inplace=True) rec = rec.reset_index() rec.drop('index', axis=1, inplace=True) spe = spe.reset_index() spe.drop('index', axis=1, inplace=True) f1 = f1.reset_index() f1.drop('index', axis=1, inplace=True) geo = geo.reset_index() geo.drop('index', axis=1, inplace=True) iba = iba.reset_index() iba.drop('index', axis=1, inplace=True) auc = auc.reset_index() auc.drop('index', axis=1, inplace=True) # calcula rank linha a linha pre_rank = pre.rank(axis=1, ascending=False) rec_rank = rec.rank(axis=1, ascending=False) spe_rank = spe.rank(axis=1, ascending=False) f1_rank = f1.rank(axis=1, ascending=False) geo_rank = geo.rank(axis=1, ascending=False) iba_rank = iba.rank(axis=1, ascending=False) auc_rank = auc.rank(axis=1, ascending=False) df_pre = df_pre.reset_index() df_pre.drop('index', axis=1, inplace=True) df_pre['RANK_ORIGINAL'] = pre_rank['ORIGINAL'] df_pre['RANK_SMOTE'] = pre_rank['SMOTE'] df_pre['RANK_SMOTE_SVM'] = pre_rank['SMOTE_SVM'] df_pre['RANK_BORDERLINE1'] = pre_rank['BORDERLINE1'] df_pre['RANK_BORDERLINE2'] = pre_rank['BORDERLINE2'] df_pre['RANK_GEOMETRIC_SMOTE'] = pre_rank['GEOMETRIC_SMOTE'] df_pre['RANK_DELAUNAY'] = pre_rank['DELAUNAY'] df_rec = df_rec.reset_index() df_rec.drop('index', axis=1, inplace=True) df_rec['RANK_ORIGINAL'] = rec_rank['ORIGINAL'] df_rec['RANK_SMOTE'] = rec_rank['SMOTE'] df_rec['RANK_SMOTE_SVM'] = rec_rank['SMOTE_SVM'] df_rec['RANK_BORDERLINE1'] = rec_rank['BORDERLINE1'] df_rec['RANK_BORDERLINE2'] = rec_rank['BORDERLINE2'] df_rec['RANK_GEOMETRIC_SMOTE'] = rec_rank['GEOMETRIC_SMOTE'] df_rec['RANK_DELAUNAY'] = rec_rank['DELAUNAY'] df_spe = df_spe.reset_index() df_spe.drop('index', axis=1, inplace=True) df_spe['RANK_ORIGINAL'] = spe_rank['ORIGINAL'] df_spe['RANK_SMOTE'] = spe_rank['SMOTE'] df_spe['RANK_SMOTE_SVM'] = spe_rank['SMOTE_SVM'] df_spe['RANK_BORDERLINE1'] = spe_rank['BORDERLINE1'] df_spe['RANK_BORDERLINE2'] = spe_rank['BORDERLINE2'] df_spe['RANK_GEOMETRIC_SMOTE'] = spe_rank['GEOMETRIC_SMOTE'] df_spe['RANK_DELAUNAY'] = spe_rank['DELAUNAY'] df_f1 = df_f1.reset_index() df_f1.drop('index', axis=1, inplace=True) df_f1['RANK_ORIGINAL'] = f1_rank['ORIGINAL'] df_f1['RANK_SMOTE'] = f1_rank['SMOTE'] df_f1['RANK_SMOTE_SVM'] = f1_rank['SMOTE_SVM'] df_f1['RANK_BORDERLINE1'] = f1_rank['BORDERLINE1'] df_f1['RANK_BORDERLINE2'] = f1_rank['BORDERLINE2'] df_f1['RANK_GEOMETRIC_SMOTE'] = f1_rank['GEOMETRIC_SMOTE'] df_f1['RANK_DELAUNAY'] = f1_rank['DELAUNAY'] df_geo = df_geo.reset_index() df_geo.drop('index', axis=1, inplace=True) df_geo['RANK_ORIGINAL'] = geo_rank['ORIGINAL'] df_geo['RANK_SMOTE'] = geo_rank['SMOTE'] df_geo['RANK_SMOTE_SVM'] = geo_rank['SMOTE_SVM'] df_geo['RANK_BORDERLINE1'] = geo_rank['BORDERLINE1'] df_geo['RANK_BORDERLINE2'] = geo_rank['BORDERLINE2'] df_geo['RANK_GEOMETRIC_SMOTE'] = geo_rank['GEOMETRIC_SMOTE'] df_geo['RANK_DELAUNAY'] = geo_rank['DELAUNAY'] df_iba = df_iba.reset_index() df_iba.drop('index', axis=1, inplace=True) df_iba['RANK_ORIGINAL'] = iba_rank['ORIGINAL'] df_iba['RANK_SMOTE'] = iba_rank['SMOTE'] df_iba['RANK_SMOTE_SVM'] = iba_rank['SMOTE_SVM'] df_iba['RANK_BORDERLINE1'] = iba_rank['BORDERLINE1'] df_iba['RANK_BORDERLINE2'] = iba_rank['BORDERLINE2'] df_iba['RANK_GEOMETRIC_SMOTE'] = iba_rank['GEOMETRIC_SMOTE'] df_iba['RANK_DELAUNAY'] = iba_rank['DELAUNAY'] df_auc = df_auc.reset_index() df_auc.drop('index', axis=1, inplace=True) df_auc['RANK_ORIGINAL'] = auc_rank['ORIGINAL'] df_auc['RANK_SMOTE'] = auc_rank['SMOTE'] df_auc['RANK_SMOTE_SVM'] = auc_rank['SMOTE_SVM'] df_auc['RANK_BORDERLINE1'] = auc_rank['BORDERLINE1'] df_auc['RANK_BORDERLINE2'] = auc_rank['BORDERLINE2'] df_auc['RANK_GEOMETRIC_SMOTE'] = auc_rank['GEOMETRIC_SMOTE'] df_auc['RANK_DELAUNAY'] = auc_rank['DELAUNAY'] # avarege rank media_pre_rank = pre_rank.mean(axis=0) media_rec_rank = rec_rank.mean(axis=0) media_spe_rank = spe_rank.mean(axis=0) media_f1_rank = f1_rank.mean(axis=0) media_geo_rank = geo_rank.mean(axis=0) media_iba_rank = iba_rank.mean(axis=0) media_auc_rank = auc_rank.mean(axis=0) media_pre_rank_file = media_pre_rank.reset_index() media_pre_rank_file = media_pre_rank_file.sort_values(by=0) media_rec_rank_file = media_rec_rank.reset_index() media_rec_rank_file = media_rec_rank_file.sort_values(by=0) media_spe_rank_file = media_spe_rank.reset_index() media_spe_rank_file = media_spe_rank_file.sort_values(by=0) media_f1_rank_file = media_f1_rank.reset_index() media_f1_rank_file = media_f1_rank_file.sort_values(by=0) media_geo_rank_file = media_geo_rank.reset_index() media_geo_rank_file = media_geo_rank_file.sort_values(by=0) media_iba_rank_file = media_iba_rank.reset_index() media_iba_rank_file = media_iba_rank_file.sort_values(by=0) media_auc_rank_file = media_auc_rank.reset_index() media_auc_rank_file = media_auc_rank_file.sort_values(by=0) # Grava arquivos importantes df_pre.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) df_rec.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) df_spe.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) df_f1.to_csv(wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) df_geo.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) df_iba.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) df_auc.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) media_pre_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) media_rec_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) media_spe_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) media_f1_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) media_geo_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) media_iba_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) media_auc_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) delaunay_type = order + '_' + str(alpha) # grafico CD identificadores = ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', delaunay_type] avranks = list(media_pre_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_pre.pdf') plt.close() avranks = list(media_rec_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_rec.pdf') plt.close() avranks = list(media_spe_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_spe.pdf') plt.close() avranks = list(media_f1_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig(wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_f1.pdf') plt.close() avranks = list(media_geo_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_geo.pdf') plt.close() avranks = list(media_iba_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_iba.pdf') plt.close() '''avranks = list(media_auc_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_auc.pdf') plt.close()''' print('Delaunay Type= ', delaunay_type) print('Algorithm= ', name) def rank_total_by_algorithm(self, tipo, wd, reducao, order, alpha): delaunay_name = 'RANK_DTO_' + str(order) + '_' + str(alpha) cols = ['ALGORITHM', 'RANK_ORIGINAL', 'RANK_SMOTE', 'RANK_SMOTE_SVM', 'RANK_BORDERLINE1', 'RANK_BORDERLINE2', 'RANK_GEOMETRIC_SMOTE', 'RANK_DELAUNAY'] for name in classifiers_list: print(os.path.abspath(os.getcwd())) # Grava arquivos importantes path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_pre.csv' df_pre = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_rec.csv' df_rec = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_spe.csv' df_spe = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_f1.csv' df_f1 = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_geo.csv' df_geo = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_iba.csv' df_iba = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_auc.csv' df_auc = pd.read_csv(path_name) # PRE df_pre_col = df_pre[cols] df_pre_col.loc[:, delaunay_name] = df_pre_col['RANK_DELAUNAY'].values df_pre_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_pre = df_pre_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv' ranking_pre['ALGORITHM'] = name ranking_pre.to_csv(path_name, index=False) # REC df_rec_col = df_rec[cols] df_rec_col.loc[:, delaunay_name] = df_rec_col['RANK_DELAUNAY'].values df_rec_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_rec = df_rec_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv' ranking_rec['ALGORITHM'] = name ranking_rec.to_csv(path_name, index=False) # SPE df_spe_col = df_spe[cols] df_spe_col.loc[:, delaunay_name] = df_spe_col['RANK_DELAUNAY'].values df_spe_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_spe = df_spe_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv' ranking_spe['ALGORITHM'] = name ranking_spe.to_csv(path_name, index=False) # F1 df_f1_col = df_f1[cols] df_f1_col.loc[:, delaunay_name] = df_f1_col['RANK_DELAUNAY'].values df_f1_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_f1 = df_f1_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv' ranking_f1['ALGORITHM'] = name ranking_f1.to_csv(path_name, index=False) # GEO df_geo_col = df_geo[cols] df_geo_col.loc[:, delaunay_name] = df_geo_col['RANK_DELAUNAY'].values df_geo_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_geo = df_geo_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv' ranking_geo['ALGORITHM'] = name ranking_geo.to_csv(path_name, index=False) # IBA df_iba_col = df_iba[cols] df_iba_col.loc[:, delaunay_name] = df_iba_col['RANK_DELAUNAY'].values df_iba_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_iba = df_iba_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv' ranking_iba['ALGORITHM'] = name ranking_iba.to_csv(path_name, index=False) # AUC df_auc_col = df_auc[cols] df_auc_col.loc[:, delaunay_name] = df_auc_col['RANK_DELAUNAY'].values df_auc_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_auc = df_auc_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv' ranking_auc['ALGORITHM'] = name ranking_auc.to_csv(path_name, index=False) def rank_by_algorithm_dataset(self, filename): df = pd.read_csv(filename) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df_temp1 = group.groupby(by=['DATASET']) for name1, group1 in df_temp1: group1 = group1.reset_index() group1.drop('index', axis=1, inplace=True) group1['rank_f1'] = group1['F1'].rank(ascending=False) group1['rank_geo'] = group1['GEO'].rank(ascending=False) group1['rank_iba'] = group1['IBA'].rank(ascending=False) group1['rank_auc'] = group1['AUC'].rank(ascending=False) group1.to_csv('./../output_dir/rank/rank_algorithm_dataset_' + name + '_' + name1 + '.csv', index=False) def rank_by_algorithm_dataset_only_dto(self, filename): df = pd.read_csv(filename) df = df[df['PREPROC'] != '_SMOTE'] df = df[df['PREPROC'] != '_Geometric_SMOTE'] df = df[df['PREPROC'] != '_Borderline1'] df = df[df['PREPROC'] != '_Borderline2'] df = df[df['PREPROC'] != '_smoteSVM'] df = df[df['PREPROC'] != '_train'] df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df_temp1 = group.groupby(by=['DATASET']) for name1, group1 in df_temp1: group1 = group1.reset_index() group1.drop('index', axis=1, inplace=True) group1['rank_f1'] = group1['F1'].rank(ascending=False) group1['rank_geo'] = group1['GEO'].rank(ascending=False) group1['rank_iba'] = group1['IBA'].rank(ascending=False) group1['rank_auc'] = group1['AUC'].rank(ascending=False) group1.to_csv( './../output_dir/rank/only_dto/rank_algorithm_dataset_only_dto_' + name + '_' + name1 + '.csv', index=False) df_graph = group1.copy() df_graph = df_graph.replace('area', 1) df_graph = df_graph.replace('volume', 2) df_graph = df_graph.replace('area_volume_ratio', 3) df_graph = df_graph.replace('edge_ratio', 4) df_graph = df_graph.replace('radius_ratio', 5) df_graph = df_graph.replace('aspect_ratio', 6) df_graph = df_graph.replace('max_solid_angle', 7) df_graph = df_graph.replace('min_solid_angle', 8) df_graph = df_graph.replace('solid_angle', 9) legend = ['area', 'volume', 'area_volume_ratio', 'edge_ratio', 'radius_ratio', 'aspect_ratio', 'max_solid_angle', 'min_solid_angle', 'solid_angle'] x = df_graph['ORDER'].values y = df_graph['ALPHA'].values.astype(float) dz = df_graph['AUC'].values N = x.shape[0] z = np.zeros(N) dx = 0.2 * np.ones(N) dy = 0.2 * np.ones(N) fig = plt.figure(figsize=(12, 8)) ax1 = fig.add_subplot(111, projection='3d') cs = ['r', 'g', 'b'] * 9 ax1.bar3d(x, y, z, dx, dy, dz, color=cs) ax1.set_ylabel('Alpha') ax1.set_xlabel('\n\n\n\n\nGeometry') ax1.set_zlabel('AUC') ax1.set_title('Geometry x Alpha \n Algorithm = ' + name + '\n Dataset = ' + name1) ax1.set_xticklabels(legend) ax1.legend() plt.show() fig = plt.figure(figsize=(12, 8)) ax = Axes3D(fig) surf = ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.5) fig.colorbar(surf, shrink=0.5, aspect=7) ax.set_xlabel('Alpha') ax.set_ylabel('\n\n\n\n\nGeometry') ax.set_zlabel('AUC') ax.set_title('Geometry x Alpha \n Algorithm = ' + name + '\n Dataset = ' + name1) ax.set_yticklabels(legend) ax.legend() plt.savefig('./../output_dir/rank/only_dto/only_dto_geometry_by_alpha_' + name + '_' + name1 + '.pdf') plt.show() def rank_by_measures_only_dto(self, filename): best_geometry = pd.DataFrame(columns=['PREPROC', 'M', 'ALGORITHM', 'MEDIA_RANK']) df = pd.read_csv(filename) df = df[df['PREPROC'] != '_SMOTE'] df = df[df['PREPROC'] != '_Geometric_SMOTE'] df = df[df['PREPROC'] != '_Borderline1'] df = df[df['PREPROC'] != '_Borderline2'] df = df[df['PREPROC'] != '_smoteSVM'] df = df[df['PREPROC'] != '_train'] i = 0 df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) group['rank_f1'] = group['F1'].rank(ascending=False) group['rank_geo'] = group['GEO'].rank(ascending=False) group['rank_iba'] = group['IBA'].rank(ascending=False) group['rank_auc'] = group['AUC'].rank(ascending=False) # AUC group = group.sort_values(by=['rank_auc']) media_rank_auc = group.groupby('PREPROC')['rank_auc'].mean() df_media_rank_auc = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_AUC']) df_media_rank_auc['PREPROC'] = media_rank_auc.index df_media_rank_auc['MEDIA_RANK_AUC'] = media_rank_auc.values df_media_rank_auc.sort_values(by=['MEDIA_RANK_AUC'], ascending=True, inplace=True) df_media_rank_auc.reset_index(inplace=True) df_media_rank_auc.drop('index', axis=1, inplace=True) best_auc_geometry = df_media_rank_auc.loc[0] # GEO group = group.sort_values(by=['rank_geo']) media_rank_geo = group.groupby('PREPROC')['rank_geo'].mean() df_media_rank_geo = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_GEO']) df_media_rank_geo['PREPROC'] = media_rank_geo.index df_media_rank_geo['MEDIA_RANK_GEO'] = media_rank_geo.values df_media_rank_geo.sort_values(by=['MEDIA_RANK_GEO'], ascending=True, inplace=True) df_media_rank_geo.reset_index(inplace=True) df_media_rank_geo.drop('index', axis=1, inplace=True) best_geo_geometry = df_media_rank_geo.loc[0] # IBA group = group.sort_values(by=['rank_iba']) media_rank_iba = group.groupby('PREPROC')['rank_iba'].mean() df_media_rank_iba = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_IBA']) df_media_rank_iba['PREPROC'] = media_rank_iba.index df_media_rank_iba['MEDIA_RANK_IBA'] = media_rank_iba.values df_media_rank_iba.sort_values(by=['MEDIA_RANK_IBA'], ascending=True, inplace=True) df_media_rank_iba.reset_index(inplace=True) df_media_rank_iba.drop('index', axis=1, inplace=True) best_iba_geometry = df_media_rank_iba.loc[0] # F1 group = group.sort_values(by=['rank_f1']) media_rank_f1 = group.groupby('PREPROC')['rank_f1'].mean() df_media_rank_f1 =
pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_F1'])
pandas.DataFrame
import numpy as np import pandas as pd import tables from phildb.constants import MISSING_VALUE, METADATA_MISSING_VALUE class TabDesc(tables.IsDescription): time = tables.Int64Col(dflt=0, pos=0) value = tables.Float64Col(dflt=np.nan, pos=1) meta = tables.Int32Col(dflt=0, pos=2) replacement_time = tables.Int64Col(dflt=0, pos=3) class LogHandler: """ """ FILTERS = tables.Filters(complib="zlib", complevel=9) def __init__(self, filename, mode): self.hdf5 = tables.open_file(filename, mode, filters=self.FILTERS) def create_skeleton(self): """ Create the skeleton of the log self.hdf5. """ data_group = self.hdf5.create_group("/", "data", "data group") try: new_table = self.hdf5.create_table(data_group, "log", TabDesc) except tables.exceptions.NodeError as e: pass self.hdf5.flush() def read(self, as_at_datetime): field_names = ["time", "value", "meta", "replacement_time"] ts_table = self.hdf5.get_node("/data/log") records = ts_table.read_where("replacement_time <= {0}".format(as_at_datetime)) if len(records) == 0: return pd.DataFrame(None, columns=field_names) df = pd.DataFrame(records, columns=field_names) df["date"] =
pd.to_datetime(df["time"], unit="s")
pandas.to_datetime
from rdkit import Chem from .utils import * from rdkit.Chem.MolStandardize import rdMolStandardize import os import pandas as pd #========================================================== # process SMILES of chemotypes def normChemotypes(compounds, getChemotypes=False, getChemotypesIdx=False, normalizeChemotypes=False, printlogs=True): #------------------------ if getChemotypesIdx: if getChemotypes == False: print("!!!ERROR: 'getChemotypesIdx=True' argument goes with 'getChemotypes=True'!!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_ = molStructVerify(compounds, printlogs=False) Unverified_count = len(molStructVerify(compounds, getFailedStruct=True, printlogs=False)) NonChemotypesList, ChemotypesList, ChemotypesIdxList = [], [], [] Chemotype_count = 0 idx = 0 for compound in compounds_: Premol = Chem.MolFromSmiles(compound) canonicalized_mol = rdMolStandardize.Normalize(Premol) canonicalized_SMILES = Chem.MolToSmiles(canonicalized_mol) if canonicalized_SMILES == compound: NonChemotypesList.append(canonicalized_SMILES) else: Chemotype_count +=1 if normalizeChemotypes: NonChemotypesList.append(canonicalized_SMILES) ChemotypesList.append(compound) ChemotypesIdxList.append(idx) else: ChemotypesList.append(compound) ChemotypesIdxList.append(idx) idx += 1 if printlogs: print("=======================================================") if Unverified_count > 0: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) print("Failed to verify {}/{} structures".format(Unverified_count, len(compounds))) print("Use function 'utils.molValidate' and set 'getFailedStruct=True' to get the list of unverified structures") if Chemotype_count > 0: if normalizeChemotypes: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList)-Chemotype_count, len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were normalized".format(Chemotype_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Chemotype normalization has been applied!!!!!") else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were NOT normalized".format(Chemotype_count, len(compounds))) else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) else: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) if Chemotype_count > 0: if normalizeChemotypes: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList)-Chemotype_count, len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were normalized".format(Chemotype_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Chemotype normalization has been applied!!!!!") else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were NOT normalized".format(Chemotype_count, len(compounds))) else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) print("=======================================================") if getChemotypes: if getChemotypesIdx: return ChemotypesList, ChemotypesIdxList else: return ChemotypesList else: return NonChemotypesList #========================================================== # process SMILES of tautomers def normTautomers(compounds, getTautomers=False, getTautomersIdx=False, deTautomerize=False, printlogs=True): #------------------------ if getTautomersIdx: if getTautomers == False: print("!!!ERROR: 'getTautomersIdx=True' argument goes with 'getTautomers=True'!!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_ = molStructVerify(compounds, printlogs=False) Unverified_count = len(molStructVerify(compounds, getFailedStruct=True, printlogs=False)) NonTautomersList, TautomersList, TautomersIdxList = [], [], [] enumerator = rdMolStandardize.TautomerEnumerator() Tautomer_count = 0 idx = 0 for compound in compounds_: Premol = Chem.MolFromSmiles(compound) canonicalized_mol = enumerator.Canonicalize(Premol) canonicalized_SMILES = Chem.MolToSmiles(canonicalized_mol) if canonicalized_SMILES == compound: NonTautomersList.append(canonicalized_SMILES) else: Tautomer_count +=1 if deTautomerize: NonTautomersList.append(canonicalized_SMILES) TautomersList.append(compound) TautomersIdxList.append(idx) else: TautomersList.append(compound) TautomersIdxList.append(idx) idx += 1 if printlogs: print("=======================================================") if Unverified_count > 0: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) print("Failed to verify {}/{} structures".format(Unverified_count, len(compounds))) print("Use function 'utils.molValidate' and set 'getFailedStruct=True' to get the list of unverified structures") if Tautomer_count > 0: if deTautomerize: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList)-Tautomer_count, len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were detautomerized".format(Tautomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Detautomerizing has been applied!!!!!") else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were NOT detautomerized".format(Tautomer_count, len(compounds))) else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) else: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) if Tautomer_count > 0: if deTautomerize: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList)-Tautomer_count, len(compounds))) print("{}/{} structure(s) í/are tautomer(s) BUT was/were detautomerized".format(Tautomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Detautomerizing has been applied!!!!!") else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were NOT detautomerized".format(Tautomer_count, len(compounds))) else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) print("=======================================================") if getTautomers: if getTautomersIdx: return TautomersList, TautomersIdxList else: return TautomersList else: return NonTautomersList #========================================================== # process SMILES of stereoisomers def normStereoisomers(compounds, getStereoisomers=False, getStereoisomersIdx=False, deSterioisomerize=False, printlogs=True): #------------------------ if getStereoisomersIdx: if getStereoisomers == False: print("!!!ERROR: 'getStereoisomersIdx=True' argument goes with 'getStereoisomers=True'!!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_ = molStructVerify(compounds, printlogs=False) Unverified_count = len(molStructVerify(compounds, getFailedStruct=True, printlogs=False)) NonStereoisomersList, StereoisomersList, StereoisomersIdxList = [], [], [] Stereoisomer_count = 0 idx = 0 for compound in compounds_: if compound.find("@") == -1 and compound.find("/") == -1 and compound.find("\\") == -1: NonStereoisomersList.append(compound) else: Stereoisomer_count +=1 if deSterioisomerize: NonStereoisomersList.append(compound.replace("@", "").replace("/","").replace("\\","")) StereoisomersList.append(compound) StereoisomersIdxList.append(idx) else: StereoisomersList.append(compound) StereoisomersIdxList.append(idx) idx += 1 if printlogs: print("=======================================================") if Unverified_count > 0: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) print("Failed to verify {}/{} structures".format(Unverified_count, len(compounds))) print("Use function 'utils.molValidate' and set 'getFailedStruct=True' to get the list of unverified structures") if Stereoisomer_count > 0: if deSterioisomerize: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList)-Stereoisomer_count, len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were destereoisomerized".format(Stereoisomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Destereoisomerization has been applied!!!!!") else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were NOT destereoisomerized".format(Stereoisomer_count, len(compounds))) else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) else: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) if Stereoisomer_count > 0: if deSterioisomerize: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList)-Stereoisomer_count, len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were destereoisomerized".format(Stereoisomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Destereoisomerization has been applied!!!!!") else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were NOT destereoisomerized".format(Stereoisomer_count, len(compounds))) else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) print("=======================================================") if getStereoisomers: if getStereoisomersIdx: return StereoisomersList, StereoisomersIdxList else: return StereoisomersList else: return NonStereoisomersList #========================================================== # Complete normalization def normalizeComplete(compounds, getUnnormalizedStruct=False, normalizeChemotypes=True, deTautomerize=True, deSterioisomerize=True, removeDuplicates=False, getDuplicatedIdx=False, exportCSV=False, outputPath=None, printlogs=True): #------------------------ if getUnnormalizedStruct: if removeDuplicates: print("!!!ERROR: 'removeDuplicates=True' argument goes with 'getUnnormalizedStruct=False' only !!!") return None if getDuplicatedIdx: print("!!!ERROR: 'getDuplicatedIdx=True' argument goes with 'getUnnormalizedStruct=False' only !!!") if getDuplicatedIdx: if removeDuplicates == False: print("!!!ERROR: 'getDuplicatedIdx=True' argument goes with 'removeDuplicates=True'!!!") return None if exportCSV: if outputPath == None: print("!!!ERROR 'exportCSV=True' needs 'outputPath=<Directory>' to be filled !!!") return None if outputPath: if exportCSV == False: print("!!!ERROR 'outputPath=<Directory>' needs to set 'exportCSV=True' !!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_r1 = molStructVerify(compounds, printlogs=False) UnverifiedList, UnverifiedIdxList = molStructVerify(compounds, getFailedStruct=True, getFailedStructIdx=True, printlogs=False) Unverified_count = len(UnverifiedList) #------------------------ if deSterioisomerize: compounds_r2 = normStereoisomers(compounds_r1, deSterioisomerize=True, printlogs=False) else: compounds_r2 = normStereoisomers(compounds_r1, deSterioisomerize=False, printlogs=False) StereoisomersList, StereoisomersIdxList = normStereoisomers(compounds_r1, getStereoisomers=True, getStereoisomersIdx=True, printlogs=False) Stereoisomers_count = len(StereoisomersList) #------------------------ if normalizeChemotypes: compounds_r3 = normChemotypes(compounds_r2, normalizeChemotypes=True, printlogs=False) else: compounds_r3 = normChemotypes(compounds_r2, normalizeChemotypes=False, printlogs=False) ChemotypesList, ChemotypesIdxList = normChemotypes(compounds_r1, getChemotypes=True, getChemotypesIdx=True, printlogs=False) Chemotypes_count = len(ChemotypesList) #------------------------ if deTautomerize: compounds_r4 = normTautomers(compounds_r3, deTautomerize=True, printlogs=False) else: compounds_r4 = normTautomers(compounds_r3, deTautomerize=False, printlogs=False) TautomersList, TautomersIdxList = normTautomers(compounds_r1, getTautomers=True, getTautomersIdx=True, printlogs=False) Tautomers_count = len(TautomersList) #------------------------ if printlogs: if Unverified_count > 0: print("=======================================================") print("Succeeded to verify {}/{} structures".format(len(compounds_r1), len(compounds))) print("Failed to verify {} structures \n".format(Unverified_count)) else: print("=======================================================") print("Succeeded to validate {}/{} structures \n".format(len(compounds_r1), len(compounds))) if Stereoisomers_count > 0: if deSterioisomerize: print("=======================================================") print("{}/{} structures are NOT stereoisomers".format(len(compounds_r2)-Stereoisomers_count, len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were destereoisomerized \n".format(Stereoisomers_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT stereoisomers".format(len(compounds_r2), len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were NOT destereoisomerized \n".format(Stereoisomers_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT stereoisomers".format(len(compounds_r2), len(compounds))) if Chemotypes_count > 0: if normalizeChemotypes: print("=======================================================") compounds_r3_ = normChemotypes(compounds_r2, normalizeChemotypes=True, printlogs=False) print("{}/{} structures are NOT chemotypes".format(len(compounds_r3_)-Chemotypes_count, len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were normalized \n".format(Chemotypes_count, len(compounds))) else: print("=======================================================") compounds_r3_ = normChemotypes(compounds_r2, normalizeChemotypes=False, printlogs=False) print("{}/{} structures are NOT chemotypes".format(len(compounds_r3_), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) but was/were NOT normalized \n".format(Chemotypes_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT chemotypes \n".format(len(compounds_r2), len(compounds))) if Tautomers_count > 0: if deTautomerize: print("=======================================================") compounds_r4_ = normTautomers(compounds_r2, deTautomerize=True, printlogs=False) print("{}/{} structures are NOT tautomers".format(len(compounds_r4_)-Tautomers_count, len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were detautomerized \n".format(Tautomers_count, len(compounds))) else: print("=======================================================") compounds_r4_ = normTautomers(compounds_r2, deTautomerize=False, printlogs=False) print("{}/{} structures are NOT tautomers".format(len(compounds_r4_), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) but was/were NOT detautomerized \n".format(Tautomers_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT tautomers \n".format(len(compounds_r2), len(compounds))) #------------------------ NormalizedList = compounds_r4 UnNormalizedList = UnverifiedList + TautomersList + StereoisomersList UnNormalizedLabel = len(UnverifiedList)*["UnverifiedStruct"] + len(ChemotypesList)*["Chemotype"] + len(TautomersList)*["Tautomer"] + len(StereoisomersList)*["Stereoisomer"] FunctionLabel = len(UnverifiedList)*["molStructVerify()"] + len(ChemotypesList)*["normChemotypes()"] + len(TautomersList)*["normTautomers()"] + len(StereoisomersList)*["normStereoisomers()"] IdxLabel = UnverifiedIdxList + ChemotypesIdxList + TautomersIdxList + StereoisomersIdxList df1 = pd.DataFrame(zip(UnNormalizedList, UnNormalizedLabel, FunctionLabel, IdxLabel), columns=['SMILES', 'errorTag', 'fromFunction', 'idx']) #------------------------ if printlogs: print("=======================================================") print("SUMMARY:") if len(UnverifiedList) > 0: print("{}/{} structures were successfully verfied".format(len(compounds_r1), len(compounds))) print("{}/{} structure(s) was/were unsuccessfully verfied and need to be rechecked".format(len(UnverifiedList), len(compounds))) else: print("{}/{} structure were successfully verfied".format(len(compounds_r1), len(compounds))) if len(UnNormalizedList) > 0: print("{}/{} structures were successfully normalized".format(len(NormalizedList), len(compounds))) if len(compounds_r1) > len(NormalizedList): print("{}/{} structure(s) was/were unsuccessfully normalized and need to be rechecked".format(len(compounds_r1)-len(NormalizedList), len(compounds))) print("=======================================================") else: print("{}/{} structures were successfully normalized".format(len(NormalizedList), len(compounds))) print("-------------------------------------------------------") if len(UnNormalizedList) > 0: if getUnnormalizedStruct == False: print("set 'getUnnormalizedStruct=True' to get the list of all unnormalized structures. \n") #------------------------ if getUnnormalizedStruct: if exportCSV: filePath = outputPath + "UnnormalizedList.csv" if os.path.isdir(outputPath): df1.to_csv(filePath, index=False) else: os.makedirs(outputPath) df1.to_csv(filePath, index=False) else: return df1 else: if removeDuplicates: DeduplicatedNormalizedList = molDeduplicate(NormalizedList, printlogs=False) _, DuplicatedNormalizedIdxList = molDeduplicate(NormalizedList, getDuplicates=True, getDuplicatesIdx=True, printlogs=False) if len(DeduplicatedNormalizedList) == len(NormalizedList): if printlogs: print("No duplicate was found (in {} normalized structures)".format(len(NormalizedList))) if getDuplicatedIdx: df0 = pd.DataFrame(DuplicatedNormalizedIdxList) df0.columns = ['idx', 'matchedIdx'] df0['fromFunction'] = 'normalizeComplete()' if exportCSV: filePath = outputPath + "DuplicatedNormalizedIdxList.csv" if os.path.isdir(outputPath): df0.to_csv(filePath, index=False) else: os.makedirs(outputPath) df0.to_csv(filePath, index=False) else: return df0 else: df0 = pd.DataFrame(DeduplicatedNormalizedList) df0.columns = ['SMILES'] if exportCSV: filePath = outputPath + "NoDuplicatedNormalizedIdxList.csv" if os.path.isdir(outputPath): df0.to_csv(filePath, index=False) else: os.makedirs(outputPath) df0.to_csv(filePath, index=False) else: return df0 else: if printlogs: print("=============================================================================") print("There are {} unique structures filtered from {} initial normalized structures".format(len(DeduplicatedNormalizedList), len(NormalizedList))) print("=============================================================================") print("To get detailed information, please follow steps below:") print("(1) Rerun normalizeComplete() with setting 'removeDuplicates=False' to get the list of all normalized structures") print("(2) Run ultils.molDeduplicate() with setting 'getDuplicates=True'to get the list of duplicated structures \n") print("--OR--") print("Rerun normalizeComplete() with setting 'getDuplicates=True', 'exportCSV'=True, and 'outputPath=<Directory>' to export a csv file containing the list of duplicated structures \n") print("--OR--") print("Run ultils.molDeduplicate() with settings 'getDuplicates=True' and 'getDuplicatesIndex=True' to get the list of duplicated structures with detailed indices") if getDuplicatedIdx: df2 =
pd.DataFrame(DuplicatedNormalizedIdxList)
pandas.DataFrame
import pandas as pd import json_parser import trace_visualizer import logging import os.path import plotly.graph_objects as go def parse_k8s_kpis_as_dataframe(filename): # Parses a KPI file consisting of several lines of raw KPIs as output by the following kubectl command # kubectl get - -raw / apis / metrics.k8s.io / v1beta1 / pods / >> kpidump.log d = json_parser.load_json_file(filename) df = pd.DataFrame(data=d) df = df.drop_duplicates(subset=['pod', 'container', 'namespace', 'timestamp']) df['pod+container'] = df['pod'] + '+' + df['container'] # CPU is in full cores and memory in MB. Window in seconds # pd.set_option('display.max_rows', 100) # display(df) # Group KPIs per namespace data_to_plot = df.groupby(['timestamp', 'namespace']).sum().loc[:, ['cpu', 'memory']] data_to_plot['pod count'] = df.groupby(['timestamp', 'namespace']).agg({"pod": "nunique"}) data_to_plot['container count'] = df.groupby(['timestamp', 'namespace']).agg({"pod+container": "nunique"}) data_to_plot = data_to_plot.reset_index() return data_to_plot def import_pcap_as_dataframe(pcap_files, http2_ports, wireshark_version, logging_level=logging.INFO): # Imports one or more pcap files as a dataframe with the packet parsing implemented in the trace_visualizer code # Accept either a single path or a list or paths if not type(pcap_files) is list: pcap_files = [pcap_files] current_verbosity_level = trace_visualizer.application_logger.level try: # Reduce verbosity trace_visualizer.application_logger.setLevel(logging_level) packets_df_list = [] if len(pcap_files) == 0: return None for idx, file in enumerate(pcap_files): if os.path.exists(file): pdml_file = trace_visualizer.call_wireshark(wireshark_version, file, http2_ports) packet_descriptions = trace_visualizer.import_pdml(pdml_file, diagrams_to_output='raw') packets_df = pd.DataFrame(packet_descriptions, columns=['ip_src', 'ip_dst', 'frame_number', 'protocol', 'msg_description', 'timestamp', 'timestamp_offset']) packets_df['datetime'] = pd.to_datetime(packets_df['timestamp'], unit='s') packets_df['msg_description'] = packets_df['msg_description'].str.replace('\\n', '\n') packets_df['summary_raw'] = [trace_visualizer.packet_to_str(p).protocol for p in packet_descriptions] # Generate summary column packets_df['summary'] = packets_df.apply(_generate_summary_row, axis=1) packets_df['file'] = file packets_df['file_idx'] = idx packets_df_list.append(packets_df) # Consolidated packet list packets_df =
pd.concat(packets_df_list)
pandas.concat
import os import math import warnings import torch import torch.nn as nn import numpy as np import pandas as pd import shutil as sh from glob import glob from PIL import Image from copy import copy from tqdm import tqdm from pathlib import Path from datetime import datetime import libs.dirs as dirs import libs.commons as commons import libs.utils as utils from libs.index import IndexManager from libs.get_frames_class import GetFramesFull # User Input def get_input_network_type(net_type_dict, message="network"): ''' Select bewteen reference or semiauto network/dataset ''' dictLen = len(net_type_dict) print("\nEnter {} type code from list:\n".format(message)) print("Code\tName") for i in range(dictLen): print("{}:\t{}".format(i, net_type_dict[i])) input_code = int(input()) if input_code < dictLen: target_net = net_type_dict[input_code] else: target_net = "UNKNOWN" while target_net not in net_type_dict.values(): input_code = input("Unknown network. Please select a network from the list.\n") try: input_code = int(input_code) except ValueError: continue if input_code < dictLen: target_net = net_type_dict[input_code] return target_net def get_input_target_class(net_class_dict): ''' Get user input of net target class. Applicable to rede3 only. ''' classLen = len(net_class_dict) print("Enter the target class code from list:\n") print("Code\tClass name") for i in range(classLen): print("{}:\t{}".format(i, net_class_dict[i])) input_class_code = int(input()) if input_class_code < classLen: event_class = net_class_dict[input_class_code] else: event_class = "UNKNOWN" while event_class not in net_class_dict.values(): input_class_code = input("Unknown class. Please select a class from the list.\n") try: input_class_code = int(input_class_code) except ValueError: continue if input_class_code < classLen: event_class = net_class_dict[input_class_code] return event_class # Reports and logging def get_class_counts(index, class_column, pos_label, neg_label): ''' Returns index class counts according to input labels. index: pandas DataFrame DataFrame with the elements to be counted. pos_label, neg_label: any object or list labels to be compared to elements of index[class_column]. If any neg_label is None, the count of negative elements will be <Total index size> - <positive count>. ''' if isinstance(pos_label, str) or not(hasattr(pos_label, "__iter__")): pos_label = [pos_label] if isinstance(neg_label, str) or not(hasattr(neg_label, "__iter__")): neg_label = [neg_label] posCount = 0 for label in pos_label: posCount += index.groupby(class_column).get_group(label).count()[0] negCount = 0 for label in neg_label: if label is None: negCount = index.shape[0] - posCount break # Else, count normally negCount += index.groupby(class_column).get_group(label).count()[0] return posCount, negCount def get_net_class_counts(index_path, net, target_class=None): ''' Chooses correct class labels to use in a get_class_counts function call according to input net and target_class. ''' assert Path(index_path).is_file(), "Index path does not exist." index = remove_duplicates(pd.read_csv(index_path, low_memory=False), "FrameHash") if (net == 3) and (target_class not in commons.rede3_classes.values()): raise ValueError("Net 3 requires a valid target_class.") if net == 1: classColumn = "rede1" posLabel = commons.rede1_positive negLabel = commons.rede1_negative mask = None elif net ==2: classColumn = "rede2" posLabel = commons.rede2_positive negLabel = commons.rede2_negative mask = (index["rede1"] == commons.rede1_positive) elif net == 3: classColumn = "rede3" posLabel = target_class negLabel = None mask = (index["rede2"] == commons.rede2_positive) if mask is not None: # Pass only relevant fraction of index to get_class_counts index = index.loc[mask, :] # Translate to binary classes index[classColumn] = translate_labels(index[classColumn], classColumn) return get_class_counts(index, classColumn, posLabel, negLabel) def save_seed_log(log_path, seed, id_string): # Save sample seed if Path(log_path).is_file(): f = open(log_path, 'a') else: f = open(log_path, 'w') f.write("{}\n{}\n".format(id_string, seed)) f.close() def get_loop_stats(loop_folder): # TODO: Finish function statsDf = pd.DataFrame() return statsDf def make_report(report_path, sampled_path, manual_path, automatic_path, prev_unlabeled_path, train_info, rede=1, target_class=None, show=False): sampledIndex = pd.read_csv(sampled_path) manualIndex = pd.read_csv(manual_path) autoIndex = pd.read_csv(automatic_path) prevUnlabelIndex = pd.read_csv(prev_unlabeled_path) # Get report information numUnlabel = prevUnlabelIndex.shape[0] numSampled = sampledIndex.shape[0] sampledNaoDuto = 0 if rede == 1: sampledNaoDuto = sampledIndex.groupby("rede1").get_group("Confuso").count()[0]+\ sampledIndex.groupby("rede1").get_group("Nada").count()[0] sampledDuto = sampledIndex.groupby("rede1").get_group(commons.rede1_positive).count()[0] sampledNaoEvento = 0 sampledEvento = sampledIndex.groupby("rede2").get_group(commons.rede2_positive).count()[0] if rede < 3: sampledNaoEvento = sampledIndex.groupby("rede2").get_group(commons.rede2_negative).count()[0] sampledTotal = sampledDuto + sampledNaoDuto naoDutoPercent = sampledNaoDuto/sampledTotal*100 dutoPercent = sampledDuto/sampledTotal*100 eventoPercent = sampledEvento/sampledTotal*100 naoEventoPercent = sampledNaoEvento/sampledTotal*100 if rede == 1: negLabelName = commons.rede1_negative posLabelName = commons.rede1_positive cumNeg = manualIndex.groupby("rede1").get_group('Nada').count()[0]+\ manualIndex.groupby("rede1").get_group('Confuso').count()[0] cumPos = manualIndex.groupby("rede1").get_group(commons.rede1_positive).count()[0] # Exception for case where there are no positive or negative images automatically annotated if commons.rede1_negative in set(autoIndex['rede1'].values): autoNeg = autoIndex.groupby("rede1").get_group(commons.rede1_negative).count()['rede1'] else: autoNeg = 0 if commons.rede1_positive in set(autoIndex['rede1'].values): autoPos = autoIndex.groupby("rede1").get_group(commons.rede1_positive).count()['rede1'] else: autoPos = 0 elif rede == 2: negLabelName = commons.rede2_negative posLabelName = commons.rede2_positive cumNeg = manualIndex.groupby("rede2").get_group(commons.rede2_negative).count()[0] cumPos = manualIndex.groupby("rede2").get_group(commons.rede2_positive).count()[0] # Exception for case where there are no positive or negative images automatically annotated if commons.rede2_negative in set(autoIndex['rede2'].values): autoNeg = autoIndex.groupby("rede2").get_group(commons.rede2_negative).count()['rede2'] else: autoNeg = 0 if commons.rede2_positive in set(autoIndex['rede2'].values): autoPos = autoIndex.groupby("rede2").get_group(commons.rede2_positive).count()['rede2'] else: autoPos = 0 elif rede == 3: negLabelName = "Nao"+target_class posLabelName = target_class sampledClassPos = sampledIndex.groupby("rede3").get_group(posLabelName).count()[0] sampledClassNeg = sampledIndex.groupby("rede2").get_group(commons.rede2_positive).count()[0] - sampledClassPos sampledTotal = sampledIndex.shape[0] sampleNegPercent = sampledClassNeg/sampledTotal*100 samplePosPercent = sampledClassPos/sampledTotal*100 cumPos = manualIndex.groupby("rede3").get_group(posLabelName).count()[0] cumNeg = manualIndex.groupby("rede2").get_group(commons.rede2_positive).count()[0] - cumPos # Exception for case where there are no positive or negative images automatically annotated if posLabelName in set(autoIndex['rede3'].values): autoPos = autoIndex.groupby("rede3").get_group(posLabelName).count()['rede3'] else: autoPos = 0 autoNeg = autoIndex.groupby("rede2").get_group(commons.rede2_positive).count()[0] - autoPos cumTotal = cumPos + cumNeg cumNegPercent = cumNeg/cumTotal*100 cumPosPercent = cumPos/cumTotal*100 autoLabel = autoIndex.shape[0] autoLabelPercent = autoLabel/numUnlabel*100 # Compose manual image distribution string distributionString = "Manual annotation distribution:\n" if (rede == 1) or (rede == 2): distributionString +=\ "NaoDuto: {} images ({:.2f} %)\n\ Duto: {} images ({:.2f} %)\n\ NaoEvento {} images ({:.2f} %)\n\ Evento: {} images ({:.2f} %)\n\ Total: {} images (100%)\n".format(sampledNaoDuto, naoDutoPercent, sampledDuto, dutoPercent, sampledNaoEvento, naoEventoPercent, sampledEvento, eventoPercent, sampledTotal) if rede == 3: distributionString +=\ "{}:\t{} images ({:.2f} %)\n\ {}:\t\t{} images ({:.2f} %)\n\ Total\t\t{} images (100 %)\n".format(posLabelName, sampledClassPos, samplePosPercent, negLabelName, sampledClassNeg, sampleNegPercent, sampledTotal) # Assemble report string reportString = "Rede{}.\n{} unlabeled images remain. Sampled {} images for manual annotation.\n".format(rede, numUnlabel, numSampled)+\ distributionString+\ "Cumulative manual annotation distribution:\n\ {}: {} images ({:.2f} %)\n\ {}: {} images ({:.2f} %)\n\ Total: {} images (100%)\n".format(negLabelName, cumNeg, cumNegPercent, posLabelName, cumPos, cumPosPercent, cumTotal)+\ "Train Hyperparams:\n\ Num Epochs: {}\n\ Batch Size: {}\n\ Optimizer: Adam\n\ Train Results:\n\ Elapsed Time: {}m\n\ Best val loss: {:.4f}\n\ Best val accuracy: {:.2f} %\n".format(1,2,3,4,5)+\ "Thresholds val (99% pos ratio):\n\ Upper 99% positive ratio: {:.4f}, {:.2f} % ground truth positives\n\ Lower 1% positive ratio: {:.4f}, {:.2f} % ground truth positives\n\ Validation: {}/{} = {:.2f} % images annotated\n\ Automatic Annotation:\n\ Imgs Positivas: {}; Imgs Negativas: {}\n\ {}/{} = {:.2f} % imagens anotadas automaticamente\n".format(1.,2.,3.,4.,5.,6.,7., autoPos, autoNeg, autoLabel,numUnlabel, autoLabelPercent) # TODO: Add train info # Write report # with open(report_path, 'w') as f: # f.write(reportString) utils.write_string(reportString, report_path, mode='w') if show: print(reportString) return reportString # Automatic labeling def automatic_labeling(outputs, outputs_index, unlabeled_index, upper_thresh, lower_thresh, rede, target_class=None, verbose=True): ''' Return a DataFrame whose entries are taken from unlabeled_index according to calculated indexes. The indexes are chosen so that their outputs are either above the upper threshold or below the lower. ''' upperIndexes, lowerIndexes = get_auto_label_indexes(outputs, outputs_index, upper_thresh, lower_thresh, verbose=True) autoIndex = get_classified_index(unlabeled_index, upperIndexes, lowerIndexes, rede, index_col="FrameHash", target_class=target_class, verbose=False) return autoIndex def get_auto_label_indexes(outputs, outputs_index, upper_thresh, lower_thresh, verbose=True): datasetLen = len(outputs) indexes = outputs_index upperIndexes = indexes[np.greater(outputs, upper_thresh)] lowerIndexes = indexes[np.less(outputs, lower_thresh)] totalClassified = len(upperIndexes) + len(lowerIndexes) if verbose: print("\nIdeal Upper Threshold: ", upper_thresh) print("Ideal Lower Threshold: ", lower_thresh) print("\nImages in:") print("upperIndexes: ", len(upperIndexes)) print("lowerIndexes: ", len(lowerIndexes)) print("\nImages automatically labeled: {}/{} = {:.2f} %".format(totalClassified, datasetLen, (totalClassified)/datasetLen*100)) return upperIndexes, lowerIndexes def get_classified_index(index, pos_hashes, neg_hashes, rede, target_class=None, index_col="FrameHash", verbose=True): ''' Create new auto labeled index from the unlabeled_images index and positive and negative indexes lists. ''' if index_col is not None: index.set_index("FrameHash", drop=False, inplace=True) if rede >= 1: positiveLabel1 = commons.rede1_positive negativeLabel1 = commons.rede1_negative if rede >= 2: positiveLabel2 = commons.rede2_positive negativeLabel2 = commons.rede2_negative if rede >= 3: assert target_class in commons.rede3_classes.values(), "Unknown target_class value." positiveLabel3 = target_class newPositives = index.reindex(labels=pos_hashes, axis=0, copy=True) newNegatives = index.reindex(labels=neg_hashes, axis=0, copy=True) datasetLen = len(index) lenPositives = len(newPositives) lenNegatives = len(newNegatives) # Set positive and negative class labels if rede == 1: newPositives["rede1"] = [positiveLabel1]*lenPositives newNegatives["rede1"] = [negativeLabel1]*lenNegatives if rede == 2: newPositives["rede1"] = [positiveLabel1]*lenPositives newNegatives["rede1"] = [positiveLabel1]*lenNegatives newPositives["rede2"] = [positiveLabel2]*lenPositives newNegatives["rede2"] = [negativeLabel2]*lenNegatives if rede == 3: newPositives["rede1"] = [positiveLabel1]*lenPositives newNegatives["rede1"] = [positiveLabel1]*lenNegatives newPositives["rede2"] = [positiveLabel2]*lenPositives newNegatives["rede2"] = [positiveLabel2]*lenNegatives newPositives["rede3"] = [positiveLabel3]*lenPositives newLabeledIndex = pd.concat([newPositives, newNegatives], axis=0, sort=False) # Pra que isso de novo? if rede == 2: newPositives["rede1"] = [positiveLabel1]*lenPositives if verbose: print(newLabeledIndex.shape) print("Unlabeled images: ", datasetLen) print("New pos labels: ", lenPositives) print("New neg labels: ", lenNegatives) print("Total new labels: ", lenPositives+lenNegatives) print("New labels len: ", newLabeledIndex.shape) print("\nAutomatic anotation of {:.2f} % of input images.".format(len(newLabeledIndex)/datasetLen*100)) return newLabeledIndex ## Threshold finding def compute_thresholds(val_outputs, labels, upper_ratio=0.95, lower_ratio=0.01, resolution=0.001, val_indexes=None): val_outputs = np.squeeze(utils.normalize_array(val_outputs)) val_outputs = val_outputs[:, 0] resBits = len(str(resolution)) -2 # Maximum resolution is to test a threshold on all output values if resolution == 'max': upperThreshList = np.sort(val_outputs) lowerThreshList = copy(upperThreshList)[::-1] else: lowerThreshList = np.arange(0., 1., resolution) upperThreshList = np.arange(1., 0., -resolution) # upperThreshList = np.arange(0., 1., resolution) # lowerThreshList = np.arange(1., 0., -resolution) # Find upper threshold idealUpperThresh = find_ideal_upper_thresh( val_outputs, labels, upperThreshList, ratio=upper_ratio)#, verbose=True) # Find lower threshold idealLowerThresh = find_ideal_lower_thresh( val_outputs, labels, lowerThreshList, ratio=lower_ratio) idealLowerThresh = np.around(idealLowerThresh, decimals=resBits) idealUpperThresh = np.around(idealUpperThresh, decimals=resBits) ## If thresholds break, take the mean value ## TODO: Instead of choosing the mean, choose a thresh that maximizes AUC # if idealUpperThresh < idealLowerThresh: # meanThresh = (idealUpperThresh+idealLowerThresh)/2 # idealUpperThresh = meanThresh # idealLowerThresh = meanThresh if val_indexes is not None: get_auto_label_indexes(val_outputs, val_indexes, idealUpperThresh, idealLowerThresh, verbose=True) return idealUpperThresh, idealLowerThresh def upper_positive_relative_ratio(outputs, labels, threshold): ''' Compute ratio of ground truth positive examples above given threshold relative only to the examples above the threshold. ''' datasetLen = len(outputs) mask = np.greater(outputs, threshold) indexes = np.arange(datasetLen)[mask] if len(indexes) > 0: posPercent = np.sum(labels[indexes] == 0)/len(indexes) # Positive class index is 0 else: return 1. return posPercent def lower_positive_ratio(outputs, labels, threshold): ''' Compute ratio of ground truth positive examples below a given threshold relative to the entire dataset. ''' datasetLen = len(outputs) mask = np.less(outputs, threshold) indexes = np.arange(datasetLen)[mask] if len(indexes) > 0: posPercent = np.sum(labels[indexes] == 0)/datasetLen # Positive class index is 0 else: return 0. return posPercent def find_ideal_lower_thresh(outputs, labels, threshold_list=None, ratio=0.01, resolution=0.001, verbose=False): if verbose: print("\nThreshold\tLower Pos Ratio") if threshold_list is None: threshold_list = np.arange(0., 1., resolution) for i in tqdm(range(len(threshold_list))): lowerThresh = threshold_list[i] posRatio = lower_positive_ratio(outputs, labels, lowerThresh) if verbose: print("{:.2f}\t\t{:.2f}".format(lowerThresh, posRatio)) # Print search progress if (posRatio > ratio) and (ratio > 0.): if i-1 < 0: print("\nThreshold could not be found.") return None idealThresh = threshold_list[i-1] posRatio = lower_positive_ratio(outputs, labels, idealThresh) print("\nFound ideal Lower threshold {:.3f} with {:.2f} % ground truth positives.".format(idealThresh, posRatio*100)) return idealThresh def find_ideal_upper_thresh(outputs, labels, threshold_list=None, ratio=0.95, resolution=0.001, verbose=False): if verbose: print("\nThreshold\tUpper Pos Ratio") if threshold_list is None: threshold_list = np.arange(1., 0., -resolution) for i in tqdm(range(len(threshold_list))): upperThresh = threshold_list[i] posRatio = upper_positive_relative_ratio(outputs, labels, upperThresh) if verbose: print("{:.2f}\t\t{:.2f}".format(upperThresh, posRatio)) # Print search progress if (posRatio < ratio) and (ratio < 1.): if i-1 < 0: print("\nThreshold could not be found.") return None idealThresh = threshold_list[i-1] posRatio = upper_positive_relative_ratio(outputs, labels, idealThresh) print("\nFound ideal Upper threshold {:.3f} with {:.2f} % ground truth positives.".format(idealThresh, posRatio*100)) return idealThresh ## Dataset files manipulation def df_to_csv(dataframe, save_path, verbose=True): dirs.create_folder(Path(save_path).parent) dataframe.to_csv(save_path, index=False) if verbose: print("Saved DataFrame to ", save_path) def get_ref_dataset_val_video_list(folder_path, verbose=False): ''' Get a list of video hashes from a dataset folder with a specific file tree. folder_path/ xxx/hash1/ yyy/hash2/ ... Returns non-duplicated list of found hashes. ''' globString = str(folder_path)+"/**" folderList = glob(globString, recursive=True) videoList = [] for pathEntry in folderList: relString = Path(pathEntry).relative_to(folder_path) if len(relString.parts) == 2: videoHash = relString.parts[-1] videoList.append(videoHash) videoList = list(set(videoList)) return videoList def split_validation_set_from_video_list(df_path, index_list, key_column="HashMD5", verbose=False): ''' Split a DataFrame given by df_path in two, according to index_list. The DataFrame is split in two other: one containing only entries with indexes in index_list; the other is the converse, containing none of the given indexes. Arguments: df_path: str filepath Filepath to target DataFrame saved in csv format. index_list: list List of indices to guide the split. One split set will contain only entries with indexes in this list and the other set will contain the remaining entries. key_column: str Name of the DataFrame column where the indexes of index_list will be searched. Returns: trainIndex: DataFrame DataFrame subset from input DataFrame. Contains only entries with indexes not present in index_list. valIndex: DataFrame DataFrame subset from input DataFrame. Contains only entries with indexes present in index_list. ''' index = pd.read_csv(df_path) index.dropna(axis=0, subset=[key_column], inplace=True) valHash = index_list trainHash = set(index[key_column]) - set(valHash) # valHash = utils.compute_file_hash_list(index_list) index.set_index(key_column, drop=False, inplace=True) trainIndex = index.loc[trainHash, :].copy() valIndex = index.loc[valHash, :].copy() trainIndex.reset_index(inplace=True, drop=True) valIndex.reset_index(inplace=True, drop=True) return trainIndex, valIndex def merge_indexes(index_path_list, key_column): ''' Read a list of DataFrame paths, concatenates them and remove duplicated elements from resulting DF. ''' # assert (len(index_path_list) >= 2) and \ # not(isinstance(index_path_list, str)), \ # "Argument index_path_list must be a list of two or more DataFrame paths." assert hasattr(index_path_list, "__iter__") and \ not(isinstance(index_path_list, str)), \ "Argument index_path_list must be a list of two or more DataFrame paths." indexListNoDups = [remove_duplicates(pd.read_csv(x), key_column) for x in index_path_list] if len(indexListNoDups) > 1: newIndex =
pd.concat(indexListNoDups, axis=0, sort=False)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sat Aug 29 11:29:34 2020 @author: Pavan """ import pandas as pd pd.set_option('mode.chained_assignment', None) import numpy as np import math import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as mtick mpl.rcParams['font.family'] = 'serif' import scipy.stats as stats import itertools from datetime import datetime, date import os import yfinance as yf # from functools import partial from american_option_pricing import american_option import density_utilities as du import prediction_ensemble_py as pe import warnings warnings.simplefilter(action='ignore', category=FutureWarning) """ ####################################################################################### Import Data ####################################################################################### """ data =
pd.read_excel('spy.xlsx', index_col=None)
pandas.read_excel
import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler import os process_raw = pd.read_csv(os.getcwd() + '/tf_scripts/suggester/process.csv') features = ['RoomCount', 'EdgeCount', 'SubStepsCount', 'FPcount'] process_data =
pd.concat([process_raw], axis=1)
pandas.concat
import subprocess from datetime import datetime import pandas as pd def sacct_jobs(account_query, d_from, d_to='', debugging=False, write_txt='', sacct_file='', serialize_frame=''): """Ingest job record information from slurm via sacct and return DataFrame. Parameters ------- account_query: str String query to be sent to sacct via -A flag. d_from: date str Beginning of the query period, e.g. '2019-04-01T00:00:00' d_to: optional, date str End of the query period, e.g. '2020-01-01T00:00:00' Defaults to now if empty. debugging: boolean, optional Boolean for reporting progress to stdout. Default False. write_txt: str, optional Writes the results of the raw sacct query to given file. If empty, no file is created. Defaults to the empty string. sacct_file: str, optional Loads a raw query from file. If empty, query is rerun. Defaults to the empty string. serialize_frame: str, optional Pickle the resulting DataFrame. If empty, pickling is skipped. Defaults to the empty string. Returns ------- DataFrame Returns a standard pandas DataFrame, or None if no jobs found. """ # d_to boilerplate if d_to == '': now = datetime.now() d_to = now.strftime('%Y-%m-%dT%H:%M:%S') headers = ['jobid', 'user', 'account', 'submit', 'start', 'end', 'ncpus', 'nnodes', 'reqmem', 'timelimit', 'state', 'reqgres', 'reqtres', 'priority', 'partition'] data = '' if sacct_file == '': if account_query != '': base_cmd = ['sacct', '-aX', '-A', account_query, '-S', d_from, '-E', d_to, '-p', '--delimiter', '"|"', '-n', '--units=M'] else: base_cmd = ['sacct', '-aX', '-S', d_from, '-E', d_to, '-p', '--delimiter', '"|"', '-n', '--units=M'] base_cmd.append('-o') base_cmd.append(','.join(headers)+'%36') data = subprocess.check_output(base_cmd).decode('UTF-8') if write_txt != '': with open(write_txt, 'w') as f_id: f_id.write('%s' % data) else: with open(sacct_file, 'r') as f_id: data = f_id.read() if debugging: print('Done sacct query') job_frame = pd.DataFrame([x.split('"|"') for x in data.split('\n')]) job_frame = job_frame.iloc[:, :-1] # Due to split implementation... job_frame = job_frame.iloc[:-1, :] # Due to split implementation... # Edge case before things start to happen... if job_frame.empty: return None job_frame.columns = headers # Align sacct to elasticsearch implementation job_frame['reqcpus'] = pd.to_numeric(job_frame['ncpus']) job_frame['nnodes'] = pd.to_numeric(job_frame['nnodes']) job_frame['submit'] = pd.to_datetime(job_frame['submit']) job_frame['start'] = pd.to_datetime(job_frame['start'], errors='coerce') job_frame['end'] =
pd.to_datetime(job_frame['end'], errors='coerce')
pandas.to_datetime
# %% 说明 # ------------------------------------------------------------------->>>>>>>>>> # 最后更新ID name的时候用这个脚本,从师兄的list汇总完成替换 # os.chdir("/Users/zhaohuanan/NutstoreFiles/MyNutstore/Scientific_research/2021_DdCBE_topic/Manuscript/20220311_My_tables") # ------------------------------------------------------------------->>>>>>>>>> # %% imports and settings from pandarallel import pandarallel import datar.all as r from datar import f import plotnine as p9 import os import numpy as np import pandas as pd import seaborn as sns import glob sns.set() pd.set_option("max_colwidth", 100) # column最大宽度
pd.set_option("display.width", 250)
pandas.set_option
import re import os import xml.etree.ElementTree as ET import pandas as pd import boto3 import csv from urllib.parse import unquote_plus s3_client = boto3.client('s3') s3 = boto3.resource('s3') from xml_2_data import mnfp_2_data from xml_2_data import mnfp1_2_data from xml_2_data import mnfp2_2_data from nmfp_rename_vars import nmfp_rename_vars def lambda_handler(event, context): # parse the S3 triggered event debug = False if debug: bucket = "fundmapper" key = "02-RawNMFPs/S000007665/2011-01-06-S000007665.txt" else: record = event['Records'][0] bucket = record['s3']['bucket']['name'] key = unquote_plus(record['s3']['object']['key']) prefix, series_id, filing = key.split("/") print(bucket) print(series_id) print(filing) print(key) # store temporarily print("download") s3_client.download_file(bucket, key, f"/tmp/{series_id}_{filing}.txt") print("downloaded") # (s3.Object(bucket, key) # .delete()) print("deleted") # read filing = open("/tmp/" + series_id + "_" + filing + ".txt", 'r').read() filing = filing.replace(":", "") filing_type = re.search("<TYPE>(.*)\n", filing).group(1) filing_date = int(re.sub("[^0-9]", "", re.search("CONFORMED PERIOD OF REPORT(.*)\n", filing).group(1))[0:6]) filing_year = int(re.sub("[^0-9]", "", re.search("CONFORMED PERIOD OF REPORT(.*)\n", filing).group(1))[0:4]) filing = (filing.replace("\n", "") .replace(' xmlns="http//www.sec.gov/edgar/nmfpsecurities"', '') .replace(' xmlns="http//www.sec.gov/edgar/nmfpfund"', "")) print("convert") if filing_type in ["N-MFP", "N-MFP/A"]: series_df, class_df, holdings, all_collateral = mnfp_2_data(filing) series_df, class_df, holdings, all_collateral = nmfp_rename_vars(filing_type, series_df, class_df, holdings, all_collateral) if filing_type in ["N-MFP1", "N-MFP1/A"]: series_df, class_df, holdings, all_collateral = mnfp1_2_data(filing) if filing_type in ["N-MFP2", "N-MFP2/A"]: series_df, class_df, holdings, all_collateral = mnfp2_2_data(filing) # drop , from all fields, GLUE doesn't get it seems... series_df.replace({",": " "}, regex=True, inplace=True) class_df.replace({",": " "}, regex=True, inplace=True) holdings.replace({",": " "}, regex=True, inplace=True) all_collateral.replace({",": " "}, regex=True, inplace=True) # add date series_df['date'], class_df['date'], holdings['date'], all_collateral[ 'date'] = filing_date, filing_date, filing_date, filing_date # add filing type series_df['filing_type'], class_df['filing_type'], holdings['filing_type'], all_collateral[ 'filing_type'] = filing_type, filing_type, filing_type, filing_type, # add series id series_df['series_id'], class_df['series_id'], holdings['series_id'], all_collateral[ 'series_id'] = series_id, series_id, series_id, series_id # holdings holdings_str_columns = ['filing_type', 'repurchaseAgreement', 'securityDemandFeatureFlag', 'guarantorList', 'InvestmentIdentifier', 'NRSRO', 'isFundTreatingAsAcquisitionUnderlyingSecurities', 'finalLegalInvestmentMaturityDate', 'cik', 'weeklyLiquidAssetSecurityFlag', 'rating', 'investmentCategory', 'repurchaseAgreementList', 'dailyLiquidAssetSecurityFlag', 'securityCategorizedAtLevel3Flag', 'CUSIPMember', 'investmentMaturityDateWAM', 'ISINId', 'LEIID', 'titleOfIssuer', 'securityEnhancementsFlag', 'InvestmentTypeDomain', 'securityGuaranteeFlag', 'fundAcqstnUndrlyngSecurityFlag', 'securityEligibilityFlag', 'otherUniqueId', 'demandFeatureIssuerList', 'nameOfIssuer', 'illiquidSecurityFlag', 'series_id'] holdings_float_columns = ['yieldOfTheSecurityAsOfReportingDate', 'investmentMaturityDateWAL', 'AvailableForSaleSecuritiesAmortizedCost', 'includingValueOfAnySponsorSupport', 'excludingValueOfAnySponsorSupport', 'InvestmentOwnedBalancePrincipalAmount', 'percentageOfMoneyMarketFundNetAssets', ] holdings_int_columns = ['date', 'issuer_number'] holdings_columns = holdings_str_columns + holdings_float_columns + holdings_int_columns holdings_data = pd.DataFrame(columns=holdings_columns) holdings_data = holdings_data.append(holdings) del holdings # collateral collateral_str_columns = ['ctgryInvestmentsRprsntsCollateral', 'filing_type', 'LEIID', 'principalAmountToTheNearestCent', 'maturityDate', 'series_id', 'nameOfCollateralIssuer'] collateral_int_columns = ['issuer_number', 'date'] collateral_float_columns = ['couponOrYield', 'valueOfCollateralToTheNearestCent', 'AssetsSoldUnderAgreementsToRepurchaseCarryingAmounts', 'CashCollateralForBorrowedSecurities'] collateral_columns = collateral_str_columns + collateral_int_columns + collateral_float_columns collateral_data =
pd.DataFrame(columns=collateral_columns)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected =
DataFrame([[2, 1], [2, 1]], columns=['b', 'a'])
pandas.DataFrame
""" TRAIN CLASSIFIER Disaster Resoponse Project Udacity - Data Science Nanodegree How to run this script (Example) > python train_classifier.py ../data/DisasterResponse.db classifier.pkl Arguments: 1) SQLite db path (containing pre-processed data) 2) pickle file name to save trained ML model """ # import libraries import pandas as pd import numpy as np import os import pickle import bz2 from sqlalchemy import create_engine import re import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from nltk import pos_tag from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer, accuracy_score, f1_score, fbeta_score, classification_report from scipy.stats import hmean from scipy.stats.mstats import gmean import time import datetime import sys # import warnings filter from warnings import simplefilter # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) nltk.download(['punkt', 'wordnet', 'averaged_perceptron_tagger', 'stopwords']) # load data from database def load_data(database_filepath): """ Load Data Function Args: database_filepath - path to SQLite db Returns: X - Series, Series containing features Y - Dataframe, dataframe containing labels i.e. categories category_names - list, list containing category names used for data visualization (app) genre_names - list, list containing genre_names used for data visualization (app) """ engine = create_engine('sqlite:///'+database_filepath) # 'messages_categories' is the name of the table in database DisasterResponse.db df =
pd.read_sql_table('messages_categories',engine)
pandas.read_sql_table
import numpy as np import pandas as pd from sapextractor.algo.o2c import o2c_common from sapextractor.utils import constants from sapextractor.utils.change_tables import extract_change from sapextractor.utils.filters import case_filter from sapextractor.utils.graph_building import build_graph from sapextractor.algo.o2c import payment_part def extract_changes_vbfa(con, dataframe, mandt="800"): if len(dataframe) > 0: case_vbeln = dataframe[["case:concept:name", "VBELN"]].to_dict("records") else: case_vbeln = [] case_vbeln_dict = {} for x in case_vbeln: caseid = x["case:concept:name"] vbeln = x["VBELN"] if vbeln not in case_vbeln_dict: case_vbeln_dict[vbeln] = set() case_vbeln_dict[vbeln].add(caseid) ret = [] for tup in [("VERKBELEG", "VBAK"), ("VERKBELEG", "VBAP"), ("VERKBELEG", "VBUK"), ("LIEFERUNG", "LIKP"), ("LIEFERUNG", "LIPS"), ("LIEFERUNG", "VBUK")]: changes = extract_change.apply(con, objectclas=tup[0], tabname=tup[1], mandt=mandt) changes = {x: y for x, y in changes.items() if x in case_vbeln_dict} for x, y in changes.items(): y = y[[xx for xx in y.columns if xx.startswith("event_")]] cols = {x: x.split("event_")[-1] for x in y.columns} cols["event_timestamp"] = "time:timestamp" y = y.rename(columns=cols) y["VBELN"] = y["AWKEY"] y["concept:name"] = y["CHANGEDESC"] for cc in case_vbeln_dict[x]: z = y.copy() z["case:concept:name"] = cc ret.append(z) if ret: ret = pd.concat(ret) else: ret = pd.DataFrame() return ret def extract_bkpf_bsak(con, dataframe, gjahr="2020", mandt="800"): if len(dataframe) > 0: case_vbeln = dataframe[["case:concept:name", "VBELN"]].to_dict("records") else: case_vbeln = [] case_vbeln_dict = {} for x in case_vbeln: caseid = x["case:concept:name"] vbeln = x["VBELN"] if vbeln not in case_vbeln_dict: case_vbeln_dict[vbeln] = set() case_vbeln_dict[vbeln].add(caseid) dict_awkey, clearance_docs_dates, blart_vals = payment_part.apply(con, gjahr=gjahr, mandt=mandt) intersect = set(case_vbeln_dict.keys()).intersection(dict_awkey.keys()) ret = [] for k in intersect: for belnr in dict_awkey[k]: if belnr in clearance_docs_dates: for clearingdoc in clearance_docs_dates[belnr]: for cas in case_vbeln_dict[k]: ret.append( {"case:concept:name": cas, "concept:name": "Clearance (" + blart_vals[clearingdoc[2]] + ")", "AUGBL": clearingdoc[0], "time:timestamp": clearingdoc[1]}) ret = pd.DataFrame(ret) if len(ret) > 0: if "time:timestamp" in ret.columns: ret["time:timestamp"] = ret["time:timestamp"] + pd.Timedelta(np.timedelta64(86399, 's')) ret = ret.groupby(["case:concept:name", "AUGBL"]).first().reset_index() return ret def apply(con, ref_type="Order", keep_first=True, min_extr_date="2020-01-01 00:00:00", gjahr="2020", enable_changes=True, enable_payments=True, allowed_act_doc_types=None, allowed_act_changes=None, mandt="800"): dataframe = o2c_common.apply(con, keep_first=keep_first, min_extr_date=min_extr_date, mandt=mandt) dataframe = dataframe[[x for x in dataframe.columns if x.startswith("event_")]] cols = {x: x.split("event_")[-1] for x in dataframe.columns} cols["event_activity"] = "concept:name" cols["event_timestamp"] = "time:timestamp" dataframe = dataframe.rename(columns=cols) if len(dataframe) > 0: all_docs = set(dataframe[dataframe["VBTYP_N"] == ref_type]["VBELN"].unique()) ancest_succ = build_graph.get_ancestors_successors(dataframe, "VBELV", "VBELN", "VBTYP_V", "VBTYP_N", ref_type=ref_type, all_docs=all_docs) # ancest_succ = build_graph.get_conn_comp(dataframe, "VBELV", "VBELN", "VBTYP_V", "VBTYP_N", ref_type=ref_type) dataframe = dataframe.merge(ancest_succ, left_on="VBELN", right_on="node", suffixes=('', '_r'), how="right") dataframe = dataframe.reset_index() if keep_first: dataframe = dataframe.groupby(["case:concept:name", "VBELN"]).first().reset_index() if allowed_act_doc_types is not None: allowed_act_doc_types = set(allowed_act_doc_types) dataframe = dataframe[dataframe["concept:name"].isin(allowed_act_doc_types)] if enable_changes: changes = extract_changes_vbfa(con, dataframe, mandt=mandt) else: changes = pd.DataFrame() if enable_payments: payments = extract_bkpf_bsak(con, dataframe, gjahr=gjahr, mandt=mandt) else: payments =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from os import path from src.utils.logger import Logger from src.utils.path import PATH_DATA_OUTPUT, PATH_FEATURES, PATH_DATA_PROCESSED, PATH_REPORTS import src.utils.input_output as io from sklearn.model_selection import train_test_split, KFold from sklearn.metrics import mean_squared_error, mean_absolute_error import xgboost as xgb import pickle import warnings warnings.filterwarnings('ignore') def prepare_model_data(feature, idx, lag_length): """ Restructure raw datasets. :param feature: feature dataset :param idx: index price dataset :param lag_length: created index lagging prices as features :return: processed data """ idx.columns = ['Date', 'idx_price'] idx.index = idx['Date'] idx.drop(['Date'], axis=1, inplace=True) # create lagging features - 15 months for i in range(1, lag_length): idx['lag_' + str(i)] = idx['idx_price'].shift(i) # merge feature and index datasets dt = feature.merge(idx, how='left', on='Date') # change some columns formats cols = ['Fed Balance Sheet', 'US Real Personal Income', 'US Real Personal Income exTrans', 'Adv Retail Sales US exFood Services'] for i in cols: dt[i] = dt[i].apply(lambda x: x.replace(",", "")) dt[i] = dt[i].apply(lambda x: x.replace(" ", "")) dt[i] = dt[i].apply(lambda x: int(float(x))) # move up price to predict dt['pred_price'] = dt['idx_price'].shift(-1) # truncate dataset dt = dt.iloc[(lag_length - 1):, ] # generate metrics for report dt0 = idx.copy() dt0['return'] = (dt0['idx_price']-dt0['idx_price'].shift(1))/dt0['idx_price'].shift(1) print(dt0.shape) max_month_gain = np.nanmax(dt0['return']) max_month_loss = np.nanmin(dt0['return']) cum_returns = (1 + dt0['return']).cumprod() max_drawdown = np.ptp(cum_returns[1:]) / np.nanmax(cum_returns[1:]) annual_SR = (np.mean(dt0['return'])*np.sqrt(12))/np.std(dt0['return']) def rolling_sharpe(y): return np.sqrt(36) * (y.mean() / y.std()) rolling_SR_3y = dt0['return'].rolling(window=36).apply(rolling_sharpe) avg_rolling_3y_SR = np.mean(rolling_SR_3y ) # generate dataframe eval_metrics = pd.DataFrame([]) eval_metrics['max monthly gain'] =
pd.Series([max_month_gain])
pandas.Series
# Source # Portfolio optimization in finance is the technique of creating a portfolio of assets, for which your investment has the maximum return and minimum risk. # https://pythoninvest.com/long-read/practical-portfolio-optimisation # https://github.com/realmistic/PythonInvest-basic-fin-analysis ############################################################################################################## # ░█████╗░░██████╗░██████╗███████╗████████╗ # ██╔══██╗██╔════╝██╔════╝██╔════╝╚══██╔══╝ # ███████║╚█████╗░╚█████╗░█████╗░░░░░██║░░░ # ██╔══██║░╚═══██╗░╚═══██╗██╔══╝░░░░░██║░░░ # ██║░░██║██████╔╝██████╔╝███████╗░░░██║░░░ # ╚═╝░░╚═╝╚═════╝░╚═════╝░╚══════╝░░░╚═╝░░░ # ███╗░░░███╗░█████╗░███╗░░██╗░█████╗░░██████╗░███████╗███╗░░░███╗███████╗███╗░░██╗████████╗ # ████╗░████║██╔══██╗████╗░██║██╔══██╗██╔════╝░██╔════╝████╗░████║██╔════╝████╗░██║╚══██╔══╝ # ██╔████╔██║███████║██╔██╗██║███████║██║░░██╗░█████╗░░██╔████╔██║█████╗░░██╔██╗██║░░░██║░░░ # ██║╚██╔╝██║██╔══██║██║╚████║██╔══██║██║░░╚██╗██╔══╝░░██║╚██╔╝██║██╔══╝░░██║╚████║░░░██║░░░ # ██║░╚═╝░██║██║░░██║██║░╚███║██║░░██║╚██████╔╝███████╗██║░╚═╝░██║███████╗██║░╚███║░░░██║░░░ # ╚═╝░░░░░╚═╝╚═╝░░╚═╝╚═╝░░╚══╝╚═╝░░╚═╝░╚═════╝░╚══════╝╚═╝░░░░░╚═╝╚══════╝╚═╝░░╚══╝░░░╚═╝░░░ ############################################################################################################## ############################################################################################################## # Portfolio Optimization with Python using Efficient Frontier with Practical Examples ############################################################################################################## # Portfolio optimization is the process of creating a portfolio of assets, for which your investment has the maximum return and minimum risk. # Modern Portfolio Theory (MPT), or also known as mean-variance analysis is a mathematical process which allows the user to maximize returns for a given risk level. # It was formulated by <NAME> and while it is not the only optimization technique known, it is the most widely used. # Efficient frontier is a graph with ‘returns’ on the Y-axis and ‘volatility’ on the X-axis. # It shows the set of optimal portfolios that offer the highest expected return for a given risk level or the lowest risk for a given level of expected return. ############################################################################################################## # Practical Portfolio Optimisation ############################################################################################################## # What? Identify an optimal split for a known set of stocks and a given investment size. # Why? Smart portfolio management will add a lot to the risk management of your trades: it can reduce the volatility of a portfolio, increase returns per unit of risk, and reduce the bad cases losses # How? Use the library PyPortfolioOpt # User guide: https://pyportfolioopt.readthedocs.io/en/latest/UserGuide.html # Detailed Colab example (Mean-Variance-Optimisation): https://github.com/robertmartin8/PyPortfolioOpt/blob/master/cookbook/2-Mean-Variance-Optimisation.ipynb # Plan # 1. Prep work : imports, getting financial data, and pivot table of daily prices # 2. Correlation matrix # 3. PyPortfolioOpt : min volatility, max Sharpe, and min cVAR portfolios # 4. PyPortfolioOpt : Efficient Frontier # 5. PyPortfolioOpt : Discrete Allocation ############################################################################################################## # 0. Prep work : imports, getting financial data, and pivot table of daily prices ############################################################################################################## # pip install yfinance import pandas as pd import yfinance as yf import numpy as np import seaborn as sns import matplotlib.pyplot as plt INVESTMENT = 10000 # yFinance ticker list https://finance.yahoo.com/cryptocurrencies # BTC-USD # ETH-USD # BNB-USD # XRP-USD # LTC-USD # ZAM-USD # ADA-USD # TRX-USD TICKERS =['BTC-USD','ETH-USD', 'BNB-USD', 'XRP-USD','LTC-USD', 'ZAM-USD', 'ADA-USD', 'TRX-USD'] pd.set_option('display.max_colwidth', None) pd.set_option('display.max_columns', None) ############################################################################################################## stocks_prices = pd.DataFrame({'A' : []}) stocks_info = pd.DataFrame({'A' : []}) for i,ticker in enumerate(TICKERS): print(i,ticker) yticker = yf.Ticker(ticker) # Get max history of prices historyPrices = yticker.history(period='max') # generate features for historical prices, and what we want to predict historyPrices['Ticker'] = ticker historyPrices['Year']= historyPrices.index.year historyPrices['Month'] = historyPrices.index.month historyPrices['Weekday'] = historyPrices.index.weekday historyPrices['Date'] = historyPrices.index.date # historical returns for i in [1,3,7,30,90,365]: historyPrices['growth_'+str(i)+'d'] = historyPrices['Close'] / historyPrices['Close'].shift(i) # future growth 3 days historyPrices['future_growth_3d'] = historyPrices['Close'].shift(-3) / historyPrices['Close'] # 30d rolling volatility : https://ycharts.com/glossary/terms/rolling_vol_30 historyPrices['volatility'] = historyPrices['Close'].rolling(30).std() * np.sqrt(252) if stocks_prices.empty: stocks_prices = historyPrices else: stocks_prices = pd.concat([stocks_prices,historyPrices], ignore_index=True) ############################################################################################################## # Check one day filter_last_date = stocks_prices.Date==stocks_prices.Date.max() print("This is a double check. The last date of the data collected is: ") print(stocks_prices.Date.max()) stocks_prices[filter_last_date] print(stocks_prices[filter_last_date]) ############################################################################################################## # https://medium.com/analytics-vidhya/how-to-create-a-stock-correlation-matrix-in-python-4f32f8cb5b50 df_pivot = stocks_prices.pivot('Date','Ticker','Close').reset_index() df_pivot.tail(5) print(df_pivot.tail(5)) ############################################################################################################## # 1. Correlation matrix ############################################################################################################## # https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/ df_pivot.corr() print(df_pivot.corr()) ############################################################################################################## # Print correlation matrix # https://seaborn.pydata.org/generated/seaborn.heatmap.html corr = df_pivot.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True with sns.axes_style("white"): f, ax = plt.subplots(figsize=(7, 5)) ax = sns.heatmap(corr, mask=mask, vmax=.3, square=True, annot=True, cmap='RdYlGn') # show the plot window plt.show() ############################################################################################################## # 2. PyPortfolioOpt : min volatility, max Sharpe, and min cVAR portfolios ############################################################################################################## # User guide: https://pyportfolioopt.readthedocs.io/en/latest/UserGuide.html # https://github.com/robertmartin8/PyPortfolioOpt # pip install PyPortfolioOpt import pypfopt print(f'\n Library version: {pypfopt.__version__}') ############################################################################################################## # https://github.com/robertmartin8/PyPortfolioOpt/blob/master/cookbook/2-Mean-Variance-Optimisation.ipynb from pypfopt import risk_models from pypfopt import plotting from pypfopt import expected_returns from pypfopt import EfficientFrontier ############################################################################################################## # json: for pretty print of a dictionary: https://stackoverflow.com/questions/44689546/how-to-print-out-a-dictionary-nicely-in-python/44689627 import json mu = expected_returns.capm_return(df_pivot.set_index('Date')) # Other options for the returns values: expected_returns.ema_historical_return(df_pivot.set_index('Date')) # Other options for the returns values: expected_returns.mean_historical_return(df_pivot.set_index('Date')) print(f'Expected returns for each stock: {mu} \n') S = risk_models.CovarianceShrinkage(df_pivot.set_index('Date')).ledoit_wolf() # Weights between 0 and 1 - we don't allow shorting ef = EfficientFrontier(mu, S, weight_bounds=(0, 1)) ef.min_volatility() weights_min_volatility = ef.clean_weights() print(f'Portfolio weights for min volatility optimisation (lowest level of risk): {json.dumps(weights_min_volatility, indent=4, sort_keys=True)} \n') print(f'Portfolio performance: {ef.portfolio_performance(verbose=True, risk_free_rate=0.01305)} \n') # Risk-free rate : 10Y TBonds rate on 21-Jul-2021 https://www.cnbc.com/quotes/US10Y ########################### # IMPORTANT: RISK-FREE RATE ########################### # Risk-free rate : the input should be checked and modified accordingly https://www.cnbc.com/quotes/US10Y ##############################################################################################################
pd.Series(weights_min_volatility)
pandas.Series
import numpy as np import pandas as pd from datetime import datetime import pytest import empyrical import vectorbt as vbt from vectorbt import settings from tests.utils import isclose day_dt = np.timedelta64(86400000000000) ts = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [5, 4, 3, 2, 1], 'c': [1, 2, 3, 2, 1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1), datetime(2018, 1, 2), datetime(2018, 1, 3), datetime(2018, 1, 4), datetime(2018, 1, 5) ])) ret = ts.pct_change() settings.returns['year_freq'] = '252 days' # same as empyrical seed = 42 np.random.seed(seed) benchmark_rets = pd.DataFrame({ 'a': ret['a'] * np.random.uniform(0.8, 1.2, ret.shape[0]), 'b': ret['b'] * np.random.uniform(0.8, 1.2, ret.shape[0]) * 2, 'c': ret['c'] * np.random.uniform(0.8, 1.2, ret.shape[0]) * 3 }) # ############# accessors.py ############# # class TestAccessors: def test_freq(self): assert ret.vbt.returns.wrapper.freq == day_dt assert ret['a'].vbt.returns.wrapper.freq == day_dt assert ret.vbt.returns(freq='2D').wrapper.freq == day_dt * 2 assert ret['a'].vbt.returns(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([1, 2, 3]).vbt.returns.wrapper.freq is None assert pd.Series([1, 2, 3]).vbt.returns(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([1, 2, 3]).vbt.returns(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 def test_ann_factor(self): assert ret['a'].vbt.returns(year_freq='365 days').ann_factor == 365 assert ret.vbt.returns(year_freq='365 days').ann_factor == 365 with pytest.raises(Exception) as e_info: assert pd.Series([1, 2, 3]).vbt.returns(freq=None).ann_factor def test_from_price(self): pd.testing.assert_series_equal(pd.Series.vbt.returns.from_price(ts['a']).obj, ts['a'].pct_change()) pd.testing.assert_frame_equal(pd.DataFrame.vbt.returns.from_price(ts).obj, ts.pct_change()) assert pd.Series.vbt.returns.from_price(ts['a'], year_freq='365 days').year_freq == pd.to_timedelta('365 days') assert pd.DataFrame.vbt.returns.from_price(ts, year_freq='365 days').year_freq == pd.to_timedelta('365 days') def test_daily(self): ret_12h = pd.DataFrame({ 'a': [0.1, 0.1, 0.1, 0.1, 0.1], 'b': [-0.1, -0.1, -0.1, -0.1, -0.1], 'c': [0.1, -0.1, 0.1, -0.1, 0.1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1, 0), datetime(2018, 1, 1, 12), datetime(2018, 1, 2, 0), datetime(2018, 1, 2, 12), datetime(2018, 1, 3, 0) ])) pd.testing.assert_series_equal( ret_12h['a'].vbt.returns.daily(), pd.Series( np.array([0.21, 0.21, 0.1]), index=pd.DatetimeIndex([ '2018-01-01', '2018-01-02', '2018-01-03' ], dtype='datetime64[ns]', freq='D'), name=ret_12h['a'].name ) ) pd.testing.assert_frame_equal( ret_12h.vbt.returns.daily(), pd.DataFrame( np.array([ [0.21, -0.19, -0.01], [0.21, -0.19, -0.01], [0.1, -0.1, 0.1] ]), index=pd.DatetimeIndex([ '2018-01-01', '2018-01-02', '2018-01-03' ], dtype='datetime64[ns]', freq='D'), columns=ret_12h.columns ) ) def test_annual(self): pd.testing.assert_series_equal( ret['a'].vbt.returns.annual(), pd.Series( np.array([4.]), index=pd.DatetimeIndex(['2018-01-01'], dtype='datetime64[ns]', freq='252D'), name=ret['a'].name ) ) pd.testing.assert_frame_equal( ret.vbt.returns.annual(), pd.DataFrame( np.array([[4., -0.8, 0.]]), index=pd.DatetimeIndex(['2018-01-01'], dtype='datetime64[ns]', freq='252D'), columns=ret.columns ) ) def test_cumulative(self): res_a = empyrical.cum_returns(ret['a']).rename('a') res_b = empyrical.cum_returns(ret['b']).rename('b') res_c = empyrical.cum_returns(ret['c']).rename('c') pd.testing.assert_series_equal( ret['a'].vbt.returns.cumulative(), res_a ) pd.testing.assert_frame_equal( ret.vbt.returns.cumulative(), pd.concat([res_a, res_b, res_c], axis=1) ) def test_total_return(self): res_a = empyrical.cum_returns_final(ret['a']) res_b = empyrical.cum_returns_final(ret['b']) res_c = empyrical.cum_returns_final(ret['c']) assert isclose(ret['a'].vbt.returns.total(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.total(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('total_return') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_total(ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_annualized_return(self): res_a = empyrical.annual_return(ret['a']) res_b = empyrical.annual_return(ret['b']) res_c = empyrical.annual_return(ret['c']) assert isclose(ret['a'].vbt.returns.annualized(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.annualized(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('annualized_return') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_annualized(ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_alpha", [1., 2., 3.], ) def test_annualized_volatility(self, test_alpha): res_a = empyrical.annual_volatility(ret['a'], alpha=test_alpha) res_b = empyrical.annual_volatility(ret['b'], alpha=test_alpha) res_c = empyrical.annual_volatility(ret['c'], alpha=test_alpha) assert isclose(ret['a'].vbt.returns.annualized_volatility(levy_alpha=test_alpha), res_a) pd.testing.assert_series_equal( ret.vbt.returns.annualized_volatility(levy_alpha=test_alpha), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('annualized_volatility') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_annualized_volatility(ret.shape[0], minp=1, levy_alpha=test_alpha).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_calmar_ratio(self): res_a = empyrical.calmar_ratio(ret['a']) res_b = empyrical.calmar_ratio(ret['b']) res_c = empyrical.calmar_ratio(ret['c']) assert isclose(ret['a'].vbt.returns.calmar_ratio(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.calmar_ratio(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('calmar_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_calmar_ratio(ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_risk_free,test_required_return", [(0.01, 0.1), (0.02, 0.2), (0.03, 0.3)], ) def test_omega_ratio(self, test_risk_free, test_required_return): res_a = empyrical.omega_ratio(ret['a'], risk_free=test_risk_free, required_return=test_required_return) if np.isnan(res_a): res_a = np.inf res_b = empyrical.omega_ratio(ret['b'], risk_free=test_risk_free, required_return=test_required_return) if np.isnan(res_b): res_b = np.inf res_c = empyrical.omega_ratio(ret['c'], risk_free=test_risk_free, required_return=test_required_return) if np.isnan(res_c): res_c = np.inf assert isclose(ret['a'].vbt.returns.omega_ratio( risk_free=test_risk_free, required_return=test_required_return), res_a) pd.testing.assert_series_equal( ret.vbt.returns.omega_ratio(risk_free=test_risk_free, required_return=test_required_return), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('omega_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_omega_ratio( ret.shape[0], minp=1, risk_free=test_risk_free, required_return=test_required_return).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_risk_free", [0.01, 0.02, 0.03], ) def test_sharpe_ratio(self, test_risk_free): res_a = empyrical.sharpe_ratio(ret['a'], risk_free=test_risk_free) res_b = empyrical.sharpe_ratio(ret['b'], risk_free=test_risk_free) res_c = empyrical.sharpe_ratio(ret['c'], risk_free=test_risk_free) assert isclose(ret['a'].vbt.returns.sharpe_ratio(risk_free=test_risk_free), res_a) pd.testing.assert_series_equal( ret.vbt.returns.sharpe_ratio(risk_free=test_risk_free), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('sharpe_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_sharpe_ratio(ret.shape[0], minp=1, risk_free=test_risk_free).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_deflated_sharpe_ratio(self): pd.testing.assert_series_equal( ret.vbt.returns.deflated_sharpe_ratio(risk_free=0.01), pd.Series([np.nan, np.nan, 0.0005355605507117676], index=ret.columns).rename('deflated_sharpe_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.deflated_sharpe_ratio(risk_free=0.03), pd.Series([np.nan, np.nan, 0.0003423112350834066], index=ret.columns).rename('deflated_sharpe_ratio') ) @pytest.mark.parametrize( "test_required_return", [0.01, 0.02, 0.03], ) def test_downside_risk(self, test_required_return): res_a = empyrical.downside_risk(ret['a'], required_return=test_required_return) res_b = empyrical.downside_risk(ret['b'], required_return=test_required_return) res_c = empyrical.downside_risk(ret['c'], required_return=test_required_return) assert isclose(ret['a'].vbt.returns.downside_risk(required_return=test_required_return), res_a) pd.testing.assert_series_equal( ret.vbt.returns.downside_risk(required_return=test_required_return), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('downside_risk') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_downside_risk( ret.shape[0], minp=1, required_return=test_required_return).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_required_return", [0.01, 0.02, 0.03], ) def test_sortino_ratio(self, test_required_return): res_a = empyrical.sortino_ratio(ret['a'], required_return=test_required_return) res_b = empyrical.sortino_ratio(ret['b'], required_return=test_required_return) res_c = empyrical.sortino_ratio(ret['c'], required_return=test_required_return) assert isclose(ret['a'].vbt.returns.sortino_ratio(required_return=test_required_return), res_a) pd.testing.assert_series_equal( ret.vbt.returns.sortino_ratio(required_return=test_required_return), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('sortino_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_sortino_ratio( ret.shape[0], minp=1, required_return=test_required_return).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_information_ratio(self): res_a = empyrical.excess_sharpe(ret['a'], benchmark_rets['a']) res_b = empyrical.excess_sharpe(ret['b'], benchmark_rets['b']) res_c = empyrical.excess_sharpe(ret['c'], benchmark_rets['c']) assert isclose(ret['a'].vbt.returns.information_ratio(benchmark_rets['a']), res_a) pd.testing.assert_series_equal( ret.vbt.returns.information_ratio(benchmark_rets), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('information_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_information_ratio( benchmark_rets, ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_beta(self): res_a = empyrical.beta(ret['a'], benchmark_rets['a']) res_b = empyrical.beta(ret['b'], benchmark_rets['b']) res_c = empyrical.beta(ret['c'], benchmark_rets['c']) assert isclose(ret['a'].vbt.returns.beta(benchmark_rets['a']), res_a) pd.testing.assert_series_equal( ret.vbt.returns.beta(benchmark_rets), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('beta') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_beta( benchmark_rets, ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_risk_free", [0.01, 0.02, 0.03], ) def test_alpha(self, test_risk_free): res_a = empyrical.alpha(ret['a'], benchmark_rets['a'], risk_free=test_risk_free) res_b = empyrical.alpha(ret['b'], benchmark_rets['b'], risk_free=test_risk_free) res_c = empyrical.alpha(ret['c'], benchmark_rets['c'], risk_free=test_risk_free) assert isclose(ret['a'].vbt.returns.alpha(benchmark_rets['a'], risk_free=test_risk_free), res_a) pd.testing.assert_series_equal( ret.vbt.returns.alpha(benchmark_rets, risk_free=test_risk_free), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('alpha') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_alpha( benchmark_rets, ret.shape[0], minp=1, risk_free=test_risk_free).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_tail_ratio(self): res_a = empyrical.tail_ratio(ret['a']) res_b = empyrical.tail_ratio(ret['b']) res_c = empyrical.tail_ratio(ret['c']) assert isclose(ret['a'].vbt.returns.tail_ratio(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.tail_ratio(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('tail_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_tail_ratio( ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_cutoff", [0.05, 0.06, 0.07], ) def test_value_at_risk(self, test_cutoff): # empyrical can't tolerate NaN here res_a = empyrical.value_at_risk(ret['a'].iloc[1:], cutoff=test_cutoff) res_b = empyrical.value_at_risk(ret['b'].iloc[1:], cutoff=test_cutoff) res_c = empyrical.value_at_risk(ret['c'].iloc[1:], cutoff=test_cutoff) assert isclose(ret['a'].vbt.returns.value_at_risk(cutoff=test_cutoff), res_a) pd.testing.assert_series_equal( ret.vbt.returns.value_at_risk(cutoff=test_cutoff), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('value_at_risk') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_value_at_risk( ret.shape[0], minp=1, cutoff=test_cutoff).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_cutoff", [0.05, 0.06, 0.07], ) def test_cond_value_at_risk(self, test_cutoff): # empyrical can't tolerate NaN here res_a = empyrical.conditional_value_at_risk(ret['a'].iloc[1:], cutoff=test_cutoff) res_b = empyrical.conditional_value_at_risk(ret['b'].iloc[1:], cutoff=test_cutoff) res_c = empyrical.conditional_value_at_risk(ret['c'].iloc[1:], cutoff=test_cutoff) assert isclose(ret['a'].vbt.returns.cond_value_at_risk(cutoff=test_cutoff), res_a) pd.testing.assert_series_equal( ret.vbt.returns.cond_value_at_risk(cutoff=test_cutoff), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('cond_value_at_risk') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_cond_value_at_risk( ret.shape[0], minp=1, cutoff=test_cutoff).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_capture(self): res_a = empyrical.capture(ret['a'], benchmark_rets['a']) res_b = empyrical.capture(ret['b'], benchmark_rets['b']) res_c = empyrical.capture(ret['c'], benchmark_rets['c']) assert isclose(ret['a'].vbt.returns.capture(benchmark_rets['a']), res_a) pd.testing.assert_series_equal( ret.vbt.returns.capture(benchmark_rets), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('capture') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_capture( benchmark_rets, ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_up_capture(self): res_a = empyrical.up_capture(ret['a'], benchmark_rets['a']) res_b = empyrical.up_capture(ret['b'], benchmark_rets['b']) res_c = empyrical.up_capture(ret['c'], benchmark_rets['c']) assert isclose(ret['a'].vbt.returns.up_capture(benchmark_rets['a']), res_a) pd.testing.assert_series_equal( ret.vbt.returns.up_capture(benchmark_rets), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('up_capture') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_up_capture( benchmark_rets, ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_down_capture(self): res_a = empyrical.down_capture(ret['a'], benchmark_rets['a']) res_b = empyrical.down_capture(ret['b'], benchmark_rets['b']) res_c = empyrical.down_capture(ret['c'], benchmark_rets['c']) assert isclose(ret['a'].vbt.returns.down_capture(benchmark_rets['a']), res_a) pd.testing.assert_series_equal( ret.vbt.returns.down_capture(benchmark_rets), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('down_capture') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_down_capture( benchmark_rets, ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_drawdown(self): pd.testing.assert_series_equal( ret['a'].vbt.returns.drawdown(), pd.Series( np.array([0., 0., 0., 0., 0.]), index=ret['a'].index, name=ret['a'].name ) ) pd.testing.assert_frame_equal( ret.vbt.returns.drawdown(), pd.DataFrame( np.array([ [0., 0., 0.], [0., -0.2, 0.], [0., -0.4, 0.], [0., -0.6, -0.33333333], [0., -0.8, -0.66666667] ]), index=pd.DatetimeIndex([ '2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05' ], dtype='datetime64[ns]', freq=None), columns=ret.columns ) ) def test_max_drawdown(self): res_a = empyrical.max_drawdown(ret['a']) res_b = empyrical.max_drawdown(ret['b']) res_c = empyrical.max_drawdown(ret['c']) assert isclose(ret['a'].vbt.returns.max_drawdown(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.max_drawdown(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('max_drawdown') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_max_drawdown( ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_drawdowns(self): assert type(ret['a'].vbt.returns.drawdowns) is vbt.Drawdowns assert ret['a'].vbt.returns.drawdowns.wrapper.freq == ret['a'].vbt.wrapper.freq assert ret['a'].vbt.returns.drawdowns.wrapper.ndim == ret['a'].ndim assert ret.vbt.returns.drawdowns.wrapper.ndim == ret.ndim assert isclose(ret['a'].vbt.returns.drawdowns.max_drawdown(), ret['a'].vbt.returns.max_drawdown()) pd.testing.assert_series_equal( ret.vbt.returns.drawdowns.max_drawdown(), ret.vbt.returns.max_drawdown() ) def test_stats(self): pd.testing.assert_series_equal( ret['b'].vbt.returns.stats( benchmark_rets['b'], levy_alpha=2., risk_free=0.01, required_return=0.1 ), pd.Series([ pd.Timestamp('2018-01-01 00:00:00'), pd.Timestamp('2018-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), -80.0, -100.72986288899584, -100.0, 208.74625745148103, -39.93844058228336, -1.25, -80.0, 0.0, -15.323368643952458, -1.0653693625282994, 0.6452153997516223, 0.43684210526315786, 0.0, -0.47500000000000003, -0.9999978857530595, 0.4123019930790345 ], index=[ 'Start', 'End', 'Duration', 'Total Return [%]', 'Benchmark Return [%]', 'Annual Return [%]', 'Annual Volatility [%]', 'Sharpe Ratio', 'Calmar Ratio', 'Max Drawdown [%]', 'Omega Ratio', 'Sortino Ratio', 'Skew', 'Kurtosis', 'Tail Ratio', 'Common Sense Ratio', 'Value at Risk', 'Alpha', 'Beta' ], name='b') ) pd.testing.assert_frame_equal( ret.vbt.returns.stats( benchmark_rets, levy_alpha=2., risk_free=0.01, required_return=0.1 ), pd.DataFrame([[ pd.Timestamp('2018-01-01 00:00:00'), pd.Timestamp('2018-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 400.0, 451.8597134178033, 1.690784346944584e+37, 533.2682251925386, 24.139821935485003, np.nan, 0.0, np.inf, np.inf, 1.4693345482106241, 2.030769230769236, 3.5238095238095237, 5.958001984471391e+35, 0.26249999999999996, 21533588.23721922, 0.7853755858374825 ], [
pd.Timestamp('2018-01-01 00:00:00')
pandas.Timestamp
#!/usr/bin/env python import collections import numpy as np import pandas as pd from scipy.sparse import * __author__ = "peiyong" class Sample: def __init__(self, feature=None, label=None): self.feature = feature self.label = label def read_sparse(datafile): labels = [] cols = [] rows = [] values = [] with open(datafile, 'r') as f: for i,line in enumerate(f): line = line.rstrip().split(' ') label = float(line[0]) label = -1 if label != 1 else 1 col = [int(v.split(":")[0]) for v in line[1:]] row = [i]*len(col) value = [float(v.split(":")[1]) for v in line[1:]] labels.append(label) rows.extend(row) cols.extend(col) values.extend(value) shape = [max(rows)+1, max(cols)+1] features = csr_matrix( (values,(rows,cols)), shape=shape ) labels = np.array(labels) return features, labels def read_dense(datafile): """ each row: [y \t x1, x2, x3 ...] """ labels = [] features = [] with open(datafile, 'r') as f: for line in f: y,x = line.rstrip().split('\t') labels.append(float(y)) features.append(list(map(float, x.split(',')))) features = np.array(features) labels = np.array(labels) return features, labels def read_csv(datafile, label_column_name): data =
pd.pandas.read_csv(datafile)
pandas.pandas.read_csv
"""Module providing functions to plot data collected during sleep studies.""" import datetime from typing import Dict, Iterable, List, Optional, Sequence, Tuple, Union import matplotlib.dates as mdates import matplotlib.pyplot as plt import matplotlib.ticker as mticks import pandas as pd import seaborn as sns from fau_colors import colors_all from biopsykit.utils.datatype_helper import AccDataFrame, GyrDataFrame, ImuDataFrame, SleepEndpointDict _sleep_imu_plot_params = { "background_color": ["#e0e0e0", "#9e9e9e"], "background_alpha": [0.3, 0.3], } _bbox_default = dict( fc=(1, 1, 1, plt.rcParams["legend.framealpha"]), ec=plt.rcParams["legend.edgecolor"], boxstyle="round", ) def sleep_imu_plot( data: Union[AccDataFrame, GyrDataFrame, ImuDataFrame], datastreams: Optional[Union[str, Sequence[str]]] = None, sleep_endpoints: Optional[SleepEndpointDict] = None, downsample_factor: Optional[int] = None, **kwargs, ) -> Tuple[plt.Figure, Iterable[plt.Axes]]: """Draw plot to visualize IMU data during sleep, and, optionally, add sleep endpoints information. Parameters ---------- data : :class:`~pandas.DataFrame` data to plot. Data must either be acceleration data (:obj:`~biopsykit.utils.datatype_helper.AccDataFrame`), gyroscope data (:obj:`~biopsykit.utils.datatype_helper.GyrDataFrame`), or IMU data (:obj:`~biopsykit.utils.datatype_helper.ImuDataFrame`). datastreams : str or list of str, optional list of datastreams indicating which type of data should be plotted or ``None`` to only plot acceleration data. If more than one type of datastream is specified each datastream is plotted row-wise in its own subplot. Default: ``None`` sleep_endpoints : :obj:`~biopsykit.utils.datatype_helper.SleepEndpointDict` dictionary with sleep endpoints to add to plot or ``None`` to only plot IMU data. downsample_factor : int, optional downsample factor to apply to raw input data before plotting or ``None`` to not downsample data before plotting (downsample factor 1). Default: ``None`` **kwargs optional arguments for plot configuration. To configure which type of sleep endpoint annotations to plot: * ``plot_sleep_onset``: whether to plot sleep onset annotations or not: Default: ``True`` * ``plot_wake_onset``: whether to plot wake onset annotations or not: Default: ``True`` * ``plot_bed_start``: whether to plot bed interval start annotations or not: Default: ``True`` * ``plot_bed_end``: whether to plot bed interval end annotations or not: Default: ``True`` * ``plot_sleep_wake``: whether to plot vspans of detected sleep/wake phases or not: Default: ``True`` To style general plot appearance: * ``axs``: pre-existing axes for the plot. Otherwise, a new figure and axes objects are created and returned. * ``figsize``: tuple specifying figure dimensions * ``palette``: color palette to plot different axes from input data To style axes: * ``xlabel``: label of x axis. Default: "Time" * ``ylabel``: label of y axis. Default: "Acceleration :math:`[m/s^2]`" for acceleration data and "Angular Velocity :math:`[°/s]`" for gyroscope data To style legend: * ``legend_loc``: location of legend. Default: "lower left" * ``legend_fontsize``: font size of legend labels. Default: "smaller" Returns ------- fig : :class:`~matplotlib.figure.Figure` figure object axs : list of :class:`~matplotlib.axes.Axes` list of subplot axes objects """ axs: List[plt.Axes] = kwargs.pop("ax", kwargs.pop("axs", None)) sns.set_palette(kwargs.get("palette", sns.light_palette(getattr(colors_all, "fau"), n_colors=4, reverse=True)[:-1])) if datastreams is None: datastreams = ["acc"] if isinstance(datastreams, str): # ensure list datastreams = [datastreams] fig, axs = _sleep_imu_plot_get_fig_axs(axs, len(datastreams), **kwargs) downsample_factor = _sleep_imu_plot_get_downsample_factor(downsample_factor) if len(datastreams) != len(axs): raise ValueError( "Number of datastreams to be plotted must match number of provided subplots! Expected {}, got {}.".format( len(datastreams), len(axs) ) ) for ax, ds in zip(axs, datastreams): _sleep_imu_plot( data=data, datastream=ds, downsample_factor=downsample_factor, sleep_endpoints=sleep_endpoints, ax=ax, **kwargs, ) fig.tight_layout() fig.autofmt_xdate(rotation=0, ha="center") return fig, axs def _sleep_imu_plot_get_fig_axs(axs: List[plt.Axes], nrows: int, **kwargs): figsize = kwargs.get("figsize", None) if isinstance(axs, plt.Axes): # ensure list (if only one Axes object is passed to sleep_imu_plot() instead of a list of Axes objects) axs = [axs] if axs is None: fig, axs = plt.subplots(figsize=figsize, nrows=nrows) else: fig = axs[0].get_figure() if isinstance(axs, plt.Axes): # ensure list (if nrows == 1 only one axes object will be created, not a list of axes) axs = [axs] return fig, axs def _sleep_imu_plot_get_downsample_factor(downsample_factor: int): if downsample_factor is None: downsample_factor = 1 # ensure int downsample_factor = int(downsample_factor) if downsample_factor < 1: raise ValueError("'downsample_factor' must be >= 1!") return downsample_factor def _sleep_imu_plot( data: pd.DataFrame, datastream: str, downsample_factor: int, sleep_endpoints: SleepEndpointDict, ax: plt.Axes, **kwargs, ): legend_loc = kwargs.get("legend_loc", "lower left") legend_fontsize = kwargs.get("legend_fontsize", "smaller") ylabel = kwargs.get("ylabel", {"acc": "Acceleration [$m/s^2$]", "gyr": "Angular Velocity [$°/s$]"}) xlabel = kwargs.get("xlabel", "Time") if isinstance(data.index, pd.DatetimeIndex): plt.rcParams["timezone"] = data.index.tz.zone data_plot = data.filter(like=datastream)[::downsample_factor] data_plot.plot(ax=ax) if sleep_endpoints is not None: kwargs.setdefault("ax", ax) _sleep_imu_plot_add_sleep_endpoints(sleep_endpoints=sleep_endpoints, **kwargs) if isinstance(data_plot.index, pd.DatetimeIndex): # TODO add axis style for non-Datetime axes ax.xaxis.set_major_formatter(mdates.DateFormatter("%H:%M:%S")) ax.xaxis.set_minor_locator(mticks.AutoMinorLocator(6)) ax.set_ylabel(ylabel[datastream]) ax.set_xlabel(xlabel) ax.legend(loc=legend_loc, fontsize=legend_fontsize, framealpha=1.0) def _sleep_imu_plot_add_sleep_endpoints(sleep_endpoints: SleepEndpointDict, **kwargs): bed_start = pd.to_datetime(sleep_endpoints["bed_interval_start"]) bed_end = pd.to_datetime(sleep_endpoints["bed_interval_end"]) sleep_onset = pd.to_datetime(sleep_endpoints["sleep_onset"]) wake_onset = pd.to_datetime(sleep_endpoints["wake_onset"]) ax = kwargs.pop("ax") if isinstance(sleep_endpoints, dict): sleep_bouts = sleep_endpoints["sleep_bouts"] wake_bouts = sleep_endpoints["wake_bouts"] date = sleep_endpoints["date"] else: sleep_bouts = pd.DataFrame(sleep_endpoints["sleep_bouts"][0]) wake_bouts = pd.DataFrame(sleep_endpoints["wake_bouts"][0]) date = sleep_endpoints.index[0][1] date =
pd.to_datetime(date)
pandas.to_datetime
import dask.dataframe as dd import deimos from functools import partial import multiprocessing as mp import numpy as np import pandas as pd def threshold(features, by='intensity', threshold=0): ''' Thresholds input :obj:`~pandas.DataFrame` using `by` keyword, greater than value passed to `threshold`. Parameters ---------- features : :obj:`~pandas.DataFrame` Input feature coordinates and intensities. by : str Variable to threshold by. threshold : float Threshold value. Returns ------- :obj:`~pandas.DataFrame` Thresholded feature coordinates. ''' return features.loc[features[by] > threshold, :].reset_index(drop=True) def collapse(features, keep=['mz', 'drift_time', 'retention_time'], how=np.sum): ''' Collpases input data such that only specified dimensions remain, according to the supplied aggregation function. Parameters ---------- features : :obj:`~pandas.DataFrame` Input feature coordinates and intensities. keep : str or list Dimensions to keep during collapse operation. how : function or str Aggregation function for collapse operation. Returns ------- :obj:`~pandas.DataFrame` Collapsed feature coordinates and aggregated intensities. ''' return features.groupby(by=keep, as_index=False, sort=False).agg({'intensity': how}) def locate(features, by=['mz', 'drift_time', 'retention_time'], loc=[0, 0, 0], tol=[0, 0, 0], return_index=False): ''' Given a coordinate and tolerances, return a subset of the data. Parameters ---------- features : :obj:`~pandas.DataFrame` Input feature coordinates and intensities. by : str or list Dimension(s) by which to subset the data. loc : float or list Coordinate location. tol : float or list Tolerance in each dimension. return_index : bool Return boolean index of subset if True. Returns ------- :obj:`~pandas.DataFrame` Subset of feature coordinates and intensities. :obj:`~numpy.array` If `return_index` is True, boolean index of subset elements, i.e. `features[index] = subset`. Raises ------ ValueError If `by`, `loc`, and `tol` are not the same length. ''' # safely cast to list by = deimos.utils.safelist(by) loc = deimos.utils.safelist(loc) tol = deimos.utils.safelist(tol) # check dims deimos.utils.check_length([by, loc, tol]) if features is None: if return_index is True: return None, None else: return None # store index rindex = features.index.values # extend columns cols = features.columns cidx = [cols.get_loc(x) for x in by] # subset by each dim features = features.values idx = np.full(features.shape[0], True, dtype=bool) for i, x, dx in zip(cidx, loc, tol): idx *= (features[:, i] <= x + dx) & (features[:, i] >= x - dx) features = features[idx] rindex = rindex[idx] if return_index is True: # data found if features.shape[0] > 0: return pd.DataFrame(features, index=rindex, columns=cols), idx # no data return None, idx else: # data found if features.shape[0] > 0: return pd.DataFrame(features, index=rindex, columns=cols) # no data return None def locate_asym(features, by=['mz', 'drift_time', 'retention_time'], loc=[0, 0, 0], low=[0, 0, 0], high=[0, 0, 0], relative=[False, False, False], return_index=False): ''' Given a coordinate and asymmetrical tolerances, return a subset of the data. Parameters ---------- features : :obj:`~pandas.DataFrame` Input feature coordinates and intensities. by : str or list Dimension(s) by which to subset the data. loc : float or list Coordinate location. low : float or list Lower tolerance(s) in each dimension. high : float or list Upper tolerance(s) in each dimension. relative : bool or list Whether to use relative or absolute tolerance per dimension. return_index : bool Return boolean index of subset if True. Returns ------- :obj:`~pandas.DataFrame` Subset of feature coordinates and intensities. :obj:`~numpy.array` If `return_index` is True, boolean index of subset elements, i.e. `features[index] = subset`. Raises ------ ValueError If `by`, `loc`, and `tol` are not the same length. ''' # safely cast to list by = deimos.utils.safelist(by) loc = deimos.utils.safelist(loc) low = deimos.utils.safelist(low) high = deimos.utils.safelist(high) relative = deimos.utils.safelist(relative) # check dims deimos.utils.check_length([by, loc, low, high, relative]) lb = [] ub = [] for x, lower, upper, rel in zip(loc, low, high, relative): if rel is True: lb.append(x * (1 + lower)) ub.append(x * (1 + upper)) else: lb.append(x + lower) ub.append(x + upper) return deimos.subset.slice(features, by=by, low=lb, high=ub, return_index=return_index) def slice(features, by=['mz', 'drift_time', 'retention_time'], low=[0, 0, 0], high=[0, 0, 0], return_index=False): ''' Given a feature coordinate and bounds, return a subset of the data. Parameters ---------- features : :obj:`~pandas.DataFrame` Input feature coordinates and intensities. by : str or list Dimensions(s) by which to subset the data low : float or list Lower bound(s) in each dimension. high : float or list Upper bound(s) in each dimension. return_index : bool Return boolean index of subset if True. Returns ------- :obj:`~pandas.DataFrame` Subset of feature coordinates and intensities. :obj:`~numpy.array` If `return_index` is True, boolean index of subset elements, i.e. `features[index] = subset`. Raises ------ ValueError If `by`, `low`, and `high` are not the same length. ''' # safely cast to list by = deimos.utils.safelist(by) low = deimos.utils.safelist(low) high = deimos.utils.safelist(high) # check dims deimos.utils.check_length([by, low, high]) if features is None: if return_index is True: return None, None else: return None # store index rindex = features.index.values # extend columns cols = features.columns cidx = [cols.get_loc(x) for x in by] # subset by each dim features = features.values idx = np.full(features.shape[0], True, dtype=bool) for i, lb, ub in zip(cidx, low, high): idx *= (features[:, i] <= ub) & (features[:, i] >= lb) features = features[idx] rindex = rindex[idx] if return_index is True: # data found if features.shape[0] > 0: return
pd.DataFrame(features, index=rindex, columns=cols)
pandas.DataFrame
import pandas as pd import numpy as np from collections import defaultdict from datetime import datetime, timedelta def mta_end_of_week(d): ''' Calculates the end of the week for a given date to conform to MTA data publication on Saturday d = date vaule return: date ''' return d - timedelta(days=d.weekday()) + timedelta(days=5) def read_mta_turnstile(start='20180501', end='20180531'): ''' Read MTA turnstile data. Calculates 4-hour bucket entries and exits for each (C/A, UNIT, SCP, STATION) start = start date for analysis in yyymmdd format end = end date for analysis in yyymmmdd format return pd.DataFrame (same list of columns as in the MTA CSV + [date_time, entries_offset, exits_offset, hourly_entries, hourly_exits]) ''' first = mta_end_of_week(datetime.strptime(start, '%Y%m%d').date()) last = mta_end_of_week(datetime.strptime(end, '%Y%m%d').date()) url = 'http://web.mta.info/developers/data/nyct/turnstile/turnstile_' df =
pd.DataFrame(columns=['C/A','UNIT','SCP','STATION','LINENAME','DIVISION','DATE','TIME','DESC','ENTRIES','EXITS'])
pandas.DataFrame
import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.cluster.hierarchy import linkage, dendrogram from scipy.spatial import distance from matplotlib import rcParams from numpy.random import seed seed(123) from scipy.stats.mstats import spearmanr from scipy.stats.mstats import pearsonr metric = 'euclidean' method = 'ward' test = False compare = False if not test: plt.switch_backend('agg') # Plot from scratch def plot_RSA(output_dir, categories, layer= None, layer_name='lstm_3', amount_sent=None): RSA = [] start = amount_sent # corr_method = 'Pearson' df0= layer[0:amount_sent] #sentences from first category df0 = pd.DataFrame.transpose(df0) #result: vector_len x amount_sent, eg, 100x1000 # Create pair-wise correlation matrix between sentences from first category and second category print('making RSA_arr...') for cat in range(len(categories)): row = [] for sent in range(start,layer.shape[0],amount_sent): #sentences from second category df = layer[sent:sent+amount_sent] df =
pd.DataFrame.transpose(df)
pandas.DataFrame.transpose
import tqdm import numpy as np import pandas as pd import matplotlib.pyplot as plt from datetime import datetime from dataset_creation.params import Params from dataset_creation.text_cleaning import TextCleaner class DataPreparer: @classmethod def create_data_set(cls): print('Started data set creation process...') data_dict = cls.create_data_dict() dataset = [] print('Creating final data set...') input_text_len_list = [] output_text_len_list = [] for hadm_id, category_dict in data_dict.items(): # get output y = category_dict.get(Params.DISCHARGE_SUMMARY_CATEGORY_VALUE_STR) # check it data point is relevant and has a discharge summary if not y: continue else: # get input x = '' entries = [] for category in Params.OTHER_VALUES_CATEGORY_STR_LIST: for entry in data_dict.get(hadm_id).get(category): entries.append(entry) entries_sorted = sorted(entries, key=lambda x: x[1]) for entry in entries_sorted: x += entry[0] x += ' ' if len(x) > 1000 and len(y[0][0]) > 100: input_text_len_list.append(len(x.split())) output_text_len_list.append(len(y[0][0].split())) dataset.append([str(hadm_id), x, y[0][0]]) # text length statistics print('Input Text Length:') print('---- Max:', np.max(input_text_len_list)) print('---- Average:', np.mean(input_text_len_list)) print('---- Min:', np.min(input_text_len_list)) print('Output Text Length:') print('---- Max:', np.max(output_text_len_list)) print('---- Average:', np.mean(output_text_len_list)) print('---- Min:', np.min(output_text_len_list)) # plot distribution plt.hist(x=input_text_len_list, bins=100) plt.xlabel('Bins') plt.ylabel('#Strings in bin') plt.title('Distribution of Input Text Length') plt.savefig('./input_test_length_distribution.png', dpi=400) plt.close() plt.hist(x=output_text_len_list, bins=100) plt.xlabel('Bins') plt.ylabel('#Strings in bin') plt.title('Distribution of Output Text Length') plt.savefig('./output_text_length_distribution.png', dpi=400) plt.close() # save data set print('Saving final data set...') df =
pd.DataFrame(dataset, columns=['hadm_id', 'input_text', 'output_text'])
pandas.DataFrame
# -*- coding: utf-8 -*- import requests import logging import pandas as pd pd.set_option("max_colwidth", 4096) from lxml import etree import requests from odoo import api, fields, models, SUPERUSER_ID, _ _logger = logging.getLogger(__name__) class WecomServerApiError(models.Model): _name = "wecom.service_api_error" _description = "Wecom Server API Error" _order = "sequence" name = fields.Char( "Error description", required=True, readonly=True, ) code = fields.Integer( "Error code", required=True, readonly=True, ) method = fields.Char( "Treatment method", readonly=True, ) sequence = fields.Integer(default=0) def get_error_by_code(self, code): res = self.search( [("code", "=", code)], limit=1, ) return { "code": res.code, "name": res.name, "method": res.method, } def cron_pull_global_error_code(self): self.pull() @api.model def pull(self): """ 使用爬虫爬取 全局错误码 URL的一般格式为: protocol://hostname[:port]/path/[;parameters][?query]#fragment """ try: _logger.info(_("Start pulling the global error code of WeCom.")) url = "https://open.work.weixin.qq.com/api/doc/90000/90139/90313" page_text = requests.get(url=url).text tree = etree.HTML(page_text) lis = tree.xpath("//div[@id='js_doc_preview_content']/ul/li") methods = [] for li in lis: li_str = etree.tostring(li, encoding="utf-8").decode() h5 = self.getMiddleStr(li_str, "<li>", "</h5>") + "</h5>" code = self.getMiddleStr(h5, 'id="h5--', '"><a name=') method_str = li_str.replace(h5, "") method = self.getMiddleStr(method_str, "<li>", "</li>") if "-" in code: multiple_codes = code.split("-", 1) for multiple_code in multiple_codes: multiple_dic = {} multiple_dic["code"] = multiple_code multiple_dic["method"] = method methods.append(multiple_dic) else: dic = {} dic["code"] = code dic["method"] = method methods.append(dic) table = tree.xpath("//div[@id='js_doc_preview_content']/table") table = etree.tostring( table[0], encoding="utf-8" ).decode() # 将第一个表格转成string格式 table = table.replace("<th>错误码</th>", "<th>code</th>") table = table.replace("<th>错误说明</th>", "<th>name</th>") table = table.replace("<th>排查方法</th>", "<th>method</th>") df =
pd.read_html(table, encoding="utf-8", header=0)
pandas.read_html
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(integer_array([1, None, 3])) expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = integer_array([1, 2, None] * 1000) expected = ( "<IntegerArray>\n" "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n" " ...\n" " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected class TestConstructors: def test_uses_pandas_na(self): a = pd.array([1, None], dtype=pd.Int64Dtype()) assert a[1] is pd.NA def test_from_dtype_from_float(self, data): # construct from our dtype & string dtype dtype = data.dtype # from float expected = pd.Series(data) result = pd.Series( data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype) ) tm.assert_series_equal(result, expected) # from int / list expected = pd.Series(data) result = pd.Series(np.array(data).tolist(), dtype=str(dtype)) tm.assert_series_equal(result, expected) # from int / array expected = pd.Series(data).dropna().reset_index(drop=True) dropped = np.array(data.dropna()).astype(np.dtype((dtype.type))) result = pd.Series(dropped, dtype=str(dtype)) tm.assert_series_equal(result, expected) class TestArithmeticOps(BaseOpsUtil): def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) def _check_op(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) result = op(s, other) # compute expected mask = s.isna() # if s is a DataFrame, squeeze to a Series # for comparison if isinstance(s, pd.DataFrame): result = result.squeeze() s = s.squeeze() mask = mask.squeeze() # other array is an Integer if isinstance(other, IntegerArray): omask = getattr(other, "mask", None) mask = getattr(other, "data", other) if omask is not None: mask |= omask # 1 ** na is na, so need to unmask those if op_name == "__pow__": mask = np.where(~s.isna() & (s == 1), False, mask) elif op_name == "__rpow__": other_is_one = other == 1 if isinstance(other_is_one, pd.Series): other_is_one = other_is_one.fillna(False) mask = np.where(other_is_one, False, mask) # float result type or float op if ( is_float_dtype(other) or is_float(other) or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"] ): rs = s.astype("float") expected = op(rs, other) self._check_op_float(result, expected, mask, s, op_name, other) # integer result type else: rs = pd.Series(s.values._data, name=s.name) expected = op(rs, other) self._check_op_integer(result, expected, mask, s, op_name, other) def _check_op_float(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in float dtypes expected[mask] = np.nan if "floordiv" in op_name: # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) mask2 = np.isinf(expected) & np.isnan(result) expected[mask2] = np.nan tm.assert_series_equal(result, expected) def _check_op_integer(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in integer dtypes # to compare properly, we convert the expected # to float, mask to nans and convert infs # if we have uints then we process as uints # then convert to float # and we ultimately want to create a IntArray # for comparisons fill_value = 0 # mod/rmod turn floating 0 into NaN while # integer works as expected (no nan) if op_name in ["__mod__", "__rmod__"]: if is_scalar(other): if other == 0: expected[s.values == 0] = 0 else: expected = expected.fillna(0) else: expected[ (s.values == 0).fillna(False) & ((expected == 0).fillna(False) | expected.isna()) ] = 0 try: expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) except ValueError: expected = expected.astype(float) expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) expected[mask] = pd.NA # assert that the expected astype is ok # (skip for unsigned as they have wrap around) if not s.dtype.is_unsigned_integer: original = pd.Series(original) # we need to fill with 0's to emulate what an astype('int') does # (truncation) for certain ops if op_name in ["__rtruediv__", "__rdiv__"]: mask |= original.isna() original = original.fillna(0).astype("int") original = original.astype("float") original[mask] = np.nan tm.assert_series_equal(original, expected.astype("float")) # assert our expected result tm.assert_series_equal(result, expected) def test_arith_integer_array(self, data, all_arithmetic_operators): # we operate with a rhs of an integer array op = all_arithmetic_operators s = pd.Series(data) rhs = pd.Series([1] * len(data), dtype=data.dtype) rhs.iloc[-1] = np.nan self._check_op(s, op, rhs) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # scalar op = all_arithmetic_operators s = pd.Series(data) self._check_op(s, op, 1, exc=TypeError) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op = all_arithmetic_operators df = pd.DataFrame({"A": data}) self._check_op(df, op, 1, exc=TypeError) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op = all_arithmetic_operators s = pd.Series(data) other = np.ones(len(s), dtype=s.dtype.type) self._check_op(s, op, other, exc=TypeError) def test_arith_coerce_scalar(self, data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) other = 0.01 self._check_op(s, op, other) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(self, all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = self.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype is np.dtype("float") def test_arith_len_mismatch(self, all_arithmetic_operators): # operating with a list-like with non-matching length raises op = self.get_op_from_name(all_arithmetic_operators) other = np.array([1.0]) s = pd.Series([1, 2, 3], dtype="Int64") with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(self, other): arr = integer_array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?IntegerArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) if op != "__rpow__": # TODO(extension) # rpow with a datetimelike coerces the integer array incorrectly msg = ( "can only perform ops with numeric values|" "cannot perform .* with this index type: DatetimeArray|" "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *" ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # 2d result = opa(pd.DataFrame({"A": s})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(self, zero, negative): # https://github.com/pandas-dev/pandas/issues/27398 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = np.array([np.nan, np.inf, -np.inf, np.nan]) if negative: expected *= -1 tm.assert_numpy_array_equal(result, expected) def test_pow_scalar(self): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a ** 0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** 1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** np.nan expected = np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0 ** a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1 ** a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA ** a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan ** a expected = np.array([1, np.nan, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_pow_array(self): a = integer_array([0, 0, 0, 1, 1, 1, None, None, None]) b = integer_array([0, 1, None, 0, 1, None, 0, 1, None]) result = a ** b expected = integer_array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(self): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = integer_array([np.nan, np.nan]) result = np.array([1.0, 2.0]) ** arr expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) class TestComparisonOps(BaseOpsUtil): def _compare_other(self, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) expected = pd.Series(op(data._data, other), dtype="boolean") # fill the nan locations expected[data._mask] = pd.NA tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) expected = op(pd.Series(data._data), other) # fill the nan locations expected[data._mask] = pd.NA expected = expected.astype("boolean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1]) def test_scalar(self, other, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([1, 0, None], dtype="Int64") result = op(a, other) if other is pd.NA: expected = pd.array([None, None, None], dtype="boolean") else: values = op(a._data, other) expected = pd.arrays.BooleanArray(values, a._mask, copy=True) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal(a, pd.array([1, 0, None], dtype="Int64")) def test_array(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([0, 1, 2, None, None, None], dtype="Int64") b = pd.array([0, 1, None, 0, 1, None], dtype="Int64") result = op(a, b) values = op(a._data, b._data) mask = a._mask | b._mask expected = pd.arrays.BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal( a, pd.array([0, 1, 2, None, None, None], dtype="Int64") ) tm.assert_extension_array_equal( b, pd.array([0, 1, None, 0, 1, None], dtype="Int64") ) def test_compare_with_booleanarray(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([True, False, None] * 3, dtype="boolean") b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Int64") other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean") expected = op(a, other) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_no_shared_mask(self, data): result = data + 1 assert np.shares_memory(result._mask, data._mask) is False def test_compare_to_string(self, any_nullable_int_dtype): # GH 28930 s = pd.Series([1, None], dtype=any_nullable_int_dtype) result = s == "a" expected = pd.Series([False, pd.NA], dtype="boolean") self.assert_series_equal(result, expected) def test_compare_to_int(self, any_nullable_int_dtype, all_compare_operators): # GH 28930 s1 = pd.Series([1, None, 3], dtype=any_nullable_int_dtype) s2 = pd.Series([1, None, 3], dtype="float") method = getattr(s1, all_compare_operators) result = method(2) method = getattr(s2, all_compare_operators) expected = method(2).astype("boolean") expected[s2.isna()] = pd.NA self.assert_series_equal(result, expected) class TestCasting: @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(self, all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(self, all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index(np.array(other)) assert isinstance(idx, ABCIndexClass) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(self, all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s = pd.Series(mixed) result = s.astype(dtype) expected = pd.Series(mixed, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - mixed s = pd.Series(mixed) msg = r"cannot convert to .*-dtype NumPy array with missing values.*" with pytest.raises(ValueError, match=msg): s.astype(all_data.dtype.numpy_dtype) # coerce to object s = pd.Series(mixed) result = s.astype("object") expected = pd.Series(np.asarray(mixed)) tm.assert_series_equal(result, expected) def test_astype_to_larger_numpy(self): a = pd.array([1, 2], dtype="Int32") result = a.astype("int64") expected = np.array([1, 2], dtype="int64") tm.assert_numpy_array_equal(result, expected) a = pd.array([1, 2], dtype="UInt32") result = a.astype("uint64") expected = np.array([1, 2], dtype="uint64") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"]) def test_astype_specific_casting(self, dtype): s = pd.Series([1, 2, 3], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3], dtype=dtype) tm.assert_series_equal(result, expected) s = pd.Series([1, 2, 3, None], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3, None], dtype=dtype) tm.assert_series_equal(result, expected) def test_construct_cast_invalid(self, dtype): msg = "cannot safely" arr = [1.2, 2.3, 3.7] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) arr = [1.2, 2.3, 3.7, np.nan] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) @pytest.mark.parametrize("in_series", [True, False]) def test_to_numpy_na_nan(self, in_series): a = pd.array([0, 1, None], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype="float64", na_value=np.nan) expected = np.array([0.0, 1.0, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="int64", na_value=-1) expected = np.array([0, 1, -1], dtype="int64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="bool", na_value=False) expected = np.array([False, True, False], dtype="bool") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("in_series", [True, False]) @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"]) def test_to_numpy_dtype(self, dtype, in_series): a = pd.array([0, 1], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype=dtype) expected = np.array([0, 1], dtype=dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", ["float64", "int64", "bool"]) def test_to_numpy_na_raises(self, dtype): a = pd.array([0, 1, None], dtype="Int64") with pytest.raises(ValueError, match=dtype): a.to_numpy(dtype=dtype) def test_astype_str(self): a = pd.array([1, 2, None], dtype="Int64") expected = np.array(["1", "2", "<NA>"], dtype=object) tm.assert_numpy_array_equal(a.astype(str), expected) tm.assert_numpy_array_equal(a.astype("str"), expected) def test_astype_boolean(self): # https://github.com/pandas-dev/pandas/issues/31102 a = pd.array([1, 0, -1, 2, None], dtype="Int64") result = a.astype("boolean") expected = pd.array([True, False, True, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_frame_repr(data_missing): df = pd.DataFrame({"A": data_missing}) result = repr(df) expected = " A\n0 <NA>\n1 1" assert result == expected def test_conversions(data_missing): # astype to object series df = pd.DataFrame({"A": data_missing}) result = df["A"].astype("object") expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A") tm.assert_series_equal(result, expected) # convert to object ndarray # we assert that we are exactly equal # including type conversions of scalars result = df["A"].astype("object").values expected = np.array([pd.NA, 1], dtype=object) tm.assert_numpy_array_equal(result, expected) for r, e in zip(result, expected): if pd.isnull(r): assert pd.isnull(e) elif is_integer(r): assert r == e assert is_integer(e) else: assert r == e assert type(r) == type(e) def test_integer_array_constructor(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) expected = integer_array([1, 2, 3, np.nan], dtype="int64") tm.assert_extension_array_equal(result, expected) msg = r".* should be .* numpy array. Use the 'integer_array' function instead" with pytest.raises(TypeError, match=msg): IntegerArray(values.tolist(), mask) with pytest.raises(TypeError, match=msg): IntegerArray(values, mask.tolist()) with pytest.raises(TypeError, match=msg): IntegerArray(values.astype(float), mask) msg = r"__init__\(\) missing 1 required positional argument: 'mask'" with pytest.raises(TypeError, match=msg): IntegerArray(values) @pytest.mark.parametrize( "a, b", [ ([1, None], [1, np.nan]), ([None], [np.nan]), ([None, np.nan], [np.nan, np.nan]), ([np.nan, np.nan], [np.nan, np.nan]), ], ) def test_integer_array_constructor_none_is_nan(a, b): result = integer_array(a) expected = integer_array(b) tm.assert_extension_array_equal(result, expected) def test_integer_array_constructor_copy(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) assert result._data is values assert result._mask is mask result = IntegerArray(values, mask, copy=True) assert result._data is not values assert result._mask is not mask @pytest.mark.parametrize( "values", [ ["foo", "bar"], ["1", "2"], "foo", 1, 1.0, pd.date_range("20130101", periods=2), np.array(["foo"]), [[1, 2], [3, 4]], [np.nan, {"a": 1}], ], ) def test_to_integer_array_error(values): # error in converting existing arrays to IntegerArrays msg = ( r"(:?.* cannot be converted to an IntegerDtype)" r"|(:?values must be a 1D list-like)" ) with pytest.raises(TypeError, match=msg): integer_array(values) def test_to_integer_array_inferred_dtype(): # if values has dtype -> respect it result = integer_array(np.array([1, 2], dtype="int8")) assert result.dtype == Int8Dtype() result = integer_array(np.array([1, 2], dtype="int32")) assert result.dtype == Int32Dtype() # if values have no dtype -> always int64 result = integer_array([1, 2]) assert result.dtype == Int64Dtype() def test_to_integer_array_dtype_keyword(): result =
integer_array([1, 2], dtype="int8")
pandas.core.arrays.integer_array
''' This code will clean the OB datasets and combine all the cleaned data into one Dataset name: O-27-Da Yan semi-automate code, needs some hands work. LOL But God is so good to me. 1. 9 different buildings in this dataset, and each building has different rooms 3. each room has different window, door, ac, indoor, outdoor info 4. I processed building A to F by hand, then figured out that I can rename the files first, then use code to process 5. rename the file by type and number, such as window1, indoor1, ac1, door1, etc. 6. code automated G, H, I 7. the folder has multiple types of data, csv and xlsx, figure out the file type, then rean into pandas 8. concat the outdoor datetime and temperature with ac data, then judge if the ac is on or off ''' import os import glob import string import datetime import pandas as pd import matplotlib.pyplot as plt # specify the path data_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/2021-05-28-1130-raw-data/Annex 79 Data Collection/O-27-Da Yan/_yapan_processing/processed/' template_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/OB Database Consolidation/Templates/' save_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/2021-05-28-1130-raw-data/Annex 79 Data Collection/O-27-Da Yan/_yapan_processing/_sql/' # generate the name of different building folders alphabet_string = string.ascii_uppercase alphabet_list = list(alphabet_string) building_names = alphabet_list[:9] ''' 1. process data by folders ''' begin_time = datetime.datetime.now() # create dataframe to store the data combined_window = pd.DataFrame() combined_door = pd.DataFrame() combined_hvac = pd.DataFrame() combined_indoor = pd.DataFrame() combined_outdoor = pd.DataFrame() ''' process outdoor data ''' print(f'Process outdoor data') os.chdir(data_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path outdoor_files = list(filter(lambda name: 'outdoor_building' in name, root_files)) # filter out the door status files combined_outdoor = pd.concat([pd.read_csv(f) for f in outdoor_files]) ''' manual processed data ''' print(f'Process manually processed data') building_names_1 = building_names[:6] # unit test # i = 0 # folder_name = building_names_1[i] for index, bld_name in enumerate(building_names_1): print(f'Reading the data under building folder {bld_name}') building_path = data_path + bld_name + '/' os.chdir(building_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path # combine indoor_files = list(filter(lambda name: 'indoor' in name, root_files)) # filter out the indoor files window_files = list(filter(lambda name: 'window' in name, root_files)) # filter out the window files hvac_files = list(filter(lambda name: 'hvac' in name, root_files)) # filter out the ac files door_files = list(filter(lambda name: 'door_status' in name, root_files)) # filter out the door status files # read anc combine the files under this folder if indoor_files: # make sure it is not empty indoor_temp_df = pd.concat([pd.read_csv(f) for f in indoor_files]) combined_indoor = pd.concat([combined_indoor, indoor_temp_df], ignore_index=True) # concat the data else: pass if window_files: window_temp_df = pd.concat([pd.read_csv(f) for f in window_files]) combined_window = pd.concat([combined_window, window_temp_df], ignore_index=True) # concat the data else: pass if hvac_files: hvac_temp_df = pd.concat([pd.read_csv(f) for f in hvac_files]) combined_hvac = pd.concat([combined_hvac, hvac_temp_df], ignore_index=True) # concat the data # print(combined_hvac.isnull().sum()) # print(index) else: pass if door_files: door_temp_df = pd.concat([pd.read_csv(f) for f in door_files]) combined_door = pd.concat([combined_door, door_temp_df], ignore_index=True) # concat the data # print(combined_door.isnull().sum()) # print(index) else: pass ''' auto mated process by building level ''' building_names = ['G', 'H', 'I'] building_ids = [7, 8, 9] for index, bld_name in enumerate(building_names): print(f'Dealing with data under building folder {bld_name}') building_path = data_path + bld_name + '/' os.chdir(building_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path '''' room level ''' for room_id in sub_folders: print(f'Dealing with data under room folder {room_id}') room_path = building_path + room_id + '/' os.chdir(room_path) # pwd file_names = os.listdir() # get all the file names window_files = list(filter(lambda name: 'window' in name, file_names)) # filter out the window files hvac_files = list(filter(lambda name: 'ac' in name, file_names)) # filter out the ac files door_files = list(filter(lambda name: 'door' in name, file_names)) # filter out the door files # read and combine files if window_files: for window_name in window_files: name, extension = os.path.splitext(window_name) # get the path and extension of a file if extension == '.CSV': # if the file is csv file temp_df = pd.read_csv(window_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Window_Status'] # rename the columns else: temp_df = pd.read_excel(window_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Window_Status'] temp_df['Window_ID'] = int(name.split('_')[0][6:]) temp_df['Room_ID'] = int(room_id) # assign Room_ID temp_df['Building_ID'] = building_ids[index] # assign Building_ID combined_window = pd.concat([combined_window, temp_df], ignore_index=True) # concat the data else: pass if door_files: for door_name in door_files: name, extension = os.path.splitext(door_name) # get the path and extension of a file if extension == '.CSV': # if the file is csv file temp_df =
pd.read_csv(door_name, usecols=[0, 1])
pandas.read_csv
import argparse import os import torch import time import numpy as np import pandas as pd import shutil from data_utils import g_node_col, g_date_col, process_cdc_truth_from_csse, process_cdc_loc, get_all_cdc_label, read_cdc_forecast from base_task import load_json_from # exp_dir_template = '../Exp_us_{}_{}' # level, forecast_date cdc_forecast_dir = '../covid19-forecast-hub/data-processed' def load_exp_res(exp_dir, extra_columns=None): task_dirs = os.listdir(exp_dir) test_results = [] for task_dir in task_dirs: task_items = task_dir.split('_') target, horizon, model, seed = task_items[:4] horizon = int(horizon) if len(task_items) == 4: seed = int(seed.lstrip('seed')) else: seed = '_'.join([seed.lstrip('seed')] + task_items[4:]) if model == 'gbm': gbm_out = pd.read_csv(os.path.join(exp_dir, task_dir, 'test_out.csv'), parse_dates=[g_date_col]) test_res = gbm_out[[g_date_col, g_node_col, 'pred', 'label']].fillna(0) else: try: nn_out = torch.load(os.path.join(exp_dir, task_dir, 'Output/test.out.cpt')) except: print(f'Warning: {os.path.join(exp_dir, task_dir)} is an incomplete task directory! ...skip...') continue if 'y_scale' in nn_out and nn_out['y_scale'] == 'linear': log_scale = False else: log_scale = True nn_pred = nn_out['pred'].reset_index(drop=False) nn_pred['pred'] = np.expm1(nn_pred['val']) if log_scale else nn_pred['val'] nn_pred[g_date_col] = nn_out['dates'] nn_pred[g_node_col] = nn_out['countries'] if 'countries' in nn_out else nn_out['nodes'] nn_label = nn_out['label'].reset_index(drop=False) nn_label['label'] = np.expm1(nn_label['val']) if log_scale else nn_label['val'] nn_label[g_date_col] = nn_out['dates'] nn_label[g_node_col] = nn_out['countries'] if 'countries' in nn_out else nn_out['nodes'] test_res = pd.merge(nn_pred, nn_label, on=[g_date_col, g_node_col])[[g_date_col, g_node_col, 'pred', 'label']] if extra_columns is not None: cfg = load_json_from(os.path.join(exp_dir, task_dir, 'config.json')) for extra_col in extra_columns: if extra_col == 'best_epoch': test_res[extra_col] = nn_out['epoch'] else: test_res[extra_col] = cfg[extra_col] test_res['target'] = target test_res['horizon'] = horizon test_res['model'] = model test_res['seed'] = seed test_results.append(test_res) exp_res = pd.concat(test_results, axis=0).sort_values(['target', 'horizon', 'model', 'seed', g_node_col]).reset_index(drop=True) return exp_res def merge_cdc_loc(raw_pred): # ensure the order raw_pred = raw_pred.sort_values([g_date_col, g_node_col, 'target', 'horizon']) # align g_node_col with cdc location locs = process_cdc_loc() node2loc = dict(zip(locs[g_node_col], locs['location'])) raw_pred['location'] = raw_pred[g_node_col].map(lambda x: node2loc.get(x, pd.NA)) return raw_pred def merge_last_cum_truth(raw_pred, forecast_date, cdc_cum_truth=None): if 'location' not in raw_pred.columns: raw_pred = merge_cdc_loc(raw_pred) if cdc_cum_truth is None: cdc_confirmed_cum_truth = process_cdc_truth_from_csse('confirmed', stat_type='cum') cdc_deaths_cum_truth = process_cdc_truth_from_csse('deaths', stat_type='cum') cdc_confirmed_cum_truth['target'] = 'confirmed' cdc_deaths_cum_truth['target'] = 'deaths' cdc_cum_truth = pd.concat([cdc_confirmed_cum_truth, cdc_deaths_cum_truth], axis=0, ignore_index=True) # merge cdc cumulative info into forecasting results last_date = pd.to_datetime(forecast_date) + pd.Timedelta(-1, unit='day') last_cum_truth = cdc_cum_truth[cdc_cum_truth['date'] == last_date] raw_pred = pd.merge(raw_pred, last_cum_truth[['location', 'target', 'value']].rename(columns={'value': 'cum_sum'}), on=['location', 'target'], how='left') # remove useless nodes that do not have a cdc location # TODO: do this when training our models useless_nodes = raw_pred[raw_pred['location'].isnull()][g_node_col].unique() if useless_nodes.size > 0: print(f'# useless nodes in our models {useless_nodes.size}, ...removed...') raw_pred = raw_pred.dropna(subset=['location', 'cum_sum']).reset_index(drop=True) return raw_pred def transform_to_cdc_format(raw_pred, forecast_date): if 'cum_sum' not in raw_pred.columns: raise Exception('You should run merge_last_cum_truth before this function') # raw_pred = merge_last_cum_truth(raw_pred, forecast_date) # transform into CDC formats target2tag = { 'confirmed': 'case', 'deaths': 'death', } cdc_results = [] for target in ['confirmed', 'deaths']: tag = target2tag[target] for n_week in [1, 2, 3, 4]: horizon = n_week * 7 for stat_type in ['inc', 'cum']: cdc_target = f'{n_week} wk ahead {stat_type} {tag}' cdc_target_end_date = pd.to_datetime(forecast_date) + pd.Timedelta(horizon-1, unit='day') # print(cdc_target) cdc_res = raw_pred[(raw_pred['target'] == target) & (raw_pred['horizon'] == horizon)].reset_index(drop=True).copy() if stat_type == 'inc': if n_week == 1: cdc_res['value'] = cdc_res['pred'] else: cdc_res['value'] = cdc_res['pred'] - raw_pred[(raw_pred['target'] == target) & (raw_pred['horizon'] == horizon-7)].reset_index(drop=True)['pred'] else: cdc_res['value'] = cdc_res['cum_sum'] + cdc_res['pred'] cdc_res = cdc_res.rename(columns={g_date_col: 'forecast_date', 'target': 'model_target'}) cdc_res['target'] = cdc_target cdc_res['target_end_date'] = cdc_target_end_date cdc_res['type'] = 'point' cdc_res['quantile'] = pd.NA cdc_results.append(cdc_res[[ 'forecast_date', 'target', 'target_end_date', 'location', 'type', 'quantile', 'value' ]]) all_cdc_res =
pd.concat(cdc_results, axis=0, ignore_index=True)
pandas.concat
import itertools from sklearn.model_selection import train_test_split from challenge.agoda_cancellation_estimator import AgodaCancellationEstimator import matplotlib.pyplot as plt from sklearn import metrics import numpy as np import pandas as pd import re PATTERN = re.compile(r"((?P<days1>[1-9]\d*)D(?P<amount1>[1-9]\d*[NP])_)?((?P<days2>[1-9]\d*)D(?P<amount2>[1-9]\d*[NP])_)?(?P<noshow>[1-9]\d*[NP])?") def cancel_parser(policy: str, nights_num): if nights_num <= 0: nights_num = 1 match = PATTERN.match(policy) if match is None: return policy else: noshow = match.group("noshow") noshow = 1 if noshow is None else int(noshow[:-1])/100 if noshow[-1] == 'P' else int(noshow[:-1]) / nights_num days1 = match.group("days1") if days1 is None: days1 = 0 amount1 = noshow else: days1 = int(days1) amount1 = match.group("amount1") amount1 = int(amount1[:-1])/100 if amount1[-1] == 'P' else int(amount1[:-1])/nights_num days2 = match.group("days2") if days2 is None: days2 = 0 amount2 = amount1 else: days2 = int(days2) amount2 = match.group("amount2") amount2 = int(amount2[:-1])/100 if amount2[-1] == 'P' else int(amount2[:-1])/nights_num return days1, amount1, days2, amount2, noshow def agoda_preprocessor(full_data: np.ndarray): # fill cancellation datetime which doesn't exist as 0 full_data.loc[full_data["cancellation_datetime"].isnull(), "cancellation_datetime"] = full_data["checkin_date"] full_data['cancellation_datetime'] = pd.to_datetime(full_data["cancellation_datetime"]) features = data_preprocessor(full_data) full_data["cancel_warning_days"] = (full_data['checkin_date'] - full_data['cancellation_datetime']).dt.days full_data["days_cancelled_after_booking"] = (full_data["cancellation_datetime"] - full_data["booking_datetime"]).dt.days labels = (7 <= full_data["days_cancelled_after_booking"]) & (full_data["days_cancelled_after_booking"] <= 43) return features, np.asarray(labels).astype(int) def load_agoda_dataset(): """ Load Agoda booking cancellation dataset Returns ------- Design matrix and response vector in the following format: - Tuple of ndarray of shape (n_samples, n_features) and ndarray of shape (n_samples,) """ # clean data for unrealistic shit full_data =
pd.read_csv("../datasets/agoda_cancellation_train.csv")
pandas.read_csv
#!/usr/bin/env python import pandas as pd import numpy as np from sklearn.model_selection import StratifiedKFold from sklearn.feature_selection import SelectKBest, f_classif from sklearn.metrics import precision_recall_fscore_support, mean_squared_error from collections import Counter import math import xgboost as xgb import pickle import sys, os from acheron.helpers import model_evaluators def is_valid_type(val): # covers core floats, numpy floating and complex floating if isinstance(val, (float, np.inexact)): if math.isnan(val) or np.isnan(val): return False else: return True # covers core ints, numpy ints (signed unsigned), longs, shorts, bytes # TODO check for bytes later, as they do NOT like math eqns when exponential elif isinstance(val, (int, np.integer)): return True # covers core and np strings, excludes unicode elif isinstance(val, (str, np.str_)): if val.upper() in ['INVALID', 'NAN']: return False else: return True else: return False def make_mask(label_matrix, k): """ Takes in a label matrix and saves a mask of which labels are valid for each index, this allows the model to keep a sample when only a single columns is invalid, instead of discarding the sample. If doing kfold cross validation (k != 1), there must be at least k samples in each class for that class to be considered valid """ mask = np.zeros((label_matrix.values.shape), dtype='bool') invalid_classes = {} # if any class has fewer than k samples, it is marked as invalid for attribute in label_matrix.columns: class_counter = Counter(label_matrix[attribute]) invalid_classes[attribute] = [] for key in class_counter: if class_counter[key] < k: invalid_classes[attribute].append(key) for i, row in enumerate(label_matrix.values): for j, col in enumerate(row): if not is_valid_type(col): continue if col in invalid_classes[label_matrix.columns[j]]: continue mask[i,j] = True return pd.DataFrame(data=mask, columns = label_matrix.columns, index = label_matrix.index) def make_split(label_matrix, mask, k, samples): """ Takes a label matrix, splits it according to k fold cross validation but only for valid samples. Produces a random split each time (stratified) """ assert(2<=k<=255) # if exceeding 255, change dtype below to uint16 split_df = pd.DataFrame(data=np.zeros(label_matrix.shape), columns=label_matrix.columns, index = label_matrix.index, dtype='uint8') split_df = split_df[~split_df.index.duplicated(keep='first')] for col in label_matrix.columns: # which labels are valid in this specific column valid_labels = label_matrix[col].values[mask[col].values] # matching sample name for each i in valid_labels valid_samples = label_matrix.index.values[mask[col].values] if len(valid_samples) == 0: print("All samples in column "+col+" are invalid, skipping split") continue # in the event of duplicates, keep only the first seen instance processed = [] # we also need to factor in that we only have the samples in /samples, # where a datasheet might have thousands of valid, but extra datapoints #seen_bool_mask = np.array([i in samples and i not in duplicates for i in valid_samples]) seen_bool_mask = [] for i in valid_samples: if i in processed: seen_bool_mask.append(False) else: processed.append(i) if i in samples: seen_bool_mask.append(True) else: seen_bool_mask.append(False) seen_bool_mask = np.array(seen_bool_mask) final_labels = valid_labels[seen_bool_mask] final_samples = valid_samples[seen_bool_mask] # at this point, we only have labels and samples that are eligible # for machine learning skf = StratifiedKFold(n_splits=k, shuffle=True) num_samples = len(final_samples) splits = enumerate(skf.split(np.zeros((num_samples,k)),final_labels)) for i, split in splits: # pull the array of values assigned to the testing set, # label these genomes as per the fold they belong to for sample in final_samples[split[1]]: split_df.at[sample,col] = i return split_df def load_data(dataset_name, label_name, trial, type, num_feats, k, attribute): """ load requested dataset, mask, and split """ features = pd.read_pickle("data/{}/features/{}_matrix.df".format(dataset_name, type)) labels = pd.read_pickle("data/{}/labels/{}.df".format(dataset_name,label_name))[attribute] mask = pd.read_pickle("data/{}/features/masks/{}_{}.df".format(dataset_name,type,label_name))[attribute] if k!=1: split = pd.read_pickle("data/{}/splits/split{}_{}_{}_{}xCV.df".format(dataset_name,trial,type,label_name,k)) else: split = [] features, labels = apply_mask(features, labels, mask) return features, labels, mask, split def train_model(features, label, model_type, num_classes): """ Converts feature and label matrices in a trained model Sci-kit models are at the end, as they share a fit method """ # XGBoost if model_type.upper() in ['XGB', 'XGBOOST']: if num_classes == 2: objective = 'binary:logistic' else: objective = 'multi:softmax' # this is is probably going to suck for memory, so lets revist XGBClassifier # if we explode past our ram usage on this step xgb_matrix = xgb.DMatrix(features.values, label, feature_names=features.columns) params = {'objective':objective, 'num_class': num_classes} #params = {'objective':objective} booster = xgb.train(params, xgb_matrix) return booster # Artificial Neural Network elif model_type.upper() in ['ANN','KERAS','TF','TENSORFLOW']: from keras.utils import np_utils, to_categorical from keras.layers.core import Dense, Dropout, Activation from keras.models import Sequential from keras.utils import np_utils, to_categorical from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau cat_labels = to_categorical(label, num_classes) patience = 16 early_stop = EarlyStopping(monitor='loss', patience=patience, verbose=1, min_delta=0.005, mode='auto') reduce_LR = ReduceLROnPlateau(monitor='loss', factor= 0.1, patience=(patience/2), verbose = 1, min_delta=0.005,mode = 'auto', cooldown=0, min_lr=0) num_feats = len(features.columns) model = Sequential() model.add(Dense(int(((num_feats+num_classes)/2)),activation='relu',input_dim=(num_feats))) model.add(Dropout(0.5)) model.add(Dense(num_classes, kernel_initializer='uniform', activation='softmax')) if num_classes == 2: loss = "binary_crossentropy" else: loss = "poisson" model.compile(loss=loss, metrics=['accuracy'], optimizer='adam') model.fit(features.values, cat_labels, epochs=100, verbose=1, callbacks=[early_stop, reduce_LR]) return model # Support Vector Classifier # https://scikit-learn.org/stable/modules/svm.html#classification if model_type.upper() in ['SVC', 'SVM']: from sklearn import svm model = svm.SVC() # Support Vector Regressor # https://scikit-learn.org/stable/modules/svm.html#regression elif model_type.upper() in ['SVR']: from sklearn import svm model = svm.SVR() # Stochastic Gradient Descent Classifier # https://scikit-learn.org/stable/modules/sgd.html#classification elif model_type.upper() in ['SGDC']: from sklearn.linear_model import SGDClassifier model = SGDClassifier(loss="hinge", penalty="l2", max_iter=25) # Perceptron # https://scikit-learn.org/stable/modules/linear_model.html#perceptron elif model_type.upper() in ['PERC']: from sklearn.linear_model import SGDClassifier model = SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None) # Passive Aggressive Algorithms # https://scikit-learn.org/stable/modules/linear_model.html#passive-aggressive-algorithms # https://www.geeksforgeeks.org/passive-aggressive-classifiers elif model_type.upper() in ['PAC']: from sklearn.linear_model import PassiveAggressiveClassifier model = PassiveAggressiveClassifier(max_iter=100) # Nearest Neighbours Classifier # https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification elif model_type.upper() in ['NNC']: from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) # Nearest Neighbours Regressor # https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression elif model_type.upper() in ['NNR']: from sklearn.neighbors import KNeighborsRegressor model = KNeighborsRegressor(n_neighbors=3) # Gaussian Naive Bayes # https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes elif model_type.upper() in ['GNB']: from sklearn.naive_bayes import GaussianNB model = GaussianNB() # Multinomial Naive Bayes # https://scikit-learn.org/stable/modules/naive_bayes.html#multinomial-naive-bayes elif model_type.upper() in ['MNB']: from sklearn.naive_bayes import MultinomialNB model = MultinomialNB() # Categorical Naive Bayes # https://scikit-learn.org/stable/modules/naive_bayes.html#categorical-naive-bayes elif model_type.upper() in ['CNB']: from sklearn.naive_bayes import CategoricalNB model = CategoricalNB() # Decision Tree Classifier # https://scikit-learn.org/stable/modules/tree.html#classification elif model_type.upper() in ['DTC']: from sklearn import tree model = tree.DecisionTreeClassifier() # Decision Tree Regressor # https://scikit-learn.org/stable/modules/tree.html#regression elif model_type.upper() in ['DTR']: from sklearn import tree model = tree.DecisionTreeRegressor() # AdaBoost # https://scikit-learn.org/stable/modules/ensemble.html#adaboost elif model_type.upper() in ['ADA']: from sklearn.ensemble import AdaBoostClassifier model = AdaBoostClassifier() # Gradient Boosted Decision Trees # https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting elif model_type.upper() in ['GBDT']: from sklearn.ensemble import GradientBoostingClassifier model = GradientBoostingClassifier() # Multi-layer Perceptron Classifier # https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron elif model_type.upper() in ['MLPC']: from sklearn.neural_network import MLPClassifier model = MLPClassifier() else: raise Exception("model type {} not defined".format(model_type)) model.fit(features.values, label) return model def train_hyper_model(x_train, y_train, x_val, y_val, model_type, num_classes): """ Trains a hyperparameter optimized model """ from acheron.workflows import hyp best_model, best_params = hyp.get_best(x_train, y_train, x_val, y_val, model_type, num_classes) return best_model, best_params """ Unsure if saving required, to do without import time from random import seed from random import random seed(time.time()) test_id = random() save_path = "data/hyp_data/{}/".format(test_id) os.makedirs(save_path, exist_ok=False) for i, data_chunk in enumerate([x_train, y_train, x_val, y_val]): if i%2 == 0: data_chunk.to_pickle("{}{}.pkl".format(save_path,i)) else: np.save("{}{}.npy".format(save_path,i),data_chunk) trials = Trials() # https://towardsdatascience.com/an-example-of-hyperparameter-optimization-on-xgboost-lightgbm-and-catboost-using-hyperopt-12bc41a271e # Search Space Subject to Change!! if model_type.upper() in ['XGB','XGBOOST']: search_params = { 'learning_rate': hp.choice('learning_rate', np.arange(0.05, 0.31, 0.05)), 'max_depth': hp.choice('max_depth', np.arange(1, 8, 1, dtype=int)), 'min_child_weight': hp.choice('min_child_weight', np.arange(1, 8, 1, dtype=int)), 'colsample_bytree': hp.choice('colsample_bytree', np.arange(0.3, 0.8, 0.1)), 'subsample': hp.uniform('subsample', 0.8, 1), 'num_class': num_classes, 'test_id': test_id } best_index = fmin( fn=hyp.xgboost_objective, space=search_params, algo=tpe.suggest, max_evals=100, trials=trials) best_params = space_eval(search_params, best_index) if num_classes == 2: best_params['objective'] = 'binary:logistic' else: best_params['objective'] = 'multi:softmax' best_params['n_estimators'] = 10 best_params['num_class'] = num_classes xgb_matrix = xgb.DMatrix(x_train.values, y_train, feature_names=x_train.columns) booster = xgb.train(best_params, xgb_matrix) return booster, best_params elif model_type.upper() in ['ANN','KERAS','TF','TENSORFLOW']: from acheron.workflows import hyp best_run, best_model = optim.minimize( model=hyp.create_model, data=load_hyp_data, algo=tpe.suggest, max_evals=10, trials=Trials(), keep_temp=True) return best_model, best_run """ #else: #raise Exception("model type {} not defined".format(model_type)) """ # Minimal Cost-Complexity Pruning # https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning elif model_type.upper() in ['MCCP']: from sklearn import tree model = tree.DecisionTreeClassifier() path = model.cost_complexity_pruning_path(features.values, labels) ccp_alphas, impurities = path.ccp_alphas, path.impurities models = [] for ccp_alpha in ccp_alphas: clf = DecisionTreeClassifier(ccp_alpha=ccp_alpha) clf.fit(features.values, labels) clfs.append(clf) # now use validation set to see which model did best, use that alpha to train final model """ def predict(model, features, model_type): """ Takes a model and a feature set, returns an label like array of predictions """ if model_type.upper() in ['XGB', 'XGBOOST']: xgb_matrix = xgb.DMatrix(features.values, feature_names = features.columns) return [round(i) for i in model.predict(xgb_matrix, validate_features=True)] elif model_type.upper() in ['ANN','KERAS','TF','TENSORFLOW']: # This will be in categorical form, need to decode it prediction = model.predict_classes(features) #return np.argmax(prediction, axis=1) return prediction else: try: return [round(i) for i in model.predict(features)] except: raise Exception("model type {} not defined".format(model_type)) def evaluate_model(predicted, actual, model_type, dilutions, attribute, encoder): """ Evaluates how well a model did (accuracy) For mic modules, also reports off-by-one accuracy and error rates Takes encoded class labels (0,1,2) not decoded values (2,4,8,16) """ # this df will eventually get all info about the test direct_accuracy = np.sum([predicted[i]==actual[i] for i in range(len(predicted))])/len(predicted) dilutional_accuracies = {} find_errors = False if len(dilutions) > 0: find_errors = True for dilution in dilutions: total = 0 correct = 0 for i in range(len(predicted)): total +=1 if abs(predicted[i]-actual[i]) <= dilution: correct +=1 dilutional_accuracies[dilution] = correct/total data = [len(predicted),direct_accuracy] columns = ["Supports", "Accuracy"] for dilution in dilutions: if str(dilution) == '0': continue else: data.append(dilutional_accuracies[dilution]) columns.append("Within {} Dilution".format(dilution)) if find_errors: decoder = {v:k for k,v in encoder.items()} pred_decoded = [decoder[i] for i in predicted] act_decoded = [decoder[i] for i in actual] errors = [model_evaluators.find_error_type(i[0],i[1], attribute) for i in zip(pred_decoded, act_decoded)] error_counts = Counter(errors) error_types = ["Very Major Error", "Major Error", "Non Major Error", "Correct"] total_errors = 0 for error_type in error_types: total_errors += error_counts[error_type] percent = error_counts[error_type]/len(predicted) data.append(percent) columns.append(error_type) try: assert len(predicted) == total_errors except: print('Number of Errors+Correct does not equal number of predictions') raise results_df = pd.DataFrame(data=[data], columns=columns) return results_df def mean_summaries(summaries): """ Takes a list of model summaries averages them appropriately, relevant to number of supports """ try: indx = summaries[0].index[0] except: indx = 0 mean_df = pd.DataFrame(columns=summaries[0].columns, index=[indx]) total_supports = 0 proportion = {} for summary in summaries: num_sups = summary['Supports'][0] total_supports += num_sups for col in summary.columns: if col != "Supports": if col in proportion.keys(): proportion[col] += num_sups*summary[col][0] else: proportion[col] = num_sups*summary[col][0] mean_df.loc[indx,'Supports'] = total_supports for k,v in proportion.items(): mean_df.loc[indx, k] = v/total_supports return mean_df def mean_prec_recall(prec_recall_dfs): """ Takes a list of precision_recall_fscore_support dataframes Returns the mean df based on proportion of supports """ indeces = prec_recall_dfs[0].index done_rows = [] for indx in indeces: rows = [i[i.index == indx] for i in prec_recall_dfs] done_rows.append(mean_summaries(rows)) return pd.concat(done_rows) def apply_mask(features, labels, mask): """ Takes in a pandas dataframe or series with a mask and returns only valid samples Mask series looks like: AMC BioSample SAMN00000001 False SAMN00000002 True """ # its important to note that the mask is for everything in the label df, but # when we mask the features, that df might not have it # therefore we reduce the mask to samples that are seen if isinstance(features, pd.DataFrame): seen = list(features.index) skip_nan_check = False elif isinstance(features, list): seen = features skip_nan_check = True else: raise exception("Needs list of features or dataframe with declared index, not {}".format(type(features))) mask = mask[[i in seen for i in mask.index]] labels = labels[[i in seen for i in labels.index]] # prior to reindexing, we need to make sure there are no duplicates mask = mask[~mask.index.duplicated(keep='first')] labels = labels[~labels.index.duplicated(keep='first')] # reorder dataframes to make sure they are in the same order as the features mask = mask.reindex(seen) labels = labels.reindex(seen) # remove samples that we dont have data for # (these appear as nans in the mask) if not skip_nan_check: try: mask = pd.Series(index = mask.index, data = [False if np.isnan(i) else i for i in mask]) except: for i in mask: try: np.isnan(i) except: print("{} cannot be checked if isnan".format(i)) raise # double check that the mask biosample order matches the feature biosample order for i, biosample in enumerate(mask.index): assert biosample == seen[i] if isinstance(features, pd.Series) or isinstance(features, pd.DataFrame): labels = labels[list(mask)] features = features[list(mask)] elif isinstance(features, list): labels = labels[list(mask)] features = pd.Series(features)[list(mask)] else: raise Exception("Masking of type {} is not defined".format(type(features))) return features, labels def prefilter(metric, cutoff, train, ): """ Reads variance from prerecorded variance matrices Pulls a list of features to be kept to be passed into select_features() pre_selection parameter When metric == p_val, set cutoff to a decimal where all features equal or more equivalent are returned. This means that the number of returned features will vary. when metric == f_val, set cutoff to how many features you want returned. i.e. a cutoff of 1000 will return the 1000 features with the most variance. """ import operator import heapq ram_DENOM = 5 # IF YOU CHANGE THIS, CHANGE IN acheron/workflows/supervised_model.py var_df = [] for slice in range(ram_denom): variance_path = "data/{}/variance/slice{}_of_{}_trial={}_type={}_label={}_attribute={}_fold={}_of_{}xCV.df".format( train, slice+1, ram_DENOM, trial, type, label, attribute, fold, cv) if slices == 0: var_df = pd.read_pickle(var_path) elif slices >= ram_DENOM+1: raise Exception("slice number out of bounds for ran_denom") else: var_split =
pd.read_pickle(var_path)
pandas.read_pickle
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd import statsmodels.api as sm from statsmodels.nonparametric.smoothers_lowess import lowess as smlowess from statsmodels.sandbox.regression.predstd import wls_prediction_std from statsmodels.stats.outliers_influence import summary_table import scipy.stats as stats import datetime date_types = ( pd.Timestamp, pd.DatetimeIndex, pd.Period, pd.PeriodIndex, datetime.datetime, datetime.time ) _isdate = lambda x: isinstance(x, date_types) SPAN = 2 / 3. ALPHA = 0.05 # significance level for confidence interval def _snakify(txt): txt = txt.strip().lower() return '_'.join(txt.split()) def _plot_friendly(value): if not isinstance(value, (np.ndarray, pd.Series)): value = pd.Series(value) return value def lm(x, y, alpha=ALPHA): "fits an OLS from statsmodels. returns tuple." x_is_date = _isdate(x.iloc[0]) if x_is_date: x = np.array([i.toordinal() for i in x]) X = sm.add_constant(x) fit = sm.OLS(y, X).fit() prstd, iv_l, iv_u = wls_prediction_std(fit) _, summary_values, summary_names = summary_table(fit, alpha=alpha) df = pd.DataFrame(summary_values, columns=map(_snakify, summary_names)) # TODO: indexing w/ data frame is messing everything up fittedvalues = df['predicted_value'].values predict_mean_ci_low = df['mean_ci_95%_low'].values predict_mean_ci_upp = df['mean_ci_95%_upp'].values predict_ci_low = df['predict_ci_95%_low'].values predict_ci_upp = df['predict_ci_95%_upp'].values if x_is_date: x = [pd.Timestamp.fromordinal(int(i)) for i in x] return x, fittedvalues, predict_mean_ci_low, predict_mean_ci_upp def lowess(x, y, span=SPAN): "returns y-values estimated using the lowess function in statsmodels." """ for more see statsmodels.nonparametric.smoothers_lowess.lowess """ x, y = map(_plot_friendly, [x,y]) x_is_date = _isdate(x.iloc[0]) if x_is_date: x = np.array([i.toordinal() for i in x]) result = smlowess(np.array(y), np.array(x), frac=span) x = pd.Series(result[::,0]) y = pd.Series(result[::,1]) lower, upper = stats.t.interval(span, len(x), loc=0, scale=2) std = np.std(y) y1 =
pd.Series(lower * std + y)
pandas.Series
""" Module with classes and methods to perform kriging of elements (and at some point exploit the potential field to choose the directions of the variograms) Tested on Ubuntu 16 Created on 1/5/2017 @author: <NAME> """ import theano import theano.tensor as T import matplotlib.pyplot as plt import pymc3 as pm import numpy as np import pandas as pn from bokeh.io import show import bokeh.layouts as bl import bokeh.plotting as bp def choose_lithology_elements(df, litho, elem=None, coord = True): """ litho(str): Name of the lithology-domain elem(list): List of strings with elements you want to analyze """ # Choosing just the opx litology if elem is not None: if coord: domain = df[df['Lithology'] == litho][np.append(['X', 'Y', 'Z'], elem)] else: domain = df[df['Lithology'] == litho][elem] # Drop negative values domain = domain[(domain[elem] > 0).all(1)] else: domain = df[df['Lithology'] == litho][['X', 'Y', 'Z']] return domain def select_segmented_grid(df, litho, grid, block): block = np.squeeze(block) assert grid.shape[0] == block.shape[0], 'The grid you want to use for kriging and the grid used for the layers ' \ 'segmentation are not the same' litho_num = df['Lithology Number'][df["Lithology"] == litho].iloc[0] segm_grid = grid[block == litho_num] return segm_grid def transform_data(df_o, n_comp=1, log10=False): """ Method to improve the normality of the input data before perform krigin Args: df_o: Dataframe with the data to interpolate n_comp: Number of component in case of multimodal data log10 (bool): If true return the log in base 10 of the properties: Returns: pandas.core.frame.DataFrame: Data frame with the transformed data """ import copy df = copy.deepcopy(df_o) # Take log to try to aproximate better the normal distributions if log10: print('computing log') df[df.columns.difference(['X', 'Y', 'Z'])] = np.log10(df[df.columns.difference(['X', 'Y', 'Z'])]) # Finding n modes in the data if n_comp > 1: from sklearn import mixture gmm = mixture.GaussianMixture(n_components=n_comp, covariance_type='full').fit(df[df.columns.difference(['X', 'Y', 'Z'])]) # Adding the categories to the pandas frame labels_all = gmm.predict(df[df.columns.difference(['X', 'Y', 'Z'])]) df['cluster'] = labels_all return df def theano_sed(): """ Function to create a theano function to compute the euclidian distances efficiently Returns: theano.compile.function_module.Function: Compiled function """ theano.config.compute_test_value = "ignore" # Set symbolic variable as matrix (with the XYZ coords) coord_T_x1 = T.dmatrix() coord_T_x2 = T.dmatrix() # Euclidian distances function def squared_euclidean_distances(x_1, x_2): sqd = T.sqrt(T.maximum( (x_1 ** 2).sum(1).reshape((x_1.shape[0], 1)) + (x_2 ** 2).sum(1).reshape((1, x_2.shape[0])) - 2 * x_1.dot(x_2.T), 0 )) return sqd # Compiling function f = theano.function([coord_T_x1, coord_T_x2], squared_euclidean_distances(coord_T_x1, coord_T_x2), allow_input_downcast=False) return f # This is extremily ineficient. Try to vectorize it in theano, it is possible to gain X100 def compute_variogram(df, properties, euclidian_distances, tol=10, lags=np.logspace(0, 2.5, 100), plot=[]): """ Compute the experimental variogram and cross variogram for a par of properties Args: df (pandas.core.frame.DataFrame): Dataframe with the properties and coordinates used in the experimental variogram computation properties (list): List of the two properties to compute the semivariogram. euclidian_distances (numpy.array): Precomputed distances of the euclidian distances tol (float): Tolerance lags (list): List of lags to compute the experimental variogram plot (bool): If true plot the experimental variogram after computed Returns: list: semvariance aor cross-semivariance """ # Tiling the properties to a square matrix element = (df[properties[0]].as_matrix().reshape(-1, 1) - np.tile(df[properties[1]], (df[properties[1]].shape[0], 1))) ** 2 # Semivariance computation semivariance_lag = [] # Looping every lag to compute the semivariance for i in lags: # Selecting the points at the given lag and tolerance points_at_lag = ((euclidian_distances > i - tol) * (euclidian_distances < i + tol)) # Extracting the values of the properties of the selected lags var_points = element[points_at_lag] # Appending the semivariance semivariance_lag = np.append(semivariance_lag, np.mean(var_points) / 2) if "experimental" in plot: # Visualizetion of the experimental variogram plt.plot(lags, semivariance_lag, 'o') return semivariance_lag def exp_lags(max_range, exp=2, n_lags=100): """ Function to create a more specific exponential distance between the lags in case that log10 gives too much weight to the smaller lags Args: max_range(float): Maximum distance exp (float): Exponential degree n_lags (int): Number of lags Returns: list: lags """ lags = np.empty(0) for i in range(n_lags): lags = np.append(lags, i ** exp) lags = lags / lags.max() * max_range return lags def compute_crossvariogram(df, properties_names, euclidian_distances=None, **kwargs): """ Compute the experimental crossvariogram of all properties given Args: df (pandas.core.frame.DataFrame): Dataframe with the properties and coordinates used in the experimental variogram computation properties_names (list str): List of strings with the properties to compute euclidian_distances (numpy.array): Precomputed euclidian distances. If None they are computed inplace Keyword Args: - lag_exp: Degree of the exponential. If None log10 - lag_range: Maximum distance to compute a lag - n_lags: Number of lags Returns: pandas.core.frame.DataFrame: Every experimental cross-variogram """ lag_exp = kwargs.get('lag_exp', None) lag_range = kwargs.get('lag_range', 500) n_lags = kwargs.get('n_lags', 100) # Choosing the lag array if lag_exp is not None: lags = exp_lags(lag_range, lag_exp, n_lags) else: lags = np.logspace(0, np.log10(lag_range), n_lags) # Compute euclidian distance if not euclidian_distances: euclidian_distances = theano_sed()(df[['X', 'Y', 'Z']], df[['X', 'Y', 'Z']]) # Init dataframe to store the results experimental_variograms_frame =
pn.DataFrame()
pandas.DataFrame
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # Same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # all NaT result = Index([pd.NaT, pd.NaT], name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # all NaT with tz result = Index([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_dti_with_mixed_timezones(self): # GH 11488 (not changed, added explicit tests) # no tz results in DatetimeIndex result = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex (DST) result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # tz mismatch affecting to tz-aware raises TypeError/ValueError with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') msg = 'cannot be converted to datetime64' with pytest.raises(ValueError, match=msg): DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='US/Eastern', name='idx') with pytest.raises(ValueError, match=msg): # passing tz should results in DatetimeIndex, then mismatch raises # TypeError Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') def test_construction_base_constructor(self): arr = [pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) def test_construction_outofbounds(self): # GH 13663 dates = [datetime(3000, 1, 1), datetime(4000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)] exp = Index(dates, dtype=object) # coerces to object tm.assert_index_equal(Index(dates), exp) with pytest.raises(OutOfBoundsDatetime): # can't create DatetimeIndex DatetimeIndex(dates) def test_construction_with_ndarray(self): # GH 5152 dates = [datetime(2013, 10, 7), datetime(2013, 10, 8), datetime(2013, 10, 9)] data = DatetimeIndex(dates, freq=pd.offsets.BDay()).values result = DatetimeIndex(data, freq=pd.offsets.BDay()) expected = DatetimeIndex(['2013-10-07', '2013-10-08', '2013-10-09'], freq='B') tm.assert_index_equal(result, expected) def test_verify_integrity_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(['1/1/2000'], verify_integrity=False) def test_range_kwargs_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000', freq='D') def test_integer_values_and_tz_deprecated(self): # GH-24559 values = np.array([946684800000000000]) with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(values, tz='US/Central') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") tm.assert_index_equal(result, expected) # but UTC is *not* deprecated. with tm.assert_produces_warning(None): result = DatetimeIndex(values, tz='UTC') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) tm.assert_index_equal(rng, exp) msg = 'periods must be a number, got foo' with pytest.raises(TypeError, match=msg): date_range(start='1/1/2000', periods='foo', freq='D') with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000') with pytest.raises(TypeError): DatetimeIndex('1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) tm.assert_index_equal(result, expected) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # string with NaT strings = np.array(['2000-01-01', '2000-01-02', 'NaT']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # non-conforming pytest.raises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') pytest.raises(ValueError, date_range, start='2011-01-01', freq='b') pytest.raises(ValueError, date_range, end='2011-01-01', freq='B') pytest.raises(ValueError, date_range, periods=10, freq='D') @pytest.mark.parametrize('freq', ['AS', 'W-SUN']) def test_constructor_datetime64_tzformat(self, freq): # see GH#6572: ISO 8601 format results in pytz.FixedOffset idx = date_range('2013-01-01T00:00:00-05:00', '2016-01-01T23:59:59-05:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013-01-01T00:00:00+09:00', '2016-01-01T23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) # Non ISO 8601 format results in dateutil.tz.tzoffset idx = date_range('2013/1/1 0:00:00-5:00', '2016/1/1 23:59:59-5:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013/1/1 0:00:00+9:00', '2016/1/1 23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') expected = DatetimeIndex(['2013-01-01', '2013-01-02'] ).tz_localize('US/Eastern') tm.assert_index_equal(idx, expected) idx = DatetimeIndex(['2013-01-01', '2013-01-02'], tz='US/Eastern') tm.assert_index_equal(idx, expected) # if we already have a tz and its not the same, then raise idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') pytest.raises(ValueError, lambda: DatetimeIndex(idx, dtype='datetime64[ns]')) # this is effectively trying to convert tz's pytest.raises(TypeError, lambda: DatetimeIndex(idx, dtype='datetime64[ns, CET]')) pytest.raises(ValueError, lambda: DatetimeIndex( idx, tz='CET', dtype='datetime64[ns, US/Eastern]')) result = DatetimeIndex(idx, dtype='datetime64[ns, US/Eastern]') tm.assert_index_equal(idx, result) def test_constructor_name(self): idx = date_range(start='2000-01-01', periods=1, freq='A', name='TEST') assert idx.name == 'TEST' def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) assert idx.nanosecond[0] == t1.nanosecond def test_disallow_setting_tz(self): # GH 3746 dti = DatetimeIndex(['2010'], tz='UTC') with pytest.raises(AttributeError): dti.tz = pytz.timezone('US/Pacific') @pytest.mark.parametrize('tz', [ None, 'America/Los_Angeles', pytz.timezone('America/Los_Angeles'), Timestamp('2000', tz='America/Los_Angeles').tz]) def test_constructor_start_end_with_tz(self, tz): # GH 18595 start = Timestamp('2013-01-01 06:00:00', tz='America/Los_Angeles') end = Timestamp('2013-01-02 06:00:00', tz='America/Los_Angeles') result = date_range(freq='D', start=start, end=end, tz=tz) expected = DatetimeIndex(['2013-01-01 06:00:00', '2013-01-02 06:00:00'], tz='America/Los_Angeles') tm.assert_index_equal(result, expected) # Especially assert that the timezone is consistent for pytz assert pytz.timezone('America/Los_Angeles') is result.tz @pytest.mark.parametrize('tz', ['US/Pacific', 'US/Eastern', 'Asia/Tokyo']) def test_constructor_with_non_normalized_pytz(self, tz): # GH 18595 non_norm_tz = Timestamp('2010', tz=tz).tz result = DatetimeIndex(['2010'], tz=non_norm_tz) assert pytz.timezone(tz) is result.tz def test_constructor_timestamp_near_dst(self): # GH 20854 ts = [Timestamp('2016-10-30 03:00:00+0300', tz='Europe/Helsinki'), Timestamp('2016-10-30 03:00:00+0200', tz='Europe/Helsinki')] result = DatetimeIndex(ts) expected = DatetimeIndex([ts[0].to_pydatetime(), ts[1].to_pydatetime()]) tm.assert_index_equal(result, expected) # TODO(GH-24559): Remove the xfail for the tz-aware case. @pytest.mark.parametrize('klass', [Index, DatetimeIndex]) @pytest.mark.parametrize('box', [ np.array, partial(np.array, dtype=object), list]) @pytest.mark.parametrize('tz, dtype', [ pytest.param('US/Pacific', 'datetime64[ns, US/Pacific]', marks=[pytest.mark.xfail(), pytest.mark.filterwarnings( "ignore:\\n Passing:FutureWarning")]), [None, 'datetime64[ns]'], ]) def test_constructor_with_int_tz(self, klass, box, tz, dtype): # GH 20997, 20964 ts = Timestamp('2018-01-01', tz=tz) result = klass(box([ts.value]), dtype=dtype) expected = klass([ts]) assert result == expected # This is the desired future behavior @pytest.mark.xfail(reason="Future behavior", strict=False) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") def test_construction_int_rountrip(self, tz_naive_fixture): # GH 12619 # TODO(GH-24559): Remove xfail tz = tz_naive_fixture result = 1293858000000000000 expected = DatetimeIndex([1293858000000000000], tz=tz).asi8[0] assert result == expected def test_construction_from_replaced_timestamps_with_dst(self): # GH 18785 index = pd.date_range(pd.Timestamp(2000, 1, 1), pd.Timestamp(2005, 1, 1), freq='MS', tz='Australia/Melbourne') test = pd.DataFrame({'data': range(len(index))}, index=index) test = test.resample('Y').mean() result = pd.DatetimeIndex([x.replace(month=6, day=1) for x in test.index]) expected = pd.DatetimeIndex(['2000-06-01 00:00:00', '2001-06-01 00:00:00', '2002-06-01 00:00:00', '2003-06-01 00:00:00', '2004-06-01 00:00:00', '2005-06-01 00:00:00'], tz='Australia/Melbourne') tm.assert_index_equal(result, expected) def test_construction_with_tz_and_tz_aware_dti(self): # GH 23579 dti = date_range('2016-01-01', periods=3, tz='US/Central') with pytest.raises(TypeError): DatetimeIndex(dti, tz='Asia/Tokyo') def test_construction_with_nat_and_tzlocal(self): tz = dateutil.tz.tzlocal() result = DatetimeIndex(['2018', 'NaT'], tz=tz) expected = DatetimeIndex([Timestamp('2018', tz=tz), pd.NaT]) tm.assert_index_equal(result, expected) class TestTimeSeries(object): def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) assert rng.freq == rng2.freq def test_dti_constructor_years_only(self, tz_naive_fixture): tz = tz_naive_fixture # GH 6961 rng1 = date_range('2014', '2015', freq='M', tz=tz) expected1 = date_range('2014-01-31', '2014-12-31', freq='M', tz=tz) rng2 = date_range('2014', '2015', freq='MS', tz=tz) expected2 = date_range('2014-01-01', '2015-01-01', freq='MS', tz=tz) rng3 = date_range('2014', '2020', freq='A', tz=tz) expected3 = date_range('2014-12-31', '2019-12-31', freq='A', tz=tz) rng4 = date_range('2014', '2020', freq='AS', tz=tz) expected4 = date_range('2014-01-01', '2020-01-01', freq='AS', tz=tz) for rng, expected in [(rng1, expected1), (rng2, expected2), (rng3, expected3), (rng4, expected4)]: tm.assert_index_equal(rng, expected) def test_dti_constructor_small_int(self, any_int_dtype): # see gh-13721 exp = DatetimeIndex(['1970-01-01 00:00:00.00000000', '1970-01-01 00:00:00.00000001', '1970-01-01 00:00:00.00000002']) arr = np.array([0, 10, 20], dtype=any_int_dtype) tm.assert_index_equal(DatetimeIndex(arr), exp) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) assert rng[0].second == 1 def test_is_(self): dti = date_range(start='1/1/2005', end='12/1/2005', freq='M') assert dti.is_(dti) assert dti.is_(dti.view()) assert not dti.is_(dti.copy()) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) assert (idx.values == conversion.ensure_datetime64ns(arr)).all() def test_constructor_int64_nocopy(self): # GH#1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 assert (index.asi8[50:100] == -1).all() arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 assert (index.asi8[50:100] != -1).all() @pytest.mark.parametrize('freq', ['M', 'Q', 'A', 'D', 'B', 'BH', 'T', 'S', 'L', 'U', 'H', 'N', 'C']) def test_from_freq_recreate_from_data(self, freq): org = date_range(start='2001/02/01 09:00', freq=freq, periods=1) idx = DatetimeIndex(org, freq=freq) tm.assert_index_equal(idx, org) org = date_range(start='2001/02/01 09:00', freq=freq, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=freq, tz='US/Pacific') tm.assert_index_equal(idx, org) def test_datetimeindex_constructor_misc(self): arr = ['1/1/2005', '1/2/2005', 'Jn 3, 2005', '2005-01-04'] pytest.raises(Exception, DatetimeIndex, arr) arr = ['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'] idx1 =
DatetimeIndex(arr)
pandas.DatetimeIndex
from utils import * import time, copy, os, glob, csv, ast import pandas as pd import numpy as np from collections import defaultdict from config import parameters from PatternHandler import PatternHandler from DependencyGraphHandler import DependencyGraphHandler from SubsetHandler import SubsetHandler from sklearn.feature_selection import mutual_info_classif from sklearn.model_selection import KFold from tqdm import tqdm tqdm.pandas() from pandarallel import pandarallel pandarallel.initialize(nb_workers=parameters.num_cpus, progress_bar=True) domains = parameters.domains pattern_types = parameters.pattern_types allow_f1_decrease_count = parameters.allow_f1_decrease_count config_option = parameters.config_option min_pattern_count = parameters.min_pattern_count max_pick_count = parameters.max_pick_count min_pattern_f1 = parameters.min_pattern_f1 data_filepath = parameters.data_filepath lexicon_filepath = parameters.lexicon_filepath output_time_txt_filepath = parameters.output_time_txt_filepath output_pattern_csv_filepath = parameters.output_pattern_csv_filepath output_error_csv_filepath = parameters.output_error_csv_filepath output_target_log_csv_filepath = parameters.output_target_log_csv_filepath output_raw_df_pkl_filepath_ = parameters.output_raw_df_pkl_filepath output_training_test_dfs_pkl_filepath = parameters.output_training_test_dfs_pkl_filepath output_pattern_counter_pkl_filepath = parameters.output_pattern_counter_pkl_filepath output_targets_dir = parameters.output_targets_dir output_targets_concat_csv_filepath = parameters.output_targets_concat_csv_filepath output_pattern_quality_estimation_csv_filepath = parameters.output_pattern_quality_estimation_csv_filepath output_subset_selection_log_filepath = parameters.output_subset_selection_log_filepath output_subset_pkl_filepath = parameters.output_subset_pkl_filepath output_target_extraction_report_csv_filepath = parameters.output_target_extraction_report_csv_filepath output_final_report_csv_filepath = parameters.output_final_report_csv_filepath def match_opinion_words(content, opinion_word_lexicon): opinion_words = [] for opinion in opinion_word_lexicon: for token in content.split(): if token == opinion: opinion_words.append(token) return list(set(opinion_words)) def save_extracted_pattern_results(domain, k, pattern_type, pattern_counter, err_list): pattern_list = [tup for tup in pattern_counter.items()] pattern_df = pd.DataFrame(pattern_list, columns =['pattern', 'count']) filepath = output_pattern_csv_filepath % (domain, k, pattern_type, len(pattern_df)) pattern_df.to_csv(filepath, index = False, encoding='utf-8-sig') print('Created %s' % filepath) err_df = pd.DataFrame(err_list, columns =['content', 'current_opinion_word', 'current_target_word', 'parse_error', 'opinion_words', 'targets', 'raw_targets']) filepath = output_error_csv_filepath % (domain, k, pattern_type, len(err_df[err_df['parse_error']==True]), len(err_df)) err_df.to_csv(filepath, index = False, encoding='utf-8-sig') print('Created %s' % filepath) def pattern_extraction(domain, k, pattern_type, df, pattern_handler, dependency_handler): print('[%s k=%d %s]' % (domain, k, pattern_type)) pattern_counter, err_list = defaultdict(int), list() if pattern_type == 'ot': pattern_handler.extract_patterns_ot(df, pattern_counter, err_list, dependency_handler) elif pattern_type == 'tt': pattern_handler.extract_patterns_tt(df, pattern_counter, err_list, dependency_handler) save_extracted_pattern_results(domain, k, pattern_type, pattern_counter, err_list) return pattern_counter def merge_dfs(data_filepaths): dfs = [] for data_filepath in data_filepaths: df = pd.read_csv(data_filepath) dfs.append(df) return pd.concat(dfs, ignore_index=True) def pattern_quality_estimation(domain, k, pattern_type, original_df, pattern_counter, pattern_handler, dependency_handler): print('Processing pattern_quality_estimation for [%s] (# of patterns = %d)..' % (domain, len(pattern_counter))) idx = 0 for one_flattened_dep_rels, pattern_count in sorted(pattern_counter.items(), key=lambda x: x[-1], reverse=True): idx += 1 filepath = output_target_log_csv_filepath % (domain, k, pattern_type, pattern_count, one_flattened_dep_rels) if os.path.exists(filepath): continue print('[%d/%d]Evaluating quality of pattern %s' % (idx, len(pattern_counter.keys()), one_flattened_dep_rels)) dep_rels = one_flattened_dep_rels.split('-') df = copy.deepcopy(original_df) if pattern_type == 'ot': df['predicted_targets'] = df.parallel_apply(lambda x: pattern_handler.extract_targets(x['doc'], x['opinion_words'], dep_rels, dependency_handler), axis=1) elif pattern_type == 'tt': df['predicted_targets'] = df.parallel_apply(lambda x: pattern_handler.extract_targets(x['doc'], x['targets'], dep_rels, dependency_handler), axis=1) df['pattern'] = one_flattened_dep_rels df['pattern_count'] = pattern_count df.drop(['filename', 'doc'], axis=1, inplace=True) df.to_csv(filepath, index = False, encoding='utf-8-sig') print('Created %s' % filepath) filepath = output_targets_concat_csv_filepath % (domain, k, pattern_type) if os.path.exists(filepath): concat_df = pd.read_csv(filepath) else: print('Merging csv files in %s for [%s]..' % (output_targets_dir, domain)) concat_df = merge_dfs(glob.glob(os.path.join(output_targets_dir, '%s_k=%d_%s*.csv' % (domain, k, pattern_type)))) concat_df.to_csv(filepath, index = False, encoding='utf-8-sig') print('Created %s' % filepath) concat_df['targets'] = concat_df.apply(lambda x: ast.literal_eval(x['targets']), axis=1) concat_df['predicted_targets'] = concat_df.apply(lambda x: ast.literal_eval(x['predicted_targets']), axis=1) print('Evaluating rules for [%s k=%d]..' % (domain, k)) filepath = output_pattern_quality_estimation_csv_filepath % (domain, k) if not os.path.exists(filepath): f = open(filepath, 'w', encoding='utf-8-sig') wr = csv.writer(f) wr.writerow(['domain', 'pattern', 'count', 'precision_multiple', 'recall_multiple', 'f1_multiple', 'precision_distinct', 'recall_distinct', 'f1_distinct']) for pattern in concat_df['pattern'].unique(): current_df = concat_df[concat_df['pattern']==pattern] pre_mul, rec_mul, pre_dis, rec_dis = calculate_precision_recall(current_df) wr.writerow([domain, pattern, '%d'%current_df['pattern_count'].iloc[0], '%.2f'%pre_mul, '%.2f'%rec_mul, '%.2f'%calculate_f1(pre_mul,rec_mul), '%.2f'%pre_dis, '%.2f'%rec_dis, '%.2f'%calculate_f1(pre_dis,rec_dis)]) f.close() print('Created %s' % filepath) pattern_evaluation_df = pd.read_csv(filepath) print('Loaded %s' % filepath) return concat_df, pattern_evaluation_df def evaluate_rule_set(original_df, selected_pattern_list, pattern_handler, dependency_handler): df = copy.deepcopy(original_df) df['predicted_targets'] = df.apply(lambda x: list(), axis=1) for one_flattened_dep_rels in selected_pattern_list: dep_rels = one_flattened_dep_rels.split('-') df['predicted_targets'] = df.apply(lambda x: pattern_handler.extract_targets(x['doc'], x['opinion_words'], dep_rels, dependency_handler, x['predicted_targets']), axis=1) pre_mul, rec_mul, pre_dis, rec_dis = calculate_precision_recall(df) f1_mul = calculate_f1(pre_mul,rec_mul) f1_dis = calculate_f1(pre_dis,rec_dis) return pre_mul, rec_mul, f1_mul, f1_dis def evaluate_rule_set_f1(original_df, selected_pattern_list, pattern_handler, dependency_handler): df = copy.deepcopy(original_df) df['predicted_targets'] = df.apply(lambda x: list(), axis=1) for one_flattened_dep_rels in selected_pattern_list: dep_rels = one_flattened_dep_rels.split('-') df['predicted_targets'] = df.apply(lambda x: pattern_handler.extract_targets(x['doc'], x['opinion_words'], dep_rels, dependency_handler, x['predicted_targets']), axis=1) pre_mul, rec_mul, pre_dis, rec_dis = calculate_precision_recall(df) f1_mul = calculate_f1(pre_mul,rec_mul) return f1_mul def evaluate_rule_set_pre(original_df, selected_pattern_list, pattern_handler, dependency_handler): df = copy.deepcopy(original_df) df['predicted_targets'] = df.apply(lambda x: list(), axis=1) for one_flattened_dep_rels in selected_pattern_list: dep_rels = one_flattened_dep_rels.split('-') df['predicted_targets'] = df.apply(lambda x: pattern_handler.extract_targets(x['doc'], x['opinion_words'], dep_rels, dependency_handler, x['predicted_targets']), axis=1) pre_mul, rec_mul, pre_dis, rec_dis = calculate_precision_recall(df) f1_mul = calculate_f1(pre_mul,rec_mul) return pre_mul def pick_least_redundant_one_pattern(selected_pattern_list, subset_handler): print('Picking out the least redundant one pattern against %s.. ' % str(selected_pattern_list)) x1 = subset_handler.evaluate_patterns_tp(selected_pattern_list)['tp'].values.reshape(-1,1) redundancy_degree_score_df = pd.DataFrame([candidate_pattern for candidate_pattern in subset_handler.pattern_list if candidate_pattern not in selected_pattern_list], columns=['candidate_pattern']) redundancy_degree_score_df['redundancy_score'] = redundancy_degree_score_df.parallel_apply(lambda row: mutual_info_classif(x1, subset_handler.evaluate_patterns_tp([*selected_pattern_list, row['candidate_pattern']])['tp'].values.reshape(-1,1), discrete_features=[0]), axis=1) min_row = redundancy_degree_score_df.sort_values(by='redundancy_score').iloc[0] min_redundant_pattern = min_row['candidate_pattern'] min_redundancy_degree_score = min_row['redundancy_score'] return min_redundant_pattern, min_redundancy_degree_score def pick_one_pattern(selected_pattern_list, subset_handler, original_df, pattern_handler, dependency_handler, config_option): print('Picking out the least redundant one pattern against %s.. ' % str(selected_pattern_list)) x1 = subset_handler.evaluate_patterns_tp(selected_pattern_list)['tp'].values.reshape(-1,1) redundancy_degree_score_df = pd.DataFrame([candidate_pattern for candidate_pattern in subset_handler.pattern_list if candidate_pattern not in selected_pattern_list], columns=['candidate_pattern']) redundancy_degree_score_df['redundancy_score'] = redundancy_degree_score_df.parallel_apply(lambda row: mutual_info_classif(x1, subset_handler.evaluate_patterns_tp([*selected_pattern_list, row['candidate_pattern']])['tp'].values.reshape(-1,1), discrete_features=[0]), axis=1) if config_option == 'f1mi': redundancy_degree_score_df['criteria'] = redundancy_degree_score_df.parallel_apply(lambda row: evaluate_rule_set_f1(original_df, [*selected_pattern_list, row['candidate_pattern']], pattern_handler, dependency_handler), axis=1) elif config_option == 'premi': redundancy_degree_score_df['criteria'] = redundancy_degree_score_df.parallel_apply(lambda row: evaluate_rule_set_pre(original_df, [*selected_pattern_list, row['candidate_pattern']], pattern_handler, dependency_handler), axis=1) redundancy_degree_score_df['criteria/mi'] = redundancy_degree_score_df.progress_apply(lambda x: x['criteria']/x['redundancy_score'], axis=1) min_row = redundancy_degree_score_df.sort_values(by='criteria/mi', ascending=False).iloc[0] min_redundant_pattern = min_row['candidate_pattern'] min_redundancy_degree_score = min_row['redundancy_score'] return min_redundant_pattern, min_redundancy_degree_score def pattern_subset_selection(domain, k, pattern_type, selected_pattern_list, original_df, subset_handler, pattern_handler, dependency_handler): print('Processing subset selection for [%s k=%d]..' % (domain, k)) pkl_filepath = output_subset_pkl_filepath % (domain, k, pattern_type) if 1==2: print('pass') # os.path.exists(pkl_filepath): best_subset = load_pkl(pkl_filepath) else: best_f1_mul_list, best_f1_dis_list, best_subset_list = [], [], [] best_f1_mul, best_f1_dis, best_subset = 0, 0, [] _, _, f1_mul, f1_dis = evaluate_rule_set(original_df, selected_pattern_list, pattern_handler, dependency_handler) content = "Selected pattern list = %s \n\tF1 (multiple): %.4f\tF1 (distinct): %.4f" % (str(selected_pattern_list), f1_mul, f1_dis) print("[%s]Selected pattern list = %s \n\tF1 (multiple): %.4f\tF1 (distinct): %.4f" % (domain, str(selected_pattern_list), f1_mul, f1_dis)) picked_cnt, num_decreased = 0, 0 while True: best_f1_mul, best_f1_dis, best_subset = f1_mul, f1_dis, copy.deepcopy(selected_pattern_list) best_f1_mul_list.append(best_f1_mul) best_f1_dis_list.append(best_f1_dis) best_subset_list.append(best_subset) picked_cnt += 1 if config_option != '': min_redundant_pattern, mi_score = pick_one_pattern(selected_pattern_list, subset_handler, original_df, pattern_handler, dependency_handler, config_option) else: min_redundant_pattern, mi_score = pick_least_redundant_one_pattern(selected_pattern_list, subset_handler) content += "\nLeast redundant pattern = %s [Redundancy score (MI score) = %.4f]" % (min_redundant_pattern, mi_score) print("[%s]Least redundant pattern = %s [Redundancy score (MI score) = %.4f]" % (domain, min_redundant_pattern, mi_score)) selected_pattern_list.append(min_redundant_pattern) _, _, f1_mul, f1_dis = evaluate_rule_set(original_df, selected_pattern_list, pattern_handler, dependency_handler) content += "\n\nSelected pattern list = %s \n\tF1 (multiple): %.4f\tF1 (distinct): %.4f" % (str(selected_pattern_list), f1_mul, f1_dis) print("[%s]Selected pattern list = %s \n\tF1 (multiple): %.4f\tF1 (distinct): %.4f" % (domain, str(selected_pattern_list), f1_mul, f1_dis)) if len(selected_pattern_list) == len(subset_handler.pattern_list): break if max_pick_count != 0 and picked_cnt == max_pick_count: break if max_pick_count == 0 and f1_mul < best_f1_mul: num_decreased += 1 if num_decreased > allow_f1_decrease_count: break if max_pick_count == 0 and f1_mul >= best_f1_mul: num_decreased = 0 if allow_f1_decrease_count > 0: idx = 1 + allow_f1_decrease_count best_f1_mul = best_f1_mul_list[-idx] best_f1_dis = best_f1_dis_list[-idx] best_subset = best_subset_list[-idx] else: best_f1_mul = best_f1_mul_list[-1] best_f1_dis = best_f1_dis_list[-1] best_subset = best_subset_list[-1] content += "\n\n<Best> Selected pattern list = %s \n\tF1 (multiple): %.4f\tF1 (distinct): %.4f" % (str(best_subset), best_f1_mul, best_f1_dis) print("[%s]<Best> Selected pattern list = %s \n\tF1 (multiple): %.4f\tF1 (distinct): %.4f" % (domain, str(best_subset), best_f1_mul, best_f1_dis)) filepath = output_subset_selection_log_filepath % (domain, k, pattern_type) text_file = open(filepath, "w", encoding='utf-8') text_file.write(content) text_file.close() print('Created %s' % filepath) save_pkl(best_subset, pkl_filepath) return best_subset def main(): kf, kfold_results = KFold(n_splits=10), defaultdict(lambda: []) pattern_handler, dependency_handler = PatternHandler(), DependencyGraphHandler() for domain in domains: # raw_df['domain'].unique() output_raw_df_pkl_filepath = output_raw_df_pkl_filepath_ % domain if os.path.exists(output_raw_df_pkl_filepath): raw_df = load_pkl(output_raw_df_pkl_filepath) else: raw_df_ =
pd.read_json(data_filepath)
pandas.read_json
from node2vec import Node2Vec import pandas as pd import numpy as np import networkx as nx import pickle import os import argparse from numpy import linalg as la from sklearn.metrics.pairwise import cosine_similarity from sklearn import model_selection as sk_ms from sklearn.metrics import confusion_matrix from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import LogisticRegression import random import matplotlib as mpl import matplotlib.pyplot as plt class GraphImporter: """ class that responsible to import or create the relevant graph """ def __init__(self, args): self.data_name = args.data_name @staticmethod def import_imdb_multi_graph(weights): """ Make our_imdb multi graph using class :param weights: :return: """ from IMDb_data_preparation_E2V import MoviesGraph weights_dict = {'movies_edges': weights[0], 'labels_edges': weights[1]} dict_paths = {'cast': 'data_set/IMDb title_principals.csv', 'genre': 'data_set/IMDb movies.csv'} imdb = MoviesGraph(dict_paths) gnx = imdb.create_graph() labels = imdb.labels2int(gnx) knowledge_gnx, knowledge_data = imdb.create_knowledge_graph(labels) multi_gnx = imdb.weighted_multi_graph(gnx, knowledge_gnx, labels, weights_dict) return multi_gnx @staticmethod def import_imdb_weighted_graph(weights): from IMDb_data_preparation_E2V import MoviesGraph weights_dict = {'movies_edges': weights[0], 'labels_edges': weights[1]} dict_paths = {'cast': 'data_set/IMDb title_principals.csv', 'genre': 'data_set/IMDb movies.csv'} imdb = MoviesGraph(dict_paths) gnx = imdb.create_graph() labels = imdb.labels2int(gnx) knowledge_gnx, knowledge_data = imdb.create_knowledge_graph(labels) weighted_graph = imdb.weighted_graph(gnx, knowledge_gnx, labels, weights_dict) return weighted_graph def import_graph(self): graph = nx.MultiGraph() data_path = self.data_name + '.txt' path = os.path.join(self.data_name, data_path) with open(path, 'r') as f: for line in f: items = line.strip().split() att1 = str(items[0][0]) att2 = str(items[1][0]) graph.add_node(items[0], key=att1) graph.add_node(items[1], key=att2) sort_att = np.array([att1, att2]) sort_att = sorted(sort_att) graph.add_edge(items[0], items[1], key=str(sort_att[0]) + str(sort_att[1])) return graph class EmbeddingCreator(object): def __init__(self, graph=None, dimension=None, args=None): self.data_name = args.data_name self.dim = dimension self.graph = graph def create_node2vec_embeddings(self): # path1 = os.path.join(self.data_name, 'Node2Vec_embedding.pickle') # path2 = os.path.join(self.data_name, 'Node2Vec_embedding.csv') # if os.path.exists(path1): # with open(path1, 'rb') as handle: # dict_embeddings = pickle.load(handle) # elif os.path.exists(path2): # embedding_df = pd.read_csv(path2) # dict_embeddings = embedding_df.to_dict(orient='list') # with open(path2, 'wb') as handle: # pickle.dump(dict_embeddings, handle, protocol=3) # else: # node2vec = Node2Vec(self.graph, dimensions=16, walk_length=30, num_walks=200, workers=1) # model = node2vec.fit() # nodes = list(self.graph.nodes()) # dict_embeddings = {} # for i in range(len(nodes)): # dict_embeddings.update({nodes[i]: np.asarray(model.wv.get_vector(nodes[i]))}) # with open(path1, 'wb') as handle: # pickle.dump(dict_embeddings, handle, protocol=3) node2vec = Node2Vec(self.graph, dimensions=self.dim, walk_length=30, num_walks=200, workers=1) model = node2vec.fit() nodes = list(self.graph.nodes()) dict_embeddings = {} for i in range(len(nodes)): dict_embeddings.update({nodes[i]: np.asarray(model.wv.get_vector(nodes[i]))}) return dict_embeddings def create_event2vec_embeddings(self): data_path = self.data_name + '_e2v_embeddings.txt' path = os.path.join(self.data_name, data_path) cond = 0 dict_embeddings = {} with open(path, 'r') as f: for line in f: if cond == 1: items = line.strip().split() dict_embeddings[items[0]] = items[1:] cond = 1 return dict_embeddings def create_oger_embeddings(self): from oger_embedding.for_nni import StaticEmbeddings static_embeddings = StaticEmbeddings(name='pw', graph=self.graph, dim=self.dim) dict_embeddings = static_embeddings.dict_embedding return dict_embeddings class TopKRanker(OneVsRestClassifier): """ Linear regression with one-vs-rest classifier """ def predict_kfir(self, x, top_k_list): assert x.shape[0] == len(top_k_list) probs = super(TopKRanker, self).predict_proba(x) prediction = np.zeros((x.shape[0], self.classes_.shape[0])) for i, k in enumerate(top_k_list): probs_ = probs[i, :] labels = self.classes_[probs_.argsort()[-int(k):]].tolist() for label in labels: prediction[i, int(label)] = 1 return prediction, probs class EdgesPreparation: def __init__(self, graph, multi_graph, args): self.args = args self.multi_graph = multi_graph self.graph = graph self.label_edges = self.make_label_edges() def make_label_edges(self): """ Make a list with all the edge from type "labels_edges", i.e. edges between a movie and its class. :return: list with labels_edges """ data_path = self.args.data_name + '_true_edges.pickle' nodes = list(self.multi_graph.nodes) label_edges = [] for node in nodes: info = self.multi_graph._adj[node] neighs = list(info.keys()) for neigh in neighs: if info[neigh][0]['key'] == 'labels_edges': label_edges.append([node, neigh]) try: with open(os.path.join(self.args.data_name, data_path), 'wb') as handle: pickle.dump(label_edges, handle, protocol=3) except: pass return label_edges def label_edges_classes_ordered(self): """ Make a dict of classes and their labels_edges they belong to. For every label_edge there is only one class it belongs to. :return: a dict of classes and their labels_edges """ dict_class_label_edge = {} for edge in self.label_edges: if edge[0][0] == 'c': label = edge[0] else: label = edge[1] if dict_class_label_edge.get(label) is not None: edges = dict_class_label_edge[label] edges.append(edge) dict_class_label_edge[label] = edges else: dict_class_label_edge.update({label: [edge]}) return dict_class_label_edge def unseen_edges(self): unseen_edges = [] dict_true_edges = self.label_edges_classes_ordered() classes = list(dict_true_edges.keys()) for i, k in enumerate(sorted(dict_true_edges, key=lambda x: len(dict_true_edges[x]), reverse=True)): classes[i] = k unseen_classes = classes[int(0.8 * len(classes)):] for c in unseen_classes: unseen_edges.append(dict_true_edges[c]) return unseen_edges def seen_graph(self): unseen_edges = self.unseen_edges() graph = self.graph for edge in unseen_edges: graph.remove_edge(edge[0][0], edge[0][1]) return graph def make_false_label_edges(self, dict_class_label_edge): """ Make a dictionary of classes and false 'labels_edges' i.e. 'labels_edges' that do not exist. The number of false 'labels_edges' for each class in the dictionary is false_per_true times the true 'labels_edges' of the class. In addition, to be more balance the function take randomly false 'labels_edges' but the number of false 'label_edges' corresponding to each class is similar. # We need the false 'labels_edges' to be a false instances to the classifier. :param dict_class_label_edge :return: a dict of classes and their false labels_edges. """ data_path = self.args.data_name + '_false_edges_balanced_{}.pickle'.format(self.args.false_per_true) dict_class_false_edges = {} labels = list(dict_class_label_edge.keys()) false_labels = [] for label in labels: for edge in dict_class_label_edge[label]: if edge[0][0] == 'c': label = edge[0] movie = edge[1] else: label = edge[1] movie = edge[0] if len(false_labels) < self.args.false_per_true + 1: false_labels = list(set(labels) - set(label)) else: false_labels = list(set(false_labels) - set(label)) indexes = random.sample(range(1, len(false_labels)), self.args.false_per_true) for i, index in enumerate(indexes): if dict_class_false_edges.get(label) is None: dict_class_false_edges[label] = [[movie, false_labels[index]]] else: edges = dict_class_false_edges[label] edges.append([movie, false_labels[index]]) dict_class_false_edges[label] = edges false_labels = list(np.delete(np.array(false_labels), indexes)) try: with open(os.path.join(self.args.data_name, data_path), 'wb') as handle: pickle.dump(dict_class_false_edges, handle, protocol=3) except: pass return dict_class_false_edges class Classifier: def __init__(self, dict_true_edges, dict_false_edges, dict_projections, embedding, args): self.args = args self.embedding = embedding self.dict_true_edges = dict_true_edges self.dict_false_edges = dict_false_edges self.norm = set(args.norm) self.dict_projections = dict_projections def edge_distance(self, edge): """ Calculate the distance of an edge. Take the vertices of the edge and calculate the distance between their embeddings. We use to calculate The distance with L1, l2, Cosine Similarity. :param edge: the edge we want to find its distance. :return: The distance """ embd1 = np.array(self.dict_projections[edge[0]]).astype(float) embd2 = np.array(self.dict_projections[edge[1]]).astype(float) if self.norm == set('L1 Norm'): norm = la.norm(np.subtract(embd1, embd2), 1) elif self.norm == set('L2 Norm'): norm = la.norm(np.subtract(embd1, embd2), 1) elif self.norm == set('cosine'): norm = cosine_similarity(embd1.reshape(1, -1), embd2.reshape(1, -1))[0] else: raise ValueError(f"Wrong name of norm, {self.norm}") return norm def calculate_classifier_value(self, true_edges, false_edges): """ Create x and y for Logistic Regression Classifier. self.dict_projections: A dictionary of all nodes embeddings, where keys==nodes and values==embeddings :param true_edges: A list of true edges. :param false_edges: A list of false edges. :return: x_true/x_false - The feature matrix for logistic regression classifier, of true/false edge. The i'th row is the norm score calculated for each edge. y_true_edge/y_false_edge - The edges labels, [1,0] for true/ [0,1] for false. Also the edge of the label is concatenate to the label. """ x_true, x_false = np.zeros(shape=(len(true_edges), 1)), np.zeros(shape=(len(false_edges), 1)) y_true_edge, y_false_edge = np.zeros(shape=(len(true_edges), 4)).astype(int).astype(str), \ np.zeros(shape=(len(false_edges), 4)).astype(int).astype(str) for i, edge in enumerate(true_edges): norm = self.edge_distance(edge) x_true[i, 0] = norm y_true_edge[i, 2] = edge[0] y_true_edge[i, 3] = edge[1] y_true_edge[i, 0] = str(1) for i, edge in enumerate(false_edges): norm = self.edge_distance(edge) x_false[i, 0] = norm y_false_edge[i, 2] = edge[0] y_false_edge[i, 3] = edge[1] y_false_edge[i, 1] = str(1) return x_true, x_false, y_true_edge, y_false_edge @staticmethod def train_edge_classification(x_train, y_train): """ train the classifier with the train set. :param x_train: The features' edge- norm (train set). :param y_train: The edges labels- 0 for true, 1 for false (train set). :return: The classifier """ classif2 = TopKRanker(LogisticRegression()) classif2.fit(x_train, y_train) return classif2 @staticmethod def split_data(x_true, x_false, y_true_edge, y_false_edge, ratio): """ split the data into rain and test for the true edges and the false one. :param ratio: determine the train size. :return: THe split data """ x_train_true, x_test_true, y_train_true_edge, y_test_true_edge = sk_ms.train_test_split( x_true, y_true_edge, test_size=1 - ratio) x_train_false, x_test_false, y_train_false_edge, y_test_false_edge = sk_ms.train_test_split( x_false, y_false_edge, test_size=1 - ratio) true_edges_test_source = y_test_true_edge.T[2].reshape(-1, 1) true_edges_test_target = y_test_true_edge.T[3].reshape(-1, 1) x_train, x_test, y_train_edge, y_test_edge = np.concatenate((x_train_true, x_train_false), axis=0), \ np.concatenate((x_test_true, x_test_false), axis=0), \ np.concatenate((y_train_true_edge, y_train_false_edge), axis=0), \ np.concatenate((y_test_true_edge, y_test_false_edge), axis=0) y_train = np.array([y_train_edge.T[0].reshape(-1, 1), y_train_edge.T[1].reshape(-1, 1)]).T.reshape(-1, 2).astype( int) true_edges_test = np.array([true_edges_test_source, true_edges_test_target]).T[0] return x_train, y_train, true_edges_test def train(self): """ Prepare the data for train, also train the classifier and make the test data divide by classes. :return: The classifier and dict_class_movie_test """ path1 = os.path.join(self.args.data_name, f'train/classifier23_{self.embedding}_{self.args.norm}.pkl') path2 = os.path.join(self.args.data_name, f'train/dict_{self.embedding}_{self.args.norm}.pkl') classes = list(self.dict_true_edges.keys()) for i, k in enumerate(sorted(self.dict_true_edges, key=lambda x: len(self.dict_true_edges[x]), reverse=True)): classes[i] = k dict_class_movie_test = {} x_train_all, y_train_all = np.array([]), np.array([]) seen_classes = classes[:int(0.8 * len(classes))] unseen_classes = classes[int(0.8 * len(classes)):] classif2 = None for j in range(len(self.args.ratio)): for c in seen_classes: dict_movie_edge = {} x_true, x_false, y_true_edge, y_false_edge = \ self.calculate_classifier_value(self.dict_true_edges[c], self.dict_false_edges[c]) x_train, y_train, true_edges_test = self.split_data(x_true, x_false, y_true_edge, y_false_edge, self.args.ratio[j]) for edge in true_edges_test: if edge[0][0] == 't': movie = edge[0] else: movie = edge[1] dict_movie_edge[movie] = edge dict_class_movie_test[c] = dict_movie_edge.copy() if len(x_train_all) > 0: x_train_all = np.concatenate((x_train_all, x_train), axis=0) y_train_all = np.concatenate((y_train_all, y_train), axis=0) else: x_train_all = x_train y_train_all = y_train for c in unseen_classes: dict_movie_edge = {} x_true, x_false, y_true_edge, y_false_edge = \ self.calculate_classifier_value(self.dict_true_edges[c], self.dict_false_edges[c]) _, _, true_edges_test = self.split_data(x_true, x_false, y_true_edge, y_false_edge, ratio=0) for edge in true_edges_test: if edge[0][0] == 't': movie = edge[0] else: movie = edge[1] dict_movie_edge[movie] = edge dict_class_movie_test[c] = dict_movie_edge.copy() shuff = np.c_[x_train_all.reshape(len(x_train_all), -1), y_train_all.reshape(len(y_train_all), -1)] np.random.shuffle(shuff) x_train_all = shuff.T[0].reshape(-1, 1) y_train_all = np.array([shuff.T[1].reshape(-1, 1), shuff.T[2].reshape(-1, 1)]).T.reshape(-1, 2).astype( int) classif2 = self.train_edge_classification(np.array(x_train_all), np.array(y_train_all)) with open(path1, 'wb') as fid: pickle.dump(classif2, fid) with open(path2, 'wb') as fid: pickle.dump(dict_class_movie_test, fid) return classif2, dict_class_movie_test @staticmethod def predict_edge_classification(classif2, x_test): """ With the test data make :param classif2: :param x_test: :return: """ top_k_list = list(np.ones(len(x_test)).astype(int)) prediction, probs = classif2.predict_kfir(x_test, top_k_list) return prediction, probs def evaluate(self, classif2, dict_class_movie_test): # evaluate classes = list(self.dict_true_edges.keys()) pred_true = [] pred = [] for i, k in enumerate(sorted(self.dict_true_edges, key=lambda x: len(self.dict_true_edges[x]), reverse=True)): classes[i] = k num_classes = len(classes) dict_measures = {'acc': {}, 'precision': {}} dict_class_measures = {} for c in classes: class_movies = list(dict_class_movie_test[c].keys()) count = 0 for m in class_movies: edges = np.array([np.repeat(m, num_classes), classes]).T class_test = np.zeros(shape=(len(edges), 1)) for i, edge in enumerate(edges): norm = self.edge_distance(edge) class_test[i, 0] = norm _, probs = self.predict_edge_classification(classif2, class_test) pred_index = np.argmax(probs.T[0]) prediction = edges[pred_index] real_edge = list(dict_class_movie_test[c][m]) pred_true.append(c) if prediction[0][0] == 'c': pred.append(prediction[0]) else: pred.append(prediction[1]) if prediction[0] == real_edge[0]: if prediction[1] == real_edge[1]: count += 1 elif prediction[1] == real_edge[0]: if prediction[0] == real_edge[1]: count += 1 accuracy = count / len(class_movies) dict_measures['acc'] = accuracy dict_class_measures[c] = dict_measures.copy() with open(os.path.join(self.args.data_name, f'dict_class_measures_{self.embedding}_{self.args.norm}.pkl'), 'wb') as handle: pickle.dump(dict_class_measures, handle, protocol=3) # TODO dict class measures for every ratio return dict_class_measures, pred, pred_true def confusion_matrix_maker(self, dict_class_measures, pred, pred_true): conf_matrix = confusion_matrix(pred_true, pred, labels=list(dict_class_measures.keys())) seen_true_count = 0 seen_count = 0 unseen_true_count = 0 unseen_count = 0 seen_number = int(0.8 * len(conf_matrix)) for i in range(len(conf_matrix))[:seen_number]: seen_true_count += conf_matrix[i][i] for j in range(len(conf_matrix)): seen_count += conf_matrix[i][j] for i in range(len(conf_matrix))[seen_number:]: unseen_true_count += conf_matrix[i][i] for j in range(len(conf_matrix)): unseen_count += conf_matrix[i][j] accuracy = (seen_true_count + unseen_true_count) / (seen_count + unseen_count) seen_accuracy = seen_true_count / seen_count unseen_accuracy = unseen_true_count / unseen_count print(f'acc_all: {accuracy}') print(f'acc_all_seen: {seen_accuracy}') print(f'acc_all_unseen: {unseen_accuracy}') plt.figure(1) mpl.rcParams['xtick.labelsize'] = 14 mpl.rcParams['ytick.labelsize'] = 14 mpl.rcParams['axes.titlesize'] = 20 mpl.rcParams['axes.labelsize'] = 16 plt.title('Confusion Matrix, ZSL OUR_IMDB') plt.xlabel("True Labels") plt.ylabel("Predicted Labels") plt.imshow(conf_matrix, cmap='gist_gray', vmin=0, vmax=2) plt.colorbar() plt.savefig(f'{self.args.data_name}/plots/confusion_matrix_{self.embedding}_{self.args.norm}') return accuracy, seen_accuracy, unseen_accuracy def obj_func(weights): """ Main Function for link prediction task. :return: """ np.random.seed(0) print(weights) parser = argparse.ArgumentParser() parser.add_argument('--data_name', default='our_imdb') parser.add_argument('--norm', default='cosine') # cosine / L2 Norm / L1 Norm parser.add_argument('--embedding', default='Node2Vec') # Node2Vec / Event2Vec / OGRE parser.add_argument('--false_per_true', default=10) parser.add_argument('--ratio', default=[0.8]) args = parser.parse_args() # ratio_arr = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] graph_maker = GraphImporter(args) multi_graph = graph_maker.import_imdb_multi_graph(weights) weighted_graph = graph_maker.import_imdb_weighted_graph(weights) edges_preparation = EdgesPreparation(weighted_graph, multi_graph, args) dict_true_edges = edges_preparation.label_edges_classes_ordered() dict_false_edges = edges_preparation.make_false_label_edges(dict_true_edges) graph = edges_preparation.seen_graph() embeddings_maker = EmbeddingCreator(graph, args) if args.embedding == 'Node2Vec': dict_embeddings = embeddings_maker.create_node2vec_embeddings() elif args.embedding == 'Event2Vec': dict_embeddings = embeddings_maker.create_event2vec_embeddings() elif args.embeddings == 'Oger': dict_embeddings = embeddings_maker.create_oger_embeddings() else: raise ValueError(f"Wrong embedding name, {args.embedding}") classifier = Classifier(dict_true_edges, dict_false_edges, dict_embeddings, args) classif, dict_class_movie_test = classifier.train() dict_class_measures_node2vec, pred, pred_true = classifier.evaluate(classif, dict_class_movie_test) accuracy, seen_accuracy, unseen_accuracy = classifier.confusion_matrix_maker( dict_class_measures_node2vec, pred, pred_true) try: values =
pd.read_csv('our_imdb/train/optimaize_values_Node2Vec_l2.csv')
pandas.read_csv
import click import logging import os import pandas as pd from tqdm import tqdm from rxnmapper import RXNMapper logger = logging.getLogger(__name__) @click.command() @click.option( '--file_path', '-f', help='Input file path to csv, tsv or json with "rxn" column' ) @click.option('--output_path', '-o', help='Output file path') @click.option('--batch_size', '-bs', default=1, help='Batch size') @click.option( '--canonicalize/--no_canonicalize', default=True, help='Canonicalize inputs (default: True)' ) @click.option( '--detailed', '-d', default=False, is_flag=True, help='Return detailed output' ) def main( file_path: str, output_path: str, batch_size: int, canonicalize: bool, detailed: bool ) -> None: if file_path.endswith('.json'): df = pd.read_json(file_path) elif file_path.endswith('.tsv'): df = pd.read_csv(file_path, sep='\t') elif file_path.endswith('.csv'): df = pd.read_csv(file_path) else: ValueError('Unrecognized file type') df.reset_index(inplace=True) rxn_mapper = RXNMapper() results = [] rxns = [] for i, row in tqdm(df.iterrows(), total=len(df)): rxns.append(row['rxn']) if (i + 1) % batch_size == 0: results += rxn_mapper.get_attention_guided_atom_maps( rxns, canonicalize_rxns=canonicalize, detailed_output=detailed ) rxns = [] if rxns: results += rxn_mapper.get_attention_guided_atom_maps( rxns, canonicalize_rxns=canonicalize ) results_df =
pd.DataFrame(results)
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res =
Series(vals1)
pandas.Series
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pandas as pd pd.options.mode.chained_assignment = None import os import re import string from math import log from pathlib import Path from typing import List from transformers import pipeline import nltk from sklearn.preprocessing import MinMaxScaler from sklearn.decomposition import PCA from lib.config import DataConfig from vnnlp.vietnamnlp import vn_tokenize def prep_data(remake: bool) -> DataConfig: curr_directory = str(Path.cwd()) data_directory = curr_directory + "/data" stock_directory = Path(data_directory + "/stock-data") try: for f in stock_directory.rglob('*-data.csv'): # TODO: Support multiples csv files stock_data = f print('Stock data used:', f) except: print('There is no .csv stock data') try: for n in stock_directory.rglob('*-news.json'): news_data = n print('News data used:', n) except: print('There is no .json news') try: for n in stock_directory.rglob('*-eps.csv'): eps_data = n print('Eps data used:', n) except: print('There is no .csv eps data') train_path = data_directory + '/train' + '/train_data.npy' test_path = data_directory + '/test' + '/test_data.npy' val_path = data_directory + '/val' + '/validation_data.npy' feature = ['Close', 'sentiment', 'vn_embedding', 'Report_EPS', 'Datetime', 'Label'] start_date = '2009-12-31' end_date = '2020-04-21' train_index = 1500 test_index = 2500 def _sentiment_transformer(text_df: pd.DataFrame) -> List[int]: print('Starting sentiment-analysis...') nlp = pipeline('sentiment-analysis') length = len(text_df['en_text']) dummy = [] for i in range(length): if text_df['en_text'][i] is not None: ret = nlp(text_df['en_text'][i]) if ret[0]['label'] == 'NEGATIVE': dummy.append(-1) elif ret[0]['label'] == 'POSITIVE': dummy.append(1) else: dummy.append(0) else: dummy.append(0) print('Completing sentiment-analysis...') return dummy def _create_label(csv_location: str) -> None: df =
pd.read_csv(csv_location)
pandas.read_csv
import pandas as pd import numpy as np from datetime import date """ dataset split: (date_received) dateset3: 20160701~20160731 (113640),features3 from 20160315~20160630 (off_test) dateset2: 20160515~20160615 (258446),features2 from 20160201~20160514 dateset1: 20160414~20160514 (138303),features1 from 20160101~20160413 1.merchant related: sales_use_coupon. total_coupon transfer_rate = sales_use_coupon/total_coupon. merchant_avg_distance,merchant_min_distance,merchant_max_distance of those use coupon total_sales. coupon_rate = sales_use_coupon/total_sales. 2.coupon related: discount_rate. discount_man. discount_jian. is_man_jian day_of_week,day_of_month. (date_received) 3.user related: distance. user_avg_distance, user_min_distance,user_max_distance. buy_use_coupon. buy_total. coupon_received. buy_use_coupon/coupon_received. avg_diff_date_datereceived. min_diff_date_datereceived. max_diff_date_datereceived. count_merchant. 4.user_merchant: times_user_buy_merchant_before. 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #1754884 record,1053282 with coupon_id,9738 coupon. date_received:20160101~20160615,date:20160101~20160630, 539438 users, 8415 merchants off_train = pd.read_csv('data/ccf_offline_stage1_train.csv',header=None) off_train.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received','date'] #2050 coupon_id. date_received:20160701~20160731, 76309 users(76307 in trainset, 35965 in online_trainset), 1559 merchants(1558 in trainset) off_test = pd.read_csv('data/ccf_offline_stage1_test_revised.csv',header=None) off_test.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received'] #11429826 record(872357 with coupon_id),762858 user(267448 in off_train) on_train = pd.read_csv('data/ccf_online_stage1_train.csv',header=None) on_train.columns = ['user_id','merchant_id','action','coupon_id','discount_rate','date_received','date'] dataset3 = off_test feature3 = off_train[((off_train.date>='20160315')&(off_train.date<='20160630'))|((off_train.date=='null')&(off_train.date_received>='20160315')&(off_train.date_received<='20160630'))] dataset2 = off_train[(off_train.date_received>='20160515')&(off_train.date_received<='20160615')] feature2 = off_train[(off_train.date>='20160201')&(off_train.date<='20160514')|((off_train.date=='null')&(off_train.date_received>='20160201')&(off_train.date_received<='20160514'))] dataset1 = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature1 = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))] ############# other feature ##################3 """ 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #for dataset3 t = dataset3[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset3[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset3[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset3[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset3[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset3[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset3[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset3[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature3 = pd.merge(t1,t,on='user_id') other_feature3 = pd.merge(other_feature3,t3,on=['user_id','coupon_id']) other_feature3 = pd.merge(other_feature3,t4,on=['user_id','date_received']) other_feature3 = pd.merge(other_feature3,t5,on=['user_id','coupon_id','date_received']) other_feature3 = pd.merge(other_feature3,t7,on=['user_id','coupon_id','date_received']) other_feature3.to_csv('data/other_feature3.csv',index=None) print(other_feature3.shape) #for dataset2 t = dataset2[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset2[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset2[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset2[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset2[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset2[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset2[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset2[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature2 = pd.merge(t1,t,on='user_id') other_feature2 = pd.merge(other_feature2,t3,on=['user_id','coupon_id']) other_feature2 = pd.merge(other_feature2,t4,on=['user_id','date_received']) other_feature2 = pd.merge(other_feature2,t5,on=['user_id','coupon_id','date_received']) other_feature2 = pd.merge(other_feature2,t7,on=['user_id','coupon_id','date_received']) other_feature2.to_csv('data/other_feature2.csv',index=None) print(other_feature2.shape) #for dataset1 t = dataset1[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset1[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset1[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset1[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset1[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset1[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset1[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset1[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature1 = pd.merge(t1,t,on='user_id') other_feature1 = pd.merge(other_feature1,t3,on=['user_id','coupon_id']) other_feature1 = pd.merge(other_feature1,t4,on=['user_id','date_received']) other_feature1 = pd.merge(other_feature1,t5,on=['user_id','coupon_id','date_received']) other_feature1 =
pd.merge(other_feature1,t7,on=['user_id','coupon_id','date_received'])
pandas.merge
# -*- coding: utf-8 -*- """ Created on Wed Jun 20 10:47:30 2018 @author: SilverDoe """ #============ Selecting a column ============================================== import pandas as pd d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) print(df['one']) #=========== Adding a column ================================================== import pandas as pd d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) # Adding a new column to an existing DataFrame object with column label by passing new series print ("Adding a new column by passing as Series:") df['three']=pd.Series([10,20,30],index=['a','b','c']) print(df) print ("Adding a new column using the existing columns in DataFrame:") df['four']=df['one']+df['three'] # adding multiple columns using the new assign function df = df.assign(five=(df['four']+df['three']),six=(df['one']+df['four'])) print(df) #=========== Deleting a column ================================================ # Using the previous DataFrame, we will delete a column # using del function import pandas as pd d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']), 'three' : pd.Series([10,20,30], index=['a','b','c'])} df =
pd.DataFrame(d)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from itertools import combinations import numpy as np import pandas as pd from scipy.spatial.distance import pdist from scipy.stats import spearmanr from skbio.stats.distance import DistanceMatrix from skbio.util._decorator import experimental @experimental(as_of="0.4.0") def bioenv(distance_matrix, data_frame, columns=None): """Find subset of variables maximally correlated with distances. Finds subsets of variables whose Euclidean distances (after scaling the variables; see Notes section below for details) are maximally rank-correlated with the distance matrix. For example, the distance matrix might contain distances between communities, and the variables might be numeric environmental variables (e.g., pH). Correlation between the community distance matrix and Euclidean environmental distance matrix is computed using Spearman's rank correlation coefficient (:math:`\\rho`). Subsets of environmental variables range in size from 1 to the total number of variables (inclusive). For example, if there are 3 variables, the "best" variable subsets will be computed for subset sizes 1, 2, and 3. The "best" subset is chosen by computing the correlation between the community distance matrix and all possible Euclidean environmental distance matrices at the given subset size. The combination of environmental variables with maximum correlation is chosen as the "best" subset. Parameters ---------- distance_matrix : DistanceMatrix Distance matrix containing distances between objects (e.g., distances between samples of microbial communities). data_frame : pandas.DataFrame Contains columns of variables (e.g., numeric environmental variables such as pH) associated with the objects in `distance_matrix`. Must be indexed by the IDs in `distance_matrix` (i.e., the row labels must be distance matrix IDs), but the order of IDs between `distance_matrix` and `data_frame` need not be the same. All IDs in the distance matrix must be present in `data_frame`. Extra IDs in `data_frame` are allowed (they are ignored in the calculations). columns : iterable of strs, optional Column names in `data_frame` to include as variables in the calculations. If not provided, defaults to all columns in `data_frame`. The values in each column must be numeric or convertible to a numeric type. Returns ------- pandas.DataFrame Data frame containing the "best" subset of variables at each subset size, as well as the correlation coefficient of each. Raises ------ TypeError If invalid input types are provided, or if one or more specified columns in `data_frame` are not numeric. ValueError If column name(s) or `distance_matrix` IDs cannot be found in `data_frame`, if there is missing data (``NaN``) in the environmental variables, or if the environmental variables cannot be scaled (e.g., due to zero variance). See Also -------- scipy.stats.spearmanr Notes ----- See [1]_ for the original method reference (originally called BIO-ENV). The general algorithm and interface are similar to ``vegan::bioenv``, available in R's vegan package [2]_. This method can also be found in PRIMER-E [3]_ (originally called BIO-ENV, but is now called BEST). .. warning:: This method can take a *long* time to run if a large number of variables are specified, as all possible subsets are evaluated at each subset size. The variables are scaled before computing the Euclidean distance: each column is centered and then scaled by its standard deviation. References ---------- .. [1] <NAME> & Ainsworth, M. 1993. "A method of linking multivariate community structure to environmental variables". Marine Ecology Progress Series, 92, 205-219. .. [2] http://cran.r-project.org/web/packages/vegan/index.html .. [3] http://www.primer-e.com/primer.htm Examples -------- Import the functionality we'll use in the following examples: >>> import pandas as pd >>> from skbio import DistanceMatrix >>> from skbio.stats.distance import bioenv Load a 4x4 community distance matrix: >>> dm = DistanceMatrix([[0.0, 0.5, 0.25, 0.75], ... [0.5, 0.0, 0.1, 0.42], ... [0.25, 0.1, 0.0, 0.33], ... [0.75, 0.42, 0.33, 0.0]], ... ['A', 'B', 'C', 'D']) Load a ``pandas.DataFrame`` with two environmental variables, pH and elevation: >>> df = pd.DataFrame([[7.0, 400], ... [8.0, 530], ... [7.5, 450], ... [8.5, 810]], ... index=['A','B','C','D'], ... columns=['pH', 'Elevation']) Note that the data frame is indexed with the same IDs (``'A'``, ``'B'``, ``'C'``, and ``'D'``) that are in the distance matrix. This is necessary in order to link the environmental variables (metadata) to each of the objects in the distance matrix. In this example, the IDs appear in the same order in both the distance matrix and data frame, but this is not necessary. Find the best subsets of environmental variables that are correlated with community distances: >>> bioenv(dm, df) # doctest: +NORMALIZE_WHITESPACE size correlation vars pH 1 0.771517 pH, Elevation 2 0.714286 We see that in this simple example, pH alone is maximally rank-correlated with the community distances (:math:`\\rho=0.771517`). """ if not isinstance(distance_matrix, DistanceMatrix): raise TypeError("Must provide a DistanceMatrix as input.") if not isinstance(data_frame, pd.DataFrame): raise TypeError("Must provide a pandas.DataFrame as input.") if columns is None: columns = data_frame.columns.values.tolist() if len(set(columns)) != len(columns): raise ValueError("Duplicate column names are not supported.") if len(columns) < 1: raise ValueError("Must provide at least one column.") for column in columns: if column not in data_frame: raise ValueError("Column '%s' not in data frame." % column) # Subset and order the vars data frame to match the IDs in the distance # matrix, only keeping the specified columns. vars_df = data_frame.loc[distance_matrix.ids, columns] if vars_df.isnull().any().any(): raise ValueError("One or more IDs in the distance matrix are not " "in the data frame, or there is missing data in the " "data frame.") try: vars_df = vars_df.astype(float) except ValueError: raise TypeError("All specified columns in the data frame must be " "numeric.") # Scale the vars and extract the underlying numpy array from the data # frame. We mainly do this for performance as we'll be taking subsets of # columns within a tight loop and using a numpy array ends up being ~2x # faster. vars_array = _scale(vars_df).values dm_flat = distance_matrix.condensed_form() num_vars = len(columns) var_idxs = np.arange(num_vars) # For each subset size, store the best combination of variables: # (string identifying best vars, subset size, rho) max_rhos = np.empty(num_vars, dtype=[('vars', object), ('size', int), ('correlation', float)]) for subset_size in range(1, num_vars + 1): max_rho = None for subset_idxs in combinations(var_idxs, subset_size): # Compute Euclidean distances using the current subset of # variables. pdist returns the distances in condensed form. vars_dm_flat = pdist(vars_array[:, subset_idxs], metric='euclidean') rho = spearmanr(dm_flat, vars_dm_flat)[0] # If there are ties for the best rho at a given subset size, choose # the first one in order to match vegan::bioenv's behavior. if max_rho is None or rho > max_rho[0]: max_rho = (rho, subset_idxs) vars_label = ', '.join([columns[i] for i in max_rho[1]]) max_rhos[subset_size - 1] = (vars_label, subset_size, max_rho[0]) return
pd.DataFrame.from_records(max_rhos, index='vars')
pandas.DataFrame.from_records
# Link between theoretic network graph and trajectories # Map-matching the trajectories to the underlying theoretical network # Using Leuven Map-matching algorithm # Start and End node of matched edge in dataframe of trajectories --> link between theoretical network and measured data from pneumapackage.settings import bb_athens from pneumapackage.__init__ import path_data, path_results, write_pickle, read_pickle from pneumapackage.settings import * import pneumapackage.compassbearing as cpb import osmnx as ox import matplotlib.pyplot as plt import pandas as pd import geopandas as gpd import time import numpy as np import leuvenmapmatching as lm from leuvenmapmatching.map.inmem import InMemMap from leuvenmapmatching.matcher.distance import * from leuvenmapmatching import visualization as mmviz import leuvenmapmatching.util.dist_latlon as distlatlon import leuvenmapmatching.util.dist_euclidean as distxy import geopy.distance as geodist from tqdm import tqdm from tqdm.contrib import tenumerate from shapely.geometry import Point, LineString from pyproj import Proj, transform # import similaritymeasures from collections import Counter import rtree import sys logger = False if logger: logger = lm.logger logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(sys.stdout)) class MapMatching: # max initial distance is best chosen as the maximum length of an edge in the network graph # max(network_edges['length']) def __init__(self, list_traj, network_obj, max_init, max_d, match_latlon=True): self.list_traj = list_traj self.max_init = max_init self.max_d = max_d self.network_edges = network_obj.network_edges self.network_nodes = network_obj.network_nodes self.graph = network_obj.graph_latlon self.match_latlon = match_latlon self.map = self.make_map() # Create in memory graph for leuvenmapmatching from osmnx graph # Compatible path type for map matching def make_map(self, index_edges=True, rtree=True): map_con = InMemMap("athensmap", use_latlon=self.match_latlon, index_edges=index_edges, use_rtree=rtree) # Deprecated crs style in algorithm if self.match_latlon: for nid, rown in self.network_nodes.iterrows(): map_con.add_node(int(rown.n1), (rown.lat1, rown.lon1)) for eid, rowe in self.network_edges.iterrows(): map_con.add_edge(rowe.n1, rowe.n2) else: for nid, rown in self.network_nodes.iterrows(): map_con.add_node(int(rown.n1), (rown.y1, rown.x1)) for eid, rowe in self.network_edges.iterrows(): map_con.add_edge(rowe.n1, rowe.n2) return map_con def reset_map(self): self.map = self.make_map() def match_fixed_distance(self, list_index=None, logger=False, **kwargs): if logger: logger = lm.logger logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(sys.stdout)) tic = time.time() traj_mov_match = [] special_cases = [] point_traj = self.list_traj if list_index is not None: point_traj = [j for i, j in enumerate(point_traj) if i in list_index] for i, j in tenumerate(point_traj): while True: try: traj = map_matching(j, self.network_edges, self.map, self.max_init, self.max_d, latlon=self.match_latlon, **kwargs) traj = traj.merge(self.network_edges[['_id', 'n1', 'n2']], how='left', on=['n1', 'n2']) traj_mov_match.append(traj) break except Exception: special_cases.append(j) break toc = time.time() print(f'{int(divmod(toc - tic, 60)[0])} min {int(divmod(toc - tic, 60)[1])} sec') return traj_mov_match, special_cases def match_variable_distance(self, list_index=None, logger=False, **kwargs): if logger: logger = lm.logger logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(sys.stdout)) tic = time.time() traj_mov_match = [] fails = [] point_traj = self.list_traj if list_index is not None: point_traj = [j for i, j in enumerate(point_traj) if i in list_index] for j in tqdm(point_traj): dist_init = self.max_init dist = self.max_d fail = 0 while True: try: traj = map_matching(j, self.map, dist_init, dist, latlon=self.match_latlon, **kwargs) traj = traj.merge(self.network_edges[['_id', 'n1', 'n2']], how='left', on=['n1', 'n2']) traj_mov_match.append(traj) break except Exception: if fail < 3: # print('Set distance higher:') dist += 5 fail = fail + 1 # print(dist) # print('Number of fails: ' + str(fail)) elif 2 < fail <= 10: dist += 10 fail = fail + 1 # print('Set distance higher:') # print(dist) # print('Number of fails: ' + str(fail)) elif fail > 10: dist += 10 dist_init += 50 fail += 1 # print('Still at list ' + str(i)) fails.append(fail) toc = time.time() print(f'{int(divmod(toc - tic, 60)[0])} min {int(divmod(toc - tic, 60)[1])} sec') return traj_mov_match class TransformTrajectories: def __init__(self, tr_match_all, network_obj): tic = time.time() # tr_match_all is a concatenated dataframe # set multiindex with track_id and row number tr_match_all.reset_index(drop=False, inplace=True) tr_match_all = tr_match_all.rename(columns={'index': 'rid'}) tr_match_all.set_index(['track_id', 'rid'], inplace=True) idx_counts = tr_match_all.index.get_level_values(0).value_counts() sp = idx_counts[idx_counts == 1] mp = idx_counts[idx_counts != 1] self.tracks = tr_match_all self.tracks_point = tr_match_all[~tr_match_all._id.isna()].loc[mp.index].sort_index() self.tracks_single = tr_match_all.loc[sp.index].sort_index() self.tracks_nan = tr_match_all[tr_match_all._id.isna()] self.gdf_point = [] self.gdf_line = [] self.column_names = [] self.network = network_obj.network_edges self.edges_counts = pd.DataFrame() self.tracks_line = self.wrong_match() toc = time.time() print(toc - tic) def wrong_match(self): tic = time.time() gdf_netw = self.network ldf_all = self.tracks_point.copy() # Do operations on total dataframe ldf_all = ldf_all.join(gdf_netw['bearing'], how='left', rsuffix='_edge', on='_id') diff = ldf_all[['bearing', 'bearing_edge']].values bearing_diff = [round(min(abs(diff[a][0] - diff[a][1]), 360 - abs(diff[a][0] - diff[a][1])), 1) for a in range(0, len(ldf_all))] ldf_all['wrong_match'] = bearing_diff u_edge, v_edge, w_1, w_2 = [], [], [], [] for j in tqdm(set(ldf_all.index.get_level_values(0))): df = ldf_all.loc[(j,), ['_id', 'wrong_match']].copy() # point dataset with nodes of matched edge, this adds column to all original dataframes (chained assignment) # making line dataset --> always start and end point --> last point has no successive point --> -1 u_edge.extend(df['_id'].values[:-1]) v_edge.extend(df['_id'].values[1:]) w_1.extend(df['wrong_match'].values[:-1]) w_2.extend(df['wrong_match'].values[1:]) print('end of loop') ldf_start = ldf_all.drop(ldf_all.groupby(level=0).tail(1).index) ldf_end = ldf_all.drop(ldf_all.groupby(level=0).head(1).index) ldf_end.set_index(ldf_start.index, inplace=True) ldf_start = ldf_start.assign(u_match=u_edge, v_match=v_edge, wm1=w_1, wm2=w_2) ldf_start.drop(['_id', 'n1', 'n2', 'wrong_match', 'time'], axis=1, inplace=True) ldf_line = ldf_start.join(ldf_end[['lat', 'lon', 'speed', 'lon_acc', 'lat_acc', 'time', 'x', 'y', 'bearing']], lsuffix='_1', rsuffix='_2') p1 = list(zip(*(ldf_line[f'lat_1'], ldf_line[f'lon_1']))) p2 = list(zip(*(ldf_line[f'lat_2'], ldf_line[f'lon_2']))) line_distlatlon = [round(distlatlon.distance(*xy), 3) for xy in tqdm(zip(p1, p2), total=len(p1))] p1 = list(zip(*(ldf_line[f'y_1'], ldf_line[f'x_1']))) p2 = list(zip(*(ldf_line[f'y_2'], ldf_line[f'x_2']))) line_distyx = [round(distxy.distance(*xy), 3) for xy in tqdm(zip(p1, p2), total=len(p1))] ldf_line['line_length_latlon'] = line_distlatlon ldf_line['line_length_yx'] = line_distyx print('Line length column added') toc = time.time() print(toc - tic) return ldf_line def make_point_trajecories(self): ldf = self.tracks_point.copy() if isinstance(ldf, pd.DataFrame): ldf = make_gdf(ldf) self.gdf_point = ldf def make_line_trajectories(self): ldf = self.tracks_line.copy() if isinstance(ldf, pd.DataFrame): ldf = make_gdf(ldf, line=True) self.gdf_line = ldf def select_rows(self, segment_index=None): gdf_list = self.tracks_point gdf_netw = self.network if segment_index is None: segment_index = gdf_netw._id.to_list() traj_eval = [] for traj in tqdm(gdf_list): tr = traj.drop(['lon', 'lat'], axis=1) tr_first = tr.drop_duplicates('_id', keep='first') idx_first = list(tr_first.index) tr_first = pd.merge(tr_first, gdf_netw[['_id', 'lon1', 'lat1', 'length']].loc[segment_index] , how='left', on=['_id']) tr_first = tr_first.rename(columns={'lon1': 'lon', 'lat1': 'lat'}) tr_first = tr_first.assign(index=idx_first) tr_last = tr.drop_duplicates('_id', keep='last') idx_last = list(tr_last.index) tr_last = pd.merge(tr_last, gdf_netw[['_id', 'lon2', 'lat2', 'length']].loc[segment_index] , how='left', on=['_id']) tr_last = tr_last.rename(columns={'lon2': 'lon', 'lat2': 'lat'}) tr_last = tr_last.assign(index=idx_last) tr_sel =
pd.concat([tr_first, tr_last])
pandas.concat
import json import copy import unittest import tempfile import numpy as np import pandas as pd import uuid from supervised.preprocessing.preprocessing_missing import PreprocessingMissingValues from supervised.preprocessing.preprocessing_categorical import PreprocessingCategorical from supervised.preprocessing.preprocessing_step import PreprocessingStep class PreprocessingStepTest(unittest.TestCase): def test_constructor_preprocessing_step(self): preprocessing_params = {} ps = PreprocessingStep(preprocessing_params) self.assertTrue(len(ps._missing_values) == 0) self.assertTrue(len(ps._categorical) == 0) self.assertTrue(ps._categorical_y is None) def test_exclude_missing_targets_all_good(self): # training data d = { "col1": [1, 1, 1, 3], "col2": [5, 6, 7, 0], "col3": [1, 1, 1, 3], "col4": [2, 2, 4, 3], "y": [0, 1, 0, 1], } df = pd.DataFrame(data=d) X_train = df.loc[:, ["col1", "col2", "col3", "col4"]] y_train = df.loc[:, "y"] ps = PreprocessingStep() X_train, y_train = ps._exclude_missing_targets(X_train, y_train) self.assertEqual(4, X_train.shape[0]) self.assertEqual(4, y_train.shape[0]) def test_exclude_missing_targets(self): # training data d = { "col1": [1, 1, 1, 3], "col2": [5, 6, 7, 0], "col3": [1, 1, 1, 3], "col4": [2, 2, 4, 3], "y": [0, np.nan, 0, 1], } df = pd.DataFrame(data=d) X_train = df.loc[:, ["col1", "col2", "col3", "col4"]] y_train = df.loc[:, "y"] ps = PreprocessingStep() X_train, y_train = ps._exclude_missing_targets(X_train, y_train) self.assertEqual(3, X_train.shape[0]) self.assertEqual(3, y_train.shape[0]) def test_run_exclude_missing_targets(self): # training data d = { "col1": [1, 1, 1, 3], "col2": [5, 6, 7, 0], "col3": [1, 1, 1, 3], "col4": [2, 2, 4, 3], "y": [0, np.nan, 0, 1], } df = pd.DataFrame(data=d) X_train = df.loc[:, ["col1", "col2", "col3", "col4"]] y_train = df.loc[:, "y"] ps = PreprocessingStep() train_data, _ = ps.run(train_data={"X": X_train, "y": y_train}) X_train, y_train = train_data.get("X"), train_data.get("y") self.assertEqual(3, X_train.shape[0]) self.assertEqual(3, y_train.shape[0]) def test_run_all_good(self): # training data d = { "col1": [1, 1, 1, 3], "col2": [5, 6, 7, 0], "col3": [1, 1, 1, 3], "col4": [2, 2, 4, 3], "y": [0, 1, 0, 1], } df = pd.DataFrame(data=d) X_train = df.loc[:, ["col1", "col2", "col3", "col4"]] y_train = df.loc[:, "y"] preprocessing_params = { "columns_preprocessing": { "col1": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col2": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col3": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col4": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], } } ps = PreprocessingStep(preprocessing_params) train_data, _ = ps.run(train_data={"X": X_train, "y": y_train}) X_train, y_train = train_data.get("X"), train_data.get("y") for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in X_train.columns) params_json = ps.to_json() self.assertFalse(params_json) # should be empty def test_run_fill_median_convert_integer(self): # training data d = { "col1": [1, 1, np.nan, 3], "col2": ["a", "a", np.nan, "a"], "col3": [1, 1, 1, 3], "col4": ["a", "a", "b", "c"], "y": [0, 1, 0, 1], } df = pd.DataFrame(data=d) X_train = df.loc[:, ["col1", "col2", "col3", "col4"]] y_train = df.loc[:, "y"] preprocessing_params = { "columns_preprocessing": { "col1": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col2": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col3": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col4": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], } } ps = PreprocessingStep(preprocessing_params) train_data, _ = ps.run(train_data={"X": X_train, "y": y_train}) X_train, y_train = train_data.get("X"), train_data.get("y") for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in X_train.columns) self.assertEqual(X_train["col1"][2], 1) self.assertEqual(X_train["col2"][2], 0) self.assertEqual(X_train["col4"][0], 0) self.assertEqual(X_train["col4"][1], 0) self.assertEqual(X_train["col4"][2], 1) self.assertEqual(X_train["col4"][3], 2) params_json = ps.to_json() self.assertTrue("missing_values" in params_json) self.assertTrue("categorical" in params_json) self.assertTrue("categorical_y" not in params_json) self.assertTrue("fill_params" in params_json["missing_values"][0]) self.assertEqual( "na_fill_median", params_json["missing_values"][0]["fill_method"] ) self.assertTrue("convert_params" in params_json["categorical"][0]) self.assertEqual( "categorical_to_int", params_json["categorical"][0]["convert_method"] ) def test_run_fill_median_convert_integer_validation_dataset(self): # training data d = { "col1": [1, 1, np.nan, 3], "col2": ["a", "a", np.nan, "a"], "col3": [1, 1, 1, 3], "col4": ["a", "a", "b", "c"], "y": [0, 1, 1, 1], } df = pd.DataFrame(data=d) X_train = df.loc[:, ["col1", "col2", "col3", "col4"]] y_train = df.loc[:, "y"] d_test = { "col1": [1, 1, np.nan, 3], "col2": ["a", "a", np.nan, "a"], "col3": [1, 1, 1, 3], "col4": ["a", "a", "b", "c"], "y": [np.nan, 1, np.nan, 1], } df_test = pd.DataFrame(data=d_test) X_test = df_test.loc[:, ["col1", "col2", "col3", "col4"]] y_test = df_test.loc[:, "y"] preprocessing_params = { "columns_preprocessing": { "col1": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col2": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col3": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col4": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], } } ps = PreprocessingStep(preprocessing_params) train_data, validation_data = ps.run( train_data={"X": X_train, "y": y_train}, validation_data={"X": X_test, "y": y_test}, ) X_train, y_train = train_data.get("X"), train_data.get("y") X_test, y_test = validation_data.get("X"), validation_data.get("y") for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in X_train.columns) self.assertTrue(col in X_test.columns) self.assertEqual(4, X_train.shape[0]) self.assertEqual(4, y_train.shape[0]) self.assertEqual(2, X_test.shape[0]) self.assertEqual(2, y_test.shape[0]) def test_run_on_y_only(self): d = {"y": ["a", "b", "a", "b"]} df = pd.DataFrame(data=d) y_train = df.loc[:, "y"] preprocessing_params = { "target_preprocessing": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ] } ps = PreprocessingStep(preprocessing_params) train_data, _ = ps.run(train_data={"y": y_train}) y_train = train_data.get("y") self.assertEqual(4, y_train.shape[0]) self.assertEqual(0, y_train[0]) self.assertEqual(1, y_train[1]) def test_run_on_y_only_validation(self): d = {"y": ["a", "b", "a", "b"]} df = pd.DataFrame(data=d) y_train = df.loc[:, "y"] d_test = {"y": [np.nan, "a", np.nan, "b"]} df_test = pd.DataFrame(data=d_test) y_test = df_test.loc[:, "y"] preprocessing_params = { "target_preprocessing": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ] } ps = PreprocessingStep(preprocessing_params) train_data, validation_data = ps.run( train_data={"y": y_train}, validation_data={"y": y_test} ) y_train = train_data.get("y") y_test = validation_data.get("y") self.assertEqual(4, y_train.shape[0]) self.assertEqual(2, y_test.shape[0]) self.assertEqual(0, y_train[0]) self.assertEqual(1, y_train[1]) self.assertEqual(0, y_test[0]) self.assertEqual(1, y_test[1]) def test_to_and_from_json_run_fill_median_convert_integer(self): # training data d = { "col1": [1, 1, np.nan, 3], "col2": ["a", "a", np.nan, "a"], "col3": [1, 1, 1, 3], "col4": ["a", "a", "b", "c"], "y": [0, 1, 0, 1], } df = pd.DataFrame(data=d) X_train = df.loc[:, ["col1", "col2", "col3", "col4"]] y_train = df.loc[:, "y"] preprocessing_params = { "columns_preprocessing": { "col1": [PreprocessingMissingValues.FILL_NA_MEDIAN], "col2": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], "col4": [ PreprocessingMissingValues.FILL_NA_MEDIAN, PreprocessingCategorical.CONVERT_INTEGER, ], }, "target_preprocessing": [], } ps = PreprocessingStep(preprocessing_params) train_data, _ = ps.run(train_data={"X": X_train, "y": y_train}) ps2 = PreprocessingStep() ps2.from_json(ps.to_json()) del ps d_test = { "col1": [1, 1, np.nan, 3], "col2": ["a", "a", np.nan, "a"], "col3": [1, 1, 1, 3], "col4": ["a", "a", "b", "c"], "y": [np.nan, np.nan, 1, 1], } df_test =
pd.DataFrame(data=d_test)
pandas.DataFrame
""" Testing framework for the `ArrayCableInstallation` class. """ __author__ = ["<NAME>", "<NAME>"] __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" from copy import deepcopy import pandas as pd import pytest from ORBIT import ProjectManager from tests.data import test_weather from ORBIT.core.library import extract_library_specs from ORBIT.core.defaults import process_times as pt from ORBIT.phases.install import ArrayCableInstallation base_config = extract_library_specs("config", "array_cable_install") simul_config = deepcopy(base_config) _ = simul_config.pop("array_cable_bury_vessel") @pytest.mark.parametrize( "config", (base_config, simul_config), ids=["separate", "simultaneous"] ) def test_simulation_setup(config): sim = ArrayCableInstallation(config) assert sim.env @pytest.mark.parametrize( "config", (base_config, simul_config), ids=["separate", "simultaneous"] ) def test_vessel_initialization(config): sim = ArrayCableInstallation(config) assert sim.install_vessel assert sim.install_vessel.cable_storage if config.get("array_cable_bury_vessel", None): assert sim.bury_vessel @pytest.mark.parametrize( "config", (base_config, simul_config), ids=["separate", "simultaneous"] ) @pytest.mark.parametrize( "weather", (None, test_weather), ids=["no_weather", "test_weather"] ) def test_for_complete_logging(config, weather): sim = ArrayCableInstallation(config, weather=weather) sim.run() df =
pd.DataFrame(sim.env.actions)
pandas.DataFrame
import itertools import pandas as pd from pandas.testing import assert_series_equal import pytest from solarforecastarbiter.reference_forecasts import forecast def assert_none_or_series(out, expected): assert len(out) == len(expected) for o, e in zip(out, expected): if e is None: assert o is None else: assert_series_equal(o, e) def test_resample(): index = pd.date_range(start='20190101', freq='15min', periods=5) arg = pd.Series([1, 0, 0, 0, 2], index=index) idx_exp = pd.date_range(start='20190101', freq='1h', periods=2) expected = pd.Series([0.25, 2.], index=idx_exp) out = forecast.resample(arg) assert_series_equal(out, expected) assert forecast.resample(None) is None @pytest.fixture def rfs_series(): return pd.Series([1, 2], index=pd.DatetimeIndex(['20190101 01', '20190101 02'])) @pytest.mark.parametrize( 'start,end,start_slice,end_slice,fill_method,exp_val,exp_idx', [ (None, None, None, None, 'interpolate', [1, 1.5, 2], ['20190101 01', '20190101 0130', '20190101 02']), ('20190101', '20190101 0230', None, None, 'interpolate', [1, 1, 1, 1.5, 2, 2], ['20190101', '20190101 0030', '20190101 01', '20190101 0130', '20190101 02', '20190101 0230']), ('20190101', '20190101 02', '20190101 0030', '20190101 0130', 'bfill', [1., 1, 2], ['20190101 0030', '20190101 01', '20190101 0130']) ] ) def test_reindex_fill_slice(rfs_series, start, end, start_slice, end_slice, fill_method, exp_val, exp_idx): exp = pd.Series(exp_val, index=pd.DatetimeIndex(exp_idx)) out = forecast.reindex_fill_slice( rfs_series, freq='30min', start=start, end=end, start_slice=start_slice, end_slice=end_slice, fill_method=fill_method)
assert_series_equal(out, exp)
pandas.testing.assert_series_equal
import pandas as pd import tensorflow as tf from pathlib import Path from datetime import datetime from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import load_model #enviroment settings path = Path(__file__).parent.absolute()/'Deep Training' name_data = 'none_'#'' metric = 'binary_accuracy' minimise = False #parameter settings model_keys = ['optimizer','layers','activations','dropouts'] blueprint_keys = ['predictors','identifier']+model_keys #log settings log_keys = ['timestamp']+blueprint_keys+['dimensions','length','nodes','loss',metric,'time','epochs'] sort_fields = [metric, 'loss', 'epochs', 'nodes', 'time'] sort_conditions = [minimise, True, True, True, True] predictor_log_path = path/'Logs'/(name_data+'predictor_evaluation_log.csv') parameter_log_path = path/'Logs'/(name_data+'parameter_evaluation_log.csv') re_parameter_log_path = path/'Logs'/(name_data+'re_parameter_evaluation_log.csv') #model settings models_path = path/'Models' #data settings data_path = path/'Data' targets_name = 'None_Targets.csv' predictors_name = 'None_Predictors.csv' targets_columns = ['Home: Win','Visiting: Win'] predictors_columns = None targets_index = False predictors_index = False #data enviroment targets = pd.read_csv(data_path/targets_name, usecols=targets_columns, index_col=targets_index) predictors = pd.read_csv(data_path/predictors_name, usecols=predictors_columns, index_col=predictors_index) data_date = datetime.fromtimestamp((data_path/'Validation'/(name_data+'validation_targets.csv')).stat().st_mtime) validation_targets = pd.read_csv(data_path/'Validation'/(name_data+'validation_targets.csv'), index_col=targets_index) validation_predictors = pd.read_csv(data_path/'Validation'/(name_data+'validation_predictors.csv'), index_col=predictors_index) training_targets = pd.read_csv(data_path/'Training'/(name_data+'training_targets.csv'), index_col=targets_index) training_predictors = pd.read_csv(data_path/'Training'/(name_data+'training_predictors.csv'), index_col=predictors_index) #gpu settings for gpu in tf.config.experimental.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(gpu, True) #functions def load_log(log_path): #enviroment log = pd.read_csv(log_path, index_col=False) #procedure if log.empty: return log for column in log.loc[:,log.dtypes==object]: if (log[column][0].find('[')>-1 and log[column][0].find(']')>-1): log[column] = log[column].str.replace("'",'').str.replace(', ',',').str.replace('[','').str.replace(']','').str.split(',') if column=='layers' or column=='dropouts': newCol = [] for element in log[column].tolist(): newElement = [] for value in element: newElement.append(int(value)) newCol.append(newElement) log[column] = pd.Series(newCol) return log def change_identifier(log_path, get_identifier_function): #enviroment log = load_log(log_path) #procedure print('Old:') print(log[['predictors','identifier']]) log = log.to_dict('records') for entry in log: entry['identifier'] = get_identifier_function(entry['predictors']) log = pd.DataFrame(log) print('New:') print(log[['predictors','identifier']]) return log def find_duplicates(): #enviroment predictor_log = load_log(predictor_log_path) #procedure duplicates = predictor_log[predictor_log.duplicated(keep=False, subset='identifier')] return duplicates.sort_values(by=['identifier']+sort_fields, ascending=[True]+sort_conditions) def drop_duplicates(): #enviroment duplicates = find_duplicates().drop_duplicates(subset=['identifier'], keep='last') log = load_log(predictor_log_path) #procedure return log.drop(duplicates.index) def find_best(log_path,n=1): #enviroment log = load_log(log_path) #procedure best = log.sort_values(by=sort_fields, ascending=sort_conditions) return best[:n] def test_best(log_path): #enviroment best = find_best(log_path).to_dict('records')[0] #procedeure model_predictors = predictors[best['predictors']] model_file = best['identifier']+'.h5' model = load_model(models_path/model_file) predictions = pd.DataFrame(model.predict(model_predictors), columns=targets.columns) evaluation_frame =
pd.merge(targets, predictions, how='left', left_index=True, right_index=True, suffixes=('',' prediction'))
pandas.merge
# -*- coding: utf-8 -*- """ Created on Mon Sep 5 21:13:34 2016 @author: Marty """ from __future__ import absolute_import, print_function, division, unicode_literals import unittest from unittest import mock import pandas as pd from pandas.testing import assert_frame_equal import numpy as np from hydrofunctions import station, typing from .fixtures import ( fakeResponse, recent_only, ) class TestingNWIS(station.NWIS): """ This subclass of NWIS is for testing all of the NWIS methods except __init__, which we will replace. All of the other methods get inherited verbatim, so we can test them using TestingNWIS instead of NWIS. """ def __init__( self, site=None, service=None, start_date=None, end_date=None, dataframe=None, meta=None, start=None, end=None, ): self.site = site self.service = service self.start_date = start_date self.end_date = end_date self._dataframe = dataframe self.meta = meta self.start = start self.end = end class TestStation(unittest.TestCase): def test_station_is_obj(self): actual = station.Station() self.assertIsInstance(actual, station.Station) def test_station_site_defaults_to_None(self): actual = station.Station() self.assertIsNone(actual.site) def test_station_id_sets(self): expected = "01234567" actual = station.Station(expected) another = station.Station("23456789") self.assertEqual(actual.site, expected) self.assertEqual(another.site, "23456789") def test_station_dict_returns_dict(self): actual = station.Station("first") self.assertIsInstance(actual.station_dict, dict) def test_multiple_instances_only_one_list(self): first = station.Station("first") second = station.Station("second") self.assertEqual(first.station_dict, second.station_dict) def test_station_dict_keeps_keys(self): first = station.Station("first") second = station.Station("second") actual = first.station_dict self.assertIn("first", actual) self.assertIn("second", actual) self.assertEqual( len(actual), 2, "The dict length is not equal to the \ number of instances", ) def test_station_dict_returns_instance(self): first = station.Station("first") second = station.Station("second") expected = first # Look at the station_dict; does it contain a ref to 'first'? actual = second.station_dict["first"] self.assertEqual(actual, expected) def test_station_subclasses_maintain_same_station_dict(self): class Foo(station.Station): pass foo_inst = Foo("foo") station_inst = station.Station("station") self.assertIn("station", foo_inst.station_dict) self.assertIn("foo", station_inst.station_dict) actual = station_inst.station_dict["foo"] self.assertIsInstance(actual, Foo) class TestNWISinit(unittest.TestCase): @mock.patch("hydrofunctions.hydrofunctions.get_nwis") @mock.patch("hydrofunctions.hydrofunctions.get_nwis_property") def test_NWIS_init_check_defaults(self, mock_get_nwis_property, mock_get_nwis): default_site = None default_service = "dv" default_start = None default_end = None default_parameterCd = "all" default_period = None default_stateCd = None default_countyCd = None default_bBox = None mock_get_nwis_property.return_value = "expected" mock_get_nwis.return_value = fakeResponse() station.NWIS() mock_get_nwis.assert_called_once_with( default_site, default_service, default_start, default_end, parameterCd=default_parameterCd, period=default_period, stateCd=default_stateCd, countyCd=default_countyCd, bBox=default_bBox, ) self.assertTrue(mock_get_nwis_property) @mock.patch("hydrofunctions.hydrofunctions.get_nwis") @mock.patch("hydrofunctions.hydrofunctions.get_nwis_property") def test_NWIS_init_calls_get_nwis_and_get_prop( self, mock_get_nwis_property, mock_get_nwis ): site = "expected site" service = "expected service" start = "expected start" end = "expected end" parameterCd = "expected pCode" mock_get_nwis_property.return_value = "expected" mock_get_nwis.return_value = fakeResponse() station.NWIS(site, service, start, end, parameterCd=parameterCd) mock_get_nwis.assert_called_once_with( site, service, start, end, parameterCd=parameterCd, period=None, stateCd=None, countyCd=None, bBox=None, ) self.assertTrue(mock_get_nwis_property) @mock.patch("hydrofunctions.hydrofunctions.get_nwis") @mock.patch("hydrofunctions.hydrofunctions.get_nwis_property") @mock.patch("hydrofunctions.hydrofunctions.extract_nwis_df") def test_NWIS_init_sets_url_ok_json( self, mock_extract_nwis_df, mock_get_nwis_property, mock_get_nwis ): expected_url = "expected url" expected_ok = True expected_json = "expected json" mock_get_nwis.return_value = fakeResponse( code=200, url=expected_url, json=expected_json ) mock_df = pd.DataFrame( np.random.randn(5, 1), columns=["A"], index=pd.date_range("20130101", periods=5, freq="T"), ) mock_extract_nwis_df.return_value = (mock_df, "expected_dict") actual = station.NWIS() # self.assertEqual(actual.url, expected_url, "NWIS.__init__() did not set self.url properly.") self.assertEqual( actual.ok, expected_ok, "NWIS.__init__() did not set self.ok properly." ) self.assertEqual( actual.json, expected_json, "NWIS.__init__() did not set self.json properly.", ) @mock.patch("hydrofunctions.hydrofunctions.get_nwis") @mock.patch("hydrofunctions.hydrofunctions.get_nwis_property") @mock.patch("hydrofunctions.hydrofunctions.extract_nwis_df") def test_NWIS_init_calls_extract_nwis_df( self, mock_extract_nwis_df, mock_get_nwis_property, mock_get_nwis ): expected_json = "expected json" mock_get_nwis.return_value = fakeResponse(json=expected_json) mock_df = pd.DataFrame( np.random.randn(5, 1), columns=["A"], index=pd.date_range("20130101", periods=5, freq="T"), ) mock_extract_nwis_df.return_value = (mock_df, "expected dict") actual = station.NWIS() mock_extract_nwis_df.assert_called_once_with(expected_json) @mock.patch("hydrofunctions.hydrofunctions.read_parquet") def test_NWIS_init_filename_calls_read_parquet(self, mock_read): expected_filename = "expected_filename" expected_meta = "expected meta" expected_df = pd.DataFrame( np.random.randn(5, 1), columns=["A"], index=pd.date_range("20130101", periods=5, freq="T"), ) mock_start = "expected start" mock_end = "expected end" mock_read.return_value = (expected_df, expected_meta) actual = station.NWIS(file=expected_filename) mock_read.assert_called_once_with(expected_filename) assert_frame_equal(expected_df, actual._dataframe) self.assertEqual( expected_meta, actual.meta, "The metadata were not retrieved by NWIS.read().", ) @mock.patch("hydrofunctions.hydrofunctions.read_parquet") @mock.patch("hydrofunctions.hydrofunctions.get_nwis") # @mock.patch("hydrofunctions.hydrofunctions.get_nwis_property") @mock.patch("hydrofunctions.hydrofunctions.extract_nwis_df") @mock.patch("hydrofunctions.hydrofunctions.save_parquet") def test_NWIS_init_filename_calls_read_parquet_then_get_nwis( self, mock_save, mock_extract_nwis_df, mock_get_nwis, mock_read ): # Mocks listed in order that they get called. # mock_read: pretend file doesn't exist, so return OSError # file exists: # mock_read.return_value = (expected_df, expected_meta) # file doesn't exist, raise error: mock_read.side_effect = OSError() # mock_get_nwis expected_json = "expected json" mock_get_nwis.return_value = fakeResponse(json=expected_json) # mock_get_nwis_property # never called # mock_extract_nwis_df mock_df = pd.DataFrame( np.random.randn(5, 1), columns=["A"], index=pd.date_range("20130101", periods=5, freq="T"), ) mock_meta = "mock meta" mock_extract_nwis_df.return_value = (mock_df, mock_meta) # mock_save expected_filename = "expected_filename" mock_save.return_value = "expected self" # Create an NWIS with a filename, but the filename doesn't exist. # so an OSError is returned. # So now get_nwis is called, extract_nwis_df, save(). actual = station.NWIS(file=expected_filename) mock_save.assert_called_once_with(expected_filename, mock_df, mock_meta) @mock.patch("hydrofunctions.hydrofunctions.get_nwis") def test_NWIS_init_request_most_recent_only(self, mock_get_nwis): expected_json = recent_only expected_url = ( "https://waterservices.usgs.gov/nwis/dv/?format=json%2C1.1&sites=01541200" ) mock_get_nwis.return_value = fakeResponse(json=expected_json, url=expected_url) actual = station.NWIS("01541200") self.assertEqual( actual.df().shape, (2, 4), "The dataframe should only have two rows and four columns.", ) class TestNWISmethods(unittest.TestCase): """ Tests for NWIS methods The following section is for testing all of the NWIS methods EXCEPT the NWIS.__init__() method. Creating an NWIS instance will always run the __init__ method, which we usually don't want to do. It calls a bunch of functions that we test elsewhere and it causes a bunch of side effects that we don't want. Yes, you can mock all of the functions that __init__ calls, but even then there can be unwanted side effects not to mention it can be tedious to mock so many different things. To test any method other than __init__, we will use the following strategy: - create a sub-class of NWIS called TestingNWIS. - TestingNWIS has a different __init__ method that allows you to pass in a dataframe and any other initial parameter - all other methods gets inherited from NWIS, so we can test them. """ def test_NWIS_df_returns_all_columns(self): expected_cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=expected_cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df() actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df() should return all of the columns." ) def test_NWIS_df_all_returns_all_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = cols data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("all") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('all') should return all of the columns.", ) def test_NWIS_df_data_returns_data_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = [ "USGS:01541200:00060:00000", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("data") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('data') should return all of the data columns.", ) def test_NWIS_df_discharge_returns_discharge_data_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = ["USGS:01541200:00060:00000", "USGS:01541303:00060:00000"] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("discharge") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('discharge') should return all of the discharge data columns.", ) def test_NWIS_df_q_returns_discharge_data_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = ["USGS:01541200:00060:00000", "USGS:01541303:00060:00000"] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("q") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('q') should return all of the discharge data columns.", ) def test_NWIS_df_stage_returns_stage_data_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = ["USGS:01541200:00065:00000", "USGS:01541303:00065:00000"] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("stage") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('stage') should return all of the stage data columns.", ) def test_NWIS_df_flags_returns_qualifiers_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00065:00000_qualifiers", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00065:00000_qualifiers", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("flags") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('flags') should return all of the qualifier columns.", ) def test_NWIS_df_flags_q_returns_discharge_qualifiers_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541303:00060:00000_qualifiers", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("flags", "q") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('flags', 'q') should return all of the discharge qualifier columns.", ) def test_NWIS_df_stage_flags_returns_stage_qualifiers_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = [ "USGS:01541200:00065:00000_qualifiers", "USGS:01541303:00065:00000_qualifiers", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("stage", "flags") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('stage', 'flags') should return all of the stage qualifier columns.", ) def test_NWIS_df_crazy_input_raises_ValueError(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) with self.assertRaises( ValueError, msg="unmatched args such as NWIS.df('crazy', 'input') should cause NWIS.df() to raise a ValueError.", ): actual_df = test_nwis.df("discharge", "crazy", "input") def test_NWIS_df_5digits_returns_param_data_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = ["USGS:01541200:00065:00000", "USGS:01541303:00065:00000"] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("00065") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('00065') should return all of the 00065 data columns.", ) def test_NWIS_df_5digits_and_flags_returns_00065_qualifiers_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = [ "USGS:01541200:00065:00000_qualifiers", "USGS:01541303:00065:00000_qualifiers", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("00065", "flags") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('00065', 'flags') should return all of the 00065 _qualifiers columns.", ) def test_NWIS_df_5digits_no_match_raises_ValueError(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) with self.assertRaises( ValueError, msg="A five-digit input that doesn't match a paramCode should raise a ValueError.", ): actual_df = test_nwis.df("00000") def test_NWIS_df_6digits_raises_ValueError(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) with self.assertRaises( ValueError, msg="A six-digit input like .df('123456') should raise a ValueError.", ): actual_df = test_nwis.df("123456") def test_NWIS_df_7digits_raises_ValueError(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) with self.assertRaises( ValueError, msg="A seven-digit input like .df('1234567') should raise a ValueError.", ): actual_df = test_nwis.df("1234567") def test_NWIS_df_8digits_returns_station_data_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = ["USGS:01541200:00060:00000", "USGS:01541200:00065:00000"] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("01541200") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('01541200') should return all of the data columns for station 01541200.", ) def test_NWIS_df_8digits_and_flags_returns_station_qualifiers_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00065:00000_qualifiers", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) actual_df = test_nwis.df("01541200", "flags") actual_cols = actual_df.columns.tolist() self.assertListEqual( actual_cols, expected_cols, "NWIS.df('01541200', 'flags') should return all of the _qualifiers columns for station '01541200'.", ) def test_NWIS_df_8digits_no_match_raises_ValueError(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df = pd.DataFrame(data=data, columns=cols) test_nwis = TestingNWIS(dataframe=test_df) with self.assertRaises( ValueError, msg="An eight-digit input that doesn't match a station id should raise a ValueError.", ): actual_df = test_nwis.df("12345678") def test_NWIS_df_two_sites_returns_two_site_columns(self): cols = [ "USGS:01541200:00060:00000_qualifiers", "USGS:01541200:00060:00000", "USGS:01541200:00065:00000_qualifiers", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000_qualifiers", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000_qualifiers", "USGS:01541303:00065:00000", ] expected_cols = [ "USGS:01541200:00060:00000", "USGS:01541200:00065:00000", "USGS:01541303:00060:00000", "USGS:01541303:00065:00000", ] data = [ ["test", 5, "test", 5, "test", 5, "test", 5], ["test", 5, "test", 5, "test", 5, "test", 5], ] test_df =
pd.DataFrame(data=data, columns=cols)
pandas.DataFrame
import os import json import tzlocal import numpy as np import pandas as pd from Fetcher import Dataset from apscheduler.schedulers.blocking import BlockingScheduler from apscheduler.events import EVENT_JOB_EXECUTED, EVENT_JOB_ERROR from statsmodels.tsa.holtwinters import ExponentialSmoothing, SimpleExpSmoothing # global variable list_town = ["Miami", "New York", "Las Vegas", "Chicago", "Seattle", "San Francisco", "Washington","New Orleans", "Palm Springs", "San Diego", "Charleston"] list_dataset = ["temp", "rainfall", "snowfall", "wind", "solar"] def process_download(): d = Dataset() print("---------------------------------------------------------------------") for town in list_town: for dataset in list_dataset[:1]: print(f"-dataset: {dataset} -town: {town}") res = d.download(town, dataset) # At each download, it will overwrite value of the constructor with new value of town and dataset_code d.save(res) def training(days=30): d = Dataset() final_df = [] for dataset in list_dataset[:1]: for town in list_town: print(f"dataset/{dataset}/{town}.json") if os.path.exists(f"dataset/{dataset}/{town}.json"): print(f"{dataset} - {town}") res = json.load(open(f"dataset/{dataset}/{town}.json")) data = res["data"] index = pd.to_datetime(list(data.keys())) values = [float(s) if s else None for s in data.values()] series = pd.Series(values, index=index) df = series.to_frame(name='Value') df = df[~df.index.astype(str).str.contains('02-29')] #algorithm print("Training...") hw_model = ExponentialSmoothing(df["Value"], trend ="add", seasonal = "add", seasonal_periods=365, damped=False ).fit(use_boxcox="log") # damped=False hw_fitted = hw_model.fittedvalues hw_resid = hw_model.resid days_in_future = 30 # Adding the mean of the residuals to correct the bias. py_hw = hw_model.forecast(days_in_future) + np.mean(hw_resid) # to frame df = py_hw.to_frame() # get lat and long lat, long = d.get_lat_lon(town) df["lat"] = str(lat) df["long"] = str(long) df["town"] = str(town) final_df.append(df) df = None to_save =
pd.concat(final_df)
pandas.concat
# -*- coding: utf-8 -*- """Precily.ipynb Automatically generated by Colaboratory. Author:: <NAME> """ from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf #version 2.0 import tensorflow_hub as hub from math import * import numpy as np import pandas as pd #tf.random.set_seed(1) #reading dataset from csv file data=pd.read_csv("Text_Similarity_Dataset.csv") print("\n[OUT]: Top 5 rows of data:\n",data.head(5)) #url of pretrained model present in TensorFlow hub url="https://tfhub.dev/google/universal-sentence-encoder-large/3" #getting model embed =hub.KerasLayer(url) #getting embeddings of the text1 and text2 present in row 0 embeddings=embed(np.array([data.iloc[0]['text1'],data.iloc[0]['text2']])) #how paragraph in row 0 looks print("text1 of row 0: \n",data.iloc[0]['text1']) print("text2 of row 0: \n",data.iloc[0]['text2']) #embeddings of each text represented by 512 values print("\n [OUT]: Emdedding(Tensor representation) of text1 in row 0: \n",embeddings[0]) print("\n Similarity of the text0 and text1 of row 0: ", np.inner(embeddings[0],embeddings[1])) print("\n Taking four digit after decimal",round(np.inner(embeddings[0],embeddings[1]),4)) print("\n[OUT]: Total number of data Samples: ",data.shape[0]) #i have taken Similarity Score Upto 5 Places after decimal #here I have used only trivial inner product for finiding Similarity between vectors def calculate_STS_Inner_product(): d={"Unique_ID":[],"Similarity_Score":[]} for i in range(data.shape[0]): embeddings=embed(np.array([data.iloc[i]['text1'],data.iloc[i]['text2']])) d["Unique_ID"].append(i) d["Similarity_Score"].append(round(max(np.inner(embeddings[0],embeddings[1]),0.0),5)) return d #calling the function to get Similarity Score STS_in_p=calculate_STS_Inner_product() print("\n[OUT]: Number of values in Similarity Score list: ",len(STS_in_p["Similarity_Score"])) print("\n[OUT]: Semantic Textual Similarity:\n Unique_ID: ",STS_in_p["Unique_ID"]) print("\n Similarity Score: ",STS_in_p["Similarity_Score"]) #converting result STS_in_p to dataframe to convert it to csv file dfr=
pd.DataFrame(STS_in_p)
pandas.DataFrame
import pandas as pd import numpy as np file1 = '../data/F9.xlsx' x1 = pd.ExcelFile(file1) feature = x1.parse('Sheet1') print(feature.shape) feature = feature.drop(['\'DAY_OF_DISCHARGE\''], axis=1) feature = feature.drop(['\'FOLLOW_UP_3WEEKS\''], axis=1) feature = feature.drop(['\'FOLLOW_UP_8WEEKS\''], axis=1) feature = feature.drop(['PREOP_PAIN'], axis=1) feature = feature.drop(['CHANGE_DISCHARGE'], axis=1) feature = feature.drop(['CHANGE_FOLLOWUP_3'], axis=1) feature = feature.drop(['CHANGE_FOLLOWUP_8'], axis=1) print(feature.shape) file2 = '../data/PAIN_SCORES.xlsx' x2 =
pd.ExcelFile(file2)
pandas.ExcelFile
import pandas as pd import os, requests, logging import sys # from bs4 import BeautifulSoup as bs from .utils import * class EdgarBase(object): def __init__(self, dir_edgar=None): # self.dir_edgar = # self.__dir_download = None # self.__dir_data = None self.__dir_output = None self.ulr_sec = 'https://www.sec.gov/Archives/' self.__dir_config = None self.dir_curr = os.path.abspath(os.path.dirname(__file__)) self.dir_config = os.path.join(self.dir_curr, 'config') self.today = pd.datetime.today() self.__fact_mapping = None self.__dir_edgar = dir_edgar self.__cache_file = {} @property def dir_edgar(self): if self.__dir_edgar is None: logger.error('please set output data directory ') if 'DIR_EDGAR' not in os.environ: logger.error('please set environment variable DIR_EDGAR') logger.error("os.environ['DIR_EDGAR']=/path/to/dir'") import tempfile self.__dir_edgar = tempfile.gettempdir() else: self.__dir_edgar = os.environ['DIR_EDGAR'] return self.__dir_edgar def set_dir_edgar(self, dir_edgar): if not os.path.exists(dir_edgar): os.makedirs(dir_edgar) self.__dir_edgar = dir_edgar return self @property def _dir_download(self): # dir_download = os.path.join(self.dir_edgar, 'download') # if not os.path.isdir(dir_download): # os.makedirs(dir_download) return self.dir_edgar def set_dir_config(self, dir_input): logger.info('setting dir_config={f}'.format(f=dir_input)) self.dir_curr = dir_input @property def fact_mapping(self): if self.__fact_mapping is None: path_fact_mapping = os.path.join(self.dir_config, 'fact_mapping.csv') logger.info('reading fact_mapping from {f}'.format(f=path_fact_mapping)) fm = pd.read_csv(path_fact_mapping).set_index('item') self.__fact_mapping = fm else: fm = self.__fact_mapping return fm def get_cik(self, ticker): return ticker2cik(ticker) def get_filing_path(self, ticker, filing_type=None, start_date=None, end_date=None): """ :param ticker: :param filing_type: '10-K', '10-Q', etc... :param start_date: str or datetime :param end_date: str or datetime :return: data frame columns=ticker|cik|filing_type|date|filepath """ pass def parse_filing(self, filepath, section): pass def reindex_master(self, start_date=None, end_date=None): pass class EdgarDownloader(EdgarBase): def __init__(self, dir_edgar): super(EdgarDownloader, self).__init__(dir_edgar) self.__conn_master_db = None self.valid_form_type = ['10-Q', '10-K', '8-K'] def __exit__(self): self._close_master_db() @property def _dir_master(self): dir_master = os.path.join(self.dir_edgar, 'master') if not os.path.isdir(dir_master): os.makedirs(dir_master) return dir_master @property def conn_master_db(self): file_master_db = os.path.join(self.dir_edgar, 'master_idx.db') if self.__conn_master_db is None: import sqlite3 if not os.path.exists(file_master_db): conn = sqlite3.connect(file_master_db) pd.DataFrame().to_sql('master_idx', conn) else: conn = sqlite3.connect(file_master_db) self.__conn_master_db = conn return self.__conn_master_db def _close_master_db(self): conn = self.__conn_master_db conn.close() self.__conn_master_db = None def load_master_db(self, start_date, end_date=None, force_reload=False): #start_date = pd.to_datetime(str(start_date)) #end_date = pd.datetime.today() if end_date is None else pd.to_datetime(str(end_date)) list_yyyyqq = self._yyyyqq_between(start_date, end_date) "edgar/full-index/{yyyy}/QTR{q}/master.idx" list_file_master = ["edgar/full-index/{y}/QTR{q}/master.idx".format(y=yq.split('Q')[0], q=yq.split('Q')[1]) for yq in list_yyyyqq] #list_file_download = [f for f in list_file_master if not os.path.exists(f) or force_reload] list_file_downloaded = download_list(list_file_master, self.dir_edgar, force_download=force_reload) self._update_master_db(list_file_downloaded) def _update_master_db(self, list_files): conn = self.conn_master_db col_names = ['cik', 'company_name', 'form_type', 'date_filed', 'filename'] dfs = dd.read_csv(list_files, sep='|', skiprows=11, header=None) dfs.columns = col_names df_load = dfs[dfs['form_type'].isin(self.valid_form_type)].compute() sql_all = 'select * from master_idx' df_all = pd.read_sql_query(sql_all, conn) logger.info('read master_idx db, n={s}'.format(s=df_all.shape[0])) df_all = pd.concat([df_all, df_load], sort=False).drop_duplicates() df_all.to_sql('master_idx', conn, if_exists='replace', index=False) logger.info('write master_idx db, n={s}'.format(s=df_all.shape[0])) return 0 # def _refresh_master_idx(self, yyyy, q, force=False): # # yyyy, q = self._year_quarter(date) # file_master = os.path.join(self._dir_master, "{y}_QTR{q}_master.csv".format(y=yyyy, q=q)) # if not os.path.exists(file_master) or force: # url_master = self._url_master_idx(yyyy, q) # logger.info('downloading {f}'.format(f=url_master)) # resp = req.get(url_master) # if resp.status_code != 200: # logger.error('error downloading {f}'.format(f=url_master)) # else: # write_data = '\n'.join(resp.content.decode('latin1').split('\n')[11:]) # logger.info('saving {f}'.format(f=file_master)) # with open(file_master, 'w+', encoding='utf-8') as f: # f.write("cik|company|form_type|file_date|file_name\n") # f.write(write_data) # self._update_master_db([file_master]) # else: # logger.info('use existing file. {f}'.format(f=file_master)) # return file_master def filings_between(self, symbol, start_date, end_date=None, form_type='10-K', download=True): #list_year_quarter = self._yyyyqq_between(start_date, end_date) #list_master_file = [self._refresh_master_idx(t.split('Q')) for t in list_year_quarter] # dfs = dd.read_csv(list_master_file, sep='|') cik = int(ticker2cik(symbol)) # df_res = dfs[(dfs.cik == cik) & (dfs.form_type == form_type)].compute() sql_filings = "select * from master_idx where cik=={cik} and form_type=='{f}' " \ "and date_filed>='{t0}' ".format(cik=cik, f=form_type, t0=pd.to_datetime(start_date).date()) if end_date: sql_filings += "and file_date<'{t1}'".format(t1=pd.to_datetime(end_date).date()) df_res = pd.read_sql_query(sql_filings, self.conn_master_db) list_filename = df_res['filename'].tolist() if download: list_filename = download_list(list_filename, self._dir_download, force_download=True) return list_filename # @staticmethod # def _url_master_idx(yyyy, q): # url = "https://www.sec.gov/Archives/edgar/full-index/{yyyy}/QTR{q}/master.idx".format(yyyy=yyyy, q=q) # return url # @staticmethod # def _year_quarter(date=pd.datetime.today()): # t = pd.to_datetime(date).date() # return t.year, (t.month - 1) // 3 + 1 @staticmethod def _yyyyqq(date): yq = pd.Period(pd.to_datetime(str(date)), freq='Q') return str(yq) def _yyyyqq_between(self, start_date, end_date=None): end_date =
pd.datetime.today()
pandas.datetime.today
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328:
pd.Timestamp("2013-03-26 00:00:00")
pandas.Timestamp
import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.switch_backend('agg') from scipy import signal import data_processing0 as dp import datetime import math from scipy.spatial.distance import pdist, squareform DATA_PATH = "sitaiqu/samples_image/" import os if not os.path.isdir(DATA_PATH): os.makedirs(DATA_PATH) if not os.path.isdir("sitaiqu/samples/"): os.makedirs("sitaiqu/samples/") begin = "2014/08/01" end = "2016/08/01" ID=1504523749 def rec_plot(s, eps=None, steps=None): if eps==None: eps=0.1 if steps==None: steps=100 d = pdist(s[:,None]) d = np.floor(d/eps) d[d>steps] = steps Z = squareform(d) return Z def single_input(id=ID, DATA_PATH = DATA_PATH, begin = begin, end = end,mode=0, df=None): filename = dp.DATA_PATH + "kilowatt_everyday_2year.xlsx" dtypes = {'index': 'int', 'redidentsID': 'str', 'userID': 'str', 'meterID': 'str', 'misc': 'str', 'sequence': 'str'} parse_dates = ['date'] df = df[df['meterID'] == id] res = pd.DataFrame() res['id'] = df['meterID'] res['usage'] = df['usage'] res['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
""" Testing that functions from rpy work as expected """ import pandas as pd import numpy as np import unittest import nose import pandas.util.testing as tm try: import pandas.rpy.common as com from rpy2.robjects import r import rpy2.robjects as robj except ImportError: raise nose.SkipTest('R not installed') class TestCommon(unittest.TestCase): def test_convert_list(self): obj = r('list(a=1, b=2, c=3)') converted =
com.convert_robj(obj)
pandas.rpy.common.convert_robj
# -*- coding: utf-8 and gbk -*- """ Created on Sat Oct 16 08:44:53 2021 @author: <NAME> """ # from __future__ import division from tensorflow.keras.models import Sequential # from nltk.book import * import pandas as pd import numpy as np np.set_printoptions(threshold=np.inf) # 将numpy数组显示完全 import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib # from matplotlib import pyplot from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM import tensorflow as tf from pandas import DataFrame matplotlib.rc("font", family='YouYuan') # 设置画图字体 不然中文乱码 from sklearn.preprocessing import MinMaxScaler # 以下是实现的函数(模块化) # 获取并合并因素函数:只用到了df1和df2,基本没用到df3(关键不知怎么用weather) def My_GetAndMerge(): df1 = pd.read_csv(r"E:\deep-learning\course-design-main\resources\trips.csv", encoding='gbk'); df1['进站时间'] = pd.to_datetime(df1['进站时间']) df1 = df1.set_index(df1["进站时间"]) df2 = pd.read_csv(r"E:\deep-learning\course-design-main\resources\hoilday2020.csv", encoding='gbk'); df3 = pd.read_csv(r"E:\deep-learning\course-design-main\resources\weather2020.csv", encoding='gbk'); df1['day'] = pd.to_datetime(df1['进站时间']).dt.date df2['day'] = pd.to_datetime(df2['day']).dt.date df3['day'] =
pd.to_datetime(df3['day'])
pandas.to_datetime
from contextlib import ExitStack as does_not_raise # noqa: N813 import numpy as np import pandas as pd import pytest from sid.msm import _flatten_index from sid.msm import _harmonize_input from sid.msm import _is_diagonal from sid.msm import get_diag_weighting_matrix from sid.msm import get_flat_moments from sid.msm import get_msm_func def dummy_simulate(_params): # noqa: U101 return pd.Series([1, 2]) def dummy_calc_moments(df): return df @pytest.mark.end_to_end def test_estimation_with_msm(): s = pd.Series([1, 2]) msm_func = get_msm_func( simulate=dummy_simulate, calc_moments=dummy_calc_moments, empirical_moments=s, replace_nans=lambda x: x, additional_outputs={"sr": lambda x: x}, ) result = msm_func(None) expected = { "value": 0, "root_contributions": pd.Series([0.0, 0.0], ["0_0", "0_1"]), "empirical_moments": {0: s}, "simulated_moments": {0: s}, "sr": pd.Series([1, 2]), } for k, v in result.items(): if k == "value": assert v == expected[k] else: if isinstance(v, dict): for kk, vv in v.items(): vv.equals(expected[k][kk]) else: v.equals(expected[k]) @pytest.mark.integration @pytest.mark.parametrize( "empirical_moments, weights, expected", [({"a":
pd.Series([1])
pandas.Series
# Utilities import re import pickle import numpy as np import pandas as pd import tensorflow.keras.metrics as metrics from gensim.models import KeyedVectors from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras import Sequential from tensorflow.keras.layers import Bidirectional, GlobalMaxPool1D, Dense, LSTM, Conv1D, Embedding from tensorflow.keras.models import save_model from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau,TensorBoard # Importing the dataset DATASET_ENCODING = "ISO-8859-1" raw_dataset = pd.read_csv('assets/twitter_nlp/training.1600000.processed.noemoticon.csv',encoding=DATASET_ENCODING) dataset = pd.DataFrame(columns=["Sentiment", "SentimentText"]) dataset = dataset.fillna(0) negative = 0 positive = 0 for index, row in raw_dataset.iterrows(): if negative < 50000 and row[0] == 0: dataset["Sentiment"] = row[0] dataset["SentimentText"] = row[5] negative+=1 elif positive < 50000 and row[0] == 4: dataset["Sentiment"] = row[0] dataset["SentimentText"] = row[5] positive+=1 elif positive == 50000 and negative == 50000: break # Reading contractions.csv and storing it as a dict. contractions =
pd.read_csv('assets/contractions.csv', index_col='Contraction')
pandas.read_csv
import pandas as pd import numpy as np import pickle from scipy.sparse import * from sklearn.model_selection import train_test_split SEED = 5525 def update_index(df): index_set = set() for i in df.tolist(): index_set.update(set(i)) indices = list(index_set) indices.sort() return indices def split_dataset(dataset): with open(dataset, 'rb') as handle: df = pickle.load(handle) #df = df.iloc[:10000,] df = df[df['TEXT_ID'].map(len)>=2] X = df.iloc[:, 0] Y = df.iloc[:, 1] indices = update_index(Y) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1, random_state=SEED) X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.1, random_state=SEED) return X_train, X_test, X_val, Y_train, Y_test, Y_val, indices def transfer_to_csr(raw_df, num_col, indices): shape_csr = (len(raw_df), num_col) row = [] col = [] row_idx = 0 for emoji_ids in raw_df.tolist(): tempEmoji = set(emoji_ids) row += [row_idx] * len(tempEmoji) idx = [indices.index(i) for i in emoji_ids] col += idx row_idx += 1 data = [1]*len(row) return csr_matrix((data, (row, col)), shape=shape_csr) def make_same_length(data, sequence_length): features = np.zeros((len(data), sequence_length), dtype=int) for i, text in enumerate(data): text_len = len(text) if (text_len <= sequence_length): zeros = list(np.zeros(sequence_length - text_len)) new = text + zeros else: new = text[:sequence_length] features[i, :] = np.array(new) return features def load_data_nn(dataset, num_class): X_train, X_test, X_val, Y_train, Y_test, Y_val, indices = split_dataset(dataset) X_train = make_same_length(X_train, 128) X_test = make_same_length(X_test, 128) X_val = make_same_length(X_val, 128) # Y_train = transfer_to_csr(Y_train, num_class, indices).todense() # Y_test = transfer_to_csr(Y_test, num_class, indices).todense() # Y_val = transfer_to_csr(Y_val, num_class, indices).todense() Y_train = transfer_to_csr(Y_train, num_class, indices) Y_test = transfer_to_csr(Y_test, num_class, indices) Y_val = transfer_to_csr(Y_val, num_class, indices) num_pos = np.sum(Y_train, axis=0) + np.sum(Y_test, axis=0) + np.sum(Y_val, axis=0) # weight_pos = ((len(Y_train) + len(Y_test) + len(Y_val)) - num_pos) / num_pos weight_pos = ((Y_train.shape[0] + Y_test.shape[0] + Y_val.shape[0]) - num_pos) / num_pos return X_train, X_test, X_val, Y_train, Y_test, Y_val, weight_pos # list = annotations of 50 most frequently used emojis def locate_emojis(dataset, list, outfile): file = pd.read_csv(dataset) emoji_id = file.iloc[:,0] emojis = [] for i in list: emojis.append([i, emoji_id[i]]) emojis =
pd.DataFrame(emojis)
pandas.DataFrame
import pandas as pd import glob ## concatenate data frames into one path = "HMXB_output/*" all_param_files = glob.glob(path) #df = pd.read_csv("./0_params.csv") df = pd.DataFrame() for pfile in all_param_files: #if pfile == "0_params.csv": continue pf =
pd.read_csv(pfile)
pandas.read_csv
# (C) Copyright 2017- ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # import copy import datetime import os import numpy as np import pandas as pd import pytest import metview as mv from metview import bindings from metview.param import ParamInfo from metview.indexer import GribIndexer PATH = os.path.dirname(__file__) DB_COLUMNS = copy.deepcopy(GribIndexer.DEFAULT_KEYS) DB_COLUMNS["_msgIndex1"] = ("l", np.int64, False) DB_COLUMNS_WIND2 = copy.deepcopy(DB_COLUMNS) DB_COLUMNS_WIND2["_msgIndex2"] = ("l", np.int64, False) DB_DEFAULT_COLUMN_NAMES = list(GribIndexer.DEFAULT_KEYS.keys()) def file_in_testdir(filename): return os.path.join(PATH, filename) def build_index_db_dataframe(column_data, key_def=None): c = {v: column_data[i] for i, v in enumerate(list(key_def.keys()))} pd_types = {k: v[1] for k, v in key_def.items()} return pd.DataFrame(c).astype(pd_types) def test_fieldset_select_single_file(): f = mv.read(file_in_testdir("tuv_pl.grib")) assert f._db is None # ------------------------ # single resulting field # ------------------------ g = f.select(shortName="u", level=700) assert len(g) == 1 assert mv.grib_get(g, ["shortName", "level:l"]) == [["u", 700]] g1 = mv.read(data=f, param="u", levelist=700) d = g - g1 assert np.allclose(d.values(), np.zeros(len(d.values()))) # check index db contents assert g._db is not None assert "scalar" in g._db.blocks assert len(g._db.blocks) == 1 md = [ ["u"], [131], [20180801], [1200], ["0"], [700], ["isobaricInhPa"], ["0"], ["0001"], ["od"], ["oper"], ["an"], [0], ] df_ref = build_index_db_dataframe(md, key_def=DB_COLUMNS) # print(df_ref.dtypes) # print(g._db.blocks) df = g._db.blocks["scalar"] # print(df.dtypes) if not df.equals(df_ref): print(df.compare(df_ref)) assert False # ------------------------------------ # single resulting field - paramId # ------------------------------------ g = f.select(paramId=131, level=700) assert len(g) == 1 assert mv.grib_get(g, ["paramId:l", "level:l"]) == [[131, 700]] g1 = mv.read(data=f, param="131.128", levelist=700) d = g - g1 assert np.allclose(d.values(), np.zeros(len(d.values()))) # check index db contents assert g._db is not None assert "scalar" in g._db.blocks assert len(g._db.blocks) == 1 md = [ ["u"], [131], [20180801], [1200], ["0"], [700], ["isobaricInhPa"], ["0"], ["0001"], ["od"], ["oper"], ["an"], [0], ] df_ref = build_index_db_dataframe(md, key_def=DB_COLUMNS) df = g._db.blocks["scalar"] if not df.equals(df_ref): print(df.compare(df_ref)) assert False # ------------------------- # multiple resulting fields # ------------------------- f = mv.read(file_in_testdir("tuv_pl.grib")) assert f._db is None g = f.select(shortName=["t", "u"], level=[700, 500]) assert len(g) == 4 assert mv.grib_get(g, ["shortName", "level:l"]) == [ ["t", 500], ["t", 700], ["u", 500], ["u", 700], ] assert g._db is not None assert len(g._db.blocks) == 1 assert "scalar" in g._db.blocks md = [ ["t", "t", "u", "u"], [130, 130, 131, 131], [20180801] * 4, [1200] * 4, [0] * 4, [500, 700, 500, 700], ["isobaricInhPa"] * 4, ["0"] * 4, ["0001"] * 4, ["od"] * 4, ["oper"] * 4, ["an"] * 4, [0, 1, 2, 3], ] df_ref = build_index_db_dataframe(md, key_def=DB_COLUMNS) df = g._db.blocks["scalar"] if not df.equals(df_ref): print(df.compare(df_ref)) assert False # ------------------------- # empty result # ------------------------- f = mv.read(file_in_testdir("tuv_pl.grib")) g = f.select(shortName="w") assert isinstance(g, mv.Fieldset) assert len(g) == 0 # ------------------------- # invalid key # ------------------------- f = mv.read(file_in_testdir("tuv_pl.grib")) g = f.select(INVALIDKEY="w") assert isinstance(g, mv.Fieldset) assert len(g) == 0 # ------------------------- # mars keys # ------------------------- f = mv.read(file_in_testdir("tuv_pl.grib")) assert f._db is None g = f.select(shortName=["t"], level=[500, 700], marsType="an") assert len(g) == 2 assert mv.grib_get(g, ["shortName", "level:l", "marsType"]) == [ ["t", 500, "an"], ["t", 700, "an"], ] g = f.select(shortName=["t"], level=[500, 700], type="an") assert len(g) == 2 assert mv.grib_get(g, ["shortName", "level:l", "type"]) == [ ["t", 500, "an"], ["t", 700, "an"], ] # check the index db contents. "type" must be mapped to the "marsType" column of the # db so no rescanning should happen. The db should only contain the default set of columns. assert g._db is not None assert "scalar" in g._db.blocks assert len(g._db.blocks) == 1 assert list(g._db.blocks["scalar"].keys())[:-1] == DB_DEFAULT_COLUMN_NAMES g = f.select(shortName=["t"], level=[500, 700], type="fc") assert len(g) == 0 g = f.select({"shortName": "t", "level": [500, 700], "mars.type": "an"}) assert len(g) == 2 assert mv.grib_get(g, ["shortName", "level:l", "mars.type"]) == [ ["t", 500, "an"], ["t", 700, "an"], ] # ------------------------- # custom keys # ------------------------- f = mv.read(file_in_testdir("tuv_pl.grib")) assert f._db is None g = f.select(shortName=["t"], level=[500, 700], gridType="regular_ll") assert len(g) == 2 assert mv.grib_get(g, ["shortName", "level:l", "gridType"]) == [ ["t", 500, "regular_ll"], ["t", 700, "regular_ll"], ] g = f.select({"shortName": ["t"], "level": [500, 700], "mars.param:s": "130.128"}) assert len(g) == 2 assert mv.grib_get(g, ["shortName", "level:l", "mars.param"]) == [ ["t", 500, "130.128"], ["t", 700, "130.128"], ] assert g._db is not None assert "scalar" in g._db.blocks assert len(g._db.blocks) == 1 assert list(g._db.blocks["scalar"].keys())[:-1] == [ *DB_DEFAULT_COLUMN_NAMES, "gridType", "mars.param:s", ] # ------------------------- # wind # ------------------------- f = mv.read(file_in_testdir("tuv_pl.grib")) assert f._db is None g = f.select(shortName="wind", level=700) assert len(g) == 2 assert mv.grib_get(g, ["shortName", "level:l"]) == [ ["u", 700], ["v", 700], ] assert g._db is not None assert len(g._db.blocks) == 1 assert "wind" in g._db.blocks md = [ ["wind"], [131], [20180801], [1200], [0], [700], ["isobaricInhPa"], ["0"], ["0001"], ["od"], ["oper"], ["an"], [0], [1], ] df_ref = build_index_db_dataframe(md, key_def=DB_COLUMNS_WIND2) df = g._db.blocks["wind"] if not df.equals(df_ref): print(df.compare(df_ref)) assert False def test_fieldset_select_date(): # date and time f = mv.read(file_in_testdir("t_time_series.grib")) assert f._db is None g = f.select(date="20201221", time="12", step="9") assert len(g) == 2 ref_keys = ["shortName", "date", "time", "step"] ref = [ ["t", "20201221", "1200", "9"], ["z", "20201221", "1200", "9"], ] assert mv.grib_get(g, ref_keys) == ref g = f.select(date=20201221, time="1200", step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(date=20201221, time="12:00", step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(date=20201221, time=12, step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(date="2020-12-21", time=1200, step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select( date=datetime.datetime(2020, 12, 21), time=datetime.time(hour=12, minute=0), step=9, ) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref # dataDate and dataTime g = f.select(dataDate="20201221", dataTime="12", step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(dataDate="2020-12-21", dataTime="12:00", step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref # validityDate and validityTime g = f.select(validityDate="20201221", validityTime="21") assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(validityDate="2020-12-21", validityTime="21:00") assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref # dateTime g = f.select(dateTime="2020-12-21 12:00", step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref # dataDateTime g = f.select(dataDateTime="2020-12-21 12:00", step=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref # validityDateTime g = f.select(validityDateTime="2020-12-21 21:00") assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref # ------------------------------------ # check multiple dates/times # ------------------------------------ ref = [ ["t", "20201221", "1200", "3"], ["t", "20201221", "1200", "9"], ["z", "20201221", "1200", "3"], ["z", "20201221", "1200", "9"], ] # date and time g = f.select(date="2020-12-21", time=12, step=[3, 9]) assert len(g) == 4 assert mv.grib_get(g, ref_keys) == ref # dateTime g = f.select(dateTime="2020-12-21 12:00", step=[3, 9]) assert len(g) == 4 assert mv.grib_get(g, ref_keys) == ref # validityDate and validityTime g = f.select(validityDate="2020-12-21", validityTime=[15, 21]) assert len(g) == 4 assert mv.grib_get(g, ref_keys) == ref # validityDateTime g = f.select(validityDateTime=["2020-12-21 15:00", "2020-12-21 21:00"]) assert len(g) == 4 assert mv.grib_get(g, ref_keys) == ref # ------------------------------------ # check times with 1 digit hours # ------------------------------------ # we create a new fieldset f = mv.merge(f[0], mv.grib_set_long(f[2:4], ["time", 600])) ref = [ ["t", "20201221", "0600", "3"], ["z", "20201221", "0600", "3"], ] g = f.select(date="20201221", time="6", step="3") assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(date=20201221, time="06", step=3) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(date=20201221, time="0600", step=3) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(date=20201221, time="06:00", step=3) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(validityDate="2020-12-21", validityTime=9) assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(validityDate="2020-12-21", validityTime="09") assert len(g) == 2 assert mv.grib_get(g, ref_keys) == ref g = f.select(validityDate="2020-12-21", validityTime=18) assert len(g) == 0 def test_fieldset_select_multi_file(): f = mv.read(file_in_testdir("tuv_pl.grib")) f.append(mv.read(file_in_testdir("ml_data.grib"))) assert f._db is None # single resulting field g = f.select(shortName="t", level=61) # print(f._db.blocks) assert len(g) == 1 assert mv.grib_get(g, ["shortName", "level:l", "typeOfLevel"]) == [ ["t", 61, "hybrid"] ] g1 = mv.read(data=f, param="t", levelist=61, levtype="ml") d = g - g1 assert np.allclose(d.values(), np.zeros(len(d.values()))) assert g._db is not None assert len(g._db.blocks) == 1 assert "scalar" in g._db.blocks md = [ ["t"], [130], [20180111], [1200], [12], [61], ["hybrid"], [None], ["0001"], ["od"], ["oper"], ["fc"], [0], ] df_ref = build_index_db_dataframe(md, key_def=DB_COLUMNS) df = g._db.blocks["scalar"] if not df.equals(df_ref): print(df.compare(df_ref)) assert False def test_param_info(): # no extra info p = ParamInfo.build_from_name("2t") assert p.name == "2t" assert p.scalar == True assert p.meta["typeOfLevel"] == "surface" assert p.meta["level"] is None p = ParamInfo.build_from_name("msl") assert p.name == "msl" assert p.scalar == True assert p.meta["typeOfLevel"] == "surface" assert p.meta["level"] is None p = ParamInfo.build_from_name("t500") assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 500 p = ParamInfo.build_from_name("t500hPa") assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 500 p = ParamInfo.build_from_name("t") assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "" assert p.meta["level"] is None p = ParamInfo.build_from_name("t320K") assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "theta" assert p.meta["level"] == 320 p = ParamInfo.build_from_name("t72ml") assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "hybrid" assert p.meta["level"] == 72 p = ParamInfo.build_from_name("wind10m") assert p.name == "wind10m" assert p.scalar == False assert p.meta["typeOfLevel"] == "surface" assert p.meta["level"] is None p = ParamInfo.build_from_name("wind100") assert p.name == "wind" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 100 p = ParamInfo.build_from_name("wind700") assert p.name == "wind" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 700 p = ParamInfo.build_from_name("wind") assert p.name == "wind" assert p.scalar == False assert p.meta["typeOfLevel"] == "" assert p.meta["level"] == None p = ParamInfo.build_from_name("wind3d") assert p.name == "wind3d" assert p.scalar == False assert p.meta["typeOfLevel"] == "" assert p.meta["level"] == None p = ParamInfo.build_from_name("wind3d500") assert p.name == "wind3d" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 500 # exta info param_level_types = { "2t": ["surface"], "msl": ["surface"], "wind10m": ["surface"], "t": ["isobaricInhPa", "theta"], "wind": ["isobaricInhPa"], } p = ParamInfo.build_from_name("2t", param_level_types=param_level_types) assert p.name == "2t" assert p.scalar == True assert p.meta["typeOfLevel"] == "surface" assert p.meta["level"] == None try: p = ParamInfo.build_from_name("22t", param_level_types=param_level_types) assert False except: pass # p = ParamInfo.build_from_name("t2", param_level_types=param_level_types) # assert p.name == "2t" # assert p.level_type == "surface" # assert p.level is None p = ParamInfo.build_from_name("msl", param_level_types=param_level_types) assert p.name == "msl" assert p.scalar == True assert p.meta["typeOfLevel"] == "surface" assert p.meta["level"] == None p = ParamInfo.build_from_name("t500", param_level_types=param_level_types) assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 500 p = ParamInfo.build_from_name("t500hPa", param_level_types=param_level_types) assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 500 p = ParamInfo.build_from_name("t", param_level_types=param_level_types) assert p.name == "t" assert p.scalar == True assert "typeOfLevel" not in p.meta assert "level" not in p.meta p = ParamInfo.build_from_name("t320K", param_level_types=param_level_types) assert p.name == "t" assert p.scalar == True assert p.meta["typeOfLevel"] == "theta" assert p.meta["level"] == 320 try: p = ParamInfo.build_from_name("t72ml", param_level_types=param_level_types) assert False except: pass p = ParamInfo.build_from_name("wind10m", param_level_types=param_level_types) assert p.name == "wind10m" assert p.scalar == False assert p.meta["typeOfLevel"] == "surface" assert p.meta["level"] is None p = ParamInfo.build_from_name("wind100", param_level_types=param_level_types) assert p.name == "wind" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 100 p = ParamInfo.build_from_name("wind700", param_level_types=param_level_types) assert p.name == "wind" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 700 p = ParamInfo.build_from_name("wind", param_level_types=param_level_types) assert p.name == "wind" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] is None try: p = ParamInfo.build_from_name("wind3d", param_level_types=param_level_types) assert False except: pass param_level_types["wind3d"] = ["isobaricInhPa"] p = ParamInfo.build_from_name("wind3d", param_level_types=param_level_types) assert p.name == "wind3d" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] is None p = ParamInfo.build_from_name("wind3d500", param_level_types=param_level_types) assert p.name == "wind3d" assert p.scalar == False assert p.meta["typeOfLevel"] == "isobaricInhPa" assert p.meta["level"] == 500 def test_param_info_from_fs_single_file(): f = mv.read(file_in_testdir("tuv_pl.grib")) g = f["u700"] p = g.param_info assert p.name == "u" assert p.scalar == True md = { "shortName": "u", "paramId": 131, "date": 20180801, "time": 1200, "step": "0", "level": 700, "typeOfLevel": "isobaricInhPa", "number": "0", "experimentVersionNumber": "0001", "marsClass": "od", "marsStream": "oper", "marsType": "an", "_msgIndex1": 0, } assert md == p.meta g = f["wind500"] p = g.param_info assert p.name == "wind" assert p.scalar == False md = { "shortName": "wind", "paramId": 131, "date": 20180801, "time": 1200, "step": "0", "level": 500, "typeOfLevel": "isobaricInhPa", "number": "0", "experimentVersionNumber": "0001", "marsClass": "od", "marsStream": "oper", "marsType": "an", "_msgIndex1": 0, "_msgIndex2": 1, } assert md == p.meta # we lose the db g = g + 0 p = g.param_info assert p.name == "wind" assert p.scalar == False md = { "shortName": "u", "paramId": 131, "date": 20180801, "time": 1200, "step": "0", "level": 500, "typeOfLevel": "isobaricInhPa", "number": "0", "experimentVersionNumber": "0001", "marsClass": "od", "marsStream": "oper", "marsType": "an", } assert md == p.meta g = f["t"] p = g.param_info assert p.name == "t" assert p.scalar == True md = { "shortName": "t", "paramId": 130, "date": 20180801, "time": 1200, "step": "0", "level": None, "typeOfLevel": "isobaricInhPa", "number": "0", "experimentVersionNumber": "0001", "marsClass": "od", "marsStream": "oper", "marsType": "an", "_msgIndex1": 0, } assert md == p.meta # we lose the db g = g + 0 p = g.param_info assert p.name == "t" assert p.scalar == True md = { "shortName": "t", "paramId": 130, "date": 20180801, "time": 1200, "step": "0", "level": 300, "typeOfLevel": "isobaricInhPa", "number": "0", "experimentVersionNumber": "0001", "marsClass": "od", "marsStream": "oper", "marsType": "an", } assert md == p.meta def test_fieldset_select_operator_single_file(): f = mv.read(file_in_testdir("tuv_pl.grib")) g = f["u700"] assert f._db is not None assert g._db is not None assert len(g) == 1 assert mv.grib_get(g, ["shortName", "level:l"]) == [["u", 700]] g1 = mv.read(data=f, param="u", levelist=700) d = g - g1 assert np.allclose(d.values(), np.zeros(len(d.values()))) g = f["t"] assert len(g) == 6 assert mv.grib_get(g, ["shortName", "level:l"]) == [ ["t", 300], ["t", 400], ["t", 500], ["t", 700], ["t", 850], ["t", 1000], ] try: g = f["w"] assert False except: pass def test_fieldset_select_operator_multi_file(): f = mv.read(file_in_testdir("tuv_pl.grib")) f.append(mv.read(file_in_testdir("ml_data.grib"))) assert f._db is None # single resulting field g = f["t61ml"] assert f._db is not None assert g._db is not None assert len(g) == 1 assert mv.grib_get(g, ["shortName", "level:l", "typeOfLevel"]) == [ ["t", 61, "hybrid"] ] g1 = mv.read(data=f, param="t", levelist=61, levtype="ml") d = g - g1 assert np.allclose(d.values(), np.zeros(len(d.values()))) def test_indexer_dataframe_sort_value_with_key(): md = { "paramId": [1, 2, 1, 2, 3], "level": [925, 850, 925, 850, 850], "step": ["12", "110", "1", "3", "1"], "rest": ["1", "2", "aa", "b1", "1b"], } md_ref = { "paramId": [1, 1, 2, 2, 3], "level": [925, 925, 850, 850, 850], "step": ["1", "12", "3", "110", "1"], "rest": ["aa", "1", "b1", "2", "1b"], } df = pd.DataFrame(md) df = GribIndexer._sort_dataframe(df) df_ref =
pd.DataFrame(md_ref)
pandas.DataFrame
from common_code.common import * import matplotlib as mpl import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from matplotlib import tight_layout mpl.style.use('seaborn-poster') sns.set_palette(sns.color_palette(['#43406b', '#d15a00', '#27f77d'])) # sns.palplot(sns.color_palette(['#43406b', '#d15a00', '#27f77d'])) # sns.set_palette('cubehelix') font = {'size' : 17} mpl.rc('font', **font) histcolor = '#143f7a' conscmap = mpl.colors.LinearSegmentedColormap.from_list("", ["#142c89", "#142c89"]) def init_gridspec(nrow, ncol, nax) : fig = plt.figure(figsize=(15, 15)) gs = gridspec.GridSpec(nrow, ncol, figure=fig) axes = [] for i in range(nax) : axes.append(plt.subplot(gs[i//ncol, i%ncol])) return fig, axes def adjust_gridspec() : plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() def show_gridspec() : plt.show() def set_square_aspect(axes) : x0,x1 = axes.get_xlim() y0,y1 = axes.get_ylim() axes.set_aspect(abs(x1-x0)/abs(y1-y0)) def save_axis_in_file(fig, ax, dirname, filename): ax.set_title("") renderer = tight_layout.get_renderer(fig) inset_tight_bbox = ax.get_tightbbox(renderer) extent = inset_tight_bbox.transformed(fig.dpi_scale_trans.inverted()) plt.savefig(os.path.join(dirname, filename + '.png'), bbox_inches=extent, dpi=1000) """ renderer = tight_layout.get_renderer(fig) inset_tight_bbox = ax.get_tightbbox(renderer) extent = inset_tight_bbox.transformed(fig.dpi_scale_trans.inverted()) plt.savefig(os.path.join(dirname, filename + '.svg'), bbox_inches=extent) if 'sst' not in dirname and 'readmission' not in dirname: ax.set_xlabel(" ") ax.set_ylabel(" ") renderer = tight_layout.get_renderer(fig) inset_tight_bbox = ax.get_tightbbox(renderer) extent = inset_tight_bbox.transformed(fig.dpi_scale_trans.inverted()) plt.savefig(os.path.join(dirname, filename + '.pdf'), bbox_inches=extent) """ def save_table_in_file(table, dirname, filename) : table.to_csv(os.path.join(dirname, filename + '.csv'), index=True) def annotate(ax, xlabel=None, ylabel=None, title=None, xlim=None, ylim=None, legend='upper left') : if xlabel is not None : ax.set_xlabel(xlabel, fontsize=20) if ylabel is not None : ax.set_ylabel(ylabel, fontsize=20) ax.tick_params(labelsize=20) if title is not None : ax.set_title(title) if xlim is not None : ax.set_xlim(*xlim) if ylim is not None : ax.set_ylim(*ylim) set_square_aspect(ax) sns.despine(ax=ax) if legend is None and ax.get_legend() is not None : ax.get_legend().remove() if legend is not None: ax.legend(loc=2,prop=dict(size=9)) ########################################################################################################################### def plot_measure_histogram_by_class(ax, spcorr, yhat, bins=30) : sprho = np.array([x for x in spcorr]) # sppval = np.array([x[1] for x in spcorr]) measures = { "mean" : {}, "std" : {}} # measures['pval_sig']["Overall"] = "{:.2f}".format((sppval <= 0.05).sum() / len(sppval)) measures['mean']["Overall"] = np.mean(sprho) measures['std']["Overall"] = np.std(sprho) unique_y = None if len(yhat.shape) == 1 or yhat.shape[1] == 1: yhat = yhat.flatten() yhat = np.round(yhat) unique_y = np.sort(np.unique(yhat)) if unique_y is not None and len(unique_y) < 4: for y in unique_y : rho = sprho[yhat == y] # pval = sppval[yhat == y] # measures['pval_sig'][str(int(y))] = "{:.2f}".format((pval <= 0.05).sum() / len(pval)) measures['mean'][str(int(y))] = np.mean(rho) measures['std'][str(int(y))] = np.std(rho) ax.hist(rho, bins=bins, range=(-1.0, 1.0), alpha=0.6, linewidth=0.5, edgecolor='k', weights=np.ones(len(rho))/len(rho)) else : ax.hist(sprho, bins=bins, range=(-1.0, 1.0), alpha=0.6, linewidth=0.5, edgecolor='k', weights=np.ones(len(sprho))/len(sprho)) return pd.DataFrame(measures) def plot_histogram_by_class(ax, spcorr, yhat, bins=30) : sprho = np.array([x for x in spcorr]) # sppval = np.array([x[1] for x in spcorr]) measures = { "mean" : {}, "std" : {}} # measures['pval_sig']["Overall"] = "{:.2f}".format((sppval <= 0.05).sum() / len(sppval)) measures['mean']["Overall"] = np.mean(sprho) measures['std']["Overall"] = np.std(sprho) unique_y = None if len(yhat.shape) == 1 or yhat.shape[1] == 1: yhat = yhat.flatten() yhat = np.round(yhat) unique_y = np.sort(np.unique(yhat)) if unique_y is not None and len(unique_y) < 4: for y in unique_y : rho = sprho[yhat == y] # pval = sppval[yhat == y] # measures['pval_sig'][str(int(y))] = "{:.2f}".format((pval <= 0.05).sum() / len(pval)) measures['mean'][str(int(y))] = np.mean(rho) measures['std'][str(int(y))] = np.std(rho) ax.hist(rho, bins=bins, range=(-1.0, 1.0), alpha=0.6, linewidth=0.5, edgecolor='k', weights=np.ones(len(rho))/len(rho)) else : ax.hist(sprho, bins=bins, range=(-1.0, 1.0), alpha=0.6, linewidth=0.5, edgecolor='k', weights=np.ones(len(sprho))/len(sprho)) return pd.DataFrame(measures) def plot_SP_histogram_by_class(ax, spcorr, yhat, bins=30) : sprho = np.array([x[0] for x in spcorr]) sppval = np.array([x[1] for x in spcorr]) measures = {"pval_sig" : {}, "mean" : {}, "std" : {}} measures['pval_sig']["Overall"] = "{:.2f}".format((sppval <= 0.05).sum() / len(sppval)) measures['mean']["Overall"] = np.mean(sprho) measures['std']["Overall"] = np.std(sprho) unique_y = None if len(yhat.shape) == 1 or yhat.shape[1] == 1: yhat = yhat.flatten() yhat = np.round(yhat) unique_y = np.sort(np.unique(yhat)) if unique_y is not None and len(unique_y) < 4: for y in unique_y : rho = sprho[yhat == y] pval = sppval[yhat == y] measures['pval_sig'][str(int(y))] = "{:.2f}".format((pval <= 0.05).sum() / len(pval)) measures['mean'][str(int(y))] = np.mean(rho) measures['std'][str(int(y))] = np.std(rho) ax.hist(rho, bins=bins, range=(-1.0, 1.0), alpha=0.6, linewidth=0.5, edgecolor='k', weights=np.ones(len(rho))/len(rho)) else : ax.hist(sprho, bins=bins, range=(-1.0, 1.0), alpha=0.6, linewidth=0.5, edgecolor='k', weights=np.ones(len(sprho))/len(sprho)) return pd.DataFrame(measures) def plot_measure_density_by_class(ax, spcorr, yhat, linestyle='-', label=None) : sprho = np.array([x for x in spcorr]) # sppval = np.array([x[1] for x in spcorr]) measures = {"mean" : {}, "std" : {}} unique_y = None if len(yhat.shape) == 1 or yhat.shape[1] == 1: yhat = yhat.flatten() yhat = np.round(yhat) unique_y = np.sort(np.unique(yhat)) if False : #unique_y is not None and len(unique_y) < 4: for y in unique_y : rho = sprho[yhat == y] pval = sppval[yhat == y] measures['pval_sig'][str(int(y))] = "{:.2f}".format((pval <= 0.05).sum() / len(pval)) measures['mean'][str(int(y))] = np.mean(rho) measures['std'][str(int(y))] = np.std(rho) sns.kdeplot(rho, linewidth=2, linestyle=linestyle, ax=ax) else : # measures['pval_sig']["Overall"] = "{:.2f}".format((sppval <= 0.05).sum() / len(sppval)) measures['mean']["Overall"] = np.mean(sprho) measures['std']["Overall"] = np.std(sprho) sns.kdeplot(sprho, linewidth=2, linestyle=linestyle, color='k', ax=ax, label=label) return
pd.DataFrame(measures)
pandas.DataFrame
import numpy as np from numpy.fft import fft, ifft # from: http://www.mirzatrokic.ca/FILES/codes/fracdiff.py # small modification: wrapped 2**np.ceil(...) around int() # https://github.com/SimonOuellette35/FractionalDiff/blob/master/question2.py _default_thresh = 1e-4 def get_weights(d, size): """Expanding window fraction difference weights.""" w = [1.0] for k in range(1, size): w_ = -w[-1] / k * (d - k + 1) w.append(w_) w = np.array(w[::-1]).reshape(-1, 1) return w import numba @numba.njit def get_weights_ffd(d, thres, lim=99999): """Fixed width window fraction difference weights. Set lim to be large if you want to only stop at thres. Set thres to be zero if you want to ignore it. """ w = [1.0] k = 1 for i in range(1, lim): w_ = -w[-1] / k * (d - k + 1) if abs(w_) < thres: break w.append(w_) k += 1 w = np.array(w[::-1]).reshape(-1, 1) return w def frac_diff_ffd(x, d, thres=_default_thresh, lim=None): assert isinstance(x, np.ndarray) assert x.ndim == 1 if lim is None: lim = len(x) w, out = _frac_diff_ffd(x, d, lim, thres=thres) # print(f'weights is shape {w.shape}') return out # this method was not faster # def frac_diff_ffd_stride_tricks(x, d, thres=_default_thresh): # """d is any positive real""" # assert isinstance(x, np.ndarray) # w = get_weights_ffd(d, thres, len(x)) # width = len(w) - 1 # output = np.empty(len(x)) # output[:width] = np.nan # output[width:] = np.dot(np.lib.stride_tricks.as_strided(x, (len(x) - width, len(w)), (x.itemsize, x.itemsize)), w[:,0]) # return output @numba.njit def _frac_diff_ffd(x, d, lim, thres=_default_thresh): """d is any positive real""" w = get_weights_ffd(d, thres, lim) width = len(w) - 1 output = [] output.extend([np.nan] * width) # the first few entries *were* zero, should be nan? for i in range(width, len(x)): output.append(np.dot(w.T, x[i - width: i + 1])[0]) return w, np.array(output) def fast_frac_diff(x, d): """expanding window version using fft form""" assert isinstance(x, np.ndarray) T = len(x) np2 = int(2 ** np.ceil(np.log2(2 * T - 1))) k = np.arange(1, T) b = (1,) + tuple(np.cumprod((k - d - 1) / k)) z = (0,) * (np2 - T) z1 = b + z z2 = tuple(x) + z dx = ifft(fft(z1) * fft(z2)) return np.real(dx[0:T]) # TESTS def test_all(): for d in [0.3, 1, 1.5, 2, 2.5]: test_fast_frac_diff_equals_fracDiff_original_impl(d=d) test_frac_diff_ffd_equals_original_impl(d=d) # test_frac_diff_ffd_equals_prado_original(d=d) # his implementation is busted for fractional d # def test_frac_diff_ffd_equals_prado_original(d=3): # # ignore this one for now as Prado's version does not work # from .prado_orig import fracDiff_FFD_prado_original # import pandas as pd # # x = np.random.randn(100) # a = frac_diff_ffd(x, d, thres=_default_thresh) # b = fracDiff_FFD_prado_original(pd.DataFrame(x), d, thres=_default_thresh) # b = np.squeeze(b.values) # a = a[d:] # something wrong with the frac_diff_ffd gives extra entries of zero # assert np.allclose(a, b) # # return locals() def test_frac_diff_ffd_equals_original_impl(d=3): from .prado_orig import fracDiff_FFD_original_impl import pandas as pd x = np.random.randn(100) a = frac_diff_ffd(x, d, thres=_default_thresh) b = fracDiff_FFD_original_impl(pd.DataFrame(x), d, thres=_default_thresh) assert np.allclose(a, b) # return locals() def test_fast_frac_diff_equals_fracDiff_original_impl(d=3): from .prado_orig import fracDiff_original_impl import pandas as pd x = np.random.randn(100) a = fast_frac_diff(x, d) b = fracDiff_original_impl(
pd.DataFrame(x)
pandas.DataFrame
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with
tm.assertRaises(TypeError)
pandas.util.testing.assertRaises
#!/usr/bin/env python # coding: utf-8 # In[1]: import keras from keras_self_attention import SeqSelfAttention # In[2]: import numpy as np import pandas as pd import re from bs4 import BeautifulSoup from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from nltk.corpus import stopwords from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Concatenate, TimeDistributed from tensorflow.keras.models import Model from tensorflow.keras.callbacks import EarlyStopping import warnings pd.set_option("display.max_colwidth", 200) # In[3]: data=pd.read_csv("C:/Users/Ruba/Downloads/Authors/AuthorsMerg01.csv",nrows=100000) # In[4]: data.drop_duplicates(subset=['Text'],inplace=True)#dropping duplicates data.dropna(axis=0,inplace=True)#dropping na # In[5]: data.info() # In[6]: contraction_mapping = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not", "he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have","mightn't": "might not","mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have","so's": "so as", "this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have", "you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have"} # In[7]: import nltk nltk.download('stopwords') # In[8]: stop_words = set(stopwords.words('english')) # In[9]: def text_cleaner(text,num): newString = text.lower() newString = BeautifulSoup(newString, "lxml").text newString = re.sub(r'\([^)]*\)', '', newString) newString = re.sub('"','', newString) newString = ' '.join([contraction_mapping[t] if t in contraction_mapping else t for t in newString.split(" ")]) newString = re.sub(r"'s\b","",newString) newString = re.sub("[^a-zA-Z]", " ", newString) newString = re.sub('[m]{2,}', 'mm', newString) if(num==0): tokens = [w for w in newString.split() if not w in stop_words] else: tokens=newString.split() long_words=[] for i in tokens: if len(i)>1: #removing short word long_words.append(i) return (" ".join(long_words)).strip() # In[10]: #call the function cleaned_text = [] for t in data['Text']: cleaned_text.append(text_cleaner(t,0)) # In[11]: cleaned_text[:5] # In[12]: #call the function cleaned_Author = [] for t in data['Author']: cleaned_Author.append(text_cleaner(t,1)) # In[13]: cleaned_Author[:10] # In[14]: #restore values of text / Author after cleaning process data['cleaned_text']=cleaned_text data['cleaned_Author']=cleaned_Author # In[15]: #remove empty spaces and NA ones data.replace('', np.nan, inplace=True) data.dropna(axis=0,inplace=True) # In[16]: # find the length of sentences in each TEXT / Summay to know the MIN.MAX ranges length import matplotlib.pyplot as plt text_word_count = [] Author_word_count = [] # populate the lists with sentence lengths for i in data['cleaned_text']: text_word_count.append(len(i.split())) for i in data['cleaned_Author']: Author_word_count.append(len(i.split())) length_df =
pd.DataFrame({'text':text_word_count, 'Author':Author_word_count})
pandas.DataFrame
from bs4 import BeautifulSoup from crossref.restful import Works import datetime from habanero import Crossref import json import lxml import numpy as np import os import pandas as pd import shutil import random import re import requests import time from a0001_admin import clean_dataframe from a0001_admin import name_paths from a0001_admin import retrieve_datetime from a0001_admin import retrieve_format from a0001_admin import retrieve_list from a0001_admin import retrieve_path from a0001_admin import write_paths from a0001_admin import work_completed from a0001_admin import work_to_do def acquire_pubs(): """ """ # set acquire_pubs as a task work_completed('acquire_pubs', 0) # search for pubs search_term() # make json folder make_json_folder() # retrieve metadata search_web() # retrieve metadata crosssearch_crossref() # summarize highlight() wait_time = random.random()*60 + 60 print('Wait: ' + str(round(wait_time,2)) + ' from ' + str(time_string)) time.sleep(wait_time) # completed acquire_pubs work_completed('acquire_pubs', 0) def highlight(): """ """ json_src = os.path.join(retrieve_path('pub_json')) for file in os.listdir(json_src): json_file = open(os.path.join(json_src, file), 'r') data = json_file.read() json_file.close() obj_dst = json.loads(data) searched_list = list(obj_dst['searched']) searched_list.append('summarize') json_obj = {"searched": [searched_list],} json_obj['doi'] = obj_dst['doi'] json_obj['doi_url'] = obj_dst['doi_url'] try: json_obj['title'] = obj_dst['gscholar']['title'] except: json_obj['title'] = None try: json_obj['citations'] = obj_dst['gscholar']['citations'] except: json_obj['citations'] = 0 pub_affiliations = [] try: authors = list(obj_dst['crossref_doi']['author']) print('authors = ') print(authos) for author in authors: index = authors.index(author) affiliations = list(obj_dst['crossref_doi']['author'][index]['affiliation']) for affiliation in affiliations: index2 = affiliations.index(affiliation) pub_affiliation = obj_dst['crossref_doi']['author'][index]['affiliation'][index2]['name'] if pub_affiliation not in pub_affiliations: pub_affiliations.append(pub_affiliation) except: pub_affiliations = [] json_obj['affiliation'] = pub_affiliations for search in list(obj_dst['searched']): json_obj[search] = obj_dst[search] json_file = open(os.path.join(json_src, file), 'w') #data_json = json.dumps(w1, indent = 4, ensure_ascii = False) #obj_json = json.dumps(obj_json, indent = 3, ensure_ascii = False) json_obj = json.dumps(json_obj, indent = 3) json_file.write(json_obj) json_file.close() def build_doi_url(doi): """ """ doi_url = 'https://doi.org/' doi_url = doi_url + str(doi) return(doi_url) def check_scraped(name_dataset, term, year, num): """ """ name_src, name_dst, name_summary, name_unique, plot_unique = name_paths(name_dataset) paths_to_check = [] paths_to_check.append(os.path.join(retrieve_path(name_src))) paths_to_check.append(os.path.join(retrieve_path('pub_gscholar_json'))) paths_to_check.append(os.path.join(retrieve_path('pub_crossref_json'))) paths_to_check.append(os.path.join(retrieve_path('pub_web_json'))) for path in paths_to_check: print('path =') print(path) for file in os.listdir(path): # check specific gscholar search file_split = file.split('.') if file_split[0] == term: return(True) # find and compare file term to term passed into the function pattern = '[a-z]+' flags = re.IGNORECASE file_term = re.findall(pattern, file, flags) file_term = file_term[0] if file_term != term: continue print('file_term = ' + file_term + ' term = ' + term) # find and compare file year to year passed into the function pattern = '[0-9]{4}' file_year = re.findall(pattern, file) file_year = file_year[0] if str(file_year) != str(year): continue print('file_year = ' + file_year + ' year = ' + str(year)) # find and compare file year to year passed into the function pattern = '[0-9]{3}' file_num = re.findall(pattern, file) file_num = file_num[1] if str(file_num) != str(num): continue print('file_num = ' + file_num + ' num = ' + str(num)) # find and compare file saved date to current date file = file.split(' ') file = file[3] pattern = '[0-9]{4}' + '-' + '[0-9]{2}' + '-' + '[0-9]{2}' file_date_saved = re.findall(pattern, file) file_date_saved = file_date_saved[0] print('file_date_saved = ' + file_date_saved) a = file_date_saved.split('-') a = datetime.datetime(int(a[0]), int(a[1]), int(a[2]), 0, 0) #print('a = ' + str(a)) b = datetime.datetime.today() #print('b = ' + str(b)) v = b-a #print('v = ' + str(v)) v = int(v.days) #print('v = ' + str(v)) if v < 10: #print('date match: ' + str(v)) #print('too many days lapsed since last query.') return(True) return(False) def check_num(term, year, num): """ True to not continue False to continue """ src_path = os.path.join(retrieve_path('pub_gscholar_json')) df_file = os.path.join(src_path, term + '.csv') df =
pd.read_csv(df_file)
pandas.read_csv
import matplotlib.pyplot as plt import pandas as pd import numpy as np import datetime from scipy import interpolate #feature+activity1+activity2+attributenumber+extractionMethod+freqforfft feature_combinations=["31112","31111","11121","21121","31125", "11113","3112616","311263"] #used for generalizing initial work #dataframes equivalent to feature matrices for eating and cooking with 8 features eatingcsv = pd.DataFrame( index=['eating1','eating2','eating3','eating4'], columns=['accelerometer_mean_x','accelerometer_std_x','orientation_std_y','gyro_std_y','accelerometer_max_y','orientation_rms_x','accelerometer_fft_y_17','accelerometer_fft_y_4']) cookingcsv = pd.DataFrame( index=['cooking1','cooking2'], columns=['accelerometer_mean_x','accelerometer_std_x','orientation_std_y','gyro_std_y','accelerometer_max_y','orientation_rms_x','accelerometer_fft_y_17','accelerometer_fft_y_4']) #loop 4 times as eating has 4 files / during last 2 iteration cooking data is ignored as cooking has 2 files to avoid separate looping for cooking for k in range(4): for j in range(len(feature_combinations)): #iterate 7 (number of features) times and do activity as described in feature_combination list if (feature_combinations[j][0] == '1'): # orientation sensor = "orientation" eatfood1 = pd.read_csv("Data/EatFood1/orientation-1533862083.csv") eatfood2 = pd.read_csv("Data/EatFood2/orientation-1533862416.csv") eatfood3 = pd.read_csv("Data/EatFood3/orientation-1533862913.csv") eatfood4 = pd.read_csv("Data/EatFood4/orientation-1533864477.csv") cooking1 = pd.read_csv("Data/Cooking1/orientation-1533863975.csv") cooking2 = pd.read_csv("Data/Cooking2/orientation-1533864170.csv") elif (feature_combinations[j][0] == '2'): # gyro sensor = "gyro" eatfood1 = pd.read_csv("Data/EatFood1/gyro-1533862083.csv") eatfood2 = pd.read_csv("Data/EatFood2/gyro-1533862416.csv") eatfood3 = pd.read_csv("Data/EatFood3/gyro-1533862913.csv") eatfood4 = pd.read_csv("Data/EatFood4/gyro-1533864477.csv") cooking1 =
pd.read_csv("Data/Cooking1/gyro-1533863975.csv")
pandas.read_csv
import pandas as pd import matplotlib.pyplot as plt import matplotlib.axes as ax # creates the data for the HOAc/Ni(110) IR colnames = ['Wavenumber', 'Intensity'] # 15 s f1 = pd.read_csv("Ni(110) 1e-9Torr15s 210K.0.dpt", '\t', header=None, names=colnames) f1.set_index(colnames[0], inplace=True) f2 = pd.read_csv("Ni(110) 1e-9Torr15s 352K.0.dpt", '\t', header=None, names=colnames) f2.set_index(colnames[0], inplace=True) f3 =
pd.read_csv("Ni(110) 1e-9Torr15s 452K.0.dpt", '\t', header=None, names=colnames)
pandas.read_csv
from os.path import join import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import zscore from sklearn.decomposition import PCA import pandas as pd from itertools import combinations # Load helper function(s) for interacting with CTF dataset from ctf_dataset.load import create_wrapped_dataset base_dir = '/mnt/bucket/labs/hasson/snastase/social-ctf' data_dir = join(base_dir, 'data') # Create wrapped CTF dataset wrap_f = create_wrapped_dataset(data_dir, output_dataset_name="virtual.hdf5") n_lstms = 512 n_repeats = 8 n_players = 4 map_id = 0 # Get matchups with all same agents (e.g. AA vs AA) agent_ids = wrap_f['map/matchup/repeat/player/agent_id'][0, :, :, :, 0] matchup_ids = np.all(agent_ids[:, 0, :] == agent_ids[:, 0, 0][:, np.newaxis], axis=1) n_matchups = np.sum(matchup_ids) # 0, 34, 49, 54 # Extract LSTMs for one map and matchup lstms_matched = np.tanh(wrap_f['map/matchup/repeat/player/time/lstm'][ map_id, matchup_ids, ...].astype(np.float32)) print("Loaded LSTMs for within-population matchups") # Loop through matchups, repeats, and players to compute PCA k = n_lstms lstm_pca = {} for m in np.arange(n_matchups): lstm_pca[m] = {} for r in np.arange(n_repeats): lstm_pca[m][r] = {} for p in np.arange(n_players): lstm_pca[m][r][p] = {} pca = PCA(n_components=k) transformed = pca.fit_transform( #zscore(lstms_matched[m, r, p], axis=0)) #np.tanh(lstms_matched[m, r, p])) zscore(lstms_matched[m, r, p], axis=0)) lstm_pca[m][r][p]['transformed'] = transformed lstm_pca[m][r][p]['pca'] = pca print(f"Finished running PCA for matchup {m}, " f"repeat {r}, player {p}") np.save('results/pca_lstm_tanh-z_results.npy', lstm_pca) # Convert PCA outputs to long dictionary for plotting lstm_pca_long = {'population': [], 'repeat': [], 'player': [], 'variance explained': [], 'dimension': []} pops = {0: 'A', 1: 'B', 2: 'C', 3: 'D'} for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_players): for k, v in enumerate(lstm_pca[m][r][p][ 'pca'].explained_variance_ratio_): lstm_pca_long['population'].append(pops[m]) lstm_pca_long['repeat'].append(r) lstm_pca_long['player'].append(p) lstm_pca_long['variance explained'].append(v) lstm_pca_long['dimension'].append(k + 1) lstm_pca_long = pd.DataFrame(lstm_pca_long) max_k = 30 lstm_pca_trunc = lstm_pca_long[lstm_pca_long['dimension'] <= max_k] sns.set(font_scale=1.2, style='white') sns.relplot(data=lstm_pca_trunc, x='dimension', y='variance explained', hue='repeat', col='population', col_wrap=2, kind='line') # Compute number of components required for percentage variance percents = [.5, .75, .9, .95, .99] percents_vaf = np.zeros((n_matchups, n_repeats, n_players, len(percents))) for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_players): for i, perc in enumerate(percents): k = np.sum(np.cumsum( lstm_pca[m][r][p][ 'pca'].explained_variance_ratio_) <= perc) + 1 percents_vaf[m, r, p, i] = k for m in np.arange(n_matchups): for i, perc in enumerate(percents): median = int(np.median(percents_vaf[m, ..., i])) min = int(np.amin(percents_vaf[m, ..., i])) max = int(np.amax(percents_vaf[m, ..., i])) print(f"Population {pops[m]}: {median} dimensions " f"for {perc} variance (range: {min}-{max})") print('\n') # Stack pairs of players and compute joint PCA pairs = list(combinations(np.arange(n_players), 2)) n_pairs = len(pairs) k = n_lstms * 2 coop_ids, comp_ids = [0, 5], [1, 2, 3, 4] lstm_pair_pca = {} for m in np.arange(n_matchups): lstm_pair_pca[m] = {} for r in np.arange(n_repeats): lstm_pair_pca[m][r] = {} for p, pair in enumerate(pairs): lstm_pair_pca[m][r][p] = {} stack_lstm = np.hstack((lstms_matched[m, r, pair[0]], lstms_matched[m, r, pair[1]])) pca = PCA(n_components=k) transformed = pca.fit_transform( zscore(stack_lstm, axis=0)) lstm_pair_pca[m][r][p]['transformed'] = transformed lstm_pair_pca[m][r][p]['pca'] = pca print(f"Finished running PCA for matchup {m}, " f"repeat {r}, pair {pair}") np.save('results/pair-pca_lstm_tanh-z_results.npy', lstm_pair_pca) # Convert PCA outputs to long dictionary for plotting lstm_pair_pca_long = {'population': [], 'repeat': [], 'pair': [], 'variance explained': [], 'dimension': [], 'type': []} pops = {0: 'A', 1: 'B', 2: 'C', 3: 'D'} pair_type = {c:('cooperative' if c in coop_ids else 'competitive') for c in np.arange(n_pairs)} for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_pairs): for k, v in enumerate(lstm_pair_pca[m][r][p][ 'pca'].explained_variance_ratio_): lstm_pair_pca_long['population'].append(pops[m]) lstm_pair_pca_long['repeat'].append(r) lstm_pair_pca_long['pair'].append(p) lstm_pair_pca_long['variance explained'].append(v) lstm_pair_pca_long['dimension'].append(k + 1) lstm_pair_pca_long['type'].append(pair_type[p]) lstm_pair_pca_long = pd.DataFrame(lstm_pair_pca_long) max_k = 10 lstm_pair_pca_trunc = lstm_pair_pca_long[ lstm_pair_pca_long['dimension'] <= max_k] sns.set(font_scale=1.2, style='white') sns.relplot(data=lstm_pair_pca_trunc, x='dimension', y='variance explained', hue='type', col='population', col_wrap=2, linewidth=3, kind='line') # Compute number of components required for percentage variance percents = [.5, .75, .9, .95, .99] percents_vaf = np.zeros((n_matchups, n_repeats, n_pairs, len(percents))) for m in np.arange(n_matchups): for r in np.arange(n_repeats): for p in np.arange(n_pairs): for i, perc in enumerate(percents): k = np.sum(np.cumsum( lstm_pair_pca[m][r][p][ 'pca'].explained_variance_ratio_) <= perc) + 1 percents_vaf[m, r, p, i] = k for m in np.arange(n_matchups): for type, c in zip(['cooperative', 'competitive'], [coop_ids, comp_ids]): for i, perc in enumerate(percents): median = int(np.median(percents_vaf[m, :, c, i])) min = int(np.amin(percents_vaf[m, :, c, i])) max = int(np.amax(percents_vaf[m, :, c, i])) print(f"Population {pops[m]} {type}: {median} dimensions " f"for {perc} variance (range: {min}-{max})") print('\n') # Stack across all repeats and run PCA k = n_lstms lstm_stack_pca = {} for m in np.arange(n_matchups): lstm_stack_pca[m] = {} stack_lstm = [] for r in np.arange(n_repeats): for p in np.arange(n_players): stack_lstm.append(zscore(lstms_matched[m, r, p], axis=0)) stack_lstm = np.vstack(stack_lstm) pca = PCA(n_components=k) transformed = pca.fit_transform(stack_lstm) lstm_stack_pca[m]['transformed'] = transformed lstm_stack_pca[m]['pca'] = pca print(f"Finished running stacked PCA for matchup {m}") np.save('results/stack-pca_lstm_tanh-z_results.npy', lstm_stack_pca) # Convert PCA outputs to long dictionary for plotting lstm_stack_pca_long = {'population': [], 'variance explained': [], 'dimension': []} pops = {0: 'A', 1: 'B', 2: 'C', 3: 'D'} for m in np.arange(n_matchups): for k, v in enumerate(lstm_stack_pca[m][ 'pca'].explained_variance_ratio_): lstm_stack_pca_long['population'].append(pops[m]) lstm_stack_pca_long['variance explained'].append(v) lstm_stack_pca_long['dimension'].append(k + 1) lstm_stack_pca_long =
pd.DataFrame(lstm_stack_pca_long)
pandas.DataFrame
"""Habitat risk assessment (HRA) model for InVEST.""" # -*- coding: UTF-8 -*- import os import logging import pickle import shutil import tempfile import numpy from osgeo import gdal, ogr, osr import pandas import shapely.ops import shapely.wkb import taskgraph import pygeoprocessing from . import utils from . import validation LOGGER = logging.getLogger('natcap.invest.hra') # Parameters from the user-provided criteria and info tables _BUFFER_HEADER = 'STRESSOR BUFFER (METERS)' _CRITERIA_TYPE_HEADER = 'CRITERIA TYPE' _HABITAT_NAME_HEADER = 'HABITAT NAME' _HABITAT_RESILIENCE_HEADER = 'HABITAT RESILIENCE ATTRIBUTES' _HABITAT_STRESSOR_OVERLAP_HEADER = 'HABITAT STRESSOR OVERLAP PROPERTIES' _SPATIAL_CRITERIA_TYPE = 'spatial_criteria' _HABITAT_TYPE = 'habitat' _STRESSOR_TYPE = 'stressor' _SUBREGION_FIELD_NAME = 'name' _WEIGHT_KEY = 'Weight' _DQ_KEY = 'DQ' # Parameters to be used in dataframe and output stats CSV _HABITAT_HEADER = 'HABITAT' _STRESSOR_HEADER = 'STRESSOR' _TOTAL_REGION_NAME = 'Total Region' # Parameters for the spatially explicit criteria shapefiles _RATING_FIELD = 'rating' # A cutoff for the decay amount after which we will say scores are equivalent # to 0, since we don't want to have values outside the buffer zone. _EXP_DEDAY_CUTOFF = 1E-6 # Target cell type or values for raster files. _TARGET_PIXEL_FLT = gdal.GDT_Float32 _TARGET_PIXEL_INT = gdal.GDT_Byte _TARGET_NODATA_FLT = float(numpy.finfo(numpy.float32).min) _TARGET_NODATA_INT = 255 # for unsigned 8-bit int # ESPG code for warping rasters to WGS84 coordinate system. _WGS84_ESPG_CODE = 4326 # Resampling method for rasters. _RESAMPLE_METHOD = 'near' # An argument list that will be passed to the GTiff driver. Useful for # blocksizes, compression, and more. _DEFAULT_GTIFF_CREATION_OPTIONS = ( 'TILED=YES', 'BIGTIFF=YES', 'COMPRESS=DEFLATE', 'BLOCKXSIZE=256', 'BLOCKYSIZE=256') ARGS_SPEC = { "model_name": "Habitat Risk Assessment", "module": __name__, "userguide_html": "habitat_risk_assessment.html", "args": { "workspace_dir": validation.WORKSPACE_SPEC, "results_suffix": validation.SUFFIX_SPEC, "n_workers": validation.N_WORKERS_SPEC, "info_table_path": { "name": "Habitat Stressor Information CSV or Excel File", "about": ( "A CSV or Excel file that contains the name of the habitat " "(H) or stressor (s) on the `NAME` column that matches the " "names in `criteria_table_path`. Each H/S has its " "corresponding vector or raster path on the `PATH` column. " "The `STRESSOR BUFFER (meters)` column should have a buffer " "value if the `TYPE` column is a stressor."), "type": "csv", "required": True, "validation_options": { "required_fields": ["NAME", "PATH", "TYPE", _BUFFER_HEADER], "excel_ok": True, } }, "criteria_table_path": { "name": "Criteria Scores Table", "about": ( "A CSV or Excel file that contains the set of criteria " "ranking (rating, DQ and weight) of each stressor on each " "habitat, as well as the habitat resilience attributes."), "type": "csv", "validation_options": { "excel_ok": True, }, "required": True, }, "resolution": { "name": "Resolution of Analysis (meters)", "about": ( "The size that should be used to grid the given habitat and " "stressor files into rasters. This value will be the pixel " "size of the completed raster files."), "type": "number", "required": True, "validation_options": { "expression": "value > 0", } }, "max_rating": { "name": "Maximum Criteria Score", "about": ( "This is the highest score that is used to rate a criteria " "within this model run. This value would be used to compare " "with the values within Rating column of the Criteria Scores " "table."), "type": "number", "required": True, "validation_options": { "expression": "value > 0", } }, "risk_eq": { "name": "Risk Equation", "about": ( "Each of these represents an option of a risk calculation " "equation. This will determine the numeric output of risk " "for every habitat and stressor overlap area."), "type": "option_string", "required": True, "validation_options": { "options": ["Multiplicative", "Euclidean"], } }, "decay_eq": { "name": "Decay Equation", "about": ( "Each of these represents an option of a decay equation " "for the buffered stressors. If stressor buffering is " "desired, this equation will determine the rate at which " "stressor data is reduced."), "type": "option_string", "required": True, "validation_options": { "options": ["None", "Linear", "Exponential"], } }, "aoi_vector_path": { "name": "Area of Interest", "about": ( "A GDAL-supported vector file containing feature containing " "one or more planning regions. subregions. An optional field " "called `name` could be added to compute average risk values " "within each subregion."), "type": "vector", "required": True, "validation_options": { "projected": True, "projection_units": "m", } }, "visualize_outputs": { "name": "Generate GeoJSONs for Web Visualization", "help": ( "Check to enable the generation of GeoJSON outputs. This " "could be used to visualize the risk scores on a map in the " "HRA visualization web application."), "type": "boolean", "required": True, } } } def execute(args): """Habitat Risk Assessment. Args: args['workspace_dir'] (str): a path to the output workspace folder. It will overwrite any files that exist if the path already exists. args['results_suffix'] (str): a string appended to each output file path. (optional) args['info_table_path'] (str): a path to the CSV or Excel file that contains the name of the habitat (H) or stressor (s) on the ``NAME`` column that matches the names in criteria_table_path. Each H/S has its corresponding vector or raster path on the ``PATH`` column. The ``STRESSOR BUFFER (meters)`` column should have a buffer value if the ``TYPE`` column is a stressor. args['criteria_table_path'] (str): a path to the CSV or Excel file that contains the set of criteria ranking of each stressor on each habitat. args['resolution'] (int): a number representing the desired pixel dimensions of output rasters in meters. args['max_rating'] (str, int or float): a number representing the highest potential value that should be represented in rating in the criteria scores table. args['risk_eq'] (str): a string identifying the equation that should be used in calculating risk scores for each H-S overlap cell. This will be either 'Euclidean' or 'Multiplicative'. args['decay_eq'] (str): a string identifying the equation that should be used in calculating the decay of stressor buffer influence. This can be 'None', 'Linear', or 'Exponential'. args['aoi_vector_path'] (str): a path to the shapefile containing one or more planning regions used to get the average risk value for each habitat-stressor combination over each area. Optionally, if each of the shapefile features contain a 'name' field, it will be used as a way of identifying each individual shape. args['n_workers'] (int): the number of worker processes to use for processing this model. If omitted, computation will take place in the current process. (optional) args['visualize_outputs'] (bool): if True, create output GeoJSONs and save them in a visualization_outputs folder, so users can visualize results on the web app. Default to True if not specified. (optional) Returns: None. """ LOGGER.info('Validating arguments') invalid_parameters = validate(args) if invalid_parameters: raise ValueError("Invalid parameters passed: %s" % invalid_parameters) # Validate and store inputs LOGGER.info('Validating criteria table file and return cleaned dataframe.') criteria_df = _get_criteria_dataframe(args['criteria_table_path']) # Create initial working directories and determine file suffixes intermediate_dir = os.path.join( args['workspace_dir'], 'intermediate_outputs') file_preprocessing_dir = os.path.join( intermediate_dir, 'file_preprocessing') output_dir = os.path.join(args['workspace_dir'], 'outputs') work_dirs = [output_dir, intermediate_dir, file_preprocessing_dir] # Add visualization_outputs folder if in an electron-Node.js based UI if args['visualize_outputs']: viz_dir = os.path.join(args['workspace_dir'], 'visualization_outputs') work_dirs.append(viz_dir) utils.make_directories(work_dirs) file_suffix = utils.make_suffix_string(args, 'results_suffix') # Initialize a TaskGraph taskgraph_working_dir = os.path.join( intermediate_dir, '_taskgraph_working_dir') try: n_workers = int(args['n_workers']) except (KeyError, ValueError, TypeError): # KeyError when n_workers is not present in args # ValueError when n_workers is an empty string. # TypeError when n_workers is None. n_workers = -1 # single process mode. task_graph = taskgraph.TaskGraph(taskgraph_working_dir, n_workers) # Calculate recovery for each habitat, and overlap scores for each # habitat-stressor, and store data in the dataframes info_df, habitat_names, stressor_names = _get_info_dataframe( args['info_table_path'], file_preprocessing_dir, intermediate_dir, output_dir, file_suffix) resilience_attributes, stressor_attributes = \ _get_attributes_from_df(criteria_df, habitat_names, stressor_names) max_rating = float(args['max_rating']) recovery_df = _get_recovery_dataframe( criteria_df, habitat_names, resilience_attributes, max_rating, file_preprocessing_dir, intermediate_dir, file_suffix) overlap_df = _get_overlap_dataframe( criteria_df, habitat_names, stressor_attributes, max_rating, file_preprocessing_dir, intermediate_dir, file_suffix) # Append spatially explicit criteria rasters to info_df criteria_file_dir = os.path.dirname(args['criteria_table_path']) info_df = _append_spatial_raster_row( info_df, recovery_df, overlap_df, criteria_file_dir, file_preprocessing_dir, file_suffix) # Get target projection from the AOI vector file if 'aoi_vector_path' in args and args['aoi_vector_path'] != '': target_sr_wkt = pygeoprocessing.get_vector_info( args['aoi_vector_path'])['projection_wkt'] target_sr = osr.SpatialReference() if target_sr_wkt: target_sr.ImportFromWkt(target_sr_wkt) if not target_sr.IsProjected(): raise ValueError( 'The AOI vector file %s is provided but not projected.' % args['aoi_vector_path']) else: # Get the value to multiply by linear distances in order to # transform them to meters linear_unit = target_sr.GetLinearUnits() LOGGER.info( 'Target projection from AOI: %s. EPSG: %s. Linear unit: ' '%s.' % (target_sr.GetAttrValue('PROJECTION'), target_sr.GetAttrValue("AUTHORITY", 1), linear_unit)) # Rasterize habitat and stressor layers if they are vectors. # Divide resolution (meters) by linear unit to convert to projection units target_pixel_size = (float(args['resolution'])/linear_unit, -float(args['resolution'])/linear_unit) # Simplify the AOI vector for faster run on zonal statistics simplified_aoi_vector_path = os.path.join( file_preprocessing_dir, 'simplified_aoi%s.gpkg' % file_suffix) aoi_tolerance = (float(args['resolution']) / linear_unit) / 2 # Check if subregion field exists in the AOI vector subregion_field_exists = _has_field_name( args['aoi_vector_path'], _SUBREGION_FIELD_NAME) # Simplify the AOI and preserve the subregion field if it exists aoi_preserved_field = None aoi_field_name = None if subregion_field_exists: aoi_preserved_field = (_SUBREGION_FIELD_NAME, ogr.OFTString) aoi_field_name = _SUBREGION_FIELD_NAME LOGGER.info('Simplifying AOI vector while preserving field %s.' % aoi_field_name) else: LOGGER.info('Simplifying AOI vector without subregion field.') simplify_aoi_task = task_graph.add_task( func=_simplify_geometry, args=(args['aoi_vector_path'], aoi_tolerance, simplified_aoi_vector_path), kwargs={'preserved_field': aoi_preserved_field}, target_path_list=[simplified_aoi_vector_path], task_name='simplify_aoi_vector') # Use the simplified AOI vector to run analyses aoi_vector_path = simplified_aoi_vector_path # Rasterize AOI vector for later risk statistics calculation LOGGER.info('Rasterizing AOI vector.') rasterized_aoi_pickle_path = os.path.join( file_preprocessing_dir, 'rasterized_aoi_dictionary%s.pickle' % file_suffix) rasterize_aoi_dependent_tasks = [simplify_aoi_task] # Rasterize AOI vector geometries. If field name doesn't exist, rasterize # the entire vector onto a raster with values of 1 if aoi_field_name is None: # Fill the raster with 1s on where a vector geometry touches any pixel # on the raster target_raster_path = os.path.join( file_preprocessing_dir, 'rasterized_simplified_aoi%s.tif' % file_suffix) create_raster_task = task_graph.add_task( func=pygeoprocessing.create_raster_from_vector_extents, args=(aoi_vector_path, target_raster_path, target_pixel_size, _TARGET_PIXEL_INT, _TARGET_NODATA_INT), target_path_list=[target_raster_path], task_name='rasterize_single_AOI_vector', dependent_task_list=rasterize_aoi_dependent_tasks) rasterize_aoi_dependent_tasks.append(create_raster_task) # Fill the raster with 1s on where a vector geometry exists rasterize_kwargs = {'burn_values': [1], 'option_list': ["ALL_TOUCHED=TRUE"]} task_graph.add_task( func=pygeoprocessing.rasterize, args=(aoi_vector_path, target_raster_path), kwargs=rasterize_kwargs, target_path_list=[target_raster_path], task_name='rasterize_single_vector', dependent_task_list=rasterize_aoi_dependent_tasks) pickle.dump( {_TOTAL_REGION_NAME: target_raster_path}, open(rasterized_aoi_pickle_path, 'wb')) # If field name exists., rasterize AOI geometries with same field value # onto separate rasters else: geom_pickle_path = os.path.join( file_preprocessing_dir, 'aoi_geometries%s.pickle' % file_suffix) get_vector_geoms_task = task_graph.add_task( func=_get_vector_geometries_by_field, args=(aoi_vector_path, aoi_field_name, geom_pickle_path), target_path_list=[geom_pickle_path], task_name='get_AOI_vector_geoms_by_field_"%s"' % aoi_field_name, dependent_task_list=rasterize_aoi_dependent_tasks) rasterize_aoi_dependent_tasks.append(get_vector_geoms_task) task_graph.add_task( func=_create_rasters_from_geometries, args=(geom_pickle_path, file_preprocessing_dir, rasterized_aoi_pickle_path, target_pixel_size), target_path_list=[rasterized_aoi_pickle_path], task_name='create_rasters_from_AOI_geometries', dependent_task_list=rasterize_aoi_dependent_tasks) # Create a raster from vector extent with 0's, then burn the vector # onto the raster with 1's, for all the H/S layers that are not a raster align_and_resize_dependency_list = [] for _, row in info_df.iterrows(): if not row['IS_RASTER']: vector_name = row['NAME'] vector_type = row['TYPE'] vector_path = row['PATH'] simplified_vector_path = row['SIMPLE_VECTOR_PATH'] tolerance = (float(args['resolution']) / row['LINEAR_UNIT']) / 2 target_raster_path = row['BASE_RASTER_PATH'] LOGGER.info('Rasterizing %s vector.' % vector_name) # Simplify the vector geometry first, with a tolerance of half the # target resolution simplify_geometry_task = task_graph.add_task( func=_simplify_geometry, args=(vector_path, tolerance, simplified_vector_path), kwargs={'preserved_field': (_RATING_FIELD, ogr.OFTReal)}, target_path_list=[simplified_vector_path], task_name='simplify_%s_vector' % vector_name) rasterize_kwargs = {'burn_values': None, 'option_list': None} if vector_type == _SPATIAL_CRITERIA_TYPE: # Fill value for the target raster should be nodata float, # since criteria rating could be float fill_value = _TARGET_NODATA_FLT # If it's a spatial criteria vector, burn the values from the # ``rating`` attribute rasterize_kwargs['option_list'] = [ "ATTRIBUTE=" + _RATING_FIELD] rasterize_nodata = _TARGET_NODATA_FLT rasterize_pixel_type = _TARGET_PIXEL_FLT else: # Could be a habitat or stressor vector # Initial fill values for the target raster should be nodata # int fill_value = _TARGET_NODATA_INT # Fill the raster with 1s on where a vector geometry exists rasterize_kwargs['burn_values'] = [1] rasterize_kwargs['option_list'] = ["ALL_TOUCHED=TRUE"] rasterize_nodata = _TARGET_NODATA_INT rasterize_pixel_type = _TARGET_PIXEL_INT align_and_resize_dependency_list.append(task_graph.add_task( func=_create_raster_and_rasterize_vector, args=(simplified_vector_path, target_raster_path, target_pixel_size, rasterize_pixel_type, rasterize_nodata, fill_value, rasterize_kwargs), target_path_list=[target_raster_path], task_name='rasterize_%s' % vector_name, dependent_task_list=[simplify_geometry_task])) # Align and resize all the rasters, including rasters provided by the user, # and rasters created from the vectors. base_raster_list = info_df.BASE_RASTER_PATH.tolist() align_raster_list = info_df.ALIGN_RASTER_PATH.tolist() LOGGER.info('Starting align_and_resize_raster_task.') align_and_resize_rasters_task = task_graph.add_task( func=pygeoprocessing.align_and_resize_raster_stack, args=(base_raster_list, align_raster_list, [_RESAMPLE_METHOD] * len(base_raster_list), target_pixel_size, 'union'), kwargs={'target_projection_wkt': target_sr_wkt}, target_path_list=align_raster_list, task_name='align_and_resize_raster_task', dependent_task_list=align_and_resize_dependency_list) # Make buffer stressors based on their impact distance and decay function align_stressor_raster_list = info_df[ info_df.TYPE == _STRESSOR_TYPE].ALIGN_RASTER_PATH.tolist() dist_stressor_raster_list = info_df[ info_df.TYPE == _STRESSOR_TYPE].DIST_RASTER_PATH.tolist() stressor_names = info_df[info_df.TYPE == _STRESSOR_TYPE].NAME.tolist() LOGGER.info('Calculating euclidean distance transform on stressors.') # Convert pixel size from meters to projection unit sampling_distance = (float(args['resolution'])/linear_unit, float(args['resolution'])/linear_unit) distance_transform_tasks = [] for (align_raster_path, dist_raster_path, stressor_name) in zip( align_stressor_raster_list, dist_stressor_raster_list, stressor_names): distance_transform_task = task_graph.add_task( func=pygeoprocessing.distance_transform_edt, args=((align_raster_path, 1), dist_raster_path), kwargs={'sampling_distance': sampling_distance, 'working_dir': intermediate_dir}, target_path_list=[dist_raster_path], task_name='distance_transform_on_%s' % stressor_name, dependent_task_list=[align_and_resize_rasters_task]) distance_transform_tasks.append(distance_transform_task) LOGGER.info('Calculating number of habitats on each pixel.') align_habitat_raster_list = info_df[ info_df.TYPE == _HABITAT_TYPE].ALIGN_RASTER_PATH.tolist() habitat_path_band_list = [ (raster_path, 1) for raster_path in align_habitat_raster_list] habitat_count_raster_path = os.path.join( file_preprocessing_dir, 'habitat_count%s.tif' % file_suffix) count_habitat_task = task_graph.add_task( func=pygeoprocessing.raster_calculator, args=(habitat_path_band_list, _count_habitats_op, habitat_count_raster_path, gdal.GDT_Byte, _TARGET_NODATA_INT), target_path_list=[habitat_count_raster_path], task_name='counting_habitats', dependent_task_list=[align_and_resize_rasters_task]) # A dependent task list for calculating ecosystem risk from all habitat # risk rasters ecosystem_risk_dependent_tasks = [count_habitat_task] # For each habitat, calculate the individual and cumulative exposure, # consequence, and risk scores from each stressor. for habitat in habitat_names: LOGGER.info('Calculating recovery scores on habitat %s.' % habitat) # Get a dataframe with information on raster paths for the habitat. habitat_info_df = info_df.loc[info_df.NAME == habitat] # On a habitat raster, a pixel value of 0 indicates the existence of # habitat, whereas 1 means non-existence. habitat_raster_path = habitat_info_df['ALIGN_RASTER_PATH'].item() habitat_recovery_df = recovery_df.loc[habitat] recovery_raster_path = habitat_recovery_df['R_RASTER_PATH'] recovery_num_raster_path = habitat_recovery_df[ 'R_NUM_RASTER_PATH'] habitat_recovery_denom = habitat_recovery_df['R_DENOM'] calc_habitat_recovery_task_list = [] calc_habitat_recovery_task_list.append( task_graph.add_task( func=_calc_habitat_recovery, args=(habitat_raster_path, habitat_recovery_df, max_rating), target_path_list=[ recovery_raster_path, recovery_num_raster_path], task_name='calculate_%s_recovery' % habitat, dependent_task_list=[align_and_resize_rasters_task])) total_expo_dependent_tasks = [] total_conseq_dependent_tasks = [] total_risk_dependent_tasks = [] # Calculate exposure/consequence scores on each stressor-habitat pair for (distance_transform_task, stressor) in zip( distance_transform_tasks, stressor_names): LOGGER.info('Calculating exposure, consequence, and risk scores ' 'from stressor %s to habitat %s.' % (stressor, habitat)) # Get a dataframe with information on distance raster path, # buffer distance, and linear unit for the stressor stressor_info_df = info_df.loc[info_df.NAME == stressor] # Get habitat-stressor overlap dataframe with information on # numerator, denominator, spatially explicit criteria files, and # target paths habitat_stressor_overlap_df = overlap_df.loc[(habitat, stressor)] stressor_dist_raster_path = stressor_info_df[ 'DIST_RASTER_PATH'].item() # Convert stressor buffer from meters to projection unit stressor_buffer = stressor_info_df[_BUFFER_HEADER].item() / float( stressor_info_df['LINEAR_UNIT'].item()) # Calculate exposure scores on each habitat-stressor pair pair_expo_target_path_list = [ habitat_stressor_overlap_df.loc[raster_path] for raster_path in ['E_NUM_RASTER_PATH', 'E_RASTER_PATH']] pair_expo_task = task_graph.add_task( func=_calc_pair_criteria_score, args=(habitat_stressor_overlap_df, habitat_raster_path, stressor_dist_raster_path, stressor_buffer, args['decay_eq'], 'E'), target_path_list=pair_expo_target_path_list, task_name='calculate_%s_%s_exposure' % (habitat, stressor), dependent_task_list=[ align_and_resize_rasters_task, distance_transform_task]) total_expo_dependent_tasks.append(pair_expo_task) # Calculate consequence scores on each habitat-stressor pair. # Add recovery numerator and denominator to the scores pair_conseq_target_path_list = [ habitat_stressor_overlap_df.loc[raster_path] for raster_path in ['C_NUM_RASTER_PATH', 'C_RASTER_PATH']] pair_conseq_task = task_graph.add_task( func=_calc_pair_criteria_score, args=(habitat_stressor_overlap_df, habitat_raster_path, stressor_dist_raster_path, stressor_buffer, args['decay_eq'], 'C'), kwargs={'recov_params': (recovery_num_raster_path, habitat_recovery_denom)}, target_path_list=pair_conseq_target_path_list, task_name='calculate_%s_%s_consequence' % (habitat, stressor), dependent_task_list=[ align_and_resize_rasters_task, distance_transform_task] + calc_habitat_recovery_task_list) total_conseq_dependent_tasks.append(pair_conseq_task) # Calculate pairwise habitat-stressor risks. pair_e_raster_path, pair_c_raster_path, \ target_pair_risk_raster_path = [ habitat_stressor_overlap_df.loc[path] for path in ['E_RASTER_PATH', 'C_RASTER_PATH', 'PAIR_RISK_RASTER_PATH']] pair_risk_calculation_list = [ (pair_e_raster_path, 1), (pair_c_raster_path, 1), ((max_rating, 'raw')), (args['risk_eq'], 'raw')] pair_risk_task = task_graph.add_task( func=pygeoprocessing.raster_calculator, args=(pair_risk_calculation_list, _pair_risk_op, target_pair_risk_raster_path, _TARGET_PIXEL_FLT, _TARGET_NODATA_FLT), target_path_list=[target_pair_risk_raster_path], task_name='calculate_%s_%s_risk' % (habitat, stressor), dependent_task_list=[pair_expo_task, pair_conseq_task]) total_risk_dependent_tasks.append(pair_risk_task) # Calculate cumulative E, C & risk scores on each habitat total_e_habitat_path = habitat_info_df['TOT_E_RASTER_PATH'].item() total_c_habitat_path = habitat_info_df['TOT_C_RASTER_PATH'].item() LOGGER.info( 'Calculating total exposure scores on habitat %s.' % habitat) habitat_overlap_df = overlap_df.loc[habitat] e_num_path_const_list = [ (path, 1) for path in habitat_overlap_df['E_NUM_RASTER_PATH'].tolist()] e_denom_list = [ (denom, 'raw') for denom in habitat_overlap_df['E_DENOM'].tolist()] total_e_path_band_list = list( [(habitat_raster_path, 1)] + e_num_path_const_list + e_denom_list) # Calculate total exposure on the habitat task_graph.add_task( func=pygeoprocessing.raster_calculator, args=(total_e_path_band_list, _total_exposure_op, total_e_habitat_path, _TARGET_PIXEL_FLT, _TARGET_NODATA_FLT), target_path_list=[total_e_habitat_path], task_name='calculate_total_exposure_%s' % habitat, dependent_task_list=total_expo_dependent_tasks) LOGGER.info( 'Calculating total consequence scores on habitat %s.' % habitat) recov_num_raster_path = habitat_recovery_df['R_NUM_RASTER_PATH'] c_num_path_const_list = [(path, 1) for path in habitat_overlap_df[ 'C_NUM_RASTER_PATH'].tolist()] c_denom_list = [(denom, 'raw') for denom in habitat_overlap_df[ 'C_DENOM'].tolist()] total_c_path_const_list = list( [(habitat_raster_path, 1), (recov_num_raster_path, 1), (habitat_recovery_denom, 'raw')] + c_num_path_const_list + c_denom_list) # Calculate total consequence on the habitat task_graph.add_task( func=pygeoprocessing.raster_calculator, args=(total_c_path_const_list, _total_consequence_op, total_c_habitat_path, _TARGET_PIXEL_FLT, _TARGET_NODATA_FLT), target_path_list=[total_c_habitat_path], task_name='calculate_total_consequence_%s' % habitat, dependent_task_list=total_conseq_dependent_tasks) LOGGER.info('Calculating total risk score and reclassified risk scores' ' on habitat %s.' % habitat) total_habitat_risk_path, reclass_habitat_risk_path = [ habitat_info_df[column_header].item() for column_header in [ 'TOT_RISK_RASTER_PATH', 'RECLASS_RISK_RASTER_PATH']] # Get a list of habitat path and individual risk paths on that habitat # for the final risk calculation total_risk_path_band_list = [(habitat_raster_path, 1)] pair_risk_path_list = habitat_overlap_df[ 'PAIR_RISK_RASTER_PATH'].tolist() total_risk_path_band_list = total_risk_path_band_list + [ (path, 1) for path in pair_risk_path_list] # Calculate the cumulative risk on the habitat from all stressors calc_risk_task = task_graph.add_task( func=pygeoprocessing.raster_calculator, args=(total_risk_path_band_list, _tot_risk_op, total_habitat_risk_path, _TARGET_PIXEL_FLT, _TARGET_NODATA_FLT), target_path_list=[total_habitat_risk_path], task_name='calculate_%s_risk' % habitat, dependent_task_list=total_risk_dependent_tasks) ecosystem_risk_dependent_tasks.append(calc_risk_task) # Reclassify the risk score into three categories by dividing the total # risk score by 3, and return the ceiling task_graph.add_task( func=pygeoprocessing.raster_calculator, args=([(total_habitat_risk_path, 1), (max_rating, 'raw')], _reclassify_risk_op, reclass_habitat_risk_path, _TARGET_PIXEL_INT, _TARGET_NODATA_INT), target_path_list=[reclass_habitat_risk_path], task_name='reclassify_%s_risk' % habitat, dependent_task_list=[calc_risk_task]) # Calculate ecosystem risk scores. This task depends on every task above, # so join the graph first. LOGGER.info('Calculating average and reclassified ecosystem risks.') # Create input list for calculating average & reclassified ecosystem risks ecosystem_risk_raster_path = os.path.join( output_dir, 'TOTAL_RISK_Ecosystem%s.tif' % file_suffix) reclass_ecosystem_risk_raster_path = os.path.join( output_dir, 'RECLASS_RISK_Ecosystem%s.tif' % file_suffix) # Append individual habitat risk rasters to the input list hab_risk_raster_path_list = info_df.loc[info_df.TYPE == _HABITAT_TYPE][ 'TOT_RISK_RASTER_PATH'].tolist() hab_risk_path_band_list = [(habitat_count_raster_path, 1)] for hab_risk_raster_path in hab_risk_raster_path_list: hab_risk_path_band_list.append((hab_risk_raster_path, 1)) # Calculate average ecosystem risk ecosystem_risk_task = task_graph.add_task( func=pygeoprocessing.raster_calculator, args=(hab_risk_path_band_list, _ecosystem_risk_op, ecosystem_risk_raster_path, _TARGET_PIXEL_FLT, _TARGET_NODATA_FLT), target_path_list=[ecosystem_risk_raster_path], task_name='calculate_average_ecosystem_risk', dependent_task_list=ecosystem_risk_dependent_tasks) # Calculate reclassified ecosystem risk task_graph.add_task( func=pygeoprocessing.raster_calculator, args=([(ecosystem_risk_raster_path, 1), (max_rating, 'raw')], _reclassify_ecosystem_risk_op, reclass_ecosystem_risk_raster_path, _TARGET_PIXEL_INT, _TARGET_NODATA_INT), target_path_list=[reclass_ecosystem_risk_raster_path], task_name='reclassify_ecosystem_risk', dependent_task_list=[ecosystem_risk_task]) # Calculate the mean criteria scores on the habitat pixels within the # polygons in the AOI vector LOGGER.info('Calculating zonal statistics.') # Join here because zonal_rasters needs to be loaded from the pickle file task_graph.join() zonal_rasters = pickle.load(open(rasterized_aoi_pickle_path, 'rb')) region_list = list(zonal_rasters) # Dependent task list used when converting all the calculated stats to CSV zonal_stats_dependent_tasks = [] # Filter habitat rows from the information dataframe habitats_info_df = info_df.loc[info_df.TYPE == _HABITAT_TYPE] # Calculate and pickle zonal stats to files for region_name, zonal_raster_path in zonal_rasters.items(): # Compute zonal E and C stats on each habitat-stressor pair for hab_str_idx, row in overlap_df.iterrows(): # Get habitat-stressor name without extension habitat_stressor = '_'.join(hab_str_idx) LOGGER.info('Calculating zonal stats of %s in %s.' % (habitat_stressor, region_name)) # Compute pairwise E/C zonal stats for criteria_type in ['E', 'C']: criteria_raster_path = row[criteria_type + '_RASTER_PATH'] # Append _[region] suffix to the generic pickle file path target_pickle_stats_path = row[ criteria_type + '_PICKLE_STATS_PATH'].replace( '.pickle', region_name + '.pickle') zonal_stats_dependent_tasks.append(task_graph.add_task( func=_calc_and_pickle_zonal_stats, args=(criteria_raster_path, zonal_raster_path, target_pickle_stats_path, file_preprocessing_dir), target_path_list=[target_pickle_stats_path], task_name='calc_%s_%s_stats_in_%s' % ( habitat_stressor, criteria_type, region_name))) # Compute pairwise risk zonal stats pair_risk_raster_path = row['PAIR_RISK_RASTER_PATH'] target_pickle_stats_path = row[ 'PAIR_RISK_PICKLE_STATS_PATH'].replace( '.pickle', region_name + '.pickle') zonal_stats_dependent_tasks.append(task_graph.add_task( func=_calc_and_pickle_zonal_stats, args=(pair_risk_raster_path, zonal_raster_path, target_pickle_stats_path, file_preprocessing_dir), kwargs={'max_rating': max_rating}, target_path_list=[target_pickle_stats_path], task_name='calc_%s_risk_stats_in_%s' % ( habitat_stressor, region_name))) # Calculate the overall stats of exposure, consequence, and risk for # each habitat from all stressors for _, row in habitats_info_df.iterrows(): habitat_name = row['NAME'] total_risk_raster_path = row['TOT_RISK_RASTER_PATH'] target_pickle_stats_path = row[ 'TOT_RISK_PICKLE_STATS_PATH'].replace( '.pickle', region_name + '.pickle') LOGGER.info('Calculating overall zonal stats of %s in %s.' % (habitat_name, region_name)) zonal_stats_dependent_tasks.append(task_graph.add_task( func=_calc_and_pickle_zonal_stats, args=(total_risk_raster_path, zonal_raster_path, target_pickle_stats_path, file_preprocessing_dir), kwargs={'max_rating': max_rating}, target_path_list=[target_pickle_stats_path], task_name='calc_%s_risk_stats_in_%s' % ( habitat_name, region_name))) # Compute pairwise E/C zonal stats for criteria_type in ['E', 'C']: total_criteria_raster_path = row[ 'TOT_' + criteria_type + '_RASTER_PATH'] target_pickle_stats_path = row[ 'TOT_' + criteria_type + '_PICKLE_STATS_PATH'].replace( '.pickle', region_name + '.pickle') zonal_stats_dependent_tasks.append(task_graph.add_task( func=_calc_and_pickle_zonal_stats, args=(total_criteria_raster_path, zonal_raster_path, target_pickle_stats_path, file_preprocessing_dir), target_path_list=[target_pickle_stats_path], task_name='calc_%s_%s_stats_in_%s' % ( habitat_name, criteria_type, region_name))) # Convert the statistics dataframe to a CSV file target_stats_csv_path = os.path.join( output_dir, 'SUMMARY_STATISTICS%s.csv' % file_suffix) task_graph.add_task( func=_zonal_stats_to_csv, args=( overlap_df, habitats_info_df, region_list, target_stats_csv_path), target_path_list=[target_stats_csv_path], task_name='zonal_stats_to_csv', dependent_task_list=zonal_stats_dependent_tasks) # Finish the model if no visualization outputs need to be generated if not args['visualize_outputs']: task_graph.close() task_graph.join() LOGGER.info('HRA model completed.') return else: LOGGER.info('Generating visualization outputs.') # Unproject output rasters to WGS84 (World Mercator), and then convert # the rasters to GeoJSON files for visualization LOGGER.info('Unprojecting output rasters') out_risk_raster_paths = info_df[ info_df.TYPE == _HABITAT_TYPE].RECLASS_RISK_RASTER_PATH.tolist() out_stressor_raster_paths = info_df[ info_df.TYPE == _STRESSOR_TYPE].ALIGN_RASTER_PATH.tolist() out_raster_paths = out_risk_raster_paths + out_stressor_raster_paths + [ reclass_ecosystem_risk_raster_path] # Convert the rasters to GeoJSON files in WGS84 for web visualization, # since only this format would be recognized by leaflet wgs84_sr = osr.SpatialReference() wgs84_sr.ImportFromEPSG(_WGS84_ESPG_CODE) wgs84_wkt = wgs84_sr.ExportToWkt() for out_raster_path in out_raster_paths: # Get raster basename without file extension and remove prefix prefix = 'aligned_' file_basename = os.path.splitext(os.path.basename(out_raster_path))[0] if file_basename.startswith(prefix): file_basename = file_basename[len(prefix):] # Make a GeoJSON from the unprojected raster with an appropriate field # name if file_basename.startswith('RECLASS_RISK_'): field_name = 'Risk Score' else: # Append 'STRESSOR_' prefix if it's not a risk layer file_basename = 'STRESSOR_' + file_basename field_name = 'Stressor' geojson_path = os.path.join(viz_dir, file_basename + '.geojson') task_graph.add_task( func=_raster_to_geojson, args=(out_raster_path, geojson_path, file_basename, field_name), kwargs={'target_sr_wkt': wgs84_wkt}, target_path_list=[geojson_path], task_name='create_%s_geojson' % file_basename) task_graph.close() task_graph.join() # Copy summary stats CSV to the viz output folder for scatter plots # visualization. This keeps all the viz files in one place viz_stats_csv_path = os.path.join( viz_dir, 'SUMMARY_STATISTICS%s.csv' % file_suffix) shutil.copyfile(target_stats_csv_path, viz_stats_csv_path) LOGGER.info( 'HRA model completed. Please visit http://marineapps.' 'naturalcapitalproject.org/ to visualize your outputs.') def _create_raster_and_rasterize_vector( simplified_vector_path, target_raster_path, target_pixel_size, rasterize_pixel_type, rasterize_nodata, fill_value, rasterize_kwargs): """Wrap these related operations so they can be captured in one task.""" pygeoprocessing.create_raster_from_vector_extents( simplified_vector_path, target_raster_path, target_pixel_size, rasterize_pixel_type, rasterize_nodata, fill_value=fill_value) pygeoprocessing.rasterize( simplified_vector_path, target_raster_path, burn_values=rasterize_kwargs['burn_values'], option_list=rasterize_kwargs['option_list']) def _raster_to_geojson( base_raster_path, target_geojson_path, layer_name, field_name, target_sr_wkt=None): """Convert a raster to a GeoJSON file with layer and field name. Typically the base raster will be projected and the target GeoJSON should end up with geographic coordinates (EPSG: 4326 per the GeoJSON spec). So a GPKG serves as intermediate storage for the polygonized projected features. Args: base_raster_path (str): the raster that needs to be turned into a GeoJSON file. target_geojson_path (str): the desired path for the new GeoJSON. layer_name (str): the name of the layer going into the new shapefile. field_name (str): the name of the field to write raster values in. target_sr_wkt (str): the target projection for vector in Well Known Text (WKT) form. Returns: None. """ raster = gdal.OpenEx(base_raster_path, gdal.OF_RASTER) band = raster.GetRasterBand(1) mask = band.GetMaskBand() # Use raster SRS for the temp GPKG base_sr = osr.SpatialReference() base_sr_wkt = raster.GetProjectionRef() base_sr.ImportFromWkt(base_sr_wkt) # Polygonize onto a GPKG gpkg_driver = gdal.GetDriverByName('GPKG') temp_gpkg_path = os.path.splitext(target_geojson_path)[0] + '.gpkg' vector = gpkg_driver.Create(temp_gpkg_path, 0, 0, 0, gdal.GDT_Unknown) vector.StartTransaction() vector_layer = vector.CreateLayer(layer_name, base_sr, ogr.wkbPolygon) # Create an integer field that contains values from the raster field_defn = ogr.FieldDefn(str(field_name), ogr.OFTInteger) field_defn.SetWidth(3) field_defn.SetPrecision(0) vector_layer.CreateField(field_defn) gdal.Polygonize(band, mask, vector_layer, 0) vector_layer.SyncToDisk() vector.CommitTransaction() vector_layer = None vector = None band = None raster = None # Convert GPKG to GeoJSON, reprojecting if necessary if target_sr_wkt and base_sr_wkt != target_sr_wkt: pygeoprocessing.reproject_vector( temp_gpkg_path, target_sr_wkt, target_geojson_path, driver_name='GeoJSON') else: geojson_driver = gdal.GetDriverByName('GeoJSON') geojson_driver.CreateCopy(target_geojson_path, temp_gpkg_path) os.remove(temp_gpkg_path) def _calc_and_pickle_zonal_stats( score_raster_path, zonal_raster_path, target_pickle_stats_path, working_dir, max_rating=None): """Calculate zonal stats on a score raster where zonal raster is 1. Clip the score raster with the bounding box of zonal raster first, so we only look at blocks that intersect. Args: score_raster_path (str): a path to the E/C/risk score raster to be analyzed. zonal_raster_path (str): a path to the zonal raster with 1s representing the regional extent, used for getting statistics from score raster in that region. target_pickle_stats_path (str): a path to the pickle file for storing zonal statistics, including count, sum, min, max, and mean. working_dir (str): a path to the working folder for saving clipped score raster file. max_rating (float): if exists, it's used for classifying risks into three categories and calculating percentage area of high/medium/low scores. Returns: None """ # Create a stats dictionary for saving zonal statistics, including # mean, min, and max. stats_dict = {} stats_dict['MIN'] = float('inf') stats_dict['MAX'] = float('-inf') for stats_type in ['MEAN', '%HIGH', '%MEDIUM', '%LOW']: stats_dict[stats_type] = 0. # Clip score raster to the extent of zonal raster. The file will be deleted # at the end. with tempfile.NamedTemporaryFile( prefix='clipped_', suffix='.tif', delete=False, dir=working_dir) as clipped_raster_file: clipped_score_raster_path = clipped_raster_file.name zonal_raster_info = pygeoprocessing.get_raster_info(zonal_raster_path) target_pixel_size = zonal_raster_info['pixel_size'] target_bounding_box = zonal_raster_info['bounding_box'] target_sr_wkt = zonal_raster_info['projection_wkt'] pygeoprocessing.warp_raster( score_raster_path, target_pixel_size, clipped_score_raster_path, _RESAMPLE_METHOD, target_bb=target_bounding_box, target_projection_wkt=target_sr_wkt) # Return a dictionary with values of 0, if the two input rasters do not # intersect at all. score_raster = gdal.OpenEx(clipped_score_raster_path, gdal.OF_RASTER) try: score_band = score_raster.GetRasterBand(1) except ValueError as e: if 'Bounding boxes do not intersect' in repr(e): LOGGER.info('Bounding boxes of %s and %s do not intersect.' % (score_raster_path, zonal_raster_path)) for stats_type in stats_dict: stats_dict[stats_type] = None # This will leave blank in CSV table score_raster = None pickle.dump(stats_dict, open(target_pickle_stats_path, 'wb')) os.remove(clipped_score_raster_path) return score_nodata = score_band.GetNoDataValue() zonal_raster = gdal.OpenEx(zonal_raster_path, gdal.OF_RASTER) zonal_band = zonal_raster.GetRasterBand(1) pixel_count = 0. pixel_sum = 0. if max_rating: high_score_count = 0. med_score_count = 0. low_score_count = 0. # Iterate through each data block and calculate stats. for score_offsets in pygeoprocessing.iterblocks( (clipped_score_raster_path, 1), offset_only=True): score_block = score_band.ReadAsArray(**score_offsets) zonal_block = zonal_band.ReadAsArray(**score_offsets) valid_mask = (score_block != score_nodata) & (zonal_block == 1) valid_score_block = score_block[valid_mask] if valid_score_block.size == 0: continue # Calculate min and max values, and sum and count of valid pixels. pixel_count += valid_score_block.size pixel_sum += numpy.sum(valid_score_block) stats_dict['MIN'] = min( stats_dict['MIN'], numpy.amin(valid_score_block)) stats_dict['MAX'] = max( stats_dict['MAX'], numpy.amax(valid_score_block)) # Calculate percentage of high, medium, and low rating areas. if max_rating: high_score_count += valid_score_block[ (valid_score_block > max_rating/3*2)].size med_score_count += valid_score_block[ (valid_score_block <= max_rating/3*2) & (valid_score_block > max_rating/3)].size low_score_count += valid_score_block[ (valid_score_block <= max_rating/3)].size if pixel_count > 0: stats_dict['MEAN'] = pixel_sum / pixel_count if max_rating: stats_dict['%HIGH'] = high_score_count/pixel_count*100. stats_dict['%MEDIUM'] = med_score_count/pixel_count*100. stats_dict['%LOW'] = low_score_count/pixel_count*100. else: for stats_type in stats_dict: stats_dict[stats_type] = None # This will leave blank in CSV table score_raster = None zonal_raster = None zonal_band = None score_band = None pickle.dump(stats_dict, open(target_pickle_stats_path, 'wb')) os.remove(clipped_score_raster_path) def _zonal_stats_to_csv( overlap_df, info_df, region_list, target_stats_csv_path): """Unpickle zonal stats from files and concatenate the dataframe into CSV. Args: overlap_df (dataframe): a multi-index dataframe with exposure and consequence raster paths, as well as pickle path columns for getting zonal statistics dictionary from. habitat_info_df (dataframe): a dataframe with information on total exposure, consequence, and risk raster/pickle file paths for each habitat. region_list (list): a list of subregion names used as column values of the ``SUBREGION`` column in the zonal stats dataframe. target_stats_csv_path (str): path to the CSV file for saving the final merged zonal stats dataframe. Returns: None """ # Create a stats dataframe with habitat and stressor index from overlap # dataframe crit_stats_cols = ['MEAN', 'MIN', 'MAX'] risk_stats_cols = crit_stats_cols + ['%HIGH', '%MEDIUM', '%LOW'] len_crit_cols = len(crit_stats_cols) len_risk_cols = len(risk_stats_cols) columns = map( str.__add__, ['E_']*len_crit_cols + ['C_']*len_crit_cols + ['R_']*len_risk_cols, crit_stats_cols*2 + risk_stats_cols) stats_df = pandas.DataFrame(index=overlap_df.index, columns=columns) # Add a ``SUBREGION`` column to the dataframe and update it with the # corresponding stats in each subregion region_df_list = [] for region in region_list: region_df = stats_df.copy() # Insert the new column in the beginning region_df.insert(loc=0, column='SUBREGION', value=region) for hab_str_idx, row in overlap_df.iterrows(): # Unpack pairwise criteria stats for criteria_type in ['E', 'C']: crit_stats_dict = pickle.load( open(row[criteria_type + '_PICKLE_STATS_PATH'].replace( '.pickle', region + '.pickle'), 'rb')) for stats_type in crit_stats_cols: header = criteria_type + '_' + stats_type region_df.loc[hab_str_idx, header] = crit_stats_dict[ stats_type] # Unpack pairwise risk stats risk_stats_dict = pickle.load( open(row['PAIR_RISK_PICKLE_STATS_PATH'].replace( '.pickle', region + '.pickle'), 'rb')) for stats_type in risk_stats_cols: header = 'R_' + stats_type region_df.loc[hab_str_idx, header] = risk_stats_dict[ stats_type] for _, row in info_df.iterrows(): habitat_name = row['NAME'] # An index used as values for HABITAT and STRESSOR columns hab_only_idx = (habitat_name, '(FROM ALL STRESSORS)') region_df.loc[hab_only_idx, 'SUBREGION'] = region # Unpack total criteria stats for criteria_type in ['E', 'C']: crit_stats_dict = pickle.load( open(row[ 'TOT_' + criteria_type + '_PICKLE_STATS_PATH'].replace( '.pickle', region + '.pickle'), 'rb')) for stats_type in crit_stats_cols: header = criteria_type + '_' + stats_type region_df.loc[hab_only_idx, header] = crit_stats_dict[ stats_type] # Unpack total risk stats risk_stats_dict = pickle.load( open(row['TOT_RISK_PICKLE_STATS_PATH'].replace( '.pickle', region + '.pickle'), 'rb')) for stats_type in risk_stats_cols: header = 'R_' + stats_type region_df.loc[hab_only_idx, header] = risk_stats_dict[ stats_type] region_df_list.append(region_df) # Merge all the subregion dataframes final_stats_df =
pandas.concat(region_df_list)
pandas.concat
# Module: Regression # Author: <NAME> <<EMAIL>> # License: MIT # Release: PyCaret 2.1 # Last modified : 17/08/2020 def setup(data, target, train_size = 0.7, sampling = True, sample_estimator = None, categorical_features = None, categorical_imputation = 'constant', ordinal_features = None, high_cardinality_features = None, high_cardinality_method = 'frequency', numeric_features = None, numeric_imputation = 'mean', date_features = None, ignore_features = None, normalize = False, normalize_method = 'zscore', transformation = False, transformation_method = 'yeo-johnson', handle_unknown_categorical = True, unknown_categorical_method = 'least_frequent', pca = False, pca_method = 'linear', pca_components = None, ignore_low_variance = False, combine_rare_levels = False, rare_level_threshold = 0.10, bin_numeric_features = None, remove_outliers = False, outliers_threshold = 0.05, remove_multicollinearity = False, multicollinearity_threshold = 0.9, remove_perfect_collinearity = False, #added in pycaret==2.0.0 create_clusters = False, cluster_iter = 20, polynomial_features = False, polynomial_degree = 2, trigonometry_features = False, polynomial_threshold = 0.1, group_features = None, group_names = None, feature_selection = False, feature_selection_threshold = 0.8, feature_selection_method = 'classic', feature_interaction = False, feature_ratio = False, interaction_threshold = 0.01, transform_target = False, transform_target_method = 'box-cox', data_split_shuffle = True, #added in pycaret==2.0.0 folds_shuffle = False, #added in pycaret==2.0.0 n_jobs = -1, #added in pycaret==2.0.0 use_gpu = False, #added in pycaret==2.1 html = True, #added in pycaret==2.0.0 session_id = None, log_experiment = False, #added in pycaret==2.0.0 experiment_name = None, #added in pycaret==2.0.0 log_plots = False, #added in pycaret==2.0.0 log_profile = False, #added in pycaret==2.0.0 log_data = False, #added in pycaret==2.0.0 silent = False, verbose = True, #added in pycaret==2.0.0 profile = False): """ This function initializes the environment in pycaret and creates the transformation pipeline to prepare the data for modeling and deployment. setup() must called before executing any other function in pycaret. It takes two mandatory parameters: dataframe {array-like, sparse matrix} and name of the target column. All other parameters are optional. Example ------- >>> from pycaret.datasets import get_data >>> boston = get_data('boston') >>> experiment_name = setup(data = boston, target = 'medv') 'boston' is a pandas.DataFrame and 'medv' is the name of target column. Parameters ---------- data : pandas.DataFrame Shape (n_samples, n_features) where n_samples is the number of samples and n_features is the number of features. target: string Name of target column to be passed in as string. train_size: float, default = 0.7 Size of the training set. By default, 70% of the data will be used for training and validation. The remaining data will be used for test / hold-out set. sampling: bool, default = True When the sample size exceeds 25,000 samples, pycaret will build a base estimator at various sample sizes from the original dataset. This will return a performance plot of R2 values at various sample levels, that will assist in deciding the preferred sample size for modeling. The desired sample size must then be entered for training and validation in the pycaret environment. When sample_size entered is less than 1, the remaining dataset (1 - sample) is used for fitting the model only when finalize_model() is called. sample_estimator: object, default = None If None, Linear Regression is used by default. categorical_features: string, default = None If the inferred data types are not correct, categorical_features can be used to overwrite the inferred type. If when running setup the type of 'column1' is inferred as numeric instead of categorical, then this parameter can be used to overwrite the type by passing categorical_features = ['column1']. categorical_imputation: string, default = 'constant' If missing values are found in categorical features, they will be imputed with a constant 'not_available' value. The other available option is 'mode' which imputes the missing value using most frequent value in the training dataset. ordinal_features: dictionary, default = None When the data contains ordinal features, they must be encoded differently using the ordinal_features param. If the data has a categorical variable with values of 'low', 'medium', 'high' and it is known that low < medium < high, then it can be passed as ordinal_features = { 'column_name' : ['low', 'medium', 'high'] }. The list sequence must be in increasing order from lowest to highest. high_cardinality_features: string, default = None When the data containts features with high cardinality, they can be compressed into fewer levels by passing them as a list of column names with high cardinality. Features are compressed using method defined in high_cardinality_method param. high_cardinality_method: string, default = 'frequency' When method set to 'frequency' it will replace the original value of feature with the frequency distribution and convert the feature into numeric. Other available method is 'clustering' which performs the clustering on statistical attribute of data and replaces the original value of feature with cluster label. The number of clusters is determined using a combination of Calinski-Harabasz and Silhouette criterion. numeric_features: string, default = None If the inferred data types are not correct, numeric_features can be used to overwrite the inferred type. If when running setup the type of 'column1' is inferred as a categorical instead of numeric, then this parameter can be used to overwrite by passing numeric_features = ['column1']. numeric_imputation: string, default = 'mean' If missing values are found in numeric features, they will be imputed with the mean value of the feature. The other available option is 'median' which imputes the value using the median value in the training dataset. date_features: string, default = None If the data has a DateTime column that is not automatically detected when running setup, this parameter can be used by passing date_features = 'date_column_name'. It can work with multiple date columns. Date columns are not used in modeling. Instead, feature extraction is performed and date columns are dropped from the dataset. If the date column includes a time stamp, features related to time will also be extracted. ignore_features: string, default = None If any feature should be ignored for modeling, it can be passed to the param ignore_features. The ID and DateTime columns when inferred, are automatically set to ignore for modeling. normalize: bool, default = False When set to True, the feature space is transformed using the normalized_method param. Generally, linear algorithms perform better with normalized data however, the results may vary and it is advised to run multiple experiments to evaluate the benefit of normalization. normalize_method: string, default = 'zscore' Defines the method to be used for normalization. By default, normalize method is set to 'zscore'. The standard zscore is calculated as z = (x - u) / s. The other available options are: 'minmax' : scales and translates each feature individually such that it is in the range of 0 - 1. 'maxabs' : scales and translates each feature individually such that the maximal absolute value of each feature will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. 'robust' : scales and translates each feature according to the Interquartile range. When the dataset contains outliers, robust scaler often gives better results. transformation: bool, default = False When set to True, a power transformation is applied to make the data more normal / Gaussian-like. This is useful for modeling issues related to heteroscedasticity or other situations where normality is desired. The optimal parameter for stabilizing variance and minimizing skewness is estimated through maximum likelihood. transformation_method: string, default = 'yeo-johnson' Defines the method for transformation. By default, the transformation method is set to 'yeo-johnson'. The other available option is 'quantile' transformation. Both the transformation transforms the feature set to follow a Gaussian-like or normal distribution. Note that the quantile transformer is non-linear and may distort linear correlations between variables measured at the same scale. handle_unknown_categorical: bool, default = True When set to True, unknown categorical levels in new / unseen data are replaced by the most or least frequent level as learned in the training data. The method is defined under the unknown_categorical_method param. unknown_categorical_method: string, default = 'least_frequent' Method used to replace unknown categorical levels in unseen data. Method can be set to 'least_frequent' or 'most_frequent'. pca: bool, default = False When set to True, dimensionality reduction is applied to project the data into a lower dimensional space using the method defined in pca_method param. In supervised learning pca is generally performed when dealing with high feature space and memory is a constraint. Note that not all datasets can be decomposed efficiently using a linear PCA technique and that applying PCA may result in loss of information. As such, it is advised to run multiple experiments with different pca_methods to evaluate the impact. pca_method: string, default = 'linear' The 'linear' method performs Linear dimensionality reduction using Singular Value Decomposition. The other available options are: kernel : dimensionality reduction through the use of RVF kernel. incremental : replacement for 'linear' pca when the dataset to be decomposed is too large to fit in memory pca_components: int/float, default = 0.99 Number of components to keep. if pca_components is a float, it is treated as a target percentage for information retention. When pca_components is an integer it is treated as the number of features to be kept. pca_components must be strictly less than the original number of features in the dataset. ignore_low_variance: bool, default = False When set to True, all categorical features with statistically insignificant variances are removed from the dataset. The variance is calculated using the ratio of unique values to the number of samples, and the ratio of the most common value to the frequency of the second most common value. combine_rare_levels: bool, default = False When set to True, all levels in categorical features below the threshold defined in rare_level_threshold param are combined together as a single level. There must be atleast two levels under the threshold for this to take effect. rare_level_threshold represents the percentile distribution of level frequency. Generally, this technique is applied to limit a sparse matrix caused by high numbers of levels in categorical features. rare_level_threshold: float, default = 0.1 Percentile distribution below which rare categories are combined. Only comes into effect when combine_rare_levels is set to True. bin_numeric_features: list, default = None When a list of numeric features is passed they are transformed into categorical features using KMeans, where values in each bin have the same nearest center of a 1D k-means cluster. The number of clusters are determined based on the 'sturges' method. It is only optimal for gaussian data and underestimates the number of bins for large non-gaussian datasets. remove_outliers: bool, default = False When set to True, outliers from the training data are removed using PCA linear dimensionality reduction using the Singular Value Decomposition technique. outliers_threshold: float, default = 0.05 The percentage / proportion of outliers in the dataset can be defined using the outliers_threshold param. By default, 0.05 is used which means 0.025 of the values on each side of the distribution's tail are dropped from training data. remove_multicollinearity: bool, default = False When set to True, the variables with inter-correlations higher than the threshold defined under the multicollinearity_threshold param are dropped. When two features are highly correlated with each other, the feature that is less correlated with the target variable is dropped. multicollinearity_threshold: float, default = 0.9 Threshold used for dropping the correlated features. Only comes into effect when remove_multicollinearity is set to True. remove_perfect_collinearity: bool, default = False When set to True, perfect collinearity (features with correlation = 1) is removed from the dataset, When two features are 100% correlated, one of it is randomly dropped from the dataset. create_clusters: bool, default = False When set to True, an additional feature is created where each instance is assigned to a cluster. The number of clusters is determined using a combination of Calinski-Harabasz and Silhouette criterion. cluster_iter: int, default = 20 Number of iterations used to create a cluster. Each iteration represents cluster size. Only comes into effect when create_clusters param is set to True. polynomial_features: bool, default = False When set to True, new features are created based on all polynomial combinations that exist within the numeric features in a dataset to the degree defined in polynomial_degree param. polynomial_degree: int, default = 2 Degree of polynomial features. For example, if an input sample is two dimensional and of the form [a, b], the polynomial features with degree = 2 are: [1, a, b, a^2, ab, b^2]. trigonometry_features: bool, default = False When set to True, new features are created based on all trigonometric combinations that exist within the numeric features in a dataset to the degree defined in the polynomial_degree param. polynomial_threshold: float, default = 0.1 This is used to compress a sparse matrix of polynomial and trigonometric features. Polynomial and trigonometric features whose feature importance based on the combination of Random Forest, AdaBoost and Linear correlation falls within the percentile of the defined threshold are kept in the dataset. Remaining features are dropped before further processing. group_features: list or list of list, default = None When a dataset contains features that have related characteristics, the group_features param can be used for statistical feature extraction. For example, if a dataset has numeric features that are related with each other (i.e 'Col1', 'Col2', 'Col3'), a list containing the column names can be passed under group_features to extract statistical information such as the mean, median, mode and standard deviation. group_names: list, default = None When group_features is passed, a name of the group can be passed into the group_names param as a list containing strings. The length of a group_names list must equal to the length of group_features. When the length doesn't match or the name is not passed, new features are sequentially named such as group_1, group_2 etc. feature_selection: bool, default = False When set to True, a subset of features are selected using a combination of various permutation importance techniques including Random Forest, Adaboost and Linear correlation with target variable. The size of the subset is dependent on the feature_selection_param. Generally, this is used to constrain the feature space in order to improve efficiency in modeling. When polynomial_features and feature_interaction are used, it is highly recommended to define the feature_selection_threshold param with a lower value. Feature selection algorithm by default is 'classic' but could be 'boruta', which will lead PyCaret to create use the Boruta selection algorithm. feature_selection_threshold: float, default = 0.8 Threshold used for feature selection (including newly created polynomial features). A higher value will result in a higher feature space. It is recommended to do multiple trials with different values of feature_selection_threshold specially in cases where polynomial_features and feature_interaction are used. Setting a very low value may be efficient but could result in under-fitting. feature_selection_method: str, default = 'classic' Can be either 'classic' or 'boruta'. Selects the algorithm responsible for choosing a subset of features. For the 'classic' selection method, PyCaret will use various permutation importance techniques. For the 'boruta' algorithm, PyCaret will create an instance of boosted trees model, which will iterate with permutation over all features and choose the best ones based on the distributions of feature importance. More in: https://pdfs.semanticscholar.org/85a8/b1d9c52f9f795fda7e12376e751526953f38.pdf%3E feature_interaction: bool, default = False When set to True, it will create new features by interacting (a * b) for all numeric variables in the dataset including polynomial and trigonometric features (if created). This feature is not scalable and may not work as expected on datasets with large feature space. feature_ratio: bool, default = False When set to True, it will create new features by calculating the ratios (a / b) of all numeric variables in the dataset. This feature is not scalable and may not work as expected on datasets with large feature space. interaction_threshold: bool, default = 0.01 Similar to polynomial_threshold, It is used to compress a sparse matrix of newly created features through interaction. Features whose importance based on the combination of Random Forest, AdaBoost and Linear correlation falls within the percentile of the defined threshold are kept in the dataset. Remaining features are dropped before further processing. transform_target: bool, default = False When set to True, target variable is transformed using the method defined in transform_target_method param. Target transformation is applied separately from feature transformations. transform_target_method: string, default = 'box-cox' 'Box-cox' and 'yeo-johnson' methods are supported. Box-Cox requires input data to be strictly positive, while Yeo-Johnson supports both positive or negative data. When transform_target_method is 'box-cox' and target variable contains negative values, method is internally forced to 'yeo-johnson' to avoid exceptions. data_split_shuffle: bool, default = True If set to False, prevents shuffling of rows when splitting data. folds_shuffle: bool, default = True If set to False, prevents shuffling of rows when using cross validation. n_jobs: int, default = -1 The number of jobs to run in parallel (for functions that supports parallel processing) -1 means using all processors. To run all functions on single processor set n_jobs to None. use_gpu: bool, default = False If set to True, algorithms that supports gpu are trained using gpu. html: bool, default = True If set to False, prevents runtime display of monitor. This must be set to False when using environment that doesnt support HTML. session_id: int, default = None If None, a random seed is generated and returned in the Information grid. The unique number is then distributed as a seed in all functions used during the experiment. This can be used for later reproducibility of the entire experiment. log_experiment: bool, default = False When set to True, all metrics and parameters are logged on MLFlow server. experiment_name: str, default = None Name of experiment for logging. When set to None, 'reg' is by default used as alias for the experiment name. log_plots: bool, default = False When set to True, specific plots are logged in MLflow as a png file. By default, it is set to False. log_profile: bool, default = False When set to True, data profile is also logged on MLflow as a html file. By default, it is set to False. log_data: bool, default = False When set to True, train and test dataset are logged as csv. silent: bool, default = False When set to True, confirmation of data types is not required. All preprocessing will be performed assuming automatically inferred data types. Not recommended for direct use except for established pipelines. verbose: Boolean, default = True Information grid is not printed when verbose is set to False. profile: bool, default = False If set to true, a data profile for Exploratory Data Analysis will be displayed in an interactive HTML report. Returns ------- info_grid Information grid is printed. environment This function returns various outputs that are stored in variable as tuple. They are used by other functions in pycaret. """ #exception checking import sys from pycaret.utils import __version__ ver = __version__() import logging # create logger global logger logger = logging.getLogger('logs') logger.setLevel(logging.DEBUG) # create console handler and set level to debug if logger.hasHandlers(): logger.handlers.clear() ch = logging.FileHandler('logs.log') ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) logger.info("PyCaret Regression Module") logger.info('version ' + str(ver)) logger.info("Initializing setup()") #generate USI for mlflow tracking import secrets global USI USI = secrets.token_hex(nbytes=2) logger.info('USI: ' + str(USI)) logger.info("""setup(data={}, target={}, train_size={}, sampling={}, sample_estimator={}, categorical_features={}, categorical_imputation={}, ordinal_features={}, high_cardinality_features={}, high_cardinality_method={}, numeric_features={}, numeric_imputation={}, date_features={}, ignore_features={}, normalize={}, normalize_method={}, transformation={}, transformation_method={}, handle_unknown_categorical={}, unknown_categorical_method={}, pca={}, pca_method={}, pca_components={}, ignore_low_variance={}, combine_rare_levels={}, rare_level_threshold={}, bin_numeric_features={}, remove_outliers={}, outliers_threshold={}, remove_multicollinearity={}, multicollinearity_threshold={}, remove_perfect_collinearity={}, create_clusters={}, cluster_iter={}, polynomial_features={}, polynomial_degree={}, trigonometry_features={}, polynomial_threshold={}, group_features={}, group_names={}, feature_selection={}, feature_selection_threshold={}, feature_interaction={}, feature_ratio={}, interaction_threshold={}, transform_target={}, transform_target_method={}, data_split_shuffle={}, folds_shuffle={}, n_jobs={}, html={}, session_id={}, log_experiment={}, experiment_name={}, log_plots={}, log_profile={}, log_data={}, silent={}, verbose={}, profile={})""".format(\ str(data.shape), str(target), str(train_size), str(sampling), str(sample_estimator), str(categorical_features), str(categorical_imputation), str(ordinal_features),\ str(high_cardinality_features), str(high_cardinality_method), str(numeric_features), str(numeric_imputation), str(date_features), str(ignore_features),\ str(normalize), str(normalize_method), str(transformation), str(transformation_method), str(handle_unknown_categorical), str(unknown_categorical_method), str(pca),\ str(pca_method), str(pca_components), str(ignore_low_variance), str(combine_rare_levels), str(rare_level_threshold), str(bin_numeric_features), str(remove_outliers),\ str(outliers_threshold), str(remove_multicollinearity), str(multicollinearity_threshold), str(remove_perfect_collinearity), str(create_clusters), str(cluster_iter),\ str(polynomial_features), str(polynomial_degree), str(trigonometry_features), str(polynomial_threshold), str(group_features), str(group_names),\ str(feature_selection), str(feature_selection_threshold), str(feature_interaction), str(feature_ratio), str(interaction_threshold), str(transform_target),\ str(transform_target_method), str(data_split_shuffle), str(folds_shuffle), str(n_jobs), str(html), str(session_id),\ str(log_experiment), str(experiment_name), str(log_plots), str(log_profile), str(log_data), str(silent), str(verbose), str(profile))) #logging environment and libraries logger.info("Checking environment") from platform import python_version, platform, python_build, machine try: logger.info("python_version: " + str(python_version())) except: logger.warning("cannot find platform.python_version") try: logger.info("python_build: " + str(python_build())) except: logger.warning("cannot find platform.python_build") try: logger.info("machine: " + str(machine())) except: logger.warning("cannot find platform.machine") try: logger.info("platform: " + str(platform())) except: logger.warning("cannot find platform.platform") try: import psutil logger.info("Memory: " + str(psutil.virtual_memory())) logger.info("Physical Core: " + str(psutil.cpu_count(logical=False))) logger.info("Logical Core: " + str(psutil.cpu_count(logical=True))) except: logger.warning("cannot find psutil installation. memory not traceable. Install psutil using pip to enable memory logging. ") logger.info("Checking libraries") try: from pandas import __version__ logger.info("pd==" + str(__version__)) except: logger.warning("pandas not found") try: from numpy import __version__ logger.info("numpy==" + str(__version__)) except: logger.warning("numpy not found") try: from sklearn import __version__ logger.info("sklearn==" + str(__version__)) except: logger.warning("sklearn not found") try: from xgboost import __version__ logger.info("xgboost==" + str(__version__)) except: logger.warning("xgboost not found") try: from lightgbm import __version__ logger.info("lightgbm==" + str(__version__)) except: logger.warning("lightgbm not found") try: from catboost import __version__ logger.info("catboost==" + str(__version__)) except: logger.warning("catboost not found") try: from mlflow.version import VERSION import warnings warnings.filterwarnings('ignore') logger.info("mlflow==" + str(VERSION)) except: logger.warning("mlflow not found") #run_time import datetime, time runtime_start = time.time() logger.info("Checking Exceptions") #checking data type if hasattr(data,'shape') is False: sys.exit('(Type Error): data passed must be of type pandas.DataFrame') #checking train size parameter if type(train_size) is not float: sys.exit('(Type Error): train_size parameter only accepts float value.') #checking sampling parameter if type(sampling) is not bool: sys.exit('(Type Error): sampling parameter only accepts True or False.') #checking sampling parameter if target not in data.columns: sys.exit('(Value Error): Target parameter doesnt exist in the data provided.') #checking session_id if session_id is not None: if type(session_id) is not int: sys.exit('(Type Error): session_id parameter must be an integer.') #checking sampling parameter if type(profile) is not bool: sys.exit('(Type Error): profile parameter only accepts True or False.') #checking normalize parameter if type(normalize) is not bool: sys.exit('(Type Error): normalize parameter only accepts True or False.') #checking transformation parameter if type(transformation) is not bool: sys.exit('(Type Error): transformation parameter only accepts True or False.') #checking categorical imputation allowed_categorical_imputation = ['constant', 'mode'] if categorical_imputation not in allowed_categorical_imputation: sys.exit("(Value Error): categorical_imputation param only accepts 'constant' or 'mode' ") #ordinal_features if ordinal_features is not None: if type(ordinal_features) is not dict: sys.exit("(Type Error): ordinal_features must be of type dictionary with column name as key and ordered values as list. ") #ordinal features check if ordinal_features is not None: data_cols = data.columns data_cols = data_cols.drop(target) ord_keys = ordinal_features.keys() for i in ord_keys: if i not in data_cols: sys.exit("(Value Error) Column name passed as a key in ordinal_features param doesnt exist. ") for k in ord_keys: if data[k].nunique() != len(ordinal_features.get(k)): sys.exit("(Value Error) Levels passed in ordinal_features param doesnt match with levels in data. ") for i in ord_keys: value_in_keys = ordinal_features.get(i) value_in_data = list(data[i].unique().astype(str)) for j in value_in_keys: if j not in value_in_data: text = "Column name '" + str(i) + "' doesnt contain any level named '" + str(j) + "'." sys.exit(text) #high_cardinality_features if high_cardinality_features is not None: if type(high_cardinality_features) is not list: sys.exit("(Type Error): high_cardinality_features param only accepts name of columns as a list. ") if high_cardinality_features is not None: data_cols = data.columns data_cols = data_cols.drop(target) for i in high_cardinality_features: if i not in data_cols: sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.") #checking numeric imputation allowed_numeric_imputation = ['mean', 'median'] if numeric_imputation not in allowed_numeric_imputation: sys.exit("(Value Error): numeric_imputation param only accepts 'mean' or 'median' ") #checking normalize method allowed_normalize_method = ['zscore', 'minmax', 'maxabs', 'robust'] if normalize_method not in allowed_normalize_method: sys.exit("(Value Error): normalize_method param only accepts 'zscore', 'minxmax', 'maxabs' or 'robust'. ") #checking transformation method allowed_transformation_method = ['yeo-johnson', 'quantile'] if transformation_method not in allowed_transformation_method: sys.exit("(Value Error): transformation_method param only accepts 'yeo-johnson' or 'quantile' ") #handle unknown categorical if type(handle_unknown_categorical) is not bool: sys.exit('(Type Error): handle_unknown_categorical parameter only accepts True or False.') #unknown categorical method unknown_categorical_method_available = ['least_frequent', 'most_frequent'] if unknown_categorical_method not in unknown_categorical_method_available: sys.exit("(Type Error): unknown_categorical_method only accepts 'least_frequent' or 'most_frequent'.") #check pca if type(pca) is not bool: sys.exit('(Type Error): PCA parameter only accepts True or False.') #pca method check allowed_pca_methods = ['linear', 'kernel', 'incremental',] if pca_method not in allowed_pca_methods: sys.exit("(Value Error): pca method param only accepts 'linear', 'kernel', or 'incremental'. ") #pca components check if pca is True: if pca_method != 'linear': if pca_components is not None: if(type(pca_components)) is not int: sys.exit("(Type Error): pca_components parameter must be integer when pca_method is not 'linear'. ") #pca components check 2 if pca is True: if pca_method != 'linear': if pca_components is not None: if pca_components > len(data.columns)-1: sys.exit("(Type Error): pca_components parameter cannot be greater than original features space.") #pca components check 3 if pca is True: if pca_method == 'linear': if pca_components is not None: if type(pca_components) is not float: if pca_components > len(data.columns)-1: sys.exit("(Type Error): pca_components parameter cannot be greater than original features space or float between 0 - 1.") #check ignore_low_variance if type(ignore_low_variance) is not bool: sys.exit('(Type Error): ignore_low_variance parameter only accepts True or False.') #check ignore_low_variance if type(combine_rare_levels) is not bool: sys.exit('(Type Error): combine_rare_levels parameter only accepts True or False.') #check rare_level_threshold if type(rare_level_threshold) is not float: sys.exit('(Type Error): rare_level_threshold must be a float between 0 and 1. ') #bin numeric features if bin_numeric_features is not None: all_cols = list(data.columns) all_cols.remove(target) for i in bin_numeric_features: if i not in all_cols: sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.") #check transform_target if type(transform_target) is not bool: sys.exit('(Type Error): transform_target parameter only accepts True or False.') #transform_target_method allowed_transform_target_method = ['box-cox', 'yeo-johnson'] if transform_target_method not in allowed_transform_target_method: sys.exit("(Value Error): transform_target_method param only accepts 'box-cox' or 'yeo-johnson'. ") #remove_outliers if type(remove_outliers) is not bool: sys.exit('(Type Error): remove_outliers parameter only accepts True or False.') #outliers_threshold if type(outliers_threshold) is not float: sys.exit('(Type Error): outliers_threshold must be a float between 0 and 1. ') #remove_multicollinearity if type(remove_multicollinearity) is not bool: sys.exit('(Type Error): remove_multicollinearity parameter only accepts True or False.') #multicollinearity_threshold if type(multicollinearity_threshold) is not float: sys.exit('(Type Error): multicollinearity_threshold must be a float between 0 and 1. ') #create_clusters if type(create_clusters) is not bool: sys.exit('(Type Error): create_clusters parameter only accepts True or False.') #cluster_iter if type(cluster_iter) is not int: sys.exit('(Type Error): cluster_iter must be a integer greater than 1. ') #polynomial_features if type(polynomial_features) is not bool: sys.exit('(Type Error): polynomial_features only accepts True or False. ') #polynomial_degree if type(polynomial_degree) is not int: sys.exit('(Type Error): polynomial_degree must be an integer. ') #polynomial_features if type(trigonometry_features) is not bool: sys.exit('(Type Error): trigonometry_features only accepts True or False. ') #polynomial threshold if type(polynomial_threshold) is not float: sys.exit('(Type Error): polynomial_threshold must be a float between 0 and 1. ') #group features if group_features is not None: if type(group_features) is not list: sys.exit('(Type Error): group_features must be of type list. ') if group_names is not None: if type(group_names) is not list: sys.exit('(Type Error): group_names must be of type list. ') #cannot drop target if ignore_features is not None: if target in ignore_features: sys.exit("(Value Error): cannot drop target column. ") #feature_selection if type(feature_selection) is not bool: sys.exit('(Type Error): feature_selection only accepts True or False. ') #feature_selection_threshold if type(feature_selection_threshold) is not float: sys.exit('(Type Error): feature_selection_threshold must be a float between 0 and 1. ') #feature_selection_method if feature_selection_method not in ['boruta', 'classic']: sys.exit("(Type Error): feature_selection_method must be string 'boruta', 'classic'") #feature_interaction if type(feature_interaction) is not bool: sys.exit('(Type Error): feature_interaction only accepts True or False. ') #feature_ratio if type(feature_ratio) is not bool: sys.exit('(Type Error): feature_ratio only accepts True or False. ') #interaction_threshold if type(interaction_threshold) is not float: sys.exit('(Type Error): interaction_threshold must be a float between 0 and 1. ') #cannot drop target if ignore_features is not None: if target in ignore_features: sys.exit("(Value Error): cannot drop target column. ") #forced type check all_cols = list(data.columns) all_cols.remove(target) #categorical if categorical_features is not None: for i in categorical_features: if i not in all_cols: sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.") #numeric if numeric_features is not None: for i in numeric_features: if i not in all_cols: sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.") #date features if date_features is not None: for i in date_features: if i not in all_cols: sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.") #drop features if ignore_features is not None: for i in ignore_features: if i not in all_cols: sys.exit("(Value Error): Feature ignored is either target column or doesn't exist in the dataset.") #silent if type(silent) is not bool: sys.exit("(Type Error): silent parameter only accepts True or False. ") #remove_perfect_collinearity if type(remove_perfect_collinearity) is not bool: sys.exit('(Type Error): remove_perfect_collinearity parameter only accepts True or False.') #html if type(html) is not bool: sys.exit('(Type Error): html parameter only accepts True or False.') #folds_shuffle if type(folds_shuffle) is not bool: sys.exit('(Type Error): folds_shuffle parameter only accepts True or False.') #data_split_shuffle if type(data_split_shuffle) is not bool: sys.exit('(Type Error): data_split_shuffle parameter only accepts True or False.') #log_experiment if type(log_experiment) is not bool: sys.exit('(Type Error): log_experiment parameter only accepts True or False.') #log_plots if type(log_plots) is not bool: sys.exit('(Type Error): log_plots parameter only accepts True or False.') #log_data if type(log_data) is not bool: sys.exit('(Type Error): log_data parameter only accepts True or False.') #log_profile if type(log_profile) is not bool: sys.exit('(Type Error): log_profile parameter only accepts True or False.') logger.info("Preloading libraries") #pre-load libraries import pandas as pd import ipywidgets as ipw from IPython.display import display, HTML, clear_output, update_display import datetime, time import os #pandas option pd.set_option('display.max_columns', 500) pd.set_option('display.max_rows', 500) #global html_param global html_param #create html_param html_param = html #silent parameter to also set sampling to False if silent: sampling = False logger.info("Preparing display monitor") #progress bar if sampling: max = 10 + 3 else: max = 3 progress = ipw.IntProgress(value=0, min=0, max=max, step=1 , description='Processing: ') if verbose: if html_param: display(progress) timestampStr = datetime.datetime.now().strftime("%H:%M:%S") monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ], ['ETC' , '. . . . . . . . . . . . . . . . . .', 'Calculating ETC'] ], columns=['', ' ', ' ']).set_index('') if verbose: if html_param: display(monitor, display_id = 'monitor') logger.info("Importing libraries") #general dependencies import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn import metrics import random import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px #setting sklearn config to print all parameters including default import sklearn sklearn.set_config(print_changed_only=False) #define highlight function for function grid to display def highlight_max(s): is_max = s == True return ['background-color: yellow' if v else '' for v in is_max] #cufflinks import cufflinks as cf cf.go_offline() cf.set_config_file(offline=False, world_readable=True) #ignore warnings import warnings warnings.filterwarnings('ignore') logger.info("Declaring global variables") #declaring global variables to be accessed by other functions global X, y, X_train, X_test, y_train, y_test, seed, prep_pipe, target_inverse_transformer, experiment__,\ preprocess, folds_shuffle_param, n_jobs_param, create_model_container, master_model_container,\ display_container, exp_name_log, logging_param, log_plots_param, data_before_preprocess, target_param,\ gpu_param logger.info("Copying data for preprocessing") #copy original data for pandas profiler data_before_preprocess = data.copy() #generate seed to be used globally if session_id is None: seed = random.randint(150,9000) else: seed = session_id """ preprocessing starts here """ monitor.iloc[1,1:] = 'Preparing Data for Modeling' if verbose: if html_param: update_display(monitor, display_id = 'monitor') #define parameters for preprocessor logger.info("Declaring preprocessing parameters") #categorical features if categorical_features is None: cat_features_pass = [] else: cat_features_pass = categorical_features #numeric features if numeric_features is None: numeric_features_pass = [] else: numeric_features_pass = numeric_features #drop features if ignore_features is None: ignore_features_pass = [] else: ignore_features_pass = ignore_features #date features if date_features is None: date_features_pass = [] else: date_features_pass = date_features #categorical imputation strategy if categorical_imputation == 'constant': categorical_imputation_pass = 'not_available' elif categorical_imputation == 'mode': categorical_imputation_pass = 'most frequent' #transformation method strategy if transformation_method == 'yeo-johnson': trans_method_pass = 'yj' elif transformation_method == 'quantile': trans_method_pass = 'quantile' #pass method if pca_method == 'linear': pca_method_pass = 'pca_liner' elif pca_method == 'kernel': pca_method_pass = 'pca_kernal' elif pca_method == 'incremental': pca_method_pass = 'incremental' elif pca_method == 'pls': pca_method_pass = 'pls' #pca components if pca is True: if pca_components is None: if pca_method == 'linear': pca_components_pass = 0.99 else: pca_components_pass = int((len(data.columns)-1)*0.5) else: pca_components_pass = pca_components else: pca_components_pass = 0.99 if bin_numeric_features is None: apply_binning_pass = False features_to_bin_pass = [] else: apply_binning_pass = True features_to_bin_pass = bin_numeric_features #trignometry if trigonometry_features is False: trigonometry_features_pass = [] else: trigonometry_features_pass = ['sin', 'cos', 'tan'] #group features #=============# #apply grouping if group_features is not None: apply_grouping_pass = True else: apply_grouping_pass = False #group features listing if apply_grouping_pass is True: if type(group_features[0]) is str: group_features_pass = [] group_features_pass.append(group_features) else: group_features_pass = group_features else: group_features_pass = [[]] #group names if apply_grouping_pass is True: if (group_names is None) or (len(group_names) != len(group_features_pass)): group_names_pass = list(np.arange(len(group_features_pass))) group_names_pass = ['group_' + str(i) for i in group_names_pass] else: group_names_pass = group_names else: group_names_pass = [] #feature interactions if feature_interaction or feature_ratio: apply_feature_interactions_pass = True else: apply_feature_interactions_pass = False interactions_to_apply_pass = [] if feature_interaction: interactions_to_apply_pass.append('multiply') if feature_ratio: interactions_to_apply_pass.append('divide') #unknown categorical if unknown_categorical_method == 'least_frequent': unknown_categorical_method_pass = 'least frequent' elif unknown_categorical_method == 'most_frequent': unknown_categorical_method_pass = 'most frequent' #ordinal_features if ordinal_features is not None: apply_ordinal_encoding_pass = True else: apply_ordinal_encoding_pass = False if apply_ordinal_encoding_pass is True: ordinal_columns_and_categories_pass = ordinal_features else: ordinal_columns_and_categories_pass = {} if high_cardinality_features is not None: apply_cardinality_reduction_pass = True else: apply_cardinality_reduction_pass = False if high_cardinality_method == 'frequency': cardinal_method_pass = 'count' elif high_cardinality_method == 'clustering': cardinal_method_pass = 'cluster' if apply_cardinality_reduction_pass: cardinal_features_pass = high_cardinality_features else: cardinal_features_pass = [] if silent: display_dtypes_pass = False else: display_dtypes_pass = True #transform target method if transform_target_method == 'box-cox': transform_target_method_pass = 'bc' elif transform_target_method == 'yeo-johnson': transform_target_method_pass = 'yj' logger.info("Importing preprocessing module") #import library import pycaret.preprocess as preprocess logger.info("Creating preprocessing pipeline") data = preprocess.Preprocess_Path_One(train_data = data, target_variable = target, categorical_features = cat_features_pass, apply_ordinal_encoding = apply_ordinal_encoding_pass, ordinal_columns_and_categories = ordinal_columns_and_categories_pass, apply_cardinality_reduction = apply_cardinality_reduction_pass, cardinal_method = cardinal_method_pass, cardinal_features = cardinal_features_pass, numerical_features = numeric_features_pass, time_features = date_features_pass, features_todrop = ignore_features_pass, numeric_imputation_strategy = numeric_imputation, categorical_imputation_strategy = categorical_imputation_pass, scale_data = normalize, scaling_method = normalize_method, Power_transform_data = transformation, Power_transform_method = trans_method_pass, apply_untrained_levels_treatment= handle_unknown_categorical, untrained_levels_treatment_method = unknown_categorical_method_pass, apply_pca = pca, pca_method = pca_method_pass, pca_variance_retained_or_number_of_components = pca_components_pass, apply_zero_nearZero_variance = ignore_low_variance, club_rare_levels = combine_rare_levels, rara_level_threshold_percentage = rare_level_threshold, apply_binning = apply_binning_pass, features_to_binn = features_to_bin_pass, remove_outliers = remove_outliers, outlier_contamination_percentage = outliers_threshold, outlier_methods = ['pca'], #pca hardcoded remove_multicollinearity = remove_multicollinearity, maximum_correlation_between_features = multicollinearity_threshold, remove_perfect_collinearity = remove_perfect_collinearity, cluster_entire_data = create_clusters, range_of_clusters_to_try = cluster_iter, apply_polynomial_trigonometry_features = polynomial_features, max_polynomial = polynomial_degree, trigonometry_calculations = trigonometry_features_pass, top_poly_trig_features_to_select_percentage = polynomial_threshold, apply_grouping = apply_grouping_pass, features_to_group_ListofList = group_features_pass, group_name = group_names_pass, apply_feature_selection = feature_selection, feature_selection_top_features_percentage = feature_selection_threshold, feature_selection_method = feature_selection_method, apply_feature_interactions = apply_feature_interactions_pass, feature_interactions_to_apply = interactions_to_apply_pass, feature_interactions_top_features_to_select_percentage=interaction_threshold, display_types = display_dtypes_pass, target_transformation = transform_target, target_transformation_method = transform_target_method_pass, random_state = seed) progress.value += 1 logger.info("Preprocessing pipeline created successfully") if hasattr(preprocess.dtypes, 'replacement'): label_encoded = preprocess.dtypes.replacement label_encoded = str(label_encoded).replace("'", '') label_encoded = str(label_encoded).replace("{", '') label_encoded = str(label_encoded).replace("}", '') else: label_encoded = 'None' try: res_type = ['quit','Quit','exit','EXIT','q','Q','e','E','QUIT','Exit'] res = preprocess.dtypes.response if res in res_type: sys.exit("(Process Exit): setup has been interupted with user command 'quit'. setup must rerun." ) except: pass #save prep pipe prep_pipe = preprocess.pipe #save target inverse transformer try: target_inverse_transformer = preprocess.pt_target.p_transform_target except: target_inverse_transformer = None logger.info("No inverse transformer found") logger.info("Creating grid variables") #generate values for grid show missing_values = data_before_preprocess.isna().sum().sum() if missing_values > 0: missing_flag = True else: missing_flag = False if normalize is True: normalize_grid = normalize_method else: normalize_grid = 'None' if transformation is True: transformation_grid = transformation_method else: transformation_grid = 'None' if pca is True: pca_method_grid = pca_method else: pca_method_grid = 'None' if pca is True: pca_components_grid = pca_components_pass else: pca_components_grid = 'None' if combine_rare_levels: rare_level_threshold_grid = rare_level_threshold else: rare_level_threshold_grid = 'None' if bin_numeric_features is None: numeric_bin_grid = False else: numeric_bin_grid = True if remove_outliers is False: outliers_threshold_grid = None else: outliers_threshold_grid = outliers_threshold if remove_multicollinearity is False: multicollinearity_threshold_grid = None else: multicollinearity_threshold_grid = multicollinearity_threshold if create_clusters is False: cluster_iter_grid = None else: cluster_iter_grid = cluster_iter if polynomial_features: polynomial_degree_grid = polynomial_degree else: polynomial_degree_grid = None if polynomial_features or trigonometry_features: polynomial_threshold_grid = polynomial_threshold else: polynomial_threshold_grid = None if feature_selection: feature_selection_threshold_grid = feature_selection_threshold else: feature_selection_threshold_grid = None if feature_interaction or feature_ratio: interaction_threshold_grid = interaction_threshold else: interaction_threshold_grid = None if ordinal_features is not None: ordinal_features_grid = True else: ordinal_features_grid = False if handle_unknown_categorical: unknown_categorical_method_grid = unknown_categorical_method else: unknown_categorical_method_grid = None if group_features is not None: group_features_grid = True else: group_features_grid = False if high_cardinality_features is not None: high_cardinality_features_grid = True else: high_cardinality_features_grid = False if high_cardinality_features_grid: high_cardinality_method_grid = high_cardinality_method else: high_cardinality_method_grid = None learned_types = preprocess.dtypes.learent_dtypes learned_types.drop(target, inplace=True) float_type = 0 cat_type = 0 for i in preprocess.dtypes.learent_dtypes: if 'float' in str(i): float_type += 1 elif 'object' in str(i): cat_type += 1 elif 'int' in str(i): float_type += 1 #target transformation method if transform_target is False: transform_target_method_grid = None else: transform_target_method_grid = preprocess.pt_target.function_to_apply """ preprocessing ends here """ #reset pandas option pd.reset_option("display.max_rows") pd.reset_option("display.max_columns") logger.info("Creating global containers") #create an empty list for pickling later. experiment__ = [] #create folds_shuffle_param folds_shuffle_param = folds_shuffle #create n_jobs_param n_jobs_param = n_jobs #create create_model_container create_model_container = [] #create master_model_container master_model_container = [] #create display container display_container = [] #create logging parameter logging_param = log_experiment #create exp_name_log param incase logging is False exp_name_log = 'no_logging' #create an empty log_plots_param if log_plots: log_plots_param = True else: log_plots_param = False # create target param target_param = target # create gpu param gpu_param = use_gpu #sample estimator if sample_estimator is None: model = LinearRegression(n_jobs=n_jobs_param) else: model = sample_estimator model_name = str(model).split("(")[0] if 'CatBoostRegressor' in model_name: model_name = 'CatBoostRegressor' #creating variables to be used later in the function X = data.drop(target,axis=1) y = data[target] progress.value += 1 if sampling is True and data.shape[0] > 25000: #change back to 25000 split_perc = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99] split_perc_text = ['10%','20%','30%','40%','50%','60%', '70%', '80%', '90%', '100%'] split_perc_tt = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99] split_perc_tt_total = [] split_percent = [] metric_results = [] metric_name = [] counter = 0 for i in split_perc: progress.value += 1 t0 = time.time() ''' MONITOR UPDATE STARTS ''' perc_text = split_perc_text[counter] monitor.iloc[1,1:] = 'Fitting Model on ' + perc_text + ' sample' if verbose: if html_param: update_display(monitor, display_id = 'monitor') ''' MONITOR UPDATE ENDS ''' X_, X__, y_, y__ = train_test_split(X, y, test_size=1-i, random_state=seed, shuffle=data_split_shuffle) X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=1-train_size, random_state=seed, shuffle=data_split_shuffle) model.fit(X_train,y_train) pred_ = model.predict(X_test) r2 = metrics.r2_score(y_test,pred_) metric_results.append(r2) metric_name.append('R2') split_percent.append(i) t1 = time.time() ''' Time calculation begins ''' tt = t1 - t0 total_tt = tt / i split_perc_tt.pop(0) for remain in split_perc_tt: ss = total_tt * remain split_perc_tt_total.append(ss) ttt = sum(split_perc_tt_total) / 60 ttt = np.around(ttt, 2) if ttt < 1: ttt = str(np.around((ttt * 60), 2)) ETC = ttt + ' Seconds Remaining' else: ttt = str (ttt) ETC = ttt + ' Minutes Remaining' monitor.iloc[2,1:] = ETC if verbose: if html_param: update_display(monitor, display_id = 'monitor') ''' Time calculation Ends ''' split_perc_tt_total = [] counter += 1 model_results = pd.DataFrame({'Sample' : split_percent, 'Metric' : metric_results, 'Metric Name': metric_name}) fig = px.line(model_results, x='Sample', y='Metric', color='Metric Name', line_shape='linear', range_y = [0,1]) fig.update_layout(plot_bgcolor='rgb(245,245,245)') title= str(model_name) + ' Metric and Sample %' fig.update_layout(title={'text': title, 'y':0.95,'x':0.45,'xanchor': 'center','yanchor': 'top'}) fig.show() monitor.iloc[1,1:] = 'Waiting for input' if verbose: if html_param: update_display(monitor, display_id = 'monitor') print('Please Enter the sample % of data you would like to use for modeling. Example: Enter 0.3 for 30%.') print('Press Enter if you would like to use 100% of the data.') print(' ') sample_size = input("Sample Size: ") if sample_size == '' or sample_size == '1': X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-train_size, random_state=seed, shuffle=data_split_shuffle) else: sample_n = float(sample_size) X_selected, X_discard, y_selected, y_discard = train_test_split(X, y, test_size=1-sample_n, random_state=seed, shuffle=data_split_shuffle) X_train, X_test, y_train, y_test = train_test_split(X_selected, y_selected, test_size=1-train_size, random_state=seed, shuffle=data_split_shuffle) else: monitor.iloc[1,1:] = 'Splitting Data' if verbose: if html_param: update_display(monitor, display_id = 'monitor') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-train_size, random_state=seed, shuffle=data_split_shuffle) progress.value += 1 ''' Final display Starts ''' clear_output() if verbose: print(' ') if profile: print('Setup Succesfully Completed. Loading Profile Now... Please Wait!') else: if verbose: print('Setup Succesfully Completed.') functions = pd.DataFrame ( [ ['session_id', seed ], ['Transform Target ', transform_target], ['Transform Target Method', transform_target_method_grid], ['Original Data', data_before_preprocess.shape ], ['Missing Values ', missing_flag], ['Numeric Features ', str(float_type) ], ['Categorical Features ', str(cat_type) ], ['Ordinal Features ', ordinal_features_grid], ['High Cardinality Features ', high_cardinality_features_grid], ['High Cardinality Method ', high_cardinality_method_grid], ['Sampled Data', '(' + str(X_train.shape[0] + X_test.shape[0]) + ', ' + str(data_before_preprocess.shape[1]) + ')' ], ['Transformed Train Set', X_train.shape ], ['Transformed Test Set',X_test.shape ], ['Numeric Imputer ', numeric_imputation], ['Categorical Imputer ', categorical_imputation], ['Normalize ', normalize ], ['Normalize Method ', normalize_grid ], ['Transformation ', transformation ], ['Transformation Method ', transformation_grid ], ['PCA ', pca], ['PCA Method ', pca_method_grid], ['PCA Components ', pca_components_grid], ['Ignore Low Variance ', ignore_low_variance], ['Combine Rare Levels ', combine_rare_levels], ['Rare Level Threshold ', rare_level_threshold_grid], ['Numeric Binning ', numeric_bin_grid], ['Remove Outliers ', remove_outliers], ['Outliers Threshold ', outliers_threshold_grid], ['Remove Multicollinearity ', remove_multicollinearity], ['Multicollinearity Threshold ', multicollinearity_threshold_grid], ['Clustering ', create_clusters], ['Clustering Iteration ', cluster_iter_grid], ['Polynomial Features ', polynomial_features], ['Polynomial Degree ', polynomial_degree_grid], ['Trignometry Features ', trigonometry_features], ['Polynomial Threshold ', polynomial_threshold_grid], ['Group Features ', group_features_grid], ['Feature Selection ', feature_selection], ['Features Selection Threshold ', feature_selection_threshold_grid], ['Feature Interaction ', feature_interaction], ['Feature Ratio ', feature_ratio], ['Interaction Threshold ', interaction_threshold_grid], ], columns = ['Description', 'Value'] ) functions_ = functions.style.apply(highlight_max) if verbose: if html_param: display(functions_) else: print(functions_.data) if profile: try: import pandas_profiling pf = pandas_profiling.ProfileReport(data_before_preprocess) clear_output() display(pf) except: print('Data Profiler Failed. No output to show, please continue with Modeling.') ''' Final display Ends ''' #log into experiment experiment__.append(('Regression Setup Config', functions)) experiment__.append(('X_training Set', X_train)) experiment__.append(('y_training Set', y_train)) experiment__.append(('X_test Set', X_test)) experiment__.append(('y_test Set', y_test)) experiment__.append(('Transformation Pipeline', prep_pipe)) try: experiment__.append(('Target Inverse Transformer', target_inverse_transformer)) except: pass #end runtime runtime_end = time.time() runtime = np.array(runtime_end - runtime_start).round(2) if logging_param: logger.info("Logging experiment in MLFlow") import mlflow from pathlib import Path if experiment_name is None: exp_name_ = 'reg-default-name' else: exp_name_ = experiment_name URI = secrets.token_hex(nbytes=4) exp_name_log = exp_name_ try: mlflow.create_experiment(exp_name_log) except: pass #mlflow logging mlflow.set_experiment(exp_name_log) run_name_ = 'Session Initialized ' + str(USI) with mlflow.start_run(run_name=run_name_) as run: # Get active run to log as tag RunID = mlflow.active_run().info.run_id k = functions.copy() k.set_index('Description',drop=True,inplace=True) kdict = k.to_dict() params = kdict.get('Value') mlflow.log_params(params) #set tag of compare_models mlflow.set_tag("Source", "setup") import secrets URI = secrets.token_hex(nbytes=4) mlflow.set_tag("URI", URI) mlflow.set_tag("USI", USI) mlflow.set_tag("Run Time", runtime) mlflow.set_tag("Run ID", RunID) # Log the transformation pipeline logger.info("SubProcess save_model() called ==================================") save_model(prep_pipe, 'Transformation Pipeline', verbose=False) logger.info("SubProcess save_model() end ==================================") mlflow.log_artifact('Transformation Pipeline' + '.pkl') os.remove('Transformation Pipeline.pkl') # Log pandas profile if log_profile: import pandas_profiling pf = pandas_profiling.ProfileReport(data_before_preprocess) pf.to_file("Data Profile.html") mlflow.log_artifact("Data Profile.html") os.remove("Data Profile.html") clear_output() display(functions_) # Log training and testing set if log_data: X_train.join(y_train).to_csv('Train.csv') X_test.join(y_test).to_csv('Test.csv') mlflow.log_artifact("Train.csv") mlflow.log_artifact("Test.csv") os.remove('Train.csv') os.remove('Test.csv') logger.info("create_model_container: " + str(len(create_model_container))) logger.info("master_model_container: " + str(len(master_model_container))) logger.info("display_container: " + str(len(display_container))) logger.info("setup() succesfully completed......................................") return X, y, X_train, X_test, y_train, y_test, seed, prep_pipe, target_inverse_transformer,\ experiment__, folds_shuffle_param, n_jobs_param, html_param, create_model_container,\ master_model_container, display_container, exp_name_log, logging_param, log_plots_param, USI,\ data_before_preprocess, target_param def compare_models(exclude = None, include = None, #added in pycaret==2.0.0 fold = 10, round = 4, sort = 'R2', n_select = 1, #added in pycaret==2.0.0 budget_time = 0, #added in pycaret==2.1.0 turbo = True, verbose = True): #added in pycaret==2.0.0 """ This function train all the models available in the model library and scores them using Kfold Cross Validation. The output prints a score grid with MAE, MSE RMSE, R2, RMSLE and MAPE (averaged accross folds), determined by fold parameter. This function returns the best model based on metric defined in sort parameter. To select top N models, use n_select parameter that is set to 1 by default. Where n_select parameter > 1, it will return a list of trained model objects. When turbo is set to True ('kr', 'ard' and 'mlp') are excluded due to longer training times. By default turbo param is set to True. Example -------- >>> from pycaret.datasets import get_data >>> boston = get_data('boston') >>> experiment_name = setup(data = boston, target = 'medv') >>> best_model = compare_models() This will return the averaged score grid of all models except 'kr', 'ard' and 'mlp'. When turbo param is set to False, all models including 'kr', 'ard' and 'mlp' are used, but this may result in longer training times. >>> best_model = compare_models(exclude = ['knn','gbr'], turbo = False) This will return a comparison of all models except K Nearest Neighbour and Gradient Boosting Regressor. >>> best_model = compare_models(exclude = ['knn','gbr'] , turbo = True) This will return a comparison of all models except K Nearest Neighbour, Gradient Boosting Regressor, Kernel Ridge Regressor, Automatic Relevance Determinant and Multi Level Perceptron. Parameters ---------- exclude: list of strings, default = None In order to omit certain models from the comparison model ID's can be passed as a list of strings in exclude param. include: list of strings, default = None In order to run only certain models for the comparison, the model ID's can be passed as a list of strings in include param. fold: integer, default = 10 Number of folds to be used in Kfold CV. Must be at least 2. round: integer, default = 4 Number of decimal places the metrics in the score grid will be rounded to. sort: string, default = 'MAE' The scoring measure specified is used for sorting the average score grid Other options are 'MAE', 'MSE', 'RMSE', 'R2', 'RMSLE' and 'MAPE'. n_select: int, default = 1 Number of top_n models to return. use negative argument for bottom selection. for example, n_select = -3 means bottom 3 models. budget_time: int or float, default = 0 If set above 0, will terminate execution of the function after budget_time minutes have passed and return results up to that point. turbo: Boolean, default = True When turbo is set to True, it excludes estimators that have longer training times. verbose: Boolean, default = True Score grid is not printed when verbose is set to False. Returns ------- score_grid A table containing the scores of the model across the kfolds. Scoring metrics used are MAE, MSE, RMSE, R2, RMSLE and MAPE Mean and standard deviation of the scores across the folds is also returned. Warnings -------- - compare_models() though attractive, might be time consuming with large datasets. By default turbo is set to True, which excludes models that have longer training times. Changing turbo parameter to False may result in very high training times with datasets where number of samples exceed 10,000. """ ''' ERROR HANDLING STARTS HERE ''' import logging try: hasattr(logger, 'name') except: logger = logging.getLogger('logs') logger.setLevel(logging.DEBUG) # create console handler and set level to debug if logger.hasHandlers(): logger.handlers.clear() ch = logging.FileHandler('logs.log') ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) logger.info("Initializing compare_models()") logger.info("""compare_models(exclude={}, include={}, fold={}, round={}, sort={}, n_select={}, turbo={}, verbose={})""".\ format(str(exclude), str(include), str(fold), str(round), str(sort), str(n_select), str(turbo), str(verbose))) logger.info("Checking exceptions") #exception checking import sys #checking error for exclude (string) available_estimators = ['lr', 'lasso', 'ridge', 'en', 'lar', 'llar', 'omp', 'br', 'ard', 'par', 'ransac', 'tr', 'huber', 'kr', 'svm', 'knn', 'dt', 'rf', 'et', 'ada', 'gbr', 'mlp', 'xgboost', 'lightgbm', 'catboost'] if exclude != None: for i in exclude: if i not in available_estimators: sys.exit('(Value Error): Estimator Not Available. Please see docstring for list of available estimators.') if include != None: for i in include: if i not in available_estimators: sys.exit('(Value Error): Estimator Not Available. Please see docstring for list of available estimators.') #include and exclude together check if include is not None: if exclude is not None: sys.exit('(Type Error): Cannot use exclude parameter when include is used to compare models.') #checking fold parameter if type(fold) is not int: sys.exit('(Type Error): Fold parameter only accepts integer value.') #checking round parameter if type(round) is not int: sys.exit('(Type Error): Round parameter only accepts integer value.') #checking n_select parameter if type(n_select) is not int: sys.exit('(Type Error): n_select parameter only accepts integer value.') #checking budget_time parameter if type(budget_time) is not int and type(budget_time) is not float: sys.exit('(Type Error): budget_time parameter only accepts integer or float values.') #checking sort parameter allowed_sort = ['MAE', 'MSE', 'RMSE', 'R2', 'RMSLE', 'MAPE'] if sort not in allowed_sort: sys.exit('(Value Error): Sort method not supported. See docstring for list of available parameters.') ''' ERROR HANDLING ENDS HERE ''' logger.info("Preloading libraries") #pre-load libraries import pandas as pd import time, datetime import ipywidgets as ipw from IPython.display import display, HTML, clear_output, update_display pd.set_option('display.max_columns', 500) logger.info("Preparing display monitor") #progress bar if exclude is None: len_of_exclude = 0 else: len_of_exclude = len(exclude) if turbo: len_mod = 22 - len_of_exclude else: len_mod = 25 - len_of_exclude #n_select param if type(n_select) is list: n_select_num = len(n_select) else: n_select_num = abs(n_select) if n_select_num > len_mod: n_select_num = len_mod if include is not None: wl = len(include) bl = len_of_exclude len_mod = wl - bl if include is not None: opt = 10 else: opt = 30 #display progress = ipw.IntProgress(value=0, min=0, max=(fold*len_mod)+opt+n_select_num, step=1 , description='Processing: ') master_display = pd.DataFrame(columns=['Model', 'MAE','MSE','RMSE', 'R2', 'RMSLE', 'MAPE', 'TT (Sec)']) #display monitor only when html_param is set to True if verbose: if html_param: display(progress) timestampStr = datetime.datetime.now().strftime("%H:%M:%S") monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ], ['Estimator' , '. . . . . . . . . . . . . . . . . .' , 'Compiling Library' ], ['ETC' , '. . . . . . . . . . . . . . . . . .', 'Calculating ETC'] ], columns=['', ' ', ' ']).set_index('') #display only when html_param is set to True if verbose: if html_param: display(monitor, display_id = 'monitor') display_ = display(master_display, display_id=True) display_id = display_.display_id #ignore warnings import warnings warnings.filterwarnings('ignore') #general dependencies import numpy as np import random from sklearn import metrics from sklearn.model_selection import KFold import pandas.io.formats.style logger.info("Copying training dataset") #Storing X_train and y_train in data_X and data_y parameter data_X = X_train.copy() data_y = y_train.copy() #reset index data_X.reset_index(drop=True, inplace=True) data_y.reset_index(drop=True, inplace=True) progress.value += 1 logger.info("Importing libraries") #import sklearn dependencies from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.linear_model import ElasticNet from sklearn.linear_model import Lars from sklearn.linear_model import LassoLars from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import BayesianRidge from sklearn.linear_model import ARDRegression from sklearn.linear_model import PassiveAggressiveRegressor from sklearn.linear_model import RANSACRegressor from sklearn.linear_model import TheilSenRegressor from sklearn.linear_model import HuberRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.svm import SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from xgboost import XGBRegressor from catboost import CatBoostRegressor try: import lightgbm as lgb except: pass logger.info("LightGBM import failed") progress.value += 1 ''' MONITOR UPDATE STARTS ''' monitor.iloc[1,1:] = 'Loading Estimator' if verbose: if html_param: update_display(monitor, display_id = 'monitor') ''' MONITOR UPDATE ENDS ''' logger.info("Importing untrained models") #creating model object lr = LinearRegression(n_jobs=n_jobs_param) lasso = Lasso(random_state=seed) ridge = Ridge(random_state=seed) en = ElasticNet(random_state=seed) lar = Lars() llar = LassoLars() omp = OrthogonalMatchingPursuit() br = BayesianRidge() ard = ARDRegression() par = PassiveAggressiveRegressor(random_state=seed) ransac = RANSACRegressor(min_samples=0.5, random_state=seed) tr = TheilSenRegressor(random_state=seed, n_jobs=n_jobs_param) huber = HuberRegressor() kr = KernelRidge() svm = SVR() knn = KNeighborsRegressor(n_jobs=n_jobs_param) dt = DecisionTreeRegressor(random_state=seed) rf = RandomForestRegressor(random_state=seed, n_jobs=n_jobs_param) et = ExtraTreesRegressor(random_state=seed, n_jobs=n_jobs_param) ada = AdaBoostRegressor(random_state=seed) gbr = GradientBoostingRegressor(random_state=seed) mlp = MLPRegressor(random_state=seed) xgboost = XGBRegressor(random_state=seed, n_jobs=n_jobs_param, verbosity=0) lightgbm = lgb.LGBMRegressor(random_state=seed, n_jobs=n_jobs_param) catboost = CatBoostRegressor(random_state=seed, silent = True, thread_count=n_jobs_param) logger.info("Import successful") progress.value += 1 model_dict = {'Linear Regression' : 'lr', 'Lasso Regression' : 'lasso', 'Ridge Regression' : 'ridge', 'Elastic Net' : 'en', 'Least Angle Regression' : 'lar', 'Lasso Least Angle Regression' : 'llar', 'Orthogonal Matching Pursuit' : 'omp', 'Bayesian Ridge' : 'br', 'Automatic Relevance Determination' : 'ard', 'Passive Aggressive Regressor' : 'par', 'Random Sample Consensus' : 'ransac', 'TheilSen Regressor' : 'tr', 'Huber Regressor' : 'huber', 'Kernel Ridge' : 'kr', 'Support Vector Machine' : 'svm', 'K Neighbors Regressor' : 'knn', 'Decision Tree' : 'dt', 'Random Forest' : 'rf', 'Extra Trees Regressor' : 'et', 'AdaBoost Regressor' : 'ada', 'Gradient Boosting Regressor' : 'gbr', 'Multi Level Perceptron' : 'mlp', 'Extreme Gradient Boosting' : 'xgboost', 'Light Gradient Boosting Machine' : 'lightgbm', 'CatBoost Regressor' : 'catboost'} model_library = [lr, lasso, ridge, en, lar, llar, omp, br, ard, par, ransac, tr, huber, kr, svm, knn, dt, rf, et, ada, gbr, mlp, xgboost, lightgbm, catboost] model_names = ['Linear Regression', 'Lasso Regression', 'Ridge Regression', 'Elastic Net', 'Least Angle Regression', 'Lasso Least Angle Regression', 'Orthogonal Matching Pursuit', 'Bayesian Ridge', 'Automatic Relevance Determination', 'Passive Aggressive Regressor', 'Random Sample Consensus', 'TheilSen Regressor', 'Huber Regressor', 'Kernel Ridge', 'Support Vector Machine', 'K Neighbors Regressor', 'Decision Tree', 'Random Forest', 'Extra Trees Regressor', 'AdaBoost Regressor', 'Gradient Boosting Regressor', 'Multi Level Perceptron', 'Extreme Gradient Boosting', 'Light Gradient Boosting Machine', 'CatBoost Regressor'] #checking for exclude models model_library_str = ['lr', 'lasso', 'ridge', 'en', 'lar', 'llar', 'omp', 'br', 'ard', 'par', 'ransac', 'tr', 'huber', 'kr', 'svm', 'knn', 'dt', 'rf', 'et', 'ada', 'gbr', 'mlp', 'xgboost', 'lightgbm', 'catboost'] model_library_str_ = ['lr', 'lasso', 'ridge', 'en', 'lar', 'llar', 'omp', 'br', 'ard', 'par', 'ransac', 'tr', 'huber', 'kr', 'svm', 'knn', 'dt', 'rf', 'et', 'ada', 'gbr', 'mlp', 'xgboost', 'lightgbm', 'catboost'] if exclude is not None: if turbo: internal_exclude = ['kr', 'ard', 'mlp'] compiled_exclude = exclude + internal_exclude exclude = list(set(compiled_exclude)) else: exclude = exclude for i in exclude: model_library_str_.remove(i) si = [] for i in model_library_str_: s = model_library_str.index(i) si.append(s) model_library_ = [] model_names_= [] for i in si: model_library_.append(model_library[i]) model_names_.append(model_names[i]) model_library = model_library_ model_names = model_names_ if exclude is None and turbo is True: model_library = [lr, lasso, ridge, en, lar, llar, omp, br, par, ransac, tr, huber, svm, knn, dt, rf, et, ada, gbr, xgboost, lightgbm, catboost] model_names = ['Linear Regression', 'Lasso Regression', 'Ridge Regression', 'Elastic Net', 'Least Angle Regression', 'Lasso Least Angle Regression', 'Orthogonal Matching Pursuit', 'Bayesian Ridge', 'Passive Aggressive Regressor', 'Random Sample Consensus', 'TheilSen Regressor', 'Huber Regressor', 'Support Vector Machine', 'K Neighbors Regressor', 'Decision Tree', 'Random Forest', 'Extra Trees Regressor', 'AdaBoost Regressor', 'Gradient Boosting Regressor', 'Extreme Gradient Boosting', 'Light Gradient Boosting Machine', 'CatBoost Regressor'] #checking for include models if include is not None: model_library = [] model_names = [] for i in include: if i == 'lr': model_library.append(lr) model_names.append('Linear Regression') elif i == 'lasso': model_library.append(lasso) model_names.append('Lasso Regression') elif i == 'ridge': model_library.append(ridge) model_names.append('Ridge Regression') elif i == 'en': model_library.append(en) model_names.append('Elastic Net') elif i == 'lar': model_library.append(lar) model_names.append('Least Angle Regression') elif i == 'llar': model_library.append(llar) model_names.append('Lasso Least Angle Regression') elif i == 'omp': model_library.append(omp) model_names.append('Orthogonal Matching Pursuit') elif i == 'br': model_library.append(br) model_names.append('Bayesian Ridge') elif i == 'ard': model_library.append(ard) model_names.append('Automatic Relevance Determination') elif i == 'par': model_library.append(par) model_names.append('Passive Aggressive Regressor') elif i == 'ransac': model_library.append(ransac) model_names.append('Random Sample Consensus') elif i == 'tr': model_library.append(tr) model_names.append('TheilSen Regressor') elif i == 'huber': model_library.append(huber) model_names.append('Huber Regressor') elif i == 'kr': model_library.append(kr) model_names.append('Kernel Ridge') elif i == 'svm': model_library.append(svm) model_names.append('Support Vector Machine') elif i == 'knn': model_library.append(knn) model_names.append('K Neighbors Regressor') elif i == 'dt': model_library.append(dt) model_names.append('Decision Tree') elif i == 'rf': model_library.append(rf) model_names.append('Random Forest') elif i == 'et': model_library.append(et) model_names.append('Extra Trees Regressor') elif i == 'ada': model_library.append(ada) model_names.append('AdaBoost Regressor') elif i == 'gbr': model_library.append(gbr) model_names.append('Gradient Boosting Regressor') elif i == 'mlp': model_library.append(mlp) model_names.append('Multi Level Perceptron') elif i == 'xgboost': model_library.append(xgboost) model_names.append('Extreme Gradient Boosting') elif i == 'lightgbm': model_library.append(lightgbm) model_names.append('Light Gradient Boosting Machine') elif i == 'catboost': model_library.append(catboost) model_names.append('CatBoost Regressor') progress.value += 1 ''' MONITOR UPDATE STARTS ''' monitor.iloc[1,1:] = 'Initializing CV' if verbose: if html_param: update_display(monitor, display_id = 'monitor') ''' MONITOR UPDATE ENDS ''' #cross validation setup starts here logger.info("Defining folds") kf = KFold(fold, random_state=seed, shuffle=folds_shuffle_param) logger.info("Declaring metric variables") score_mae =np.empty((0,0)) score_mse =np.empty((0,0)) score_rmse =np.empty((0,0)) score_rmsle =np.empty((0,0)) score_r2 =np.empty((0,0)) score_mape =np.empty((0,0)) score_training_time=np.empty((0,0)) avgs_mae =np.empty((0,0)) avgs_mse =np.empty((0,0)) avgs_rmse =np.empty((0,0)) avgs_rmsle =np.empty((0,0)) avgs_r2 =np.empty((0,0)) avgs_mape =np.empty((0,0)) avgs_training_time=np.empty((0,0)) def calculate_mape(actual, prediction): mask = actual != 0 return (np.fabs(actual - prediction)/actual)[mask].mean() #create URI (before loop) import secrets URI = secrets.token_hex(nbytes=4) name_counter = 0 model_store = [] total_runtime_start = time.time() total_runtime = 0 over_time_budget = False if budget_time and budget_time > 0: logger.info(f"Time budget is {budget_time} minutes") for model in model_library: logger.info("Initializing " + str(model_names[name_counter])) #run_time runtime_start = time.time() progress.value += 1 ''' MONITOR UPDATE STARTS ''' monitor.iloc[2,1:] = model_names[name_counter] monitor.iloc[3,1:] = 'Calculating ETC' if verbose: if html_param: update_display(monitor, display_id = 'monitor') ''' MONITOR UPDATE ENDS ''' fold_num = 1 model_store_by_fold = [] for train_i , test_i in kf.split(data_X,data_y): logger.info("Initializing Fold " + str(fold_num)) progress.value += 1 t0 = time.time() total_runtime += (t0 - total_runtime_start)/60 logger.info(f"Total runtime is {total_runtime} minutes") over_time_budget = budget_time and budget_time > 0 and total_runtime > budget_time if over_time_budget: logger.info(f"Total runtime {total_runtime} is over time budget by {total_runtime - budget_time}, breaking loop") break total_runtime_start = t0 ''' MONITOR UPDATE STARTS ''' monitor.iloc[1,1:] = 'Fitting Fold ' + str(fold_num) + ' of ' + str(fold) if verbose: if html_param: update_display(monitor, display_id = 'monitor') ''' MONITOR UPDATE ENDS ''' Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i] ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i] time_start=time.time() logger.info("Fitting Model") model_store_by_fold.append(model.fit(Xtrain,ytrain)) logger.info("Evaluating Metrics") time_end=time.time() pred_ = model.predict(Xtest) try: pred_ = target_inverse_transformer.inverse_transform(np.array(pred_).reshape(-1,1)) ytest = target_inverse_transformer.inverse_transform(np.array(ytest).reshape(-1,1)) pred_ = np.nan_to_num(pred_) ytest = np.nan_to_num(ytest) except: pass logger.info("No inverse transformer found") logger.info("Compiling Metrics") mae = metrics.mean_absolute_error(ytest,pred_) mse = metrics.mean_squared_error(ytest,pred_) rmse = np.sqrt(mse) r2 = metrics.r2_score(ytest,pred_) rmsle = np.sqrt(np.mean(np.power(np.log(np.array(abs(pred_))+1) - np.log(np.array(abs(ytest))+1), 2))) mape = calculate_mape(ytest,pred_) training_time=time_end-time_start score_mae = np.append(score_mae,mae) score_mse = np.append(score_mse,mse) score_rmse = np.append(score_rmse,rmse) score_rmsle = np.append(score_rmsle,rmsle) score_r2 =np.append(score_r2,r2) score_mape = np.append(score_mape,mape) score_training_time=np.append(score_training_time,training_time) ''' TIME CALCULATION SUB-SECTION STARTS HERE ''' t1 = time.time() tt = (t1 - t0) * (fold-fold_num) / 60 tt = np.around(tt, 2) if tt < 1: tt = str(np.around((tt * 60), 2)) ETC = tt + ' Seconds Remaining' else: tt = str (tt) ETC = tt + ' Minutes Remaining' fold_num += 1 ''' MONITOR UPDATE STARTS ''' monitor.iloc[3,1:] = ETC if verbose: if html_param: update_display(monitor, display_id = 'monitor') ''' MONITOR UPDATE ENDS ''' if over_time_budget: break model_store.append(model_store_by_fold[0]) logger.info("Calculating mean and std") avgs_mae = np.append(avgs_mae,np.mean(score_mae)) avgs_mse = np.append(avgs_mse,np.mean(score_mse)) avgs_rmse = np.append(avgs_rmse,np.mean(score_rmse)) avgs_rmsle = np.append(avgs_rmsle,np.mean(score_rmsle)) avgs_r2 = np.append(avgs_r2,np.mean(score_r2)) avgs_mape = np.append(avgs_mape,np.mean(score_mape)) avgs_training_time = np.append(avgs_training_time,np.mean(score_training_time)) logger.info("Creating metrics dataframe") compare_models_ = pd.DataFrame({'Model':model_names[name_counter], 'MAE':avgs_mae, 'MSE':avgs_mse, 'RMSE':avgs_rmse, 'R2':avgs_r2, 'RMSLE':avgs_rmsle, 'MAPE':avgs_mape, 'TT (Sec)':avgs_training_time}) master_display = pd.concat([master_display, compare_models_],ignore_index=True) master_display = master_display.round(round) if sort == 'R2': master_display = master_display.sort_values(by=sort,ascending=False) else: master_display = master_display.sort_values(by=sort,ascending=True) master_display.reset_index(drop=True, inplace=True) if verbose: if html_param: update_display(master_display, display_id = display_id) #end runtime runtime_end = time.time() runtime = np.array(runtime_end - runtime_start).round(2) """ MLflow logging starts here """ if logging_param: logger.info("Creating MLFlow logs") import mlflow from pathlib import Path import os run_name = model_names[name_counter] with mlflow.start_run(run_name=run_name) as run: # Get active run to log as tag RunID = mlflow.active_run().info.run_id params = model.get_params() for i in list(params): v = params.get(i) if len(str(v)) > 250: params.pop(i) mlflow.log_params(params) #set tag of compare_models mlflow.set_tag("Source", "compare_models") mlflow.set_tag("URI", URI) mlflow.set_tag("USI", USI) mlflow.set_tag("Run Time", runtime) mlflow.set_tag("Run ID", RunID) #Log top model metrics mlflow.log_metric("MAE", avgs_mae[0]) mlflow.log_metric("MSE", avgs_mse[0]) mlflow.log_metric("RMSE", avgs_rmse[0]) mlflow.log_metric("R2", avgs_r2[0]) mlflow.log_metric("RMSLE", avgs_rmsle[0]) mlflow.log_metric("MAPE", avgs_mape[0]) mlflow.log_metric("TT", avgs_training_time[0]) # Log model and transformation pipeline from copy import deepcopy # get default conda env from mlflow.sklearn import get_default_conda_env default_conda_env = get_default_conda_env() default_conda_env['name'] = str(exp_name_log) + '-env' default_conda_env.get('dependencies').pop(-3) dependencies = default_conda_env.get('dependencies')[-1] from pycaret.utils import __version__ dep = 'pycaret==' + str(__version__()) dependencies['pip'] = [dep] # define model signature from mlflow.models.signature import infer_signature signature = infer_signature(data_before_preprocess.drop([target_param], axis=1)) input_example = data_before_preprocess.drop([target_param], axis=1).iloc[0].to_dict() # log model as sklearn flavor prep_pipe_temp = deepcopy(prep_pipe) prep_pipe_temp.steps.append(['trained model', model]) mlflow.sklearn.log_model(prep_pipe_temp, "model", conda_env = default_conda_env, signature = signature, input_example = input_example) del(prep_pipe_temp) score_mae =np.empty((0,0)) score_mse =np.empty((0,0)) score_rmse =np.empty((0,0)) score_rmsle =np.empty((0,0)) score_r2 =np.empty((0,0)) score_mape =np.empty((0,0)) score_training_time=np.empty((0,0)) avgs_mae = np.empty((0,0)) avgs_mse = np.empty((0,0)) avgs_rmse = np.empty((0,0)) avgs_rmsle = np.empty((0,0)) avgs_r2 = np.empty((0,0)) avgs_mape = np.empty((0,0)) avgs_training_time=np.empty((0,0)) name_counter += 1 progress.value += 1 def highlight_min(s): if s.name=='R2':# min to_highlight = s == s.max() else: to_highlight = s == s.min() return ['background-color: yellow' if v else '' for v in to_highlight] def highlight_cols(s): color = 'lightgrey' return 'background-color: %s' % color compare_models_ = master_display.style.apply(highlight_min,subset=['MAE','MSE','RMSE','R2','RMSLE','MAPE'])\ .applymap(highlight_cols, subset = ['TT (Sec)']) compare_models_ = compare_models_.set_precision(round) compare_models_ = compare_models_.set_properties(**{'text-align': 'left'}) compare_models_ = compare_models_.set_table_styles([dict(selector='th', props=[('text-align', 'left')])]) progress.value += 1 monitor.iloc[1,1:] = 'Compiling Final Model' monitor.iloc[3,1:] = 'Almost Finished' if verbose: if html_param: update_display(monitor, display_id = 'monitor') sorted_model_names = list(compare_models_.data['Model']) n_select = n_select if n_select <= len(sorted_model_names) else len(sorted_model_names) if n_select < 0: sorted_model_names = sorted_model_names[n_select:] else: sorted_model_names = sorted_model_names[:n_select] model_store_final = [] logger.info("Finalizing top_n models") logger.info("SubProcess create_model() called ==================================") for i in sorted_model_names: monitor.iloc[2,1:] = i if verbose: if html_param: update_display(monitor, display_id = 'monitor') progress.value += 1 k = model_dict.get(i) m = create_model(estimator=k, verbose = False, system=False, cross_validation=True) model_store_final.append(m) logger.info("SubProcess create_model() end ==================================") if len(model_store_final) == 1: model_store_final = model_store_final[0] clear_output() if verbose: if html_param: display(compare_models_) else: print(compare_models_.data)
pd.reset_option("display.max_columns")
pandas.reset_option
import pandas as pd from pandas.core.frame import DataFrame pd.options.display.max_rows=None pd.options.display.max_columns=None Actores = 'actores' NombreArchivo = f'Base_de_datos_{Actores}.ods' df_rows = pd.read_excel(NombreArchivo) #, index_col=0 df_rows2 = pd.read_excel(NombreArchivo, skiprows=range(0,1)) rows = df_rows.values.tolist() df_cols = df_rows.T cols = df_cols.values.tolist() rows2 = df_rows2.values.tolist() df_cols2 = df_rows2.T cols2 = df_cols2.values.tolist() # Defino la función para averiguar la columna que quiere elegir def col_of_list(lis, print1, print2): i = '' n = 0 col_eleg_l = '^*:;)=/q$·¡ª!3·~¬€fhg@|}j{[d]+`^*!vv"g$fb$*^Çç¨_:;;' #imposible de acertar por el usuario while col_eleg_l != i.lower(): if n >=1: print('\nOPCIÓN NO VÁLIDA') print(print1) for caracteristica in lis[:-1]: print(caracteristica, end=", ") print(lis[-1]) columna_elegida = input(print2) col_eleg_l = columna_elegida.lower() for i in lis: if col_eleg_l.lower() == i.lower(): break n += 1 columna = lis.index(i) return columna, col_eleg_l repetir = 's' lista_de_columnas_elegidas = [0, 2, 4] while repetir == 's': # Uso la función columna, col_eleg_l = col_of_list(rows[0], '\nDe estas características:', '\n¿Qué característica quieres elegir?: ') if columna not in lista_de_columnas_elegidas: lista_de_columnas_elegidas.append(columna) # Especifico para cuando escoge edad o altura, porque son números if col_eleg_l == 'edad' or col_eleg_l == 'estatura' or col_eleg_l == 'numero de actor': obj1 = float(input(f'\n¿Qué {col_eleg_l} mínima tiene la persona que buscas? (Decimales con punto y sin uds): ')) obj2 = float(input(f'¿Qué {col_eleg_l} máxima tiene la persona que buscas? (Decimales con punto y sin uds): ')) if obj1 > obj2: obj1, obj2 = obj2, obj1 n2 = 1 n1 = 0 for i2 in cols2[columna]: if obj1 > i2 or i2 > obj2: rows.pop(n2-n1) # Quitar la fila que no cumpla el requisito rows2.pop(n2-n1-1) n1 += 1 n2 += 1 # Especifico para cuando escoge las demás que no son números obj = '^*:;)=/q$·¡ª!3·~¬€fhg@|}j{[d]+`^*!vv"g$fb$*^Çç¨_:;;' #imposible de acertar por el usuario if col_eleg_l == 'edad' or col_eleg_l == 'estatura' or col_eleg_l == 'numero de actor': pass else: while obj.lower() not in [elementos.lower() for elementos in cols2[columna]]: if col_eleg_l == 'sexo': obj = input(f'¿A qué {col_eleg_l} pertenece la persona que buscas?: ') elif col_eleg_l == 'ciudad': obj = input(f'¿En qué {col_eleg_l} vive la persona que buscas?: ') elif col_eleg_l == 'idiomas': obj = input(f'¿Qué {col_eleg_l} sabe la persona que buscas?: ') elif col_eleg_l == 'carnet de conducir': obj = input(f'¿Tiene {col_eleg_l} la persona que buscas?: ') else: obj = input(f'¿Qué {col_eleg_l} tiene la persona que buscas?: ') n4 = 1 n3 = 0 for i3 in cols2[columna]: if obj.lower() != i3.lower(): rows.pop(n4-n3) # Quitar la fila que no cumpla el requisito rows2.pop(n4-n3-1) n3 += 1 n4 += 1 df_rows = DataFrame(rows) lista_de_columnas_elegidas = sorted(lista_de_columnas_elegidas) #ordena las columnas del dataframe print(df_rows[lista_de_columnas_elegidas]) cols = DataFrame(rows).T.values.tolist() cols2 = DataFrame(rows2).T.values.tolist() repetir = input('\nQuieres repetir el proceso para reducir la selección? (S/N): ').lower() while repetir != 's' and repetir != 'n': repetir = input('\nQuieres repetir el proceso para reducir la selección? (S/N): ').lower() retirada_manual = input('\nQuieres retirar algún actor de esta lista de forma manual? (S/N): ').lower() while retirada_manual == 's': while retirada_manual != 's' and retirada_manual != 'n': retirada_manual = input('\nQuieres retirar algún actor de esta lista de forma manual? (S/N): ').lower() if retirada_manual == 's': while True: num_actor_a_quitar = int(input('\nEl actor que quieres eliminar, ¿qué número ocupa en la lista?: ')) if num_actor_a_quitar == 0: print('El 0 quitaría el título, elige otro número (el 1 es el primero)') elif num_actor_a_quitar <= len(cols2[0]): break rows.pop(num_actor_a_quitar) df_rows =
DataFrame(rows)
pandas.core.frame.DataFrame
import numpy as np from typing import Tuple, List import cv2 from sklearn.mixture import GaussianMixture, BayesianGaussianMixture from skimage.color import label2rgb from skimage import img_as_ubyte from skimage.measure import block_reduce import pandas as pd from .basic import saturation_rectified_intensity, fg_pts def gmm(data: np.ndarray, n: int, method: str = 'default') -> \ Tuple[List[int], List[int]]: """ :param data: list of input :param n: number of components :param method: 'default' or 'bayesian' :return: (labels, means) """ # To avoid error, the number of components should be # no more than the length of input data. noc = min(len(data), n) if method.lower() == 'bayesian': model = BayesianGaussianMixture(n_components=noc, random_state=123) model.fit(data) else: model = GaussianMixture(n_components=noc, random_state=123) model.fit(data) return model.predict(data), model.means_ def global_gmm(image: np.ndarray, mask: np.ndarray, n: int, patch: Tuple[int, int]) -> \ Tuple[np.ndarray, np.ndarray, np.ndarray, pd.DataFrame]: """ :param image: grayscale image, 2D numpy array :param mask: binary image, 2D binary numpy array :param n: number of components :param patch: size of block :return: (3D numpy array, 2D numpy array, pandas data frame) Solve GMM for the image histogram, iteratively find the minimalist mean of GMM models and separate the corresponding points. """ # Down sample the images and masks to reduce calculation. image_down = block_reduce(image, patch, np.mean, 255) mask_down = block_reduce(mask, patch, np.min) mask_out = mask_down.copy() global_mean = int(np.mean(image_down[mask_down > 0])) label_out = np.zeros(mask_down.shape, dtype=np.uint8) nol = 0 # The count of labels. model_out =
pd.DataFrame(columns=[0, 1])
pandas.DataFrame
#!/usr/bin/python # -*- coding: utf-8 -*- """ Modelagem em tempo real | COVID-19 no Brasil -------------------------------------------- Ideias e modelagens desenvolvidas pela trinca: . <NAME> . <NAME> . <NAME> Esta modelagem possui as seguintes características: a) NÃO seguimos modelos paramétricos => Não existem durante a epidemia dados suficientes ou confiáveis para alimentar modelos epidemiológicos como a excelente calaculadora http://gabgoh.github.io/COVID/index.html (ela serve para gerar cená- rios e para modelar a epidemia DEPOIS que ela passar). Além disso, a natureza exponencial das curvas as torna extremamente sensíveis aos parâmetros que a defi- nem. Isso faz com que a confiabilidade preditiva desses modelos seja ilusória. b) A evolução epidemia no Brasil começou depois da de outros países. Nossa mode- lagem se apoia nesse fato. Com os dados disponíveis, procuramos no instante pre- sente determinar quem estamos seguindo, ou seja, que países mais se pareceram conosco passado o mesmo período de disseminação. A partir do que aconteceu nesses países projetamos o que pode acontecer aqui. c) Esta conta é refeita dia a dia. Dependendo de nossa competência em conter ou não a disseminação do Covid-19 nos aproximaremos dos países que melhor ou pior lidaram com a epidemia e a projeção refletirá essa similaridade. d) As decisões de modelagem são indicadas no código com os zoinhos: # ◔◔ {...} São pontos de partida para discutir a modelagem e propor alternativas. """ import datetime import requests import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns sns.set() # no ipython usar este comando antes de rodar => %matplotlib osx import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) __author__ = "<NAME>" # codigo __copyright__ = "Copyright 2020" __license__ = "New BSD License" __version__ = "1.5.2" __email__ = "<EMAIL>" __status__ = "Experimental" def preparar_dados(p1, uf="SP", cidade=u"São Paulo"): u"""Busca dados e organiza tabela "data" com os dados de referência para a modelagem. Fontes: . Mundo: https://covid.ourworldindata.org . Brasil: https://brasil.io Retorna: raw <DataFrame> | Série completa do número de mortes/dia por país, sem trans- posição temporal inicio <Series> | Referência dos indexes em raw para justapor o início das curvas dos diferentes países data <DataFrame> | Série de número de mortes/dia por país trazendo para o zero (index 0) o primeiro dia em que ocorrem pelo menos p1 mortes (ver macro parâmetros). Isto reduz a quantidade de países para o grupo que está à frente ou pareado ao Brazil. A partir do index 0 é possível comparar a evolução dos casos entre os países. nbr <int> | Número de dias da série de dados para o Brasil """ # ◔◔ {usamos as mortes diárias por parecer ser o dado mais confiável} raw = pd.read_csv("https://covid.ourworldindata.org/data/ecdc/new_deaths.csv").fillna(0.0) # ◔◔ {o link abaixo carrega o acumulado de mortes, não usamos pq a soma vai alisando a série} # raw_soma = pd.read_csv("https://covid.ourworldindata.org/data/ecdc/total_deaths.csv").fillna(0.0) # tempo = raw['date'] # ◔◔ {não usamos as datas} raw = raw.drop(columns='date') raw = raw.drop(columns='World') # para ver tbem os dados "oficias" para_oficial = raw['Brazil'] # correcao de subnotificacao Brasil: sub, hip = estimar_subnotificacao('Brasil') p4br = ((sub + raw['Brazil'].sum()) / raw['Brazil'].sum()) raw['Brasil'] = raw['Brazil'] * p4br # dict subs usa mesmas refs como chave => para reportar nos graficos subs = {"Brasil": str(round(p4br, 1)) + " (" + hip + ")"} # contruir base para a tabela "data" inicio = raw.ge(p1).idxmax() # ◔◔ {encontra os index de qdo cada pais alcança p1} data = pd.DataFrame({'Brasil':raw['Brasil'][inicio['Brasil']:]}).reset_index().drop(columns='index') nbr = data.shape[0] oficial = pd.DataFrame({'Brasil':para_oficial[inicio['Brasil']:]}).reset_index().drop(columns='index') # dados Brasil estados = [ 'AC', 'AL', 'AP', 'AM', 'BA', 'CE', 'DF', 'ES', 'GO', 'MA', 'MT', 'MS', 'MG', 'PA', 'PB', 'PR', 'PE', 'PI', 'RJ', 'RN', 'RS', 'RO', 'RR', 'SC', 'SP', 'SE', 'TO', ] if uf not in estados or type(uf) is not str: uf = "SP" print(uf, u": UF inválida, usando 'SP'") # ◔◔ {já baixamos filtrado para uf, mas pode se usar outros estados} uf_data = pd.read_csv("https://brasil.io/dataset/covid19/caso?state="+uf+"&format=csv") # adicionar dados da uf uf_select = uf_data.loc[lambda df: df['place_type'] == "state", :] uf_mortes = list(uf_select['deaths'].head(nbr + 1).fillna(0.0)) uf_mortes = [uf_mortes[i] - uf_mortes[i+1] for i in range(len(uf_mortes)-1)] uf_mortes += [0 for _ in range(nbr-len(uf_mortes))] # corrigir tamanho uf_mortes.reverse() oficial[uf] = pd.Series(uf_mortes).values sub_uf, hip_uf = estimar_subnotificacao(uf) p4uf = ((sub_uf + pd.Series(uf_mortes).values.sum())/pd.Series(uf_mortes).values.sum()) data[uf] = pd.Series(uf_mortes).values * p4uf subs[uf] = str(round(p4uf, 1)) + " (" + hip_uf + ")" # adicionar dados da cidade cidade_select = uf_data.loc[lambda df: df['city'] == cidade, :] if cidade_select.shape[0] > 0: cidade_mortes = list(cidade_select['deaths'].head(nbr + 1).fillna(0.0)) cidade_mortes = [cidade_mortes[i] - cidade_mortes[i+1] for i in range(len(cidade_mortes)-1)] cidade_mortes += [0 for _ in range(nbr-len(cidade_mortes))] # corrigir tamanho cidade_mortes.reverse() if sum(cidade_mortes): # subnotificacao para cidade => aprox pela do estado oficial[cidade] = pd.Series(cidade_mortes).values data[cidade] = pd.Series(cidade_mortes).values * p4uf subs[cidade] = str(round(p4uf, 1)) + " (" + hip_uf + ")" else: subs["n/d"] = "" print(u"AVISO: a cidade " + cidade + " não possui mortes confirmadas") else: subs["n/d"] = "" print(u"AVISO: a cidade " + cidade + " não consta nos dados para esta UF") print(u'Utilize uma das cidades disponíveis para o terceiro gráfico:') for d in set(uf_data['city']): print(d) refs = list(subs.keys()) # as referencias validas... # adicionar dados dos países à frente ou pareados ao Brasil for k in inicio.keys(): if k == "Brasil": continue if inicio[k] == 0 or inicio[k] > inicio["Brasil"]: continue C = raw[k][inicio[k]:inicio[k]+nbr] data[k] = C.values return raw, inicio, data, nbr, subs, refs, oficial def rodar_modelo(raw, inicio, data, nbr, p2, p3, ref, refs): """ Usa os dados preparados para gerar dados para visualização e a projeção da evoluação da epidemia. Retorna: correlacionados <list>: Países mais correlacionados, usados para a projeção calibrados <DataFrame>: Série alisada de mortes por dia com dados de ref e países correlacionados projetado <Array>: Série estimada para a evoluação da epidemia em ref infos <dict>: informações sobre o pico estimado da epidemia """ # ◔◔ {Optamos por não alisar dados antes de calcular a correlação. Sabemos # que a qualidade do report dos dados é variável, mas assumimos que o ruído # é aleatório e por isso não é preciso alisar para que a correlação seja # válida. Ao contrário, a correlação "bruta" seria a mais verossível} # ◔◔ {mas caso você ache que vale a pena alisar antes, use o codigo abaixo} # alisamento para os casos de morte reportados (média móvel) # data = data.rolling(5).mean() try: data = data.drop(columns='Brazil') except: pass # calcular a matriz de correlações: pearson = data.corr() # ◔◔ {o default do método usa a correlação de Pearson, cf. ref abaixo} # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html # ◔◔ { não incluir os casos locais para evitar endogeneidade} out = refs # nao misturar com os demais cortes locais # selecionar os p2 países que melhor se correlacionam com a ref correlacionados = [_ for _ in pearson[ref].sort_values(ascending=False).keys() if _ not in out][:p2] # criar tabela, começa com dados da ref calibrados = pd.DataFrame({ref:data[ref]}) # preencher com os dados dos países correlacionados for k in correlacionados: # ◔◔ {pega os dados em raw pq agora usaremos todos os dados disponíveis para o país} C = raw[k][inicio[k]:] additional = pd.DataFrame({k: C.values}) # array calibrados = pd.concat([calibrados, additional], axis=1) # ◔◔ {aqui usamos um alisamento p3 de dias para deixar a visualização melhor} calibrados = calibrados.rolling(p3).mean() # ◔◔ {a projeção usa os dados alisados} # ◔◔ {como é feita a projeção: # 1. cada país correlacionado terá um peso, proporcianal a quanto se correlaciona # .. soma dos pesos = 1 # .. quanto mais correlacionado, maior o peso } pesos = [pearson[ref][c] for c in correlacionados] # melhor corr pesa mais pesos = [pesos[i]/sum(pesos) for i in range(len(pesos))] # pesos normalizados pesos = dict(zip(correlacionados, pesos)) # num dict para facilitar # proj <list>: vai ter ao final o tamanho da maior serie em calibrados proj = [np.nan for _ in range(nbr)] # começa com nan onde já temos os dados da ref proj[-1] = calibrados[ref][nbr - 1] # primeiro valor coincide com último de ref # será a partir daí que começa a projeção # ◔◔ {a projeção segue dia a dia as variações dos países correlacionado} for d in range(nbr, calibrados.shape[0]): x = 0 # incremento estimado para o dia for c in correlacionados: if not np.isnan(calibrados[c][d]): # adiciona o incremento % do país ponderado por seu peso x += (calibrados[c][d]/calibrados[c][d-1]) * pesos[c] else: # ◔◔ {qdo acabam os dados de um país ele pára de influenciar a taxa} x += 1 * pesos[c] # print(d, c, x) # a série da projeção é construída aplicando o incremento estimado ao dia anterior proj.append(proj[-1] * x) # projetado <Array> projetado = np.array(proj) # ◔◔ {informações adicionais} # pico => valor máximo da série projetada pico = np.nan_to_num(projetado).max() # float # mortes valor absoluto mortes_no_pico = str(int(pico)) # str ix_do_pico = proj.index(np.nan_to_num(projetado).max()) # int => index # dia em que acontece o pico [! soma 1 no index pq projetado sobrepoe o primeiro valor] dia_do_pico = str(datetime.datetime.now() + datetime.timedelta(days=ix_do_pico-nbr+1))[:10] # str # no caso do pico já ter passado if calibrados[ref].max() > pico: pico = calibrados[ref].max() mortes_no_pico = str(int(pico)) ix_do_pico = list(calibrados[ref]).index(pico) dia_do_pico = str(datetime.datetime.now() + datetime.timedelta(days=ix_do_pico-nbr))[:10] # str # mortes totais: hoje mais tres semanas ix_hoje = list(calibrados[ref]).index(calibrados[ref][nbr - 1]) mortes_totais = { str(datetime.datetime.now())[:10]: int(calibrados[ref].sum()), str(datetime.datetime.now() + datetime.timedelta(days=7))[:10]: int(calibrados[ref].sum()+projetado[nbr+1:nbr+1+7].sum()), str(datetime.datetime.now() + datetime.timedelta(days=14))[:10]: int(calibrados[ref].sum()+projetado[nbr+1:nbr+1+14].sum()), str(datetime.datetime.now() + datetime.timedelta(days=21))[:10]: int(calibrados[ref].sum()+projetado[nbr+1:nbr+1+21].sum()), } # consolidado para output infos = { "mortes_no_pico": mortes_no_pico, "dia_do_pico": dia_do_pico, "pico": pico, "index": ix_do_pico, "mt": mortes_totais, } return correlacionados, calibrados, projetado, infos def gerar_fig_relatorio(p1, p2, p3, uf, cidade): """Roda vários cenários e monta mosaico de gráficos + notas.""" notas = u""" Sobre o modelo e as estimativas: As projeções são obtidas a partir da trajetória observada nos três países que melhor se correlacionem com a evolução dos dados do Brasil e localidades. O desenho da curva projetada (pontilhada) é reflexo do comportamento observado nos países seguidos. Conforme a epidemia avança a referência pode mudar. Outros parâmetros relevantes: • os valores são corrigidos por uma estimativa de subnotificação (s) calculado para duas situações: (a) mortes suspeitas aguardando confirmação e ainda não notificadas (b) mortes potencialmente devido à Covid-19 notificadas como devidas a outras causas • as curvas dos diferentes lugares são emparelhadas a partir do dia em que ocorrem N ou mais mortes (eixo x). • as curvas são alisadas (médias móveis), por isso não iniciam no dia zero. O alisamento permite melhor visualização das curvas mas pode gerar algum desvio com relação aos número diários absolutos. • as projeções são recalculadas diariamente e podem sofrer alterações significativas em função das novas informações incorporadas. Fontes dos dados: https://covid.ourworldindata.org https://brasil.io https://transparencia.registrocivil.org.br """ equipe = u' M.Zac | L.Tozi | R.Luciano || https://github.com/Maurozac/covid-br/blob/master/compara.py' totais = u""" Mortes estimadas (acumulado)""" hoje = str(datetime.datetime.now())[:16] fig, ax = plt.subplots(1, 3, figsize=(12, 6), sharex=True, sharey=True) fig.suptitle(u"Projeção da epidemia Covid-19" + " | " + hoje, fontsize=12) fig.subplots_adjust(bottom=0.5) fig.text(0.33, 0.42, notas, fontsize=7, verticalalignment='top') fig.text(0.33, 0.02, equipe, family="monospace", fontsize='6', color='#ff003f', horizontalalignment='left') raw, inicio, data, nbr, subs, refs, oficial = preparar_dados(p1, uf, cidade) for i in [0, 1, 2]: if refs[i] == 'n/d': ax[i].set_title(u"Dados não disponíveis", fontsize=8) break correlacionados, calibrados, projetado, infos = rodar_modelo(raw, inicio, data, nbr, p2, p3, refs[i], refs) ax[i].set_title(refs[i], fontsize=8) ax[i].set_xlabel(u'Dias desde ' + str(p1) + ' mortes em um dia', fontsize=8) ax[i].set_xlim(0, calibrados.shape[0]+25) ax[i].set_ylabel(u'Mortes por dia', fontsize=8) for c in correlacionados: ax[i].plot(calibrados[c], linewidth=3, color="#ff7c7a") lvi = calibrados[c].last_valid_index() ax[i].text(lvi+1, calibrados[c][lvi], c, fontsize=6, verticalalignment="center") ax[i].plot(calibrados[refs[i]], linewidth=3, color="#1f78b4") ax[i].plot(projetado, linewidth=2, linestyle=":", color="#1f78b4") lvi =
pd.Series(projetado)
pandas.Series
# Copyright (c) 2019-2020, RTE (https://www.rte-france.com) # See AUTHORS.txt # This Source Code Form is subject to the terms of the Apache License, version 2.0. # If a copy of the Apache License, version 2.0 was not distributed with this file, you can obtain one at http://www.apache.org/licenses/LICENSE-2.0. # SPDX-License-Identifier: Apache-2.0 # This file is part of hadar-simulator, a python adequacy library for everyone. import unittest import numpy as np import pandas as pd from pandas import MultiIndex from hadar.workflow.pipeline import ( Stage, FreePlug, RestrictedPlug, FocusStage, Clip, Rename, Drop, Fault, RepeatScenario, Pipeline, ) class Double(Stage): def __init__(self): Stage.__init__(self, FreePlug()) def _process_timeline(self, timelines: pd.DataFrame) -> pd.DataFrame: return timelines * 2 class Max9(Stage): def __init__(self): Stage.__init__(self, FreePlug()) def _process_timeline(self, timelines: pd.DataFrame) -> pd.DataFrame: return timelines.clip(None, 9) class Divide(FocusStage): def __init__(self): Stage.__init__(self, RestrictedPlug(inputs=["a", "b"], outputs=["d", "r"])) def _process_scenarios(self, n_scn: int, scenario: pd.DataFrame) -> pd.DataFrame: scenario.loc[:, "d"] = (scenario["a"] / scenario["b"]).apply(np.floor) scenario.loc[:, "r"] = scenario["a"] - scenario["b"] * scenario["d"] return scenario.drop(["a", "b"], axis=1) class Inverse(FocusStage): def __init__(self): FocusStage.__init__(self, RestrictedPlug(inputs=["d"], outputs=["d", "-d"])) def _process_scenarios(self, n_scn: int, scenario: pd.DataFrame) -> pd.DataFrame: scenario.loc[:, "-d"] = -scenario["d"] return scenario.copy() class Wrong(Stage): def __init__(self): Stage.__init__(self, plug=RestrictedPlug(inputs=["e"], outputs=["e"])) def _process_timeline(self, timeline: pd.DataFrame) -> pd.DataFrame: return timeline class TestFreePlug(unittest.TestCase): def test_linkable_to(self): self.assertTrue(FreePlug().linkable_to(FreePlug())) def test_join_to_fre(self): # Input a = FreePlug() b = FreePlug() # Test c = a + b self.assertEqual(a, c) def test_join_to_restricted(self): # Input a = FreePlug() b = RestrictedPlug(inputs=["a", "b"], outputs=["c", "d"]) # Test c = a + b self.assertEqual(b, c) class TestRestrictedPlug(unittest.TestCase): def test_linkable_to_free(self): # Input a = RestrictedPlug(inputs=["a"], outputs=["b"]) # Test self.assertTrue(a.linkable_to(FreePlug())) def test_linkable_to_restricted_ok(self): # Input a = RestrictedPlug(inputs=["a"], outputs=["b", "c", "d"]) b = RestrictedPlug(inputs=["b", "c"], outputs=["e"]) # Test self.assertTrue(a.linkable_to(b)) def test_linkable_to_restricted_wrong(self): # Input a = RestrictedPlug(inputs=["a"], outputs=["b", "c", "d"]) b = RestrictedPlug(inputs=["b", "c", "f"], outputs=["e"]) # Test self.assertFalse(a.linkable_to(b)) def test_join_to_free(self): # Input a = RestrictedPlug(inputs=["a"], outputs=["b"]) # Test b = a + FreePlug() self.assertEqual(a, b) def test_join_to_restricted(self): # Input a = RestrictedPlug(inputs=["a"], outputs=["b", "c", "d"]) b = RestrictedPlug(inputs=["b", "c"], outputs=["e"]) # Expected exp = RestrictedPlug(inputs=["a"], outputs=["e", "d"]) # Test c = a + b self.assertEqual(exp, c) class TestPipeline(unittest.TestCase): def test_compute(self): # Input i = pd.DataFrame({"a": [1, 2, 3]}) pipe = Pipeline(stages=[Double(), Double()]) # Expected exp = pd.DataFrame({(0, "a"): [4, 8, 12]}) # Test & Verify o = pipe(i) pd.testing.assert_frame_equal(exp, o) def test_add(self): # Input i = pd.DataFrame({"a": [1, 2, 3], "b": [1, 2, 3]}) pipe = Pipeline(stages=[Double(), Double()]) pipe += Divide() # Expected exp = pd.DataFrame({(0, "d"): [1, 1, 1], (0, "r"): [0, 0, 0]}, dtype=float) # Test & Verify o = pipe(i) self.assertEqual(3, len(pipe.stages)) self.assertIsInstance(pipe.plug, RestrictedPlug) pd.testing.assert_frame_equal(exp, o) def test_link_pipeline_free_to_free(self): # Input i = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) pipe = Double() + Max9() # Expected exp = pd.DataFrame({(0, "a"): [2, 4, 6], (0, "b"): [8, 9, 9]}) # Test & Verify o = pipe(i) pd.testing.assert_frame_equal(exp, o) self.assertEqual([], pipe.plug.inputs) self.assertEqual([], pipe.plug.outputs) def test_link_pipeline_free_to_restricted(self): # Input i = pd.DataFrame({"a": [10, 20, 32], "b": [4, 5, 6]}) pipe = Double() + Divide() # Expected exp = pd.DataFrame({(0, "d"): [2, 4, 5], (0, "r"): [4, 0, 4]}, dtype="float") # Test & Verify o = pipe(i) pd.testing.assert_frame_equal(exp, o) self.assertEqual(["a", "b"], pipe.plug.inputs) self.assertEqual(["d", "r"], pipe.plug.outputs) def test_link_pipeline_restricted_to_free(self): # Input i = pd.DataFrame({"a": [10, 20, 32], "b": [4, 5, 6]}) pipe = Divide() + Double() # Expected exp = pd.DataFrame({(0, "d"): [4, 8, 10], (0, "r"): [4, 0, 4]}, dtype="float") # Test & Verify o = pipe(i) pd.testing.assert_frame_equal(exp, o) self.assertEqual(["a", "b"], pipe.plug.inputs) self.assertEqual(["d", "r"], pipe.plug.outputs) def test_link_pipeline_restricted_to_restricted(self): # Input i = pd.DataFrame({"a": [10, 20, 32], "b": [4, 5, 6]}) pipe = Divide() + Inverse() # Expected exp = pd.DataFrame( {(0, "d"): [2, 4, 5], (0, "-d"): [-2, -4, -5], (0, "r"): [2, 0, 2]}, dtype="float", ) # Test & Verify o = pipe(i) pd.testing.assert_frame_equal(exp, o) self.assertEqual({"a", "b"}, set(pipe.plug.inputs)) self.assertEqual({"d", "-d", "r"}, set(pipe.plug.outputs)) def test_wrong_link(self): # Test & Verify self.assertRaises(ValueError, lambda: Divide() + Wrong()) class TestStage(unittest.TestCase): def test_compute(self): # Input i = pd.DataFrame( { (0, "a"): [1, 2, 3], (0, "b"): [4, 5, 6], (1, "a"): [10, 20, 30], (1, "b"): [40, 50, 60], } ) stage = Double() # Expected exp = pd.DataFrame( { (0, "a"): [2, 4, 6], (0, "b"): [8, 10, 12], (1, "a"): [20, 40, 60], (1, "b"): [80, 100, 120], } ) # Test & Verify o = stage(i) pd.testing.assert_frame_equal(exp, o) def test_wrong_compute(self): i = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) pipe = Inverse() self.assertRaises(ValueError, lambda: pipe(i)) def test_standardize_column(self): i = pd.DataFrame({"a": [1, 2, 3]}) # Expected exp = pd.DataFrame({(0, "a"): [1, 2, 3]}) res = Stage.standardize_column(i) pd.testing.assert_frame_equal(exp, res) def test_build_multi_index(self): # Input scenarios = [1, 2, 3] names = ["a", "b"] # Expected exp = MultiIndex.from_tuples( [(1, "a"), (1, "b"), (2, "a"), (2, "b"), (3, "a"), (3, "b")] ) # Test & Verify index = Stage.build_multi_index(scenarios=scenarios, names=names) pd.testing.assert_index_equal(exp, index) class TestFocusPipeline(unittest.TestCase): def test_compute(self): # Input i = pd.DataFrame( { (0, "b"): [1, 2, 3], (0, "a"): [4, 5, 6], (1, "b"): [10, 20, 30], (1, "a"): [40, 50, 60], } ) pipe = Divide() # Expected exp = pd.DataFrame( { (0, "d"): [4, 2, 2], (0, "r"): [0, 1, 0], (1, "d"): [4, 2, 2], (1, "r"): [0, 10, 0], }, dtype="float", ) # Test & Verify o = pipe(i)
pd.testing.assert_frame_equal(exp, o)
pandas.testing.assert_frame_equal
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import joblib import calendar from datetime import datetime, timedelta from collections import OrderedDict from constants import * plt.style.use('seaborn-whitegrid') if not os.path.exists('tmp'): os.mkdir('tmp') class Covid: database = {'confirmed' : '', 'suspicious' : '', 'negatives' : '', 'deaths' : '', 'patients' : ''} def __init__(self,state): if state.lower() in ['national','nacional','all','country']: self.state = 'Nacional' elif state.lower() in ['cdmx', 'distritofederal', 'df', 'ciudad de mexico']: self.state = 'DISTRITO FEDERAL' elif state.upper() not in cdns_states: print_state_names(state) return else: self.state = state.upper() self.state_code = inverse_dict_for_name_states[self.state] def __str__(self): return f'Data for {self.state},\nstate code: {self.state_code},\npopulation: {self.population()}' def discrete(self,data_type): data = pd.read_csv(Covid.database[data_type], encoding='ANSI') return data.loc[data['nombre'] == self.state].values[0][3:] def cummulative(self,data_type): data = pd.read_csv(Covid.database[data_type], encoding='ANSI') cummulative = [] raw = data.loc[data['nombre'] == self.state] for i in raw.values[0][3:]: if len(cummulative) == 0: cummulative.append(i) else: cummulative.append(i+cummulative[-1]) return np.array(cummulative) def actives(self,window=14): try: return joblib.load(f'tmp/{self.state}_actives_w_{window}_{Covid.database["patients"][3:6]}.pkl') except: pass if self.state == 'Nacional': data = pd.read_csv(Covid.database['patients'], encoding='ANSI') data = change_df_names(data) else: data = pd.read_csv(Covid.database['patients'], encoding='ANSI') data = change_df_names(data) data = data[data['lives_at'] == self.state_code] data = data[data['result']==1] data['onset_symptoms'] = pd.to_datetime(data['onset_symptoms']) set_dates = set(data['onset_symptoms']) timeline= pd.date_range(start=min(set_dates), end = data['Updated_at'].iloc[0]) result = {key:0 for key in timeline} for ind, day_active in enumerate(data['onset_symptoms']): for _ in range(window): if day_active not in timeline: break elif data['day_of_death'].iloc[ind] != '9999-99-99' and day_active > pd.to_datetime(data['day_of_death'].iloc[ind]): break else: result[day_active] +=1 day_active = day_active + timedelta(days=1) new_data =
pd.DataFrame()
pandas.DataFrame
""" Main script for the paper A Comparison of Patient History- and EKG-based Cardiac Risk Scores <NAME>, <NAME>, <NAME> Proceedings of the AMIA Summit on Clinical Research Informatics (CRI), 2018 Runs various models, saves prediction outcomes. """ import feather, os, sys, pickle from torch.autograd import Variable import torch import numpy as np import pandas as pd from collections import OrderedDict # import my code from ekgmodels import misc, base, mlp, resnet import experiment_data as ed import simple_baseline as sb ############################################################################# # Runs all models for all outcomes, saves model output # # to directory called # # % prediction-output/<outcome> # # where <outcome> is one of # - "future_afib" # - "stroke_6m" # - "troponin" # - "mace" ############################################################################# run_ehr_baselines = True run_beatnet = True run_resnet = True features = ["simple", "remark", #"vae", #"remark-vae", #"simple-vae", "simple-remark"] #"simple-remark-vae"] def run_models(): """ run all models for comparison --- takes a while """ # feature sets and combinations to compare # Non Deep Methods if run_ehr_baselines: run_outcome(outcome = "future_afib", features=features) run_outcome(outcome = "stroke_6m", features=features) run_outcome(outcome = "troponin", features=features) run_outcome(outcome = "mace", features=features) # MLP outcomes if run_beatnet: run_mlp_outcome(outcome='troponin') run_mlp_outcome(outcome='future_afib') run_mlp_outcome(outcome='mace') run_mlp_outcome(outcome='stroke_6m') # full trace Resnet if run_resnet: run_resnet_outcome(outcome='future_afib') run_resnet_outcome(outcome='mace') run_resnet_outcome(outcome='stroke_6m') run_resnet_outcome(outcome='troponin') def make_figures(): """ make all figures from saved files (in "./prediction-output") """ # first figure --- full ekg example plot_full_ekg_example() # stitch together results table outcomes = ['future_afib', "stroke_6m", "mace"] + \ ['trop_3d', 'trop_7d' ,'trop_30d', 'trop_180d'] aucdf_no_hist = results_table(outcomes=outcomes, features=features, do_logreg=True, do_net=True, subset="no_history") aucdf = results_table(outcomes=outcomes, features=features, do_logreg=True, do_net=True, subset=None) # compute "improvement above simple, improvement above remark, etc" # look at high MACE risk scores from beatnet plot_age_based_risk(outcome="mace") plot_age_based_risk(outcome="stroke_6m") plot_age_based_risk(outcome="trop_30d") plot_age_based_risk(outcome="trop_180d") plot_age_based_risk(outcome="future_afib") for cat in ['gender', 'race']: plot_aucs_by_category(outcome="mace", category=cat) plot_aucs_by_category(outcome="stroke_6m", category=cat) plot_aucs_by_category(outcome="trop_180d", category=cat) plot_aucs_by_category(outcome="trop_30d", category=cat) plot_aucs_by_category(outcome="future_afib", category=cat) plot_predictive_aucs(outcome="mace") plot_predictive_aucs(outcome="trop_30d") plot_predictive_aucs(outcome="trop_180d") plot_predictive_aucs(outcome="future_afib") plot_predictive_aucs(outcome="stroke_6m") # construct and save cohort table tabledf = ed.make_cohort_table() print(tabledf) tabledf.to_latex(os.path.join("prediction-output", "data-table.tex"), escape=False) def run_outcome(outcome, features): print("\n\n========================================================") print(" predicting outcome %s for features %s "%(outcome, str(features))) # predictor results outcome_dir = os.path.join("prediction-output/%s"%outcome) if not os.path.exists(outcome_dir): os.makedirs(outcome_dir) # logistic regression --- do all features in parallel from joblib import Parallel, delayed res_list = Parallel(n_jobs=len(features), verbose=5)( delayed(sb.run_logistic)(outcome=outcome, features=f) for f in features) for reslr, feats in zip(res_list, features): print(" saving logreg with features %s "%feats) with open(os.path.join(outcome_dir, "lreg-%s.pkl"%feats), 'wb') as f: pickle.dump(reslr, f) def run_mlp_outcome(outcome): # predictor results outcome_dir = os.path.join("prediction-output/%s"%outcome) if not os.path.exists(outcome_dir): os.makedirs(outcome_dir) # beat models beatmod = sb.run_beat_mlp(outcome=outcome, use_features=False) beatmod.save(os.path.join(outcome_dir, "beatnet-raw-ekg.pkl")) # beat with simple feats = "simple" mod = sb.run_beat_mlp(outcome=outcome, use_features=True, features=feats) mod.save(os.path.join(outcome_dir, "beatnet-%s.pkl"%feats)) def run_resnet_outcome(outcome): # predictor results outcome_dir = os.path.join("prediction-output/%s"%outcome) if not os.path.exists(outcome_dir): os.makedirs(outcome_dir) # run EKG Resnet and EKG Beatnet mod = sb.run_ekg_mlp(outcome=outcome, use_features=False) mod.save(os.path.join(outcome_dir, "resnet-raw-ekg.pkl")) feats = "simple" smod = sb.run_ekg_mlp(outcome=outcome, use_features=False) smod.save(os.path.join(outcome_dir, "resnet-%s.pkl"%feats)) def best_logistic_model(resdict): vdf = resdict['valdf'] vauc = vdf[ vdf['metric'] == 'auc' ] best_idx = np.argmax(vauc['value'].values) best_mod = vauc['model'].iloc[best_idx] return best_mod def pairwise_compare_aucs(outcome="mace", features=["simple", "remark"]): if "trop_" in outcome: outcome_dir = os.path.join("prediction-output/troponin") Xdf, Ydf, encdf = ed.make_dataset( outcome='troponin', features='simple', do_split=False) else: outcome_dir = os.path.join("prediction-output/%s"%outcome) Xdf, Ydf, encdf = ed.make_dataset( outcome=outcome, features='simple', do_split=False) _, _ , mdata = misc.split_data(Xdf.values, Ydf.values, encdf.split, encdf) split = "test" subset = "no_history" zs_mod, ys_mod = {}, {} for feats in features: print(" lreg w/ feats: ", feats) with open(os.path.join(outcome_dir, "lreg-%s.pkl"%feats), 'rb') as f: res = pickle.load(f)[outcome] zs = res['z%s'%split] Ys = Ydf.loc[zs.index][outcome] Xs = Xdf.loc[zs.index] encs = encdf.loc[zs.index] if subset == "no_history": has_past_afib = encdf.loc[zs.index]['has_afib_past'] no_idx = (Xs['mi']==0.) & (Xs['diabetes']==0.) & \ (Xs['stroke']==0.) & (Xs['hypertense']==0.) & \ (has_past_afib == 0.) & \ (encs['age'] < 50.) if outcome == "mace": untested_idx = ~pd.isnull(encs['has_mace']) no_idx = no_idx & untested_idx zs = zs[no_idx] Ys = Ys[no_idx] zs_mod[feats] = zs ys_mod[feats] = Ys modfiles = ['beatnet-raw-ekg.pkl', 'beatnet-simple.pkl', 'resnet-raw-ekg.pkl', 'resnet-simple.pkl'] modfiles = ['beatnet-raw-ekg.pkl', 'resnet-raw-ekg.pkl', 'beatnet-simple.pkl'] for modfile in modfiles: # load ekg mlp outcome print(" ... loading mod file %s"%modfile) mod = base.load_model(os.path.join(outcome_dir, modfile)) print(" ... has %d params"%mod.num_params()) mdf = mod.fit_res['%sdf-%s'%(split, outcome)] #mauc = mdf[ mdf['metric']=='auc' ]['string'].iloc[0] zs = mod.fit_res['z%s-enc-%s'%(split, outcome)] if not hasattr(zs, 'index'): split_idx = ['train', 'val', 'test'].index(split) zs = pd.Series(zs, index=mdata[split_idx].index) Ys = Ydf.loc[zs.index][outcome] Xs = Xdf.loc[zs.index] encs = encdf.loc[zs.index] if subset == "no_history": has_past_afib = encdf.loc[zs.index]['has_afib_past'] no_idx = (Xs['mi']==0.) & (Xs['diabetes']==0.) & \ (Xs['stroke']==0.) & (Xs['hypertense']==0.) & \ (has_past_afib == 0.) & \ (encs['age'] < 50.) if outcome == "mace": untested_idx = ~pd.isnull(encs['has_mace']) no_idx = no_idx & untested_idx zs = zs[no_idx] Ys = Ys[no_idx] zs_mod[modfile] = zs ys_mod[modfile] = Ys # compare pairs zsekg = zs_mod['beatnet-raw-ekg.pkl'] zsresnet = zs_mod['resnet-raw-ekg.pkl'].loc[zsekg.index] zsbase = zs_mod['simple'].loc[zsekg.index] #zsbase = zs_mod[0].loc[zsekg.index] ##zsrem = zs_mod[1].loc[zsekg.index] ysbase = Ys.loc[zsekg.index] sa, sb, diff = misc.bootstrap_auc_comparison( ysbase.values, zsbase.values, zsekg.values, num_samples=1000) print(" simple => beatnet ", np.percentile(diff, [2.5, 97.5])) sa, sb, diff = misc.bootstrap_auc_comparison( ysbase.values, zsrem.values, zsekg.values, num_samples=1000) print(" rem => beatnet ", np.percentile(diff, [2.5, 97.5])) sa, sb, diff = misc.bootstrap_auc_comparison( ysbase.values, zsresnet.values, zsekg.values, num_samples=1000) print(" resnet => beatnet ", np.percentile(diff, [2.5, 97.5])) sa, sb, diff = misc.bootstrap_auc_comparison( ysbase.values, zsrem.values, zsresnet.values, num_samples=1000) print(" rem => resnet ", np.percentile(diff, [2.5, 97.5])) def results_table(outcomes=["future_afib"], features=["simple", "remark"], split="test", subset = None, do_logreg=True, do_net=False): # no history subset auc_cols = OrderedDict() for outcome in outcomes: print("\n===== outcome %s ========"%outcome) if "trop_" in outcome: outcome_dir = os.path.join("prediction-output/troponin") Xdf, Ydf, encdf = ed.make_dataset( outcome='troponin', features='simple', do_split=False) else: outcome_dir = os.path.join("prediction-output/%s"%outcome) Xdf, Ydf, encdf = ed.make_dataset( outcome=outcome, features='simple', do_split=False) _, _ , mdata = misc.split_data(Xdf.values, Ydf.values, encdf.split, encdf) rows = [] for feats in features: # lreg results if do_logreg: print(" lreg w/ feats: ", feats) with open(os.path.join(outcome_dir, "lreg-%s.pkl"%feats), 'rb') as f: res = pickle.load(f)[outcome] #best_mod = best_logistic_model(res) #tdf = res['%sdf'%split] #auc = tdf[ (tdf['model']==best_mod) & (tdf['metric']=='auc') ]['string'].iloc[0] zs = res['z%s'%split] Ys = Ydf.loc[zs.index][outcome] Xs = Xdf.loc[zs.index] encs = encdf.loc[zs.index] if subset == "no_history": has_past_afib = encdf.loc[zs.index]['has_afib_past'] no_idx = (Xs['mi']==0.) & (Xs['diabetes']==0.) & \ (Xs['stroke']==0.) & (Xs['hypertense']==0.) & \ (has_past_afib == 0.) & \ (encs['age'] < 50.) if outcome == "mace": untested_idx = ~pd.isnull(encs['has_mace']) no_idx = no_idx & untested_idx zs = zs[no_idx] Ys = Ys[no_idx] baucs = misc.bootstrap_auc(Ys.values, zs.values, num_samples=1000) auc = "%2.3f [%2.3f, %2.3f]"%( baucs.mean(), np.percentile(baucs, 2.5), np.percentile(baucs, 97.5)) rows.append(auc) #print('features: ', feats) #print(res['coefdf'][best_mod].sort_values()) #xg boost results else: with open(os.path.join(outcome_dir, "xgb-%s.pkl"%feats), 'rb') as f: res = pickle.load(f) tdf = res['%sdf'%split] auc = tdf[tdf['metric']=='auc']['string'].iloc[0] rows.append(auc) if do_net: modfiles = ['beatnet-raw-ekg.pkl', 'beatnet-simple.pkl', 'resnet-raw-ekg.pkl', 'resnet-simple.pkl'] for modfile in modfiles: # load ekg mlp outcome print(" ... loading mod file %s"%modfile) mod = base.load_model(os.path.join(outcome_dir, modfile)) mdf = mod.fit_res['%sdf-%s'%(split, outcome)] mauc = mdf[ mdf['metric']=='auc' ]['string'].iloc[0] zs = mod.fit_res['z%s-enc-%s'%(split, outcome)] if not hasattr(zs, 'index'): split_idx = ['train', 'val', 'test'].index(split) zs = pd.Series(zs, index=mdata[split_idx].index) Ys = Ydf.loc[zs.index][outcome] Xs = Xdf.loc[zs.index] encs = encdf.loc[zs.index] if subset == "no_history": has_past_afib = encdf.loc[zs.index]['has_afib_past'] no_idx = (Xs['mi']==0.) & (Xs['diabetes']==0.) & \ (Xs['stroke']==0.) & (Xs['hypertense']==0.) & \ (has_past_afib == 0.) & \ (encs['age'] < 50.) if outcome == "mace": untested_idx = ~pd.isnull(encs['has_mace']) no_idx = no_idx & untested_idx zs = zs[no_idx] Ys = Ys[no_idx] print(Ys, zs) baucs = misc.bootstrap_auc(Ys.values, zs.values, num_samples=1000) mauc = "%2.3f [%2.3f, %2.3f]"%( baucs.mean(), np.percentile(baucs, 2.5), np.percentile(baucs, 97.5)) rows.append(mauc) auc_cols[outcome] = rows import copy fidx = copy.deepcopy(features) if do_net: fidx += ['beatnet', 'beatnet+simple', 'resnet', 'resnet+simple'] aucdf = pd.DataFrame(auc_cols, index=fidx) return aucdf from ekgmodels import viz import matplotlib.pyplot as plt; plt.ion() ######################### # EKG Plotting Code # ######################### def plot_full_ekg_example(): # load outcome data and encounter dataframe Xdf, Ydf, encdf = ed.make_dataset(outcome='mace', features='remarks', do_split=False) Xmat, _, tgrid = ed.load_ekg_data(encdf=encdf, constrain_range=False) fig, ax = plt.figure(figsize=(12,3)), plt.gca() ax = viz.plot_stacked_ecg(ax, Xmat[300], linewidth=1.5) # **kwargs) ax.set_xlabel("time (seconds)", fontsize=16) ax.get_yaxis().set_ticks([]) fig.tight_layout() fig.savefig('prediction-output/example_ekg.png', bbox_inches='tight', dpi=150) plt.close("all") # plot segmented beats from ekgmodels import preproc beatdf, beatmat = preproc.create_beat_dataset_fixed( encdf, Xmat, tgrid, detrend=False) def savebeat(bis, name="example_beats.png"): fig, axarr = plt.subplots(1, 3, figsize=(6, 3.5)) for bi, ax in zip(bis, axarr.flatten()): blen = beatdf['beat_len'].iloc[bi] ax = viz.plot_stacked_beat(ax, beatmat[bi], beatlen=blen) axarr[0].set_xlabel("") axarr[2].set_xlabel("") axarr[1].set_ylabel("") axarr[2].set_ylabel("") fig.savefig("prediction-output/%s"%name, bbox_inches='tight', dpi=150) plt.close("all") bis = [0, 1, 2] savebeat(bis, name="example_beats.png") bis = [300, 301, 302] savebeat(bis, name="example_beats-2.png") def load_prediction_scores(outcome, feats, split="test"): # load data for reference if "trop_" in outcome: outcome_dir = os.path.join("prediction-output/troponin") Xdf, Ydf, encdf = ed.make_dataset( outcome='troponin', features='simple', do_split=False) else: outcome_dir = os.path.join("prediction-output/%s"%outcome) Xdf, Ydf, encdf = ed.make_dataset( outcome=outcome, features='simple', do_split=False) _, _ , mdata = misc.split_data(Xdf.values, Ydf.values, encdf.split, encdf) # load predictions if '.pkl' in feats: print(" ... loading mod file %s"%feats) mod = base.load_model(os.path.join(outcome_dir, feats)) zs = mod.fit_res['z%s-enc-%s'%(split, outcome)] if not hasattr(zs, 'index'): split_idx = ['train', 'val', 'test'].index(split) zs = pd.Series(zs, index=mdata[split_idx].index) else: with open(os.path.join(outcome_dir, "lreg-%s.pkl"%feats), 'rb') as f: res = pickle.load(f)[outcome] zs = res['z%s'%split] # subselect to test split Ys = Ydf.loc[zs.index][outcome] Xs = Xdf.loc[zs.index] encs = encdf.loc[zs.index] return zs, Ys, Xs, encs def get_age_bin_aucs(outcome="mace", feats="simple"): # make sure we subsample to untested for mace zs, Ys, Xs, encs = load_prediction_scores( outcome=outcome, feats=feats, split='test') if outcome == "mace": untested_idx = ~
pd.isnull(encs['has_mace'])
pandas.isnull
# -*- coding: utf-8 -*- """ This code allows us to run the configuration slices analysis for the TGM model """ import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt import random plt.rcParams["font.family"] = "Times New Roman" plt.rcParams.update({'font.size': 18}) pathResults = './results/ResultTGM/' path_to_graph = './results/resultSliceClustering/' list_datasets= ['DBLP1', 'DBLP2' , 'PubMed_Diabets', 'classic3','classic4' , 'ag_news'] NameDatasets = ['DBLP1', 'DBLP2' , 'PubMed-Diabets', 'Classic3', 'Classic4', 'AG-news'] config = [['BOW', 'SentenceRo','Entity'], ['BOW', 'SentenceRo','Entity'],['BOW', 'Bert', 'SentenceRo', 'GLOVE', 'Entity'], ['BOW', 'Bert', 'GLOVE', 'Entity'],['BOW', 'Bert', 'Entity'], ['BOW', 'SentenceRo', 'Entity'], ['BOW', 'Bert'], ['BOW', 'SentenceRo'], ['Bert', 'Entity'], ['SentenceRo', 'Entity'],['BOW', 'SentenceRo', 'GLOVE', 'Entity'],['BOW', 'SentenceRo', 'Bert', 'Entity'], ['BOW', 'GLOVE', 'Entity'],['SentenceRo', 'GLOVE', 'Entity']] tabVide = pd.DataFrame(columns=["Dataset", "Time", "ACC", "NMI", "ARI", "Purity",'Config']) for c , configName in enumerate(config): slices = config[c] configName = '' for s in range(len(slices)): configName = configName + slices[s] + '_' if len(slices)==5: configName2= 'All' else: configName2 = configName tableClustering = pd.read_csv(pathResults+'Results_TGM_'+ configName + '.csv') tableClustering['Config'] = configName[:-1] .replace("_", "&") tableClustering['SliceNb'] =len(slices) if len(slices)< 4: tableClustering['Slice'] = str(len(slices)) + 'Slices' else: tableClustering['Slice'] = '> 4 Slices' print('tableClustering ', tableClustering.shape) tabVide =
pd.concat([tabVide, tableClustering], axis=0)
pandas.concat
import operator import warnings import numpy as np import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, to_timedelta import pandas._testing as tm from pandas.core.algorithms import checked_add_with_arr from .pandas_vb_common import numeric_dtypes try: import pandas.core.computation.expressions as expr except ImportError: import pandas.computation.expressions as expr try: import pandas.tseries.holiday except ImportError: pass class IntFrameWithScalar: params = [ [np.float64, np.int64], [2, 3.0, np.int32(4), np.float64(5)], [ operator.add, operator.sub, operator.mul, operator.truediv, operator.floordiv, operator.pow, operator.mod, operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le, ], ] param_names = ["dtype", "scalar", "op"] def setup(self, dtype, scalar, op): arr = np.random.randn(20000, 100) self.df = DataFrame(arr.astype(dtype)) def time_frame_op_with_scalar(self, dtype, scalar, op): op(self.df, scalar) class OpWithFillValue: def setup(self): # GH#31300 arr = np.arange(10 ** 6) df = DataFrame({"A": arr}) ser = df["A"] self.df = df self.ser = ser def time_frame_op_with_fill_value_no_nas(self): self.df.add(self.df, fill_value=4) def time_series_op_with_fill_value_no_nas(self): self.ser.add(self.ser, fill_value=4) class MixedFrameWithSeriesAxis: params = [ [ "eq", "ne", "lt", "le", "ge", "gt", "add", "sub", "truediv", "floordiv", "mul", "pow", ] ] param_names = ["opname"] def setup(self, opname): arr = np.arange(10 ** 6).reshape(1000, -1) df = DataFrame(arr) df["C"] = 1.0 self.df = df self.ser = df[0] self.row = df.iloc[0] def time_frame_op_with_series_axis0(self, opname): getattr(self.df, opname)(self.ser, axis=0) def time_frame_op_with_series_axis1(self, opname): getattr(operator, opname)(self.df, self.ser) class Ops: params = [[True, False], ["default", 1]] param_names = ["use_numexpr", "threads"] def setup(self, use_numexpr, threads): self.df = DataFrame(np.random.randn(20000, 100)) self.df2 = DataFrame(np.random.randn(20000, 100)) if threads != "default": expr.set_numexpr_threads(threads) if not use_numexpr: expr.set_use_numexpr(False) def time_frame_add(self, use_numexpr, threads): self.df + self.df2 def time_frame_mult(self, use_numexpr, threads): self.df * self.df2 def time_frame_multi_and(self, use_numexpr, threads): self.df[(self.df > 0) & (self.df2 > 0)] def time_frame_comparison(self, use_numexpr, threads): self.df > self.df2 def teardown(self, use_numexpr, threads): expr.set_use_numexpr(True) expr.set_numexpr_threads() class Ops2: def setup(self): N = 10 ** 3 self.df = DataFrame(np.random.randn(N, N)) self.df2 = DataFrame(np.random.randn(N, N)) self.df_int = DataFrame( np.random.randint( np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N) ) ) self.df2_int = DataFrame( np.random.randint( np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N) ) ) self.s = Series(np.random.randn(N)) # Division def time_frame_float_div(self): self.df // self.df2 def time_frame_float_div_by_zero(self): self.df / 0 def time_frame_float_floor_by_zero(self): self.df // 0 def time_frame_int_div_by_zero(self): self.df_int / 0 # Modulo def time_frame_int_mod(self): self.df_int % self.df2_int def time_frame_float_mod(self): self.df % self.df2 # Dot product def time_frame_dot(self): self.df.dot(self.df2) def time_series_dot(self): self.s.dot(self.s) def time_frame_series_dot(self): self.df.dot(self.s) class Timeseries: params = [None, "US/Eastern"] param_names = ["tz"] def setup(self, tz): N = 10 ** 6 halfway = (N // 2) - 1 self.s = Series(date_range("20010101", periods=N, freq="T", tz=tz)) self.ts = self.s[halfway] self.s2 = Series(date_range("20010101", periods=N, freq="s", tz=tz)) def time_series_timestamp_compare(self, tz): self.s <= self.ts def time_timestamp_series_compare(self, tz): self.ts >= self.s def time_timestamp_ops_diff(self, tz): self.s2.diff() def time_timestamp_ops_diff_with_shift(self, tz): self.s - self.s.shift() class IrregularOps: def setup(self): N = 10 ** 5 idx = date_range(start="1/1/2000", periods=N, freq="s") s = Series(np.random.randn(N), index=idx) self.left = s.sample(frac=1) self.right = s.sample(frac=1) def time_add(self): self.left + self.right class TimedeltaOps: def setup(self): self.td = to_timedelta(np.arange(1000000)) self.ts = Timestamp("2000") def time_add_td_ts(self): self.td + self.ts class CategoricalComparisons: params = ["__lt__", "__le__", "__eq__", "__ne__", "__ge__", "__gt__"] param_names = ["op"] def setup(self, op): N = 10 ** 5 self.cat = pd.Categorical(list("aabbcd") * N, ordered=True) def time_categorical_op(self, op): getattr(self.cat, op)("b") class IndexArithmetic: params = ["float", "int"] param_names = ["dtype"] def setup(self, dtype): N = 10 ** 6 indexes = {"int": "makeIntIndex", "float": "makeFloatIndex"} self.index = getattr(tm, indexes[dtype])(N) def time_add(self, dtype): self.index + 2 def time_subtract(self, dtype): self.index - 2 def time_multiply(self, dtype): self.index * 2 def time_divide(self, dtype): self.index / 2 def time_modulo(self, dtype): self.index % 2 class NumericInferOps: # from GH 7332 params = numeric_dtypes param_names = ["dtype"] def setup(self, dtype): N = 5 * 10 ** 5 self.df = DataFrame( {"A": np.arange(N).astype(dtype), "B": np.arange(N).astype(dtype)} ) def time_add(self, dtype): self.df["A"] + self.df["B"] def time_subtract(self, dtype): self.df["A"] - self.df["B"] def time_multiply(self, dtype): self.df["A"] * self.df["B"] def time_divide(self, dtype): self.df["A"] / self.df["B"] def time_modulo(self, dtype): self.df["A"] % self.df["B"] class DateInferOps: # from GH 7332 def setup_cache(self): N = 5 * 10 ** 5 df = DataFrame({"datetime64": np.arange(N).astype("datetime64[ms]")}) df["timedelta"] = df["datetime64"] - df["datetime64"] return df def time_subtract_datetimes(self, df): df["datetime64"] - df["datetime64"] def time_timedelta_plus_datetime(self, df): df["timedelta"] + df["datetime64"] def time_add_timedeltas(self, df): df["timedelta"] + df["timedelta"] class AddOverflowScalar: params = [1, -1, 0] param_names = ["scalar"] def setup(self, scalar): N = 10 ** 6 self.arr = np.arange(N) def time_add_overflow_scalar(self, scalar): checked_add_with_arr(self.arr, scalar) class AddOverflowArray: def setup(self): N = 10 ** 6 self.arr = np.arange(N) self.arr_rev = np.arange(-N, 0) self.arr_mixed = np.array([1, -1]).repeat(N / 2) self.arr_nan_1 = np.random.choice([True, False], size=N) self.arr_nan_2 = np.random.choice([True, False], size=N) def time_add_overflow_arr_rev(self): checked_add_with_arr(self.arr, self.arr_rev) def time_add_overflow_arr_mask_nan(self): checked_add_with_arr(self.arr, self.arr_mixed, arr_mask=self.arr_nan_1) def time_add_overflow_b_mask_nan(self): checked_add_with_arr(self.arr, self.arr_mixed, b_mask=self.arr_nan_1) def time_add_overflow_both_arg_nan(self): checked_add_with_arr( self.arr, self.arr_mixed, arr_mask=self.arr_nan_1, b_mask=self.arr_nan_2 ) hcal = pd.tseries.holiday.USFederalHolidayCalendar() # These offsets currently raise a NotImplimentedError with .apply_index() non_apply = [ pd.offsets.Day(), pd.offsets.BYearEnd(), pd.offsets.BYearBegin(), pd.offsets.BQuarterEnd(), pd.offsets.BQuarterBegin(), pd.offsets.BMonthEnd(), pd.offsets.BMonthBegin(), pd.offsets.CustomBusinessDay(), pd.offsets.CustomBusinessDay(calendar=hcal), pd.offsets.CustomBusinessMonthBegin(calendar=hcal), pd.offsets.CustomBusinessMonthEnd(calendar=hcal), pd.offsets.CustomBusinessMonthEnd(calendar=hcal), ] other_offsets = [ pd.offsets.YearEnd(), pd.offsets.YearBegin(), pd.offsets.QuarterEnd(), pd.offsets.QuarterBegin(), pd.offsets.MonthEnd(),
pd.offsets.MonthBegin()
pandas.offsets.MonthBegin
# -*- coding: utf-8 -*- """Cross references from cbms2019. .. seealso:: https://github.com/pantapps/cbms2019 """ import pandas as pd from pyobo.constants import ( PROVENANCE, SOURCE_ID, SOURCE_PREFIX, TARGET_ID, TARGET_PREFIX, XREF_COLUMNS, ) __all__ = [ "get_cbms2019_xrefs_df", ] #: Columns: DOID, DO name, xref xb, xref ix base_url = "https://raw.githubusercontent.com/pantapps/cbms2019/master" doid_to_all = f"{base_url}/mesh_icd10cm_via_do_not_mapped_umls.tsv" #: Columns: SNOMEDCT_ID, SNOMEDCIT_NAME, ICD10CM_ID, ICD10CM_NAME, MESH_ID all_to_all = f"{base_url}/mesh_icd10cm_via_snomedct_not_mapped_umls.tsv" #: Columns: DOID, DO name, xref xb, xref ix doid_to_all_2 = f"{base_url}/mesh_snomedct_via_do_not_mapped_umls.tsv" #: Columns: SNOMEDCT_ID, SNOMEDCIT_NAME, ICD10CM_ID, ICD10CM_NAME, MESH_ID all_to_all_2 = f"{base_url}/mesh_snomedct_via_icd10cm_not_mapped_umls.tsv" NSM = { "MESH": "mesh", "ICD10CM": "icd", "SNOMEDCT_US_2016_03_01": "snomedct", } def _get_doid(url: str) -> pd.DataFrame: df = pd.read_csv(url, sep="\t", usecols=["DO_ID", "resource", "resource_ID"]) df.columns = [SOURCE_ID, TARGET_PREFIX, TARGET_ID] df[SOURCE_PREFIX] = "doid" df[SOURCE_ID] = df[SOURCE_ID].map(lambda s: s[len("DOID:") :]) df[PROVENANCE] = url df[TARGET_PREFIX] = df[TARGET_PREFIX].map(NSM.get) df = df[XREF_COLUMNS] return df def _get_mesh_to_icd_via_doid() -> pd.DataFrame: return _get_doid(doid_to_all) def _get_mesh_to_icd_via_snomedct() -> pd.DataFrame: df = pd.read_csv(all_to_all, sep="\t", usecols=["SNOMEDCT_ID", "ICD10CM_ID", "MESH_ID"]) rows = [] for snomedct_id, icd_id, mesh_id in df.values: rows.append(("mesh", mesh_id, "snomedct", snomedct_id, all_to_all)) rows.append(("snomedct", snomedct_id, "icd", icd_id, all_to_all)) return
pd.DataFrame(rows, columns=XREF_COLUMNS)
pandas.DataFrame