prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
## Bot for adding Prop65 ID from wikidataintegrator import wdi_core, wdi_login, wdi_helpers from wikidataintegrator.ref_handlers import update_retrieved_if_new_multiple_refs import pandas as pd from pandas import read_csv import requests import time from datetime import datetime import copy ## Here are the object QIDs, assuming that a chemical is the subject object_qid = {'femrep':'Q55427776', 'menrep': 'Q55427774', 'devtox': 'Q72941151', 'cancer': 'Q187661', 'reptox': 'Q55427767'} list_date = {'femrep':'Female Reproductive Toxicity - Date of Listing', 'menrep':'Male Reproductive Toxicity - Date of Listing', 'devtox':'Male Reproductive Toxicity - Date of Listing', 'cancer': 'None', 'reptox': 'None'} list_prop = "P31" def create_reference(prop65_url): refStatedIn = wdi_core.WDItemID(value="Q28455381", prop_nr="P248", is_reference=True) timeStringNow = datetime.now().strftime("+%Y-%m-%dT00:00:00Z") refRetrieved = wdi_core.WDTime(timeStringNow, prop_nr="P813", is_reference=True) refURL = wdi_core.WDUrl(value=prop65_url, prop_nr="P854", is_reference=True) return [refStatedIn, refRetrieved, refURL] def check_statement_status(wd_item,object_qid): new_statetypes = [] new_dep_types = [] dep_no_change = [] no_change=[] rank_delist = [] rank_relist = [] for object_type in object_qid.keys(): if eachitem in prop_65_mapped['WDID'].loc[prop_65_mapped[object_type+' delisted']==True].tolist(): if eachitem in deprecated_df['WDID'].loc[deprecated_df['deprecated_type']==object_type+' delisted'].tolist(): dep_no_change.append(object_type) elif eachitem in current_df['WDID'].loc[current_df['ObjectType']==object_type+' current'].tolist(): rank_delist.append(object_type) else: new_dep_types.append(object_type) if eachitem in prop_65_mapped['WDID'].loc[prop_65_mapped[object_type+' current']==True].tolist(): if eachitem in deprecated_df['WDID'].loc[deprecated_df['deprecated_type']==object_type+' delisted'].tolist(): rank_relist.append(object_type) elif eachitem in current_df['WDID'].loc[current_df['ObjectType']==object_type+' current'].tolist(): no_change.append(object_type) else: new_statetypes.append(object_type) comparison_dict = {'new_statetypes':new_statetypes, 'new_dep_types':new_dep_types, 'dep_no_change':dep_no_change, 'no_change':no_change, 'rank_delist':rank_delist, 'rank_relist':rank_relist} return(comparison_dict) #### This is just some logic for handling reptox vs femrep, menrep and devtox def rep_redundancy_check (repcheck, comparison_dict): if (((len(repcheck.intersection(set(comparison_dict['new_statetypes']))) >= 1) or (len(repcheck.intersection(set(comparison_dict['no_change']))) >= 1)) and ('reptox' in comparison_dict['new_statetypes'])): comparison_dict['new_statetypes'].remove('reptox') if (((len(repcheck.intersection(set(comparison_dict['new_dep_types']))) >= 1) or (len(repcheck.intersection(set(comparison_dict['dep_no_change']))) >= 1)) and ('reptox' in comparison_dict['new_dep_types'])): comparison_dict['new_dep_types'].remove('reptox') if len(repcheck.intersection(set(comparison_dict['rank_delist']))) >= 1 and 'reptox' in comparison_dict['rank_delist']: comparison_dict['rank_delist'].remove('reptox') if len(repcheck.intersection(set(comparison_dict['rank_relist']))) >= 1 and 'reptox' in comparison_dict['rank_relist']: comparison_dict['rank_relist'].remove('reptox') return(comparison_dict) #### Include statement on why it's deprecated if it's deprecated def generate_statements(statetype_set,dep_list,eachitem_row): statements_to_add = [] for j in range(len(statetype_set)): run_type = statetype_set[j] run_object_wdid = object_qid[run_type] date_type = list_date[run_type] qualifier_list = [] if date_type != 'None': runlist_date = str(eachitem_row.iloc[0][date_type]) if runlist_date != 'None': list_qualifier = wdi_core.WDTime(datetime.strptime(runlist_date,'%m/%d/%Y').strftime("+%Y-%m-%dT00:00:00Z"), prop_nr='P580', is_qualifier=True) qualifier_list.append(list_qualifier) if run_type in dep_list: qualifier_list.append(delist_reason) state_rank = 'deprecated' else: state_rank = 'normal' prop65_statement = wdi_core.WDItemID(value=run_object_wdid, prop_nr=list_prop, rank=state_rank, qualifiers = qualifier_list, references=[copy.deepcopy(reference)]) statements_to_add.append(prop65_statement) j=j+1 return(statements_to_add) ## Retrieve previous statements that need to be changed def retrieve_prev_state_list(subject_qid,dep_object_qid_list): wd_item = wdi_core.WDItemEngine(wd_item_id=subject_qid) mass_statement = wd_item.get_wd_json_representation()['claims'][list_prop] states_to_keep = [] for i in range(len(mass_statement)): sub_qid = mass_statement[i]['mainsnak']['datavalue']['value']['id'] state_rank = mass_statement[i]['rank'] qualifier_list = mass_statement[i]['qualifiers'] reference = mass_statement[i]['references'] if sub_qid in dep_object_qid_list: continue else: saved_statement = wdi_core.WDItemID(value=sub_qid, prop_nr=list_prop, rank=state_rank, qualifiers = qualifier_list, references=[copy.deepcopy(reference)]) states_to_keep.append(saved_statement) return(states_to_keep) ## Login for Scheduled bot print("Logging in...") try: from scheduled_bots.local import WDUSER, WDPASS except ImportError: if "WDUSER" in os.environ and "WDPASS" in os.environ: WDUSER = os.environ['WDUSER'] WDPASS = os.environ['WDPASS'] else: raise ValueError("WDUSER and WDPASS must be specified in local.py or as environment variables") ## Add Prop 65 CA IDs relations from CA OEHHA chemicals list Wikidata prop65_chems =
read_csv('data/prop65_chems.tsv',delimiter='\t',header=0, encoding='utf-8', index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc'))
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import pandas as pd import pytest from feature_engine.encoding import OneHotEncoder def test_encode_categories_in_k_binary_plus_select_vars_automatically(df_enc_big): # test case 1: encode all categories into k binary variables, select variables # automatically encoder = OneHotEncoder(top_categories=None, variables=None, drop_last=False) X = encoder.fit_transform(df_enc_big) # test init params assert encoder.top_categories is None assert encoder.variables is None assert encoder.drop_last is False # test fit attr transf = { "var_A_A": 6, "var_A_B": 10, "var_A_C": 4, "var_A_D": 10, "var_A_E": 2, "var_A_F": 2, "var_A_G": 6, "var_B_A": 10, "var_B_B": 6, "var_B_C": 4, "var_B_D": 10, "var_B_E": 2, "var_B_F": 2, "var_B_G": 6, "var_C_A": 4, "var_C_B": 6, "var_C_C": 10, "var_C_D": 10, "var_C_E": 2, "var_C_F": 2, "var_C_G": 6, } assert encoder.variables_ == ["var_A", "var_B", "var_C"] assert encoder.variables_binary_ == [] assert encoder.n_features_in_ == 3 assert encoder.encoder_dict_ == { "var_A": ["A", "B", "C", "D", "E", "F", "G"], "var_B": ["A", "B", "C", "D", "E", "F", "G"], "var_C": ["A", "B", "C", "D", "E", "F", "G"], } # test transform output assert X.sum().to_dict() == transf assert "var_A" not in X.columns def test_encode_categories_in_k_minus_1_binary_plus_list_of_variables(df_enc_big): # test case 2: encode all categories into k-1 binary variables, # pass list of variables encoder = OneHotEncoder( top_categories=None, variables=["var_A", "var_B"], drop_last=True ) X = encoder.fit_transform(df_enc_big) # test init params assert encoder.top_categories is None assert encoder.variables == ["var_A", "var_B"] assert encoder.drop_last is True # test fit attr transf = { "var_A_A": 6, "var_A_B": 10, "var_A_C": 4, "var_A_D": 10, "var_A_E": 2, "var_A_F": 2, "var_B_A": 10, "var_B_B": 6, "var_B_C": 4, "var_B_D": 10, "var_B_E": 2, "var_B_F": 2, } assert encoder.variables_ == ["var_A", "var_B"] assert encoder.variables_binary_ == [] assert encoder.n_features_in_ == 3 assert encoder.encoder_dict_ == { "var_A": ["A", "B", "C", "D", "E", "F"], "var_B": ["A", "B", "C", "D", "E", "F"], } # test transform output for col in transf.keys(): assert X[col].sum() == transf[col] assert "var_B" not in X.columns assert "var_B_G" not in X.columns assert "var_C" in X.columns def test_encode_top_categories(): # test case 3: encode only the most popular categories df = pd.DataFrame( { "var_A": ["A"] * 5 + ["B"] * 11 + ["C"] * 4 + ["D"] * 9 + ["E"] * 2 + ["F"] * 2 + ["G"] * 7, "var_B": ["A"] * 11 + ["B"] * 7 + ["C"] * 4 + ["D"] * 9 + ["E"] * 2 + ["F"] * 2 + ["G"] * 5, "var_C": ["A"] * 4 + ["B"] * 5 + ["C"] * 11 + ["D"] * 9 + ["E"] * 2 + ["F"] * 2 + ["G"] * 7, } ) encoder = OneHotEncoder(top_categories=4, variables=None, drop_last=False) X = encoder.fit_transform(df) # test init params assert encoder.top_categories == 4 # test fit attr transf = { "var_A_D": 9, "var_A_B": 11, "var_A_A": 5, "var_A_G": 7, "var_B_A": 11, "var_B_D": 9, "var_B_G": 5, "var_B_B": 7, "var_C_D": 9, "var_C_C": 11, "var_C_G": 7, "var_C_B": 5, } # test fit attr assert encoder.variables_ == ["var_A", "var_B", "var_C"] assert encoder.variables_binary_ == [] assert encoder.n_features_in_ == 3 assert encoder.encoder_dict_ == { "var_A": ["B", "D", "G", "A"], "var_B": ["A", "D", "B", "G"], "var_C": ["C", "D", "G", "B"], } # test transform output for col in transf.keys(): assert X[col].sum() == transf[col] assert "var_B" not in X.columns assert "var_B_F" not in X.columns def test_error_if_top_categories_not_integer(): with pytest.raises(ValueError): OneHotEncoder(top_categories=0.5) def test_error_if_drop_last_not_bool(): with pytest.raises(ValueError): OneHotEncoder(drop_last=0.5) def test_raises_error_if_df_contains_na(df_enc_big, df_enc_big_na): # test case 4: when dataset contains na, fit method with pytest.raises(ValueError): encoder = OneHotEncoder() encoder.fit(df_enc_big_na) # test case 4: when dataset contains na, transform method with pytest.raises(ValueError): encoder = OneHotEncoder() encoder.fit(df_enc_big) encoder.transform(df_enc_big_na) def test_encode_numerical_variables(df_enc_numeric): encoder = OneHotEncoder( top_categories=None, variables=None, drop_last=False, ignore_format=True, ) X = encoder.fit_transform(df_enc_numeric[["var_A", "var_B"]]) # test fit attr transf = { "var_A_1": [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "var_A_2": [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], "var_A_3": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], "var_B_1": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "var_B_2": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], "var_B_3": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], } transf = pd.DataFrame(transf).astype("int32") X = pd.DataFrame(X).astype("int32") assert encoder.variables_ == ["var_A", "var_B"] assert encoder.variables_binary_ == [] assert encoder.n_features_in_ == 2 assert encoder.encoder_dict_ == {"var_A": [1, 2, 3], "var_B": [1, 2, 3]} # test transform output pd.testing.assert_frame_equal(X, transf) def test_variables_cast_as_category(df_enc_numeric): encoder = OneHotEncoder( top_categories=None, variables=None, drop_last=False, ignore_format=True, ) df = df_enc_numeric.copy() df[["var_A", "var_B"]] = df[["var_A", "var_B"]].astype("category") X = encoder.fit_transform(df[["var_A", "var_B"]]) # test fit attr transf = { "var_A_1": [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "var_A_2": [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], "var_A_3": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], "var_B_1": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "var_B_2": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], "var_B_3": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], } transf =
pd.DataFrame(transf)
pandas.DataFrame
from datetime import ( datetime, timedelta, timezone, ) import numpy as np import pytest import pytz from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, Period, Series, Timedelta, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesFillNA: def test_fillna_nat(self): series = Series([0, 1, 2, NaT.value], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([NaT.value, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_fillna_value_or_method(self, datetime_series): msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_series.fillna(value=0, method="ffill") def test_fillna(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) tm.assert_series_equal(ts, ts.fillna(method="ffill")) ts[2] = np.NaN exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="ffill"), exp) exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="backfill"), exp) exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(value=5), exp) msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): ts.fillna() def test_fillna_nonscalar(self): # GH#5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.0]) tm.assert_series_equal(result, expected) result = s1.fillna({}) tm.assert_series_equal(result, s1) result = s1.fillna(Series((), dtype=object)) tm.assert_series_equal(result, s1) result = s2.fillna(s1) tm.assert_series_equal(result, s2) result = s1.fillna({0: 1}) tm.assert_series_equal(result, expected) result = s1.fillna({1: 1}) tm.assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) tm.assert_series_equal(result, s1) def test_fillna_aligns(self): s1 = Series([0, 1, 2], list("abc")) s2 = Series([0, np.nan, 2], list("bac")) result = s2.fillna(s1) expected = Series([0, 0, 2.0], list("bac")) tm.assert_series_equal(result, expected) def test_fillna_limit(self): ser = Series(np.nan, index=[0, 1, 2]) result = ser.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) result = ser.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) def test_fillna_dont_cast_strings(self): # GH#9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ["0", "1.5", "-0.3"] for val in vals: ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") result = ser.fillna(val) expected = Series([0, 1, val, val, 4], dtype="object") tm.assert_series_equal(result, expected) def test_fillna_consistency(self): # GH#16402 # fillna with a tz aware to a tz-naive, should result in object ser = Series([Timestamp("20130101"), NaT]) result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) expected = Series( [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(result, expected) msg = "The 'errors' keyword in " with tm.assert_produces_warning(FutureWarning, match=msg): # where (we ignore the errors=) result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) # with a non-datetime result = ser.fillna("foo") expected = Series([Timestamp("20130101"), "foo"]) tm.assert_series_equal(result, expected) # assignment ser2 = ser.copy() ser2[1] = "foo" tm.assert_series_equal(ser2, expected) def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 ser = Series([1.0, np.nan]) result = ser.fillna(0, downcast="infer") expected = Series([1, 0])
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
# -*- coding: utf-8 -*- """ @author: hkaneko """ import math import sys import numpy as np import pandas as pd import sample_functions from sklearn import metrics, model_selection, svm from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.neighbors import KNeighborsClassifier # 下の y_name を 'pIC50_class', 'pIGC50_class' のいずれかにしてください。 # descriptors_with_[y_name].csv というファイルを dataset として読み込み計算します。 # さらに、y_name を別の名前に変えて、ご自身で別途 sample_program_6_8_0_csv.py もしくは # sample_program_6_8_0_sdf.py で descriptors_with_[y_name].csv というファイルを、 # 他のファイルと同様の形式で準備すれば、同じように計算することができます。 y_name = 'pIC50_class' # 'pIC50_class' : クラス分類用の薬理活性のデータセットの場合 # 'pIGC50_class' : クラス分類用の環境毒性のデータセットの場合 rate_of_test_samples = 0.25 # テストデータのサンプル数の割合。0 より大きく 1 未満 method_name = 'rf' # 'knn' or 'svm' or 'rf' number_of_submodels = 50 # サブモデルの数 rate_of_selected_x_variables = 0.7 # 各サブデータセットで選択される説明変数の数の割合。0 より大きく 1 未満 add_nonlinear_terms_flag = False # True (二乗項・交差項を追加) or False (追加しない) fold_number = 5 # N-fold CV の N max_number_of_k = 20 # 使用する k の最大値 svm_cs = 2 ** np.arange(-5, 11, dtype=float) svm_gammas = 2 ** np.arange(-20, 11, dtype=float) rf_number_of_trees = 300 # RF における決定木の数 rf_x_variables_rates = np.arange(1, 11, dtype=float) / 10 # 1 つの決定木における説明変数の数の割合の候補 if method_name != 'knn' and method_name != 'svm' and method_name != 'rf': sys.exit('\'{0}\' というクラス分類手法はありません。method_name を見直してください。'.format(method_name)) dataset = pd.read_csv('descriptors_with_{0}.csv'.format(y_name), index_col=0) # 物性・活性と記述子のデータセットの読み込み y = dataset.iloc[:, 0].copy() x = dataset.iloc[:, 1:] x = x.replace(np.inf, np.nan).fillna(np.nan) # inf を NaN に置き換え nan_variable_flags = x.isnull().any() # NaN を含む変数 x = x.drop(x.columns[nan_variable_flags], axis=1) # NaN を含む変数を削除 number_of_test_samples = round(dataset.shape[0] * rate_of_test_samples) # ランダムにトレーニングデータとテストデータとに分割 # random_state に数字を与えることで、別のときに同じ数字を使えば、ランダムとはいえ同じ結果にすることができます x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=number_of_test_samples, shuffle=True, random_state=0) class_types = list(set(y_train)) # クラスの種類 class_types.sort(reverse=True) # 並び替え # 標準偏差が 0 の説明変数を削除 std_0_variable_flags = x_train.std() == 0 x_train = x_train.drop(x_train.columns[std_0_variable_flags], axis=1) x_test = x_test.drop(x_test.columns[std_0_variable_flags], axis=1) if add_nonlinear_terms_flag: x_train = pd.read_csv('x_train_{0}.csv'.format(y_name), index_col=0) # 物性・活性と記述子のデータセットの読み込み x_test = pd.read_csv('x_test_{0}.csv'.format(y_name), index_col=0) # 物性・活性と記述子のデータセットの読み込み # x_train = sample_functions.add_nonlinear_terms(x_train) # 説明変数の二乗項や交差項を追加 # x_test = sample_functions.add_nonlinear_terms(x_test) # 説明変数の二乗項や交差項を追加 # 標準偏差が 0 の説明変数を削除 std_0_nonlinear_variable_flags = x_train.std() == 0 x_train = x_train.drop(x_train.columns[std_0_nonlinear_variable_flags], axis=1) x_test = x_test.drop(x_test.columns[std_0_nonlinear_variable_flags], axis=1) # オートスケーリング autoscaled_x_train = (x_train - x_train.mean()) / x_train.std() autoscaled_x_test = (x_test - x_train.mean()) / x_train.std() if method_name == 'svm': # 時間短縮のため、最初だけグラム行列の分散を最大化することによる γ の最適化 optimal_svm_gamma = sample_functions.gamma_optimization_with_variance(autoscaled_x_train, svm_gammas) number_of_x_variables = int(np.ceil(x_train.shape[1] * rate_of_selected_x_variables)) print('各サブデータセットの説明変数の数 :', number_of_x_variables) estimated_y_train_all = pd.DataFrame() # 空の DataFrame 型を作成し、ここにサブモデルごとのトレーニングデータの y の推定結果を追加 selected_x_variable_numbers = [] # 空の list 型の変数を作成し、ここに各サブデータセットの説明変数の番号を追加 submodels = [] # 空の list 型の変数を作成し、ここに構築済みの各サブモデルを追加 for submodel_number in range(number_of_submodels): print(submodel_number + 1, '/', number_of_submodels) # 進捗状況の表示 # 説明変数の選択 # 0 から 1 までの間に一様に分布する乱数を説明変数の数だけ生成して、その乱数値が小さい順に説明変数を選択 random_x_variables = np.random.rand(x_train.shape[1]) selected_x_variable_numbers_tmp = random_x_variables.argsort()[:number_of_x_variables] selected_autoscaled_x_train = autoscaled_x_train.iloc[:, selected_x_variable_numbers_tmp] selected_x_variable_numbers.append(selected_x_variable_numbers_tmp) if method_name == 'knn': # CV による k の最適化 accuracy_in_cv_all = [] # 空の list の変数を作成して、成分数ごとのクロスバリデーション後の 正解率 をこの変数に追加していきます ks = [] # 同じく k の値をこの変数に追加していきます for k in range(1, max_number_of_k + 1): model = KNeighborsClassifier(n_neighbors=k, metric='euclidean') # k-NN モデルの宣言 # クロスバリデーション推定値の計算し、DataFrame型に変換 estimated_y_in_cv = pd.DataFrame( model_selection.cross_val_predict(model, selected_autoscaled_x_train, y_train, cv=fold_number)) accuracy_in_cv = metrics.accuracy_score(y_train, estimated_y_in_cv) # 正解率を計算 accuracy_in_cv_all.append(accuracy_in_cv) # r2 を追加 ks.append(k) # k の値を追加 optimal_k = ks[accuracy_in_cv_all.index(max(accuracy_in_cv_all))] submodel = KNeighborsClassifier(n_neighbors=optimal_k, metric='euclidean') # k-NN モデルの宣言 elif method_name == 'svm': # CV による C の最適化 model_in_cv = GridSearchCV(svm.SVC(kernel='rbf', gamma=optimal_svm_gamma), {'C': svm_cs}, cv=fold_number) model_in_cv.fit(selected_autoscaled_x_train, y_train) optimal_svm_c = model_in_cv.best_params_['C'] # CV による γ の最適化 model_in_cv = GridSearchCV(svm.SVC(kernel='rbf', C=optimal_svm_c), {'gamma': svm_gammas}, cv=fold_number) model_in_cv.fit(selected_autoscaled_x_train, y_train) optimal_svm_gamma = model_in_cv.best_params_['gamma'] submodel = svm.SVC(kernel='rbf', C=optimal_svm_c, gamma=optimal_svm_gamma) # SVM モデルの宣言 elif method_name == 'rf': # OOB (Out-Of-Bugs) による説明変数の数の割合の最適化 accuracy_oob = [] for index, x_variables_rate in enumerate(rf_x_variables_rates): model_in_validation = RandomForestClassifier(n_estimators=rf_number_of_trees, max_features=int( max(math.ceil(selected_autoscaled_x_train.shape[1] * x_variables_rate), 1)), oob_score=True) model_in_validation.fit(selected_autoscaled_x_train, y_train) accuracy_oob.append(model_in_validation.oob_score_) optimal_x_variables_rate = rf_x_variables_rates[accuracy_oob.index(max(accuracy_oob))] submodel = RandomForestClassifier(n_estimators=rf_number_of_trees, max_features=int(max(math.ceil( selected_autoscaled_x_train.shape[1] * optimal_x_variables_rate), 1)), oob_score=True) # RF モデルの宣言 submodel.fit(selected_autoscaled_x_train, y_train) # モデルの構築 submodels.append(submodel) # サブデータセットの説明変数の種類やサブモデルを保存。同じ名前のファイルがあるときは上書きされるため注意 pd.to_pickle(selected_x_variable_numbers, 'selected_x_variable_numbers.bin') pd.to_pickle(submodels, 'submodels.bin') # サブデータセットの説明変数の種類やサブモデルを読み込み # 今回は、保存した後にすぐ読み込んでいるため、あまり意味はありませんが、サブデータセットの説明変数の種類やサブモデルを # 保存しておくことで、後で新しいサンプルを予測したいときにモデル構築の過程を省略できます selected_x_variable_numbers = pd.read_pickle('selected_x_variable_numbers.bin') submodels = pd.read_pickle('submodels.bin') # テストデータの y の推定 # estimated_y_test_all = pd.DataFrame() # 空の DataFrame 型を作成し、ここにサブモデルごとのテストデータの y の推定結果を追加 estimated_y_test_count = np.zeros([x_test.shape[0], len(class_types)]) # クラスごとに、推定したサブモデルの数をカウントして値をここに格納 for submodel_number in range(number_of_submodels): # 説明変数の選択 selected_autoscaled_x_test = autoscaled_x_test.iloc[:, selected_x_variable_numbers[submodel_number]] # テストデータの y の推定 estimated_y_test = pd.DataFrame( submodels[submodel_number].predict(selected_autoscaled_x_test)) # テストデータの y の値を推定し、Pandas の DataFrame 型に変換 # estimated_y_test_all = pd.concat([estimated_y_test_all, estimated_y_test], axis=1) for sample_number in range(estimated_y_test.shape[0]): estimated_y_test_count[sample_number, class_types.index(estimated_y_test.iloc[sample_number, 0])] += 1 # テストデータにおける、クラスごとの推定したサブモデルの数 estimated_y_test_count =
pd.DataFrame(estimated_y_test_count, index=x_test.index, columns=class_types)
pandas.DataFrame
import os import random import soundfile as sf import torch import yaml import json import argparse import numpy as np import pandas as pd from tqdm import tqdm from pprint import pprint from asteroid import DCUNet from asteroid.metrics import get_metrics from asteroid.losses import PITLossWrapper, pairwise_neg_sisdr from asteroid.data.bbcso_dataset import BBCSODataset from asteroid.utils import tensors_to_device from asteroid.models import save_publishable from asteroid.dsp.normalization import normalize_estimates parser = argparse.ArgumentParser() parser.add_argument( "--json_dir", type=str, required=True, help="directory including the wav source and mix files" ) parser.add_argument("--n_src", type=int, default=2, help="Number of sources") parser.add_argument("--batch_size", type=int, default=1, help="Batch size") parser.add_argument( "--use_gpu", type=int, default=1, help="Whether to use the GPU for model execution" ) parser.add_argument("--exp_dir", default="exp/tmp", help="Experiment root") parser.add_argument( "--n_save_ex", type=int, default=-1, help="Number of audio examples to save, -1 means all" ) compute_metrics = ["si_sdr", "sdr", "sir", "sar"] def main(conf): model_path = os.path.join(conf["exp_dir"], "best_model.pth") #model = ConvTasNet.from_pretrained(model_path) model = DCUNet.from_pretrained(model_path) # Handle device placement if conf["use_gpu"]: model.cuda() model_device = next(model.parameters()).device test_set = BBCSODataset( conf["json_dir"], conf["n_src"], conf["sample_rate"], conf["batch_size"], 220500, train = False ) # Uses all segment length # Used to reorder sources only loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") # Randomly choose the indexes of sentences to save. ex_save_dir = os.path.join(conf["exp_dir"], "examples/") if conf["n_save_ex"] == -1: conf["n_save_ex"] = len(test_set) save_idx = random.sample(range(len(test_set)), conf["n_save_ex"]) series_list = [] torch.no_grad().__enter__() for idx in tqdm(range(len(test_set))): # Forward the network on the mixture. mix, sources = tensors_to_device(test_set[idx], device=model_device) mix = mix.unsqueeze(0) sources = sources.unsqueeze(0) est_sources = model(mix) loss, reordered_sources = loss_func(est_sources, sources, return_est=True) #mix_np = mix.squeeze(0).cpu().data.numpy() mix_np = mix.cpu().data.numpy() sources_np = sources.squeeze(0).cpu().data.numpy() est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy() utt_metrics = get_metrics( mix_np, sources_np, est_sources_np, sample_rate=conf["sample_rate"], metrics_list=compute_metrics, ) #utt_metrics["mix_path"] = test_set.mix[idx][0] series_list.append(
pd.Series(utt_metrics)
pandas.Series
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np import math from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel from qteasy.database import DataSource from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs from qteasy.blender import _exp_to_token, blender_parser, signal_blend class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000., 20000., 10000.]) self.op = np.array([0., 1., -0.33333333]) self.amounts_to_sell = np.array([0., 0., -3333.3333]) self.cash_to_spend = np.array([0., 20000., 0.]) self.prices = np.array([10., 20., 10.]) self.r = qt.Cost(0.0) def test_rate_creation(self): """测试对象生成""" print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') self.assertEqual(self.r.buy_fix, 0) self.assertEqual(self.r.sell_fix, 0) def test_rate_operations(self): """测试交易费率对象""" self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r.calculate(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): """测试买卖交易费率""" self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 0. self.r.sell_min = 0. self.r.slipage = 0. print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1.)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): """测试最低交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """测试最低交易费用对其他交易费率参数的影响""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): """测试固定交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): """测试交易滑点""" self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4, 10.87, 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19, 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97, 12.178, 11.95, 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64, 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3, 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82, 12.67, 12.876, 12.986, 13.271, 13.606, 13.82, 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34, 12.141, 11.687, 11.992, 12.458, 12.131, 11.75, 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56, 12.879, 12.861, 12.973, 13.235, 13.53, 13.531, 13.137, 13.166, 13.31, 13.103, 13.007, 12.643, 12.69, 12.216, 12.385, 12.046, 12.321, 11.9, 11.772, 11.816, 11.871, 11.59, 11.518, 11.94, 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16, 11.741, 11.26, 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62, 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89, 10.728, 11.191, 11.646, 11.62, 11.195, 11.178, 11.18, 10.956, 11.205, 10.87, 11.098, 10.639, 10.487, 10.507, 10.92, 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77, 11.225, 10.92, 10.824, 11.096, 11.542, 11.06, 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55, 9.008, 9.138, 9.088, 9.434, 9.156, 9.65, 9.431, 9.654, 10.079, 10.411, 10.865, 10.51, 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72, 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11, 13.53, 13.123, 13.138, 13.57, 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86, 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11, 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32, 16.59, 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06, 17.36, 17.108, 17.348, 17.596, 17.46, 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64, 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67, 15.911, 16.077, 16.17, 15.722, 15.258, 14.877, 15.138, 15., 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71, 16.327, 16.605, 16.486, 16.846, 16.935, 17.21, 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43, 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([9.7, 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59, 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55, 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91, 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97, 14.228, 13.84, 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41, 14.74, 15.03, 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86, 15.097, 15.178, 15.293, 15.238, 15., 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81, 17.192, 16.86, 16.745, 16.707, 16.552, 16.133, 16.301, 16.08, 15.81, 15.75, 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57, 16.778, 16.928, 16.932, 17.22, 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95, 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36, 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79, 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72, 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12, 15.442, 15.476, 15.789, 15.36, 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2, 15.994, 15.86, 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49, 17.768, 17.509, 17.795, 18.147, 18.63, 18.945, 19.021, 19.518, 19.6, 19.744, 19.63, 19.32, 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3, 17.894, 17.744, 17.5, 17.083, 17.092, 16.864, 16.453, 16.31, 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93, 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67, 14.797, 14.42, 14.681, 15.16, 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32, 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71, 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39, 11.723, 12.084, 11.8, 11.471, 11.33, 11.504, 11.295, 11.3, 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94, 10.521, 10.36, 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72, 10.54, 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54, 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39, 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4, 9.332, 9.34, 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63, 8.831, 8.957, 9.18, 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85, 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06, 10.188, 10.095, 9.739, 9.881, 9.7, 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) # test max drawdown == 0: # TODO: investigate: how does divide by zero change? self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50) def test_info_ratio(self): reference = self.test_data1 self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316) self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457) self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143) self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068) self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027) self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283) def test_volatility(self): self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166) self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442) self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853) self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814) self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522) self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308) self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406) self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311) self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473) self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424) self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021) self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969) self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504) self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156) self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf) self.assertRaises(AssertionError, eval_volatility, [1, 2, 3]) # 测试长数据的Volatility计算 expected_volatility = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514, 0.40710639, 0.40708157, 0.40609006, 0.4073625, 0.40835305, 0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415, 0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056, 0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625, 0.41649176, 0.41701556, 0.4166593, 0.41684221, 0.41491689, 0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106, 0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225, 0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639, 0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038, 0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159, 0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631, 0.4277768, 0.42776827, 0.42685216, 0.42660989, 0.42563155, 0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378, 0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356, 0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766, 0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552, 0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045, 0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318, 0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107, 0.42775518, 0.42707283, 0.4258592, 0.42615335, 0.42526286, 0.4248906, 0.42368986, 0.4232565, 0.42265079, 0.42263954, 0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271, 0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908, 0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677, 0.4100645, 0.40852504, 0.40860297, 0.40745338, 0.40698661, 0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649, 0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676, 0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157, 0.40658297, 0.4065991, 0.405011, 0.40537645, 0.40432626, 0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145, 0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663, 0.40198407, 0.401969, 0.40185623, 0.40198313, 0.40005643, 0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295, 0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074, 0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591, 0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377, 0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115, 0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262, 0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779, 0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437, 0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288, 0.37273075, 0.370559, 0.37038506, 0.37062153, 0.36964661, 0.36818564, 0.3656634, 0.36539259, 0.36428672, 0.36502487, 0.3647148, 0.36551435, 0.36409919, 0.36348181, 0.36254383, 0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759, 0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463, 0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833, 0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593, 0.34160916, 0.33811193, 0.33822709, 0.3391685, 0.33883381]) test_volatility = eval_volatility(self.long_data) test_volatility_roll = self.long_data['volatility'].values self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility)) self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True)) def test_sharp(self): self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557) self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667) self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547) self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241) self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673) self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537) self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971) # 测试长数据的sharp率计算 expected_sharp = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698, -0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613, -0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512, -0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214, -0.01671044, -0.02120509, -0.0244281, -0.02416067, -0.02763238, -0.027579, -0.02372774, -0.02215294, -0.02467094, -0.02091266, -0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144, -0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162, -0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889, -0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677, -0.00494757, -0.0035633, -0.00109037, 0.00750654, 0.00451208, 0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538, 0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643, 0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706, -0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912, -0.0018756, -0.00867461, -0.00581601, -0.00660835, -0.00861137, -0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891, -0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809, -0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497, 0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826, 0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183, 0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297, 0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161, 0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529, 0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728, 0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062, 0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977, 0.0474047, 0.04231723, 0.03613176, 0.03618391, 0.03591012, 0.03885674, 0.0402686, 0.03846423, 0.04534014, 0.04721458, 0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243, 0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996, 0.07078815, 0.07420767, 0.06773439, 0.0658441, 0.06470875, 0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094, 0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352, 0.05681246, 0.05250643, 0.06099845, 0.0655544, 0.06977334, 0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738, 0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791, 0.06553941, 0.073123, 0.07576757, 0.06805446, 0.06063571, 0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587, 0.0586174, 0.05051288, 0.0564852, 0.05757284, 0.06358355, 0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316, 0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652, 0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815, 0.06466389, 0.07081163, 0.07895358, 0.0881782, 0.09374151, 0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158, 0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819, 0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918, 0.08245323, 0.08961866, 0.09905298, 0.0961908, 0.08562706, 0.0839014, 0.0849072, 0.08338395, 0.08783487, 0.09463609, 0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405]) test_sharp = eval_sharp(self.long_data, 5, 0.00035) self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp) self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True)) def test_beta(self): reference = self.test_data1 self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939) self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233) self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986) self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532) self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082) self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809) self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value') self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value') self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value') # 测试长数据的beta计算 expected_beta = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598, -0.0493347, -0.0460858, -0.0416761, -0.03691527, -0.03724924, -0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303, -0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811, -0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583, -0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294, -0.00648176, -0.00467036, -0.01135331, -0.0156841, -0.02340763, -0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914, -0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765, -0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065, -0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738, -0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737, -0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831, -0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093, -0.04992507, -0.04621232, -0.04477644, -0.0486915, -0.04598224, -0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769, -0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891, -0.03903505, -0.0419592, -0.04307773, -0.03925718, -0.03711574, -0.03992631, -0.0433058, -0.04533641, -0.0461183, -0.05600344, -0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002, -0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515, -0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637, -0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867, -0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414, -0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762, -0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162, -0.0696265, -0.06678248, -0.06867502, -0.06581961, -0.07055823, -0.06448184, -0.06097973, -0.05795587, -0.0618383, -0.06130145, -0.06050652, -0.05936661, -0.05749424, -0.0499, -0.05050495, -0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759, -0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663, -0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323, -0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267, -0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708, -0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049, -0.04125853, -0.03806295, -0.0330632, -0.03155531, -0.03277152, -0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571, -0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584, -0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674, -0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479, -0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044, -0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738, -0.0584486, -0.06220608, -0.06800563, -0.06797431, -0.07562211, -0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925, -0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359, -0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355, -0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113, -0.1155195, -0.11569505, -0.10513348, -0.09611072, -0.10719791, -0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647, -0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695]) test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value') test_beta_roll = self.long_data['beta'].values self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta)) self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True)) def test_alpha(self): reference = self.test_data1 self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977) self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071) self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872) self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168) self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359) self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545) # 测试长数据的alpha计算 expected_alpha = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678, -0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686, -0.02459503, -0.04104284, -0.0444565, -0.04074585, 0.02191275, 0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245, -0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743, -0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428, -0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221, -0.15840648, -0.1525789, -0.11859418, -0.14700954, -0.16295761, -0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148, -0.05727746, -0.0429945, -0.04672356, -0.03581408, -0.0439215, -0.03429495, -0.0260362, -0.01075022, 0.04931808, 0.02779388, 0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058, 0.14238174, 0.14759783, 0.16257712, 0.158908, 0.11302115, 0.0909566, 0.08272888, 0.15261884, 0.10546376, 0.04990313, -0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265, -0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498, -0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091, -0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402, -0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138, 0.09370505, 0.11472939, 0.10243593, 0.0921445, 0.07662648, 0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924, 0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974, 0.17624102, 0.19035477, 0.2500807, 0.30724652, 0.31768915, 0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165, 0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636, 0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211, 0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822, 0.34503393, 0.2999069, 0.24928617, 0.24730218, 0.24326897, 0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792, 0.37837011, 0.37025267, 0.4030612, 0.41339361, 0.45076809, 0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943, 0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168, 0.47895956, 0.49320243, 0.4908336, 0.47310767, 0.51821564, 0.55105932, 0.57291504, 0.5599809, 0.46868842, 0.39620087, 0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991, 0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428, 0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081, 0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256, 0.35056709, 0.36490029, 0.39205071, 0.3677061, 0.41134736, 0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322, 0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224, 0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547, 0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907, 0.45436727, 0.50482359, 0.57339198, 0.6573356, 0.70912003, 0.60328917, 0.6395092, 0.67015805, 0.64241557, 0.62779142, 0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439, 0.48594916, 0.4456216, 0.52008189, 0.60548684, 0.62792473, 0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329, 0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203, 0.75573056, 0.89501633, 0.8347253, 0.87964685, 0.89015835]) test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value') test_alpha_roll = self.long_data['alpha'].values self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha)) self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True)) def test_calmar(self): """test evaluate function eval_calmar()""" pass def test_benchmark(self): reference = self.test_data1 tr, yr = eval_benchmark(self.test_data2, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data3, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data4, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data5, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data6, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data7, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) def test_evaluate(self): pass class TestLoop(unittest.TestCase): """通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性""" def setUp(self): # 精心设计的模拟股票名称、交易日期、以及股票价格 self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7'] self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08', '2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15', '2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22', '2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29', '2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13', '2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20', '2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26', '2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01', '2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08', '2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15', '2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22'] self.dates = [pd.Timestamp(date_text) for date_text in self.dates] self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75], [5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48], [5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56], [5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62], [5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62], [6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59], [5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33], [6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88], [6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47], [5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51], [5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83], [5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67], [5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79], [5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18], [5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02], [5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41], [6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65], [6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89], [6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41], [6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66], [6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37], [6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58], [5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76], [6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37], [6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16], [6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02], [6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77], [6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38], [6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07], [6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90], [6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50], [6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76], [6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29], [7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17], [6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84], [6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83], [6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21], [6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00], [6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76], [6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27], [6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40], [6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11], [6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60], [7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23], [6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59], [6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50], [6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80], [7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55], [7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35], [7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51], [7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08], [7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06], [7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43], [7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43], [7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74], [7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44], [6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83], [6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71], [6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12], [6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45], [6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85], [5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79], [6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91], [6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26], [6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14], [6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53], [7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65], [6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69], [7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50], [7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25], [7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64], [7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00], [7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63], [7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78], [7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42], [6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76], [7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62], [6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67], [6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61], [6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39], [6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43], [6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33], [6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03], [6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28], [6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46], [6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25], [5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95], [6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87], [6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63], [6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40], [7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53], [7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96], [6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26], [7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97], [6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16], [7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58], [6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23], [6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62], [6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13], [6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]]) # 精心设计的模拟PT持股仓位目标信号: self.pt_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.250, 0.150, 0.000, 0.300, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.370, 0.193, 0.120, 0.072, 0.072, 0.072, 0.096], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300]]) # 精心设计的模拟PS比例交易信号,与模拟PT信号高度相似 self.ps_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.100, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -0.750, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.333, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, -0.500, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, -1.000], [0.000, 0.000, 0.000, 0.000, 0.200, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.500, 0.000, 0.000, 0.150, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.200, 0.000, -1.000, 0.200, 0.000], [0.500, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.200, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, -0.500, 0.200], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.150, 0.000, 0.000], [-1.000, 0.000, 0.000, 0.250, 0.000, 0.250, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.250, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, -1.000, 0.000, -1.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.800, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -1.000, 0.000, 0.100], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, -1.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-1.000, 0.000, 0.150, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]]) # 精心设计的模拟VS股票交易信号,与模拟PS信号类似 self.vs_signals = np.array([[000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 300, 300], [400, 400, 000, 000, 000, 000, 000], [000, 000, 250, 000, 000, 000, 000], [000, 000, 000, 000, -400, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, -200, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, -300], [000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 300, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 400, 000, -300, 600, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [600, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, -400, 600], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 500, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 300, 000, 000], [-500, 000, 000, 500, 000, 200, 000], [000, 000, 000, 000, 000, 000, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, -700, 000, -600, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-400, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, -600, 000, 300], [000, 000, 000, 000, 000, 000, 000], [000, -300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 700, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000]]) # 精心设计的模拟多价格交易信号,模拟50个交易日对三只股票的操作 self.multi_shares = ['000010', '000030', '000039'] self.multi_dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08'] self.multi_dates = [pd.Timestamp(date_text) for date_text in self.multi_dates] # 操作的交易价格包括开盘价、最高价和收盘价 self.multi_prices_open = np.array([[10.02, 9.88, 7.26], [10.00, 9.88, 7.00], [9.98, 9.89, 6.88], [9.97, 9.75, 6.91], [9.99, 9.74, np.nan], [10.01, 9.80, 6.81], [10.04, 9.62, 6.63], [10.06, 9.65, 6.45], [10.06, 9.58, 6.16], [10.11, 9.67, 6.24], [10.11, 9.81, 5.96], [10.07, 9.80, 5.97], [10.06, 10.00, 5.96], [10.09, 9.95, 6.20], [10.03, 10.10, 6.35], [10.02, 10.06, 6.11], [10.06, 10.14, 6.37], [10.08, 9.90, 5.58], [9.99, 10.20, 5.65], [10.00, 10.29, 5.65], [10.03, 9.86, 5.19], [10.02, 9.48, 5.42], [10.06, 10.01, 6.30], [10.03, 10.24, 6.15], [9.97, 10.26, 6.05], [9.94, 10.24, 5.89], [9.83, 10.12, 5.22], [9.78, 10.65, 5.20], [9.77, 10.64, 5.07], [9.91, 10.56, 6.04], [9.92, 10.42, 6.12], [9.97, 10.43, 5.85], [9.91, 10.29, 5.67], [9.90, 10.30, 6.02], [9.88, 10.44, 6.04], [9.91, 10.60, 7.07], [9.63, 10.67, 7.64], [9.64, 10.46, 7.99], [9.57, 10.39, 7.59], [9.55, 10.90, 8.73], [9.58, 11.01, 8.72], [9.61, 11.01, 8.97], [9.62, np.nan, 8.58], [9.55, np.nan, 8.71], [9.57, 10.82, 8.77], [9.61, 11.02, 8.40], [9.63, 10.96, 7.95], [9.64, 11.55, 7.76], [9.61, 11.74, 8.25], [9.56, 11.80, 7.51]]) self.multi_prices_high = np.array([[10.07, 9.91, 7.41], [10.00, 10.04, 7.31], [10.00, 9.93, 7.14], [10.00, 10.04, 7.00], [10.03, 9.84, np.nan], [10.03, 9.88, 6.82], [10.04, 9.99, 6.96], [10.09, 9.70, 6.85], [10.10, 9.67, 6.50], [10.14, 9.71, 6.34], [10.11, 9.85, 6.04], [10.10, 9.90, 6.02], [10.09, 10.00, 6.12], [10.09, 10.20, 6.38], [10.10, 10.11, 6.43], [10.05, 10.18, 6.46], [10.07, 10.21, 6.43], [10.09, 10.26, 6.27], [10.10, 10.38, 5.77], [10.00, 10.47, 6.01], [10.04, 10.42, 5.67], [10.04, 10.07, 5.67], [10.06, 10.24, 6.35], [10.09, 10.27, 6.32], [10.05, 10.38, 6.43], [9.97, 10.43, 6.36], [9.96, 10.39, 5.79], [9.86, 10.65, 5.47], [9.77, 10.84, 5.65], [9.92, 10.65, 6.04], [9.94, 10.73, 6.14], [9.97, 10.63, 6.23], [9.97, 10.51, 5.83], [9.92, 10.35, 6.25], [9.92, 10.46, 6.27], [9.92, 10.63, 7.12], [9.93, 10.74, 7.82], [9.64, 10.76, 8.14], [9.58, 10.54, 8.27], [9.60, 11.02, 8.92], [9.58, 11.12, 8.76], [9.62, 11.17, 9.15], [9.62, np.nan, 8.90], [9.64, np.nan, 9.01], [9.59, 10.92, 9.16], [9.62, 11.15, 9.00], [9.63, 11.11, 8.27], [9.70, 11.55, 7.99], [9.66, 11.95, 8.33], [9.64, 11.93, 8.25]]) self.multi_prices_close = np.array([[10.04, 9.68, 6.64], [10.00, 9.87, 7.26], [10.00, 9.86, 7.03], [9.99, 9.87, 6.87], [9.97, 9.79, np.nan], [9.99, 9.82, 6.64], [10.03, 9.80, 6.85], [10.03, 9.66, 6.70], [10.06, 9.62, 6.39], [10.06, 9.58, 6.22], [10.11, 9.69, 5.92], [10.09, 9.78, 5.91], [10.07, 9.75, 6.11], [10.06, 9.96, 5.91], [10.09, 9.90, 6.23], [10.03, 10.04, 6.28], [10.03, 10.06, 6.28], [10.06, 10.08, 6.27], [10.08, 10.24, 5.70], [10.00, 10.24, 5.56], [9.99, 10.24, 5.67], [10.03, 9.86, 5.16], [10.03, 10.13, 5.69], [10.06, 10.12, 6.32], [10.03, 10.10, 6.14], [9.97, 10.25, 6.25], [9.94, 10.24, 5.79], [9.83, 10.22, 5.26], [9.77, 10.75, 5.05], [9.84, 10.64, 5.45], [9.91, 10.56, 6.06], [9.93, 10.60, 6.21], [9.96, 10.42, 5.69], [9.91, 10.25, 5.46], [9.91, 10.24, 6.02], [9.88, 10.49, 6.69], [9.91, 10.57, 7.43], [9.64, 10.63, 7.72], [9.56, 10.48, 8.16], [9.57, 10.37, 7.83], [9.55, 10.96, 8.70], [9.57, 11.02, 8.71], [9.61, np.nan, 8.88], [9.61, np.nan, 8.54], [9.55, 10.88, 8.87], [9.57, 10.87, 8.87], [9.63, 11.01, 8.18], [9.64, 11.01, 7.80], [9.65, 11.58, 7.97], [9.62, 11.80, 8.25]]) # 交易信号包括三组,分别作用与开盘价、最高价和收盘价 # 此时的关键是股票交割期的处理,交割期不为0时,以交易日为单位交割 self.multi_signals = [] # multisignal的第一组信号为开盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.000, 0.000], [0.000, -0.500, 0.000], [0.000, -0.500, 0.000], [0.000, 0.000, 0.000], [0.150, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.300, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.300], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.350, 0.250], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.100, 0.000, 0.350], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.050, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.150, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, -0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.200], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.500, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -0.800], [0.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.750, 0.000, 0.000], [0.000, 0.000, -0.850], [0.000, 0.000, 0.000], [0.000, -0.700, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -1.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-1.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 交易回测所需的价格也有三组,分别是开盘价、最高价和收盘价 self.multi_histories = [] # multisignal的第一组信号为开盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_open, columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_high, columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_close, columns=self.multi_shares, index=self.multi_dates ) ) # 设置回测参数 self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000]) self.rate = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=0, sell_min=0, slipage=0) self.rate2 = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=10, sell_min=5, slipage=0) self.pt_signal_hp = dataframe_to_hp( pd.DataFrame(self.pt_signals, index=self.dates, columns=self.shares), htypes='close' ) self.ps_signal_hp = dataframe_to_hp( pd.DataFrame(self.ps_signals, index=self.dates, columns=self.shares), htypes='close' ) self.vs_signal_hp = dataframe_to_hp( pd.DataFrame(self.vs_signals, index=self.dates, columns=self.shares), htypes='close' ) self.multi_signal_hp = stack_dataframes( self.multi_signals, stack_along='htypes', htypes='open, high, close' ) self.history_list = dataframe_to_hp( pd.DataFrame(self.prices, index=self.dates, columns=self.shares), htypes='close' ) self.multi_history_list = stack_dataframes( self.multi_histories, stack_along='htypes', htypes='open, high, close' ) # 模拟PT信号回测结果 # PT信号,先卖后买,交割期为0 self.pt_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21979.4972], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21880.9628], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21630.0454], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20968.0007], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21729.9339], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21107.6400], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21561.1745], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21553.0916], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22316.9366], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22084.2862], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21777.3543], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22756.8225], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22843.4697], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22762.1766], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22257.0973], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23136.5259], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 21813.7852], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22395.3204], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23717.6858], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22715.4263], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 22498.3254], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23341.1733], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24162.3941], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24847.1508], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23515.9755], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24555.8997], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24390.6372], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24073.3309], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24394.6500], [2076.3314, 903.0334, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 3487.5655, 0.0000, 34904.8150], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 34198.4475], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 33753.0190], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 34953.8178], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 33230.2498], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35026.7819], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36976.2649], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38673.8147], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38717.3429], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36659.0854], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35877.9607], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36874.4840], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37010.2695], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 38062.3510], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36471.1357], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37534.9927], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37520.2569], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36747.7952], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36387.9409], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 35925.9715], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36950.7028], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37383.2463], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37761.2724], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 39548.2653], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41435.1291], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41651.6261], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41131.9920], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 41286.4702], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 40978.7259], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 40334.5453], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41387.9172], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42492.6707], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42953.7188], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42005.1092], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42017.9106], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 43750.2824], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41766.8679], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 42959.1150], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 41337.9320], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 40290.3688]]) # PT信号,先买后卖,交割期为0 self.pt_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [797.1684, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 2703.5808, 0.0000, 21979.4972], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21700.7241], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21446.6630], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20795.3593], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21557.2924], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 20933.6887], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21392.5581], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21390.2918], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22147.7562], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21910.9053], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21594.2980], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22575.4380], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22655.8312], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22578.4365], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22073.2661], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22955.2367], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 21628.1647], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22203.4237], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 23516.2598], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22505.8428], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22199.1042], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23027.9302], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23848.5806], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24540.8871], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23205.6838], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24267.6685], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24115.3796], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23814.3667], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24133.6611], [2061.6837, 896.6628, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 3285.8830, 0.0000, 34658.5742], [0.0000, 896.6628, 507.6643, 466.6033, 0.0000, 1523.7106, 1467.7407, 12328.8684, 0.0000, 33950.7917], [0.0000, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 4380.3797, 0.0000, 33711.4045], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 34922.0959], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 33237.1081], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35031.8071], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36976.3376], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38658.5245], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38712.2854], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36655.3125], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35904.3692], [644.1423, 902.2617, 514.8253, 0.0000, 15.5990, 0.0000, 1467.7407, 14821.9004, 0.0000, 36873.9080], [644.1423, 902.2617, 514.8253, 0.0000, 1220.8683, 0.0000, 1467.7407, 10470.8781, 0.0000, 36727.7895], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37719.9840], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36138.1277], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37204.0760], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37173.1201], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36398.2298], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36034.2178], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 35583.6399], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36599.2645], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37013.3408], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37367.7449], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 39143.8273], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41007.3074], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41225.4657], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 40685.9525], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 1467.7407, 6592.6891, 0.0000, 40851.5435], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 0.0000, 0.0000, 41082.1210], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 40385.0135], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 41455.1513], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42670.6769], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 43213.7233], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42205.2480], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42273.9386], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 44100.0777], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42059.7208], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 43344.9653], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 41621.0324], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 40528.0648]]) # PT信号,先卖后买,交割期为2天(股票)0天(现金)以便利用先卖的现金继续买入 self.pt_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21584.441], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21309.576], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20664.323], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21445.597], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 20806.458], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21288.441], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21294.365], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 22058.784], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21805.540], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21456.333], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22459.720], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22611.602], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22470.912], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21932.634], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22425.864], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21460.103], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22376.968], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23604.295], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22704.826], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22286.293], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23204.755], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24089.017], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24768.185], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23265.196], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24350.540], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24112.706], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23709.076], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24093.545], [2060.275, 896.050, 504.579, 288.667, 0.000, 763.410, 1577.904, 2835.944, 0.000, 34634.888], [578.327, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 732.036, 0.000, 33912.261], [0.000, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 4415.981, 0.000, 33711.951], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 34951.433], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 33224.596], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35065.209], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 37018.699], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38706.035], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38724.569], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 36647.268], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35928.930], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36967.229], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37056.598], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 38129.862], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36489.333], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37599.602], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37566.823], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36799.280], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36431.196], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 35940.942], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36973.050], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37393.292], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37711.276], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 39515.991], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41404.440], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41573.523], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41011.613], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 41160.181], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 40815.512], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 40145.531], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41217.281], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42379.061], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42879.589], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41891.452], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41929.003], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 43718.052], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41685.916], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 42930.410], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 41242.589], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 40168.084]]) # PT信号,先买后卖,交割期为2天(股票)1天(现金) self.pt_res_bs21 = np.array([ [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [797.168, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 2475.037, 0.000, 21584.441], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21266.406], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20623.683], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21404.957], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 20765.509], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21248.748], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21256.041], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 22018.958], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21764.725], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21413.241], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22417.021], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22567.685], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22427.699], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21889.359], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22381.938], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21416.358], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22332.786], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 0.000, 2386.698, 0.000, 23557.595], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 23336.992], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 22907.742], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24059.201], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24941.902], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25817.514], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24127.939], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25459.688], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25147.370], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25005.842], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 1086.639, 2752.004, 0.000, 25598.700], [2138.154, 929.921, 503.586, 288.667, 0.000, 761.900, 1086.639, 4818.835, 0.000, 35944.098], [661.356, 929.921, 503.586, 553.843, 0.000, 1954.237, 1086.639, 8831.252, 0.000, 35237.243], [0.000, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 9460.955, 0.000, 35154.442], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36166.632], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 34293.883], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 35976.901], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37848.552], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39512.574], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39538.024], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37652.984], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36687.909], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37749.277], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37865.518], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38481.190], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37425.087], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38051.341], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38065.478], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37429.495], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37154.479], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 36692.717], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37327.055], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37937.630], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 38298.645], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 39689.369], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40992.397], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 41092.265], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40733.622], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40708.515], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40485.321], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 39768.059], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 40519.595], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 41590.937], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42354.983], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41175.149], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41037.902], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42706.213], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 40539.205], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 41608.692], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39992.148], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39134.828]]) # 模拟PS信号回测结果 # PS信号,先卖后买,交割期为0 self.ps_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22027.4535], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 20939.9992], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21250.0636], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22282.7812], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21407.0658], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21160.2373], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21826.7682], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22744.9403], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23466.1185], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22017.8821], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23191.4662], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23099.0822], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22684.7671], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22842.1346], [1073.8232, 416.6787, 735.6442, 269.8496, 1785.2055, 938.6967, 1339.2073, 5001.4246, 0.0000, 33323.8359], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32820.2901], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32891.2308], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34776.5296], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 33909.0325], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34560.1906], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 36080.4552], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38618.4454], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38497.9230], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 37110.0991], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 35455.2467], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35646.1860], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35472.3020], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36636.4694], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35191.7035], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36344.2242], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36221.6005], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35943.5708], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35708.2608], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35589.0286], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36661.0285], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36310.5909], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36466.7637], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 37784.4918], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39587.6766], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 40064.0191], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39521.6439], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39932.2761], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39565.2475], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 38943.1632], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39504.1184], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40317.8004], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40798.5768], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39962.5711], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40194.4793], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 41260.4003], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39966.3024], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 40847.3160], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 39654.5445], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 38914.8151]]) # PS信号,先买后卖,交割期为0 self.ps_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21625.6913], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 20873.0389], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21450.9447], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 22269.3892], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21969.5329], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21752.6924], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22000.6088], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23072.5655], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23487.5201], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22441.0460], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23201.2700], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23400.9485], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22306.2008], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21989.5913], [1073.8232, 737.0632, 735.6442, 269.8496, 1708.7766, 938.6967, 0.0000, 5215.4255, 0.0000, 31897.1636], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31509.5059], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31451.7888], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32773.4592], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32287.0318], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32698.1938], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34031.5183], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 35537.8336], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36212.6487], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36007.5294], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34691.3797], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33904.8810], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34341.6098], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 35479.9505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34418.4455], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34726.7182], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34935.0407], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34136.7505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33804.1575], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 33653.8970], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 34689.8757], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 34635.7841], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 35253.2755], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 36388.1051], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 37987.4204], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38762.2103], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38574.0544], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39101.9156], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39132.5587], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38873.2941], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39336.6594], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39565.9568], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39583.4317], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39206.8350], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39092.6551], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39666.1834], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38798.0749], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 39143.5561], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38617.8779], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38156.1701]]) # PS信号,先卖后买,交割期为2天(股票)1天(现金) self.ps_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111], [346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112], [346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162], [115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135], [1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0.000, 33323.836], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32820.290], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32891.231], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34776.530], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 33909.032], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34560.191], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 36080.455], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38618.445], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38497.923], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 37110.099], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 35455.247], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35646.186], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35472.302], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36636.469], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35191.704], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36344.224], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36221.601], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35943.571], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35708.261], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35589.029], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36661.029], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36310.591], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36466.764], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 37784.492], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39587.677], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 40064.019], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39521.644], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39932.276], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39565.248], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 38943.163], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39504.118], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40317.800], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40798.577], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39962.571], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40194.479], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 41260.400], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39966.302], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 40847.316], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 39654.544], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 38914.815]]) # PS信号,先买后卖,交割期为2天(股票)1天(现金) self.ps_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 208.333, 326.206, 5020.833, 0.000, 9761.111], [351.119, 421.646, 0.000, 0.000, 555.556, 208.333, 326.206, 1116.389, 0.000, 9645.961], [351.119, 421.646, 190.256, 0.000, 555.556, 208.333, 326.206, 151.793, 0.000, 9686.841], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9813.932], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9803.000], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9605.334], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9304.001], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8870.741], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8738.282], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8780.664], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9126.199], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9199.746], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9083.518], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9380.932], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9581.266], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 9927.154], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10059.283], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10281.669], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10093.263], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 0.000, 4453.525, 0.000, 10026.289], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9870.523], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9606.437], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9818.691], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9726.556], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9964.547], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 10053.449], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9917.440], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9889.495], [117.098, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 6189.948, 0.000, 20064.523], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21124.484], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20827.077], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20396.124], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19856.445], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20714.156], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19971.485], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20733.948], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20938.903], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21660.772], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21265.298], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20684.378], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21754.770], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21775.215], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21801.488], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21235.427], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21466.714], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 20717.431], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21294.450], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 22100.247], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21802.552], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21593.608], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21840.028], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22907.725], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23325.945], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22291.942], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23053.050], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23260.084], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22176.244], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21859.297], [1055.763, 740.051, 729.561, 272.237, 1706.748, 932.896, 0.000, 5221.105, 0.000, 31769.617], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31389.961], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31327.498], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32647.140], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32170.095], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32577.742], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 33905.444], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35414.492], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 36082.120], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35872.293], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 34558.132], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33778.138], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34213.578], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 35345.791], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34288.014], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34604.406], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34806.850], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34012.232], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33681.345], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 33540.463], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 34574.280], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 34516.781], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 35134.412], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 36266.530], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 37864.376], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38642.633], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38454.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 38982.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 39016.154], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38759.803], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39217.182], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39439.690], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39454.081], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39083.341], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38968.694], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39532.030], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38675.507], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 39013.741], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38497.668], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38042.410]]) # 模拟VS信号回测结果 # VS信号,先卖后买,交割期为0 self.vs_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 9925.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954.0000, 0.0000, 9785.0000], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878.0000, 0.0000, 9666.0000], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0.0000, 0.0000, 9731.0000], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9830.9270], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9785.8540], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9614.3412], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9303.1953], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8834.4398], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8712.7554], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8717.9507], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9079.1479], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9166.0276], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9023.6607], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9291.6864], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9411.6371], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20137.8405], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20711.3567], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21470.3891], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21902.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20962.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21833.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21941.8169], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21278.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21224.4700], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160.0000, 0.0000, 31225.2119], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30894.5748], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30764.3811], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31615.4215], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 32486.1394], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 33591.2847], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34056.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34756.4863], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34445.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34433.9541], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33870.4703], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34014.3010], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34680.5671], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33890.9945], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34004.6640], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34127.7768], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 32613.3171], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 33168.1558], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33504.6236], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33652.1318], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35557.5191], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35669.7128], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35211.4466], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35550.6079], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35711.6563], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35682.6079], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35880.8336], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36249.8740], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36071.6159], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35846.1562], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35773.3578], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36274.9465], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35739.3094], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 36135.0917], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35286.5835], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35081.3658]]) # VS信号,先买后卖,交割期为0 self.vs_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 10000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 9925], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954, 0.0000, 9785], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878, 0.0000, 9666], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0, 0.0000, 9731], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9830.927022], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9785.854043], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9614.341223], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9303.195266], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8834.439842], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8712.755424], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8717.95069], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9079.147929], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9166.027613], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9023.66075], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9291.686391], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9411.637081], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20137.84054], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20711.35674], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21470.38914], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21902.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20962.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21833.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21941.81688], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21278.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21224.46995], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160, 0.0000, 31225.21185], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30894.57479], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30764.38113], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31615.42154], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 32486.13941], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 33591.28466], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34056.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34756.48633], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34445.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34433.95412], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33870.47032], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34014.30104], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34680.56715], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33890.99452], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34004.66398], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34127.77683], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 32613.31706], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 33168.15579], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33504.62357], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33652.13176], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35557.51909], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35669.71276], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35211.44665], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35550.60792], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35711.65633], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35682.60792], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35880.83362], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36249.87403], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36071.61593], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35846.15615], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35773.35783], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36274.94647], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35739.30941], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 36135.09172], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35286.58353], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35081.36584]]) # VS信号,先卖后买,交割期为2天(股票)1天(现金) self.vs_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # VS信号,先买后卖,交割期为2天(股票)1天(现金) self.vs_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # Multi信号处理结果,先卖后买,使用卖出的现金买进,交割期为2天(股票)0天(现金) self.multi_res = np.array( [[0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 9965.1867], [0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 10033.0650], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10034.8513], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10036.6376], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10019.3404], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10027.7062], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10030.1477], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10005.1399], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10002.5054], [150.3516, 489.4532, 0.0000, 3765.8877, 0.0000, 9967.3860], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10044.4059], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10078.1430], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10138.2709], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10050.4768], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10300.0711], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10392.6970], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10400.5282], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10408.9220], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10376.5914], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10346.8794], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10364.7474], [75.1758, 381.1856, 645.5014, 2459.1665, 0.0000, 10302.4570], [18.7939, 381.1856, 645.5014, 3024.6764, 0.0000, 10747.4929], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11150.9107], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11125.2946], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11191.9956], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11145.7486], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11090.0768], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11113.8733], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11456.3281], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21983.7333], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22120.6165], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21654.5327], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21429.6550], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21912.5643], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22516.3100], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23169.0777], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23390.8080], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23743.3742], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 23210.7311], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24290.4375], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24335.3279], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18317.3553], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18023.4660], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24390.0527], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24389.6421], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24483.5953], [0.0000, 559.9112, 0.0000, 18321.5674, 0.0000, 24486.1895], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389]]) def test_loop_step_pt_sb00(self): """ test loop step PT-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[2][7], own_amounts=self.pt_res_sb00[2][0:7], available_cash=self.pt_res_sb00[2][7], available_amounts=self.pt_res_sb00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[2][7] + c_g + c_s amounts = self.pt_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[30][7], own_amounts=self.pt_res_sb00[30][0:7], available_cash=self.pt_res_sb00[30][7], available_amounts=self.pt_res_sb00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[30][7] + c_g + c_s amounts = self.pt_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[59][7] + 10000, own_amounts=self.pt_res_sb00[59][0:7], available_cash=self.pt_res_sb00[59][7] + 10000, available_amounts=self.pt_res_sb00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[95][7], own_amounts=self.pt_res_sb00[95][0:7], available_cash=self.pt_res_sb00[95][7], available_amounts=self.pt_res_sb00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[96][7] + c_g + c_s amounts = self.pt_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[97][0:7])) def test_loop_step_pt_bs00(self): """ test loop step PT-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[2][7], own_amounts=self.pt_res_bs00[2][0:7], available_cash=self.pt_res_bs00[2][7], available_amounts=self.pt_res_bs00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[2][7] + c_g + c_s amounts = self.pt_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[30][7], own_amounts=self.pt_res_bs00[30][0:7], available_cash=self.pt_res_bs00[30][7], available_amounts=self.pt_res_bs00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[30][7] + c_g + c_s amounts = self.pt_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[59][7] + 10000, own_amounts=self.pt_res_bs00[59][0:7], available_cash=self.pt_res_bs00[59][7] + 10000, available_amounts=self.pt_res_bs00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[95][7], own_amounts=self.pt_res_bs00[95][0:7], available_cash=self.pt_res_bs00[95][7], available_amounts=self.pt_res_bs00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[96][7] + c_g + c_s amounts = self.pt_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[97][0:7])) def test_loop_step_ps_sb00(self): """ test loop step PS-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_sb00[2][7], available_amounts=self.ps_res_sb00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[2][7] + c_g + c_s amounts = self.ps_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_sb00[30][7], available_amounts=self.ps_res_sb00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[30][7] + c_g + c_s amounts = self.ps_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[59][7] + 10000, own_amounts=self.ps_res_sb00[59][0:7], available_cash=self.ps_res_sb00[59][7] + 10000, available_amounts=self.ps_res_sb00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[95][7], own_amounts=self.ps_res_sb00[95][0:7], available_cash=self.ps_res_sb00[95][7], available_amounts=self.ps_res_sb00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[96][7] + c_g + c_s amounts = self.ps_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[97][0:7])) def test_loop_step_ps_bs00(self): """ test loop step PS-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_bs00[2][7], available_amounts=self.ps_res_bs00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[2][7] + c_g + c_s amounts = self.ps_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_bs00[30][7], available_amounts=self.ps_res_bs00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[30][7] + c_g + c_s amounts = self.ps_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[59][7] + 10000, own_amounts=self.ps_res_bs00[59][0:7], available_cash=self.ps_res_bs00[59][7] + 10000, available_amounts=self.ps_res_bs00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[95][7], own_amounts=self.ps_res_bs00[95][0:7], available_cash=self.ps_res_bs00[95][7], available_amounts=self.ps_res_bs00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[96][7] + c_g + c_s amounts = self.ps_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[97][0:7])) def test_loop_step_vs_sb00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[2][7], own_amounts=self.vs_res_sb00[2][0:7], available_cash=self.vs_res_sb00[2][7], available_amounts=self.vs_res_sb00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[2][7] + c_g + c_s amounts = self.vs_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[30][7], own_amounts=self.vs_res_sb00[30][0:7], available_cash=self.vs_res_sb00[30][7], available_amounts=self.vs_res_sb00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[30][7] + c_g + c_s amounts = self.vs_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[59][7] + 10000, own_amounts=self.vs_res_sb00[59][0:7], available_cash=self.vs_res_sb00[59][7] + 10000, available_amounts=self.vs_res_sb00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[95][7], own_amounts=self.vs_res_sb00[95][0:7], available_cash=self.vs_res_sb00[95][7], available_amounts=self.vs_res_sb00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[96][7] + c_g + c_s amounts = self.vs_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[97][0:7])) def test_loop_step_vs_bs00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[2][7], own_amounts=self.vs_res_bs00[2][0:7], available_cash=self.vs_res_bs00[2][7], available_amounts=self.vs_res_bs00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[2][7] + c_g + c_s amounts = self.vs_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[30][7], own_amounts=self.vs_res_bs00[30][0:7], available_cash=self.vs_res_bs00[30][7], available_amounts=self.vs_res_bs00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[30][7] + c_g + c_s amounts = self.vs_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[59][7] + 10000, own_amounts=self.vs_res_bs00[59][0:7], available_cash=self.vs_res_bs00[59][7] + 10000, available_amounts=self.vs_res_bs00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[95][7], own_amounts=self.vs_res_bs00[95][0:7], available_cash=self.vs_res_bs00[95][7], available_amounts=self.vs_res_bs00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[96][7] + c_g + c_s amounts = self.vs_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[97][0:7])) def test_loop_pt(self): """ Test looping of PT proportion target signals, with stock delivery delay = 0 days cash delivery delay = 0 day buy-sell sequence = sell first """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 0 days \n' 'cash delivery delay = 0 day \n' 'buy-sell sequence = sell first') res = apply_loop(op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.pt_res_bs00, 2)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=0, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.pt_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.pt_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.ps_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.ps_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.ps_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs(self): """ Test looping of VS Volume Signal type of signals """ res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.vs_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.vs_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.vs_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_multiple_signal(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=True, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.multi_res[i])) print() self.assertTrue(np.allclose(res, self.multi_res, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=False, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') class TestStrategy(unittest.TestCase): """ test all properties and methods of strategy base class""" def setUp(self) -> None: pass class TestLSStrategy(RollingTiming): """用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成 该策略有两个参数,N与Price N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空 """ def __init__(self): super().__init__(stg_name='test_LS', stg_text='test long/short strategy', par_count=2, par_types='discr, conti', par_bounds_or_enums=([1, 5], [2, 10]), data_types='close, open, high, low', data_freq='d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): n, price = params h = hist_data.T avg = (h[0] + h[1] + h[2] + h[3]) / 4 ma = sma(avg, n) if ma[-1] < price: return 0 else: return 1 class TestSelStrategy(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='high, low, close', data_freq='d', sample_freq='10d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = np.nanmean(hist_data, axis=(1, 2)) dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1)) dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif]) difper = dif_no_nan / avg large2 = difper.argsort()[1:] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSelStrategyDiffTime(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ # TODO: This strategy is not working, find out why and improve def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='close, low, open', data_freq='d', sample_freq='w', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = hist_data.mean(axis=1).squeeze() difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg large2 = difper.argsort()[0:2] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSigStrategy(SimpleTiming): """用于Test测试的简单信号生成策略,基于SimpleTiming策略生成 策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2 ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了 简化处理。 信号生成的规则如下: 1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号 2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号 """ def __init__(self): super().__init__(stg_name='test_SIG', stg_text='test signal creation strategy', par_count=3, par_types='conti, conti, conti', par_bounds_or_enums=([2, 10], [0, 3], [0, 3]), data_types='close, open, high, low', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): r, price1, price2 = params h = hist_data.T ratio = np.abs((h[0] - h[1]) / (h[3] - h[2])) diff = h[0] - np.roll(h[0], 1) sig = np.where((ratio < r) & (diff > price1), 1, np.where((ratio < r) & (diff < price2), -1, 0)) return sig class MyStg(qt.RollingTiming): """自定义双均线择时策略策略""" def __init__(self): """这个均线择时策略只有三个参数: - SMA 慢速均线,所选择的股票 - FMA 快速均线 - M 边界值 策略的其他说明 """ """ 必须初始化的关键策略参数清单: """ super().__init__( pars=(20, 100, 0.01), par_count=3, par_types=['discr', 'discr', 'conti'], par_bounds_or_enums=[(10, 250), (10, 250), (0.0, 0.5)], stg_name='CUSTOM ROLLING TIMING STRATEGY', stg_text='Customized Rolling Timing Strategy for Testing', data_types='close', window_length=100, ) print(f'=====================\n====================\n' f'custom strategy initialized, \npars: {self.pars}\npar_count:{self.par_count}\npar_types:' f'{self.par_types}\n' f'{self.info()}') # 策略的具体实现代码写在策略的_realize()函数中 # 这个函数固定接受两个参数: hist_price代表特定组合的历史数据, params代表具体的策略参数 def _realize(self, hist_price, params): """策略的具体实现代码: s:短均线计算日期;l:长均线计算日期;m:均线边界宽度;hesitate:均线跨越类型""" f, s, m = params # 临时处理措施,在策略实现层对传入的数据切片,后续应该在策略实现层以外事先对数据切片,保证传入的数据符合data_types参数即可 h = hist_price.T # 计算长短均线的当前值 s_ma = qt.sma(h[0], s)[-1] f_ma = qt.sma(h[0], f)[-1] # 计算慢均线的停止边界,当快均线在停止边界范围内时,平仓,不发出买卖信号 s_ma_u = s_ma * (1 + m) s_ma_l = s_ma * (1 - m) # 根据观望模式在不同的点位产生Long/short/empty标记 if f_ma > s_ma_u: # 当快均线在慢均线停止范围以上时,持有多头头寸 return 1 elif s_ma_l < f_ma < s_ma_u: # 当均线在停止边界以内时,平仓 return 0 else: # f_ma < s_ma_l 当快均线在慢均线停止范围以下时,持有空头头寸 return -1 class TestOperator(unittest.TestCase): """全面测试Operator对象的所有功能。包括: 1, Strategy 参数的设置 2, 历史数据的获取与分配提取 3, 策略优化参数的批量设置和优化空间的获取 4, 策略输出值的正确性验证 5, 策略结果的混合结果确认 """ def setUp(self): """prepare data for Operator test""" print('start testing HistoryPanel object\n') # build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days # for some share_pool # for share1: data_rows = 50 share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11, 10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99, 10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93, 9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61, 9.55, 9.57, 9.63, 9.64, 9.65, 9.62] share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11, 10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10, 10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92, 9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62, 9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56] share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1, 10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06, 10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92, 9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63, 9.7, 9.66, 9.64] share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07, 10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99, 9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6, 9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56] # for share2: share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75, 9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12, 10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24, 10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01, 11.01, 11.58, 11.8] share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10, 9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26, 10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6, 10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96, 11.55, 11.74, 11.8] share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10, 10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27, 10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46, 10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15, 11.11, 11.55, 11.95, 11.93] share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75, 9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05, 10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36, 10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75, 10.91, 11.31, 11.58] # for share3: share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11, 5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25, 5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16, 7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25] share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96, 6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89, 5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59, 8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51] share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38, 6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79, 5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92, 8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25] share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81, 6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19, 4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66, 8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51] # for sel_finance test shares_eps = np.array([[np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, 0.2, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [0.1, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.3, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.15, np.nan, np.nan], [np.nan, 0.1, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.2, np.nan, np.nan], [np.nan, 0.5, np.nan], [0.4, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [0.9, np.nan, np.nan], [np.nan, np.nan, 0.1]]) self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18', '2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22', '2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03', '2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09', '2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15', '2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19', '2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25', '2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31', '2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08'] self.shares = ['000010', '000030', '000039'] self.types = ['close', 'open', 'high', 'low'] self.sel_finance_tyeps = ['eps'] self.test_data_3D = np.zeros((3, data_rows, 4)) self.test_data_2D = np.zeros((data_rows, 3)) self.test_data_2D2 = np.zeros((data_rows, 4)) self.test_data_sel_finance = np.empty((3, data_rows, 1)) # Build up 3D data self.test_data_3D[0, :, 0] = share1_close self.test_data_3D[0, :, 1] = share1_open self.test_data_3D[0, :, 2] = share1_high self.test_data_3D[0, :, 3] = share1_low self.test_data_3D[1, :, 0] = share2_close self.test_data_3D[1, :, 1] = share2_open self.test_data_3D[1, :, 2] = share2_high self.test_data_3D[1, :, 3] = share2_low self.test_data_3D[2, :, 0] = share3_close self.test_data_3D[2, :, 1] = share3_open self.test_data_3D[2, :, 2] = share3_high self.test_data_3D[2, :, 3] = share3_low self.test_data_sel_finance[:, :, 0] = shares_eps.T self.hp1 = qt.HistoryPanel(values=self.test_data_3D, levels=self.shares, columns=self.types, rows=self.date_indices) print(f'in test Operator, history panel is created for timing test') self.hp1.info() self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance, levels=self.shares, columns=self.sel_finance_tyeps, rows=self.date_indices) print(f'in test_Operator, history panel is created for selection finance test:') self.hp2.info() self.op = qt.Operator(strategies='dma', signal_type='PS') self.op2 = qt.Operator(strategies='dma, macd, trix') def test_init(self): """ test initialization of Operator class""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.signal_type, 'pt') self.assertIsInstance(op.strategies, list) self.assertEqual(len(op.strategies), 0) op = qt.Operator('dma') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies, list) self.assertIsInstance(op.strategies[0], TimingDMA) op = qt.Operator('dma, macd') self.assertIsInstance(op, qt.Operator) op = qt.Operator(['dma', 'macd']) self.assertIsInstance(op, qt.Operator) def test_repr(self): """ test basic representation of Opeartor class""" op = qt.Operator() self.assertEqual(op.__repr__(), 'Operator()') op = qt.Operator('macd, dma, trix, random, avg_low') self.assertEqual(op.__repr__(), 'Operator(macd, dma, trix, random, avg_low)') self.assertEqual(op['dma'].__repr__(), 'Q-TIMING(DMA)') self.assertEqual(op['macd'].__repr__(), 'R-TIMING(MACD)') self.assertEqual(op['trix'].__repr__(), 'R-TIMING(TRIX)') self.assertEqual(op['random'].__repr__(), 'SELECT(RANDOM)') self.assertEqual(op['avg_low'].__repr__(), 'FACTOR(AVG LOW)') def test_info(self): """Test information output of Operator""" print(f'test printing information of operator object') self.op.info() def test_get_strategy_by_id(self): """ test get_strategy_by_id()""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op.get_strategy_by_id('macd'), op.strategies[0]) self.assertIs(op.get_strategy_by_id(1), op.strategies[1]) self.assertIs(op.get_strategy_by_id('trix'), op.strategies[2]) def test_get_items(self): """ test method __getitem__(), it should be the same as geting strategies by id""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op['macd'], op.strategies[0]) self.assertIs(op['trix'], op.strategies[2]) self.assertIs(op[1], op.strategies[1]) self.assertIs(op[3], op.strategies[2]) def test_get_strategies_by_price_type(self): """ test get_strategies_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategies_by_price_type('close') stg_open = op.get_strategies_by_price_type('open') stg_high = op.get_strategies_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, [op.strategies[1]]) self.assertEqual(stg_open, [op.strategies[0], op.strategies[2]]) self.assertEqual(stg_high, []) stg_wrong = op.get_strategies_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_count_by_price_type(self): """ test get_strategy_count_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_count_by_price_type('close') stg_open = op.get_strategy_count_by_price_type('open') stg_high = op.get_strategy_count_by_price_type('high') self.assertIsInstance(stg_close, int) self.assertIsInstance(stg_open, int) self.assertIsInstance(stg_high, int) self.assertEqual(stg_close, 1) self.assertEqual(stg_open, 2) self.assertEqual(stg_high, 0) stg_wrong = op.get_strategy_count_by_price_type(123) self.assertIsInstance(stg_wrong, int) self.assertEqual(stg_wrong, 0) def test_get_strategy_names_by_price_type(self): """ test get_strategy_names_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_names_by_price_type('close') stg_open = op.get_strategy_names_by_price_type('open') stg_high = op.get_strategy_names_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['DMA']) self.assertEqual(stg_open, ['MACD', 'TRIX']) self.assertEqual(stg_high, []) stg_wrong = op.get_strategy_names_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_id_by_price_type(self): """ test get_strategy_IDs_by_price_type""" print('-----Test get strategy IDs by price type------\n') op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['dma']) self.assertEqual(stg_open, ['macd', 'trix']) self.assertEqual(stg_high, []) op.add_strategies('dma, macd') op.set_parameter('dma_1', price_type='open') op.set_parameter('macd', price_type='open') op.set_parameter('macd_1', price_type='high') op.set_parameter('trix', price_type='close') print(f'Operator strategy id:\n' f'{op.strategies} on memory pos:\n' f'{[id(stg) for stg in op.strategies]}') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') stg_all = op.get_strategy_id_by_price_type() print(f'All IDs of strategies:\n' f'{stg_all}\n' f'All price types of strategies:\n' f'{[stg.price_type for stg in op.strategies]}') self.assertEqual(stg_close, ['dma', 'trix']) self.assertEqual(stg_open, ['macd', 'dma_1']) self.assertEqual(stg_high, ['macd_1']) stg_wrong = op.get_strategy_id_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_property_strategies(self): """ test property strategies""" print(f'created a new simple Operator with only one strategy: DMA') op = qt.Operator('dma') strategies = op.strategies self.assertIsInstance(strategies, list) op.info() print(f'created the second simple Operator with three strategies') self.assertIsInstance(strategies[0], TimingDMA) op = qt.Operator('dma, macd, cdl') strategies = op.strategies op.info() self.assertIsInstance(strategies, list) self.assertIsInstance(strategies[0], TimingDMA) self.assertIsInstance(strategies[1], TimingMACD) self.assertIsInstance(strategies[2], TimingCDL) def test_property_strategy_count(self): """ test Property strategy_count, and the method get_strategy_count_by_price_type()""" self.assertEqual(self.op.strategy_count, 1) self.assertEqual(self.op2.strategy_count, 3) self.assertEqual(self.op.get_strategy_count_by_price_type(), 1) self.assertEqual(self.op2.get_strategy_count_by_price_type(), 3) self.assertEqual(self.op.get_strategy_count_by_price_type('close'), 1) self.assertEqual(self.op.get_strategy_count_by_price_type('high'), 0) self.assertEqual(self.op2.get_strategy_count_by_price_type('close'), 3) self.assertEqual(self.op2.get_strategy_count_by_price_type('open'), 0) def test_property_strategy_names(self): """ test property strategy_ids""" op = qt.Operator('dma') self.assertIsInstance(op.strategy_ids, list) names = op.strategy_ids[0] print(f'names are {names}') self.assertEqual(names, 'dma') op = qt.Operator('dma, macd, trix, cdl') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'cdl') op = qt.Operator('dma, macd, trix, dma, dma') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'dma_1') self.assertEqual(op.strategy_ids[4], 'dma_2') def test_property_strategy_blenders(self): """ test property strategy blenders including property setter, and test the method get_blender()""" print(f'------- Test property strategy blenders ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') # test adding blender to empty operator op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op.add_strategy('dma') op.strategy_blenders = '1+2' self.assertEqual(op.strategy_blenders, {'close': ['+', '2', '1']}) op.clear_strategies() self.assertEqual(op.strategy_blenders, {}) op.add_strategies('dma, trix, macd, dma') op.set_parameter('dma', price_type='open') op.set_parameter('trix', price_type='high') op.set_blender('open', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) op.set_blender('open', '1+2+3') op.set_blender('abc', '1+2+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') blender_abc = op.get_blender('abc') self.assertEqual(op.strategy_blenders, {'open': ['+', '3', '+', '2', '1']}) self.assertEqual(blender_open, ['+', '3', '+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) self.assertEqual(blender_abc, None) op.set_blender('open', 123) blender_open = op.get_blender('open') self.assertEqual(blender_open, []) op.set_blender(None, '1+1') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) self.assertEqual(op.get_blender(), {'close': ['+', '1', '1'], 'open': ['+', '1', '1'], 'high': ['+', '1', '1']}) self.assertEqual(blender_open, ['+', '1', '1']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '1', '1']) op.set_blender(None, ['1+1', '3+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '3']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '4', '3']) self.assertEqual(op.view_blender('open'), '3+4') self.assertEqual(op.view_blender('close'), '1+1') self.assertEqual(op.view_blender('high'), '3+4') op.strategy_blenders = (['1+2', '2*3', '1+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) self.assertEqual(op.view_blender('open'), '1+4') self.assertEqual(op.view_blender('close'), '1+2') self.assertEqual(op.view_blender('high'), '2*3') # test error inputs: # wrong type of price_type self.assertRaises(TypeError, op.set_blender, 1, '1+3') # price_type not found, no change is made op.set_blender('volume', '1+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # price_type not valid, no change is made op.set_blender('closee', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('open', 55) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('close', ['1+2']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, ['*', '3', '2']) # can't parse blender, set to empty list op.set_blender('high', 'a+bc') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, []) def test_property_singal_type(self): """ test property signal_type""" op = qt.Operator() self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'pt') op = qt.Operator(signal_type='ps') self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='PS') self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='proportion signal') self.assertEqual(op.signal_type, 'ps') print(f'"pt" will be the default type if wrong value is given') op = qt.Operator(signal_type='wrong value') self.assertEqual(op.signal_type, 'pt') print(f'test signal_type.setter') op.signal_type = 'ps' self.assertEqual(op.signal_type, 'ps') print(f'test error raising') self.assertRaises(TypeError, setattr, op, 'signal_type', 123) self.assertRaises(ValueError, setattr, op, 'signal_type', 'wrong value') def test_property_op_data_types(self): """ test property op_data_types""" op = qt.Operator() self.assertIsInstance(op.op_data_types, list) self.assertEqual(op.op_data_types, []) op = qt.Operator('macd, dma, trix') dt = op.op_data_types self.assertEqual(dt[0], 'close') op = qt.Operator('macd, cdl') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) op.add_strategy('dma') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) def test_property_op_data_type_count(self): """ test property op_data_type_count""" op = qt.Operator() self.assertIsInstance(op.op_data_type_count, int) self.assertEqual(op.op_data_type_count, 0) op = qt.Operator('macd, dma, trix') dtn = op.op_data_type_count self.assertEqual(dtn, 1) op = qt.Operator('macd, cdl') dtn = op.op_data_type_count self.assertEqual(dtn, 4) op.add_strategy('dma') dtn = op.op_data_type_count self.assertEqual(dtn, 4) def test_property_op_data_freq(self): """ test property op_data_freq""" op = qt.Operator() self.assertIsInstance(op.op_data_freq, str) self.assertEqual(len(op.op_data_freq), 0) self.assertEqual(op.op_data_freq, '') op = qt.Operator('macd, dma, trix') dtf = op.op_data_freq self.assertIsInstance(dtf, str) self.assertEqual(dtf[0], 'd') op.set_parameter('macd', data_freq='m') dtf = op.op_data_freq self.assertIsInstance(dtf, list) self.assertEqual(len(dtf), 2) self.assertEqual(dtf[0], 'd') self.assertEqual(dtf[1], 'm') def test_property_bt_price_types(self): """ test property bt_price_types""" print('------test property bt_price_tyeps-------') op = qt.Operator() self.assertIsInstance(op.bt_price_types, list) self.assertEqual(len(op.bt_price_types), 0) self.assertEqual(op.bt_price_types, []) op = qt.Operator('macd, dma, trix') btp = op.bt_price_types self.assertIsInstance(btp, list) self.assertEqual(btp[0], 'close') op.set_parameter('macd', price_type='open') btp = op.bt_price_types btpc = op.bt_price_type_count print(f'price_types are \n{btp}') self.assertIsInstance(btp, list) self.assertEqual(len(btp), 2) self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.add_strategies(['dma', 'macd']) op.set_parameter('dma_1', price_type='high') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'high') self.assertEqual(btp[2], 'open') self.assertEqual(btpc, 3) op.remove_strategy('dma_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.remove_strategy('macd_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) def test_property_op_data_type_list(self): """ test property op_data_type_list""" op = qt.Operator() self.assertIsInstance(op.op_data_type_list, list) self.assertEqual(len(op.op_data_type_list), 0) self.assertEqual(op.op_data_type_list, []) op = qt.Operator('macd, dma, trix, cdl') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(ohd[0], ['close']) op.set_parameter('macd', data_types='open, close') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(len(ohd), 4) self.assertEqual(ohd[0], ['open', 'close']) self.assertEqual(ohd[1], ['close']) self.assertEqual(ohd[2], ['close']) self.assertEqual(ohd[3], ['open', 'high', 'low', 'close']) def test_property_op_history_data(self): """ Test this important function to get operation history data that shall be used in signal generation these data are stored in list of nd-arrays, each ndarray represents the data that is needed for each and every strategy """ print(f'------- Test getting operation history data ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.op_history_data, {}) self.assertEqual(op.signal_type, 'pt') def test_property_opt_space_par(self): """ test property opt_space_par""" print(f'-----test property opt_space_par--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_space_par, tuple) self.assertIsInstance(op.opt_space_par[0], list) self.assertIsInstance(op.opt_space_par[1], list) self.assertEqual(len(op.opt_space_par), 2) self.assertEqual(op.opt_space_par, ([], [])) op = qt.Operator('macd, dma, trix, cdl') osp = op.opt_space_par print(f'before setting opt_tags opt_space_par is empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(osp[0], []) self.assertEqual(osp[1], []) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) osp = op.opt_space_par print(f'after setting opt_tags opt_space_par is not empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(len(osp), 2) self.assertIsInstance(osp[0], list) self.assertIsInstance(osp[1], list) self.assertEqual(len(osp[0]), 6) self.assertEqual(len(osp[1]), 6) self.assertEqual(osp[0], [(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) self.assertEqual(osp[1], ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) def test_property_opt_types(self): """ test property opt_tags""" print(f'-----test property opt_tags--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_tags, list) self.assertEqual(len(op.opt_tags), 0) self.assertEqual(op.opt_tags, []) op = qt.Operator('macd, dma, trix, cdl') otp = op.opt_tags print(f'before setting opt_tags opt_space_par is empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(otp, [0, 0, 0, 0]) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) otp = op.opt_tags print(f'after setting opt_tags opt_space_par is not empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(len(otp), 4) self.assertEqual(otp, [1, 1, 0, 0]) def test_property_max_window_length(self): """ test property max_window_length""" print(f'-----test property max window length--------:\n') op = qt.Operator() self.assertIsInstance(op.max_window_length, int) self.assertEqual(op.max_window_length, 0) op = qt.Operator('macd, dma, trix, cdl') mwl = op.max_window_length print(f'before setting window_length the value is 270:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 270) op.set_parameter('macd', window_length=300) op.set_parameter('dma', window_length=350) mwl = op.max_window_length print(f'after setting window_length the value is new set value:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 350) def test_property_bt_price_type_count(self): """ test property bt_price_type_count""" print(f'-----test property bt_price_type_count--------:\n') op = qt.Operator() self.assertIsInstance(op.bt_price_type_count, int) self.assertEqual(op.bt_price_type_count, 0) op = qt.Operator('macd, dma, trix, cdl') otp = op.bt_price_type_count print(f'before setting price_type the price count is 1:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 1) op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='open') otp = op.bt_price_type_count print(f'after setting price_type the price type count is 2:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 2) def test_property_set(self): """ test all property setters: setting following properties: - strategy_blenders - signal_type other properties can not be set""" print(f'------- Test setting properties ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op = qt.Operator('macd, dma, trix, cdl') # TODO: 修改set_parameter(),使下面的用法成立 # a_to_sell.set_parameter('dma, cdl', price_type='open') op.set_parameter('dma', price_type='open') op.set_parameter('cdl', price_type='open') sb = op.strategy_blenders st = op.signal_type self.assertIsInstance(sb, dict) print(f'before setting: strategy_blenders={sb}') self.assertEqual(sb, {}) op.strategy_blenders = '1+2 * 3' sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '*', '3', '2', '1'], 'open': ['+', '*', '3', '2', '1']}) op.strategy_blenders = ['1+2', '3-4'] sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '2', '1'], 'open': ['-', '4', '3']}) def test_operator_ready(self): """test the method ready of Operator""" op = qt.Operator() print(f'operator is ready? "{op.ready}"') def test_operator_add_strategy(self): """test adding strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[1], qt.SelectingAll) self.assertIsInstance(op.strategies[2], qt.RiconUrgent) self.assertIsInstance(op[0], qt.TimingDMA) self.assertIsInstance(op[1], qt.SelectingAll) self.assertIsInstance(op[2], qt.RiconUrgent) self.assertIsInstance(op['dma'], qt.TimingDMA) self.assertIsInstance(op['all'], qt.SelectingAll) self.assertIsInstance(op['urgent'], qt.RiconUrgent) self.assertEqual(op.strategy_count, 3) print(f'test adding strategies into existing op') print('test adding strategy by string') op.add_strategy('macd') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingMACD) self.assertEqual(op.strategy_count, 4) op.add_strategy('random') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.SelectingRandom) self.assertEqual(op.strategy_count, 5) test_ls = TestLSStrategy() op.add_strategy(test_ls) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], TestLSStrategy) self.assertEqual(op.strategy_count, 6) print(f'Test different instance of objects are added to operator') op.add_strategy('dma') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingDMA) self.assertIsNot(op.strategies[0], op.strategies[6]) def test_operator_add_strategies(self): """ etst adding multiple strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertEqual(op.strategy_count, 3) print('test adding multiple strategies -- adding strategy by list of strings') op.add_strategies(['dma', 'macd']) self.assertEqual(op.strategy_count, 5) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by comma separated strings') op.add_strategies('dma, macd') self.assertEqual(op.strategy_count, 7) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategies') op.add_strategies([qt.TimingDMA(), qt.TimingMACD()]) self.assertEqual(op.strategy_count, 9) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[7], qt.TimingDMA) self.assertIsInstance(op.strategies[8], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategy and str') op.add_strategies(['DMA', qt.TimingMACD()]) self.assertEqual(op.strategy_count, 11) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[9], qt.TimingDMA) self.assertIsInstance(op.strategies[10], qt.TimingMACD) self.assertIsNot(op.strategies[0], op.strategies[9]) self.assertIs(type(op.strategies[0]), type(op.strategies[9])) print('test adding fault data') self.assertRaises(AssertionError, op.add_strategies, 123) self.assertRaises(AssertionError, op.add_strategies, None) def test_opeartor_remove_strategy(self): """ test method remove strategy""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.remove_strategy('dma') self.assertEqual(op.strategy_count, 6) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'dma_1', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['dma_1']) self.assertEqual(op.strategies[3], op['macd']) self.assertEqual(op.strategies[4], op['dma_2']) self.assertEqual(op.strategies[5], op['custom']) op.remove_strategy('dma_1') self.assertEqual(op.strategy_count, 5) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['macd']) self.assertEqual(op.strategies[3], op['dma_2']) self.assertEqual(op.strategies[4], op['custom']) def test_opeartor_clear_strategies(self): """ test operator clear strategies""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op.add_strategy('dma', pars=(12, 123, 25)) self.assertEqual(op.strategy_count, 1) self.assertEqual(op.strategy_ids, ['dma']) self.assertEqual(type(op.strategies[0]), TimingDMA) self.assertEqual(op.strategies[0].pars, (12, 123, 25)) op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) def test_operator_prepare_data(self): """test processes that related to prepare data""" test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(strategies=[test_ls, test_sel, test_sig]) too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000) early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000) on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000) no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03', amounts=[10000, 10000, 10000, 10000]) # 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error self.assertRaises(AssertionError, self.op.prepare_data, hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000) multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000]) self.op.set_parameter(stg_id='custom', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.assertEqual(self.op.strategies[0].pars, {'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='custom_1', pars=()) self.assertEqual(self.op.strategies[1].pars, ()), self.op.set_parameter(stg_id='custom_2', pars=(0.2, 0.02, -0.02)) self.assertEqual(self.op.strategies[2].pars, (0.2, 0.02, -0.02)), self.op.prepare_data(hist_data=self.hp1, cash_plan=on_spot_cash) self.assertIsInstance(self.op._op_history_data, dict) self.assertEqual(len(self.op._op_history_data), 3) # test if automatic strategy blenders are set self.assertEqual(self.op.strategy_blenders, {'close': ['+', '2', '+', '1', '0']}) tim_hist_data = self.op._op_history_data['custom'] sel_hist_data = self.op._op_history_data['custom_1'] ric_hist_data = self.op._op_history_data['custom_2'] print(f'in test_prepare_data in TestOperator:') print('selecting history data:\n', sel_hist_data) print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]]) print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]]) self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True)) self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True)) self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True)) # raises Value Error if empty history panel is given empty_hp = qt.HistoryPanel() correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)), columns=self.types, levels=self.shares, rows=self.date_indices) too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4))) too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5))) # raises Error when history panel is empty self.assertRaises(ValueError, self.op.prepare_data, empty_hp, on_spot_cash) # raises Error when first investment date is too early self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, early_cash) # raises Error when last investment date is too late self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, late_cash) # raises Error when some of the investment dates are on no-trade-days self.assertRaises(ValueError, self.op.prepare_data, correct_hp, no_trade_cash) # raises Error when number of shares in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_shares, on_spot_cash) # raises Error when too early cash investment date self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, too_early_cash) # raises Error when number of d_types in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_types, on_spot_cash) # test the effect of data type sequence in strategy definition def test_operator_generate(self): """ Test signal generation process of operator objects :return: """ # 使用test模块的自定义策略生成三种交易策略 test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sel2 = TestSelStrategyDiffTime() test_sig = TestSigStrategy() print('--Test PT type signal generation--') # 测试PT类型的信号生成: # 创建一个Operator对象,信号类型为PT(比例目标信号) # 这个Operator对象包含两个策略,分别为LS-Strategy以及Sel-Strategy,代表择时和选股策略 # 两个策略分别生成PT信号后混合成一个信号输出 self.op = qt.Operator(strategies=[test_ls, test_sel]) self.op.set_parameter(stg_id='custom', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id=1, pars=()) # self.a_to_sell.set_blender(blender='0+1+2') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test operator information in normal mode--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['+', '1', '0']}) self.op.set_blender(None, '0*1') self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0']}) print('--test operation signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) backtest_price_types = op_list.htypes self.assertEqual(backtest_price_types[0], 'close') self.assertEqual(op_list.shape, (3, 45, 1)) reduced_op_list = op_list.values.squeeze().T print(f'op_list created, it is a 3 share/45 days/1 htype array, to make comparison happen, \n' f'it will be squeezed to a 2-d array to compare on share-wise:\n' f'{reduced_op_list}') target_op_values = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) self.assertTrue(np.allclose(target_op_values, reduced_op_list, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 测试两组PT类型的信号生成: # 在Operator对象中增加两个SigStrategy策略,策略类型相同但是策略的参数不同,回测价格类型为"OPEN" # Opeartor应该生成两组交易信号,分别用于"close"和"open"两中不同的价格类型 # 这里需要重新生成两个新的交易策略对象,否则在op的strategies列表中产生重复的对象引用,从而引起错误 test_ls = TestLSStrategy() test_sel = TestSelStrategy() self.op.add_strategies([test_ls, test_sel]) self.op.set_parameter(stg_id='custom_2', price_type='open') self.op.set_parameter(stg_id='custom_3', price_type='open') self.assertEqual(self.op['custom'].price_type, 'close') self.assertEqual(self.op['custom_2'].price_type, 'open') self.op.set_parameter(stg_id='custom_2', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id='custom_3', pars=()) self.op.set_blender(blender='0 or 1', price_type='open') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test how operator information is printed out--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0'], 'open': ['or', '1', '0']}) print('--test opeartion signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) signal_close = op_list['close'].squeeze().T signal_open = op_list['open'].squeeze().T self.assertEqual(signal_close.shape, (45, 3)) self.assertEqual(signal_open.shape, (45, 3)) target_op_close = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) target_op_open = np.array([[0.5, 0.5, 1.0], [0.5, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.5, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.5, 1.0, 0.0], [0.5, 1.0, 0.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0]]) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_close), list(signal_close))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_close, signal_close, equal_nan=True)) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_open), list(signal_open))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_open, signal_open, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 更多测试集合 def test_stg_parameter_setting(self): """ test setting parameters of strategies test the method set_parameters :return: """ op = qt.Operator(strategies='dma, all, urgent') print(op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy in new op: \n{op.strategies[0].info()}') # TODO: allow set_parameters to a list of strategies or str-listed strategies # TODO: allow set_parameters to all strategies of specific bt price type print(f'Set up strategy parameters by strategy id') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) op.set_parameter('all', window_length=20) op.set_parameter('all', price_type='high') print(f'Can also set up strategy parameters by strategy index') op.set_parameter(2, price_type='open') op.set_parameter(2, opt_tag=1, pars=(9, -0.09), window_length=10) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[0].par_boes, ((5, 10), (5, 15), (10, 15))) self.assertEqual(op.strategies[2].pars, (9, -0.09)) self.assertEqual(op.op_data_freq, 'd') self.assertEqual(op.op_data_types, ['close', 'high', 'open']) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.max_window_length, 20) print(f'KeyError will be raised if wrong strategy id is given') self.assertRaises(KeyError, op.set_parameter, stg_id='t-1', pars=(1, 2)) self.assertRaises(KeyError, op.set_parameter, stg_id='wrong_input', pars=(1, 2)) print(f'ValueError will be raised if parameter can be set') self.assertRaises(ValueError, op.set_parameter, stg_id=0, pars=('wrong input', 'wrong input')) # test blenders of different price types # test setting blenders to different price types # TODO: to allow operands like "and", "or", "not", "xor" # a_to_sell.set_blender('close', '0 and 1 or 2') # self.assertEqual(a_to_sell.get_blender('close'), 'str-1.2') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) op.set_blender('open', '0 & 1 | 2') self.assertEqual(op.get_blender('open'), ['|', '2', '&', '1', '0']) op.set_blender('high', '(0|1) & 2') self.assertEqual(op.get_blender('high'), ['&', '2', '|', '1', '0']) op.set_blender('close', '0 & 1 | 2') self.assertEqual(op.get_blender(), {'close': ['|', '2', '&', '1', '0'], 'high': ['&', '2', '|', '1', '0'], 'open': ['|', '2', '&', '1', '0']}) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.opt_tags, [1, 0, 1]) def test_signal_blend(self): self.assertEqual(blender_parser('0 & 1'), ['&', '1', '0']) self.assertEqual(blender_parser('0 or 1'), ['or', '1', '0']) self.assertEqual(blender_parser('0 & 1 | 2'), ['|', '2', '&', '1', '0']) blender = blender_parser('0 & 1 | 2') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 1) self.assertEqual(signal_blend([0, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '0 & ( 1 | 2 )' self.assertEqual(blender_parser('0 & ( 1 | 2 )'), ['&', '|', '2', '1', '0']) blender = blender_parser('0 & ( 1 | 2 )') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 0) self.assertEqual(signal_blend([0, 0, 1], blender), 0) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '(1-2)/3 + 0' self.assertEqual(blender_parser('(1-2)/3 + 0'), ['+', '0', '/', '3', '-', '2', '1']) blender = blender_parser('(1-2)/3 + 0') self.assertEqual(signal_blend([5, 9, 1, 4], blender), 7) # pars: '(0*1/2*(3+4))+5*(6+7)-8' self.assertEqual(blender_parser('(0*1/2*(3+4))+5*(6+7)-8'), ['-', '8', '+', '*', '+', '7', '6', '5', '*', '+', '4', '3', '/', '2', '*', '1', '0']) blender = blender_parser('(0*1/2*(3+4))+5*(6+7)-8') self.assertEqual(signal_blend([1, 1, 1, 1, 1, 1, 1, 1, 1], blender), 3) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 14) # parse: '0/max(2,1,3 + 5)+4' self.assertEqual(blender_parser('0/max(2,1,3 + 5)+4'), ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('0/max(2,1,3 + 5)+4') self.assertEqual(signal_blend([8.0, 4, 3, 5.0, 0.125, 5], blender), 0.925) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 5.25) print('speed test') import time st = time.time() blender = blender_parser('0+max(1,2,(3+4)*5, max(6, (7+8)*9), 10-11) * (12+13)') res = [] for i in range(10000): res = signal_blend([1, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 2, 3], blender) et = time.time() print(f'total time for RPN processing: {et - st}, got result: {res}') blender = blender_parser("0 + 1 * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 7) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0+1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) # TODO: 目前对于-(1+2)这样的表达式还无法处理 # self.a_to_sell.set_blender('selecting', "-(0 + 1) * 2") # self.assertEqual(self.a_to_sell.signal_blend([1, 2, 3]), -9) blender = blender_parser("(0-1)/2 + 3") print(f'RPN of notation: "(0-1)/2 + 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 2, 3, 0.0], blender), -0.33333333) blender = blender_parser("0 + 1 / 2") print(f'RPN of notation: "0 + 1 / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, math.pi, 4], blender), 1.78539816) blender = blender_parser("(0 + 1) / 2") print(f'RPN of notation: "(0 + 1) / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 2, 3], blender), 1) blender = blender_parser("(0 + 1 * 2) / 3") print(f'RPN of notation: "(0 + 1 * 2) / 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([3, math.e, 10, 10], blender), 3.0182818284590454) blender = blender_parser("0 / 1 * 2") print(f'RPN of notation: "0 / 1 * 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 3, 6], blender), 2) blender = blender_parser("(0 - 1 + 2) * 4") print(f'RPN of notation: "(0 - 1 + 2) * 4" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 1, -1, np.nan, math.pi], blender), -3.141592653589793) blender = blender_parser("0 * 1") print(f'RPN of notation: "0 * 1" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([math.pi, math.e], blender), 8.539734222673566) blender = blender_parser('abs(3-sqrt(2) / cos(1))') print(f'RPN of notation: "abs(3-sqrt(2) / cos(1))" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['abs(1)', '-', '/', 'cos(1)', '1', 'sqrt(1)', '2', '3']) blender = blender_parser('0/max(2,1,3 + 5)+4') print(f'RPN of notation: "0/max(2,1,3 + 5)+4" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('1 + sum(1,2,3+3, sum(1, 2) + 3) *5') print(f'RPN of notation: "1 + sum(1,2,3+3, sum(1, 2) + 3) *5" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '5', 'sum(4)', '+', '3', 'sum(2)', '2', '1', '+', '3', '3', '2', '1', '1']) blender = blender_parser('1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)') print(f'RPN of notation: "1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '+', '3', '2', 'sum(5)', '-', '8', '7', 'sum(2)', '*', '6', '+', '5', '4', '3', '*', '4', '+', '5', '3', '2', '1', '1']) # TODO: ndarray type of signals to be tested: def test_set_opt_par(self): """ test setting opt pars in batch""" print(f'--------- Testing setting Opt Pars: set_opt_par -------') op = qt.Operator('dma, random, crossline') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) self.assertEqual(op.opt_tags, [1, 0, 0]) op.set_opt_par((5, 12, 9)) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 1]) op.set_opt_par((5, 12, 9, 8, 26, 9, 'buy')) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) op.set_opt_par((9, 200, 155, 8, 26, 9, 'buy', 5, 12, 9)) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=2, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 2]) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (5, 10, 5, 'sell')) op.set_opt_par((5, 12, 9, (8, 26, 9, 'buy'))) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # Test Errors # Not enough values for parameter op.set_parameter('crossline', opt_tag=1) self.assertRaises(ValueError, op.set_opt_par, (5, 12, 9, 8)) # wrong type of input self.assertRaises(AssertionError, op.set_opt_par, [5, 12, 9, 7, 15, 12, 'sell']) def test_stg_attribute_get_and_set(self): self.stg = qt.TimingCrossline() self.stg_type = 'R-TIMING' self.stg_name = "CROSSLINE" self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \ 'point' \ ' of long and short term moving average prices ' self.pars = (35, 120, 10, 'buy') self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')] self.par_count = 4 self.par_types = ['discr', 'discr', 'conti', 'enum'] self.opt_tag = 0 self.data_types = ['close'] self.data_freq = 'd' self.sample_freq = 'd' self.window_length = 270 self.assertEqual(self.stg.stg_type, self.stg_type) self.assertEqual(self.stg.stg_name, self.stg_name) self.assertEqual(self.stg.stg_text, self.stg_text) self.assertEqual(self.stg.pars, self.pars) self.assertEqual(self.stg.par_types, self.par_types) self.assertEqual(self.stg.par_boes, self.par_boes) self.assertEqual(self.stg.par_count, self.par_count) self.assertEqual(self.stg.opt_tag, self.opt_tag) self.assertEqual(self.stg.data_freq, self.data_freq) self.assertEqual(self.stg.sample_freq, self.sample_freq) self.assertEqual(self.stg.data_types, self.data_types) self.assertEqual(self.stg.window_length, self.window_length) self.stg.stg_name = 'NEW NAME' self.stg.stg_text = 'NEW TEXT' self.assertEqual(self.stg.stg_name, 'NEW NAME') self.assertEqual(self.stg.stg_text, 'NEW TEXT') self.stg.pars = (1, 2, 3, 4) self.assertEqual(self.stg.pars, (1, 2, 3, 4)) self.stg.par_count = 3 self.assertEqual(self.stg.par_count, 3) self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)] self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)]) self.stg.par_types = ['conti', 'conti', 'discr', 'enum'] self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum']) self.stg.par_types = 'conti, conti, discr, conti' self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti']) self.stg.data_types = 'close, open' self.assertEqual(self.stg.data_types, ['close', 'open']) self.stg.data_types = ['close', 'high', 'low'] self.assertEqual(self.stg.data_types, ['close', 'high', 'low']) self.stg.data_freq = 'w' self.assertEqual(self.stg.data_freq, 'w') self.stg.window_length = 300 self.assertEqual(self.stg.window_length, 300) def test_rolling_timing(self): stg = TestLSStrategy() stg_pars = {'000100': (5, 10), '000200': (5, 10), '000300': (5, 6)} stg.set_pars(stg_pars) history_data = self.hp1.values output = stg.generate(hist_data=history_data) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) lsmask = np.array([[0., 0., 1.], [0., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 0.], [1., 1., 0.], [1., 1., 0.], [1., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]) # TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果 # TODO: 需要解决nan值的问题 self.assertEqual(output.shape, lsmask.shape) self.assertTrue(np.allclose(output, lsmask, equal_nan=True)) def test_sel_timing(self): stg = TestSelStrategy() stg_pars = () stg.set_pars(stg_pars) history_data = self.hp1['high, low, close', :, :] seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) def test_simple_timing(self): stg = TestSigStrategy() stg_pars = (0.2, 0.02, -0.02) stg.set_pars(stg_pars) history_data = self.hp1['close, open, high, low', :, 3:50] output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) sigmatrix = np.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) side_by_side_array = np.array([[i, out_line, sig_line] for i, out_line, sig_line in zip(range(len(output)), output, sigmatrix)]) print(f'output and signal matrix lined up side by side is \n' f'{side_by_side_array}') self.assertEqual(sigmatrix.shape, output.shape) self.assertTrue(np.allclose(output, sigmatrix)) def test_sel_finance(self): """Test selecting_finance strategy, test all built-in strategy parameters""" stg = SelectingFinanceIndicator() stg_pars = (False, 'even', 'greater', 0, 0, 0.67) stg.set_pars(stg_pars) stg.window_length = 5 stg.data_freq = 'd' stg.sample_freq = '10d' stg.sort_ascending = False stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg._poq = 0.67 history_data = self.hp2.values print(f'Start to test financial selection parameter {stg_pars}') seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get mininum factor stg_pars = (True, 'even', 'less', 1, 1, 0.67) stg.sort_ascending = True stg.condition = 'less' stg.lbound = 1 stg.ubound = 1 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'linear', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'linear' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'proportion' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) # test single factor, get max factor in linear weight, threshold 0.2 stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67) stg.sort_ascending = False stg.weighting = 'even' stg.condition = 'greater' stg.lbound = 0.2 stg.ubound = 0.2 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) def test_tokenizer(self): self.assertListEqual(_exp_to_token('1+1'), ['1', '+', '1']) print(_exp_to_token('1+1')) self.assertListEqual(_exp_to_token('1 & 1'), ['1', '&', '1']) print(_exp_to_token('1&1')) self.assertListEqual(_exp_to_token('1 and 1'), ['1', 'and', '1']) print(_exp_to_token('1 and 1')) self.assertListEqual(_exp_to_token('1 or 1'), ['1', 'or', '1']) print(_exp_to_token('1 or 1')) self.assertListEqual(_exp_to_token('(1 - 1 + -1) * pi'), ['(', '1', '-', '1', '+', '-1', ')', '*', 'pi']) print(_exp_to_token('(1 - 1 + -1) * pi')) self.assertListEqual(_exp_to_token('abs(5-sqrt(2) / cos(pi))'), ['abs(', '5', '-', 'sqrt(', '2', ')', '/', 'cos(', 'pi', ')', ')']) print(_exp_to_token('abs(5-sqrt(2) / cos(pi))')) self.assertListEqual(_exp_to_token('sin(pi) + 2.14'), ['sin(', 'pi', ')', '+', '2.14']) print(_exp_to_token('sin(pi) + 2.14')) self.assertListEqual(_exp_to_token('(1-2)/3.0 + 0.0000'), ['(', '1', '-', '2', ')', '/', '3.0', '+', '0.0000']) print(_exp_to_token('(1-2)/3.0 + 0.0000')) self.assertListEqual(_exp_to_token('-(1. + .2) * max(1, 3, 5)'), ['-', '(', '1.', '+', '.2', ')', '*', 'max(', '1', ',', '3', ',', '5', ')']) print(_exp_to_token('-(1. + .2) * max(1, 3, 5)')) self.assertListEqual(_exp_to_token('(x + e * 10) / 10'), ['(', 'x', '+', 'e', '*', '10', ')', '/', '10']) print(_exp_to_token('(x + e * 10) / 10')) self.assertListEqual(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)'), ['8.2', '/', '(', '(', '-.1', '+', 'abs3(', '3', ',', '4', ',', '5', ')', ')', '*', '0.12', ')']) print(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)')) self.assertListEqual(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12'), ['8.2', '/', 'abs3(', '3', ',', '4', ',', '25.34', '+', '5', ')', '*', '0.12']) print(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12')) class TestLog(unittest.TestCase): def test_init(self): pass class TestConfig(unittest.TestCase): """测试Config对象以及QT_CONFIG变量的设置和获取值""" def test_init(self): pass def test_invest(self): pass def test_pars_string_to_type(self): _parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs()) class TestHistoryPanel(unittest.TestCase): def setUp(self): print('start testing HistoryPanel object\n') self.data = np.random.randint(10, size=(5, 10, 4)) self.index = pd.date_range(start='20200101', freq='d', periods=10) self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14'] self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \ '2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14' self.shares = '000100,000101,000102,000103,000104' self.htypes = 'close,open,high,low' self.data2 = np.random.randint(10, size=(10, 5)) self.data3 = np.random.randint(10, size=(10, 4)) self.data4 = np.random.randint(10, size=(10)) self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index) self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index) self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2) self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3) self.hp5 = qt.HistoryPanel(values=self.data) self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3) def test_properties(self): """ test all properties of HistoryPanel """ self.assertFalse(self.hp.is_empty) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.shape, (5, 10, 4)) self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low']) self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104']) self.assertSequenceEqual(list(self.hp.hdates), list(self.index)) self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3}) self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4}) row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0, Timestamp('2020-01-02 00:00:00', freq='D'): 1, Timestamp('2020-01-03 00:00:00', freq='D'): 2, Timestamp('2020-01-04 00:00:00', freq='D'): 3, Timestamp('2020-01-05 00:00:00', freq='D'): 4, Timestamp('2020-01-06 00:00:00', freq='D'): 5, Timestamp('2020-01-07 00:00:00', freq='D'): 6, Timestamp('2020-01-08 00:00:00', freq='D'): 7, Timestamp('2020-01-09 00:00:00', freq='D'): 8, Timestamp('2020-01-10 00:00:00', freq='D'): 9} self.assertDictEqual(self.hp.rows, row_dict) def test_len(self): """ test the function len(HistoryPanel) :return: """ self.assertEqual(len(self.hp), 10) def test_empty_history_panel(self): """测试空HP或者特殊HP如维度标签为纯数字的HP""" test_hp = qt.HistoryPanel(self.data) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) self.assertEqual(test_hp.level_count, 5) self.assertEqual(test_hp.row_count, 10) self.assertEqual(test_hp.column_count, 4) self.assertEqual(test_hp.shares, list(range(5))) self.assertEqual(test_hp.hdates, list(pd.date_range(start='20200730', periods=10, freq='d'))) self.assertEqual(test_hp.htypes, list(range(4))) self.assertTrue(np.allclose(test_hp.values, self.data)) print(f'shares: {test_hp.shares}\nhtypes: {test_hp.htypes}') print(test_hp) # HistoryPanel should be empty if no value is given empty_hp = qt.HistoryPanel() self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) # HistoryPanel should also be empty if empty value (np.array([])) is given empty_hp = qt.HistoryPanel(np.empty((5, 0, 4)), levels=self.shares, columns=self.htypes) self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) def test_create_history_panel(self): """ test the creation of a HistoryPanel object by passing all data explicitly """ self.assertIsInstance(self.hp, qt.HistoryPanel) self.assertEqual(self.hp.shape[0], 5) self.assertEqual(self.hp.shape[1], 10) self.assertEqual(self.hp.shape[2], 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(list(self.hp.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp2, qt.HistoryPanel) self.assertEqual(self.hp2.shape[0], 5) self.assertEqual(self.hp2.shape[1], 10) self.assertEqual(self.hp2.shape[2], 1) self.assertEqual(self.hp2.level_count, 5) self.assertEqual(self.hp2.row_count, 10) self.assertEqual(self.hp2.column_count, 1) self.assertEqual(list(self.hp2.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp2.columns.keys()), ['close']) self.assertEqual(list(self.hp2.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp3, qt.HistoryPanel) self.assertEqual(self.hp3.shape[0], 1) self.assertEqual(self.hp3.shape[1], 10) self.assertEqual(self.hp3.shape[2], 4) self.assertEqual(self.hp3.level_count, 1) self.assertEqual(self.hp3.row_count, 10) self.assertEqual(self.hp3.column_count, 4) self.assertEqual(list(self.hp3.levels.keys()), ['000100']) self.assertEqual(list(self.hp3.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp3.rows.keys())[0], pd.Timestamp('2016-07-01')) self.assertIsInstance(self.hp4, qt.HistoryPanel) self.assertEqual(self.hp4.shape[0], 1) self.assertEqual(self.hp4.shape[1], 10) self.assertEqual(self.hp4.shape[2], 1) self.assertEqual(self.hp4.level_count, 1) self.assertEqual(self.hp4.row_count, 10) self.assertEqual(self.hp4.column_count, 1) self.assertEqual(list(self.hp4.levels.keys()), ['000100']) self.assertEqual(list(self.hp4.columns.keys()), ['close']) self.assertEqual(list(self.hp4.rows.keys())[0], pd.Timestamp('2016-07-01')) self.hp5.info() self.assertIsInstance(self.hp5, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp5.values, self.data)) self.assertEqual(self.hp5.shape[0], 5) self.assertEqual(self.hp5.shape[1], 10) self.assertEqual(self.hp5.shape[2], 4) self.assertEqual(self.hp5.level_count, 5) self.assertEqual(self.hp5.row_count, 10) self.assertEqual(self.hp5.column_count, 4) self.assertEqual(list(self.hp5.levels.keys()), [0, 1, 2, 3, 4]) self.assertEqual(list(self.hp5.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp5.rows.keys())[0], pd.Timestamp('2020-07-30')) self.hp6.info() self.assertIsInstance(self.hp6, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp6.values, self.data)) self.assertEqual(self.hp6.shape[0], 5) self.assertEqual(self.hp6.shape[1], 10) self.assertEqual(self.hp6.shape[2], 4) self.assertEqual(self.hp6.level_count, 5) self.assertEqual(self.hp6.row_count, 10) self.assertEqual(self.hp6.column_count, 4) self.assertEqual(list(self.hp6.levels.keys()), ['000100', '000101', '000102', '000103', '000104']) self.assertEqual(list(self.hp6.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp6.rows.keys())[0], pd.Timestamp('2016-07-01')) print('test creating HistoryPanel with very limited data') print('test creating HistoryPanel with 2D data') temp_data = np.random.randint(10, size=(7, 3)).astype('float') temp_hp = qt.HistoryPanel(temp_data) # Error testing during HistoryPanel creating # shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data, levels=self.shares, columns='close', rows=self.index) # valus is not np.ndarray self.assertRaises(TypeError, qt.HistoryPanel, list(self.data)) # dimension/shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data2, levels='000100', columns=self.htypes, rows=self.index) # value dimension over 3 self.assertRaises(AssertionError, qt.HistoryPanel, np.random.randint(10, size=(5, 10, 4, 2))) # lebel value not valid self.assertRaises(ValueError, qt.HistoryPanel, self.data2, levels=self.shares, columns='close', rows='a,b,c,d,e,f,g,h,i,j') def test_history_panel_slicing(self): """测试HistoryPanel的各种切片方法 包括通过标签名称切片,通过数字切片,通过逗号分隔的标签名称切片,通过冒号分隔的标签名称切片等切片方式""" self.assertTrue(np.allclose(self.hp['close'], self.data[:, :, 0:1])) self.assertTrue(np.allclose(self.hp['close,open'], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp[['close', 'open']], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp['close:high'], self.data[:, :, 0:3])) self.assertTrue(np.allclose(self.hp['close,high'], self.data[:, :, [0, 2]])) self.assertTrue(np.allclose(self.hp[:, '000100'], self.data[0:1, :, ])) self.assertTrue(np.allclose(self.hp[:, '000100,000101'], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, ['000100', '000101']], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, '000100:000102'], self.data[0:3, :])) self.assertTrue(np.allclose(self.hp[:, '000100,000102'], self.data[[0, 2], :])) self.assertTrue(np.allclose(self.hp['close,open', '000100,000102'], self.data[[0, 2], :, 0:2])) print('start testing HistoryPanel') data = np.random.randint(10, size=(10, 5)) # index = pd.date_range(start='20200101', freq='d', periods=10) shares = '000100,000101,000102,000103,000104' dtypes = 'close' df = pd.DataFrame(data) print('=========================\nTesting HistoryPanel creation from DataFrame') hp = qt.dataframe_to_hp(df=df, shares=shares, htypes=dtypes) hp.info() hp = qt.dataframe_to_hp(df=df, shares='000100', htypes='close, open, high, low, middle', column_type='htypes') hp.info() print('=========================\nTesting HistoryPanel creation from initialization') data = np.random.randint(10, size=(5, 10, 4)).astype('float') index = pd.date_range(start='20200101', freq='d', periods=10) dtypes = 'close, open, high,low' data[0, [5, 6, 9], [0, 1, 3]] = np.nan data[1:4, [4, 7, 6, 2], [1, 1, 3, 0]] = np.nan data[4:5, [2, 9, 1, 2], [0, 3, 2, 1]] = np.nan hp = qt.HistoryPanel(data, levels=shares, columns=dtypes, rows=index) hp.info() print('==========================\n输出close类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close', :, :], data[:, :, 0:1], equal_nan=True)) print(f'==========================\n输出close和open类型的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1], :, :], data[:, :, 0:2], equal_nan=True)) print(f'==========================\n输出第一只股票的所有类型历史数据\n') self.assertTrue(np.allclose(hp[:, [0], :], data[0:1, :, :], equal_nan=True)) print('==========================\n输出第0、1、2个htype对应的所有股票全部历史数据\n') self.assertTrue(np.allclose(hp[[0, 1, 2]], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp[['close', 'high']], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出0、1两个htype的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1]], data[:, :, 0:2], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close,high'], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出close起到high止的三个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close:high'], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出0、1、3三个股票的全部历史数据\n') self.assertTrue(np.allclose(hp[:, [0, 1, 3]], data[[0, 1, 3], :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, ['000100', '000102']], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出0、1、2三个股票的历史数据\n', hp[:, 0: 3]) self.assertTrue(np.allclose(hp[:, 0: 3], data[0:3, :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, '000100, 000102'], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出所有股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, :, 0:8], data[:, 0:8, :], equal_nan=True)) print('==========================\n输出000100股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, '000100', 0:8], data[0, 0:8, :], equal_nan=True)) print('==========================\nstart testing multy axis slicing of HistoryPanel object') print('==========================\n输出000100、000120两只股票的close、open两组历史数据\n', hp['close,open', ['000100', '000102']]) print('==========================\n输出000100、000120两只股票的close到open三组历史数据\n', hp['close,open', '000100, 000102']) print(f'historyPanel: hp:\n{hp}') print(f'data is:\n{data}') hp.htypes = 'open,high,low,close' hp.info() hp.shares = ['000300', '600227', '600222', '000123', '000129'] hp.info() def test_segment(self): """测试历史数据片段的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test segment with None parameters') seg1 = test_hp.segment() seg2 = test_hp.segment('20150202') seg3 = test_hp.segment(end_date='20201010') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp.values )) self.assertTrue(np.allclose( seg2.values, test_hp.values )) self.assertTrue(np.allclose( seg3.values, test_hp.values )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates) self.assertEqual(seg3.hdates, test_hp.hdates) print(f'Test segment with proper dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160704') seg3 = test_hp.segment(start_date='2016-07-05', end_date='20160708') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 2:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[2:6]) print(f'Test segment with non-existing but in range dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160703') seg3 = test_hp.segment(start_date='2016-07-03', end_date='20160710') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 1:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[1:6]) print(f'Test segment with out-of-range dates') seg1 = test_hp.segment(start_date='2016-05-03', end_date='20160910') self.assertIsInstance(seg1, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) def test_slice(self): """测试历史数据切片的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test slice with shares') share = '000101' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101'])) share = '000101, 000103' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101', '000103']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101, 000103'])) print(f'Test slice with htypes') htype = 'open' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open'])) htype = 'open, close' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open, close'])) # test that slicing of "open, close" does NOT equal to "close, open" self.assertFalse(np.allclose(slc.values, test_hp['close, open'])) print(f'Test slicing with both htypes and shares') share = '000103, 000101' htype = 'high, low, close' slc = test_hp.slice(shares=share, htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000103', '000101']) self.assertEqual(slc.htypes, ['high', 'low', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['high, low, close', '000103, 000101'])) print(f'Test Error cases') # duplicated input htype = 'open, close, open' self.assertRaises(AssertionError, test_hp.slice, htypes=htype) def test_relabel(self): new_shares_list = ['000001', '000002', '000003', '000004', '000005'] new_shares_str = '000001, 000002, 000003, 000004, 000005' new_htypes_list = ['close', 'volume', 'value', 'exchange'] new_htypes_str = 'close, volume, value, exchange' temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_list) print(temp_hp.info()) print(temp_hp.htypes) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_list) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) print(f'test errors raising') temp_hp = self.hp.copy() self.assertRaises(AssertionError, temp_hp.re_label, htypes=new_shares_str) self.assertRaises(TypeError, temp_hp.re_label, htypes=123) self.assertRaises(AssertionError, temp_hp.re_label, htypes='wrong input!') def test_csv_to_hp(self): pass def test_hdf_to_hp(self): pass def test_hp_join(self): # TODO: 这里需要加强,需要用具体的例子确认hp_join的结果正确 # TODO: 尤其是不同的shares、htypes、hdates,以及它们在顺 # TODO: 序不同的情况下是否能正确地组合 print(f'join two simple HistoryPanels with same shares') temp_hp = self.hp.join(self.hp2, same_shares=True) self.assertIsInstance(temp_hp, qt.HistoryPanel) def test_df_to_hp(self): print(f'test converting DataFrame to HistoryPanel') data = np.random.randint(10, size=(10, 5)) df1 = pd.DataFrame(data) df2 = pd.DataFrame(data, columns=str_to_list(self.shares)) df3 = pd.DataFrame(data[:, 0:4]) df4 = pd.DataFrame(data[:, 0:4], columns=str_to_list(self.htypes)) hp = qt.dataframe_to_hp(df1, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, [0, 1, 2, 3, 4]) self.assertEqual(hp.htypes, ['close']) self.assertEqual(hp.hdates, [pd.Timestamp('1970-01-01 00:00:00'), pd.Timestamp('1970-01-01 00:00:00.000000001'), pd.Timestamp('1970-01-01 00:00:00.000000002'), pd.Timestamp('1970-01-01 00:00:00.000000003'), pd.Timestamp('1970-01-01 00:00:00.000000004'), pd.Timestamp('1970-01-01 00:00:00.000000005'), pd.Timestamp('1970-01-01 00:00:00.000000006'), pd.Timestamp('1970-01-01 00:00:00.000000007'), pd.Timestamp('1970-01-01 00:00:00.000000008'), pd.Timestamp('1970-01-01 00:00:00.000000009')]) hp = qt.dataframe_to_hp(df2, shares=self.shares, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, str_to_list(self.shares)) self.assertEqual(hp.htypes, ['close']) hp = qt.dataframe_to_hp(df3, shares='000100', column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, [0, 1, 2, 3]) hp = qt.dataframe_to_hp(df4, shares='000100', htypes=self.htypes, column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, str_to_list(self.htypes)) hp.info() self.assertRaises(KeyError, qt.dataframe_to_hp, df1) def test_to_dataframe(self): """ 测试HistoryPanel对象的to_dataframe方法 """ print(f'START TEST == test_to_dataframe') print(f'test converting test hp to dataframe with share == "000102":') df_test = self.hp.to_dataframe(share='000102') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000102'], values)) print(f'test DataFrame conversion with share == "000100"') df_test = self.hp.to_dataframe(share='000100') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000100'], values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, share=3.0) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, share='000300') print(f'test DataFrame conversion with htype == "close"') df_test = self.hp.to_dataframe(htype='close') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['close'].T, values)) print(f'test DataFrame conversion with htype == "high"') df_test = self.hp.to_dataframe(htype='high') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['high'].T, values)) print(f'test DataFrame conversion with htype == "high" and dropna') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[4:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values))].reshape(9, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion with htype == "high", dropna and treat infs as na') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True, inf_as_na=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[5:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values) & ~np.isinf(target_values))].reshape(8, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, htype=pd.DataFrame()) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, htype='non_type') print(f'Raises ValueError when both or none parameter is given') self.assertRaises(KeyError, self.hp.to_dataframe) self.assertRaises(KeyError, self.hp.to_dataframe, share='000100', htype='close') def test_to_df_dict(self): """测试HistoryPanel公有方法to_df_dict""" print('test convert history panel slice by share') df_dict = self.hp.to_df_dict('share') self.assertEqual(self.hp.shares, list(df_dict.keys())) df_dict = self.hp.to_df_dict() self.assertEqual(self.hp.shares, list(df_dict.keys())) print('test convert historypanel slice by htype ') df_dict = self.hp.to_df_dict('htype') self.assertEqual(self.hp.htypes, list(df_dict.keys())) print('test raise assertion error') self.assertRaises(AssertionError, self.hp.to_df_dict, by='random text') self.assertRaises(AssertionError, self.hp.to_df_dict, by=3) print('test empty hp') df_dict = qt.HistoryPanel().to_df_dict('share') self.assertEqual(df_dict, {}) def test_stack_dataframes(self): print('test stack dataframes in a list') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes([df1, df2, df3], stack_along='shares', shares=['000100', '000200', '000300']) hp2 = stack_dataframes([df1, df2, df3], stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000100', '000200', '000300']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes=['close', 'high', 'low']) hp4 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) print('test stack dataframes in a dict') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares') hp2 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000001.SZ', '000002.SZ', '000003.SZ']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes(dfs={'close': df1, 'high': df2, 'low': df3}, stack_along='htypes') hp4 = stack_dataframes(dfs={'close': df1, 'low': df2, 'high': df3}, stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) def test_to_csv(self): pass def test_to_hdf(self): pass def test_fill_na(self): """测试填充无效值""" print(self.hp) new_values = self.hp.values.astype(float) new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = np.nan print(new_values) temp_hp = qt.HistoryPanel(values=new_values, levels=self.hp.levels, rows=self.hp.rows, columns=self.hp.columns) self.assertTrue(np.allclose(temp_hp.values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]], np.nan, equal_nan=True)) temp_hp.fillna(2.3) filled_values = new_values.copy() filled_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = 2.3 self.assertTrue(np.allclose(temp_hp.values, filled_values, equal_nan=True)) def test_fill_inf(self): """测试填充无限值""" def test_get_history_panel(self): # TODO: implement this test case # test get only one line of data pass def test_get_price_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20200101' end = '20200131' htypes = 'open, high, low, close' target_price_000039 = [[9.45, 9.49, 9.12, 9.17], [9.46, 9.56, 9.4, 9.5], [9.7, 9.76, 9.5, 9.51], [9.7, 9.75, 9.7, 9.72], [9.73, 9.77, 9.7, 9.73], [9.83, 9.85, 9.71, 9.72], [9.85, 9.85, 9.75, 9.79], [9.96, 9.96, 9.83, 9.86], [9.87, 9.94, 9.77, 9.93], [9.82, 9.9, 9.76, 9.87], [9.8, 9.85, 9.77, 9.82], [9.84, 9.86, 9.71, 9.72], [9.83, 9.93, 9.81, 9.86], [9.7, 9.87, 9.7, 9.82], [9.83, 9.86, 9.69, 9.79], [9.8, 9.94, 9.8, 9.86]] target_price_600748 = [[5.68, 5.68, 5.32, 5.37], [5.62, 5.68, 5.46, 5.65], [5.72, 5.72, 5.61, 5.62], [5.76, 5.77, 5.6, 5.73], [5.78, 5.84, 5.73, 5.75], [5.89, 5.91, 5.76, 5.77], [6.03, 6.04, 5.87, 5.89], [5.94, 6.07, 5.94, 6.02], [5.96, 5.98, 5.88, 5.97], [6.04, 6.06, 5.95, 5.96], [5.98, 6.04, 5.96, 6.03], [6.1, 6.11, 5.89, 5.94], [6.02, 6.12, 6., 6.1], [5.96, 6.05, 5.88, 6.01], [6.03, 6.03, 5.95, 5.99], [6.02, 6.12, 5.99, 5.99]] target_price_000040 = [[3.63, 3.83, 3.63, 3.65], [3.99, 4.07, 3.97, 4.03], [4.1, 4.11, 3.93, 3.95], [4.12, 4.13, 4.06, 4.11], [4.13, 4.19, 4.07, 4.13], [4.27, 4.28, 4.11, 4.12], [4.37, 4.38, 4.25, 4.29], [4.34, 4.5, 4.32, 4.41], [4.28, 4.35, 4.2, 4.34], [4.41, 4.43, 4.29, 4.31], [4.42, 4.45, 4.36, 4.41], [4.51, 4.56, 4.33, 4.35], [4.35, 4.55, 4.31, 4.55], [4.3, 4.41, 4.22, 4.36], [4.27, 4.44, 4.23, 4.34], [4.23, 4.27, 4.18, 4.25]] print(f'test get price type raw data with single thread') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d') self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') print(f'test get price type raw data with with multi threads') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d', parallel=10) self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') def test_get_financial_report_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20160101' end = '20201231' htypes = 'eps,basic_eps,diluted_eps,total_revenue,revenue,total_share,' \ 'cap_rese,undistr_porfit,surplus_rese,net_profit' target_eps_000039 = [[1.41], [0.1398], [-0.0841], [-0.1929], [0.37], [0.1357], [0.1618], [0.1191], [1.11], [0.759], [0.3061], [0.1409], [0.81], [0.4187], [0.2554], [0.1624], [0.14], [-0.0898], [-0.1444], [0.1291]] target_eps_600748 = [[0.41], [0.22], [0.22], [0.09], [0.42], [0.23], [0.22], [0.09], [0.36], [0.16], [0.15], [0.07], [0.47], [0.19], [0.12], [0.07], [0.32], [0.22], [0.14], [0.07]] target_eps_000040 = [[-0.6866], [-0.134], [-0.189], [-0.036], [-0.6435], [0.05], [0.062], [0.0125], [0.8282], [1.05], [0.985], [0.811], [0.41], [0.242], [0.113], [0.027], [0.19], [0.17], [0.17], [0.064]] target_basic_eps_000039 = [[1.3980000e-01, 1.3980000e-01, 6.3591954e+10, 6.3591954e+10], [-8.4100000e-02, -8.4100000e-02, 3.9431807e+10, 3.9431807e+10], [-1.9290000e-01, -1.9290000e-01, 1.5852177e+10, 1.5852177e+10], [3.7000000e-01, 3.7000000e-01, 8.5815341e+10, 8.5815341e+10], [1.3570000e-01, 1.3430000e-01, 6.1660271e+10, 6.1660271e+10], [1.6180000e-01, 1.6040000e-01, 4.2717729e+10, 4.2717729e+10], [1.1910000e-01, 1.1900000e-01, 1.9099547e+10, 1.9099547e+10], [1.1100000e+00, 1.1000000e+00, 9.3497622e+10, 9.3497622e+10], [7.5900000e-01, 7.5610000e-01, 6.6906147e+10, 6.6906147e+10], [3.0610000e-01, 3.0380000e-01, 4.3560398e+10, 4.3560398e+10], [1.4090000e-01, 1.4050000e-01, 1.9253639e+10, 1.9253639e+10], [8.1000000e-01, 8.1000000e-01, 7.6299930e+10, 7.6299930e+10], [4.1870000e-01, 4.1710000e-01, 5.3962706e+10, 5.3962706e+10], [2.5540000e-01, 2.5440000e-01, 3.3387152e+10, 3.3387152e+10], [1.6240000e-01, 1.6200000e-01, 1.4675987e+10, 1.4675987e+10], [1.4000000e-01, 1.4000000e-01, 5.1111652e+10, 5.1111652e+10], [-8.9800000e-02, -8.9800000e-02, 3.4982614e+10, 3.4982614e+10], [-1.4440000e-01, -1.4440000e-01, 2.3542843e+10, 2.3542843e+10], [1.2910000e-01, 1.2860000e-01, 1.0412416e+10, 1.0412416e+10], [7.2000000e-01, 7.1000000e-01, 5.8685804e+10, 5.8685804e+10]] target_basic_eps_600748 = [[2.20000000e-01, 2.20000000e-01, 5.29423397e+09, 5.29423397e+09], [2.20000000e-01, 2.20000000e-01, 4.49275653e+09, 4.49275653e+09], [9.00000000e-02, 9.00000000e-02, 1.59067065e+09, 1.59067065e+09], [4.20000000e-01, 4.20000000e-01, 8.86555586e+09, 8.86555586e+09], [2.30000000e-01, 2.30000000e-01, 5.44850143e+09, 5.44850143e+09], [2.20000000e-01, 2.20000000e-01, 4.34978927e+09, 4.34978927e+09], [9.00000000e-02, 9.00000000e-02, 1.73793793e+09, 1.73793793e+09], [3.60000000e-01, 3.60000000e-01, 8.66375241e+09, 8.66375241e+09], [1.60000000e-01, 1.60000000e-01, 4.72875116e+09, 4.72875116e+09], [1.50000000e-01, 1.50000000e-01, 3.76879016e+09, 3.76879016e+09], [7.00000000e-02, 7.00000000e-02, 1.31785454e+09, 1.31785454e+09], [4.70000000e-01, 4.70000000e-01, 7.23391685e+09, 7.23391685e+09], [1.90000000e-01, 1.90000000e-01, 3.76072215e+09, 3.76072215e+09], [1.20000000e-01, 1.20000000e-01, 2.35845364e+09, 2.35845364e+09], [7.00000000e-02, 7.00000000e-02, 1.03831865e+09, 1.03831865e+09], [3.20000000e-01, 3.20000000e-01, 6.48880919e+09, 6.48880919e+09], [2.20000000e-01, 2.20000000e-01, 3.72209142e+09, 3.72209142e+09], [1.40000000e-01, 1.40000000e-01, 2.22563924e+09, 2.22563924e+09], [7.00000000e-02, 7.00000000e-02, 8.96647052e+08, 8.96647052e+08], [4.80000000e-01, 4.80000000e-01, 6.61917508e+09, 6.61917508e+09]] target_basic_eps_000040 = [[-1.34000000e-01, -1.34000000e-01, 2.50438755e+09, 2.50438755e+09], [-1.89000000e-01, -1.89000000e-01, 1.32692347e+09, 1.32692347e+09], [-3.60000000e-02, -3.60000000e-02, 5.59073338e+08, 5.59073338e+08], [-6.43700000e-01, -6.43700000e-01, 6.80576162e+09, 6.80576162e+09], [5.00000000e-02, 5.00000000e-02, 6.38891620e+09, 6.38891620e+09], [6.20000000e-02, 6.20000000e-02, 5.23267082e+09, 5.23267082e+09], [1.25000000e-02, 1.25000000e-02, 2.22420874e+09, 2.22420874e+09], [8.30000000e-01, 8.30000000e-01, 8.67628947e+09, 8.67628947e+09], [1.05000000e+00, 1.05000000e+00, 5.29431716e+09, 5.29431716e+09], [9.85000000e-01, 9.85000000e-01, 3.56822382e+09, 3.56822382e+09], [8.11000000e-01, 8.11000000e-01, 1.06613439e+09, 1.06613439e+09], [4.10000000e-01, 4.10000000e-01, 8.13102532e+09, 8.13102532e+09], [2.42000000e-01, 2.42000000e-01, 5.17971521e+09, 5.17971521e+09], [1.13000000e-01, 1.13000000e-01, 3.21704120e+09, 3.21704120e+09], [2.70000000e-02, 2.70000000e-02, 8.41966738e+08, 8.24272235e+08], [1.90000000e-01, 1.90000000e-01, 3.77350171e+09, 3.77350171e+09], [1.70000000e-01, 1.70000000e-01, 2.38643892e+09, 2.38643892e+09], [1.70000000e-01, 1.70000000e-01, 1.29127117e+09, 1.29127117e+09], [6.40000000e-02, 6.40000000e-02, 6.03256858e+08, 6.03256858e+08], [1.30000000e-01, 1.30000000e-01, 1.66572918e+09, 1.66572918e+09]] target_total_share_000039 = [[3.5950140e+09, 4.8005360e+09, 2.1573660e+10, 3.5823430e+09], [3.5860750e+09, 4.8402300e+09, 2.0750827e+10, 3.5823430e+09], [3.5860750e+09, 4.9053550e+09, 2.0791307e+10, 3.5823430e+09], [3.5845040e+09, 4.8813110e+09, 2.1482857e+10, 3.5823430e+09], [3.5831490e+09, 4.9764250e+09, 2.0926816e+10, 3.2825850e+09], [3.5825310e+09, 4.8501270e+09, 2.1020418e+10, 3.2825850e+09], [2.9851110e+09, 5.4241420e+09, 2.2438350e+10, 3.2825850e+09], [2.9849890e+09, 4.1284000e+09, 2.2082769e+10, 3.2825850e+09], [2.9849610e+09, 4.0838010e+09, 2.1045994e+10, 3.2815350e+09], [2.9849560e+09, 4.2491510e+09, 1.9694345e+10, 3.2815350e+09], [2.9846970e+09, 4.2351600e+09, 2.0016361e+10, 3.2815350e+09], [2.9828890e+09, 4.2096630e+09, 1.9734494e+10, 3.2815350e+09], [2.9813960e+09, 3.4564240e+09, 1.8562738e+10, 3.2793790e+09], [2.9803530e+09, 3.0759650e+09, 1.8076208e+10, 3.2793790e+09], [2.9792680e+09, 3.1376690e+09, 1.7994776e+10, 3.2793790e+09], [2.9785770e+09, 3.1265850e+09, 1.7495053e+10, 3.2793790e+09], [2.9783640e+09, 3.1343850e+09, 1.6740840e+10, 3.2035780e+09], [2.9783590e+09, 3.1273880e+09, 1.6578389e+10, 3.2035780e+09], [2.9782780e+09, 3.1169280e+09, 1.8047639e+10, 3.2035780e+09], [2.9778200e+09, 3.1818630e+09, 1.7663145e+10, 3.2035780e+09]] target_total_share_600748 = [[1.84456289e+09, 2.60058426e+09, 5.72443733e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.72096899e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.65738237e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.50257806e+09, 4.58026529e+08], [1.84456289e+09, 2.59868164e+09, 5.16741523e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 5.14677280e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.94955591e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.79001451e+09, 4.44998882e+08], [1.84456289e+09, 3.11401684e+09, 4.46326988e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.45419136e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.39652948e+09, 4.01064256e+08], [1.84456289e+09, 3.18007783e+09, 4.26608403e+09, 4.01064256e+08], [1.84456289e+09, 3.10935622e+09, 3.78417688e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.65806574e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.62063090e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.50063915e+09, 3.65651701e+08], [1.41889453e+09, 3.55940850e+09, 3.22272993e+09, 3.62124939e+08], [1.41889453e+09, 3.56129650e+09, 3.11477476e+09, 3.62124939e+08], [1.41889453e+09, 3.59632888e+09, 3.06836903e+09, 3.62124939e+08], [1.08337087e+09, 3.37400726e+07, 3.00918704e+09, 3.62124939e+08]] target_total_share_000040 = [[1.48687387e+09, 1.06757900e+10, 8.31900755e+08, 2.16091994e+08], [1.48687387e+09, 1.06757900e+10, 7.50177302e+08, 2.16091994e+08], [1.48687387e+09, 1.06757899e+10, 9.90255974e+08, 2.16123282e+08], [1.48687387e+09, 1.06757899e+10, 1.03109866e+09, 2.16091994e+08], [1.48687387e+09, 1.06757910e+10, 2.07704745e+09, 2.16123282e+08], [1.48687387e+09, 1.06757910e+10, 2.09608665e+09, 2.16123282e+08], [1.48687387e+09, 1.06803833e+10, 2.13354083e+09, 2.16123282e+08], [1.48687387e+09, 1.06804090e+10, 2.11489364e+09, 2.16123282e+08], [1.33717327e+09, 8.87361727e+09, 2.42939924e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.34220254e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.16390368e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 1.07961915e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 8.58866066e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 6.87024393e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.71554565e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.54241222e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 5.10059576e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 4.59351639e+08, 1.88489589e+08], [4.69593364e+08, 2.78355875e+08, 4.13430814e+08, 1.88489589e+08], [4.69593364e+08, 2.74235459e+08, 3.83557678e+08, 1.88489589e+08]] target_net_profit_000039 = [[np.nan], [2.422180e+08], [np.nan], [2.510113e+09], [np.nan], [1.102220e+09], [np.nan], [4.068455e+09], [np.nan], [1.315957e+09], [np.nan], [3.158415e+09], [np.nan], [1.066509e+09], [np.nan], [7.349830e+08], [np.nan], [-5.411600e+08], [np.nan], [2.271961e+09]] target_net_profit_600748 = [[np.nan], [4.54341757e+08], [np.nan], [9.14476670e+08], [np.nan], [5.25360283e+08], [np.nan], [9.24502415e+08], [np.nan], [4.66560302e+08], [np.nan], [9.15265285e+08], [np.nan], [2.14639674e+08], [np.nan], [7.45093049e+08], [np.nan], [2.10967312e+08], [np.nan], [6.04572711e+08]] target_net_profit_000040 = [[np.nan], [-2.82458846e+08], [np.nan], [-9.57130872e+08], [np.nan], [9.22114527e+07], [np.nan], [1.12643819e+09], [np.nan], [1.31715269e+09], [np.nan], [5.39940093e+08], [np.nan], [1.51440838e+08], [np.nan], [1.75339071e+08], [np.nan], [8.04740415e+07], [np.nan], [6.20445815e+07]] print('test get financial data, in multi thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=4) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据 print(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) print('test get financial data, in single thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=0) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据,因为网络问题,有可能会取到空数据 self.assertFalse(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) def test_get_composite_type_raw_data(self): pass class TestUtilityFuncs(unittest.TestCase): def setUp(self): pass def test_time_string_format(self): print('Testing qt.time_string_format() function:') t = 3.14 self.assertEqual(time_str_format(t), '3s 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '3s ') self.assertEqual(time_str_format(t, short_form=True), '3"140') self.assertEqual(time_str_format(t, estimation=True, short_form=True), '3"') t = 300.14 self.assertEqual(time_str_format(t), '5min 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '5min ') self.assertEqual(time_str_format(t, short_form=True), "5'140") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "5'") t = 7435.0014 self.assertEqual(time_str_format(t), '2hrs 3min 55s 1.4ms') self.assertEqual(time_str_format(t, estimation=True), '2hrs ') self.assertEqual(time_str_format(t, short_form=True), "2H3'55\"001") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "2H") t = 88425.0509 self.assertEqual(time_str_format(t), '1days 33min 45s 50.9ms') self.assertEqual(time_str_format(t, estimation=True), '1days ') self.assertEqual(time_str_format(t, short_form=True), "1D33'45\"051") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "1D") def test_str_to_list(self): self.assertEqual(str_to_list('a,b,c,d,e'), ['a', 'b', 'c', 'd', 'e']) self.assertEqual(str_to_list('a, b, c '), ['a', 'b', 'c']) self.assertEqual(str_to_list('a, b: c', sep_char=':'), ['a,b', 'c']) self.assertEqual(str_to_list('abc'), ['abc']) self.assertEqual(str_to_list(''), []) self.assertRaises(AssertionError, str_to_list, 123) def test_list_or_slice(self): str_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} self.assertEqual(list_or_slice(slice(1, 2, 1), str_dict), slice(1, 2, 1)) self.assertEqual(list_or_slice('open', str_dict), [1]) self.assertEqual(list(list_or_slice('close, high, low', str_dict)), [0, 2, 3]) self.assertEqual(list(list_or_slice('close:high', str_dict)), [0, 1, 2]) self.assertEqual(list(list_or_slice(['open'], str_dict)), [1]) self.assertEqual(list(list_or_slice(['open', 'high'], str_dict)), [1, 2]) self.assertEqual(list(list_or_slice(0, str_dict)), [0]) self.assertEqual(list(list_or_slice([0, 2], str_dict)), [0, 2]) self.assertEqual(list(list_or_slice([True, False, True, False], str_dict)), [0, 2]) def test_labels_to_dict(self): target_list = [0, 1, 10, 100] target_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} target_dict2 = {'close': 0, 'open': 2, 'high': 1, 'low': 3} self.assertEqual(labels_to_dict('close, open, high, low', target_list), target_dict) self.assertEqual(labels_to_dict(['close', 'open', 'high', 'low'], target_list), target_dict) self.assertEqual(labels_to_dict('close, high, open, low', target_list), target_dict2) self.assertEqual(labels_to_dict(['close', 'high', 'open', 'low'], target_list), target_dict2) def test_input_to_list(self): """ test util function input_to_list()""" self.assertEqual(input_to_list(5, 3), [5, 5, 5]) self.assertEqual(input_to_list(5, 3, 0), [5, 5, 5]) self.assertEqual(input_to_list([5], 3, 0), [5, 0, 0]) self.assertEqual(input_to_list([5, 4], 3, 0), [5, 4, 0]) def test_regulate_date_format(self): self.assertEqual(regulate_date_format('2019/11/06'), '20191106') self.assertEqual(regulate_date_format('2019-11-06'), '20191106') self.assertEqual(regulate_date_format('20191106'), '20191106') self.assertEqual(regulate_date_format('191106'), '20061119') self.assertEqual(regulate_date_format('830522'), '19830522') self.assertEqual(regulate_date_format(datetime.datetime(2010, 3, 15)), '20100315') self.assertEqual(regulate_date_format(pd.Timestamp('2010.03.15')), '20100315') self.assertRaises(ValueError, regulate_date_format, 'abc') self.assertRaises(ValueError, regulate_date_format, '2019/13/43') def test_list_to_str_format(self): self.assertEqual(list_to_str_format(['close', 'open', 'high', 'low']), 'close,open,high,low') self.assertEqual(list_to_str_format(['letters', ' ', '123 4', 123, ' kk l']), 'letters,,1234,kkl') self.assertEqual(list_to_str_format('a string input'), 'a,string,input') self.assertEqual(list_to_str_format('already,a,good,string'), 'already,a,good,string') self.assertRaises(AssertionError, list_to_str_format, 123) def test_is_trade_day(self): """test if the funcion maybe_trade_day() and is_market_trade_day() works properly """ date_trade = '20210401' date_holiday = '20210102' date_weekend = '20210424' date_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) self.assertTrue(maybe_trade_day(date_seems_trade_day)) self.assertTrue(maybe_trade_day(date_too_early)) self.assertTrue(maybe_trade_day(date_too_late)) self.assertTrue(maybe_trade_day(date_christmas)) self.assertTrue(is_market_trade_day(date_trade)) self.assertFalse(is_market_trade_day(date_holiday)) self.assertFalse(is_market_trade_day(date_weekend)) self.assertFalse(is_market_trade_day(date_seems_trade_day)) self.assertFalse(is_market_trade_day(date_too_early)) self.assertFalse(is_market_trade_day(date_too_late)) self.assertTrue(is_market_trade_day(date_christmas)) self.assertFalse(is_market_trade_day(date_christmas, exchange='XHKG')) date_trade = pd.to_datetime('20210401') date_holiday = pd.to_datetime('20210102') date_weekend = pd.to_datetime('20210424') self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) def test_weekday_name(self): """ test util func weekday_name()""" self.assertEqual(weekday_name(0), 'Monday') self.assertEqual(weekday_name(1), 'Tuesday') self.assertEqual(weekday_name(2), 'Wednesday') self.assertEqual(weekday_name(3), 'Thursday') self.assertEqual(weekday_name(4), 'Friday') self.assertEqual(weekday_name(5), 'Saturday') self.assertEqual(weekday_name(6), 'Sunday') def test_list_truncate(self): """ test util func list_truncate()""" l = [1,2,3,4,5] ls = list_truncate(l, 2) self.assertEqual(ls[0], [1, 2]) self.assertEqual(ls[1], [3, 4]) self.assertEqual(ls[2], [5]) self.assertRaises(AssertionError, list_truncate, l, 0) self.assertRaises(AssertionError, list_truncate, 12, 0) self.assertRaises(AssertionError, list_truncate, 0, l) def test_maybe_trade_day(self): """ test util function maybe_trade_day()""" self.assertTrue(maybe_trade_day('20220104')) self.assertTrue(maybe_trade_day('2021-12-31')) self.assertTrue(maybe_trade_day(pd.to_datetime('2020/03/06'))) self.assertFalse(maybe_trade_day('2020-01-01')) self.assertFalse(maybe_trade_day('2020/10/06')) self.assertRaises(TypeError, maybe_trade_day, 'aaa') def test_prev_trade_day(self): """test the function prev_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(prev_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_trade_day(date_holiday)), pd.to_datetime(prev_holiday)) self.assertEqual(pd.to_datetime(prev_trade_day(date_weekend)), pd.to_datetime(prev_weekend)) self.assertEqual(pd.to_datetime(prev_trade_day(date_seems_trade_day)),
pd.to_datetime(prev_seems_trade_day)
pandas.to_datetime
from functools import partial from itertools import product from string import ascii_letters import numpy as np from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, period_range, ) from .pandas_vb_common import tm method_blocklist = { "object": { "median", "prod", "sem", "cumsum", "sum", "cummin", "mean", "max", "skew", "cumprod", "cummax", "pct_change", "min", "var", "mad", "describe", "std", "quantile", }, "datetime": { "median", "prod", "sem", "cumsum", "sum", "mean", "skew", "cumprod", "cummax", "pct_change", "var", "mad", "describe", "std", }, } class ApplyDictReturn: def setup(self): self.labels = np.arange(1000).repeat(10) self.data = Series(np.random.randn(len(self.labels))) def time_groupby_apply_dict_return(self): self.data.groupby(self.labels).apply( lambda x: {"first": x.values[0], "last": x.values[-1]} ) class Apply: param_names = ["factor"] params = [4, 5] def setup(self, factor): N = 10 ** factor # two cases: # - small groups: small data (N**4) + many labels (2000) -> average group # size of 5 (-> larger overhead of slicing method) # - larger groups: larger data (N**5) + fewer labels (20) -> average group # size of 5000 labels = np.random.randint(0, 2000 if factor == 4 else 20, size=N) labels2 = np.random.randint(0, 3, size=N) df = DataFrame( { "key": labels, "key2": labels2, "value1": np.random.randn(N), "value2": ["foo", "bar", "baz", "qux"] * (N // 4), } ) self.df = df def time_scalar_function_multi_col(self, factor): self.df.groupby(["key", "key2"]).apply(lambda x: 1) def time_scalar_function_single_col(self, factor): self.df.groupby("key").apply(lambda x: 1) @staticmethod def df_copy_function(g): # ensure that the group name is available (see GH #15062) g.name return g.copy() def time_copy_function_multi_col(self, factor): self.df.groupby(["key", "key2"]).apply(self.df_copy_function) def time_copy_overhead_single_col(self, factor): self.df.groupby("key").apply(self.df_copy_function) class Groups: param_names = ["key"] params = ["int64_small", "int64_large", "object_small", "object_large"] def setup_cache(self): size = 10 ** 6 data = { "int64_small": Series(np.random.randint(0, 100, size=size)), "int64_large": Series(np.random.randint(0, 10000, size=size)), "object_small": Series( tm.makeStringIndex(100).take(np.random.randint(0, 100, size=size)) ), "object_large": Series( tm.makeStringIndex(10000).take(np.random.randint(0, 10000, size=size)) ), } return data def setup(self, data, key): self.ser = data[key] def time_series_groups(self, data, key): self.ser.groupby(self.ser).groups def time_series_indices(self, data, key): self.ser.groupby(self.ser).indices class GroupManyLabels: params = [1, 1000] param_names = ["ncols"] def setup(self, ncols): N = 1000 data = np.random.randn(N, ncols) self.labels = np.random.randint(0, 100, size=N) self.df = DataFrame(data) def time_sum(self, ncols): self.df.groupby(self.labels).sum() class Nth: param_names = ["dtype"] params = ["float32", "float64", "datetime", "object"] def setup(self, dtype): N = 10 ** 5 # with datetimes (GH7555) if dtype == "datetime": values = date_range("1/1/2011", periods=N, freq="s") elif dtype == "object": values = ["foo"] * N else: values = np.arange(N).astype(dtype) key = np.arange(N) self.df = DataFrame({"key": key, "values": values}) self.df.iloc[1, 1] = np.nan # insert missing data def time_frame_nth_any(self, dtype): self.df.groupby("key").nth(0, dropna="any") def time_groupby_nth_all(self, dtype): self.df.groupby("key").nth(0, dropna="all") def time_frame_nth(self, dtype): self.df.groupby("key").nth(0) def time_series_nth_any(self, dtype): self.df["values"].groupby(self.df["key"]).nth(0, dropna="any") def time_series_nth_all(self, dtype): self.df["values"].groupby(self.df["key"]).nth(0, dropna="all") def time_series_nth(self, dtype): self.df["values"].groupby(self.df["key"]).nth(0) class DateAttributes: def setup(self): rng = date_range("1/1/2000", "12/31/2005", freq="H") self.year, self.month, self.day = rng.year, rng.month, rng.day self.ts = Series(np.random.randn(len(rng)), index=rng) def time_len_groupby_object(self): len(self.ts.groupby([self.year, self.month, self.day])) class Int64: def setup(self): arr = np.random.randint(-1 << 12, 1 << 12, (1 << 17, 5)) i = np.random.choice(len(arr), len(arr) * 5) arr = np.vstack((arr, arr[i])) i = np.random.permutation(len(arr)) arr = arr[i] self.cols = list("abcde") self.df =
DataFrame(arr, columns=self.cols)
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import os import numpy as np import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal import numpy.testing as npt from numpy.linalg import norm, lstsq from numpy.random import randn from flaky import flaky from lifelines import CoxPHFitter, WeibullAFTFitter, KaplanMeierFitter, ExponentialFitter from lifelines.datasets import load_regression_dataset, load_larynx, load_waltons, load_rossi from lifelines import utils from lifelines import exceptions from lifelines.utils.sklearn_adapter import sklearn_adapter from lifelines.utils.safe_exp import safe_exp def test_format_p_values(): assert utils.format_p_value(2)(0.004) == "<0.005" assert utils.format_p_value(3)(0.004) == "0.004" assert utils.format_p_value(3)(0.000) == "<0.0005" assert utils.format_p_value(3)(0.005) == "0.005" assert utils.format_p_value(3)(0.2111) == "0.211" assert utils.format_p_value(3)(0.2119) == "0.212" def test_ridge_regression_with_penalty_is_less_than_without_penalty(): X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1=2.0)[0]) <= norm(utils.ridge_regression(X, Y)[0]) assert norm(utils.ridge_regression(X, Y, c1=1.0, c2=1.0)[0]) <= norm(utils.ridge_regression(X, Y)[0]) def test_ridge_regression_with_extreme_c1_penalty_equals_close_to_zero_vector(): c1 = 10e8 c2 = 0.0 offset = np.ones(2) X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1, c2, offset)[0]) < 10e-4 def test_ridge_regression_with_extreme_c2_penalty_equals_close_to_offset(): c1 = 0.0 c2 = 10e8 offset = np.ones(2) X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1, c2, offset)[0] - offset) < 10e-4 def test_lstsq_returns_similar_values_to_ridge_regression(): X = randn(2, 2) Y = randn(2) expected = lstsq(X, Y, rcond=None)[0] assert norm(utils.ridge_regression(X, Y)[0] - expected) < 10e-4 def test_lstsq_returns_correct_values(): X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] beta, V = utils.ridge_regression(X, y) expected_beta = [-0.98684211, -0.07894737] expected_v = [ [-0.03289474, -0.49342105, 0.06578947, 0.03289474, 0.49342105], [-0.30263158, 0.46052632, -0.39473684, 0.30263158, -0.46052632], ] assert norm(beta - expected_beta) < 10e-4 for V_row, e_v_row in zip(V, expected_v): assert norm(V_row - e_v_row) < 1e-4 def test_unnormalize(): df = load_larynx() m = df.mean(0) s = df.std(0) ndf = utils.normalize(df) npt.assert_almost_equal(df.values, utils.unnormalize(ndf, m, s).values) def test_normalize(): df = load_larynx() n, d = df.shape npt.assert_almost_equal(utils.normalize(df).mean(0).values, np.zeros(d)) npt.assert_almost_equal(utils.normalize(df).std(0).values, np.ones(d)) def test_median(): sv = pd.DataFrame(1 - np.linspace(0, 1, 1000)) assert utils.median_survival_times(sv) == 500 def test_median_accepts_series(): sv = pd.Series(1 - np.linspace(0, 1, 1000)) assert utils.median_survival_times(sv) == 500 def test_qth_survival_times_with_varying_datatype_inputs(): sf_list = [1.0, 0.75, 0.5, 0.25, 0.0] sf_array = np.array([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_no_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_series_index = pd.Series([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_series_no_index = pd.Series([1.0, 0.75, 0.5, 0.25, 0.0]) q = 0.5 assert utils.qth_survival_times(q, sf_list) == 2 assert utils.qth_survival_times(q, sf_array) == 2 assert utils.qth_survival_times(q, sf_df_no_index) == 2 assert utils.qth_survival_times(q, sf_df_index) == 30 assert utils.qth_survival_times(q, sf_series_index) == 30 assert utils.qth_survival_times(q, sf_series_no_index) == 2 def test_qth_survival_times_multi_dim_input(): sf = np.linspace(1, 0, 50) sf_multi_df = pd.DataFrame({"sf": sf, "sf**2": sf ** 2}) medians = utils.qth_survival_times(0.5, sf_multi_df) assert medians["sf"].loc[0.5] == 25 assert medians["sf**2"].loc[0.5] == 15 def test_qth_survival_time_returns_inf(): sf = pd.Series([1.0, 0.7, 0.6]) assert utils.qth_survival_time(0.5, sf) == np.inf def test_qth_survival_time_accepts_a_model(): kmf = KaplanMeierFitter().fit([1.0, 0.7, 0.6]) assert utils.qth_survival_time(0.8, kmf) > 0 def test_qth_survival_time_with_dataframe(): sf_df_no_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_df_too_many_columns = pd.DataFrame([[1, 2], [3, 4]]) assert utils.qth_survival_time(0.5, sf_df_no_index) == 2 assert utils.qth_survival_time(0.5, sf_df_index) == 30 with pytest.raises(ValueError): utils.qth_survival_time(0.5, sf_df_too_many_columns) def test_qth_survival_times_with_multivariate_q(): sf = np.linspace(1, 0, 50) sf_multi_df = pd.DataFrame({"sf": sf, "sf**2": sf ** 2}) assert_frame_equal( utils.qth_survival_times([0.2, 0.5], sf_multi_df), pd.DataFrame([[40, 28], [25, 15]], index=[0.2, 0.5], columns=["sf", "sf**2"]), ) assert_frame_equal( utils.qth_survival_times([0.2, 0.5], sf_multi_df["sf"]), pd.DataFrame([40, 25], index=[0.2, 0.5], columns=["sf"]) ) assert_frame_equal(utils.qth_survival_times(0.5, sf_multi_df), pd.DataFrame([[25, 15]], index=[0.5], columns=["sf", "sf**2"])) assert utils.qth_survival_times(0.5, sf_multi_df["sf"]) == 25 def test_qth_survival_times_with_duplicate_q_returns_valid_index_and_shape(): sf = pd.DataFrame(np.linspace(1, 0, 50)) q = pd.Series([0.5, 0.5, 0.2, 0.0, 0.0]) actual = utils.qth_survival_times(q, sf) assert actual.shape[0] == len(q) assert actual.index[0] == actual.index[1] assert_series_equal(actual.iloc[0], actual.iloc[1]) npt.assert_almost_equal(actual.index.values, q.values) def test_datetimes_to_durations_with_different_frequencies(): # days start_date = ["2013-10-10 0:00:00", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", "2013-10-10 0:00:00", "2013-10-15"] T, C = utils.datetimes_to_durations(start_date, end_date) npt.assert_almost_equal(T, np.array([3, 1, 5 + 365])) npt.assert_almost_equal(C, np.array([1, 1, 1], dtype=bool)) # years start_date = ["2013-10-10", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", "2013-10-10", "2013-10-15"] T, C = utils.datetimes_to_durations(start_date, end_date, freq="Y") npt.assert_almost_equal(T, np.array([0, 0, 1])) npt.assert_almost_equal(C, np.array([1, 1, 1], dtype=bool)) # hours start_date = ["2013-10-10 17:00:00", "2013-10-09 0:00:00", "2013-10-10 23:00:00"] end_date = ["2013-10-10 18:00:00", "2013-10-10 0:00:00", "2013-10-11 2:00:00"] T, C = utils.datetimes_to_durations(start_date, end_date, freq="h") npt.assert_almost_equal(T, np.array([1, 24, 3])) npt.assert_almost_equal(C, np.array([1, 1, 1], dtype=bool)) def test_datetimes_to_durations_will_handle_dates_above_fill_date(): start_date = ["2013-10-08", "2013-10-09", "2013-10-10"] end_date = ["2013-10-10", "2013-10-12", "2013-10-15"] T, C = utils.datetimes_to_durations(start_date, end_date, freq="D", fill_date="2013-10-12") npt.assert_almost_equal(C, np.array([1, 1, 0], dtype=bool)) npt.assert_almost_equal(T, np.array([2, 3, 2])) def test_datetimes_to_durations_will_handle_dates_above_multi_fill_date(): start_date = ["2013-10-08", "2013-10-09", "2013-10-10"] end_date = ["2013-10-10", None, None] last_observation = ["2013-10-10", "2013-10-12", "2013-10-14"] T, E = utils.datetimes_to_durations(start_date, end_date, freq="D", fill_date=last_observation) npt.assert_almost_equal(E, np.array([1, 0, 0], dtype=bool)) npt.assert_almost_equal(T, np.array([2, 3, 4])) def test_datetimes_to_durations_will_handle_dates_above_multi_fill_date(): start_date = ["2013-10-08", "2013-10-09", "2013-10-10"] end_date = ["2013-10-10", None, "2013-10-20"] last_observation = ["2013-10-10", "2013-10-12", "2013-10-14"] T, E = utils.datetimes_to_durations(start_date, end_date, freq="D", fill_date=last_observation) npt.assert_almost_equal(E, np.array([1, 0, 0], dtype=bool)) npt.assert_almost_equal(T, np.array([2, 3, 4])) def test_datetimes_to_durations_censor(): start_date = ["2013-10-10", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", None, ""] T, C = utils.datetimes_to_durations(start_date, end_date, freq="Y") npt.assert_almost_equal(C, np.array([1, 0, 0], dtype=bool)) def test_datetimes_to_durations_custom_censor(): start_date = ["2013-10-10", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", "NaT", ""] T, C = utils.datetimes_to_durations(start_date, end_date, freq="Y", na_values=["NaT", ""]) npt.assert_almost_equal(C, np.array([1, 0, 0], dtype=bool)) def test_survival_events_from_table_no_ties(): T, C = np.array([1, 2, 3, 4, 4, 5]), np.array([1, 0, 1, 1, 0, 1]) d = utils.survival_table_from_events(T, C) T_, C_, W_ = utils.survival_events_from_table(d[["censored", "observed"]]) npt.assert_array_equal(T, T_) npt.assert_array_equal(C, C_) npt.assert_array_equal(W_, np.ones_like(T)) def test_survival_events_from_table_with_ties(): T, C = np.array([1, 2, 3, 4, 4, 5]), np.array([1, 0, 1, 1, 1, 1]) d = utils.survival_table_from_events(T, C) T_, C_, W_ = utils.survival_events_from_table(d[["censored", "observed"]]) npt.assert_array_equal([1, 2, 3, 4, 5], T_) npt.assert_array_equal([1, 0, 1, 1, 1], C_) npt.assert_array_equal([1, 1, 1, 2, 1], W_) def test_survival_table_from_events_with_non_trivial_censorship_column(): T = np.random.exponential(5, size=50) malformed_C = np.random.binomial(2, p=0.8) # set to 2 on purpose! proper_C = malformed_C > 0 # (proper "boolean" array) table1 = utils.survival_table_from_events(T, malformed_C, np.zeros_like(T)) table2 = utils.survival_table_from_events(T, proper_C, np.zeros_like(T)) assert_frame_equal(table1, table2) def test_group_survival_table_from_events_on_waltons_data(): df = load_waltons() g, removed, observed, censored = utils.group_survival_table_from_events(df["group"], df["T"], df["E"]) assert len(g) == 2 assert all(removed.columns == ["removed:miR-137", "removed:control"]) assert all(removed.index == observed.index) assert all(removed.index == censored.index) def test_group_survival_table_with_weights(): df = load_waltons() dfw = df.groupby(["T", "E", "group"]).size().reset_index().rename(columns={0: "weights"}) gw, removedw, observedw, censoredw = utils.group_survival_table_from_events( dfw["group"], dfw["T"], dfw["E"], weights=dfw["weights"] ) assert len(gw) == 2 assert all(removedw.columns == ["removed:miR-137", "removed:control"]) assert all(removedw.index == observedw.index) assert all(removedw.index == censoredw.index) g, removed, observed, censored = utils.group_survival_table_from_events(df["group"], df["T"], df["E"]) assert_frame_equal(removedw, removed)
assert_frame_equal(observedw, observed)
pandas.testing.assert_frame_equal
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), True), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), True), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_datetime_dtype(obj, expect): assert types.is_datetime_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, True), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), True), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), True), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_list_dtype(obj, expect): assert types.is_list_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, True), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), # (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), True), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), # (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), True), # (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_struct_dtype(obj, expect): # TODO: All inputs of interval types are currently disabled due to # inconsistent behavior of is_struct_dtype for interval types that will be # fixed as part of the array refactor. assert types.is_struct_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_decimal_dtype(obj, expect): assert types.is_decimal_dtype(obj) == expect @pytest.mark.parametrize( "obj", ( # Base Python objects. bool(), int(), float(), complex(), str(), "", r"", object(), # Base Python types. bool, int, float, complex, str, object, # NumPy types. np.bool_, np.int_, np.float64, np.complex128, np.str_, np.unicode_, np.datetime64, np.timedelta64, # NumPy scalars. np.bool_(), np.int_(), np.float64(), np.complex128(), np.str_(), np.unicode_(), np.datetime64(), np.timedelta64(), # NumPy dtype objects. np.dtype("bool"), np.dtype("int"), np.dtype("float"), np.dtype("complex"), np.dtype("str"), np.dtype("unicode"), np.dtype("datetime64"), np.dtype("timedelta64"), np.dtype("object"), # NumPy arrays. np.array([], dtype=np.bool_), np.array([], dtype=np.int_), np.array([], dtype=np.float64), np.array([], dtype=np.complex128), np.array([], dtype=np.str_), np.array([], dtype=np.unicode_), np.array([], dtype=np.datetime64), np.array([], dtype=np.timedelta64), np.array([], dtype=object), # Pandas dtypes. # TODO: pandas does not consider these to be categoricals. # pd.core.dtypes.dtypes.CategoricalDtypeType, # pd.CategoricalDtype, # Pandas objects. pd.Series(dtype="bool"), pd.Series(dtype="int"), pd.Series(dtype="float"), pd.Series(dtype="complex"), pd.Series(dtype="str"), pd.Series(dtype="unicode"), pd.Series(dtype="datetime64[s]"), pd.Series(dtype="timedelta64[s]"), pd.Series(dtype="category"),
pd.Series(dtype="object")
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sat Aug 29 19:14:15 2020 @author: hp 3006tx """ import pandas as pd import dash from dash.dependencies import Input , State, Output import dash_core_components as dcc import dash_html_components as html import webbrowser import plotly.graph_objects as go import plotly.express as px # region country state city day month attacktype app = dash.Dash() app.title = 'Terrorism Data Analysis' def load_data(): # world data globalterror = 'global_terror.csv' global df df =
pd.read_csv(globalterror)
pandas.read_csv
#################### # Import Libraries #################### import os import sys from PIL import Image import cv2 import numpy as np import pandas as pd import pytorch_lightning as pl from pytorch_lightning.metrics import Accuracy from pytorch_lightning import loggers from pytorch_lightning import seed_everything from pytorch_lightning import Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import StratifiedKFold from sklearn import model_selection import albumentations as A import timm from omegaconf import OmegaConf import glob from tqdm import tqdm from sklearn.metrics import roc_auc_score from nnAudio.Spectrogram import CQT1992v2, CQT2010v2 from scipy import signal #################### # Utils #################### def get_score(y_true, y_pred): score = roc_auc_score(y_true, y_pred) return score def load_pytorch_model(ckpt_name, model, ignore_suffix='model'): state_dict = torch.load(ckpt_name, map_location='cpu')["state_dict"] new_state_dict = {} for k, v in state_dict.items(): name = k if name.startswith(str(ignore_suffix)+"."): name = name.replace(str(ignore_suffix)+".", "", 1) # remove `model.` new_state_dict[name] = v model.load_state_dict(new_state_dict, strict=False) return model class CWT(nn.Module): def __init__( self, wavelet_width, fs, lower_freq, upper_freq, n_scales, size_factor=1.0, border_crop=0, stride=1 ): super().__init__() self.initial_wavelet_width = wavelet_width self.fs = fs self.lower_freq = lower_freq self.upper_freq = upper_freq self.size_factor = size_factor self.n_scales = n_scales self.wavelet_width = wavelet_width self.border_crop = border_crop self.stride = stride wavelet_bank_real, wavelet_bank_imag = self._build_wavelet_kernel() self.wavelet_bank_real = nn.Parameter(wavelet_bank_real, requires_grad=False) self.wavelet_bank_imag = nn.Parameter(wavelet_bank_imag, requires_grad=False) self.kernel_size = self.wavelet_bank_real.size(3) def _build_wavelet_kernel(self): s_0 = 1 / self.upper_freq s_n = 1 / self.lower_freq base = np.power(s_n / s_0, 1 / (self.n_scales - 1)) scales = s_0 * np.power(base, np.arange(self.n_scales)) frequencies = 1 / scales truncation_size = scales.max() * np.sqrt(4.5 * self.initial_wavelet_width) * self.fs one_side = int(self.size_factor * truncation_size) kernel_size = 2 * one_side + 1 k_array = np.arange(kernel_size, dtype=np.float32) - one_side t_array = k_array / self.fs wavelet_bank_real = [] wavelet_bank_imag = [] for scale in scales: norm_constant = np.sqrt(np.pi * self.wavelet_width) * scale * self.fs / 2.0 scaled_t = t_array / scale exp_term = np.exp(-(scaled_t ** 2) / self.wavelet_width) kernel_base = exp_term / norm_constant kernel_real = kernel_base * np.cos(2 * np.pi * scaled_t) kernel_imag = kernel_base * np.sin(2 * np.pi * scaled_t) wavelet_bank_real.append(kernel_real) wavelet_bank_imag.append(kernel_imag) wavelet_bank_real = np.stack(wavelet_bank_real, axis=0) wavelet_bank_imag = np.stack(wavelet_bank_imag, axis=0) wavelet_bank_real = torch.from_numpy(wavelet_bank_real).unsqueeze(1).unsqueeze(2) wavelet_bank_imag = torch.from_numpy(wavelet_bank_imag).unsqueeze(1).unsqueeze(2) return wavelet_bank_real, wavelet_bank_imag def forward(self, x): x = x.unsqueeze(dim=0) border_crop = self.border_crop // self.stride start = border_crop end = (-border_crop) if border_crop > 0 else None # x [n_batch, n_channels, time_len] out_reals = [] out_imags = [] in_width = x.size(2) out_width = int(np.ceil(in_width / self.stride)) pad_along_width = np.max((out_width - 1) * self.stride + self.kernel_size - in_width, 0) padding = pad_along_width // 2 + 1 for i in range(3): # [n_batch, 1, 1, time_len] x_ = x[:, i, :].unsqueeze(1).unsqueeze(2) out_real = nn.functional.conv2d(x_, self.wavelet_bank_real, stride=(1, self.stride), padding=(0, padding)) out_imag = nn.functional.conv2d(x_, self.wavelet_bank_imag, stride=(1, self.stride), padding=(0, padding)) out_real = out_real.transpose(2, 1) out_imag = out_imag.transpose(2, 1) out_reals.append(out_real) out_imags.append(out_imag) out_real = torch.cat(out_reals, axis=1) out_imag = torch.cat(out_imags, axis=1) out_real = out_real[:, :, :, start:end] out_imag = out_imag[:, :, :, start:end] scalograms = torch.sqrt(out_real ** 2 + out_imag ** 2) return scalograms[0] #################### # Config #################### conf_dict = {'batch_size': 8,#32, 'epoch': 30, 'height': 512,#640, 'width': 512, 'model_name': 'efficientnet_b0', 'lr': 0.001, 'drop_rate': 0.0, 'drop_path_rate': 0.0, 'data_dir': '../input/seti-breakthrough-listen', 'model_path': None, 'output_dir': './', 'seed': 2021, 'snap': 1} conf_base = OmegaConf.create(conf_dict) #################### # Dataset #################### class G2NetDataset(Dataset): def __init__(self, df, transform=None, conf=None, train=True): self.df = df.reset_index(drop=True) self.dir_names = df['dir'].values self.labels = df['target'].values self.wave_transform = [ CQT1992v2(sr=2048, fmin=20, fmax=1024, hop_length=8, bins_per_octave=8, window='flattop'), CQT1992v2(sr=2048, fmin=20, fmax=1024, hop_length=8, bins_per_octave=8, window='blackmanharris'), CQT1992v2(sr=2048, fmin=20, fmax=1024, hop_length=8, bins_per_octave=8, window='nuttall'), CWT(wavelet_width=8,fs=2048,lower_freq=20,upper_freq=1024,n_scales=384,stride=8)] #self.wave_transform = CQT1992v2(sr=2048, fmin=10, fmax=1024, hop_length=8, bins_per_octave=8, window='flattop') #self.wave_transform = CQT1992v2(sr=2048, fmin=20, fmax=1024, hop_length=1, bins_per_octave=14, window='flattop') #self.wave_transform = CQT2010v2(sr=2048, fmin=10, fmax=1024, hop_length=32, n_bins=32, bins_per_octave=8, window='flattop') self.stat = [ [0.013205823003608798,0.037445450696502146], [0.009606230606511236,0.02489221471650526], # 10000 sample [0.009523397709568962,0.024628402379527688], [0.0010164694150735158,0.0015815201992169022]] # 10000 sample # hop lengthは変えてみたほうが良いかも self.transform = transform self.conf = conf self.train = train def __len__(self): return len(self.df) def apply_qtransform(self, waves, transform): #print(waves.shape) #waves = np.hstack(waves) #print(np.max(np.abs(waves), axis=1)) #waves = waves / np.max(np.abs(waves), axis=1, keepdims=True) #waves = waves / np.max(waves) waves = waves / 4.6152116213830774e-20 waves = torch.from_numpy(waves).float() image = transform(waves) return image def __getitem__(self, idx): img_id = self.df.loc[idx, 'id'] file_path = os.path.join(self.dir_names[idx],"{}/{}/{}/{}.npy".format(img_id[0], img_id[1], img_id[2], img_id)) waves = np.load(file_path) label = torch.tensor([self.labels[idx]]).float() image1 = self.apply_qtransform(waves, self.wave_transform[0]) image1 = image1.squeeze().numpy().transpose(1,2,0) image1 = cv2.vconcat([image1[:,:,0],image1[:,:,1],image1[:,:,2]]) image1 = (image1-self.stat[0][0])/self.stat[0][1] image1 = cv2.resize(image1, (self.conf.width, self.conf.height), interpolation=cv2.INTER_CUBIC) image2 = self.apply_qtransform(waves, self.wave_transform[1]) image2 = image2.squeeze().numpy().transpose(1,2,0) image2 = cv2.vconcat([image2[:,:,0],image2[:,:,1],image2[:,:,2]]) image2 = (image2-self.stat[1][0])/self.stat[1][1] image2 = cv2.resize(image2, (self.conf.width, self.conf.height), interpolation=cv2.INTER_CUBIC) image3 = self.apply_qtransform(waves, self.wave_transform[2]) image3 = image3.squeeze().numpy().transpose(1,2,0) image3 = cv2.vconcat([image3[:,:,0],image3[:,:,1],image3[:,:,2]]) image3 = (image3-self.stat[2][0])/self.stat[2][1] image3 = cv2.resize(image3, (self.conf.width, self.conf.height), interpolation=cv2.INTER_CUBIC) image4 = self.apply_qtransform(waves, self.wave_transform[3]) image4 = image4.squeeze().numpy().transpose(1,2,0) image4 = cv2.vconcat([image4[:,:,0],image4[:,:,1],image4[:,:,2]]) image4 = (image4-self.stat[3][0])/self.stat[3][1] image4 = cv2.resize(image4, (self.conf.width, self.conf.height), interpolation=cv2.INTER_CUBIC) #if self.transform is not None: # image = self.transform(image=image)['image'] image1 = torch.from_numpy(image1).unsqueeze(dim=0) image2 = torch.from_numpy(image2).unsqueeze(dim=0) image3 = torch.from_numpy(image3).unsqueeze(dim=0) image4 = torch.from_numpy(image4).unsqueeze(dim=0) return image1, image2, image3, image4, label #################### # Data Module #################### class SETIDataModule(pl.LightningDataModule): def __init__(self, conf): super().__init__() self.conf = conf # OPTIONAL, called only on 1 GPU/machine(for download or tokenize) def prepare_data(self): pass # OPTIONAL, called for every GPU/machine def setup(self, stage=None, fold=None): if stage == 'test': #test_df = pd.read_csv(os.path.join(self.conf.data_dir, "sample_submission.csv")) #test_df['dir'] = os.path.join(self.conf.data_dir, "test") #self.test_dataset = G2NetDataset(test_df, transform=None,conf=self.conf, train=False) df = pd.read_csv(os.path.join(self.conf.data_dir, "training_labels.csv")) df['dir'] = os.path.join(self.conf.data_dir, "train") # cv split skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=self.conf.seed) for n, (train_index, val_index) in enumerate(skf.split(df, df['target'])): df.loc[val_index, 'fold'] = int(n) df['fold'] = df['fold'].astype(int) train_df = df[df['fold'] != fold] self.valid_df = df[df['fold'] == fold] self.valid_dataset = G2NetDataset(self.valid_df, transform=None,conf=self.conf, train=False) # ==================================================== # Inference function # ==================================================== def inference(models, test_loader): tk0 = tqdm(enumerate(test_loader), total=len(test_loader)) raw_probs = [[] for i in range(len(models))] probs = [] probs_flattop = [] probs_blackmanharris = [] probs_nuttall = [] probs_cwt = [] with torch.no_grad(): for i, (images) in tk0: images1 = images[0].cuda() images2 = images[1].cuda() images3 = images[2].cuda() images4 = images[3].cuda() avg_preds = [] flattop = [] blackmanharris = [] nuttall = [] cwt = [] for mid, model in enumerate(models): y_preds_1 = model(images1) y_preds_2 = model(images2) y_preds_3 = model(images3) y_preds_4 = model(images4) y_preds = (y_preds_1 + y_preds_2 + y_preds_3 + y_preds_4)/4 avg_preds.append(y_preds.sigmoid().to('cpu').numpy()) flattop.append(y_preds_1.sigmoid().to('cpu').numpy()) blackmanharris.append(y_preds_2.sigmoid().to('cpu').numpy()) nuttall.append(y_preds_3.sigmoid().to('cpu').numpy()) cwt.append(y_preds_4.sigmoid().to('cpu').numpy()) #raw_probs[mid].append(y_preds.sigmoid().to('cpu').numpy()) avg_preds = np.mean(avg_preds, axis=0) flattop = np.mean(flattop, axis=0) blackmanharris = np.mean(blackmanharris, axis=0) nuttall = np.mean(nuttall, axis=0) cwt = np.mean(cwt, axis=0) probs.append(avg_preds) probs_flattop.append(flattop) probs_blackmanharris.append(blackmanharris) probs_nuttall.append(nuttall) probs_cwt.append(cwt) #for mid in range(len(models)): # raw_probs[mid] = np.concatenate(raw_probs[mid]) probs = np.concatenate(probs) probs_flattop = np.concatenate(probs_flattop) probs_blackmanharris = np.concatenate(probs_blackmanharris) probs_nuttall = np.concatenate(probs_nuttall) probs_cwt = np.concatenate(probs_cwt) return probs, probs_flattop, probs_blackmanharris, probs_nuttall, probs_cwt#, raw_probs #################### # Train #################### def main(): conf_cli = OmegaConf.from_cli() conf = OmegaConf.merge(conf_base, conf_cli) print(OmegaConf.to_yaml(conf)) seed_everything(2021) # get model path model_path = [] for i in range(5): target_model = glob.glob(os.path.join(conf.model_dir, f'fold{i}/ckpt/*epoch*.ckpt')) scores = [float(os.path.splitext(os.path.basename(i))[0].split('=')[-1]) for i in target_model] model_path.append(target_model[scores.index(max(scores))]) models = [] for ckpt in model_path: m = timm.create_model(model_name=conf.model_name, num_classes=1, pretrained=False, in_chans=1) m = load_pytorch_model(ckpt, m, ignore_suffix='model') m.cuda() m.eval() models.append(m) # make oof oof_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: hkaneko """ # サンプルプログラムで使われる関数群 import matplotlib.figure as figure import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.spatial.distance import cdist from sklearn import metrics ## 目的変数の実測値と推定値との間で、散布図を描いたり、r2, RMSE, MAE を計算したりする関数 # def performance_check_in_regression(y, estimated_y): # plt.rcParams['font.size'] = 18 # 横軸や縦軸の名前の文字などのフォントのサイズ # plt.figure(figsize=figure.figaspect(1)) # 図の形を正方形に # plt.scatter(y, estimated_y.iloc[:, 0], c='blue') # 実測値 vs. 推定値プロット # y_max = max(y.max(), estimated_y.iloc[:, 0].max()) # 実測値の最大値と、推定値の最大値の中で、より大きい値を取得 # y_min = min(y.min(), estimated_y.iloc[:, 0].min()) # 実測値の最小値と、推定値の最小値の中で、より小さい値を取得 # plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], # [y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-') # 取得した最小値-5%から最大値+5%まで、対角線を作成 # plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) # y 軸の範囲の設定 # plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) # x 軸の範囲の設定 # plt.xlabel('actual y') # x 軸の名前 # plt.ylabel('estimated y') # y 軸の名前 # plt.show() # 以上の設定で描画 # # r2 = metrics.r2_score(y, estimated_y) # r2 # rmse = metrics.mean_squared_error(y, estimated_y) ** 0.5 # RMSE # mae = metrics.mean_absolute_error(y, estimated_y) # MAE # return (r2, rmse, mae) def k3n_error(x_1, x_2, k): """ k-nearest neighbor normalized error (k3n-error) When X1 is data of X-variables and X2 is data of Z-variables (low-dimensional data), this is k3n error in visualization (k3n-Z-error). When X1 is Z-variables (low-dimensional data) and X2 is data of data of X-variables, this is k3n error in reconstruction (k3n-X-error). k3n-error = k3n-Z-error + k3n-X-error Parameters ---------- x_1: numpy.array or pandas.DataFrame x_2: numpy.array or pandas.DataFrame k: int The numbers of neighbor Returns ------- k3n_error : float k3n-Z-error or k3n-X-error """ x_1 = np.array(x_1) x_2 = np.array(x_2) x_1_distance = cdist(x_1, x_1) x_1_sorted_indexes = np.argsort(x_1_distance, axis=1) x_2_distance = cdist(x_2, x_2) for i in range(x_2.shape[0]): _replace_zero_with_the_smallest_positive_values(x_2_distance[i, :]) identity_matrix = np.eye(len(x_1_distance), dtype=bool) knn_distance_in_x_1 = np.sort(x_2_distance[:, x_1_sorted_indexes[:, 1:k + 1]][identity_matrix]) knn_distance_in_x_2 = np.sort(x_2_distance)[:, 1:k + 1] sum_k3n_error = ( (knn_distance_in_x_1 - knn_distance_in_x_2) / knn_distance_in_x_2 ).sum() return sum_k3n_error / x_1.shape[0] / k def _replace_zero_with_the_smallest_positive_values(arr): """ Replace zeros in array with the smallest positive values. Parameters ---------- arr: numpy.array """ arr[arr == 0] = np.min(arr[arr != 0]) def plot_and_selection_of_hyperparameter(hyperparameter_values, metrics_values, x_label, y_label): # ハイパーパラメータ (成分数、k-NN の k など) の値ごとの統計量 (CV 後のr2, 正解率など) をプロット plt.rcParams['font.size'] = 18 plt.scatter(hyperparameter_values, metrics_values, c='blue') plt.xlabel(x_label) plt.ylabel(y_label) plt.show() # 統計量 (CV 後のr2, 正解率など) が最大のときのハイパーパラメータ (成分数、k-NN の k など) の値を選択 return hyperparameter_values[metrics_values.index(max(metrics_values))] def estimation_and_performance_check_in_regression_train_and_test(model, x_train, y_train, x_test, y_test): # トレーニングデータの推定 estimated_y_train = model.predict(x_train) * y_train.std() + y_train.mean() # y を推定し、スケールをもとに戻します estimated_y_train = pd.DataFrame(estimated_y_train, index=x_train.index, columns=['estimated_y']) # Pandas の DataFrame 型に変換。行の名前・列の名前も設定 # トレーニングデータの実測値 vs. 推定値のプロット plt.rcParams['font.size'] = 18 # 横軸や縦軸の名前の文字などのフォントのサイズ plt.figure(figsize=figure.figaspect(1)) # 図の形を正方形に plt.scatter(y_train, estimated_y_train.iloc[:, 0], c='blue') # 実測値 vs. 推定値プロット y_max = max(y_train.max(), estimated_y_train.iloc[:, 0].max()) # 実測値の最大値と、推定値の最大値の中で、より大きい値を取得 y_min = min(y_train.min(), estimated_y_train.iloc[:, 0].min()) # 実測値の最小値と、推定値の最小値の中で、より小さい値を取得 plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], [y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-') # 取得した最小値-5%から最大値+5%まで、対角線を作成 plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) # y 軸の範囲の設定 plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) # x 軸の範囲の設定 plt.xlabel('actual y') # x 軸の名前 plt.ylabel('estimated y') # y 軸の名前 plt.show() # 以上の設定で描画 # トレーニングデータのr2, RMSE, MAE print('r^2 for training data :', metrics.r2_score(y_train, estimated_y_train)) print('RMSE for training data :', metrics.mean_squared_error(y_train, estimated_y_train) ** 0.5) print('MAE for training data :', metrics.mean_absolute_error(y_train, estimated_y_train)) # トレーニングデータの結果の保存 y_train_for_save = pd.DataFrame(y_train) # Series のため列名は別途変更 y_train_for_save.columns = ['actual_y'] y_error_train = y_train_for_save.iloc[:, 0] - estimated_y_train.iloc[:, 0] y_error_train = pd.DataFrame(y_error_train) # Series のため列名は別途変更 y_error_train.columns = ['error_of_y(actual_y-estimated_y)'] results_train = pd.concat([estimated_y_train, y_train_for_save, y_error_train], axis=1) results_train.to_csv('estimated_y_train.csv') # 推定値を csv ファイルに保存。同じ名前のファイルがあるときは上書きされますので注意してください # テストデータの推定 estimated_y_test = model.predict(x_test) * y_train.std() + y_train.mean() # y を推定し、スケールをもとに戻します estimated_y_test = pd.DataFrame(estimated_y_test, index=x_test.index, columns=['estimated_y']) # Pandas の DataFrame 型に変換。行の名前・列の名前も設定 # テストデータの実測値 vs. 推定値のプロット plt.rcParams['font.size'] = 18 # 横軸や縦軸の名前の文字などのフォントのサイズ plt.figure(figsize=figure.figaspect(1)) # 図の形を正方形に plt.scatter(y_test, estimated_y_test.iloc[:, 0], c='blue') # 実測値 vs. 推定値プロット y_max = max(y_test.max(), estimated_y_test.iloc[:, 0].max()) # 実測値の最大値と、推定値の最大値の中で、より大きい値を取得 y_min = min(y_test.min(), estimated_y_test.iloc[:, 0].min()) # 実測値の最小値と、推定値の最小値の中で、より小さい値を取得 plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], [y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-') # 取得した最小値-5%から最大値+5%まで、対角線を作成 plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) # y 軸の範囲の設定 plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) # x 軸の範囲の設定 plt.xlabel('actual y') # x 軸の名前 plt.ylabel('estimated y') # y 軸の名前 plt.show() # 以上の設定で描画 # テストデータのr2, RMSE, MAE print('r^2 for test data :', metrics.r2_score(y_test, estimated_y_test)) print('RMSE for test data :', metrics.mean_squared_error(y_test, estimated_y_test) ** 0.5) print('MAE for test data :', metrics.mean_absolute_error(y_test, estimated_y_test)) # テストデータの結果の保存 y_test_for_save = pd.DataFrame(y_test) # Series のため列名は別途変更 y_test_for_save.columns = ['actual_y'] y_error_test = y_test_for_save.iloc[:, 0] - estimated_y_test.iloc[:, 0] y_error_test = pd.DataFrame(y_error_test) # Series のため列名は別途変更 y_error_test.columns = ['error_of_y(actual_y-estimated_y)'] results_test = pd.concat([estimated_y_test, y_test_for_save, y_error_test], axis=1) results_test.to_csv('estimated_y_test.csv') # 推定値を csv ファイルに保存。同じ名前のファイルがあるときは上書きされますので注意してください def estimation_and_performance_check_in_classification_train_and_test(model, x_train, y_train, x_test, y_test): class_types = list(set(y_train)) # クラスの種類。これで混同行列における縦と横のクラスの順番を定めます class_types.sort(reverse=True) # 並び替え # トレーニングデータのクラスの推定 estimated_y_train = pd.DataFrame(model.predict(x_train), index=x_train.index, columns=[ 'estimated_class']) # トレーニングデータのクラスを推定し、Pandas の DataFrame 型に変換。行の名前・列の名前も設定 # トレーニングデータの混同行列 confusion_matrix_train = pd.DataFrame( metrics.confusion_matrix(y_train, estimated_y_train, labels=class_types), index=class_types, columns=class_types) # 混同行列を作成し、Pandas の DataFrame 型に変換。行の名前・列の名前を定めたクラスの名前として設定 confusion_matrix_train.to_csv('confusion_matrix_train.csv') # csv ファイルに保存。同じ名前のファイルがあるときは上書きされますので注意してください print(confusion_matrix_train) # 混同行列の表示 print('Accuracy for training data :', metrics.accuracy_score(y_train, estimated_y_train), '\n') # 正解率の表示 # トレーニングデータの結果の保存 y_train_for_save = pd.DataFrame(y_train) # Series のため列名は別途変更 y_train_for_save.columns = ['actual_class'] y_error_train = y_train_for_save.iloc[:, 0] == estimated_y_train.iloc[:, 0] y_error_train = pd.DataFrame(y_error_train) # Series のため列名は別途変更 y_error_train.columns = ['TRUE_if_estimated_class_is_correct'] results_train =
pd.concat([estimated_y_train, y_train_for_save, y_error_train], axis=1)
pandas.concat
import pandas as pd import json import bids import matplotlib.pyplot as plt import plotje # Download data from here: <NAME>. et al. Crowdsourced MRI quality metrics # and expert quality annotations for training of humans and machines. Sci Data 6, 30 (2019). # Then run make_distributions.py to summarize the data from this snapshot summary_path = './data/summary/bold_curated' dataset = '/home/william/datasets/es-fmri_v2/' dfd =
pd.read_csv(summary_path + qc + '_summary.csv', index_col=[0])
pandas.read_csv
import pandas import math import csv import random import numpy from sklearn import linear_model from sklearn.model_selection import cross_val_score # 当每支队伍没有elo等级分时,赋予其基础elo等级分 base_elo = 1600 team_elos = {} team_stats = {} x = [] y = [] folder = 'data' # 根据每支队伍的Micellaneous, Opponent, Team统计数据csv文件进行初始化 def initialize_data(miscellaneous_stats, opponent_per_game_stats, team_per_game_stats): miscellaneous_stats.drop(['Rk', 'Arena'], axis=1, inplace=True) opponent_per_game_stats.drop(['Rk', 'G', 'MP'], axis=1, inplace=True) team_per_game_stats.drop(['Rk', 'G', 'MP'], axis=1, inplace=True) team_stats =
pandas.merge(miscellaneous_stats, opponent_per_game_stats, how='left', on='Team')
pandas.merge
from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet from sklearn.linear_model import LassoCV , ElasticNetCV , RidgeCV from sklearn.pipeline import Pipeline, FeatureUnion import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error as mse from sklearn.metrics import r2_score as r2 from sklearn.model_selection import cross_val_score, KFold, ShuffleSplit, GridSearchCV from sklearn.ensemble import GradientBoostingRegressor as GBR from xgboost import XGBRegressor as XGBR from sklearn.tree import DecisionTreeRegressor as DTR from sklearn.ensemble import RandomForestRegressor as RFR from sklearn.preprocessing import PolynomialFeatures from sklearn.decomposition import PCA from sklearn.cross_decomposition import PLSRegression as PLS from sklearn.svm import SVR from sklearn.kernel_ridge import KernelRidge from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler from plotly.offline import plot, iplot, init_notebook_mode import plotly.io as pio init_notebook_mode(connected=True) pio.renderers.default = "notebook_connected" import pandas as pd import numpy as np import time import pickle import joblib import constant original = pd.read_csv(constant.PATH + 'life_expectancy_data_fillna.csv') class ModelPipeline: def pipe_model(self): pipe_linear = Pipeline([ ('scl', StandardScaler()), ('poly', PolynomialFeatures()), ('fit', LinearRegression())]) pipe_tree = Pipeline([ ('scl', StandardScaler()), ('fit', DTR())]) pipe_lasso = Pipeline([ ('scl', StandardScaler()), ('poly', PolynomialFeatures()), ('fit', Lasso(random_state=13))]) pipe_ridge = Pipeline([ ('scl', StandardScaler()), ('poly', PolynomialFeatures()), ('fit', Ridge(random_state=13))]) pipe_pca = Pipeline([ ('scl', StandardScaler()), ('pca', PCA()), ('fit', LinearRegression())]) pipe_pls = Pipeline([ ('scl', StandardScaler()), ('fit', PLS())]) pipe_gbr = Pipeline([ ('scl', StandardScaler()), ('fit', GBR())]) pipe_xgbr = Pipeline([ ('scl', StandardScaler()), ('fit', XGBR(random_state=13))]) pipe_rfr = Pipeline([ ('scl', StandardScaler()), ('fit', RFR(random_state=13))]) pipe_svr = Pipeline([ ('scl', StandardScaler()), ('fit', SVR())]) pipe_KR = Pipeline([ ('scl', StandardScaler()), ('fit', KernelRidge())]) return [pipe_linear, pipe_tree, pipe_lasso, pipe_ridge, pipe_pca, pipe_pls, pipe_gbr, pipe_xgbr, pipe_rfr, pipe_svr, pipe_KR] def grid_params(self, max_depth, split_range): max_depth = max_depth min_samples_split_range = split_range grid_params_linear = [{ "poly__degree": np.arange(1, 3), "fit__fit_intercept": [True, False] }] grid_params_tree = [{ }] grid_params_lasso = [{ "poly__degree": np.arange(1, 3), "fit__tol": np.logspace(-5, 0, 10), "fit__alpha": np.logspace(-5, 1, 10) }] grid_params_ridge = [{ "poly__degree": np.arange(1, 3), "fit__alpha": np.linspace(2, 5, 10), "fit__solver": ["cholesky", "lsqr", "sparse_cg"], "fit__tol": np.logspace(-5, 0, 10) }] grid_params_pca = [{ "pca__n_components": np.arange(2, 8) }] grid_params_pls = [{ "fit__n_components": np.arange(2, 8) }] grid_params_gbr = [{ "fit__max_features": ["sqrt", "log2"], "fit__loss": ["ls", "lad", "huber", "quantile"], "fit__max_depth": max_depth, "fit__min_samples_split": min_samples_split_range }] grid_params_xgbr = [{ "fit__max_features": ["sqrt", "log2"], "fit__loss": ["ls", "lad", "huber", "quantile"], "fit__max_depth": max_depth, "fit__min_samples_split": min_samples_split_range }] grid_params_rfr = [{ }] grid_params_svr = [{ "fit__kernel": ["rbf", "linear"], "fit__degree": [2, 3, 5], "fit__gamma": np.logspace(-5, 1, 10) }] grid_params_KR = [{ "fit__kernel": ["rbf", "linear"], "fit__gamma": np.logspace(-5, 1, 10) }] return [grid_params_linear, grid_params_tree, grid_params_lasso, grid_params_ridge, grid_params_pca, grid_params_pls, grid_params_gbr, grid_params_xgbr, grid_params_rfr, grid_params_svr, grid_params_KR] def grid_cv(self, pipe, params): jobs = -1 cv = KFold(n_splits=5, shuffle=True, random_state=13) grid_dict = constant.GRID_DICT return jobs, cv, grid_dict def model_save(self, pipe, params, jobs, cv, grid_dict): model_rmse, model_r2, model_best_params, model_fit_times, model_res = {}, {}, {}, {}, {} for idx, (param, model) in enumerate(zip(params, pipe)): start_time = time.time() search = GridSearchCV(model, param, scoring="neg_mean_squared_error", cv=cv, n_jobs=jobs, verbose=-1) search.fit(X_train, y_train) y_pred = search.predict(X_test) model_rmse[grid_dict.get(idx)] = np.sqrt(mse(y_test, y_pred)) model_r2[grid_dict.get(idx)] = r2(y_test, y_pred) model_best_params[grid_dict.get(idx)] = search.best_params_ model_fit_times[grid_dict.get(idx)] = time.time() - start_time joblib.dump(search, f'../models/{grid_dict.get(idx)}.pkl') print("------- all Model Saved -------") return model_rmse, model_r2, model_best_params, model_fit_times # Modeling 결과 시각화 def model_res_barchart(self, res_df): fig, ax = plt.subplots(figsize=(20, 10)) sns.set(font_scale=2) ax = sns.barplot(y="Model", x="R2", data=res_df) return plt.show() # Modeling 결과 데이터프레임 저장 def model_res_df(self, model_r2, model_rmse, model_fit_times): output = pd.DataFrame([model_r2.keys(), model_r2.values(), model_rmse.values(), model_fit_times.values()], index=["Model", "R2", "RMSE", "Fit_times"]).T output.sort_values(["R2"], ascending=False, inplace=True) output['R2'] = [float(_) for _ in output['R2']] output['RMSE'] = [float(_) for _ in output['RMSE']] return output class Preprocessing: # 컬럼 추가 def add_feature(self, original, filename=None): path = constant.PATH + "worldbank_" original.columns = [cols.upper() for cols in original.columns.tolist()] if not filename == None: df =
pd.read_csv(f"{path}{filename}.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sat May 5 00:27:52 2018 @author: sindu About: Feature Selection on Genome Data""" import pandas as pd import numpy as np import math import operator from sklearn import metrics from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors.nearest_centroid import NearestCentroid from sklearn import linear_model filename = 'GenomeTrainXY.txt' data = pd.read_csv('GenomeTrainXY.txt', header=-1).as_matrix() testDataFile = "GenomeTestX.txt" testData = pd.read_csv("GenomeTestX.txt", header=-1).as_matrix() headerinfo = data[0] classlabelinfo = list(set(headerinfo)) clbl, clblcnt = np.unique(headerinfo, return_counts=True) classlabelcountinfo = dict(zip(clbl, clblcnt)) n_genomesize = len(headerinfo) k_groupsize = len(clbl) df = pd.DataFrame(data) dftranspose = df.transpose() fscores = pd.DataFrame() fscorenumval = None fscoredenom = None fscorenumdf = pd.DataFrame() fscoredenomdf = pd.DataFrame() #calculate mean of all features for a specific class label featuremeandata = df.transpose().groupby(dftranspose[:][0]).mean() featuremeandata = featuremeandata.loc[:, 1:] centroidData = featuremeandata.transpose().as_matrix() #calculate variance of all features for a specific class label featurevardata = df.transpose().groupby(dftranspose[:][0]).var() featurevardata = featurevardata.loc[:, 1:] #calculate average of each of the feature featureavg = df.mean(axis=1) featureavgdata = pd.DataFrame(featureavg).transpose() featureavgdata = featureavgdata.loc[:, 1:] def getfeaturemeandata(classlblval, val): meanrowdata = pd.DataFrame() meanrowdatabyvalue = pd.DataFrame() meannumdata = pd.DataFrame() for i in range(k_groupsize): if featuremeandata.index[i] == classlblval: meanrowdata = pd.DataFrame(featuremeandata.loc[classlblval, :]).transpose() meannumdata = meanrowdata.values - featureavgdata.values meanrowdatabyvalue = val*(pd.DataFrame((meannumdata)**2)) return meanrowdatabyvalue def getfeaturevardata(classlblval, val): varrowdata = pd.DataFrame() varrowdatabyvalue = pd.DataFrame() for i in range(k_groupsize): if featurevardata.index[i] == classlblval: varrowdata = pd.DataFrame(featurevardata.loc[classlblval, :]).transpose() varrowdatabyvalue = pd.DataFrame(((val-1)*varrowdata)) return varrowdatabyvalue # pick genome observations based on top 100 f-score def pickGenome(): for key, value in classlabelcountinfo.items(): # constructing fscore numerator and denominator vector if list(classlabelcountinfo.keys()).index(key) == 0: fscorenumdf = getfeaturemeandata(key, value) fscoredenomdf = getfeaturevardata(key, value) else: testnumdf = getfeaturemeandata(key, value) testdenomdf = getfeaturevardata(key, value) fscorenumdf = pd.concat([fscorenumdf, testnumdf], axis=0, ignore_index=True) fscoredenomdf = pd.concat([fscoredenomdf, testdenomdf], axis=0, ignore_index=True) #print(fscorenumdf) #print(fscoredenomdf) # calculating all the f-score numerator vector by summing mean data and dividing by k-1 fscorenumdata = ((pd.DataFrame(fscorenumdf.sum(axis=0)).transpose())/(k_groupsize - 1)) #print(fscorenumdata) # calculating all the f-score denominator vector by summing var data and dividing by n-k fscorevardata = ((pd.DataFrame(fscoredenomdf.sum(axis=0)).transpose())/(n_genomesize - k_groupsize)) #print(fscorevardata) fscorenumdata.columns = range(fscorenumdata.shape[1]) fscorevardata.columns = range(fscorevardata.shape[1]) #calculating f-score fscores = (fscorenumdata / fscorevardata).transpose() fscores.columns = ['Genome_fscore'] #print(fscores) fscoreSorted = fscores.sort_values(by='Genome_fscore', ascending=False) print("========== Sorted fscores below ==============\n") print(fscoreSorted) top100fscoreindices = fscoreSorted.head(100).index.tolist() top100fscoreindices = [(x + 1) for x in top100fscoreindices] print("\n========== Top 100 fscore indices below ==============\n") print(top100fscoreindices) storeTop100GenomeData(top100fscoreindices) generateTop100TestData(top100fscoreindices) # from the observations that has top 100 f-score data, create and store the train data from those 100 observations def storeTop100GenomeData(genomeList): file = open("GenomeTop100TrainData.txt", "w") r1, = data[0][:].shape rx,cx = data.shape for i in range(0, r1): file.write(str(int(data[0][:][i]))) if (i < r1 - 1): file.write(',') file.write("\n") for a in genomeList: for b in range(0, cx): file.write(str(data[a][:][b])) if(b < cx - 1): file.write(',') file.write("\n") file.close() # from the observations that has top 100 f-score data, create and store the test data from those 100 observations def generateTop100TestData(genomeList): file = open("GenomeTop100TestData.txt", "w") rx,cx = testData.shape for a in genomeList: for b in range(0, cx): file.write(str(testData[a-1][:][b])) if(b < cx - 1): file.write(',') file.write("\n") file.close() pickGenome() # using the train and test samples created from the 100 observations that has top f-score, classify the data using various classification models def data_classify(classifier): if (classifier == "KNN"): #storeData(Xtrain, ytrain, Xtest, ytest, classifier) file1 = pd.read_csv('GenomeTop100TrainData.txt', header=-1) Xtrain = file1.loc[1:,:].transpose().as_matrix() ytrain = file1.loc[0,:].transpose().as_matrix() file2 = pd.read_csv('GenomeTop100TestData.txt', header=-1) Xtest = file2.transpose().as_matrix() knneighbors = KNeighborsClassifier(n_neighbors=5) knneighbors.fit(Xtrain, ytrain) # calculating prediction predictions = knneighbors.predict(Xtest) # print(predictions) #actual = ytest #accuracy = metrics.accuracy_score(actual, predictions) * 100 # printing accuracy #print("Accuracy with KNN = ", accuracy) print('\n KNN Predictions: ', predictions) #accuracy = calc_accuracy(testData, predictions) #print('Accuracy with KNN = ' + repr(accuracy) + '%') elif (classifier == "Centroid"): file1 = pd.read_csv('GenomeTop100TrainData.txt', header=-1) Xtrain = file1.loc[1:,:].transpose().as_matrix() ytrain = file1.loc[0,:].transpose().as_matrix() file2 = pd.read_csv('GenomeTop100TestData.txt', header=-1) Xtest = file2.transpose().as_matrix() centroid = NearestCentroid() centroid.fit(Xtrain, ytrain) # calculating prediction predictions = centroid.predict(Xtest) # printing accuracy #accuracy = metrics.accuracy_score(ytest, predictions) * 100 #print("Accuracy with Centroid = ", accuracy) print('\n Centroid predictions: ', predictions) #accuracy = calc_accuracy(testData, predictions) #print('Accuracy with Centroid = ' + repr(accuracy) + '%') elif (classifier == "SVM"): file1 =
pd.read_csv('GenomeTop100TrainData.txt', header=-1)
pandas.read_csv
import os.path import ast import pickle import pandas as pd Run = False if not os.path.isfile('sp.txt'): Run = True print('process file sp') if __name__ == "__main__": Run = True print("process file sp") # functions to extract certain information in the data def get_genre(dataframe): """ This function is to get information about genres Input: dataframe Output: list """ genres = [] for row_number in range(len(dataframe)): genre = [] for id_name in ast.literal_eval(dataframe.genres.to_list()[row_number]): genre.append(id_name['name']) genres.append(genre) return genres def get_director(dataframe): """ This function is to get information about directors Input: dataframe Output: list """ directors = [] for row_number in range(len(dataframe)): director = [] for crew_info in ast.literal_eval(dataframe.crew.to_list()[row_number]): if crew_info['job'] == 'Director': director.append(crew_info['name']) break directors.append(director) return directors def get_cast(dataframe): """ This function is to get information about actors Input: dataframe Output: list """ casts = [] for row_number in range(len(dataframe)): cast = [] for cast_info in ast.literal_eval(dataframe.cast.to_list()[row_number]): cast.append(cast_info['name']) casts.append(cast) return casts def get_year(dataframe): """ This function is to get information about years Input: dataframe Output: list """ years = [] for date in dataframe.release_date.to_list(): years.append(date.split('-')[0]) return years def get_countries(dataframe): """ This function is to get information about countries Full names of countries are adopted Input: dataframe Output: list """ countries = [] for row_number in range(len(dataframe)): country = [] for country_info in ast.literal_eval(dataframe.production_countries.to_list()[row_number]): country.append(country_info['name']) countries.append(country) return countries def weighted_rating(dataframe, mean_value, quantile_value): """ This function is to calculate weighted ratings Input: A dataframe you want to calculate weighted ratings for, values of mean and quantile Output: A list of weighted ratings """ count_vote = dataframe['vote_count'] average_vote = dataframe['vote_average'] return (count_vote / (count_vote + mean_value) * average_vote) + (mean_value / (mean_value + count_vote) * quantile_value) class SimpleRecommendation: ''' This is simple recommedation algorithm. ''' def __init__(self): meta_data = pd.read_csv('movies-dataset/movies_metadata.csv') credits = pd.read_csv('movies-dataset/credits.csv') # drop some inappropriate records meta_data = meta_data[meta_data['release_date'].notnull()] meta_data = meta_data.drop([19730, 29503, 35587]) # merge data credits['id'] = credits['id'].astype('int') meta_data['id'] = meta_data['id'].astype('int') meta_data = meta_data.merge(credits, on='id') self.meta_data = meta_data self.meta_data['genres'] = get_genre(self.meta_data) print(self.meta_data['genres']) self.meta_data['director'] = get_director(self.meta_data) print(self.meta_data['director']) self.meta_data['cast'] = get_cast(self.meta_data) print(self.meta_data['cast']) self.meta_data['year'] = get_year(self.meta_data) print(self.meta_data['year']) self.meta_data['countries'] = get_countries(self.meta_data) print(self.meta_data['countries']) col_genre = self.meta_data.apply(lambda x: pd.Series(x['genres']), axis=1).stack().reset_index(level=1, drop=True) col_genre.name = 'genre' col_director = self.meta_data.apply(lambda x: pd.Series(x['director']), axis=1).stack().reset_index(level=1, drop=True) col_director.name = 'director' col_actor = self.meta_data.apply(lambda x: pd.Series(x['cast']), axis=1).stack().reset_index(level=1, drop=True) col_actor.name = 'actor' col_country = self.meta_data.apply(lambda x:
pd.Series(x['countries'])
pandas.Series
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from abc import ABCMeta, abstractmethod from concurrent.futures import Future from copy import copy import datetime as dt from typing import Iterable, List, Optional, Tuple, Union import dateutil import pandas as pd from gs_quant.base import InstrumentBase, PricingKey from gs_quant.common import AssetClass from gs_quant.datetime import point_sort_order from gs_quant.target.risk import RiskMeasure, RiskMeasureType, RiskMeasureUnit, \ PricingDateAndMarketDataAsOf as __PricingDateAndMarketDataAsOf __column_sort_fns = { 'label1': point_sort_order, 'mkt_point': point_sort_order, 'point': point_sort_order } __risk_columns = ('date', 'time', 'marketDataType', 'assetId', 'pointClass', 'point') __crif_columns = ('date', 'time', 'riskType', 'amountCurrency', 'qualifier', 'bucket', 'label1', 'label2') class RiskResult: def __init__(self, result, risk_measures: Iterable[RiskMeasure]): self.__risk_measures = tuple(risk_measures) self.__result = result @property def done(self) -> bool: return self.__result.done() @property def risk_measures(self) -> Tuple[RiskMeasure]: return self.__risk_measures @property def _result(self): return self.__result class ResultInfo(metaclass=ABCMeta): def __init__( self, pricing_key: PricingKey, unit: Optional[str] = None, error: Optional[Union[str, dict]] = None, calculation_time: Optional[int] = None, queueing_time: Optional[int] = None ): self.__pricing_key = pricing_key self.__unit = unit self.__error = error self.__calculation_time = calculation_time self.__queueing_time = queueing_time @property @abstractmethod def raw_value(self): ... @property def pricing_key(self) -> PricingKey: return self.__pricing_key @property def unit(self) -> str: """The units of this result""" return self.__unit @property def error(self) -> Union[str, dict]: """Any error associated with this result""" return self.__error @property def calculation_time(self) -> int: """The time (in milliseconds) taken to compute this result""" return self.__calculation_time @property def queueing_time(self) -> int: """The time (in milliseconds) for which this computation was queued""" return self.__queueing_time @abstractmethod def for_pricing_key(self, pricing_key: PricingKey): ... class ErrorValue(ResultInfo): def __init__(self, pricing_key: PricingKey, error: Union[str, dict]): super().__init__(pricing_key, error=error) def __repr__(self): return self.error @property def raw_value(self): return None def for_pricing_key(self, pricing_key: PricingKey): return self if pricing_key == self.pricing_key else None class FloatWithInfo(float, ResultInfo): def __new__(cls, pricing_key: PricingKey, value: Union[float, str], unit: Optional[str] = None, error: Optional[str] = None, calculation_time: Optional[float] = None, queueing_time: Optional[float] = None): return float.__new__(cls, value) def __init__( self, pricing_key: PricingKey, value: Union[float, str], unit: Optional[str] = None, error: Optional[Union[str, dict]] = None, calculation_time: Optional[float] = None, queueing_time: Optional[float] = None): float.__init__(value) ResultInfo.__init__( self, pricing_key, unit=unit, error=error, calculation_time=calculation_time, queueing_time=queueing_time) def __repr__(self): return self.error if self.error else float.__repr__(self) @property def raw_value(self) -> float: return float(self) def for_pricing_key(self, pricing_key: PricingKey): return self if pricing_key == self.pricing_key else None @staticmethod def compose(components, pricing_key: Optional[PricingKey] = None): unit = None error = {} as_of = () dates = [] values = [] generated_pricing_key = None for component in components: generated_pricing_key = component.pricing_key unit = unit or component.unit as_of += component.pricing_key.pricing_market_data_as_of date = component.pricing_key.pricing_market_data_as_of[0].pricing_date dates.append(date) values.append(component.raw_value) if component.error: error[date] = component.error return SeriesWithInfo( pricing_key or generated_pricing_key.clone(pricing_market_data_as_of=as_of), pd.Series(index=dates, data=values).sort_index(), unit=unit, error=error) class SeriesWithInfo(pd.Series, ResultInfo): def __init__( self, pricing_key: PricingKey, *args, unit: Optional[str] = None, error: Optional[Union[str, dict]] = None, calculation_time: Optional[int] = None, queueing_time: Optional[int] = None, **kwargs ): pd.Series.__init__(self, *args, **kwargs) ResultInfo.__init__( self, pricing_key, unit=unit, error=error, calculation_time=calculation_time, queueing_time=queueing_time) self.index.name = 'date' def __repr__(self): return self.error if self.error else pd.Series.__repr__(self) @property def raw_value(self) -> pd.Series: return pd.Series(self) def for_pricing_key(self, pricing_key: PricingKey): dates = [as_of.pricing_date for as_of in pricing_key.pricing_market_data_as_of] scalar = len(dates) == 1 error = self.error or {} error = error.get(dates[0]) if scalar else {d: error[d] for d in dates if d in error} if scalar: return FloatWithInfo(pricing_key, self.loc[dates[0]], unit=self.unit, error=error) return SeriesWithInfo(pricing_key, pd.Series(index=dates, data=self.loc[dates]), unit=self.unit, error=error) class DataFrameWithInfo(pd.DataFrame, ResultInfo): def __init__( self, pricing_key: PricingKey, *args, unit: Optional[str] = None, error: Optional[Union[str, dict]] = None, calculation_time: Optional[float] = None, queueing_time: Optional[float] = None, **kwargs ): pd.DataFrame.__init__(self, *args, **kwargs) properties = [i for i in dir(ResultInfo) if isinstance(getattr(ResultInfo, i), property)] internal_names = properties + ['_ResultInfo__' + i for i in properties if i != 'raw_value'] self._internal_names.append(internal_names) self._internal_names_set.update(internal_names) ResultInfo.__init__( self, pricing_key, unit=unit, error=error, calculation_time=calculation_time, queueing_time=queueing_time) def __repr__(self): return self.error if self.error else pd.DataFrame.__repr__(self) @property def raw_value(self) -> pd.DataFrame: return
pd.DataFrame(self)
pandas.DataFrame
import pandas as pd import repackage import re from camel_tools.utils.charsets import UNICODE_PUNCT_CHARSET import logging from funcy import log_durations import argparse from pathlib import Path repackage.up() from data.make_dataset import recompose, puncs project_dir = Path(__file__).resolve().parents[2] def load_traindf(path=f'{project_dir}/data/processed/train.tsv'): return pd.read_csv(path,delimiter='\t') def tokenize_skiphyph(sent,puncs=puncs): chars = [] sent = str(sent) for char in list(sent): if char in puncs: chars.append(' '+char+' ') else: chars.append(char) sent = ''.join(chars) sent = re.sub(r'\s+',r' ',sent) return sent.strip() @log_durations(logging.info) def train_mle(traindf,size_ratio=1, return_dict=False): # levdis '''trains on aligned sentences only (same len), #could also add a levenstein threshold alignment based on simple_translit to avoid first/last name switcharoos returns dataframe, unless return_dict is set to true''' traindf = traindf[:int(len(traindf)*size_ratio)] parallel_tokens = [] skipped = [0] def get_aligned_tokens(dfrow,parallel_tokens=parallel_tokens,skipped=skipped): target = dfrow['rom'] source = dfrow['ar'] target = tokenize_skiphyph(target) source = tokenize_skiphyph(source) # create a df of the tokenizes sentence target = pd.Series(target.split(),dtype=str) source = pd.Series(source.split(),dtype=str) if len(target)==len(source): parallel_tokens.append(pd.DataFrame(data={'source':source,'target':target})) else: skipped[0] += 1 traindf.apply(get_aligned_tokens,axis=1) parallel_tokens =
pd.concat(parallel_tokens)
pandas.concat
"""Water network transfers maps """ import os import sys from collections import OrderedDict import numpy as np import geopandas as gpd import pandas as pd import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader import matplotlib.pyplot as plt import numpy as np from shapely.geometry import LineString from vtra.utils import * def main(mode): config = load_config() if mode == 'road': flow_file_path = os.path.join(config['paths']['output'], 'failure_results','minmax_combined_scenarios', 'single_edge_failures_transfers_national_road_10_percent_shift.csv') elif mode == 'rail': flow_file_path = os.path.join(config['paths']['output'], 'failure_results','minmax_combined_scenarios', 'single_edge_failures_transfers_national_rail_100_percent_shift.csv') else: raise ValueError("Mode must be road or rail") region_file_path = os.path.join(config['paths']['data'], 'post_processed_networks', 'coastal_edges.shp') region_file = gpd.read_file(region_file_path,encoding='utf-8') flow_file = pd.read_csv(flow_file_path) region_file =
pd.merge(region_file,flow_file,how='left', on=['edge_id'])
pandas.merge
from datetime import datetime import numpy as np import pytest from pandas import ( DataFrame, Series, bdate_range, notna, ) @pytest.fixture def series(): """Make mocked series as fixture.""" arr = np.random.randn(100) locs = np.arange(20, 40) arr[locs] = np.NaN series = Series(arr, index=bdate_range(datetime(2009, 1, 1), periods=100)) return series @pytest.fixture def frame(): """Make mocked frame as fixture.""" return DataFrame( np.random.randn(100, 10), index=bdate_range(datetime(2009, 1, 1), periods=100), columns=np.arange(10), ) # create the data only once as we are not setting it def _create_consistency_data(): def create_series(): return [ Series(dtype=object), Series([np.nan]), Series([np.nan, np.nan]), Series([3.0]), Series([np.nan, 3.0]), Series([3.0, np.nan]), Series([1.0, 3.0]), Series([2.0, 2.0]), Series([3.0, 1.0]), Series( [5.0, 5.0, 5.0, 5.0, np.nan, np.nan, np.nan, 5.0, 5.0, np.nan, np.nan] ), Series( [ np.nan, 5.0, 5.0, 5.0, np.nan, np.nan, np.nan, 5.0, 5.0, np.nan, np.nan, ] ), Series( [ np.nan, np.nan, 5.0, 5.0, np.nan, np.nan, np.nan, 5.0, 5.0, np.nan, np.nan, ] ), Series( [ np.nan, 3.0, np.nan, 3.0, 4.0, 5.0, 6.0, np.nan, np.nan, 7.0, 12.0, 13.0, 14.0, 15.0, ] ), Series( [ np.nan, 5.0, np.nan, 2.0, 4.0, 0.0, 9.0, np.nan, np.nan, 3.0, 12.0, 13.0, 14.0, 15.0, ] ), Series( [ 2.0, 3.0, np.nan, 3.0, 4.0, 5.0, 6.0, np.nan, np.nan, 7.0, 12.0, 13.0, 14.0, 15.0, ] ), Series( [ 2.0, 5.0, np.nan, 2.0, 4.0, 0.0, 9.0, np.nan, np.nan, 3.0, 12.0, 13.0, 14.0, 15.0, ] ), Series(range(10)), Series(range(20, 0, -2)), ] def create_dataframes(): return [ DataFrame(), DataFrame(columns=["a"]), DataFrame(columns=["a", "a"]), DataFrame(columns=["a", "b"]), DataFrame(np.arange(10).reshape((5, 2))), DataFrame(np.arange(25).reshape((5, 5))), DataFrame(np.arange(25).reshape((5, 5)), columns=["a", "b", 99, "d", "d"]), ] + [
DataFrame(s)
pandas.DataFrame
"""the_pile dataset""" import io import os import pandas as pd from ekorpkit import eKonf from ekorpkit.io.download.web import web_download from tqdm.auto import tqdm try: import simdjson as json except ImportError: print("Installing simdjson library") os.system("pip install -q pysimdjson") import json as json parser = json.Parser() def json_parser(x): try: line = parser.parse(x).as_dict() return line except ValueError: return x class PileReader: def __init__(self, filenames, subset=None, segment_separator="\n\n"): if not isinstance(filenames, list): filenames = [filenames] self.filenames = filenames self.subset = subset self.segment_separator = segment_separator def _read_fn(self): import zstandard import jsonlines for filename in self.filenames: print(f"iterating over {filename}") with open(filename, "rb") as f: cctx = zstandard.ZstdDecompressor() reader_stream = io.BufferedReader(cctx.stream_reader(f)) reader = jsonlines.Reader(reader_stream, loads=json_parser) for i, item in enumerate(reader): result = dict() if isinstance(item, str): result["text"] = item result["subset"] = "the_pile" else: text = item["text"] if isinstance(text, list): text = self.segment_separator.join(text) result["text"] = text result["subset"] = item.get("meta", {}).get( "pile_set_name", "the_pile" ) if self.subset is None: yield result else: if self.subset == result["subset"]: yield result def __iter__(self): return self._read_fn() class ThePile: def __init__(self, **args): self.cfg = eKonf.to_config(args) self.name = self.cfg.name self.subsets = self.cfg.get("subsets", []) if self.name == "the_pile": self.subset = None else: self.subset = self.name if self.subset not in self.subsets: raise ValueError(f"{self.subset} not in {self.subsets}") self._parse_split_urls() def _parse_split_urls(self): self.splits = {} for split, info in self.cfg.data_souces.items(): if info.get("splits", None): urls = [ info["url"].format(str(i).zfill(info.zfill)) for i in range(info.splits) ] else: urls = [info["url"]] paths = {} for url in urls: path = os.path.join(self.cfg.data_dir, url.split("/")[-1]) paths[path] = url self.splits[split] = paths def download(self): for split, paths in self.splits.items(): for path, url in paths.items(): print(f"Downloading {split} from {url} to {path}") web_download(url, path, self.name) def load(self, split="train"): paths = list(self.splits[split].keys()) return self._generate_examples(paths) def _generate_examples(self, paths): pipeline = PileReader(paths, self.subset) for result in pipeline: if result: yield result def load_pile_data(split_name, **args): pile = ThePile(**args) ds_iter = pile.load(split_name) documents = [] for sample in tqdm(ds_iter): documents.append(sample) df =
pd.DataFrame(documents)
pandas.DataFrame
from twembeddings.build_features_matrix import format_text, find_date_created_at, build_matrix from twembeddings.embeddings import TfIdf from twembeddings import ClusteringAlgoSparse from twembeddings import general_statistics, cluster_event_match from twembeddings.eval import cluster_acc import logging import sklearn.cluster import pandas as pd import os import re import igraph as ig import louvain import csv from scipy import sparse import numpy as np from sklearn.preprocessing import normalize from sklearn.preprocessing.data import _handle_zeros_in_scale from datetime import datetime, timedelta import argparse from config import PATH, DATASET, THRESHOLDS, SIMILARITIES, DAYS, WEIGHTS, WINDOW_DAYS, \ QUALITY_FUNCTION, WRITE_CLUSTERS_TEXT, WRITE_CLUSTERS_SMALL_IDS logging.basicConfig(filename='/usr/src/app/app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s') def cosine_similarity(x, y): s = normalize(x) * normalize(y).T return s def find_hashtag(text): hashtags = [] for word in re.split(r"[.()' \n]", text): if word.startswith("#"): hashtags.append(word.strip('&,".—/')) if hashtags: return hashtags def zero_one_scale(serie): data_range = serie.max() scale = 1 / _handle_zeros_in_scale(data_range) serie *= scale def compute_events(tweets_path, news_path, lang, binary, threshold_tweets, binary_news=False, threshold_news=0.7): news = pd.read_csv(news_path, sep="\t", quoting=csv.QUOTE_ALL, dtype={"id": int, "label": float, "created_at": str, "text": str, "url": str}) tweets = pd.read_csv(tweets_path, sep="\t", quoting=csv.QUOTE_ALL, dtype={"id": int, "label": float, "created_at": str, "text": str, "url": str}) if tweets.id.min() <= news.id.max(): raise Exception("tweets.id.min() should be greater than news.id.max()") if "pred" not in news.columns: news_pred, news, _, X_tweets = fsd(news_path, lang, threshold=threshold_news, binary=binary_news, window_days=WINDOW_DAYS) news["pred"] = news_pred news.id = news.id.astype(int) else: news["pred"] = news["pred"].fillna(news["id"]).astype(int) if "pred" not in tweets.columns: tweets_pred, tweets, _, X_news = fsd(tweets_path, lang, threshold=threshold_tweets, binary=binary, window_days=WINDOW_DAYS) tweets["pred"] = tweets_pred tweets.id = tweets.id.astype(int) # tweets.loc[(tweets.pred == -1) | (tweets.pred == -2), "pred"] = tweets["id"] if tweets.pred.min() <= news.pred.max(): tweets["pred"] = tweets["pred"] + news.pred.max() + 3 logging.info("Total tweets: {} preds".format(tweets.pred.nunique())) logging.info("Total news: {} preds".format(news.pred.nunique())) news["type"] = "news" tweets["type"] = "tweets" return tweets, news def louvain_macro_tfidf(tweets_path, news_path, lang, similarity, weights, binary=True, threshold_tweets=0.7, model="ModularityVertexPartition", days=1): """ Apply Louvain algorithm on graph of events (an event consists in all documents in the same fsd clusters). :param str tweets_path: path to the tweets dataset in format "id" "label" "created_at" "text" "url" "pred" is optional if fsd clustering is already done :param str news_path: path to the news dataset in format "id" "label" "created_at" "text" "url" "pred" is optional if fsd clustering is already done :param str lang: "fr" or "en" :param bool binary: if True, all non-zero term counts are set to 1 in tf calculation for tweets :param bool binary_news: if True, all non-zero term counts are set to 1 in tf calculation for news :return: y_pred, data, params """ tweets, news = compute_events(tweets_path, news_path, lang, binary, threshold_tweets) data = pd.concat([tweets, news], ignore_index=True, sort=False) # logging.info("save data") local_path = tweets_path.split("data/")[0] path = local_path + "data/" + (tweets_path + "_" + news_path).replace(local_path + "data/", "") # data.to_csv(path, sep="\t", index=False, quoting=csv.QUOTE_ALL) args = {"dataset": path, "model": "tfidf_all_tweets", "annotation": "no", "hashtag_split": True, "lang": lang, "text+": False, "svd": False, "tfidf_weights": False, "save": False, "binary": False} data["date"] = data["created_at"].apply(find_date_created_at) logging.info("build matrix") vectorizer = TfIdf(lang=args["lang"], binary=args["binary"]) vectorizer.load_history(args["lang"]) data.text = data.text.apply(format_text, remove_mentions=True, unidecode=True, lower=True, hashtag_split=args["hashtag_split"] ) count_matrix = vectorizer.add_new_samples(data) X = vectorizer.compute_vectors(count_matrix, min_df=10, svd=args["svd"], n_components=100) if weights["hashtag"] != 0: data["hashtag"] = data.hashtag.str.split("|") if weights["url"] != 0: data["url"] = data.url.str.split("|") # logging.info("save data") # data.to_csv(path, sep="\t", index=False, quoting=csv.QUOTE_ALL) # data = pd.read_csv(path, sep="\t", quoting=csv.QUOTE_ALL, dtype={"date": str}) X = X[data.pred.argsort()] # logging.info("save X") # sparse.save_npz("/usr/src/app/data/X.npz", X) data = data.sort_values("pred").reset_index(drop=True) gb = data.groupby(["pred", "type"]) if weights["url"] != 0 or weights["hashtag"] != 0: macro = gb.agg({ 'date': ['min', 'max', 'size'], 'hashtag': lambda tdf: tdf.explode().tolist(), 'url': lambda tdf: tdf.explode().tolist() }) macro.columns = ["mindate", "maxdate", "size", "hashtag", "url"] else: macro = gb["date"].agg(mindate=np.min, maxdate=np.max, size=np.size) macro = macro.reset_index().sort_values("pred") macro_tweets = macro[macro.type == "tweets"] macro_news = macro[macro.type == "news"] m = sparse.csr_matrix(( [1 for r in range(X.shape[0])], ([i for i, row in macro.iterrows() for r in range(row["size"])], range(X.shape[0])) )) logging.info("tfidf_sum") tfidf_sum = m * X logging.info("tfidf_mean") for i, val in enumerate(macro["size"].tolist()): tfidf_sum.data[tfidf_sum.indptr[i]:tfidf_sum.indptr[i + 1]] /= val mean_tweets = tfidf_sum[np.array(macro.type == "tweets")] mean_news = tfidf_sum[np.array(macro.type == "news")] logging.info("load mean matrices") # sparse.save_npz("/usr/src/app/data/mean_tweets.npz", mean_tweets) # sparse.save_npz("/usr/src/app/data/mean_news.npz", mean_news) # mean_news = sparse.load_npz("/usr/src/app/data/mean_news.npz") # mean_tweets = sparse.load_npz("/usr/src/app/data/mean_tweets.npz") edges_text = [] edges_hashtags = [] edges_urls = [] logging.info("cosine similarity") min_max = macro_tweets[["mindate", "maxdate"]].drop_duplicates().reset_index(drop=True) total = min_max.shape[0] for iter, row in min_max.iterrows(): if iter % 10 == 0: logging.info(iter/total) batch_min = (datetime.strptime(row["mindate"], "%Y%m%d") - timedelta(days=days)).strftime("%Y%m%d") batch_max = (datetime.strptime(row["maxdate"], "%Y%m%d") + timedelta(days=days)).strftime("%Y%m%d") bool_tweets = (macro_tweets.mindate == row["mindate"]) & (macro_tweets.maxdate == row["maxdate"]) bool_news = ((batch_min <= macro_news.maxdate) & (macro_news.maxdate <= batch_max)) | ( (batch_min <= macro_news.mindate) & (macro_news.mindate <= batch_max)) | ( (row["mindate"] >= macro_news.mindate) & (row["maxdate"] <= macro_news.maxdate)) batch_tweets = macro_tweets[bool_tweets] batch_news = macro_news[bool_news] if weights["text"] != 0: sim = cosine_similarity(mean_tweets[np.array(bool_tweets)], mean_news[np.array(bool_news)]) close_events = sparse.coo_matrix(sim >= similarity) batch = [ (batch_tweets.iloc[i]["pred"], batch_news.iloc[j]["pred"], sim[i, j] ) for i, j in zip(close_events.row, close_events.col) ] edges_text.extend(batch) if weights["hashtag"] != 0: hashtags_tweets = batch_tweets.explode("hashtag") hashtags_news = batch_news.explode("hashtag") # hashtags_tweets = hashtags_tweets.drop_duplicates(["pred", "hashtag"]) # hashtags_news = hashtags_news.drop_duplicates(["pred", "hashtag"]) hashtags_tweets = hashtags_tweets.groupby(["pred", "hashtag"]).size().reset_index(name="weight") hashtags_news = hashtags_news.groupby(["pred", "hashtag"]).size().reset_index(name="weight") batch = hashtags_tweets.merge(hashtags_news, on="hashtag", how='inner', suffixes=("_tweets", "_news")) # batch["weight"] = batch["weight_tweets"] + batch["weight_news"] batch = batch.groupby(["pred_tweets", "pred_news"])["weight_tweets"].agg(['sum', 'size']).reset_index() # batch = batch.groupby(["pred_tweets", "pred_news"]).size().reset_index(name="weight") batch = batch[batch["size"] > 3] edges_hashtags.extend(batch[["pred_tweets", "pred_news", "sum"]].values.tolist()) if weights["url"] != 0: urls_tweets = batch_tweets.explode("url") urls_news = batch_news.explode("url") urls_tweets = urls_tweets.groupby(["pred", "url"]).size().reset_index(name="weight") urls_news = urls_news.groupby(["pred", "url"]).size().reset_index(name="weight") batch = urls_tweets.merge(urls_news, on="url", how='inner', suffixes=("_tweets", "_news")) # batch["weight"] = batch["weight_tweets"] + batch["weight_news"] batch = batch.groupby(["pred_tweets", "pred_news"])["weight_tweets"].agg(['sum', 'size']).reset_index() # batch = batch.groupby(["pred_tweets", "pred_news"]).size().reset_index(name="weight") # batch = batch[batch["size"] > 1] edges_urls.extend(batch[["pred_tweets", "pred_news", "sum"]].values.tolist()) edges_hashtags = pd.DataFrame(edges_hashtags, columns=["pred_tweets", "pred_news", "weight"]) zero_one_scale(edges_hashtags["weight"]) edges_hashtags["weight"] *= weights["hashtag"] edges_urls = pd.DataFrame(edges_urls, columns=["pred_tweets", "pred_news", "weight"]) zero_one_scale(edges_urls["weight"]) edges_urls["weight"] *= weights["url"] edges_text = pd.DataFrame(edges_text, columns=["pred_tweets", "pred_news", "weight"]) edges_text["weight"] *= weights["text"] edges = pd.concat([edges_text, edges_hashtags, edges_urls]).groupby( ["pred_tweets", "pred_news"])["weight"].sum().sort_values() g = ig.Graph.TupleList([(i[0], i[1], row) for i, row in edges.iteritems()], weights=True) logging.info("build partition") partition = louvain.find_partition(g, getattr(louvain, model), weights="weight") max_pred = int(data.pred.max()) + 1 clusters = {} preds = [] logging.info("preds") for cluster in range(len(partition)): for doc in g.vs.select(partition[cluster])["name"]: clusters[doc] = cluster + max_pred for i, line in data.iterrows(): if line["pred"] in clusters: preds.append(clusters[line["pred"]]) else: preds.append(line["pred"]) # for cluster in range(len(partition)): # data.loc[data.pred.isin(g.vs.select(partition[cluster])["name"]), "pred"] = cluster + max_pred params = {"t": threshold_tweets, "dataset": tweets_path + " " + news_path, "algo": "louvain_macro_tfidf", "lang": lang, "similarity": similarity, "weights_text": weights["text"], "weights_hashtag": weights["hashtag"], "weights_url": weights["url"], "binary": binary, "model": model, "days": days, "window_days": WINDOW_DAYS, "ts": datetime.now().strftime("%d-%m-%Y %H:%M:%S")} # logging.info("nb pred: {}".format(data.pred.nunique())) # logging.info("save to /usr/src/app/data/3_months_joint_events.csv") # data[["id", "pred"]].to_csv("/usr/src/app/data/3_months_joint_events.csv", quoting=csv.QUOTE_MINIMAL, index=False) data["pred"] = preds return preds, data, params def fsd(corpus, lang, threshold, binary, window_days=1): args = {"dataset": corpus, "model": "tfidf_all_tweets", "annotation": "annotated", "hashtag_split": True, "lang": lang, "text+": False, "svd": False, "tfidf_weights": False, "save":False, "binary": binary} X, data = build_matrix(**args) batch_size = 8 window = int(data.groupby("date").size().mean() // batch_size * batch_size)*window_days clustering = ClusteringAlgoSparse(threshold=float(threshold), window_size=window, batch_size=batch_size, intel_mkl=False) clustering.add_vectors(X) y_pred = clustering.incremental_clustering() params = {"t": threshold, "dataset": corpus, "algo": "FSD", "distance": "cosine", "lang": lang, "binary": binary, "model": model} return y_pred, data, params, X def DBSCAN(corpus, lang, min_samples, eps, binary): args = {"dataset": corpus, "model": "tfidf_all_tweets", "annotation": "annotated", "hashtag_split": True, "lang": lang, "text+": False, "svd": False, "tfidf_weights": False, "save": True, "binary": binary} X, data = build_matrix(**args) logging.info("starting DBSCAN...") clustering = sklearn.cluster.DBSCAN(eps=eps, metric="cosine", min_samples=min_samples).fit(X) y_pred = clustering.labels_ params = {"dataset": corpus, "algo": "DBSCAN", "distance": "cosine", "eps": eps, "lang": lang, "min_samples": min_samples, "binary": binary} return y_pred, data, params def percent_linked(data): """ return the share of tweets that get linked to news and the share of news that get linked to tweets :param data: :return: """ data.pred = data.pred.astype(int) data.id = data.id.astype(int) tweets = data[data.type=="tweets"] news = data[data.type=="news"] pred_tweets = set(tweets.pred.unique()) pred_news = set(news.pred.unique()) common = pred_tweets.intersection(pred_news) n_linked_tweets = tweets[tweets.pred.isin(common)].shape[0] n_linked_news = news[news.pred.isin(common)].shape[0] return n_linked_tweets/tweets.shape[0], n_linked_news/news.shape[0] def write_ids(path, dataset, table, days, full, small): if full: outpath = os.path.join(path, "data", "{}_joint_events_{}_days.csv".format(dataset, days)) logging.info("write preds to {}".format(outpath)) table[["id", "pred", "type", "text"]].to_csv(outpath, index=False, quoting=csv.QUOTE_MINIMAL) if small: logging.info("load id mapping") with open(os.path.join(path, "data", "id_str_mapping.csv"), "r") as f: reader = csv.reader(f, quoting=csv.QUOTE_NONE) id_dict = {int(row[0]): int(row[1]) for row in reader} logging.info("convert to small ids") mask = (table["type"] == "tweets") table['doc_id_small'] = table["id"] table.loc[mask, "doc_id_small"] = table[mask]["id"].apply(lambda x: id_dict[int(x)]) table["is_tweet"] = mask outpath = os.path.join(path, "data", "{}_joint_events_{}_days_small_ids.csv".format(dataset, days)) logging.info("write preds to {}".format(outpath)) table[["id", "doc_id_small", "pred", "is_tweet"]].to_csv(outpath, index=False, quoting=csv.QUOTE_MINIMAL) def evaluate(y_pred, data, params, path, note): stats = general_statistics(y_pred) p, r, f1 = cluster_event_match(data, y_pred) params.update({"p": p, "r": r, "f1": f1}) params["note"] = note if "news" in data.type.unique(): linked_tweets, linked_news = percent_linked(data) params.update({"linked_tweets": linked_tweets, "linked_news": linked_news}) else: params.pop("linked_tweets") params.pop("linked_news") stats.update(params) stats = pd.DataFrame(stats, index=[0]) logging.info("\n"+ str(stats[["f1", "p", "r", "t"]])) try: results = pd.read_csv(path) except FileNotFoundError: results =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Feb 22 11:05:21 2018 @author: 028375 """ from __future__ import unicode_literals, division import pandas as pd import os.path import numpy as np def Check2(lastmonth,thismonth,collateral): ContractID=(thismonth['ContractID'].append(lastmonth['ContractID'])).append(collateral['ContractID']).drop_duplicates() Outputs=pd.DataFrame(ContractID).reset_index(drop=True) cost0=lastmonth[['ContractID','期权标的','标的类型','Upfront结算货币']] Outputs=pd.merge(Outputs,cost0,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Upfront结算货币':'期初表Upfront','期权标的':'期初表期权标的','标的类型':'期初表标的类型'}) cost1=thismonth[['ContractID','期权标的','标的类型','Upfront结算货币']] Outputs=pd.merge(Outputs,cost1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Upfront结算货币':'期末表Upfront','期权标的':'期末表期权标的','标的类型':'期末表标的类型'}) tmp1=collateral.groupby(['ContractID'])[['期权标的','标的类型']].first().reset_index() Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'期权标的':'资金表期权标的','标的类型':'资金表标的类型'}) collateral1=collateral.groupby(['ContractID','现金流类型'])['确认金额(结算货币)'].sum().reset_index() collateral1=collateral1.rename(columns={'现金流类型':'CashType','确认金额(结算货币)':'Amount'}) tmp1=collateral1[collateral1['CashType']=='前端支付'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'前端支付'}) tmp1=collateral1[collateral1['CashType']=='前端期权费'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'前端期权费'}) tmp1=collateral1[collateral1['CashType']=='展期期权费'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'展期期权费'}) tmp1=collateral1[collateral1['CashType']=='到期结算'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'到期结算'}) tmp1=collateral1[collateral1['CashType']=='部分赎回'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'部分赎回'}) tmp1=collateral1[collateral1['CashType']=='全部赎回'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'全部赎回'}) tmp1=collateral1[collateral1['CashType']=='期间结算'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'期间结算'}) tmp1=collateral1[collateral1['CashType']=='红利支付'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'红利支付'}) tmp1=collateral1[collateral1['CashType']=='其他'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'其他'}) tmp1=collateral1[collateral1['CashType']=='定结期间结算'][['ContractID','Amount']] Outputs=pd.merge(Outputs,tmp1,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Amount':'定结期间结算'}) Outputs['status1']='' flag1=np.isnan(Outputs['期初表Upfront']) flag2=np.isnan(Outputs['期末表Upfront']) Outputs.loc[flag1&flag2,['status1']]='新起到期' Outputs.loc[(~flag1)&flag2,['status1']]='存续到期' Outputs.loc[flag1&(~flag2),['status1']]='新起存续' Outputs.loc[(~flag1)&(~flag2),['status1']]='两期存续' Outputs['status2']='' flag1=(Outputs['status1']=='新起到期') flag2=(Outputs['status1']=='存续到期') flag3=(Outputs['status1']=='新起存续') flag4=(Outputs['status1']=='两期存续') colflag1=np.isnan(Outputs['前端支付']) colflag2=np.isnan(Outputs['前端期权费']) colflag3=np.isnan(Outputs['展期期权费']) colflag4=np.isnan(Outputs['到期结算']) colflag5=np.isnan(Outputs['全部赎回']) colflag6=np.isnan(Outputs['部分赎回']) colflag7=np.isnan(Outputs['定结期间结算']) #update 0.2.3 tmp1=Outputs[['ContractID','期初表Upfront','期末表Upfront','前端支付','前端期权费','展期期权费','到期结算','部分赎回','全部赎回','定结期间结算']] tmp1=tmp1.replace(np.nan,0.) flag5=(tmp1['期末表Upfront']!=0) flag6=(tmp1['期末表Upfront']-tmp1['期初表Upfront']).round(decimals=4)==0 flag7=(tmp1['期末表Upfront']-tmp1['前端支付']).round(decimals=4)==0 flag8=(tmp1['期末表Upfront']-(tmp1['前端期权费']+tmp1['展期期权费']+tmp1['部分赎回'])).round(decimals=4)==0 #flag9=(tmp1['期末表Upfront']-(tmp1['期初表Upfront']+tmp1['展期期权费']+tmp1['部分赎回'])).round(decimals=4)==0 #update 0.2.3 flag9=(tmp1['期末表Upfront']-(tmp1['期初表Upfront']+tmp1['展期期权费']+tmp1['部分赎回']+tmp1['定结期间结算'])).round(decimals=4)==0 # update 0.2.3 增加定结期间结算 #新起到期 Outputs.loc[flag1,['status2']]='流水异常' # Outputs.loc[flag1&((~colflag1)|(~colflag2))&((~colflag4)|(~colflag5)),['status2']]='流水正常' #update 0.2.3 Outputs.loc[flag1&((~colflag4)|(~colflag5)),['status2']]='流水正常' #update 0.2.3 #存续到期 Outputs.loc[flag2,['status2']]='流水异常' Outputs.loc[flag2&((~colflag4)|(~colflag5)),['status2']]='流水正常' #新起存续 Outputs.loc[flag3,['status2']]='流水异常' Outputs.loc[flag3&flag5&((~colflag1)|(~colflag2))&colflag4&colflag5,['status2']]='流水正常' tmp_flag=((~colflag1)&tmp1['前端支付']!=0)|((~colflag2)&tmp1['前端期权费']!=0) #前端支付/前端期权费存在,且不等于0 Outputs.loc[flag3&(~flag5)&(colflag4&colflag5)&(~tmp_flag),['status2']]='流水正常' #两期存续 Outputs.loc[flag4,['status2']]='流水异常' Outputs.loc[flag4&flag6&(colflag3&colflag6&colflag4&colflag5),['status2']]='流水正常' # Outputs.loc[flag4&(~flag6)&((~colflag3)|(~colflag6)&colflag4&colflag5),['status2']]='流水正常' #update 0.2.3 Outputs.loc[flag4&(~flag6)&((~colflag3)|(~colflag6)|(~colflag7)&colflag4&colflag5),['status2']]='流水正常' #增加定结期间结算 #update 0.2.3 Outputs['status3']='' flag10=(Outputs['status2']=='流水异常') Outputs.loc[flag10,['status3']]='流水异常,未验证金额' Outputs.loc[(~flag10)&flag1,['status3']]='无需验证金额' Outputs.loc[(~flag10)&flag2,['status3']]='无需验证金额' Outputs.loc[(~flag10)&flag3,['status3']]='金额异常' Outputs.loc[(~flag10)&flag3&(flag7|flag8|(~flag5)),['status3']]='金额正常' Outputs.loc[(~flag10)&flag4,['status3']]='金额异常' Outputs.loc[(~flag10)&flag4&(flag6|flag9),['status3']]='金额正常' return Outputs def Check1(lastmonth,thismonth,collateral): thismonth['Upfront结算货币']=pd.to_nu
meric(thismonth['Upfront结算货币'],errors='coerce')
pandas.to_numeric
import numpy as np import pandas as pd from sklearn.tree import DecisionTreeClassifier import plotly.express as px # train-test split by a percentage. # input: dataframe, label column name, split ration, and random state # returns: x_train, x_test, y_train, y_test def split_df(user_df: pd.DataFrame, label_name: str, split_ratio=0.8, random_value=42): x_train = user_df.sample(frac=split_ratio, random_state=random_value) x_test = user_df.drop(x_train.index) return x_train.drop(label_name, axis=1), x_test.drop(label_name, axis=1), pd.DataFrame( x_train[label_name]), pd.DataFrame(x_test[label_name]) # import data and preprocess it def preprocessing(file_name: str): # data import heart_df = pd.read_csv(file_name) # converting target to 1 and -1 new_label = [] for x in heart_df['target']: if x == 1: new_label.append(1) else: new_label.append(-1) heart_df['target'] = new_label # heart_df = heart_df.rename(columns={'target': 'label'}) # hot encoding of relevant features dummy_features_list = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'] non_dummy_features_list = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'target'] new_heart_df = pd.DataFrame(heart_df[non_dummy_features_list]) for feature in dummy_features_list: new_heart_df = new_heart_df.join(pd.get_dummies(heart_df[feature], prefix=feature)) return heart_df # Create as arrays of stump tree in a given size def create_stump_forest(forest_size: int, random_state_local: int): stump_forest = [] for i in range(0, forest_size, 1): stump_forest.append(DecisionTreeClassifier(criterion='gini', max_depth=1, random_state=random_state_local)) return stump_forest # update weight of each row and randomly generate a new weighted data frame # input: x/y data, predictions list, current stump weight # return: new weighted x and y data frames def create_new_weighted_data(x: pd.DataFrame, y: pd.DataFrame, predictions: np.ndarray, stump_weight: list): # initiate weights sample_weight = 1/len(x) new_weights = [] # calculate new weights based on correct and incorrect decisions for i in range(0, len(predictions), 1): if predictions[i] == 1: new_weights.append(sample_weight*np.exp(-np.sum(stump_weight))) else: new_weights.append(sample_weight*np.exp(np.sum(stump_weight))) # normalize weights sum_of_new_weights = sum(new_weights) new_normalized_weights = new_weights/sum_of_new_weights # create normalized distributions weights for random rows pulling distribution_weights = [] accumulator = 0 for new_normalized_weight in new_normalized_weights: accumulator += new_normalized_weight distribution_weights.append(accumulator) # based to rows weights values, randomly pick new data new_x = pd.DataFrame(columns=x.columns) new_y =
pd.DataFrame(columns=y.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core import ops from pandas.errors import NullFrequencyError from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = pd.timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser =
tm.box_expected(tdser, box)
pandas.util.testing.box_expected
# Import libraries import os import sys import anemoi as an import pandas as pd import numpy as np import pyodbc from datetime import datetime import requests import collections import json import urllib3 def return_between_date_query_string(start_date, end_date): if start_date != None and end_date != None: start_end_str = '''AND [TimeStampLocal] >= '%s' AND [TimeStampLocal] < '%s' ''' %(start_date, end_date) elif start_date != None and end_date == None: start_end_str = '''AND [TimeStampLocal] >= '%s' ''' %(start_date) elif start_date == None and end_date != None: start_end_str = '''AND [TimeStampLocal] < '%s' ''' %(end_date) else: start_end_str = '' return start_end_str def sql_or_string_from_mvs_ids(mvs_ids): or_string = ' OR '.join(['mvs_id = {}'.format(mvs_id) for mvs_id in mvs_ids]) return or_string def sql_list_from_mvs_ids(mvs_ids): if not isinstance(mvs_ids, list): mvs_ids = [mvs_ids] mvs_ids_list = ','.join([f"({mvs_id}_1)" for mvs_id in mvs_ids]) return mvs_ids_list def rename_mvs_id_column(col, names, types): name = names[int(col.split('_')[0])] data_type = types[col.split('_')[1]] return f'{name}_{data_type}' # Define DataBase class class M2D2(object): '''Class to connect to RAG M2D2 PRD database ''' def __init__(self): '''Data structure for connecting to and downloading data from M2D2. Convention is:: import anemoi as an m2d2 = an.io.database.M2D2() :Parameters: :Returns: out: an.M2D2 object connected to M2D2 ''' self.database = 'M2D2' server = '10.1.15.53' # PRD #server = 'SDHQRAGDBDEV01\RAGSQLDBSTG' #STG db = 'M2D2_DB_BE' conn_str = 'DRIVER={SQL Server}; SERVER=%s; DATABASE=%s; Trusted_Connection=yes' %(server, db) self.conn_str = conn_str #Assign connection string try: self.conn = pyodbc.connect(self.conn_str) #Apply connection string to connect to database except: print('Database connection error: you either don\'t have permission to the database or aren\'t signed onto the VPN') def connection_check(self, database): return self.database == database def masts(self): ''' :Returns: out: DataFrame of all met masts with measured data in M2D2 Example:: import anemoi as an m2d2 = an.io.database.M2D2() m2d2.masts() ''' if not self.connection_check('M2D2'): raise ValueError('Need to connect to M2D2 to retrieve met masts. Use anemoi.DataBase(database="M2D2")') sql_query_masts = ''' SELECT [Project] ,[AssetID] ,[wmm_id] ,[mvs_id] ,[Name] ,[Type] ,[StartDate] ,[StopDate] FROM [M2D2_DB_BE].[dbo].[ViewProjectAssetSensors] WITH (NOLOCK) ''' sql_query_coordinates=''' SELECT [wmm_id] ,[WMM_Latitude] ,[WMM_Longitude] ,[WMM_Elevation] FROM [M2D2_DB_BE].[dbo].[ViewWindDataSet]''' masts = pd.read_sql(sql_query_masts, self.conn, parse_dates=['StartDate', 'StopDate']) coordinates = pd.read_sql(sql_query_coordinates, self.conn) masts = masts.merge(coordinates, left_on='wmm_id', right_on='wmm_id') masts.set_index(['Project', 'wmm_id', 'WMM_Latitude', 'WMM_Longitude', 'Type'], inplace=True) masts.sort_index(inplace=True) return masts def mvs_ids(self): masts = self.masts() mvs_ids = masts.mvs_id.values.tolist() return mvs_ids def valid_signal_labels(self): signal_type_query = ''' SELECT [MDVT_ID] ,[MDVT_Name] FROM [M2D2_DB_BE].[dbo].[MDataValueType]''' signal_types = pd.read_sql(signal_type_query, self.conn, index_col='MDVT_Name').MDVT_ID return signal_types def column_labels_for_masts(self): masts = self.masts() mvs_ids = masts.mvs_id.unique().tolist() or_string = ' OR '.join(['mvs_id = {}'.format(mvs_id) for mvs_id in mvs_ids]) column_label_sql_query = ''' SELECT [column_id] ,[label] FROM [M2D2_DB_BE].[dbo].[ViewWindogMetaData] WITH (NOLOCK) WHERE {}'''.format(or_string) column_labels = pd.read_sql(column_label_sql_query, self.conn) column_labels = column_labels.set_index('column_id') return column_labels def column_labels_for_data_from_mvs_ids(self, data): masts = self.masts() names_map = pd.Series(index=masts.mvs_id.values, data=masts.Name.values).to_dict() types = self.valid_signal_labels() types.loc['FLAG'] = 'Flag' types_map = pd.Series(index=types.values.astype(str), data=types.index.values).to_dict() data = data.rename(lambda x: rename_mvs_id_column(x, names=names_map, types=types_map), axis=1) return data def column_labels_for_wmm_id(self, wmm_id): masts = self.masts() mvs_ids = masts.loc[pd.IndexSlice[:,wmm_id],:].mvs_id.unique().tolist() or_string = ' OR '.join(['mvs_id = {}'.format(mvs_id) for mvs_id in mvs_ids]) column_label_sql_query = ''' SELECT [column_id] ,[label] FROM [M2D2_DB_BE].[dbo].[ViewWindogMetaData] WITH (NOLOCK) WHERE {}'''.format(or_string) column_labels = pd.read_sql(column_label_sql_query, self.conn) column_labels = column_labels.set_index('column_id') return column_labels def data_from_sensors_mvs_ids(self, mvs_ids, signal_type='AVG'): '''Download sensor data from M2D2 :Parameters: mvs_ids: int or list Virtual sensor IDs (mvs_ids) in M2D2, can be singular signal_type: str, default 'AVG' - NOT SUPPORTED AT THIS TIME Signal type for download For example: 'AVG', 'SD', 'MIN', 'MAX', 'GUST' :Returns: out: DataFrame with signal data from virtual sensor ''' if not isinstance(mvs_ids, list): mvs_ids = [mvs_ids] valid_mvs_ids = self.mvs_ids() assert all([mvs_id in valid_mvs_ids for mvs_id in mvs_ids]), f'One of the following is not a valid mvs_id: {mvs_ids}' mvs_ids_list = sql_list_from_mvs_ids(mvs_ids) sql_query= f""" SET NOCOUNT ON DECLARE @ColumnListID NVARCHAR(4000) ,@startDate DATETIME2 ,@endDate DATETIME2 SET @ColumnListID= '{mvs_ids_list}' SET @startDate = NULL SET @endDate = NULL EXECUTE [dbo].[proc_DataExport_GetDataByColumnList] @ColumnListID ,@startDate ,@endDate """ data = pd.read_sql(sql_query, self.conn, index_col='CorrectedTimestamp') data.index.name = 'stamp' data.columns.name = 'sensor' data = self.column_labels_for_data_from_mvs_ids(data) return data def data_from_mast_wmm_id(self, wmm_id): '''Download data from all sensors on a mast from M2D2 :Parameters: wmm_id: int Mast ID (wmm_id) in M2D2 :Returns: out: DataFrame with signal data from each virtual sensor on the mast ''' masts = self.masts() wmm_ids = masts.index.get_level_values('wmm_id').sort_values().unique().tolist() assert wmm_id in wmm_ids, f'the following is not a valid wmm_id: {wmm_id}' mvs_ids = masts.loc[pd.IndexSlice[:,wmm_id],:].mvs_id.values.tolist() data = self.data_from_sensors_mvs_ids(mvs_ids) return data def metadata_from_mast_wmm_id(self, wmm_id): '''Download mast metadata from M2D2 :Parameters: wmm_id: int Mast ID (wmm_id) in M2D2 :Returns: out: DataFrame with mast metadata ''' sql_query= ''' SELECT [WMM_Latitude] ,[WMM_Longitude] ,[WMM_Elevation] FROM [M2D2_DB_BE].[dbo].[ViewWindDataSet] WHERE wmm_id = {} '''.format(wmm_id) mast_metadata = pd.read_sql(sql_query, self.conn) return mast_metadata def mast_from_wmm_id(self, wmm_id): '''Download an.MetMast from M2D2 :Parameters: wmm_id: int Mast ID (wmm_id) in M2D2 :Returns: out: an.MetMast with data and metadata from M2D2 ''' print(f'Downloading Mast {wmm_id} from M2D2') data = self.data_from_mast_wmm_id(wmm_id=wmm_id) metadata = self.metadata_from_mast_wmm_id(wmm_id=wmm_id) mast = an.MetMast(data=data, name=wmm_id, lat=metadata.WMM_Latitude[0], lon=metadata.WMM_Longitude[0], elev=metadata.WMM_Elevation[0]) return mast def masts_from_project(self, project): '''Download an.MetMasts from M2D2 for a given project :Parameters: project_name: str Project name in M2D2 :Returns: out: List of an.MetMasts with data and metadata from M2D2 for a given project ''' masts = self.masts() projects = masts.index.get_level_values('Project').unique().tolist() assert project in projects, f'Project {project} not found in M2D2'.format(project) wmm_ids = masts.loc[project,:].index.get_level_values('wmm_id').sort_values().unique().tolist() masts = [self.mast_from_wmm_id(wmm_id) for wmm_id in wmm_ids] return masts # Define Turbine class class Turbine(object): '''Class to connect to EDF Wind Turbine database ''' def __init__(self): '''Data structure for connecting to and downloading data from M2D2. Convention is: import anemoi as an turb_db = an.io.database.Turbine() :Parameters: :Returns: out: an.Turbine object connected to Turbine database ''' self.database = 'Turbine' server = '10.1.15.53' db = 'Turbine_DB_BE' conn_str = 'DRIVER={SQL Server}; SERVER=%s; DATABASE=%s; Trusted_Connection=yes' %(server, db) self.conn_str = conn_str #Assign connection string try: self.conn = pyodbc.connect(self.conn_str) #Apply connection string to connect to database except: print('Database connection error: you either don\'t have permission to the database or aren\'t signed onto the VPN') def is_connected(self, database): return self.database == database def metadata(self): '''Get turbine model metadata''' assert self.is_connected('Turbine'), 'Trying to query the Turbine DB without being connected.' sql_query_turbines = ''' SELECT [TUR_Manufacturer] ,[TUR_RatedOutputkW] ,[TPC_MaxOutput] ,[TUR_RotorDia] ,[TUR_Model] ,[AllHubHeights] ,[TPC_DocumentDate] ,[TUR_ID] ,[IECClass] ,[TPG_ID] ,[TPG_Name] ,[TPC_ID] ,[TVR_VersionName] ,[TPC_dbalevel] ,[TPC_TIScenario] ,[TPC_BinType] ,[TTC_ID] ,[TRPMC_ID] ,[P_ID] ,[P_Name] FROM [Turbine_DB_BE].[NodeEstimate].[AllPowerCurves] WHERE TPC_Type = 'Manufacturer General Spec' ''' turbines = pd.read_sql(sql_query_turbines, self.conn) return turbines def power_curve_from_tpc_id(self, tpc_id): '''Get turbine model metadata''' assert self.is_connected('Turbine'), 'Trying to query the Turbine DB without being connected.' sql_query_thrust_curve = ''' SELECT TPCD_AirDensity, TPCD_WindSpeedBin, TPCD_OutputKW FROM TPCDETAILS WHERE TPC_id = {} AND TPCD_IsDeleted = 0; '''.format(tpc_id) thrust_curve = pd.read_sql(sql_query_thrust_curve, self.conn) return thrust_curve def trust_curve_from_ttc_id(self, ttc_id): '''Get turbine model metadata''' assert self.is_connected('Turbine'), 'Trying to query the Turbine DB without being connected.' sql_query_thrust_curve = ''' SELECT TTCD_AirDensity, TTCD_WindSpeedBin, TTCD_ThrustValue FROM TTCDETAILS WHERE TTC_id = {} AND TTCD_IsDeleted = 0; '''.format(ttc_id) thrust_curve = pd.read_sql(sql_query_thrust_curve, self.conn) return thrust_curve # Define Padre class class Padre(object): '''Class to connect to PRE Padre database ''' def __init__(self, database='PADREScada', conn_str=None, conn=None, domino=False): '''Data structure with both database name and connection string. :Parameters: database: string, default None Name of the padre database to connect to conn_str: string, default None SQL connection string needed to connect to the database conn: object, default None SQL connection object to database ''' self.database = database if self.database == 'PADREScada': server = '10.1.106.44' db = 'PADREScada' elif self.database == 'PadrePI': server = '10.1.106.44' db = 'PADREScada' conn_str = 'DRIVER={SQL Server}; SERVER=%s; DATABASE=%s; Trusted_Connection=yes' %(server, db) self.conn_str = conn_str try: self.conn = pyodbc.connect(self.conn_str) except: print('Database connection error: you either don\'t have permission to the database or aren\'t signed onto the VPN') def is_connected(self, database): return self.database == database def assets(self, project=None, turbines_only=False): '''Returns: DataFrame of all turbines within Padre ''' if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve turbines. Use anemoi.DataBase(database="Padre")') sql_query_assets = ''' SELECT [AssetKey] ,Projects.[ProjectName] ,[AssetType] ,[AssetName] ,Turbines.[Latitude] ,Turbines.[Longitude] ,[elevation_mt] FROM [PADREScada].[dbo].[Asset] as Turbines WITH (NOLOCK) INNER JOIN [PADREScada].[dbo].[Project] as Projects on Turbines.ProjectKey = Projects.ProjectKey ''' assets = pd.read_sql(sql_query_assets, self.conn) assets.set_index(['ProjectName', 'AssetName'], inplace=True) assets.sort_index(axis=0, inplace=True) if turbines_only: assets = assets.loc[assets.AssetType == 'Turbine', :] assets.drop('AssetType', axis=1, inplace=True) if project is not None: assets = assets.loc[project, :] return assets def operational_projects(self): '''Returns: List of all projects within Padre ''' if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve projects. Use anemoi.DataBase(database="Padre")') padre_project_query = """ SELECT [ProjectKey] ,[ProjectName] ,[State] ,[NamePlateCapacity] ,[NumGenerators] ,[latitude] ,[longitude] ,[DateCOD] FROM [PADREScada].[dbo].[Project] WHERE technology = 'Wind'""" projects = pd.read_sql(padre_project_query, self.conn) projects.set_index('ProjectName', inplace=True) return projects def turbine_categorizations(self, category_type='EDF'): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve turbines. Use anemoi.DataBase(database="Padre")') padre_cetegory_query = """ SELECT [CategoryKey] ,[StringName] FROM [PADREScada].[dbo].[Categories] WHERE CategoryType = '%s'""" %category_type categories = pd.read_sql(padre_cetegory_query, self.conn) categories.set_index('CategoryKey', inplace=True) return categories def QCd_turbine_data(self, asset_key): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve met masts. Use anemoi.DataBase(database="Padre")') turbine_data_query = ''' SELECT [TimeStampLocal] ,[Average_Nacelle_Wdspd] ,[Average_Active_Power] ,[Average_Ambient_Temperature] ,[IEC Category] ,[EDF Category] ,[Expected Power (kW)] ,[Expected Energy (kWh)] ,[EnergyDelta (kWh)] ,[EnergyDelta (MWh)] FROM [PADREScada].[dbo].[vw_10mDataBI] WITH (NOLOCK) WHERE [assetkey] = %i''' %asset_key turbine_data = pd.read_sql(turbine_data_query, self.conn) turbine_data['TimeStampLocal'] = pd.to_datetime(turbine_data['TimeStampLocal'], format='%Y-%m-%d %H:%M:%S') turbine_data.set_index('TimeStampLocal', inplace=True) turbine_data.sort_index(axis=0, inplace=True) turbine_data = turbine_data.groupby(turbine_data.index).first() return turbine_data def raw_turbine_data(self, asset_key, start_date=None, end_date=None): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve met masts. Use anemoi.DataBase(database="Padre")') turbine_data_query = ''' SELECT [TimeStampLocal] ,[Average_Nacelle_Wdspd] ,[Average_Active_Power] ,[Average_Nacelle_Direction] ,[Average_Blade_Pitch] ,[Minimum_Blade_Pitch] ,[Maximum_Blade_Pitch] ,[Average_Rotor_Speed] ,[Minimum_Rotor_Speed] ,[Maximum_Rotor_Speed] ,[Average_Ambient_Temperature] ,coalesce([IECStringKey_Manual] ,[IECStringKey_FF] ,[IECStringKey_Default]) IECKey ,coalesce([EDFStringKey_Manual] ,[EDFStringKey_FF] ,[EDFStringKey_Default]) EDFKey ,coalesce([State_and_Fault_Manual] ,[State_and_Fault_FF] ,[State_and_Fault]) State_and_Fault FROM [PADREScada].[dbo].[WTGCalcData10m] WITH (NOLOCK) WHERE [assetkey] = {} {}'''.format(asset_key, return_between_date_query_string(start_date, end_date)) turbine_data = pd.read_sql(turbine_data_query, self.conn) turbine_data['TimeStampLocal'] =
pd.to_datetime(turbine_data['TimeStampLocal'], format='%Y-%m-%d %H:%M:%S')
pandas.to_datetime
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return {k: getattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ return format_object_attrs(self) def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters ---------- index : Index, optional index of resulting Series. If None, defaults to original index name : string, optional name of resulting Series. If None, defaults to name of original index Returns ------- Series : dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self._to_embed(), index=index, name=name) def to_frame(self, index=True): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.21.0 Parameters ---------- index : boolean, default True Set the index of the returned DataFrame as the original Index. Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame result = DataFrame(self._shallow_copy(), columns=[self.name or 0]) if index: result.index = self return result def _to_embed(self, keep_tz=False, dtype=None): """ *this is an internal non-public method* return an array repr of this object, potentially casting to object """ if dtype is not None: return self.astype(dtype)._to_embed(keep_tz=keep_tz) return self.values.copy() _index_shared_docs['astype'] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) try: return Index(self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not is_scalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.format(type(value).__name__)) @property def nlevels(self): return 1 def _get_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError('Names must be a list-like') if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .format(self.__class__.__name__)) self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ from .multi import MultiIndex if level is not None and not isinstance(self, MultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) @property def _has_complex_internals(self): # to disable groupby tricks in MultiIndex return False def _summary(self, name=None): """ Return a summarized representation Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if (hasattr(head, 'format') and not isinstance(head, compat.string_types)): head = head.format() tail = self[-1] if (hasattr(tail, 'format') and not isinstance(tail, compat.string_types)): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary) def summary(self, name=None): """ Return a summarized representation .. deprecated:: 0.23.0 """ warnings.warn("'summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._summary(name) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self): """return if the index is strictly monotonic increasing (only increasing) values Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self): """return if the index is strictly monotonic decreasing (only decreasing) values Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly def is_unique(self): """ return if the index has unique values """ return self._engine.is_unique @property def has_duplicates(self): return not self.is_unique def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ['categorical'] def is_interval(self): return self.inferred_type in ['interval'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] _index_shared_docs['_convert_scalar_indexer'] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if len(self) and not isinstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['getitem', 'ix'] and is_float(key): if not self.is_floating(): return self._invalid_indexer('label', key) elif kind in ['loc'] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in ['floating', 'mixed-integer-float', 'string', 'unicode', 'mixed']: return self._invalid_indexer('label', key) elif kind in ['loc'] and is_integer(key): if not self.holds_integer(): return self._invalid_indexer('label', key) return key _index_shared_docs['_convert_slice_indexer'] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_slice_indexer']) def _convert_slice_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # if we are not a slice, then we are done if not isinstance(key, slice): return key # validate iloc if kind == 'iloc': return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not self.is_integer() if kind == 'getitem': """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # TODO: i, j are not used anywhere if start is not None: i = self.get_loc(start) # noqa if stop is not None: j = self.get_loc(stop) # noqa is_positional = False except KeyError: if self.inferred_type == 'mixed-integer-float': raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: try: indexer = self.slice_indexer(start, stop, step, kind=kind) except Exception: if is_index_slice: if self.is_integer(): raise else: indexer = key else: raise return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs['_convert_arr_indexer'] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) return keyarr _index_shared_docs['_convert_index_indexer'] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs['_convert_list_indexer'] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs['_convert_list_indexer']) def _convert_list_indexer(self, keyarr, kind=None): if (kind in [None, 'iloc', 'ix'] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex)): if self.inferred_type == 'mixed-integer': indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) from pandas.core.indexing import maybe_convert_indices return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == 'integer': keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ consistent invalid indexer message """ raise TypeError("cannot do {form} indexing on {klass} with these " "indexers [{key}] of {kind}".format( form=form, klass=type(self), key=key, kind=type(key))) def get_duplicates(self): """ Extract duplicated index elements. Returns a sorted list of index elements which appear more than once in the index. .. deprecated:: 0.23.0 Use idx[idx.duplicated()].unique() instead Returns ------- array-like List of duplicated indexes. See Also -------- Index.duplicated : Return boolean array denoting duplicates. Index.drop_duplicates : Return Index with duplicates removed. Examples -------- Works on different Index of types. >>> pd.Index([1, 2, 2, 3, 3, 3, 4]).get_duplicates() [2, 3] >>> pd.Index([1., 2., 2., 3., 3., 3., 4.]).get_duplicates() [2.0, 3.0] >>> pd.Index(['a', 'b', 'b', 'c', 'c', 'c', 'd']).get_duplicates() ['b', 'c'] Note that for a DatetimeIndex, it does not return a list but a new DatetimeIndex: >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03', ... '2018-01-03', '2018-01-04', '2018-01-04'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex(['2018-01-03', '2018-01-04'], dtype='datetime64[ns]', freq=None) Sorts duplicated elements even when indexes are unordered. >>> pd.Index([1, 2, 3, 2, 3, 4, 3]).get_duplicates() [2, 3] Return empty array-like structure when all elements are unique. >>> pd.Index([1, 2, 3, 4]).get_duplicates() [] >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex([], dtype='datetime64[ns]', freq=None) """ warnings.warn("'get_duplicates' is deprecated and will be removed in " "a future release. You can use " "idx[idx.duplicated()].unique() instead", FutureWarning, stacklevel=2) return self[self.duplicated()].unique() def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _constructor(self): return type(self) @cache_readonly def _engine(self): # property, for now, slow to look up return self._engine_type(lambda: self._ndarray_values, len(self)) def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError("Too many levels: Index has only 1 level," " %d is not a valid level number" % (level, )) elif level > 0: raise IndexError("Too many levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError('Level %s must be same as name (%s)' % (level, self.name)) def _get_level_number(self, level): self._validate_index_level(level) return 0 @cache_readonly def inferred_type(self): """ return a string of the type inferred from the values """ return lib.infer_dtype(self) def _is_memory_usage_qualified(self): """ return a boolean if we need a qualified .info display """ return self.is_object() def is_type_compatible(self, kind): return kind == self.inferred_type @cache_readonly def is_all_dates(self): if self._data is None: return False return is_datetime_array(_ensure_object(self.values)) def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (self.__class__, d), None def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): self._data = state.pop('data') for k, v in compat.iteritems(state): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def __nonzero__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." .format(self.__class__.__name__)) __bool__ = __nonzero__ _index_shared_docs['__contains__'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs) def __contains__(self, key): hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False _index_shared_docs['contains'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['contains'] % _index_doc_kwargs) def contains(self, key): hash(key) try: return key in self._engine except (TypeError, ValueError): return False def __hash__(self): raise TypeError("unhashable type: %r" % type(self).__name__) def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key) key = com._values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name): """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError('all inputs must be Index') names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return _concat._concat_index_asobject(to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class """ # must be overridden in specific classes return _concat._concat_index_asobject(to_concat, name) _index_shared_docs['take'] = """ return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError See also -------- numpy.ndarray.take """ @Appender(_index_shared_docs['take'] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = _ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable(self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value) else: if allow_fill and fill_value is not None: msg = 'Unable to fill values because {0} cannot contain NA' raise ValueError(msg.format(self.__class__.__name__)) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take """ indices = _ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, allow_fill=allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken @cache_readonly def _isnan(self): """ return if each value is nan""" if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: w, = self._isnan.nonzero() return w else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ if self._can_hold_na: return self._isnan.any() else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). .. versionadded:: 0.20.0 Returns ------- numpy.ndarray A boolean array of whether my values are NA See Also -------- pandas.Index.notna : boolean inverse of isna. pandas.Index.dropna : omit entries with missing values. pandas.isna : top-level isna. Series.isna : detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. .. versionadded:: 0.20.0 Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See also -------- Index.notnull : alias of notna Index.isna: inverse of notna pandas.notna : top-level notna Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna def putmask(self, mask, value): """ return a new Index of the values set with the mask See also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index """ header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep='NaN', **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=('\t', '\r', '\n')) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify='left')) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ actually format my specific types """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) try: return array_equivalent(com._values_from_object(self), com._values_from_object(other)) except Exception: return False def identical(self, other): """Similar to equals, but check that other comparable attributes are also equal """ return (self.equals(other) and all((getattr(self, c, None) == getattr(other, c, None) for c in self._comparables)) and type(self) == type(other)) def asof(self, label): """ For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also -------- get_loc : asof is a thin wrapper around get_loc with method='pad' """ try: loc = self.get_loc(label, method='pad') except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ locs = self.values[mask].searchsorted(where.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- pandas.Series.sort_values : Sort values of a Series. pandas.DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): raise TypeError("cannot sort an Index object in-place, use " "sort_values instead") def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- sorted_index : Index """ return self.sort_values(return_indexer=True, ascending=ascending) def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index shifted index See Also -------- Series.shift : Shift values of Series. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. """ raise NotImplementedError("Not supported for type %s" % type(self).__name__) def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def __add__(self, other): return Index(np.array(self) + other) def __radd__(self, other): return Index(other + np.array(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): raise TypeError("cannot perform __sub__ with this index type: " "{typ}".format(typ=type(self).__name__)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def _get_consensus_name(self, other): """ Given 2 indexes, give a consensus name meaning we take the not None one, or None if the names differ. Return a new object if we are resetting the name """ if self.name != other.name: if self.name is None or other.name is None: name = self.name or other.name else: name = None if self.name != name: return self._shallow_copy(name=name) return self def union(self, other): """ Form the union of two Index objects and sorts if possible. Parameters ---------- other : Index or array-like Returns ------- union : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if len(other) == 0 or self.equals(other): return self._get_consensus_name(other) if len(self) == 0: return other._get_consensus_name(self) # TODO: is_dtype_union_equal is a hack around # 1. buggy set ops with duplicates (GH #13432) # 2. CategoricalIndex lacking setops (GH #10186) # Once those are fixed, this workaround can be removed if not is_dtype_union_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.union(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: indexer = self.get_indexer(other) indexer, = (indexer == -1).nonzero() if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = _concat._concat_compat((lvals, other_diff)) try: lvals[0] < other_diff[0] except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) else: types = frozenset((self.inferred_type, other.inferred_type)) if not types & _unsortable_types: result.sort() else: result = lvals try: result = np.sort(result) except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) # for subclasses return self._wrap_union_result(other, result) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None return self.__class__(result, name=name) def intersection(self, other): """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`, preserving the order of the calling index. Parameters ---------- other : Index or array-like Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if self.equals(other): return self._get_consensus_name(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.intersection(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_union_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except Exception: # duplicates indexer = algos.unique1d( Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if self.name != other.name: taken.name = None return taken def difference(self, other): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') """ self._assert_can_do_setop(other) if self.equals(other): return self._shallow_copy([]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name, freq=None) def symmetric_difference(self, other, result_name=None): """ Compute the symmetric difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like result_name : str Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d(np.arange(this.size), common_indexer, assume_unique=True) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = _concat._concat_compat([left_diff, right_diff]) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs['name'] = result_name if 'freq' in attribs: attribs['freq'] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) _index_shared_docs['get_loc'] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples --------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs['get_loc']) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError('tolerance argument only valid if using pad, ' 'backfill or nearest lookups') try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError('get_loc requires scalar valued input') loc = indexer.item() if loc == -1: raise KeyError(key) return loc def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ # if we have something that is Index-like, then # use this, e.g. DatetimeIndex s = getattr(series, '_values', None) if isinstance(s, (ExtensionArray, Index)) and is_scalar(key): # GH 20825 # Unify Index and ExtensionArray treatment # First try to convert the key to a location # If that fails, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if is_integer(key): return s[key] s = com._values_from_object(series) k = com._values_from_object(key) k = self._convert_scalar_indexer(k, kind='getitem') try: return self._engine.get_value(s, k, tz=getattr(series.dtype, 'tz', None)) except KeyError as e1: if len(self) > 0 and self.inferred_type in ['integer', 'boolean']: raise try: return libindex.get_value_box(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: # pragma: no cover raise e1 except TypeError: # python 3 if is_scalar(key): # pragma: no cover raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ self._engine.set_value(com._values_from_object(arr), com._values_from_object(key), value) def _get_level_values(self, level): """ Return an Index of values for requested level, equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index ``self``, as there is only one level in the Index. See also --------- pandas.MultiIndex.get_level_values : get values for a level of a MultiIndex """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- index : Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError("Cannot remove {} levels from an index with {} " "levels: at least one level must be " "left.".format(len(level), self.nlevels)) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_labels = list(self.labels) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_labels.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_labels[0] == -1 result = new_levels[0].take(new_labels[0]) if mask.any(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) _index_shared_docs['get_indexer'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Examples -------- >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. """ @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = _ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return _ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer(ptarget, method=method, limit=limit, tolerance=tolerance) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer(target, method=method, limit=limit, tolerance=tolerance) if not self.is_unique: raise InvalidIndexError('Reindexing only valid with uniquely' ' valued Index objects') if method == 'pad' or method == 'backfill': indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == 'nearest': indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError('tolerance argument only valid if doing pad, ' 'backfill or nearest reindexing') if limit is not None: raise ValueError('limit argument only valid if doing pad, ' 'backfill or nearest reindexing') indexer = self._engine.get_indexer(target._ndarray_values) return _ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError('list-like tolerance size must match ' 'target index size') return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = (self._engine.get_pad_indexer if method == 'pad' else self._engine.get_backfill_indexer) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance(target._ndarray_values, indexer, tolerance) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets """ if limit is not None: raise ValueError('limit argument for %r method only well-defined ' 'if index and target are monotonic' % method) side = 'left' if method == 'pad' else 'right' # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = (indexer == -1) indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == 'left': # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, 'pad', limit=limit) right_indexer = self.get_indexer(target, 'backfill', limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where(op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer _index_shared_docs['get_indexer_non_unique'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array """ @Appender(_index_shared_docs['get_indexer_non_unique'] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = _ensure_index(target) if is_categorical(target): target = target.astype(target.dtype.categories.dtype) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if self.is_all_dates: self = Index(self.asi8) tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return _ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ guaranteed return of an indexer even when non-unique This dispatches to get_indexer or get_indexer_nonunique as appropriate """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works from pandas.core.indexes.datetimes import DatetimeIndex if self.inferred_type == 'date' and isinstance(other, DatetimeIndex): return DatetimeIndex(self), other elif self.inferred_type == 'boolean': if not is_object_dtype(self.dtype): return self.astype('object'), other.astype('object') return self, other def groupby(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples from .multi import MultiIndex if isinstance(values, MultiIndex): values = values.values values = _ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in compat.iteritems(result)} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super(Index, self)._map_values( mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get('name'): names = [attributes.get('name')] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes['copy'] = False if not new_values.size: # empty attributes['dtype'] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. .. versionadded:: 0.18.1 Support for values as a set. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], labels=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _can_reindex(self, indexer): """ *this is an internal non-public method* Check if we are allowing reindexing with this particular indexer Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, 'name') # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop('freq', None) # don't preserve freq target = self._simple_new(None, dtype=self.dtype, **attrs) else: target = _ensure_index(target) if level is not None: if method is not None: raise TypeError('Fill method not supported if level passed') _, indexer, _ = self._join_level(target, level, how='right', return_indexers=True) else: if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer(target, method=method, limit=limit, tolerance=tolerance) else: if method is not None or limit is not None: raise ValueError("cannot reindex a non-unique index " "with a method or limit") indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ *this is an internal non-public method* Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ target = _ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = _ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = _ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = _ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = 0 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels, freq=None) return new_index, indexer, new_indexer _index_shared_docs['join'] = """ *this is an internal non-public method* Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : boolean, default False sort : boolean, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword) .. versionadded:: 0.20.0 Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs['join']) def join(self, other, how='left', level=None, return_indexers=False, sort=False): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level(other, level, how=how, return_indexers=return_indexers) other = _ensure_index(other) if len(other) == 0 and how in ('left', 'outer'): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ('right', 'outer'): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {'right': 'left', 'left': 'right'}.get(how, how) result = other.join(self, how=how, level=level, return_indexers=return_indexers) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic(other, how=how, return_indexers=return_indexers) else: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic(other, how=how, return_indexers=return_indexers) except TypeError: pass if how == 'left': join_index = self elif how == 'right': join_index = other elif how == 'inner': join_index = self.intersection(other) elif how == 'outer': join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # figure out join names self_names = com._not_none(*self.names) other_names = com._not_none(*other.names) overlap = list(set(self_names) & set(other_names)) # need at least 1 in common, but not more than 1 if not len(overlap): raise ValueError("cannot join with no level specified and no " "overlapping names") if len(overlap) > 1: raise NotImplementedError("merging with more than one level " "overlap on a multi-index is not " "implemented") jl = overlap[0] # make the indices into mi's that match if not (self_is_mi and other_is_mi): flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {'right': 'left', 'left': 'right'}.get(how, how) level = other.names.index(jl) result = self._join_level(other, level, how=how, return_indexers=return_indexers) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result # 2 multi-indexes raise NotImplementedError("merging with both multi-indexes is not " "implemented") def _join_non_unique(self, other, how='left', return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers([self._ndarray_values], [other._ndarray_values], how=how, sort=True) left_idx = _ensure_platform_int(left_idx) right_idx = _ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level(self, other, level, how='left', return_indexers=False, keep_order=True): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If `keep_order` == True, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ returns sorter for the inner most level while preserving the order of higher levels """ if labels[0].size == 0: return np.empty(0, dtype='int64') if len(labels) == 1: lab = _ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = _ensure_int64(labels[-1]) return lib.get_level_sorter(lab, _ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError('Join on level between two MultiIndex objects ' 'is ambiguous') left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {'right': 'left', 'left': 'right'}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError('Index._join_level on non-unique index ' 'is not implemented') new_level, left_lev_indexer, right_lev_indexer = \ old_level.join(right, how=how, return_indexers=True) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.labels[:level + 1]) join_index = left[left_indexer] else: left_lev_indexer = _ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_labels = algos.take_nd(rev_indexer, left.labels[level], allow_fill=False) new_labels = list(left.labels) new_labels[level] = new_lev_labels new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_labels != -1 if not mask.all(): new_labels = [lab[mask] for lab in new_labels] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_labels.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_labels, ngroups) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0]:] new_labels = [lab[left_indexer] for lab in new_labels] else: # sort the leaves mask = new_lev_labels != -1 mask_all = mask.all() if not mask_all: new_labels = [lab[mask] for lab in new_labels] left_indexer = _get_leaf_sorter(new_labels[:level + 1]) new_labels = [lab[left_indexer] for lab in new_labels] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex(levels=new_levels, labels=new_labels, names=left.names, verify_integrity=False) if right_lev_indexer is not None: right_indexer = algos.take_nd(right_lev_indexer, join_index.labels[level], allow_fill=False) else: right_indexer = join_index.labels[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = (None if left_indexer is None else _ensure_platform_int(left_indexer)) right_indexer = (None if right_indexer is None else _ensure_platform_int(right_indexer)) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how='left', return_indexers=False): if self.equals(other): ret_index = other if how == 'right' else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == 'left': join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == 'right': join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == 'left': join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == 'right': join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else _ensure_platform_int(lidx) ridx = None if ridx is None else _ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None return Index(joined, name=name) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples --------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index then try to cast to an int if equivalent """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ if we are positional indexer validate that we have appropriate typed bounds must be an integer """ assert kind in ['ix', 'loc', 'getitem', 'iloc'] if key is None: pass elif is_integer(key): pass elif kind in ['iloc', 'getitem']: self._invalid_indexer(form, key) return key _index_shared_docs['_maybe_cast_slice_bound'] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs['_maybe_cast_slice_bound']) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ['ix', 'loc', 'getitem', None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ['ix'] and (self.holds_integer() or self.is_floating())): self._invalid_indexer('slice', label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer('slice', label) return label def _searchsorted_monotonic(self, label, side='left'): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted(label, side='right' if side == 'left' else 'left') return len(self) - pos raise ValueError('index must be monotonic increasing or decreasing') def _get_loc_only_exact_matches(self, key): """ This is overridden on subclasses (namely, IntervalIndex) to control get_slice_bound. """ return self.get_loc(key) def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} """ assert kind in ['ix', 'loc', 'getitem', None] if side not in ('left', 'right'): raise ValueError("Invalid value for side kwarg," " must be either 'left' or 'right': %s" % (side, )) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self._get_loc_only_exact_matches(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view('u1')) else: slc = lib.maybe_indices_to_slice(slc.astype('i8'), len(self)) if isinstance(slc, np.ndarray): raise KeyError("Cannot get %s slice bound for non-unique " "label: %r" % (side, original_label)) if isinstance(slc, slice): if side == 'left': return slc.start else: return slc.stop else: if side == 'right': return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int Notes ----- This method only works if the index is monotonic or unique. Examples --------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) See Also -------- Index.get_loc : Get location for a single label """ inc = (step is None or step >= 0) if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start start_slice = None if start is not None: start_slice = self.get_slice_bound(start, 'left', kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, 'right', kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index """ if is_scalar(item) and isna(item): # GH 18295 item = self._na_value _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors='raise'): """ Make new Index with passed list of labels deleted Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If none of the labels are found in the selected axis """ arr_dtype = 'object' if self.dtype == 'object' else None labels = com._index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != 'ignore': raise KeyError( 'labels %s not contained in axis' % labels[mask]) indexer = indexer[~mask] return self.delete(indexer) _index_shared_docs['index_unique'] = ( """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex) .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """) @Appender(_index_shared_docs['index_unique'] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super(Index, self).unique() return self._shallow_copy(result) def drop_duplicates(self, keep='first'): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : equivalent method on Series DataFrame.drop_duplicates : equivalent method on DataFrame Index.duplicated : related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super(Index, self).drop_duplicates(keep=keep) def duplicated(self, keep='first'): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) Returns ------- numpy.ndarray See Also -------- pandas.Series.duplicated : Equivalent method on pandas.Series pandas.DataFrame.duplicated : Equivalent method on pandas.DataFrame pandas.Index.drop_duplicates : Remove duplicate values from Index """ return super(Index, self).duplicated(keep=keep) _index_shared_docs['fillna'] = """ Fill NA/NaN values with the specified value Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns ------- filled : %(klass)s """ @Appender(_index_shared_docs['fillna']) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs['dropna'] = """ Return Index without NA/NaN values Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs['dropna']) def dropna(self, how='any'): if how not in ('any', 'all'): raise ValueError("invalid how option: {0}".format(how)) if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() def _evaluate_with_timedelta_like(self, other, op): # Timedelta knows how to operate with np.array, so dispatch to that # operation and then wrap the results other = Timedelta(other) values = self.values with np.errstate(all='ignore'): result = op(values, other) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op == divmod: return Index(result[0], **attrs), Index(result[1], **attrs) return Index(result, **attrs) def _evaluate_with_datetime_like(self, other, op): raise TypeError("can only perform ops with datetime like values") def _evaluate_compare(self, other, op): raise com.AbstractMethodError(self) @classmethod def _add_comparison_methods(cls): """ add in comparison methods """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ add in the numeric add/sub methods to disable """ cls.__add__ = make_invalid_op('__add__') cls.__radd__ = make_invalid_op('__radd__') cls.__iadd__ = make_invalid_op('__iadd__') cls.__sub__ = make_invalid_op('__sub__') cls.__rsub__ = make_invalid_op('__rsub__') cls.__isub__ = make_invalid_op('__isub__') @classmethod def _add_numeric_methods_disabled(cls): """ add in numeric methods to disable other than add/sub """ cls.__pow__ = make_invalid_op('__pow__') cls.__rpow__ = make_invalid_op('__rpow__') cls.__mul__ = make_invalid_op('__mul__') cls.__rmul__ = make_invalid_op('__rmul__') cls.__floordiv__ = make_invalid_op('__floordiv__') cls.__rfloordiv__ = make_invalid_op('__rfloordiv__') cls.__truediv__ = make_invalid_op('__truediv__') cls.__rtruediv__ = make_invalid_op('__rtruediv__') if not compat.PY3: cls.__div__ = make_invalid_op('__div__') cls.__rdiv__ = make_invalid_op('__rdiv__') cls.__mod__ = make_invalid_op('__mod__') cls.__divmod__ = make_invalid_op('__divmod__') cls.__neg__ =
make_invalid_op('__neg__')
pandas.core.ops.make_invalid_op
from pandas import DataFrame, read_excel, ExcelFile, read_csv, concat, Series, \ notnull from pathlib import Path from re import match from typing import Optional, List, Union, Callable from survey import Survey from survey.attributes import PositiveMeasureAttribute from survey.mixins.data_types.categorical_mixin import CategoricalMixin from survey.attributes import RespondentAttribute, SingleCategoryAttribute from survey.attributes import CountAttribute from survey.questions import Question from survey.questions import SingleChoiceQuestion, FreeTextQuestion, \ LikertQuestion, MultiChoiceQuestion from survey.questions import CountQuestion from survey.questions import PositiveMeasureQuestion from survey.questions import RankedChoiceQuestion from survey.respondents import Respondent from survey.surveys.metadata.attribute_metadata import AttributeMetadata from survey.surveys.metadata.question_metadata import QuestionMetadata from survey.surveys.survey_creators.choices import get_choices, \ get_likert_choices, get_multi_choices class SurveyCreator(object): def __init__(self, survey_name: str, survey_data_fn: Union[str, Path], metadata_fn: Union[str, Path], survey_id_col: Optional[str] = None, survey_id: Optional = None, pre_clean: Optional[Callable[[DataFrame], DataFrame]] = None): """ Create a new SurveyCreator. :param survey_name: Name for the survey. :param survey_data_fn: Path to the survey raw data file. :param metadata_fn: Path to the survey metadata file. :param survey_id_col: Optional name of the column that identifies the survey in the metadata file. :param survey_id: Optional value that identifies the survey in the metadata file. :param pre_clean: Optional method to run on the raw data file on read. Used if there are some values in this specific raw data file that need changing in some way. """ # now self.survey_name: str = survey_name self.survey_data_fn: Path = ( survey_data_fn if isinstance(survey_data_fn, Path) else Path(survey_data_fn) ) self.metadata_fn: Path = ( metadata_fn if isinstance(metadata_fn, Path) else Path(metadata_fn) ) self.survey_id_col: Optional[str] = survey_id_col self.survey_id: Optional = survey_id self.survey: Optional[Survey] = None self.pre_clean = pre_clean # later self.survey_data: Optional[DataFrame] = None self.questions_metadata: Optional[DataFrame] = None self.attributes_metadata: Optional[DataFrame] = None self.orders_metadata: Optional[DataFrame] = None self.question_metadatas: Optional[List[QuestionMetadata]] = None self.attribute_metadatas: Optional[List[AttributeMetadata]] = None self.questions: Optional[List[Question]] = None self.respondent_attributes: Optional[List[RespondentAttribute]] = None self.respondents: Optional[List[Respondent]] = None # focus vision self.loop_mappings: Optional[DataFrame] = None self.loop_expressions: Optional[DataFrame] = None self.questions_metadata_original: Optional[DataFrame] = None def run(self) -> Survey: """ Run all the steps to create the Survey object. """ self.read_survey_data() self.read_metadata() self.validate_metadata() self.convert_metadata_to_objects() self.clean_survey_data() self.format_survey_data() self.create_survey_components() self.create_survey() return self.survey def read_survey_data(self): """ Read the raw survey data file and do any custom pre-cleaning. """ data = read_csv(self.survey_data_fn) if self.pre_clean is not None: data = self.pre_clean(data) self.survey_data = data def _filter_to_survey(self, metadata: DataFrame) -> DataFrame: """ Filter the given metadata to only contain metadata for the current survey. """ if self.survey_id_col in metadata.columns: metadata = metadata.loc[ (metadata[self.survey_id_col] == self.survey_id) | (metadata[self.survey_id_col].isnull()) ] return metadata def read_metadata(self): """ Read the question, attribute and order metadata from the Excel metadata file. """ metadata = ExcelFile(self.metadata_fn) # read metadata questions_metadata = read_excel(metadata, 'questions') attributes_metadata = read_excel(metadata, 'attributes') orders_metadata = read_excel(metadata, 'orders') orders_metadata['value'] = orders_metadata['value'].astype(str) # filter to specified survey if None not in (self.survey_id_col, self.survey_id): questions_metadata = self._filter_to_survey(questions_metadata) attributes_metadata = self._filter_to_survey(attributes_metadata) orders_metadata = self._filter_to_survey(orders_metadata) # check for clashes in question, attribute and category names category_names = sorted(orders_metadata['category'].unique()) q_name_errors = [] for q_name in sorted(questions_metadata['name'].unique()): if q_name in category_names: q_name_errors.append(q_name) if q_name_errors: raise ValueError( f'The following categories clash with question names. ' f'Rename questions or categories.\n{q_name_errors}' ) a_name_errors = [] for a_name in sorted(attributes_metadata['name'].unique()): if a_name in category_names: a_name_errors.append(a_name) if a_name_errors: raise ValueError( f'The following categories clash with attribute names. ' f'Rename attributes or categories.\n{a_name_errors}' ) # create ordered choices for questions and attributes with shared # choices for meta in (attributes_metadata, questions_metadata): for idx, row in meta.iterrows(): if
notnull(row['categories'])
pandas.notnull
#!/home/brian/miniconda3/bin/python3.7 # encoding: utf-8 """ Read the docs, obey PEP 8 and PEP 20 (Zen of Python, import this) Build on: Spyder Python ver: 3.7.3 Created on Thu Oct 17 21:14:04 2019 @author: brian """ # %% modules: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.tree import plot_tree from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import MinMaxScaler pd.set_option('display.max_rows', 50)
pd.set_option('display.max_columns', 500)
pandas.set_option
from datetime import datetime import re import unittest import nose from nose.tools import assert_equal import numpy as np from pandas.tslib import iNaT from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp from pandas import compat from pandas.compat import range, long, lrange, lmap, u from pandas.core.common import notnull, isnull import pandas.core.common as com import pandas.util.testing as tm import pandas.core.config as cf _multiprocess_can_split_ = True def test_mut_exclusive(): msg = "mutually exclusive arguments: '[ab]' and '[ab]'" with tm.assertRaisesRegexp(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_is_sequence(): is_seq = com._is_sequence assert(is_seq((1, 2))) assert(is_seq([1, 2])) assert(not is_seq("abcd")) assert(not is_seq(u("abcd"))) assert(not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert(not is_seq(A())) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(notnull(float_series), Series)) assert(isinstance(notnull(obj_series), Series)) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert not isnull(np.inf) assert not isnull(-np.inf) float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(isnull(float_series), Series)) assert(isinstance(isnull(obj_series), Series)) # call on DataFrame df = DataFrame(np.random.randn(10, 5)) df['foo'] = 'bar' result = isnull(df) expected = result.apply(isnull) tm.assert_frame_equal(result, expected) def test_isnull_tuples(): result = isnull((1, 2)) exp = np.array([False, False]) assert(np.array_equal(result, exp)) result = isnull([(False,)]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = isnull([(1,), (2,)]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = isnull(('foo', 'bar')) assert(not result.any()) result = isnull((u('foo'), u('bar'))) assert(not result.any()) def test_isnull_lists(): result = isnull([[False]]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = isnull(['foo', 'bar']) assert(not result.any()) result = isnull([u('foo'), u('bar')]) assert(not result.any()) def test_isnull_datetime(): assert (not isnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert(notnull(idx).all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) assert(mask[0]) assert(not mask[1:].any()) def test_datetimeindex_from_empty_datetime64_array(): for unit in [ 'ms', 'us', 'ns' ]: idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit)) assert(len(idx) == 0) def test_nan_to_nat_conversions(): df = DataFrame(dict({ 'A' : np.asarray(lrange(10),dtype='float64'), 'B' : Timestamp('20010101') })) df.iloc[3:6,:] = np.nan result = df.loc[4,'B'].value assert(result == iNaT) s = df['B'].copy() s._data = s._data.setitem(tuple([slice(8,9)]),np.nan) assert(isnull(s[8])) # numpy < 1.7.0 is wrong from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.7.0': assert(s[8].value == np.datetime64('NaT').astype(np.int64)) def test_any_none(): assert(com._any_none(1, 2, 3, None)) assert(not com._any_none(1, 2, 3, 4)) def test_all_not_none(): assert(com._all_not_none(1, 2, 3, 4)) assert(not com._all_not_none(1, 2, 3, None)) assert(not com._all_not_none(None, None, None, None)) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.get_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = com.pprint_thing(b, quote_strings=True) assert_equal(res, repr(b)) res = com.pprint_thing(b, quote_strings=False) assert_equal(res, b) def test_rands(): r = com.rands(10) assert(len(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = com.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(com.iterpairs(data)) assert(result == expected) def test_split_ranges(): def _bin(x, width): "return int(x) as a base2 string of given width" return ''.join(str((x >> i) & 1) for i in range(width - 1, -1, -1)) def test_locs(mask): nfalse = sum(np.array(mask) == 0) remaining = 0 for s, e in com.split_ranges(mask): remaining += e - s assert 0 not in mask[s:e] # make sure the total items covered by the ranges are a complete cover assert remaining + nfalse == len(mask) # exhaustively test all possible mask sequences of length 8 ncols = 8 for i in range(2 ** ncols): cols = lmap(int, list(_bin(i, ncols))) # count up in base2 mask = [cols[i] == 1 for i in range(len(cols))] test_locs(mask) # base cases test_locs([]) test_locs([0]) test_locs([1]) def test_indent(): s = 'a b c\nd e f' result = com.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = com.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_map_indices_py(): data = [4, 3, 2, 1] expected = {4: 0, 3: 1, 2: 2, 1: 3} result = com.map_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(com.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.difference(b, a)) assert([4, 5, 6] == inter) def test_intersection(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.intersection(a, b)) assert(a == inter) def test_groupby(): values = ['foo', 'bar', 'baz', 'baz2', 'qux', 'foo3'] expected = {'f': ['foo', 'foo3'], 'b': ['bar', 'baz', 'baz2'], 'q': ['qux']} grouped = com.groupby(values, lambda x: x[0]) for k, v in grouped: assert v == expected[k] def test_is_list_like(): passes = ([], [1], (1,), (1, 2), {'a': 1}, set([1, 'a']), Series([1]), Series([]), Series(['a']).str) fails = (1, '2', object()) for p in passes: assert com.is_list_like(p) for f in fails: assert not com.is_list_like(f) def test_ensure_int32(): values = np.arange(10, dtype=np.int32) result = com._ensure_int32(values) assert(result.dtype == np.int32) values = np.arange(10, dtype=np.int64) result = com._ensure_int32(values) assert(result.dtype == np.int32) def test_ensure_platform_int(): # verify that when we create certain types of indices # they remain the correct type under platform conversions from pandas.core.index import Int64Index # int64 x = Int64Index([1, 2, 3], dtype='int64') assert(x.dtype == np.int64) pi = com._ensure_platform_int(x) assert(pi.dtype == np.int_) # int32 x = Int64Index([1, 2, 3], dtype='int32') assert(x.dtype == np.int32) pi = com._ensure_platform_int(x) assert(pi.dtype == np.int_) # TODO: fix this broken test # def test_console_encode(): # """ # On Python 2, if sys.stdin.encoding is None (IPython with zmq frontend) # common.console_encode should encode things as utf-8. # """ # if compat.PY3: # raise nose.SkipTest # with tm.stdin_encoding(encoding=None): # result = com.console_encode(u"\u05d0") # expected = u"\u05d0".encode('utf-8') # assert (result == expected) def test_is_re(): passes = re.compile('ad'), fails = 'x', 2, 3, object() for p in passes: assert com.is_re(p) for f in fails: assert not com.is_re(f) def test_is_recompilable(): passes = (r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')) fails = 1, [], object() for p in passes: assert com.is_re_compilable(p) for f in fails: assert not com.is_re_compilable(f) class TestTake(unittest.TestCase): # standard incompatible fill error fill_error = re.compile("Incompatible type for fill_value") _multiprocess_can_split_ = True def test_1d_with_out(self): def _test_dtype(dtype, can_hold_na): data = np.random.randint(0, 2, 4).astype(dtype) indexer = [2, 1, 0, 1] out = np.empty(4, dtype=dtype) com.take_1d(data, indexer, out=out) expected = data.take(indexer) tm.assert_almost_equal(out, expected) indexer = [2, 1, 0, -1] out = np.empty(4, dtype=dtype) if can_hold_na: com.take_1d(data, indexer, out=out) expected = data.take(indexer) expected[3] = np.nan tm.assert_almost_equal(out, expected) else: with tm.assertRaisesRegexp(TypeError, self.fill_error): com.take_1d(data, indexer, out=out) # no exception o/w data.take(indexer, out=out) _test_dtype(np.float64, True) _test_dtype(np.float32, True) _test_dtype(np.uint64, False) _test_dtype(np.uint32, False) _test_dtype(np.uint16, False) _test_dtype(np.uint8, False) _test_dtype(np.int64, False) _test_dtype(np.int32, False) _test_dtype(np.int16, False) _test_dtype(np.int8, False) _test_dtype(np.object_, True) _test_dtype(np.bool, False) def test_1d_fill_nonna(self): def _test_dtype(dtype, fill_value, out_dtype): data = np.random.randint(0, 2, 4).astype(dtype) indexer = [2, 1, 0, -1] result = com.take_1d(data, indexer, fill_value=fill_value) assert((result[[0, 1, 2]] == data[[2, 1, 0]]).all()) assert(result[3] == fill_value) assert(result.dtype == out_dtype) indexer = [2, 1, 0, 1] result =
com.take_1d(data, indexer, fill_value=fill_value)
pandas.core.common.take_1d
from abc import abstractmethod from collections import OrderedDict import os import pickle import re from typing import Tuple, Union import pandas as pd import numpy as np import gym from gridworld.log import logger from gridworld import ComponentEnv from gridworld.utils import to_scaled, to_raw, maybe_rescale_box_space from gridworld.agents.buildings.obs_space import make_obs_space from gridworld.agents.buildings import defaults from gridworld.agents.buildings import five_zone_rom_dynamics as dyn # Below are control variables' boundary. MAX_FLOW_RATE = [2.2, 2.2, 2.2, 2.2, 3.2] # Max flow rate for each individual zone MIN_FLOW_RATE = [.22, .22, .22, .22, .32] # Max flow rate for each individual zone MAX_TOTAL_FLOW_RATE = 10.0 # Total flow rate for all zones should be lower than 10 kg/sec. MAX_DISCHARGE_TEMP = 16.0 # Max temp of air leaving chiller MIN_DISCHARGE_TEMP = 10.0 # Min temp of air leaving chiller DEFAULT_COMFORT_BOUNDS = (22., 28.) # Temps between these values are considered "comfortable" def load_data(start_time: str = None, end_time: str = None) -> Tuple[pd.DataFrame, dict]: """Returns exogenous data dataframe, and state space model (per-zone) dict.""" THIS_DIR = os.path.dirname(os.path.abspath(__file__)) df = pd.read_csv(os.path.join(THIS_DIR, "data/exogenous_data.csv"), index_col=0) df.index = pd.DatetimeIndex(df.index) start_time =
pd.Timestamp(start_time)
pandas.Timestamp
import numpy as np import pandas as pd from scipy.optimize import least_squares from scipy.optimize import OptimizeResult from numba.typed import List from mspt.diff.diffusion_analysis_functions import calc_msd, calc_jd_nth, lin_fit_msd_offset, lin_fit_msd_offset_iterative from mspt.diff.diffusion_analysis_functions import fit_jdd_cumul_off, fit_jdd_cumul_off_2c, fit_msd_jdd_cumul_off_global, fit_msd_jdd_cumul_off_global_2c from mspt.diff.diffusion_analysis_jacobians import jdd_jac, jdd_jac_2c, msd_jdd_jac, msd_jdd_jac_2c def fit_JDD_MSD(trajectory_id, trajs_df, frame_rate=199.8, pixel_size=84.4, n_timelags_MSD=None, n_timelags_JDD=None): dict_traj = dict() dict_jdd_msd = dict() for d, i in enumerate(trajectory_id): traj = trajs_df[trajs_df['particle']==i] ti = np.asarray(traj['frame']) c = np.asarray(-traj['contrast']) x = np.asarray(traj['x']) * pixel_size / 1000.0 # in microns y = np.asarray(traj['y']) * pixel_size / 1000.0 # in microns dict_traj[d] = (traj['x'].values,traj['y'].values,-traj['contrast'].values) length = len(x) med_c = np.median(c) mean_c = np.mean(c) center_time = np.median(ti) ### MSD fit ########################## MSD = calc_msd(x,y) if n_timelags_MSD is None: res_lsq_msd = lin_fit_msd_offset_iterative(MSD[1:], # MSD[0] is 0 1./frame_rate, # time lag in seconds max_it=10) else: slope, offset, SSR = lin_fit_msd_offset(MSD[1:], # MSD[0] is 0 1./frame_rate) # time lag in seconds res_lsq_msd = [slope/4., offset/4., SSR[0], n_timelags_MSD] # Check if first 3 MSD data points are monotonously increasing if np.any(np.diff(MSD)[:3]<0)==False: MSD_check = True else: MSD_check = False # Truncate MSD data MSD = MSD[1:res_lsq_msd[3]+1] # Set number of time lags included in JDD fitting if n_timelags_JDD is None: n_tau_JDD = res_lsq_msd[3] else: n_tau_JDD = n_timelags_JDD # Precalculate JDDs for different lag times for later use JDDs = list() for tau in np.arange(1,n_tau_JDD+1,1): jdd = calc_jd_nth(x, y, n=tau) jdd_sorted = np.empty((jdd.size+1,),dtype=np.float64) jdd_sorted[0] = 0. jdd_sorted[1:] = np.sort(jdd) JDDs.append(jdd_sorted) JDDs = List(JDDs) ###################################### ### JDD fit: 1 component ############# jdd_1c_flag = False try: res_lsq_jdd = least_squares(fit_jdd_cumul_off, np.array([1.0,0.005]), jac=jdd_jac, args=(JDDs,length,1./frame_rate,n_tau_JDD), method = 'lm', x_scale='jac') except: try: # Restrict the offset parameter if fit failed jdd_1c_flag = True # flag trajectory if fit failed with initial boundary conditions bounds_x0_1c = ([0.00001, -0.03],[np.inf, np.inf]) res_lsq_jdd = least_squares(fit_jdd_cumul_off, np.array([0.5,0.005]), jac=jdd_jac, args=(JDDs,length,1./frame_rate,n_tau_JDD), bounds = bounds_x0_1c, method = 'dogbox', x_scale='jac') except: # Fill results dict manually if second fit failed res_lsq_jdd = OptimizeResult( {'x' : np.full(2, np.nan), 'fun': np.array([np.nan]), 'success': False} ) ###################################### ### JDD fit: 2 components ############ jdd_2c_flag = False try: res_lsq_jdd_2c = least_squares(fit_jdd_cumul_off_2c, np.array([0.1,1.0,0.5,0.005]), jac=jdd_jac_2c, args=(JDDs,length,1./frame_rate,n_tau_JDD), method = 'lm', x_scale='jac') except: try: # Restrict the offset parameter if fit failed jdd_2c_flag = True # flag trajectory if fit failed with initial boundary conditions bounds_x0_2c = ([0.00001, 0.00001, 0.0,-0.03],[np.inf, np.inf, 1.0,np.inf]) res_lsq_jdd_2c = least_squares(fit_jdd_cumul_off_2c, np.array([0.1,1.0,0.5,0.005]), jac=jdd_jac_2c, args=(JDDs,length,1./frame_rate,n_tau_JDD), bounds = bounds_x0_2c, method = 'dogbox', x_scale='jac') except: # Fill results dict manually if second fit failed res_lsq_jdd_2c = OptimizeResult( {'x' : np.full(4, np.nan), 'fun': np.array([np.nan]), 'success': False} ) ###################################### ### Global fit MSD & JDD: 1 component msd_jdd_1c_flag = False try: res_lsq_msd_jdd_1c = least_squares(fit_msd_jdd_cumul_off_global, np.array([1.0,0.004]), jac=msd_jdd_jac, args=(JDDs,MSD,length,1./frame_rate,n_tau_JDD), method = 'lm', x_scale='jac') except: try: # Restrict the offset parameter if fit failed msd_jdd_1c_flag = True bounds_x0_1c = ([0.00001, -0.03],[np.inf, np.inf]) res_lsq_msd_jdd_1c = least_squares(fit_msd_jdd_cumul_off_global, np.array([1.0,0.004]), jac=msd_jdd_jac, args=(JDDs,MSD,length,1./frame_rate,n_tau_JDD), bounds = bounds_x0_1c, method = 'dogbox', x_scale='jac') except: # Fill results dict manually if second fit failed res_lsq_msd_jdd_1c = OptimizeResult( {'x' : np.full(2, np.nan), 'fun': np.array([np.nan]), 'success': False} ) ###################################### ### Global fit MSD & JDD: 2 components msd_jdd_2c_flag = False try: res_lsq_msd_jdd_2c = least_squares(fit_msd_jdd_cumul_off_global_2c, np.array([0.1,1.0,0.5,0.004]), jac=msd_jdd_jac_2c, args=(JDDs,MSD,length,1./frame_rate,n_tau_JDD), method = 'lm', x_scale='jac') except: try: # Restrict the offset parameter if fit failed msd_jdd_2c_flag = True bounds_x0_2c = ([0.00001, 0.00001, 0.0,-0.03],[np.inf, np.inf, 1.0,np.inf]) res_lsq_msd_jdd_2c = least_squares(fit_msd_jdd_cumul_off_global_2c, np.array([0.1,1.0,0.5,0.004]), jac=msd_jdd_jac_2c, args=(JDDs,MSD,length,1./frame_rate,n_tau_JDD), bounds = bounds_x0_2c, method = 'trf', x_scale='jac') except: # Fill results dict manually if second fit failed res_lsq_msd_jdd_2c = OptimizeResult( {'x' : np.full(4, np.nan), 'fun': np.array([np.nan]), 'success': False} ) ###################################### tmp_array = np.full((34),np.nan) ### Trajectory statistics ############################################################################################################## tmp_array[0] = length # Trajectory length tmp_array[1] = center_time # Center frame of trajectory tmp_array[2] = med_c # Median contrast of trajectory tmp_array[3] = mean_c # Mean contrast of trajectory ######################################################################################################################################## ### MSD fit ############################################################################################################################ tmp_array[4] = res_lsq_msd[0] # Diffusion coefficient tmp_array[5] = res_lsq_msd[1] # Localization uncertainty squared if res_lsq_msd[3] == 2: tmp_array[6] = 0 # Reduced chi squared = 0, exact solution (line through 2 datapoints) else: tmp_array[6] = res_lsq_msd[2]/(res_lsq_msd[3] - 2.) # Reduced chi squared tmp_array[7] = MSD_check # True if first 3 MSD data points are monotonously increasing ######################################################################################################################################## ### JDD fit: 1 component ############################################################################################################### tmp_array[8] = res_lsq_jdd.x[0] # Diffusion coefficient tmp_array[9] = res_lsq_jdd.x[1] # Localization uncertainty squared tmp_array[10] = np.sum(res_lsq_jdd.fun**2)/(len(res_lsq_jdd.fun) - 2.) # Reduced chi squared tmp_array[11] = res_lsq_jdd.success # True if fit successful tmp_array[12] = jdd_1c_flag # True if fit with initial boundary conditions failed ######################################################################################################################################## ### JDD fit: 2 components ############################################################################################################## tmp_array[13] = res_lsq_jdd_2c.x[0] # Diffusion coefficient component 1 tmp_array[14] = res_lsq_jdd_2c.x[1] # Diffusion coefficient component 2 tmp_array[15] = res_lsq_jdd_2c.x[2] # Amplitude component 1 tmp_array[16] = 1.0 - res_lsq_jdd_2c.x[2] # Amplitude component 2 tmp_array[17] = res_lsq_jdd_2c.x[3] # Localization uncertainty squared tmp_array[18] = np.sum(res_lsq_jdd_2c.fun**2)/(len(res_lsq_jdd_2c.fun) - 4.) # Reduced chi squared tmp_array[19] = res_lsq_jdd_2c.success # True if fit successful tmp_array[20] = jdd_2c_flag # True if fit with initial boundary conditions failed ######################################################################################################################################## ### Global fit MSD & JDD: 1 component ################################################################################################## tmp_array[21] = res_lsq_msd_jdd_1c.x[0] # Diffusion coefficient tmp_array[22] = res_lsq_msd_jdd_1c.x[1] # Localization uncertainty squared tmp_array[23] = np.sum((res_lsq_msd_jdd_1c.fun[:])**2)/float(len(x) - 2) # Reduced chi squared tmp_array[24] = res_lsq_msd_jdd_1c.success # True if fit successful tmp_array[25] = msd_jdd_1c_flag # True if fit with initial boundary conditions failed ######################################################################################################################################## ### Global fit MSD & JDD: 2 components ################################################################################################# tmp_array[26] = res_lsq_msd_jdd_2c.x[0] # Diffusion coefficient component 1 tmp_array[27] = res_lsq_msd_jdd_2c.x[1] # Diffusion coefficient component 1 tmp_array[28] = res_lsq_msd_jdd_2c.x[2] # Amplitude component 1 tmp_array[29] = 1.0 - res_lsq_msd_jdd_2c.x[2] # Amplitude component 2 tmp_array[30] = res_lsq_msd_jdd_2c.x[3] # Localization uncertainty squared tmp_array[31] = np.sum((res_lsq_msd_jdd_2c.fun[:])**2)/float(len(x) - 4) # Reduced chi squared tmp_array[32] = res_lsq_msd_jdd_2c.success # True if fit successful tmp_array[33] = msd_jdd_2c_flag # True if fit with initial boundary conditions failed ######################################################################################################################################## dict_jdd_msd[d] = tmp_array df_jdd_msd = pd.DataFrame.from_dict(dict_jdd_msd, orient='index', columns=['len','center frame', 'med_c','mean_c', 'D_MSD','off_MSD', 'chi_MSD' ,'MSD_check', 'D_JDD', 'off_JDD', 'chi_JDD', 'fit_JDD_success', 'flag_JDD_c1', 'D_1_JDD_2c', 'D_2_JDD_2c', 'A_1_JDD_2c', 'A_2_JDD_2c', 'off_JDD_2c', 'chi_JDD_2c', 'fit_JDD_2c_success', 'flag_JDD_2c', 'D_MSD_JDD','off_MSD_JDD', 'chi_MSD_JDD','fit_MSD_JDD_1c_success', 'flag_MSD_JDD_1c', 'D_1_MSD_JDD_2c','D_2_MSD_JDD_2c','A_1_MSD_JDD_2c','A_2_MSD_JDD_2c', 'off_MSD_JDD_2c', 'chi_MSD_JDD_2c' , 'fit_MSD_JDD_2c_success', 'flag_MSD_JDD_2c']) dtypes = {'len': np.uint32, 'MSD_check': np.bool_, 'fit_JDD_success': np.bool_, 'flag_JDD_c1': np.bool_, 'fit_JDD_2c_success': np.bool_, 'flag_JDD_2c': np.bool_, 'fit_MSD_JDD_1c_success': np.bool_, 'flag_MSD_JDD_1c': np.bool_, 'fit_MSD_JDD_2c_success': np.bool_, 'flag_MSD_JDD_2c': np.bool_} df_jdd_msd = df_jdd_msd.astype(dtypes) # Calculate effective diffusion coefficient for 2 component JDD df_jdd_msd['Deff_JDD_2c'] = np.where( ( (df_jdd_msd['fit_JDD_2c_success']==True) & (df_jdd_msd['D_1_JDD_2c']>0) & (df_jdd_msd['D_2_JDD_2c']>0) & (df_jdd_msd['A_1_JDD_2c'].between(0,1)) ), (df_jdd_msd['A_1_JDD_2c'] * df_jdd_msd['D_1_JDD_2c'] + df_jdd_msd['A_2_JDD_2c'] * df_jdd_msd['D_2_JDD_2c'] ), np.nan ) # Select 1 or 2 component JDD fit based on reduced chi squared criteria # In case of non-physical fit results, choose 1 component JDD df_jdd_msd['Deff_JDD'] = np.where( ( (df_jdd_msd['chi_JDD_2c']<df_jdd_msd['chi_JDD']) & (~df_jdd_msd['Deff_JDD_2c'].isna()) ), df_jdd_msd['Deff_JDD_2c'], df_jdd_msd['D_JDD']) # Calculate effective diffusion coefficient for 2 component global MSD and JDD fit df_jdd_msd['Deff_MSD_JDD_2c'] = np.where( ( (df_jdd_msd['fit_MSD_JDD_2c_success']==True) & (df_jdd_msd['D_1_MSD_JDD_2c']>0) & (df_jdd_msd['D_2_MSD_JDD_2c']>0) & (df_jdd_msd['A_1_MSD_JDD_2c'].between(0,1)) ), (df_jdd_msd['A_1_MSD_JDD_2c'] * df_jdd_msd['D_1_MSD_JDD_2c'] + df_jdd_msd['A_2_MSD_JDD_2c'] * df_jdd_msd['D_2_MSD_JDD_2c'] ), np.nan) # Select 1 or 2 component global MSD and JDD fit based on reduced chi squared criteria # In case of non-physical fit results, choose 1 component JDD df_jdd_msd['Deff_MSD_JDD'] = np.where( ( (df_jdd_msd['chi_MSD_JDD_2c']<df_jdd_msd['chi_MSD_JDD']) & (~df_jdd_msd['Deff_MSD_JDD_2c'].isna()) ), df_jdd_msd['Deff_MSD_JDD_2c'], df_jdd_msd['D_MSD_JDD']) # Create DataFrame containing the whole trajectory information (list of x positions, y positions, and contrasts) in three columns traj_df_temp = pd.DataFrame.from_dict(dict_traj, orient='index', columns=['x pos','y pos','contrast']) # Set dtype to object as multiple values are contained in each cell traj_df_temp = traj_df_temp.astype(object) # Merge DataFrames horizontally df_jdd_msd =
pd.concat([df_jdd_msd, traj_df_temp], axis=1)
pandas.concat
import numpy as np import pytest from pandas import ( Categorical, CategoricalDtype, NaT, Timestamp, array, to_datetime, ) import pandas._testing as tm class TestAstype: def test_astype_str_int_categories_to_nullable_int(self): # GH#39616 dtype = CategoricalDtype([str(i) for i in range(5)]) codes = np.random.randint(5, size=20) arr = Categorical.from_codes(codes, dtype=dtype) res = arr.astype("Int64") expected = array(codes, dtype="Int64") tm.assert_extension_array_equal(res, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_astype(self, ordered): # string cat = Categorical(list("abbaaccc"), ordered=ordered) result = cat.astype(object) expected = np.array(cat) tm.assert_numpy_array_equal(result, expected) msg = r"Cannot cast object dtype to float64" with pytest.raises(ValueError, match=msg): cat.astype(float) # numeric cat = Categorical([0, 1, 2, 2, 1, 0, 1, 0, 2], ordered=ordered) result = cat.astype(object) expected = np.array(cat, dtype=object) tm.assert_numpy_array_equal(result, expected) result = cat.astype(int) expected = np.array(cat, dtype="int") tm.assert_numpy_array_equal(result, expected) result = cat.astype(float) expected = np.array(cat, dtype=float) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype_ordered", [True, False]) @pytest.mark.parametrize("cat_ordered", [True, False]) def test_astype_category(self, dtype_ordered, cat_ordered): # GH#10696/GH#18593 data = list("abcaacbab") cat = Categorical(data, categories=list("bac"), ordered=cat_ordered) # standard categories dtype = CategoricalDtype(ordered=dtype_ordered) result = cat.astype(dtype) expected = Categorical(data, categories=cat.categories, ordered=dtype_ordered) tm.assert_categorical_equal(result, expected) # non-standard categories dtype = CategoricalDtype(list("adc"), dtype_ordered) result = cat.astype(dtype) expected = Categorical(data, dtype=dtype) tm.assert_categorical_equal(result, expected) if dtype_ordered is False: # dtype='category' can't specify ordered, so only test once result = cat.astype("category") expected = cat tm.assert_categorical_equal(result, expected) def test_astype_object_datetime_categories(self): # GH#40754 cat = Categorical(to_datetime(["2021-03-27", NaT])) result = cat.astype(object) expected = np.array([
Timestamp("2021-03-27 00:00:00")
pandas.Timestamp
import math as math import numpy as np import re import pandas as pd import spimcube.functions as fct def initialization(path, basename): """Return a dictionary with: NStepsX, NStepsY, Npixel, Matrix, tab_of_lambda, Xstep, Ystep, Xrange, Yrange.""" # create the complete file name with extension data = path + basename + ".dat" Lambda = path + basename + ".lambda" init = path + basename + ".ini" #___load 'data' file, extract the first three values and create a list without them___ Rawfile = np.fromfile(data, dtype='>i4', count=-1, sep="") NStepsX = Rawfile[0] NStepsY = Rawfile[1] CCD_nb_pixels = Rawfile[2] Data = Rawfile[3:] #___create a 3D matrix in desired dimensions and fill it with the elements from the 'Data' binary file___ Matrix = np.reshape(Data, (NStepsY, NStepsX, CCD_nb_pixels)) #normalization #Matrix = Matrix / np.amax(Matrix) #___load Lambda file and convert in float___ LAMBDA = np.loadtxt(Lambda, dtype=np.str) LAMBDAf = [0 for index in range(len(LAMBDA))] for index in range(len(LAMBDA)): LAMBDAf[index] = float(LAMBDA[index].replace("," , ".")) #___generate X & Y 1D array of scanned positions___ Xstep = fct.get_value("PasX", init) Ystep = fct.get_value("PasY", init) Xrange = np.linspace(Xstep, Xstep*NStepsX, NStepsX, dtype='>f4') # building 1D array of X position Yrange = np.linspace(Ystep, Ystep*NStepsY, NStepsY, dtype='>f4') # and Y position in µm return {'NStepsX':NStepsX, 'NStepsY':NStepsY ,'Npixel':CCD_nb_pixels, 'Matrix': Matrix, 'tab_of_lambda':LAMBDAf, 'Xstep':Xstep, 'Ystep':Ystep, 'Xrange':Xrange, 'Yrange':Yrange} def initialization_winspec32(path, basename, NStepsX=None, NStepsY=None, Xstep=None, Ystep=None, CCD_nb_pixels=1340): """ Return a dictionary with: NStepsX, NStepsY, Npixel, Matrix, tab_of_lambda, Xstep, Ystep, Xrange, Yrange Use Regex for NStepsX/NStepsX/Xstep/Ystep providing that the keywords 'steps' and 'mum' are used in the filename. """ filename = path + basename + ".txt" if NStepsX is None or NStepsY is None: pattern = r"(\w*)x(\w*)" + 'steps' # specific to how we write the file name values = re.findall(pattern, basename) NStepsX = int(values[0][0]) NStepsY = int(values[0][1]) if Xstep is None or Ystep is None: pattern = r"(\w*)x(\w*)" + 'mum' # specific to how we write the file name values = re.findall(pattern, basename) Xstep = int(values[0][0]) Ystep = int(values[0][1]) Xrange = np.linspace(Xstep, Xstep*NStepsX, NStepsX, dtype='>f4') # building 1D array of X position Yrange = np.linspace(Ystep, Ystep*NStepsY, NStepsY, dtype='>f4') # and Y position in µm column_1, column_2 = np.loadtxt(filename, unpack=True) tab_of_lambda = column_1[0:CCD_nb_pixels] Matrix = column_2.reshape(NStepsX, NStepsY, CCD_nb_pixels) return {'NStepsX':NStepsX, 'NStepsY':NStepsY ,'Npixel':CCD_nb_pixels, 'Matrix': Matrix, 'tab_of_lambda':tab_of_lambda, 'Xstep':Xstep, 'Ystep':Ystep, 'Xrange':Xrange, 'Yrange':Yrange} def define_space_range(Xmin, Xmax, Ymin, Ymax, RangeXY): """Return a dictionary with: Xpmin, Xpmax, Ypmin, Ypmax.""" #___provide pixel numbers and corresponding values for plotting image in the desired space area___ SpaceArea = [Xmin, Xmax, Ymin, Ymax] # define plot area in µm PixelArea = [Xpmin, Xpmax, Ypmin, Ypmax] = np.zeros((4, 2), dtype='>f4') # define plot area in pixel for i, parameter in enumerate(SpaceArea): PixelArea[i] = fct.find_nearest(RangeXY[0 if i<2 else 1], parameter) #function defined in package.functions return {'Xpmin':Xpmin, 'Xpmax':Xpmax, 'Ypmin':Ypmin, 'Ypmax':Ypmax} def initialization_Bsweep(path, basename, B_init, B_final, B_step, CCD_nb_pixels=1340): """Return a dictionary with: Matrix, tab_of_lambda, B_range, B_step, Npixel.""" filename = path + basename + ".txt" number_Bsweep = int(np.rint((B_final - B_init) / B_step + 1)) # building 1D array of B values column_1, column_2 = np.loadtxt(filename, unpack=True) tab_of_lambda = column_1[0:CCD_nb_pixels] Matrix = column_2.reshape(number_Bsweep, CCD_nb_pixels) return {'Matrix': Matrix, 'tab_of_lambda':tab_of_lambda, 'B_range':B_range, 'B_step':B_step, 'Npixel':CCD_nb_pixels} def df_from_bsweep(folder, file, B_init, B_final, step, CCD_nb_pixels=1340): """ Return a dataframe from a sweep in magnetic field, i.e from a file containing several spectra at different field. """ number_of_steps = int((B_final - B_init)/step + 1) B_values = np.linspace(B_init, B_final, number_of_steps, dtype='>f4') # Extract the spectra. col_1, col_2 = np.loadtxt(folder+file+'.txt', unpack=True) col_1 = np.reshape(col_1, (number_of_steps, CCD_nb_pixels)) col_2 = np.reshape(col_2, (number_of_steps, CCD_nb_pixels)) # Create the list of the different quantities. wavelength = [list(x) for x in col_1] intensity = [list(y) for y in col_2] energy = [list(fct.nm_eV(x)) for x in wavelength] df =
pd.DataFrame(data={'B': B_values, 'wavelength': wavelength, 'energy': energy, 'intensity': intensity})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: # dataset src: https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households # file: UKPN-LCL-smartmeter-sample (986.99 kB) # In[2]: # A Time series is a collection of data points indexed, # listed or graphed in time order. # Most commonly, a time series is a sequence taken at # successive equally spaced points in time. # Thus it is a sequence of discrete-time data. # In[3]: # Load libraries import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import pandas as pd import numpy as np # In[5]: raw_data_filename = "UKPN-LCL-smartmeter-sample.csv" raw_data_df = pd.read_csv( raw_data_filename, header=0 ) # In[32]: display(raw_data_df.shape) display(raw_data_df.head(3)) display(raw_data_df.tail(3)) display(raw_data_df.dtypes) display(raw_data_df.columns.values) display(raw_data_df.describe(include='all')) display(raw_data_df.isnull().sum()) display(raw_data_df[raw_data_df['KWH/hh (per half hour) '] == 'Null'].shape) # (1, 6) # In[47]: raw_date_kwh_df = raw_data_df[['DateTime', 'KWH/hh (per half hour) ']].copy() raw_date_kwh_df = raw_date_kwh_df.rename(columns={"KWH/hh (per half hour) ": "KWH_hh"}) # In[49]: # fix row where "KWH_hh" equals 'Null' display(raw_date_kwh_df[raw_date_kwh_df['KWH_hh'] == 'Null']) # (1, 6) raw_date_kwh_df = raw_date_kwh_df.drop([2982]) # In[50]: # fix dtypes raw_date_kwh_df.loc[:, 'DateTime'] =
pd.to_datetime(raw_date_kwh_df.loc[:, 'DateTime'])
pandas.to_datetime
import re from pathlib import Path from typing import List import pandas as pd from scipy.io import arff from common import write_arff_file def create_index_partitions() -> List[int]: partitions = [] for i in range(10, 200, 10): partitions.append(i) for i in range(75, 126): partitions.append(i) return partitions def create_partitions(dataset_path: Path): data, a = arff.loadarff(dataset_path) df =
pd.DataFrame(data)
pandas.DataFrame
import ast import argparse import warnings import logging import os import json import boto3 import pickle # from prettytable import PrettyTable import subprocess import sys from urllib.parse import urlparse #os.system('pip install autogluon') # from autogluon import TabularPrediction as task import pandas as pd # this should come after the pip install. logging.basicConfig(level=logging.DEBUG) logging.info(subprocess.call('ls -lR /opt/ml/input'.split())) # with warnings.catch_warnings(): # warnings.filterwarnings('ignore', category=DeprecationWarning) # from prettytable import PrettyTable # import autogluon as ag # from autogluon import TabularPrediction as task # from autogluon.task.tabular_prediction import TabularDataset from prettytable import PrettyTable import autogluon as ag from autogluon import TabularPrediction as task from autogluon.task.tabular_prediction import TabularDataset def __load_input_data(path: str): """ Load training data as dataframe :param path: :return: DataFrame """ input_data_files = os.listdir(path) try: input_dfs = [pd.read_csv(f'{path}/{data_file}') for data_file in input_data_files] return task.Dataset(df=pd.concat(input_dfs)) except: print(f'No csv data in {path}!') return None def format_for_print(df): table = PrettyTable(list(df.columns)) for row in df.itertuples(): table.add_row(row[1:]) return str(table) def du(path): """disk usage in human readable format (e.g. '2,1GB')""" return subprocess.check_output(['du','-sh', path]).split()[0].decode('utf-8') # ------------------------------------------------------------ # # Training methods # # ------------------------------------------------------------ # def train(args): # SageMaker passes num_cpus, num_gpus and other args we can use to tailor training to # the current container environment, but here we just use simple cpu context. model_dir = args.model_dir # target = args.label # presets = args.presets # Load training and validation data print(f'Train files: {os.listdir(args.train)}') train_data = __load_input_data(args.train) columns = train_data.columns.tolist() column_dict = {"columns":columns} with open('columns.pkl', 'wb') as f: pickle.dump(column_dict, f) subsample_size = int(args.train_rows) # subsample subset of data for faster demo, try setting this to much larger values train_data = train_data.sample(n=subsample_size, random_state=0) # predictor = task.fit(train_data = train_data, label=target, # output_directory=model_dir, # presets = presets) # Train models predictor = task.fit( train_data=train_data, output_directory= model_dir, **args.fit_args, ) # Results summary predictor.fit_summary(verbosity=1) # Optional test data if args.test: print(f'Test files: {os.listdir(args.test)}') test_data = __load_input_data(args.test) # Test data must be labeled for scoring # Leaderboard on test data print('Running model on test data and getting Leaderboard...') leaderboard = predictor.leaderboard(dataset=test_data, silent=True) print(format_for_print(leaderboard), end='\n\n') # Feature importance on test data # Note: Feature importance must be calculated on held-out (test) data. # If calculated on training data it will be biased due to overfitting. if args.feature_importance: print('Feature importance:') # Increase rows to print feature importance
pd.set_option('display.max_rows', 500)
pandas.set_option
# -*- coding: utf-8 -*- """ Created on Sun May 21 13:13:26 2017 @author: ning """ import pandas as pd import os import numpy as np import matplotlib.pyplot as plt import pickle try: function_dir = 'D:\\NING - spindle\\Spindle_by_Graphical_Features' os.chdir(function_dir) except: function_dir = 'C:\\Users\\ning\\OneDrive\\python works\\Spindle_by_Graphical_Features' os.chdir(function_dir) import eegPipelineFunctions try: file_dir = 'D:\\NING - spindle\\training set\\road_trip\\' # file_dir = 'D:\\NING - spindle\\training set\\road_trip_29_channels\\' os.chdir(file_dir) except: file_dir = 'C:\\Users\\ning\\Downloads\\road_trip\\' # file_dir = 'C:\\Users\\ning\\Downloads\\road_trip_29_channels\\' os.chdir(file_dir) if False: signal_features_dict = {} graph_features_dict = {} for directory_1 in [f for f in os.listdir(file_dir) if ('epoch_length' in f)]: sub_dir = file_dir + directory_1 + '\\' epoch_length = directory_1[-3] os.chdir(sub_dir) df_cc, df_pli, df_plv, df_signal,df_graph = [],[],[],[],[] for sub_fold in os.listdir(sub_dir): sub_fold_dir = sub_dir + sub_fold + '\\' os.chdir(sub_fold_dir) cc_features, pli_features, plv_features, signal_features = [
pd.read_csv(f)
pandas.read_csv
import gzip import pickle5 as pickle # import pickle from collections import defaultdict import numpy as np import pandas as pd import os from copy import deepcopy import datetime import neat from tensorflow.python.framework.ops import default_session from scipy.optimize import curve_fit from ongoing.prescriptors.base import BasePrescriptor, PRED_CASES_COL, CASES_COL, NPI_COLUMNS, NPI_MAX_VALUES import ongoing.prescriptors.base as base path = '5days-results-2d-1-hidden' num_checkpoint = 26 ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) CHECKPOINTS_PREFIX = os.path.join(ROOT_DIR, 'neat-checkpoint-') # CONFIG_FILE = os.path.join(ROOT_DIR, '{}/config-prescriptor-multiobjective'.format(path)) CONFIG_FILE = os.path.join(ROOT_DIR, '{}/config-prescriptor-{}'.format(path, num_checkpoint)) TMP_PRED_FILE_NAME = os.path.join(ROOT_DIR, 'tmp_predictions_for_prescriptions', 'preds.csv') TMP_PRESCRIPTION_FILE = os.path.join(ROOT_DIR, 'tmp_prescription.csv') # Number of days the prescriptors will look at in the past. # Larger values here may make convergence slower, but give # prescriptors more context. The number of inputs of each neat # network will be NB_LOOKBACK_DAYS * (NPI_COLUMNS + 1) + NPI_COLUMNS. # The '1' is for previous case data, and the final NPI_COLUMNS # is for IP cost information. NB_LOOKBACK_DAYS = 21 # Number of countries to use for training. Again, lower numbers # here will make training faster, since there will be fewer # input variables, but could potentially miss out on useful info. NB_EVAL_COUNTRIES = 10 # Number of prescriptions to make per country. # This can be set based on how many solutions in PRESCRIPTORS_FILE # we want to run and on time constraints. NB_PRESCRIPTIONS = 10 # Number of days to fix prescribed IPs before changing them. # This could be a useful toggle for decision makers, who may not # want to change policy every day. Increasing this value also # can speed up the prescriptor, at the cost of potentially less # interesting prescriptions. ACTION_DURATION = 14 # Range of days the prescriptors will be evaluated on. # To save time during training, this range may be significantly # shorter than the maximum days a prescriptor can be evaluated on. EVAL_START_DATE = '2020-08-01' EVAL_END_DATE = '2020-08-02' # Maximum number of generations to run (unlimited if None) NB_GENERATIONS = 200 # Path to file containing neat prescriptors. Here we simply use a # recent checkpoint of the population from train_prescriptor.py, # but this is likely not the most complementary set of prescriptors. # Many approaches can be taken to generate/collect more diverse sets. # Note: this set can contain up to 10 prescriptors for evaluation. # PRESCRIPTORS_FILE = os.path.join(ROOT_DIR, '{}/neat-checkpoint-{}'.format(path, num_checkpoint)) PRESCRIPTORS_FILE = os.path.join(ROOT_DIR, '{}/neat-checkpoint-{}_short_pickle4'.format(path, num_checkpoint)) def dominates(one, other): """Return true if each objective of *one* is not strictly worse than the corresponding objective of *other* and at least one objective is strictly better. """ not_equal = False for self_wvalue, other_wvalue in zip(one, other): if self_wvalue > other_wvalue: not_equal = True elif self_wvalue < other_wvalue: return False return not_equal def sortNondominatedNSGA2(pop_arr, k, first_front_only=False): """Sort the first *k* *individuals* into different nondomination levels using the "Fast Nondominated Sorting Approach" proposed by Deb et al., see [Deb2002]_. This algorithm has a time complexity of :math:`O(MN^2)`, where :math:`M` is the number of objectives and :math:`N` the number of individuals. :param individuals: A list of individuals to select from. :param k: The number of individuals to select. :param first_front_only: If :obj:`True` sort only the first front and exit. :returns: A list of Pareto fronts (lists), the first list includes nondominated individuals. .. [Deb2002] Deb, Pratab, Agarwal, and Meyarivan, "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II", 2002. """ if k == 0: return [] map_fit_ind = defaultdict(list) for ind in pop_arr: map_fit_ind[ind.fitness_mult].append(ind) fits = list(map_fit_ind.keys()) current_front = [] next_front = [] dominating_fits = defaultdict(int) dominated_fits = defaultdict(list) # Rank first Pareto front for i, fit_i in enumerate(fits): for fit_j in fits[i + 1:]: if dominates(fit_i, fit_j): dominating_fits[fit_j] += 1 dominated_fits[fit_i].append(fit_j) elif dominates(fit_j, fit_i): dominating_fits[fit_i] += 1 dominated_fits[fit_j].append(fit_i) if dominating_fits[fit_i] == 0: current_front.append(fit_i) fronts = [[]] for fit in current_front: fronts[-1].extend(map_fit_ind[fit]) pareto_sorted = len(fronts[-1]) # Rank the next front until all individuals are sorted or # the given number of individual are sorted. if not first_front_only: N = min(len(pop_arr), k) while pareto_sorted < N: fronts.append([]) for fit_p in current_front: for fit_d in dominated_fits[fit_p]: dominating_fits[fit_d] -= 1 if dominating_fits[fit_d] == 0: next_front.append(fit_d) pareto_sorted += len(map_fit_ind[fit_d]) fronts[-1].extend(map_fit_ind[fit_d]) current_front = next_front next_front = [] return fronts def assignCrowdingDist(individuals): """Assign a crowding distance to each individual's fitness. It is done per front. """ if len(individuals) == 0: return distances = [0.0] * len(individuals) crowd = [(ind.fitness_mult, i) for i, ind in enumerate(individuals)] nobj = len(individuals[0].fitness_mult) for i in range(nobj): crowd.sort(key=lambda element: element[0][i]) distances[crowd[0][1]] = float("inf") distances[crowd[-1][1]] = float("inf") if crowd[-1][0][i] == crowd[0][0][i]: continue norm = nobj * float(crowd[-1][0][i] - crowd[0][0][i]) for prev, cur, next in zip(crowd[:-2], crowd[1:-1], crowd[2:]): distances[cur[1]] += (next[0][i] - prev[0][i]) / norm # find max and min distance max_val = -float("inf") min_val = float("inf") flag_plus_inf = False flag_minus_inf = False for dist in distances: if dist != float("inf") and max_val < dist: max_val = dist pass if dist != -float("inf") and min_val > dist: min_val = dist pass if dist == float("inf"): flag_plus_inf = True elif dist == -float("inf"): flag_minus_inf = True pass # set values equal to inf to be max + 0.5 # set values equal to -inf to be max - 0.5 # and rescale the rest if flag_plus_inf: max_val += 0.5 if flag_minus_inf: min_val -= 0.5 for i in range(0, len(distances)): if distances[i] == float("inf"): distances[i] = 1. elif distances[i] == -float("inf"): distances[i] = 0. else: distances[i] = (distances[i] - min_val) / (max_val - min_val) pass pass for i, dist in enumerate(distances): individuals[i].crowding_dist = dist / 2 pass pass def get_best_n_points(n, x_arr, y_arr): # 1. fit the curve # define the true objective function def objective(x, a, b, c): return a + b / (c - x) # fit curve popt, _ = curve_fit(objective, x_arr, y_arr) # get coefficients a, b, c = popt # define a sequence of inputs between the smallest and largest known inputs x_line = np.arange(min(x_arr), max(x_arr), 1) # calculate the output for the range y_line = objective(x_line, a, b, c) # 2. find arc length arc_len_arr = [] for pos in range(0, len(x_line) - 1): p1 = np.array([x_line[pos], y_line[pos]]) p2 = np.array([x_line[pos + 1], y_line[pos + 1]]) arc_len_arr.append(np.linalg.norm(p2 - p1)) arc_len_arr = np.array(arc_len_arr) # distance delta d = sum(arc_len_arr) / (n-1) # cumul_sum of art length arc_len_arr_cum = np.cumsum(arc_len_arr) # 3. choose ref. points # positions of reference points points_pos = [0] for i in range(1, (n-1)): dist = abs(arc_len_arr_cum - i * d) points_pos.append(np.argmin(dist) + 1) pass points_pos.append(len(x_line) - 1) ref_points = np.array([x_line[points_pos], y_line[points_pos]]).T # 4. approximate ref. points all_my_points = np.array([x_arr, y_arr]).T chosen_points = [] for ref_point in ref_points: dist = np.linalg.norm((all_my_points - ref_point), axis=1) pos = np.argmin(dist) chosen_points.append(pos) pass ref_points_pos = points_pos return chosen_points class Neat(BasePrescriptor): def __init__(self, seed=base.SEED, eval_start_date=EVAL_START_DATE, eval_end_date=EVAL_END_DATE, nb_eval_countries=NB_EVAL_COUNTRIES, nb_lookback_days=NB_LOOKBACK_DAYS, nb_prescriptions=NB_PRESCRIPTIONS, nb_generations=NB_GENERATIONS, action_duration=ACTION_DURATION, config_file=CONFIG_FILE, prescriptors_file=PRESCRIPTORS_FILE, hist_df=None, verbose=True): super().__init__(seed=seed) self.eval_start_date = pd.to_datetime(eval_start_date, format='%Y-%m-%d') self.eval_end_date = pd.to_datetime(eval_end_date, format='%Y-%m-%d') self.nb_eval_countries = nb_eval_countries self.nb_lookback_days = nb_lookback_days self.nb_prescriptions = nb_prescriptions self.nb_generations = nb_generations self.action_duration = action_duration self.config_file = config_file self.prescriptors_file = prescriptors_file self.hist_df = hist_df self.verbose = verbose def fit(self, hist_df=None): if hist_df is not None: self.hist_df = hist_df # As a heuristic, use the top NB_EVAL_COUNTRIES w.r.t. ConfirmedCases # so far as the geos for evaluation. eval_geos = list(self.hist_df.groupby('GeoID').max()['ConfirmedCases'].sort_values( ascending=False).head(self.nb_eval_countries).index) if self.verbose: print("Nets will be evaluated on the following geos:", eval_geos) # Pull out historical data for all geos past_cases = {} past_ips = {} for geo in eval_geos: geo_df = self.hist_df[self.hist_df['GeoID'] == geo] past_cases[geo] = np.maximum(0, np.array(geo_df[CASES_COL])) past_ips[geo] = np.array(geo_df[NPI_COLUMNS]) # Gather values for scaling network output ip_max_values_arr = np.array([NPI_MAX_VALUES[ip] for ip in NPI_COLUMNS]) # Load configuration. config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, self.config_file) # Create the population, which is the top-level object for a NEAT run. p = neat.Population(config) if self.verbose: # Add a stdout reporter to show progress in the terminal. p.add_reporter(neat.StdOutReporter(show_species_detail=True)) # Add statistics reporter to provide extra info about training progress. stats = neat.StatisticsReporter() p.add_reporter(stats) # Add checkpointer to save population every generation and every 10 minutes. p.add_reporter(neat.Checkpointer(generation_interval=1, time_interval_seconds=600, filename_prefix=CHECKPOINTS_PREFIX)) # Function that evaluates the fitness of each prescriptor model, equal costs def eval_genomes_multy_ones(genomes, config): # Every generation sample a different set of costs per geo, # so that over time solutions become robust to different costs. cost_df = base.generate_costs(self.hist_df, mode='equal') cost_df = base.add_geo_id(cost_df) geo_costs = {} for geo in eval_geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Evaluate each individual for genome_id, genome in genomes: if genome.fitness is not None: continue # Create net from genome net = neat.nn.FeedForwardNetwork.create(genome, config) # Set up dictionary to keep track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in NPI_COLUMNS: df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Compute prescribed stringency incrementally stringency = np.zeros(config.genome_config.num_outputs) # Make prescriptions one day at a time, feeding resulting # predictions from the predictor back into the prescriptor. for date in pd.date_range(self.eval_start_date, self.eval_end_date): date_str = date.strftime("%Y-%m-%d") # Prescribe for each geo for geo in eval_geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary country_name, region_name = (geo.split(' / ') + [np.nan])[:2] df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Update stringency. This calculation could include division by # the number of IPs and/or number of geos, but that would have # no effect on the ordering of candidate solutions. stringency += prescribed_ips # Create dataframe from prescriptions. pres_df = pd.DataFrame(df_dict) # Make prediction given prescription for all countries pred_df = self.get_predictions(self.eval_start_date.strftime("%Y-%m-%d"), date_str, pres_df) # Update past data with new day of prescriptions and predictions pres_df = base.add_geo_id(pres_df) pred_df = base.add_geo_id(pred_df) new_pres_df = pres_df[pres_df['Date'] == date_str] new_pred_df = pred_df[pred_df['Date'] == date_str] for geo in eval_geos: geo_pres = new_pres_df[new_pres_df['GeoID'] == geo] geo_pred = new_pred_df[new_pred_df['GeoID'] == geo] # Append array of prescriptions pres_arr = np.array([geo_pres[ip_col].values[0] for ip_col in NPI_COLUMNS]).reshape(1, -1) eval_past_ips[geo] = np.concatenate([eval_past_ips[geo], pres_arr]) # Append predicted cases eval_past_cases[geo] = np.append(eval_past_cases[geo], geo_pred[PRED_CASES_COL].values[0]) # Compute fitness. There are many possibilities for computing fitness and ranking # candidates. Here we choose to minimize the product of ip stringency and predicted # cases. This product captures the area of the 2D objective space that dominates # the candidate. We minimize it by including a negation. To place the fitness on # a reasonable scale, we take means over all geos and days. Note that this fitness # function can lead directly to the degenerate solution of all ips 0, i.e., # stringency zero. To achieve more interesting behavior, a different fitness # function may be required. new_cases = pred_df[PRED_CASES_COL].mean().mean() fitness_mult = list(-stringency) fitness_mult.append(-new_cases) genome.fitness_mult = tuple(fitness_mult) if self.verbose: print('Evaluated Genome', genome_id) print('New cases:', new_cases) print('Stringency:', stringency) print('Fitness:', genome.fitness_mult) # Function that evaluates the fitness of each prescriptor model, equal costs def eval_genomes_2d_ones(genomes, config): # Every generation sample a different set of costs per geo, # so that over time solutions become robust to different costs. cost_df = base.generate_costs(self.hist_df, mode='equal') cost_df = base.add_geo_id(cost_df) geo_costs = {} for geo in eval_geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Evaluate each individual for genome_id, genome in genomes: # Create net from genome net = neat.nn.FeedForwardNetwork.create(genome, config) # Set up dictionary to keep track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in NPI_COLUMNS: df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Compute prescribed stringency incrementally stringency = 0. # Make prescriptions one day at a time, feeding resulting # predictions from the predictor back into the prescriptor. for date in pd.date_range(self.eval_start_date, self.eval_end_date): date_str = date.strftime("%Y-%m-%d") # Prescribe for each geo for geo in eval_geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary country_name, region_name = (geo.split(' / ') + [np.nan])[:2] df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Update stringency. This calculation could include division by # the number of IPs and/or number of geos, but that would have # no effect on the ordering of candidate solutions. stringency += np.sum(geo_costs[geo] * prescribed_ips) # Create dataframe from prescriptions. pres_df = pd.DataFrame(df_dict) # Make prediction given prescription for all countries pred_df = self.get_predictions(self.eval_start_date.strftime("%Y-%m-%d"), date_str, pres_df) # Update past data with new day of prescriptions and predictions pres_df = base.add_geo_id(pres_df) pred_df = base.add_geo_id(pred_df) new_pres_df = pres_df[pres_df['Date'] == date_str] new_pred_df = pred_df[pred_df['Date'] == date_str] for geo in eval_geos: geo_pres = new_pres_df[new_pres_df['GeoID'] == geo] geo_pred = new_pred_df[new_pred_df['GeoID'] == geo] # Append array of prescriptions pres_arr = np.array([geo_pres[ip_col].values[0] for ip_col in NPI_COLUMNS]).reshape(1, -1) eval_past_ips[geo] = np.concatenate([eval_past_ips[geo], pres_arr]) # Append predicted cases eval_past_cases[geo] = np.append(eval_past_cases[geo], geo_pred[PRED_CASES_COL].values[0]) # Compute fitness. There are many possibilities for computing fitness and ranking # candidates. Here we choose to minimize the product of ip stringency and predicted # cases. This product captures the area of the 2D objective space that dominates # the candidate. We minimize it by including a negation. To place the fitness on # a reasonable scale, we take means over all geos and days. Note that this fitness # function can lead directly to the degenerate solution of all ips 0, i.e., # stringency zero. To achieve more interesting behavior, a different fitness # function may be required. new_cases = pred_df[PRED_CASES_COL].mean().mean() genome.fitness_mult = (-new_cases, -stringency) if self.verbose: print('Evaluated Genome', genome_id) print('New cases:', new_cases) print('Stringency:', stringency) print('Fitness:', genome.fitness_mult) # Function that evaluates the fitness of each prescriptor model, random costs def eval_genomes_2d(genomes, config): # Every generation sample a different set of costs per geo, # so that over time solutions become robust to different costs. cost_df = base.generate_costs(self.hist_df, mode='random') cost_df = base.add_geo_id(cost_df) geo_costs = {} for geo in eval_geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Evaluate each individual for genome_id, genome in genomes: # Create net from genome net = neat.nn.FeedForwardNetwork.create(genome, config) # Set up dictionary to keep track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in NPI_COLUMNS: df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Compute prescribed stringency incrementally stringency = 0. # Make prescriptions one day at a time, feeding resulting # predictions from the predictor back into the prescriptor. for date in pd.date_range(self.eval_start_date, self.eval_end_date): date_str = date.strftime("%Y-%m-%d") # Prescribe for each geo for geo in eval_geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary country_name, region_name = (geo.split(' / ') + [np.nan])[:2] df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Update stringency. This calculation could include division by # the number of IPs and/or number of geos, but that would have # no effect on the ordering of candidate solutions. stringency += np.sum(geo_costs[geo] * prescribed_ips) # Create dataframe from prescriptions. pres_df = pd.DataFrame(df_dict) # Make prediction given prescription for all countries pred_df = self.get_predictions(self.eval_start_date.strftime("%Y-%m-%d"), date_str, pres_df) # Update past data with new day of prescriptions and predictions pres_df = base.add_geo_id(pres_df) pred_df = base.add_geo_id(pred_df) new_pres_df = pres_df[pres_df['Date'] == date_str] new_pred_df = pred_df[pred_df['Date'] == date_str] for geo in eval_geos: geo_pres = new_pres_df[new_pres_df['GeoID'] == geo] geo_pred = new_pred_df[new_pred_df['GeoID'] == geo] # Append array of prescriptions pres_arr = np.array([geo_pres[ip_col].values[0] for ip_col in NPI_COLUMNS]).reshape(1, -1) eval_past_ips[geo] = np.concatenate([eval_past_ips[geo], pres_arr]) # Append predicted cases eval_past_cases[geo] = np.append(eval_past_cases[geo], geo_pred[PRED_CASES_COL].values[0]) # Compute fitness. There are many possibilities for computing fitness and ranking # candidates. Here we choose to minimize the product of ip stringency and predicted # cases. This product captures the area of the 2D objective space that dominates # the candidate. We minimize it by including a negation. To place the fitness on # a reasonable scale, we take means over all geos and days. Note that this fitness # function can lead directly to the degenerate solution of all ips 0, i.e., # stringency zero. To achieve more interesting behavior, a different fitness # function may be required. new_cases = pred_df[PRED_CASES_COL].mean().mean() genome.fitness_mult = (-new_cases, -stringency) if self.verbose: print('Evaluated Genome', genome_id) print('New cases:', new_cases) print('Stringency:', stringency) print('Fitness:', genome.fitness_mult) # Function that evaluates the fitness of each prescriptor model def eval_genomes(genomes, config): # Every generation sample a different set of costs per geo, # so that over time solutions become robust to different costs. cost_df = base.generate_costs(self.hist_df, mode='random') cost_df = base.add_geo_id(cost_df) geo_costs = {} for geo in eval_geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Evaluate each individual for genome_id, genome in genomes: # Create net from genome net = neat.nn.FeedForwardNetwork.create(genome, config) # Set up dictionary to keep track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in NPI_COLUMNS: df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Compute prescribed stringency incrementally stringency = 0. # Make prescriptions one day at a time, feeding resulting # predictions from the predictor back into the prescriptor. for date in pd.date_range(self.eval_start_date, self.eval_end_date): date_str = date.strftime("%Y-%m-%d") # Prescribe for each geo for geo in eval_geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary country_name, region_name = (geo.split(' / ') + [np.nan])[:2] df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Update stringency. This calculation could include division by # the number of IPs and/or number of geos, but that would have # no effect on the ordering of candidate solutions. stringency += np.sum(geo_costs[geo] * prescribed_ips) # Create dataframe from prescriptions. pres_df = pd.DataFrame(df_dict) # Make prediction given prescription for all countries pred_df = self.get_predictions(self.eval_start_date.strftime("%Y-%m-%d"), date_str, pres_df) # Update past data with new day of prescriptions and predictions pres_df = base.add_geo_id(pres_df) pred_df = base.add_geo_id(pred_df) new_pres_df = pres_df[pres_df['Date'] == date_str] new_pred_df = pred_df[pred_df['Date'] == date_str] for geo in eval_geos: geo_pres = new_pres_df[new_pres_df['GeoID'] == geo] geo_pred = new_pred_df[new_pred_df['GeoID'] == geo] # Append array of prescriptions pres_arr = np.array([geo_pres[ip_col].values[0] for ip_col in NPI_COLUMNS]).reshape(1,-1) eval_past_ips[geo] = np.concatenate([eval_past_ips[geo], pres_arr]) # Append predicted cases eval_past_cases[geo] = np.append(eval_past_cases[geo], geo_pred[PRED_CASES_COL].values[0]) # Compute fitness. There are many possibilities for computing fitness and ranking # candidates. Here we choose to minimize the product of ip stringency and predicted # cases. This product captures the area of the 2D objective space that dominates # the candidate. We minimize it by including a negation. To place the fitness on # a reasonable scale, we take means over all geos and days. Note that this fitness # function can lead directly to the degenerate solution of all ips 0, i.e., # stringency zero. To achieve more interesting behavior, a different fitness # function may be required. new_cases = pred_df[PRED_CASES_COL].mean().mean() genome.fitness = -(new_cases * stringency) if self.verbose: print('Evaluated Genome', genome_id) print('New cases:', new_cases) print('Stringency:', stringency) print('Fitness:', genome.fitness) # Run until a solution is found. Since a "solution" as defined in our config # would have 0 fitness, this will run indefinitely and require manual stopping, # unless evolution finds the solution that uses 0 for all ips. A different # value can be placed in the config for automatic stopping at other thresholds. # winner = p.run(eval_genomes, n=self.nb_generations) winner = p.run_NSGA2(eval_genomes_2d, n=self.nb_generations, multi=True, algo='NSGA-2') return def prescribe(self, start_date_str, end_date_str, prior_ips_df, cost_df, restore_from_dic=False, ): start_date = pd.to_datetime(start_date_str, format='%Y-%m-%d') end_date = pd.to_datetime(end_date_str, format='%Y-%m-%d') geos = prior_ips_df['GeoID'].unique() # Restrict it to dates before the start_date df = self.hist_df[self.hist_df['Date'] <= start_date] # Create past case data arrays for all geos past_cases = {} for geo in geos: geo_df = df[df['GeoID'] == geo] past_cases[geo] = np.maximum(0, np.array(geo_df[CASES_COL])) # Create past ip data arrays for all geos past_ips = {} for geo in geos: geo_df = prior_ips_df[prior_ips_df['GeoID'] == geo] past_ips[geo] = np.array(geo_df[NPI_COLUMNS]) # Fill in any missing case data before start_date # using predictor given past_ips_df. # Note that the following assumes that the df returned by prepare_historical_df() # has the same final date for all regions. This has been true so far, but relies # on it being true for the Oxford data csv loaded by prepare_historical_df(). last_historical_data_date_str = df['Date'].max() last_historical_data_date = pd.to_datetime(last_historical_data_date_str, format='%Y-%m-%d') if last_historical_data_date + pd.Timedelta(days=1) < start_date: if self.verbose: print("Filling in missing data...") missing_data_start_date = last_historical_data_date + pd.Timedelta(days=1) missing_data_start_date_str = datetime.datetime.strftime(missing_data_start_date, format='%Y-%m-%d') missing_data_end_date = start_date - pd.Timedelta(days=1) missing_data_end_date_str = datetime.datetime.strftime(missing_data_end_date, format='%Y-%m-%d') pred_df = self.get_predictions(missing_data_start_date_str, missing_data_end_date_str, prior_ips_df) pred_df = base.add_geo_id(pred_df) for geo in geos: geo_df = pred_df[pred_df['GeoID'] == geo].sort_values(by='Date') pred_cases_arr = np.array(geo_df[PRED_CASES_COL]) past_cases[geo] = np.append(past_cases[geo], pred_cases_arr) elif self.verbose: print("No missing data.") # Gather values for scaling network output ip_max_values_arr = np.array([NPI_MAX_VALUES[ip] for ip in NPI_COLUMNS]) if not restore_from_dic: # Load prescriptors checkpoint = neat.Checkpointer.restore_checkpoint(self.prescriptors_file) # read population and prepare data pop = checkpoint.population pop_arr = [pop[key] for key in pop] # is population 2-objective? # print('!!!!!!!!!!!!!! Problem dim {}'.format(len(pop_arr[0].fitness_mult))) # print('!!!!!!!!!!!!!! pop_size = {}'.format(len(pop_arr))) if len(pop_arr[0].fitness_mult) == 2: x_arr = [el.fitness_mult[0] for el in pop_arr] y_arr = [el.fitness_mult[1] for el in pop_arr] chosen_points_pos = get_best_n_points(NB_PRESCRIPTIONS, x_arr, y_arr) prescriptors_all = np.array(pop_arr)[chosen_points_pos] pass else: # create new attribute for every genome for el in pop_arr: el.fitness_manyD = deepcopy(el.fitness_mult) pass prescriptors_all = pop_arr pass # prescriptors = list(checkpoint.population.values())[:self.nb_prescriptions] pass config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, self.config_file) # Load IP costs to condition prescriptions geo_costs = {} for geo in geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Generate prescriptions prescription_dfs = [] if restore_from_dic: print('Using file {}'.format(self.prescriptors_file)) with gzip.open(self.prescriptors_file) as f: prescriptors_dic = pickle.load(f) prescriptors = [prescriptors_dic[key] for key in prescriptors_dic] else: if len(prescriptors_all) == NB_PRESCRIPTIONS: prescriptors = prescriptors_all else: for el in pop_arr: npi_arr = np.array(el.fitness_manyD[0:-1]) new_cases = el.fitness_manyD[-1] el.fitness_mult = (new_cases, sum(npi_arr * cost_arr)) pass fronts = sortNondominatedNSGA2(pop_arr, len(pop)) for front in fronts: assignCrowdingDist(front) num_fronts = len(fronts) for i in range(0, num_fronts): front = fronts[i] for el in front: el.fitness = (num_fronts - i) + el.crowding_dist pass pass pass tmp_chosen = [] for i in range(0, len(fronts)): tmp_chosen.extend(fronts[i]) if len(tmp_chosen) >= NB_PRESCRIPTIONS: break pass # print('!!!!!!!!!!! Choosing among {} prescriptors'.format(len(tmp_chosen))) x_arr = [el.fitness_mult[0] for el in tmp_chosen] y_arr = [el.fitness_mult[1] for el in tmp_chosen] chosen_points_pos = get_best_n_points(NB_PRESCRIPTIONS, x_arr, y_arr) prescriptors = np.array(tmp_chosen)[chosen_points_pos] pass pass for prescription_idx, prescriptor in enumerate(prescriptors): if self.verbose: print("Generating prescription", prescription_idx, "...") # Create net from genome net = neat.nn.FeedForwardNetwork.create(prescriptor, config) # Set up dictionary for keeping track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in sorted(NPI_MAX_VALUES.keys()): df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Generate prescriptions iteratively, feeding resulting # predictions from the predictor back into the prescriptor. action_start_date = start_date while action_start_date <= end_date: # Get prescription for all regions for geo in geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary for the full ACTION_DURATION country_name, region_name = (geo.split(' / ') + [np.nan])[:2] if region_name == 'nan': region_name = np.nan for date in pd.date_range(action_start_date, periods=self.action_duration): if date > end_date: break date_str = date.strftime("%Y-%m-%d") df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Create dataframe from prescriptions pres_df =
pd.DataFrame(df_dict)
pandas.DataFrame
import requests from bs4 import BeautifulSoup import pandas as pd from difflib import SequenceMatcher desired_width = 320 pd.set_option('display.width', desired_width) pd.set_option('display.max_columns', 10) pd.set_option('display.max_rows', 1000) pd.set_option('display.max_colwidth', None) #To display full URL in dataframe from datetime import datetime def df_column_switch(df, column1, column2): i = list(df.columns) a, b = i.index(column1), i.index(column2) i[b], i[a] = i[a], i[b] df = df[i] return df def create_jobsdf_greenhouse(company_name, url, save_to_excel = False): ''' Add function description here ''' url = str(url) company_name = str(company_name) page = requests.get(url) sections = BeautifulSoup(page.text, 'html.parser').find_all('section', {'class': 'level-0'}) roles = [] role_urls = [] for section in sections: #print(section) for opening in section.find_all('div', {'class': 'opening'}): #print(opening) #print(' ') role_title = opening.find('a').getText().strip() role_location = opening.find('span', {'class': 'location'}).getText().strip() partial_url = [elem.get('href') for elem in opening.find_all('a')][0] if ((company_name == 'Optiver') or (company_name == 'Glovo') or (company_name == 'Graviton Research Capital')): job_no = partial_url.split('/')[-1].split('=')[-1] role_url = partial_url elif company_name == 'Squarepoint Capital': job_no = partial_url.split('/')[-1].split('=')[-1] role_url = partial_url.split('?')[0] + '/job#' + job_no else: job_no = partial_url.split('/')[-1] common_size = SequenceMatcher(None, partial_url, url).get_matching_blocks()[0].size #U #.find_longest_match(0, len(partial_url), 0, len(url)) role_url = url + partial_url[common_size : ] #U roles.append(role_title + ' - ' + role_location + ' - ' + job_no) role_urls.append(role_url) jobs_df = pd.DataFrame(pd.Series(roles), columns = ['Role']) jobs_df['URL'] = pd.DataFrame(pd.Series(role_urls)) jobs_df.insert(jobs_df.columns.get_loc('Role'), 'Company', company_name) #print(roles) #print(role_urls) if save_to_excel == True: jobs_df['Date Viewed'] = datetime.now() fname = company_name + '.xlsx' jobs_df.to_excel('Dataframes/' + fname) print("All jobs on the given webpage saved as a new Excel file", company_name + '.xlsx') #print(jobs_df) return jobs_df def new_jobs_greenhouse(company_name, url, save_to_excel = False): ''' Add function description here ''' url = str(url) company_name = str(company_name) latest_jobs_df = create_jobsdf_greenhouse(company_name, url) latest_jobs_df.fillna('', inplace = True) latest_jobs_df.pop('Company') #print('latest jobs df') #print(latest_jobs_df) prev_jobs_df =
pd.read_excel('Dataframes/' + company_name + '.xlsx', index_col = [0], dtype = object)
pandas.read_excel
import unittest import numpy as np import pandas as pd from pyalink.alink import * class TestDataFrame(unittest.TestCase): def setUp(self): data_null = np.array([ ["007", 1, 1, 2.0, True], [None, 2, 2, None, True], ["12", None, 4, 2.0, False], ["1312", 0, None, 1.2, None], ]) self.df_null = pd.DataFrame({ "f_string": data_null[:, 0], "f_long": data_null[:, 1], "f_int": data_null[:, 2], "f_double": data_null[:, 3], "f_boolean": data_null[:, 4] }) data = np.array([ ["a", 1, 1, 2.0, True], ["abc", 2, 2, 2.4, True], ["c", 4, 4, 2.0, False], ["a", 0, 1, 1.2, False], ]) self.df = pd.DataFrame({ "f_string": data[:, 0], "f_long": data[:, 1], "f_int": data[:, 2], "f_double": data[:, 3], "f_boolean": data[:, 4] }) def test_memory_null(self): from pyalink.alink.config import g_config g_config["collect_storage_type"] = "memory" schema = "f_string string,f_long long,f_int int,f_double double,f_boolean boolean" op = dataframeToOperator(self.df_null, schema, op_type="batch") col_names = op.getColNames() col_types = op.getColTypes() self.assertEqual(col_names[0], "f_string") self.assertEqual(col_names[1], "f_long") self.assertEqual(col_names[2], "f_int") self.assertEqual(col_names[3], "f_double") self.assertEqual(col_names[4], "f_boolean") self.assertEqual(col_types[0], "VARCHAR") self.assertEqual(col_types[1], "BIGINT") self.assertEqual(col_types[2], "INT") self.assertEqual(col_types[3], "DOUBLE") self.assertEqual(col_types[4], "BOOLEAN") df2 = op.collectToDataframe() print(df2) print(df2.dtypes) self.assertEqual(df2['f_string'].dtype, pd.StringDtype()) self.assertEqual(df2['f_long'].dtype, pd.Int64Dtype()) self.assertEqual(df2['f_int'].dtype,
pd.Int32Dtype()
pandas.Int32Dtype
import re import pandas as pd from gensim.models import KeyedVectors from nltk.corpus import stopwords import keras.backend as K from keras.layers import Input, Embedding, LSTM, Lambda from keras.models import Model from keras.optimizers import Adadelta from random import sample from keras.preprocessing.sequence import pad_sequences import itertools import numpy as np def train(X_train, X_val, Y_train, Y_val, embedding, l, n_hidden = 50, batch = 64, epoch = 25, g = 1.25): inputL, inputR = Input(shape=(l,), dtype='int32'), Input(shape=(l,), dtype='int32') embedding_layer = Embedding(len(embedding), 300, weights=[embedding], input_length=l, trainable=False) encodedL, encodedR = embedding_layer(inputL), embedding_layer(inputR) lstm = LSTM(n_hidden) outputL, outputR = lstm(encodedL), lstm(encodedR) similarity = Lambda(function = lambda x: K.exp(-K.sum(K.abs(x[0]-x[1]), axis=1, keepdims = True)), output_shape = lambda x: (x[0][0], 1))([outputL, outputR]) model = Model([inputL, inputR], [similarity]) model.compile(loss = 'binary_crossentropy', optimizer = Adadelta(clipnorm = g), metrics = ['acc', TPR, PPV]) return model.fit([X_train['L'], X_train['R']], Y_train, batch_size = batch, epochs = epoch, validation_data=([X_val['L'], X_val['R']], Y_val)) def preprocess(filename, vsize = -1): df = pd.read_csv(filename) q1, q2, is_dupl = df.q1.tolist(), df.q2.tolist(), df.is_dupl.tolist() size = len(q1) if vsize < 0: vsize = size // 10 val, tpq, tnq, val_q1, val_q2, val_dupl = set(sample(range(size), vsize)), [], [], [], [], [] for i in range(size): if i in val: val_q1.append(q1[i]) val_q2.append(q2[i]) val_dupl.append(is_dupl[i]) elif is_dupl[i] == 0: tnq.append((q1[i], q2[i])) else: tpq.append((q1[i], q2[i])) npp, nnp = len(tpq), len(tnq) N = min(npp, nnp) if npp > nnp: tpq = sample(tpq, N) else: tnq = sample(tnq, N) train_q1, train_q2, train_dupl = [], [], [] for i in range(N): train_q1.append(tpq[i][0]) train_q2.append(tpq[i][1]) train_dupl.append(1) train_q1.append(tnq[i][0]) train_q2.append(tnq[i][1]) train_dupl.append(0) maxlen, w2id, nw = 0, dict(), 1 w2v = KeyedVectors.load_word2vec_format('GoogleWord2Vec.bin', binary=True) vocab, stops = w2v.vocab, set(stopwords.words('english')) for ql in [train_q1, train_q2, val_q1, val_q2]: for i in range(len(ql)): wl, q2id = q2wl(ql[i]), [] for w in wl: if w in stops and w not in vocab: continue if w in w2id: q2id.append(w2id[w]) else: q2id.append(nw) w2id[w] = nw nw += 1 ql[i], length = q2id, len(q2id) if length > maxlen: maxlen = length embedding = 1 * np.random.randn(nw, 300) for w in w2id: if w in vocab: embedding[w2id[w]] = w2v.word_vec(w) del w2id, w2v, vocab X_train, X_val = {'L': pd.Series(train_q1), 'R': pd.Series(train_q2)}, {'L': pd.Series(val_q1), 'R': pd.Series(val_q2)} Y_train, Y_val = pd.DataFrame({'is_dupl': train_dupl}),
pd.DataFrame({'is_dupl': val_dupl})
pandas.DataFrame
import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from GenNet_utils.hase.config import basedir, PYTHON_PATH os.environ['HASEDIR'] = basedir if PYTHON_PATH is not None: for i in PYTHON_PATH: sys.path.insert(0, i) from GenNet_utils.hase.hdgwas.tools import HaseAnalyser import argparse import pandas as pd import numpy as np from collections import OrderedDict if __name__ == "__main__": os.environ['HASEDIR'] = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) parser = argparse.ArgumentParser(description='Script analyse results of HASE') parser.add_argument("-r", required=True, help="path to hase results") parser.add_argument("-o", "--out", type=str, required=True, help="path to save result folder") parser.add_argument("-df", type=float, default=None, help="degree of freedom = ( #subjects in study - #covariates - 1 )") parser.add_argument("-N", type=int, default=None, help="file number to read") # TODO (low) add reference panel args = parser.parse_args() Analyser = HaseAnalyser() print(args) Analyser.DF = args.df Analyser.result_path = args.r Analyser.file_number = args.N results = OrderedDict() results['RSID'] = np.array([]) results['p_value'] = np.array([]) results['t-stat'] = np.array([]) results['phenotype'] = np.array([]) results['SE'] = np.array([]) results['MAF'] = np.array([]) results['BETA'] = np.array([]) while True: Analyser.summary() if Analyser.results is None: break print('Saving data...') if not os.path.exists(os.path.join(args.out, 'results' + '.csv')): df = pd.DataFrame.from_dict(results) df.to_csv(os.path.join(args.out, 'results' + '.csv'), sep=" ", index=None) df =
pd.DataFrame.from_dict(Analyser.results)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd from shapely.geometry import box import flopy from sfrmaker.routing import find_path, make_graph from gisutils import shp2df from mfexport.budget_output import read_sfr_output from .fileio import read_tables from .routing import get_next_id_in_subset from sfrmaker.fileio import load_modelgrid def get_inflow_locations_from_parent_model(parent_reach_data, inset_reach_data, inset_grid, active_area=None ): """Get places in an inset model SFR network where the parent SFR network crosses the inset model boundary, using common line ID numbers from parent and inset reach datasets. MF2005 or MF6 supported; if either dataset contains only reach numbers (is MODFLOW-6), the reach numbers are used as segment numbers, with each segment only having one reach. Parameters ---------- parent_reach_data : str (filepath) or DataFrame SFR reach data for parent model. Must include columns: line_id : int; unique identifier for hydrography line that each reach is based on rno : int; unique identifier for each reach. Optional if iseg and ireach columns are included. iseg : int; unique identifier for each segment. Optional if rno is included. ireach : int; unique identifier for each reach. Optional if rno is included. geometry : shapely.geometry object representing location of each reach inset_reach_data : str (filepath) or DataFrame SFR reach data for inset model. Same columns as parent_reach_data, except a geometry column isn't needed. line_id values must correspond to same source hydrography as those in parent_reach_data. inset_grid : flopy.discretization.StructuredGrid instance describing model grid Must be in same coordinate system as geometries in parent_reach_data. Required only if active_area is None. active_area : shapely.geometry.Polygon object Describes the area of the inset model where SFR is applied. Used to find inset reaches from parent model. Must be in same coordinate system as geometries in parent_reach_data. Required only if inset_grid is None. Returns ------- locations : DataFrame Columns: parent_segment : parent model segment parent_reach : parent model reach parent_rno : parent model reach number line_id : unique identifier for hydrography line that each reach is based on """ # spatial reference instances defining parent and inset grids if isinstance(inset_grid, str): grid = load_modelgrid(inset_grid) elif isinstance(inset_grid, flopy.discretization.grid.Grid): grid = inset_grid else: raise ValueError('Unrecognized input for inset_grid') if active_area is None: l, r, b, t = grid.extent active_area = box(l, b, r, t) # parent and inset reach data if isinstance(parent_reach_data, str): prd = shp2df(parent_reach_data) elif isinstance(parent_reach_data, pd.DataFrame): prd = parent_reach_data.copy() else: raise ValueError('Unrecognized input for parent_reach_data') if 'rno' in prd.columns and 'iseg' not in prd.columns: prd['iseg'] = prd['rno'] prd['ireach'] = 1 mustinclude_cols = {'line_id', 'rno', 'iseg', 'ireach', 'geometry'} assert len(mustinclude_cols.intersection(prd.columns)) == len(mustinclude_cols) if isinstance(inset_reach_data, str): if inset_reach_data.endswith('.shp'): ird = shp2df(inset_reach_data) else: ird = pd.read_csv(inset_reach_data) elif isinstance(inset_reach_data, pd.DataFrame): ird = inset_reach_data.copy() else: raise ValueError('Unrecognized input for inset_reach_data') if 'rno' in ird.columns and 'iseg' not in ird.columns: ird['iseg'] = ird['rno'] ird['ireach'] = 1 mustinclude_cols = {'line_id', 'rno', 'iseg', 'ireach'} assert len(mustinclude_cols.intersection(ird.columns)) == len(mustinclude_cols) graph = make_graph(ird.rno.values, ird.outreach.values, one_to_many=False) # cull parent reach data to only lines that cross or are just upstream of inset boundary buffered = active_area.buffer(5000, cap_style=2) close = [g.intersects(buffered) for g in prd.geometry] prd = prd.loc[close] prd.index = prd.rno boundary = active_area.exterior inset_line_id_connections = {} # parent rno: inset line_id for i, r in prd.iterrows(): if r.outreach not in prd.index: continue downstream_line = prd.loc[r.outreach, 'geometry'] upstream_line = prd.loc[prd.rno == r.outreach, 'geometry'].values[0] intersects = r.geometry.intersects(boundary) intersects_downstream = downstream_line.within(active_area) # intersects_upstream = upstream_line.within(active_area) in_inset_model = r.geometry.within(active_area) if intersects_downstream: if intersects: # if not intersects_upstream: # exclude lines that originated within the model # # lines that cross route to their counterpart in inset model inset_line_id_connections[r.rno] = r.line_id pass elif not in_inset_model: # lines that route to a line within the inset model # route to that line's inset counterpart inset_line_id_connections[r.rno] = prd.loc[r.outreach, 'line_id'] pass prd = prd.loc[prd.rno.isin(inset_line_id_connections.keys())] # parent rno lookup parent_rno_lookup = {v: k for k, v in inset_line_id_connections.items()} # inlet reaches in inset model ird = ird.loc[ird.ireach == 1] ird = ird.loc[ird.line_id.isin(inset_line_id_connections.values())] # for each reach in ird (potential inset inlets) # check that there isn't another inlet downstream drop_reaches = [] for i, r in ird.iterrows(): path = find_path(graph, r.rno) another_inlet_downstream = len(set(path[1:]).intersection(set(ird.rno))) > 0 if another_inlet_downstream: drop_reaches.append(r.rno) ird = ird.loc[~ird.rno.isin(drop_reaches)] # cull parent flows to outlet reaches iseg_ireach = zip(prd.iseg, prd.ireach) parent_outlet_iseg_ireach = dict(zip(prd.rno, iseg_ireach)) df = ird[['line_id', 'name', 'rno', 'iseg', 'ireach']].copy() df['parent_rno'] = [parent_rno_lookup[lid] for lid in df['line_id']] df['parent_iseg'] = [parent_outlet_iseg_ireach[rno][0] for rno in df['parent_rno']] df['parent_ireach'] = [parent_outlet_iseg_ireach[rno][1] for rno in df['parent_rno']] return df.reset_index(drop=True) def get_inflows_from_parent_model(parent_reach_data, inset_reach_data, mf2005_parent_sfr_outputfile, mf6_parent_sfr_budget_file, inset_grid, active_area=None): """Get places in an inset model SFR network where the parent SFR network crosses the inset model boundary, using common line ID numbers from parent and inset reach datasets. MF2005 or MF6 supported; if either dataset contains only reach numbers (is MODFLOW-6), the reach numbers are used as segment numbers, with each segment only having one reach. Parameters ---------- parent_reach_data : str (filepath) or DataFrame SFR reach data for parent model. Must include columns: line_id : int; unique identifier for hydrography line that each reach is based on rno : int; unique identifier for each reach. Optional if iseg and ireach columns are included. iseg : int; unique identifier for each segment. Optional if rno is included. ireach : int; unique identifier for each reach. Optional if rno is included. geometry : shapely.geometry object representing location of each reach inset_reach_data : str (filepath) or DataFrame SFR reach data for inset model. Same columns as parent_reach_data, except a geometry column isn't needed. line_id values must correspond to same source hydrography as those in parent_reach_data. mf2005_parent_sfr_outputfile : str (filepath) Modflow-2005 style SFR text file budget output. mf6_parent_sfr_budget_file : str (filepath) Modflow-6 style SFR binary budget output inset_grid : flopy.discretization.StructuredGrid instance describing model grid Must be in same coordinate system as geometries in parent_reach_data. Required only if active_area is None. active_area : shapely.geometry.Polygon object Describes the area of the inset model where SFR is applied. Used to find inset reaches from parent model. Must be in same coordinate system as geometries in parent_reach_data. Required only if inset_grid is None. Returns ------- inflows : DataFrame Columns: parent_segment : parent model segment parent_reach : parent model reach parent_rno : parent model reach number line_id : unique identifier for hydrography line that each reach is based on """ locations = get_inflow_locations_from_parent_model(parent_reach_data=parent_reach_data, inset_reach_data=inset_reach_data, inset_grid=inset_grid, active_area=active_area) df = read_sfr_output(mf2005_sfr_outputfile=mf2005_parent_sfr_outputfile, mf6_sfr_stage_file=None, mf6_sfr_budget_file=mf6_parent_sfr_budget_file, model=None) j=2 def add_to_perioddata(sfrdata, data, flowline_routing=None, variable='inflow', line_id_column=None, rno_column=None, period_column='per', data_column='Q_avg', one_inflow_per_path=False): """Add data to the period data table (sfrdata.period_data) for a MODFLOW-6 style sfrpackage. Parameters ---------- sfrdata : sfrmaker.SFRData instance SFRData instance with reach_data table attribute. To add observations from x, y coordinates, the reach_data table must have a geometry column with LineStrings representing each reach, or an sfrlines_shapefile is required. Reach numbers are assumed to be in an 'rno' column. data : DataFrame, path to csv file, or list of DataFrames or file paths Table with information on the observation sites to be located. Must have either reach numbers (rno_column), line_ids (line_id_column), or x and y locations (x_column_in_data and y_column_in_data). flowline_routing : dict Optional dictionary of routing for source hydrography. Only needed if locating by line_id, and SFR network is a subset of the full source hydrography (i.e. some lines were dropped in the creation of the SFR packge, or if the sites are inflow points corresponding to lines outside of the model perimeter). In this case, observation points referenced to line_ids that are missing from the SFR network are placed at the first reach corresponding to the next downstream line_id that is represented in the SFR network. By default, None. variable : str, optional Modflow-6 period variable (see Modflow-6 Description of Input and Outpu), by default 'inflow' line_id_column : str Column in data matching observation sites to line_ids in the source hydrography data. Either line_id_column or rno_column must be specified. By default, None rno_column : str Column in data matching observation sites to reach numbers in the SFR network. By default, None. period_column : str, optional Column with modflow stress period for each inflow value, by default 'per', by default, 'per'. data_column : str, optional Column with flow values, by default 'Q_avg' one_inflow_per_path : bool, optional Limit inflows to one per (headwater to outlet) routing path, choosing the inflow location that is furthest downstream. By default, False. Returns ------- Updates the sfrdata.perioddata DataFrame. """ sfrd = sfrdata # allow input via a list of tables or single table data = read_tables(data) # cull data to valid periods data = data.loc[data[period_column] >= 0].copy() # map NHDPlus COMIDs to reach numbers if flowline_routing is not None: assert line_id_column in data.columns, \ "Data need an id column so {} locations can be mapped to reach numbers".format(variable) # replace ids that are not keys (those outside the network) with zeros # (0 is the exit condition for finding paths in get_next_id_in_subset) flowline_routing = {k: v if v in flowline_routing.keys() else 0 for k, v in flowline_routing.items()} rno_column = 'rno' r1 = sfrd.reach_data.loc[sfrd.reach_data.ireach == 1] line_id_rno_mapping = dict(zip(r1['line_id'], r1['rno'])) line_ids = get_next_id_in_subset(r1.line_id, flowline_routing, data[line_id_column]) data['line_id_in_model'] = line_ids data[rno_column] = [line_id_rno_mapping[lid] for lid in line_ids] else: assert rno_column in data.columns, \ "Data to add need reach number or flowline routing information is needed." # check for duplicate inflows in same path if variable == 'inflow' and one_inflow_per_path: line_ids = set(data[line_id_column]) drop = set() dropped_line_info_file = 'dropped_inflows_locations.csv' for lid in line_ids: path = find_path(flowline_routing, start=lid) duplicated = set(path[1:]).intersection(line_ids) if len(duplicated) > 0: drop.add(lid) txt = ('warning: {}: {} is upstream ' 'of the following line_ids:\n{}\n' 'see {} for details.').format(line_id_column, lid, duplicated, dropped_line_info_file ) print(txt) if len(drop) > 0: data.loc[data[line_id_column].isin(drop)].to_csv(dropped_line_info_file, index=False) data = data.loc[~data[line_id_column].isin(drop)] # add inflows to period_data period_data = sfrd.period_data period_data['rno'] = data[rno_column] period_data['per'] = data[period_column] period_data[variable] = data[data_column] period_data['specified_line_id'] = data[line_id_column] other_columns = [c for c in data.columns if c not in {rno_column, period_column, data_column, line_id_column}] for c in other_columns: period_data[c] = data[c] def add_to_segment_data(sfrdata, data, flowline_routing=None, variable='flow', line_id_column=None, segment_column=None, period_column='per', data_column='Q_avg'): """Like add_to_perioddata, but for MODFLOW-2005. """ sfrd = sfrdata # cull data to valid periods data = data.loc[data[period_column] >= 0].copy() # map NHDPlus COMIDs to reach numbers if flowline_routing is not None: assert line_id_column in data.columns, \ "Data need an id column so {} locations can be mapped to reach numbers".format(variable) flowline_routing = {k: v if v in flowline_routing.keys() else 0 for k, v in flowline_routing.items()} segment_column = 'segment' r1 = sfrd.reach_data.loc[sfrd.reach_data.ireach == 1] line_id_iseg_mapping = dict(zip(r1['line_id'], r1['iseg'])) line_ids = get_next_id_in_subset(r1.line_id, flowline_routing, data[line_id_column]) data[segment_column] = [line_id_iseg_mapping[lid] for lid in line_ids] else: assert segment_column in data.columns, \ "Data to add need segment number or flowline routing information is needed." # check for duplicate inflows in same path if variable == 'flow': line_ids = set(data[line_id_column]) drop = set() dropped_line_info_file = 'dropped_inflows_locations.csv' for lid in line_ids: path = find_path(flowline_routing, start=lid) duplicated = set(path[1:]).intersection(line_ids) if len(duplicated) > 0: drop.add(lid) txt = ('warning: {}: {} is upstream ' 'of the following line_ids:\n{}\n' 'see {} for details.').format(line_id_column, lid, duplicated, dropped_line_info_file ) print(txt) if len(drop) > 0: data.loc[data[line_id_column].isin(drop)].to_csv(dropped_line_info_file, index=False) data = data.loc[~data[line_id_column].isin(drop)] # rename columns in data to be added to same names as segment_data data.rename(columns={period_column: 'per', segment_column: 'nseg', data_column: variable}, inplace=True) # update existing segment data sfrd.segment_data.index = pd.MultiIndex.from_tuples(zip(sfrd.segment_data.per, sfrd.segment_data.nseg), names=['per', 'nseg']) loc = list(zip(data.per, data.nseg)) data.index = pd.MultiIndex.from_tuples(loc, names=['per', 'nseg']) replace = sorted(list(set(data.index).intersection(sfrd.segment_data.index))) add = sorted(list(set(data.index).difference(sfrd.segment_data.index))) sfrd.segment_data.loc[replace, variable] = data.loc[replace, variable] # concat on the added data (create additional rows in segment_data table) to_concat = [sfrd.segment_data] period_groups = data.loc[add, ['per', 'nseg', variable]].reset_index(drop=True).groupby('per') for per, group in period_groups: # start with existing data (row) for that segment df = sfrd.segment_data.loc[(slice(None, None), group.nseg), :].copy() df['per'] = per df.index = zip(df.per, df.nseg) df[variable] = group[variable].values to_concat.append(df) sfrd.segment_data =
pd.concat(to_concat)
pandas.concat
# -*- coding: utf-8 -*- #%% NumPyの読み込み import numpy as np # SciPyのstatsモジュールの読み込み import scipy.stats as st # Pandasの読み込み import pandas as pd # PyMCの読み込み import pymc3 as pm # MatplotlibのPyplotモジュールの読み込み import matplotlib.pyplot as plt # tqdmからプログレスバーの関数を読み込む from tqdm import trange # 日本語フォントの設定 from matplotlib.font_manager import FontProperties import sys if sys.platform.startswith('win'): FontPath = 'C:\\Windows\\Fonts\\meiryo.ttc' elif sys.platform.startswith('darwin'): FontPath = '/System/Library/Fonts/ヒラギノ角ゴシック W4.ttc' elif sys.platform.startswith('linux'): FontPath = '/usr/share/fonts/truetype/takao-gothic/TakaoPGothic.ttf' else: print('このPythonコードが対応していないOSを使用しています.') sys.exit() jpfont = FontProperties(fname=FontPath) #%% ギブズ・サンプラーによる正規分布の平均と分散に関するベイズ推論 # 正規分布の平均と分散のギブズ・サンプラー def gibbs_gaussian(data, iterations, mu0, tau0, nu0, lam0): """ 入力 data: データ iterations: 反復回数 mu0: 平均の事前分布(正規分布)の平均 tau0: 平均の事前分布(正規分布)の標準偏差 nu0: 分散の事前分布(逆ガンマ分布)の形状パラメータ lam0: 分散の事前分布(逆ガンマ分布)の尺度パラメータ 出力 runs: モンテカルロ標本 """ n = data.size sum_data = data.sum() mean_data = sum_data / n variance_data = data.var() inv_tau02 = 1.0 / tau0**2 mu0_tau02 = mu0 * inv_tau02 a = 0.5 * (n + nu0) c = n * variance_data + lam0 sigma2 = variance_data runs = np.empty((iterations, 2)) for idx in trange(iterations): variance_mu = 1.0 / (n / sigma2 + inv_tau02) mean_mu = variance_mu * (sum_data / sigma2 + mu0_tau02) mu = st.norm.rvs(loc=mean_mu, scale=np.sqrt(variance_mu)) b = 0.5 * (n * (mu - mean_data)**2 + c) sigma2 = st.invgamma.rvs(a, scale=b) runs[idx, 0] = mu runs[idx, 1] = sigma2 return runs # モンテカルロ標本からの事後統計量の計算 def mcmc_stats(runs, burnin, prob, batch): """ 入力 runs: モンテカルロ標本 burnin: バーンインの回数 prob: 区間確率 (0 < prob < 1) batch: 乱数系列の分割数 出力 事後統計量のデータフレーム """ traces = runs[burnin:, :] n = traces.shape[0] // batch k = traces.shape[1] alpha = 100 * (1.0 - prob) post_mean = np.mean(traces, axis=0) post_median = np.median(traces, axis=0) post_sd = np.std(traces, axis=0) mc_err = [pm.mcse(traces[:, i].reshape((n, batch), order='F')).item(0) \ for i in range(k)] ci_lower = np.percentile(traces, 0.5 * alpha, axis=0) ci_upper = np.percentile(traces, 100 - 0.5 * alpha, axis=0) hpdi = pm.hpd(traces, 1.0 - prob) rhat = [pm.rhat(traces[:, i].reshape((n, batch), order='F')).item(0) \ for i in range(k)] stats = np.vstack((post_mean, post_median, post_sd, mc_err, ci_lower, ci_upper, hpdi.T, rhat)).T stats_string = ['平均', '中央値', '標準偏差', '近似誤差', '信用区間(下限)', '信用区間(上限)', 'HPDI(下限)', 'HPDI(上限)', '$\\hat R$'] param_string = ['平均 $\\mu$', '分散 $\\sigma^2$'] return
pd.DataFrame(stats, index=param_string, columns=stats_string)
pandas.DataFrame
# encoding: utf-8 from opendatatools.common import RestAgent from opendatatools.common import date_convert, remove_non_numerical from bs4 import BeautifulSoup import datetime import json import pandas as pd import io from opendatatools.futures.futures_agent import _concat_df import zipfile class SHExAgent(RestAgent): def __init__(self): RestAgent.__init__(self) headers = { "Accept": '*/*', 'Referer': 'http://www.sse.com.cn/market/sseindex/indexlist/', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36', } self.add_headers(headers) def get_index_list(self): url = 'http://query.sse.com.cn/commonSoaQuery.do' data = { 'sqlId': 'DB_SZZSLB_ZSLB', } response = self.do_request(url, data) rsp = json.loads(response) if 'pageHelp' in rsp: data = rsp['pageHelp']['data'] return pd.DataFrame(data) else: return None def get_index_component(self, index): url = 'http://query.sse.com.cn/commonSoaQuery.do' data = { 'sqlId': 'DB_SZZSLB_CFGLB', 'indexCode' : index, } response = self.do_request(url, data) rsp = json.loads(response) if 'pageHelp' in rsp: data = rsp['pageHelp']['data'] return pd.DataFrame(data) else: return None def get_dividend(self, code): url = 'http://query.sse.com.cn/commonQuery.do' data = { 'sqlId' : 'COMMON_SSE_GP_SJTJ_FHSG_AGFH_L_NEW', 'security_code_a' : code, } response = self.do_request(url, data) rsp = json.loads(response) if 'result' in rsp: data = rsp['result'] return
pd.DataFrame(data)
pandas.DataFrame
""" This module merges temperature, humidity, and influenza data together """ import pandas as pd import ast __author__ = '<NAME>' __license__ = 'MIT' __status__ = 'release' __url__ = 'https://github.com/caominhduy/TH-Flu-Modulation' __version__ = '1.0.0' def merge_flu(path='data/epidemiology/processed_CDC_2008_2021.csv'): df = pd.read_csv(path, low_memory=False) df['week'] = df['week'].astype('int') df['year'] = df['year'].astype('int') cols = ['state', 'week', 'year', 'level'] df = df.reindex(columns=cols) return df def merge_weather(): with open('data/geodata/state_abbr.txt', 'r') as f: contents = f.read() state_abbr_dict = ast.literal_eval(contents) states = list(state_abbr_dict.values()) df_temp = pd.DataFrame(columns=['week', 'temp', 'state', 'year']) df_humid = pd.DataFrame(columns=['week', 'humid', 'state', 'year']) for year in list(range(2008, 2020)): y = str(year) df = pd.read_csv('data/weather/' + y + '-temp.csv') temps = df[states[0]] weeks = df['week'] snames = pd.Series(states) snames = snames.repeat(len(weeks)).reset_index(drop=True) for s in states[1:]: temps = temps.append(df[s]).reset_index(drop=True) weeks = weeks.append(df['week']).reset_index(drop=True) frames = {'week': weeks, 'temp': temps, 'state': snames} df2 =
pd.DataFrame(frames)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import preprocessing matplotlib.use("Agg") import datetime import torch from finrl.config import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.multi_env_stocktrading import StockTradingEnv from finrl.lxcalgorithms.gateway import Gateway from finrl.model.multi_models import DRLAgent from finrl.trade.backtest import backtest_stats as BackTestStats def getEveryDay(begin_date,end_date): # 前闭后闭 date_list = [] begin_date = datetime.datetime.strptime(begin_date, "%Y-%m-%d") end_date = datetime.datetime.strptime(end_date,"%Y-%m-%d") while begin_date <= end_date: date_str = begin_date.strftime("%Y-%m-%d") date_list.append(date_str) begin_date += datetime.timedelta(days=1) return date_list def train_one(): """ train an agent """ print("==============Start Fetching Data===========") print('GPU is :', torch.cuda.is_available()) start_date = config.START_DATE, end_date = config.START_TRADE_DATE, start_date = start_date[0] end_date = end_date[0] date_list = getEveryDay(start_date,end_date) food = Gateway() now = datetime.datetime.now().strftime("%Y%m%d-%Hh%M") for i in range(0,1): df = YahooDownloader( start_date=start_date, end_date=end_date, ticker_list=config.DOW_30_TICKER, ).lxc_fetch_data() print("==============Start Feature Engineering===========") fe = FeatureEngineer( use_technical_indicator=True, tech_indicator_list=config.TECHNICAL_INDICATORS_LIST, use_turbulence=True, user_defined_feature=False, ) processed = fe.preprocess_data(df) train = data_split(processed, start_date, end_date) stock_dimension = len(train.tic.unique()) #print("train.tic.unique() is:") #print(train.tic.unique()) print('stock_dimension is:', stock_dimension) state_space = ( 1 + 2 * stock_dimension + len(config.TECHNICAL_INDICATORS_LIST) * stock_dimension ) env_kwargs = { "hmax": 100, "initial_amount": 1000000, "buy_cost_pct": 0.001, "sell_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, # "action_space": stock_dimension, "action_space": 1, "reward_scaling": 1e-4 } e_train_gym = StockTradingEnv(df=train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() agent = DRLAgent(env=env_train) print("==============Model Training===========") print("start training ddpg model") ##################################################################################################a2c print("start pre_training model") multi_number = stock_dimension #temp = agent.get_model(model_name="a2c", lxc_stock_number=0) #agent.train_model(model=temp, tb_log_name="a2c", total_timesteps=1000) #print("e_train_gym.normal_high is:", e_train_gym.normal_high) #print("e_train_gym.normal_low is:", e_train_gym.normal_low) #e_trade_gym.normal_high = e_train_gym.normal_high #e_trade_gym.normal_low = e_train_gym.normal_low print("start main_training model") for j in range(0, multi_number): if(j+1>food.agents_number): model_a2c = agent.get_model(model_name="a2c", lxc_stock_number=j,all_stock_number = multi_number) model_a2c.all_stock_number = multi_number model_a2c.env.reset() if(j!=0): trained_a2c = agent.get_pre_model(model=model_a2c, tb_log_name="a2c", total_timesteps=1000, lxcName="lxcMulti" + str(j - 1)) trained_a2c.lxc_stock_number = j trained_a2c.all_stock_number = multi_number trained_a2c = trained_a2c.online_learning(total_timesteps=1000, tb_log_name="a2c") agent.save_pre_model(model=trained_a2c, tb_log_name="a2c", total_timesteps=1000, lxcName="lxcMulti" + str(j)) else: trained_a2c = agent.train_lxc_model( # model=model_a2c, tb_log_name="a2c", total_timesteps=80000,lxcType=1,lxcName="lxc2" model=model_a2c, tb_log_name="a2c", total_timesteps=1000, lxcType= None, lxcName="lxcMulti" + str(j) ) food.agents.append(trained_a2c) print(j,"'s model is trained done") else: print("here!!!") food.agents[j].all_stock_number = multi_number food.agents[j].env = env_train food.agents[j] = food.agents[j].online_learning(total_timesteps=1000, tb_log_name="a2c") env_train.reset() food.agents_number = multi_number # names=["date","open","high","low","close","volume","tic","day",] # df = pd.read_csv("./" + config.DATA_SAVE_DIR + "/" + "20210315-07h382" + ".csv",index_col=0) print('GPU is :', torch.cuda.is_available()) ######################################################################### print("==============Start Trading===========") start_date = config.START_TRADE_DATE, end_date = config.END_DATE, df_account_value =
pd.DataFrame()
pandas.DataFrame
from movie import app from flask import render_template,flash from movie.forms import MovieForm @app.route('/',methods=['GET','POST']) def movierec(): form=MovieForm() if form.validate_on_submit(): import pandas as pd import numpy as np ratings=pd.read_csv('ratings.csv') movies=pd.read_csv('movies.csv') movie_data=pd.merge(ratings,movies,on='movieId') movie_data.groupby('title')['rating'].mean().sort_values(ascending=False) movie_data.groupby('title')['rating'].count().sort_values(ascending=False) rating_mean=pd.DataFrame(movie_data.groupby('title')['rating'].mean()) rating_mean['rating_count']=pd.DataFrame(movie_data.groupby('title')['rating'].count()) user_movie_rating=movie_data.pivot_table(index='userId',columns='title',values='rating') x=form.moviename.data x=x.split() for i in range(0,len(x)): x[i]=x[i].capitalize() x=' '.join(x) flag=-1 for i in range(0,len(movies)): if x in movies.iloc[i,1]: x=movies.iloc[i,1] flag=1 if flag==-1: flash('There was some error. The admin has been notified. Please try another movie. Sorry for the inconvenience!!') else: movie=x movie_ratings=user_movie_rating[movie] movies_like_movie=user_movie_rating.corrwith(movie_ratings) corr_movie=
pd.DataFrame(movies_like_movie,columns=['Correlation'])
pandas.DataFrame
# -*- coding: utf-8 -*- from unittest import TestCase import pandas as pd from alphaware.base import (Factor, FactorContainer) from alphaware.enums import (FactorType, OutputDataFormat, FreqType, FactorNormType) from alphaware.analyzer import FactorIC from pandas.util.testing import assert_frame_equal class TestFactorIC(TestCase): def test_factor_ic(self): index = pd.MultiIndex.from_product([['2014-01-30', '2014-02-28', '2014-03-31'], ['001', '002']], names=['trade_date', 'ticker']) data1 = pd.DataFrame(index=index, data=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) factor_test1 = Factor(data=data1, name='alpha1') factor_test3 = Factor(data=data1, name='alpha2') test2_property = {'type': FactorType.FWD_RETURN, 'data_format': OutputDataFormat.MULTI_INDEX_DF, 'norm_type': FactorNormType.Null, 'freq': FreqType.EOM} data2 = pd.DataFrame(index=index, data=[3.0, 2.0, 3.0, 7.0, 8.0, 9.0]) factor_test2 = Factor(data=data2, name='fwd_return1', property_dict=test2_property) factor_test4 = Factor(data=data2, name='fwd_return2', property_dict=test2_property) fc = FactorContainer('2014-01-30', '2014-02-28', [factor_test1, factor_test2, factor_test3, factor_test4]) t = FactorIC() calculate = t.predict(fc) expected = pd.DataFrame(data=[[-1.0, -1.0, -1.0, -1.0], [1.0, 1.0, 1.0, 1.0]], index=pd.DatetimeIndex(['2014-01-30', '2014-02-28'], freq=None), columns=['alpha1_fwd_return1', 'alpha2_fwd_return1', 'alpha1_fwd_return2', 'alpha2_fwd_return2'])
assert_frame_equal(calculate, expected)
pandas.util.testing.assert_frame_equal
import pandas as pd import matplotlib as mpl import numpy as np from sklearn import metrics import itertools import warnings from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.graphics.tsaplots import plot_acf, plot_pacf import matplotlib.pyplot as plt import seaborn as sns from matplotlib import ticker import matplotlib.dates as mdates from matplotlib.dates import DateFormatter # plt.style.use('ggplot') sns.set_theme(style="darkgrid") font = {'size' : 12} mpl.rc('font', **font) mpl.rc('figure', max_open_warning = 0) pd.set_option('display.max_columns',None) pd.set_option('display.max_rows',25) # only display whole years in figures years = mdates.YearLocator() years_fmt = mdates.DateFormatter('%Y') print('Functions loaded.') ################################################################################ def melt_data(df): ''' Takes in a Zillow Housing Data File (ZHVI) as a DataFrame in wide format and returns a melted DataFrame ''' melted = pd.melt(df, id_vars=['RegionID', 'RegionName', 'City', 'State', 'StateName', 'Metro', 'CountyName', 'SizeRank', 'RegionType'], var_name='date') melted['date'] = pd.to_datetime(melted['date'], infer_datetime_format=True) melted = melted.dropna(subset=['value']) return melted def visualize_data(df, sf_all, bedrooms): fig, ax = plt.subplots(figsize=(15,10)) ax.set_title(f'{bedrooms}-Bedroom Home Values in San Franciso by Zip Code', size=24) sns.lineplot(data=df, x=df.date, y=df.value, ax=ax, hue='zipcode', style='zipcode') sns.lineplot(data=sf_all, x=sf_all.index, y=sf_all.value, ax=ax, color = 'b', label='all') ax.set_xlabel('Year', size=20) ax.set_ylabel('Home Value (USD)', size=20) ax.set_xlim(pd.Timestamp('1996'), pd.Timestamp('2022-05-31')) ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(years_fmt) ax.set_yticks(np.linspace(1e5,1.5e6,15)) ax.set_ylim((1e5, 1.5e6)) ax.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: format(int(x), ','))) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.savefig(f'images/{bedrooms}_bdrm_home_values.png') def create_df_dict(df): zipcodes = list(set(df.zipcode)) keys = [zipcode for zipcode in map(str,zipcodes)] data_list = [] for key in keys: new_df = df.copy()[df.zipcode == int(key)] new_df.drop('zipcode', inplace=True, axis=1) new_df.columns = ['date', 'value'] new_df.date = pd.to_datetime(new_df.date) new_df.set_index('date', inplace=True) new_df = new_df.asfreq('M') data_list.append(new_df) df_dict = dict(zip(keys, data_list)) return df_dict def test_stationarity(df_all, diffs=0): if diffs == 2: dftest = adfuller(df_all.diff().diff().dropna()) elif diffs == 1: dftest = adfuller(df_all.diff().dropna()) else: dftest = adfuller(df_all) dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key, value in dftest[4].items(): dfoutput['Critical Value (%s)' %key] = value print (dfoutput) def test_stationarity_all_zips(df_dict, diffs=0): for zipcode, df in df_dict.items(): if diffs == 2: dftest = adfuller(df.diff().diff().dropna()) elif diffs == 1: dftest = adfuller(df.diff().dropna()) else: dftest = adfuller(df) dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key, value in dftest[4].items(): dfoutput['Critical Value (%s)' %key] = value print(dfoutput[1]) def plot_pacf_housing(df_all, bedrooms): pacf_fig, ax = plt.subplots(1, 2, figsize=(12, 6)) pacf_fig.suptitle(f'Partial Autocorrelations of {bedrooms}-Bedroom Time Series for Entire San Francisco Data Set', fontsize=18) plot_pacf(df_all, ax=ax[0]) ax[0].set_title('Undifferenced PACF', size=14) ax[0].set_xlabel('Lags', size=14) ax[0].set_ylabel('PACF', size=14) plot_pacf(df_all.diff().dropna(), ax=ax[1]) ax[1].set_title('Differenced PACF', size=14) ax[1].set_xlabel('Lags', size=14) ax[1].set_ylabel('PACF', size=14) pacf_fig.tight_layout() pacf_fig.subplots_adjust(top=0.9) plt.savefig(f'images/{bedrooms}_bdrm_PACF.png') def plot_acf_housing(df_all, bedrooms): acf_fig, ax = plt.subplots(1, 3, figsize=(18, 6)) acf_fig.suptitle(f'Autocorrelations of {bedrooms}-Bedroom Time Series for Entire San Francisco Data Set', fontsize=18) plot_acf(df_all, ax=ax[0]) ax[0].set_title('Undifferenced ACF', size=14) ax[0].set_xlabel('Lags', size=14) ax[0].set_ylabel('ACF', size=14) plot_acf(df_all.diff().dropna(), ax=ax[1]) ax[1].set_title('Once-Differenced ACF', size=14) ax[1].set_xlabel('Lags', size=14) ax[1].set_ylabel('ACF', size=14) plot_acf(df_all.diff().diff().dropna(), ax=ax[2]) ax[2].set_title('Twice-Differenced ACF', size=14) ax[2].set_xlabel('Lags', size=14) ax[2].set_ylabel('ACF', size=14) acf_fig.tight_layout() acf_fig.subplots_adjust(top=0.9) plt.savefig(f'images/{bedrooms}_bdrm_ACF.png') def plot_seasonal_decomposition(df_all, bedrooms): decomp = seasonal_decompose(df_all, period=12) dc_obs = decomp.observed dc_trend = decomp.trend dc_seas = decomp.seasonal dc_resid = decomp.resid dc_df = pd.DataFrame({"observed": dc_obs, "trend": dc_trend, "seasonal": dc_seas, "residual": dc_resid}) start = dc_df.iloc[:, 0].index[0] end = dc_df.iloc[:, 0].index[-1] + relativedelta(months=+15) + relativedelta(day=31) decomp_fig, axes = plt.subplots(4, 1, figsize=(15, 15)) for i, ax in enumerate(axes): ax.plot(dc_df.iloc[:, i]) ax.set_xlim(start, end) ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(years_fmt) ax.set_ylabel(dc_df.iloc[:, i].name) if i != 2: ax.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: format(int(x), ','))) plt.setp(ax.xaxis.get_majorticklabels(), ha="right", rotation=45, rotation_mode="anchor") decomp_fig.suptitle( f'Seasonal Decomposition of {bedrooms}-Bedroom Time Series of San Francisco Home Values (Mean)', fontsize=24) decomp_fig.tight_layout() decomp_fig.subplots_adjust(top=0.94) plt.savefig(f'images/{bedrooms}_bdrm_seasonal_decomp.png') def train_test_split_housing(df_dict, split=84): print(f'Using a {split}/{100-split} train-test split...') cutoff = [round((split/100)*len(df)) for zipcode, df in df_dict.items()] train_dict_list = [df_dict[i][:cutoff[count]] for count, i in enumerate(list(df_dict.keys()))] train_dict = dict(zip(list(df_dict.keys()), train_dict_list)) test_dict_list = [df_dict[i][cutoff[count]:] for count, i in enumerate(list(df_dict.keys()))] test_dict = dict(zip(list(df_dict.keys()), test_dict_list)) return train_dict, test_dict def gridsearch_SARIMAX(train_dict, seas = 12, p_min=2, p_max=2, q_min=0, q_max=0, d_min=1, d_max=1, s_p_min=2, s_p_max=2, s_q_min=0, s_q_max=0, s_d_min=1, s_d_max=1, verbose=True): p = range(p_min, p_max+1) q = range(q_min, q_max+1) d = range(d_min, d_max+1) s_p = range(s_p_min, s_p_max+1) s_q = range(s_q_min, s_q_max+1) s_d = range(s_d_min, s_d_max+1) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], seas) for x in list(itertools.product(s_p, s_d, s_q))] if verbose: print('Parameters for SARIMAX grid search...') for i in pdq: for s in seasonal_pdq: print('SARIMAX: {} x {}'.format(i, s)) zipcodes = [] param_list = [] param_seasonal_list = [] aic_list = [] for zipcode, train in train_dict.items(): for param in pdq: for param_seasonal in seasonal_pdq: mod = SARIMAX(train, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) zipcodes.append(zipcode[-5:]) param_list.append(param) param_seasonal_list.append(param_seasonal) with warnings.catch_warnings(): warnings.filterwarnings('error') try: aic = mod.fit(maxiter=1000).aic except Warning as e: continue aic_list.append(aic) if verbose: print(param,param_seasonal) print(f'Zip Code {zipcode} | AIC: {aic}') else: print('-', end='') print('\nCompleted.') return zipcodes, param_list, param_seasonal_list, aic_list def get_best_params(zipcodes, param_list, param_seasonal_list, aic_list, bedrooms): # intialize list of model params model_data = {'zipcode': zipcodes, 'param': param_list, 'param_seasonal': param_seasonal_list, 'aic': aic_list } # Create model params DataFrames sarimax_details_df = pd.DataFrame(model_data) # print(sarimax_details_df.shape) best_params_df = sarimax_details_df.loc[sarimax_details_df.groupby('zipcode')['aic'].idxmin()] best_params_df.set_index('zipcode', inplace=True) print(best_params_df) best_params_df.to_csv(f'data/{bedrooms}_bdrm_best_params.csv') return best_params_df def evaluate_model(train_dict, test_dict, model_best_df): predict_dict = {} cat_predict_dict = train_dict.copy() for _ in range(5): for zipcode, df in cat_predict_dict.items(): if cat_predict_dict[zipcode].index[-1] >=
pd.to_datetime('2021-02-28')
pandas.to_datetime
from seedsKmeans import SEEDS import pandas as pd import BaseDados as BD import numpy as np tamanhos= [0.05, 0.06, 0.07, 0.08, 0.09, 0.1] resultado = [] for tam in tamanhos: X,Y = BD.base_qualquer('D:/basedados/vinhos.csv') Y -= 1 dados = pd.DataFrame(X, columns=np.arange(np.size(X, axis=1))) dados['classe'] = Y acuracia = [] recall = [] precisao = [] fscore = [] for j in range(0, 10): print('Tamanho:',tam,' - Iteração ', j) kmeans = SEEDS(dados,3) acuracia.append(kmeans.acuracia) recall.append(kmeans.recall) precisao.append(kmeans.precisao) fscore.append(kmeans.f1) resultado.append([np.mean(acuracia), np.std(acuracia), np.mean(recall), np.mean(precisao), np.mean(fscore)]) colunas = ['ACURACIA', 'STD', 'RECALL', 'PRECISAO', 'F-SCORE'] dados =
pd.DataFrame(resultado, columns=colunas)
pandas.DataFrame
import pandas as pd import dash from dash.dependencies import Input, Output, State, MATCH, ALL import dash_core_components as dcc import dash_html_components as html from dash.exceptions import PreventUpdate import dash_bootstrap_components as dbc import dash_table import plotly.graph_objs as go from threading import Thread import queue import serial import serial.tools.list_ports import time from pathlib import Path import json import sqlite3 from datetime import datetime # globals... yuk FILE_DIR = '' APP_ID = 'serial_data' Q = queue.Queue() SERIAL_THREAD = None class SerialThread(Thread): def __init__(self, port, baud=115200): super().__init__() self.port = port self._isRunning = True self.ser_obj = serial.Serial(port=port, baudrate=baud, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, timeout=None) def run(self): while self._isRunning: try: while self.ser_obj.in_waiting > 2: try: line = self.ser_obj.readline() split_line = line.strip().decode("utf-8") Q.put(split_line) except: continue except: continue def stop(self): self._isRunning = False time.sleep(0.25) self.ser_obj.close() return None # layout layout = dbc.Container([ dbc.Row( dbc.Col([ dcc.Store(id=f'{APP_ID}_store'), dcc.Interval(id=f'{APP_ID}_interval', interval=2000, n_intervals=0, disabled=True), html.H2('Serial Data Plotter'), html.P('This tests plotting data from serial (arduino) using a background thread to collect the data and send it to a queue. ' 'Data is retrieved from the queue and stored in the browser as well as written to a file') ]) ), dbc.Row([ dbc.Col( dbc.FormGroup([ dbc.Button('COM Ports (refresh)', id=f'{APP_ID}_com_button'), dcc.Dropdown(id=f'{APP_ID}_com_dropdown', placeholder='Select COM port', options=[], multi=False), dbc.Textarea(id=f'{APP_ID}_com_desc_label', disabled=True ) ]), width=4 ), dbc.Col( dbc.FormGroup([ dbc.Label('Headers'), dbc.Button('Initialize Headers', id=f'{APP_ID}_init_header_button', block=True), dash_table.DataTable( id=f'{APP_ID}_header_dt', columns=[ {"name": 'Position', "id": 'pos', "type": 'numeric', 'editable': False}, {"name": 'Name', "id": 'name', "type": 'text', 'editable': False}, {"name": 'Format', "id": 'fmt', "type": 'text', "presentation": 'dropdown'} ], data=None, editable=True, row_deletable=False, dropdown={ 'fmt': { 'options': [ {'label': i, 'value': i} for i in ['text', 'real', 'integer'] ], }, } ), ]), width=4 ), ]), dbc.Row( dbc.Col([ dbc.Toast( children=[], id=f'{APP_ID}_header_toast', header="Initialize Headers", icon="danger", dismissable=True, is_open=False ), ], width="auto" ), ), dbc.Row([ dbc.Col( dbc.FormGroup([ dbc.Label('Filename'), dbc.Input(placeholder='filename', id=f'{APP_ID}_filename_input', type='text', value=f'data/my_data_{datetime.now().strftime("%m.%d.%Y.%H.%M.%S")}.db') ]) ) ]), dbc.ButtonGroup([ dbc.Button('Start', id=f'{APP_ID}_start_button', n_clicks=0, disabled=True, size='lg', color='secondary'), dbc.Button('Stop', id=f'{APP_ID}_stop_button', n_clicks=0, disabled=True, size='lg', color='secondary'), dbc.Button('Clear', id=f'{APP_ID}_clear_button', n_clicks=0, disabled=True, size='lg'), dbc.Button('Download Data', id=f'{APP_ID}_download_button', n_clicks=0, disabled=True, size='lg'), ], className='mt-2 mb-2' ), html.H2('Data Readouts'), dcc.Dropdown( id=f'{APP_ID}_readouts_dropdown', multi=True, options=[], value=None ), dbc.CardDeck( id=f'{APP_ID}_readouts_card_deck' ), html.H2('Data Plots', className='mt-2 mb-1'), dbc.ButtonGroup([ dbc.Button("Add Plot", id=f'{APP_ID}_add_figure_button'), dbc.Button("Remove Plot", id=f'{APP_ID}_remove_figure_button'), ]), html.Div( id=f'{APP_ID}_figure_div' ), ]) def add_dash(app): @app.callback( [Output(f'{APP_ID}_header_dt', 'data'), Output(f'{APP_ID}_header_toast', 'children'), Output(f'{APP_ID}_header_toast', 'is_open'), ], [Input(f'{APP_ID}_init_header_button', 'n_clicks')], [State(f'{APP_ID}_com_dropdown', 'value')] ) def serial_data_init_header(n_clicks, com): if n_clicks is None or com is None: raise PreventUpdate baud = 115200 try: ser_obj = serial.Serial(port=com, baudrate=baud, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, timeout=10) split_line = '_' while split_line[0] != '{': line = ser_obj.readline() split_line = line.strip().decode("utf-8") split_line = line.strip().decode("utf-8") jdic = json.loads(split_line) data = [{'pos': i, 'name': k} for i, k in enumerate(jdic.keys())] for i, k in enumerate(jdic.keys()): if isinstance(jdic[k], int): data[i].update({'fmt': 'integer'}) elif isinstance(jdic[k], float): data[i].update({'fmt': 'real'}) else: data[i].update({'fmt': 'text'}) ser_obj.close() return data, '', False except Exception as e: return [{}], html.P(str(e)), True return data, '', False @app.callback( Output(f'{APP_ID}_com_dropdown', 'options'), [Input(f'{APP_ID}_com_button', 'n_clicks')] ) def serial_data_refresh_com_ports(n_clicks): if n_clicks is None: raise PreventUpdate ports = [{'label': comport.device, 'value': comport.device} for comport in serial.tools.list_ports.comports()] return ports @app.callback( Output(f'{APP_ID}_com_desc_label', 'value'), [Input(f'{APP_ID}_com_dropdown', 'value')] ) def serial_data_com_desc(com): if com is None: raise PreventUpdate ports = [comport.device for comport in serial.tools.list_ports.comports()] idx = ports.index(com) descs = [comport.description for comport in serial.tools.list_ports.comports()] return descs[idx] @app.callback( [ Output(f'{APP_ID}_interval', 'disabled'), Output(f'{APP_ID}_start_button', 'disabled'), Output(f'{APP_ID}_start_button', 'color'), Output(f'{APP_ID}_stop_button', 'disabled'), Output(f'{APP_ID}_stop_button', 'color'), Output(f'{APP_ID}_clear_button', 'disabled'), Output(f'{APP_ID}_clear_button', 'color'), Output(f'{APP_ID}_filename_input', 'disabled'), Output(f'{APP_ID}_filename_input', 'value'), Output(f'{APP_ID}_header_dt', 'editable'), Output(f'{APP_ID}_store', 'clear_data'), ], [ Input(f'{APP_ID}_start_button', 'n_clicks'), Input(f'{APP_ID}_stop_button', 'n_clicks'), Input(f'{APP_ID}_clear_button', 'n_clicks'), Input(f'{APP_ID}_header_dt', 'data'), ], [ State(f'{APP_ID}_com_dropdown', 'value'), State(f'{APP_ID}_filename_input', 'value'), State(f'{APP_ID}_header_dt', 'data') ] ) def serial_data_start_stop(n_start, n_stop, n_clear, hdr_data, port, filename, data_header): global SERIAL_THREAD global Q ctx = dash.callback_context if any([n_start is None, n_stop is None, port is None, hdr_data is None, n_clear is None]): raise PreventUpdate if pd.DataFrame(hdr_data).empty: raise PreventUpdate df_hdr = pd.DataFrame(data_header).sort_values('pos') df_hdr['name'] = df_hdr['name'].fillna(df_hdr['pos'].astype(str)) headers = df_hdr['name'].tolist() trig = ctx.triggered[0]['prop_id'].split('.')[0] if trig == f'{APP_ID}_header_dt': if len(data_header[0].keys()) == 3 and ~df_hdr.isnull().values.any(): return True, False, 'success', True, 'secondary', True, 'secondary', False, filename, True, False else: return True, True, 'secondary', True, 'secondary', True, 'secondary', False, filename, True, False if trig == f'{APP_ID}_start_button': print(f'starting: {filename}') if filename is None or filename == '': filename = f'data/my_data_{datetime.now().strftime("%m.%d.%Y.%H.%M.%S")}.db' if (Path(FILE_DIR) / filename).exists(): clear = False else: clear = True SERIAL_THREAD = SerialThread(port, baud=115200) SERIAL_THREAD.start() return False, True, 'secondary', False, 'danger', True, 'secondary', True, filename, False, clear if trig == f'{APP_ID}_stop_button': print('stopping') SERIAL_THREAD.stop() with Q.mutex: Q.queue.clear() return True, False, 'success', True, 'secondary', False, 'warning', False, filename, True, False if trig == f'{APP_ID}_clear_button': print('clearing') filename = f'data/my_data_{datetime.now().strftime("%m.%d.%Y.%H.%M.%S")}.db' return True, False, 'success', True, 'secondary', True, 'secondary', False, filename, True, True @app.callback( Output(f'{APP_ID}_store', 'data'), [Input(f'{APP_ID}_interval', 'n_intervals')], [State(f'{APP_ID}_interval', 'disabled'), State(f'{APP_ID}_store', 'data'), State(f'{APP_ID}_filename_input', 'value'), State(f'{APP_ID}_header_dt', 'data') ] ) def serial_data_update_store(n_intervals, disabled, data, filename, data_header): global Q # get data from queue if disabled is not None and not disabled: new_data = [] while not Q.empty(): new_data_dic = json.loads(Q.get()) new_data.append(tuple((new_data_dic[c["name"]] for c in data_header if c["name"] in new_data_dic.keys()))) conn = sqlite3.connect(FILE_DIR + filename) c = conn.cursor() c.execute(''' SELECT count(name) FROM sqlite_master WHERE type='table' AND name='my_data' ''') if c.fetchone()[0] == 1: c.executemany(f'INSERT INTO my_data VALUES ({(",".join(["?"] * len(data_header)) )})', new_data) conn.commit() last_row_id = c.execute("SELECT COUNT() FROM my_data").fetchone()[0] conn.close() else: c.execute( f'''CREATE TABLE my_data (''' + ', '.join([f'{hdr["name"]} {hdr["fmt"]}' for hdr in data_header]) + ')' ) c.executemany(f'INSERT INTO my_data VALUES ({(",".join(["?"] * len(data_header)) )})', new_data) conn.commit() last_row_id = c.execute("SELECT COUNT() FROM my_data").fetchone()[0] conn.close() return last_row_id @app.callback( Output(f'{APP_ID}_readouts_dropdown', 'options'), Input(f'{APP_ID}_header_dt', 'data') ) def serial_data_readout_options(hdr_data): if hdr_data is None: raise PreventUpdate if pd.DataFrame(hdr_data).empty: raise PreventUpdate df_hdr = pd.DataFrame(hdr_data).sort_values('pos') df_hdr['name'] = df_hdr['name'].fillna(df_hdr['pos'].astype(str)) headers = df_hdr['name'].tolist() options = [{'label': c, 'value': c} for c in headers] return options @app.callback( Output(f'{APP_ID}_readouts_card_deck', 'children'), Output(f'{APP_ID}_readouts_dropdown', 'value'), Input(f'{APP_ID}_readouts_card_deck', 'children'), Input(f'{APP_ID}_readouts_dropdown', 'value'), ) def serial_data_create_readouts(cards, selected): ctx = dash.callback_context input_id = ctx.triggered[0]["prop_id"].split(".")[0] if input_id == f'{APP_ID}_readouts_card_deck': selected = [] for card in cards: selected.append(card['id']['index']) else: # collect selected to create cards cards = [] if selected is not None: for s in selected: cards.append( dbc.Card( id={'type': f'{APP_ID}_readout_card', 'index': s}, children=[ dbc.CardHeader(s), ] ) ) return cards, selected @app.callback( Output({'type': f'{APP_ID}_readout_card', 'index': ALL}, 'children'), Input(f'{APP_ID}_store', 'modified_timestamp'), State(f'{APP_ID}_filename_input', 'value'), ) def serial_data_update_readouts(ts, filename): if any([v is None for v in [ts]]): raise PreventUpdate conn = sqlite3.connect(FILE_DIR + filename) cur = conn.cursor() n_estimate = cur.execute("SELECT COUNT() FROM my_data").fetchone()[0] n_int = n_estimate // 10000 + 1 query = f'SELECT * FROM my_data WHERE ROWID % {n_int} = 0' df = pd.read_sql(query, conn) conn.close() card_chs = [] for ccb in dash.callback_context.outputs_list: y = df[ccb['id']['index']].iloc[-1] ch = [ dbc.CardHeader(ccb['id']['index']), dbc.CardBody( dbc.ListGroup([ dbc.ListGroupItem(html.H3(f"{y:0.3g}"), color='info'), ]), ) ] card_chs.append(ch) return card_chs @app.callback( Output(f'{APP_ID}_figure_div', 'children'), Input(f'{APP_ID}_add_figure_button', 'n_clicks'), Input(f'{APP_ID}_remove_figure_button', 'n_clicks'), Input(f'{APP_ID}_header_dt', 'data'), State(f'{APP_ID}_figure_div', 'children'), ) def serial_data_create_figures(n_add, n_remove, header_data, figure_objs): ctx = dash.callback_context input_id = ctx.triggered[0]["prop_id"].split(".")[0] df_header =
pd.DataFrame(header_data)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon 9/2/14 Using python pandas to post process csv output from Pacejka Tire model @author: <NAME>, 2014 """ import pandas as pd import matplotlib.pyplot as plt import matplotlib import pylab as py class PacTire_panda: ''' @class: loads, manages and plots various output from Pacejka Tire model ''' def __init__(self,fileName_steadyState,fileName_transient="none"): ''' Input: filename: full filename w/ input data in csv form ''' # first file is the steady state magic formula output self._m_filename_SS = fileName_steadyState # optional: compare against the transient slip output if( fileName_transient=="none"): self._use_transient_slip = False else: self._use_transient_slip = True self._m_filename_T = fileName_transient df_T = pd.read_csv(self._m_filename_T, header=0, sep=',') # index_col=0, self._m_df_T = df_T # Header Form: # time,kappa,alpha,gamma,kappaP,alphaP,gammaP,Vx,Vy,Fx,Fy,Fz,Mx,My,Mz,Fxc,Fyc,Mzc df = pd.read_csv(self._m_filename_SS, header=0, sep=',') # index_col=0, self._m_df = df # @brief plot Forces, moments, pure slip vs. kappa def plot_kappa_FMpure(self,adams_Fx_tab_filename="none",adams_Mz_tab_filename="none"): # force v. kappa figF = plt.figure() df_kappa = pd.DataFrame(self._m_df, columns = ['kappa','Fx','Fz','Fxc']) # always create the plot, axes handle axF = df_kappa.plot(linewidth=2.0,x='kappa',y=['Fxc','Fz']) axF.set_xlabel(r'$\kappa $ ') axF.set_ylabel('Force [N]') axF.set_title(r'$\kappa *$, pure long. slip') if( adams_Fx_tab_filename != "none"): # load in the adams junk data, Fx vs. kappa % dfx_adams = pd.read_table(adams_Fx_tab_filename,sep='\t',header=0) dfx_adams['Longitudinal Slip'] = dfx_adams['Longitudinal Slip'] / 100.0 axF.plot(dfx_adams['Longitudinal Slip'],dfx_adams['Longitudinal Force'],'r--',linewidth=1.5,label="Fx Adams") # plt.legend(loc='best') # compare transient slip output also? if( self._use_transient_slip): df_ts = pd.DataFrame(self._m_df_T, columns = ['kappa','Fx','Fxc']) axF.plot(df_ts['kappa'],df_ts['Fx'],'c--',linewidth=1.0,label='Fx transient') axF.plot(df_ts['kappa'],df_ts['Fxc'],'k-*',linewidth=1.0,label='Fxc transient') axF.legend(loc='best') figM = plt.figure() df_kappaM = pd.DataFrame(self._m_df, columns = ['kappa','Mx','My','Mz','Mzc']) axM = df_kappaM.plot(linewidth=2.0,x='kappa',y=['Mx','My','Mzc']) if( adams_Mz_tab_filename != "none"): dfmz_adams = pd.read_table(adams_Mz_tab_filename,sep='\t',header=0) dfmz_adams['longitudinal_slip'] = dfmz_adams['longitudinal_slip']/100. axM.plot(dfmz_adams['longitudinal_slip'], dfmz_adams['aligning_moment'],'r--',linewidth=1.5,label="Mz Adams") if( self._use_transient_slip): df_tsM = pd.DataFrame(self._m_df_T, columns = ['kappa','Mzc','Mzx','Mzy','M_zrc','t','s']) axM.plot(df_tsM['kappa'],df_tsM['Mzc'],'k-*',linewidth=1.0,label='Mzc transient') axM.plot(df_tsM['kappa'], df_tsM['Mzx'],'b--',linewidth=2,label='Mz,x') axM.plot(df_tsM['kappa'], df_tsM['Mzy'],'g--',linewidth=2,label='Mz,y') axM.plot(df_tsM['kappa'], df_tsM['M_zrc'],'y--',linewidth=2,label='M_zrc') axM2 = axM.twinx() axM2.plot(df_tsM['kappa'], df_tsM['t'],'b.',linewidth=1.0,label='t trail') axM2.plot(df_tsM['kappa'], df_tsM['s'],'c.',linewidth=1.0,label='s arm') axM2.set_ylabel('length [m]') axM2.legend(loc='lower right') axM.set_xlabel(r'$\kappa $ ') axM.set_ylabel('Moment [N-m]') axM.legend(loc='best') axM.set_title(r'$\kappa $, pure long. slip') # @brief plot Forces, Moments, pure slip vs. alpha def plot_alpha_FMpure(self,adams_Fy_tab_filename="none",adams_Mz_tab_filename="none"): figF = plt.figure() df_sy = pd.DataFrame(self._m_df, columns = ['alpha','Fy','Fz','Fyc']) axF = df_sy.plot(linewidth=2.0,x='alpha', y=['Fyc','Fz'])# y=['Fy','Fyc','Fz']) if( adams_Fy_tab_filename != "none"): # load in adams tabular data for Fy vs. alpha [deg] dfy_adams = pd.read_table(adams_Fy_tab_filename,sep='\t',header=0) axF.plot(dfy_adams['slip_angle'],dfy_adams['lateral_force'],'r--',linewidth=1.5,label="Fy Adams") # compare transient slip output if(self._use_transient_slip): # already have this in df_T df_ts = pd.DataFrame(self._m_df_T, columns = ['alpha','Fyc','Fy'] ) # axF.plot(df_ts['alpha'], df_ts['Fy'],'c-*',linewidth=2.0,label="Fy Transient") axF.plot(df_ts['alpha'], df_ts['Fyc'],'k-*',linewidth=1.0,label="Fyc Transient") axF.set_xlabel(r'$\alpha $[deg]') axF.set_ylabel('Force [N]') axF.legend(loc='best') axF.set_title(r'$\alpha $, pure lateral slip') figM = plt.figure() df_M = pd.DataFrame(self._m_df, columns = ['alpha','Mx','My','Mz','Mzc']) axM = df_M.plot(linewidth=2.0,x='alpha',y=['Mx','My','Mzc']) # ,'Mz']) if( adams_Mz_tab_filename != "none"): dfmz_adams = pd.read_table(adams_Mz_tab_filename,sep='\t',header=0) axM.plot(dfmz_adams['slip_angle'], dfmz_adams['aligning_moment'],'r--',linewidth=1.5,label="Mz Adams") # also plot transient slip outputs if(self._use_transient_slip): # already have this in df_T df_tsM = pd.DataFrame(self._m_df_T, columns = ['alpha','Mz','Mzc','MP_z','M_zr','t','s'] ) # axM.plot(df_tsM['alpha'], df_tsM['Mz'],'k-*',linewidth=1.0,label="Mz Transient") axM.plot(df_tsM['alpha'], df_tsM['Mzc'],'k-*',linewidth=1.0,label="Mzc Transient") axM.plot(df_tsM['alpha'], df_tsM['MP_z'],'g--',linewidth=2,label="MP_z") axM.plot(df_tsM['alpha'], df_tsM['M_zr'],'y--',linewidth=2,label="M_zr") axM2 = axM.twinx() axM2.plot(df_tsM['alpha'], df_tsM['t'],'b.',linewidth=1.0,label='t trail') axM2.plot(df_tsM['alpha'], df_tsM['s'],'c.',linewidth=1.0,label='s arm') axM2.legend(loc='lower right') axM2.set_ylabel('length [m]') axM.set_xlabel(r'$\alpha $[deg]') axM.set_ylabel('Moment [N-m]') axM.legend(loc='best') axM.set_title(r'$\alpha $, pure lateral slip') # @brief plot combined forces, moments vs. kappa def plot_combined_kappa(self, adams_Fx_tab_filename="none",adams_Fy_tab_filename="none",adams_Mz_tab_filename="none"): figF = plt.figure() df_sy = pd.DataFrame(self._m_df, columns = ['kappa','Fxc','Fyc','m_Fz']) axF = df_sy.plot(linewidth=1.5,x='kappa',y=['Fxc','Fyc']) # ,'Fz']) # check to see if adams data is avaiable if( adams_Fx_tab_filename != "none"): # load in the adams junk data, Fx vs. kappa % dfx_adams = pd.read_table(adams_Fx_tab_filename,sep='\t',header=0) dfx_adams['longitudinal slip'] = dfx_adams['longitudinal slip'] / 100.0 axF.plot(dfx_adams['longitudinal slip'],dfx_adams['longitudinal force'],'r--',linewidth=1.5,label="Fx Adams") if( adams_Fy_tab_filename != "none"): # load in adams tabular data for Fy vs. alpha [deg] dfy_adams = pd.read_table(adams_Fy_tab_filename,sep='\t',header=0) axF.plot(dfy_adams['slip_angle'],dfy_adams['lateral_force'],'g--',linewidth=1.5,label="Fy Adams") # plot transient slip output? if( self._use_transient_slip): # Fx here df_T = pd.DataFrame(self._m_df_T, columns = ['kappa','Fxc','Fyc']) axF.plot(df_T['kappa'], df_T['Fxc'],'k-*',linewidth=1.0,label='Fxc transient') # axF.plot(df_T['kappa'], df_T['Fyc'],'c--',linewidth=1.5,label='Fyc transient') axF.set_xlabel(r'$\kappa $') axF.set_ylabel('Force [N]') axF.legend(loc='best') axF.set_title(r'$\kappa $, combined slip') figM = plt.figure() df_M = pd.DataFrame(self._m_df, columns = ['kappa','Mx','My','Mzc']) axM = df_M.plot(linewidth=1.5,x='kappa',y=['Mx','My','Mzc']) # chceck for adams tabular data if( adams_Mz_tab_filename != "none"): dfmz_adams = pd.read_table(adams_Mz_tab_filename,sep='\t',header=0) dfmz_adams['longitudinal_slip'] = dfmz_adams['longitudinal_slip'] / 100.0 axM.plot(dfmz_adams['longitudinal_slip'], dfmz_adams['aligning_moment'],'r--',linewidth=1.5,label="Mz Adams") # plot transient slip output for Mz? if( self._use_transient_slip): # Mzc here df_T_M = pd.DataFrame(self._m_df_T, columns = ['kappa','Mzc','Fyc','Fxc','Mzx','Mzy','M_zrc','t','s']) axM.plot(df_T_M['kappa'], df_T_M['Mzc'],'k-*',linewidth=1.0,label='Mzc transient') # overlay the components of the moment from the x and y forces, respectively axM.plot(df_T_M['kappa'], df_T_M['Mzx'],'b--',linewidth=2,label='Mz,x') axM.plot(df_T_M['kappa'], df_T_M['Mzy'],'g--',linewidth=2,label='Mz,y') axM.plot(df_T_M['kappa'], df_T_M['M_zrc'],'y--',linewidth=2,label='M_zrc') axM2 = axM.twinx() axM2.plot(df_T_M['kappa'], df_T_M['t'],'b.',linewidth=1.0,label='t trail') axM2.plot(df_T_M['kappa'], df_T_M['s'],'c.',linewidth=1.0,label='s arm') axM2.set_ylabel('length [m]') axM2.legend(loc='lower right') # overlay the forces, to see what is happening on those curves when # Mz deviates from validation data values ''' ax2 = axM.twinx() ax2.plot(df_T_M['kappa'], df_T_M['Fxc'],'g-.',linewidth=1.5,label='Fxc transient') ax2.plot(df_T_M['kappa'], df_T_M['Fyc'],'c-.',linewidth=1.5,label='Fyc transient') ax2.set_ylabel('Force [N]') ax2.legend(loc='lower right') ''' axM.set_xlabel(r'$\kappa $') axM.set_ylabel('Moment [N-m]') axM.legend(loc='upper left') axM.set_title(r'$\kappa $, combined slip') # @brief plot Fy combined vs. kappa and alpha def plot_combined_alpha(self,adams_Fx_tab_filename="none",adams_Fy_tab_filename="none",adams_Mz_tab_filename="none"): figF = plt.figure() df_sy = pd.DataFrame(self._m_df, columns = ['alpha','Fxc','Fyc','Fz']) axF = df_sy.plot(linewidth=1.5,x='alpha',y=['Fxc','Fyc']) # ,'Fz']) # check to see if adams data is avaiable if( adams_Fx_tab_filename != "none"): # load in the adams junk data, Fx vs. kappa % dfx_adams = pd.read_table(adams_Fx_tab_filename,sep='\t',header=0) dfx_adams['longitudinal slip'] = dfx_adams['longitudinal slip'] / 100.0 axF.plot(dfx_adams['longitudinal slip'],dfx_adams['longitudinal force'],'r--',linewidth=1.5,label="Fx Adams") if( adams_Fy_tab_filename != "none"): # load in adams tabular data for Fy vs. alpha [deg] dfy_adams = pd.read_table(adams_Fy_tab_filename,sep='\t',header=0) axF.plot(dfy_adams['slip_angle'],dfy_adams['lateral_force'],'g--',linewidth=1.5,label="Fy Adams") if( self._use_transient_slip): # Fy here df_T = pd.DataFrame(self._m_df_T, columns = ['alpha','Fyc']) axF.plot(df_T['alpha'], df_T['Fyc'],'k-*',linewidth=1.0,label='Fyc transient') axF.set_xlabel(r'$\alpha $[deg]') axF.set_ylabel('Force [N]') axF.legend(loc='best') axF.set_title(r'$\alpha $ , combined slip') figM = plt.figure() df_M = pd.DataFrame(self._m_df, columns = ['alpha','Mx','My','Mzc']) axM = df_M.plot(linewidth=2.0,x='alpha',y=['Mx','My','Mzc']) # chceck for adams tabular data if( adams_Mz_tab_filename != "none"): dfmz_adams = pd.read_table(adams_Mz_tab_filename,sep='\t',header=0) axM.plot(dfmz_adams['slip_angle'], dfmz_adams['aligning_moment'],'r--',linewidth=1.5,label="Mz Adams") # plot transient slip output if( self._use_transient_slip): # Fx here df_T_M = pd.DataFrame(self._m_df_T, columns = ['alpha','Mzc']) axM.plot(df_T_M['alpha'], df_T_M['Mzc'],'k-*',linewidth=1.0,label='Mzc transient') axM.set_xlabel(r'$\alpha $[deg]') axM.set_ylabel('Moment [N-m]') axM.legend(loc='best') axM.set_title(r'$\alpha $, combined slip') # @brief plot what you please # @param x_col the column name of the x-series data frame # @param y_col_list list of col names of y-series data frames # Usage: tire.plot_custom('Fx',['Fy','Fyc']) # NOTE: y_col_list should be of the same units def plot_custom(self,x_col, y_col_list,fig_title='custom plot',compare_transient=False,compare_adams_file="none"): fig = plt.figure() df_cols = [] df_cols = list(y_col_list) df_cols.append(x_col) df_sy = pd.DataFrame(self._m_df, columns = df_cols) ax = df_sy.plot(linewidth=1.5, x=x_col, y=y_col_list) if(self._use_transient_slip and compare_transient): df_fxfy = pd.DataFrame(self._m_df_T, columns = df_cols) ax.plot(df_fxfy[x_col], df_fxfy[y_col_list[0]], 'k-', linewidth=2,label='transient') if( compare_adams_file != "none"): dfy_adams =
pd.read_table(compare_adams_file, sep='\t', header=0)
pandas.read_table
import os import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from sklearn.model_selection import cross_val_score ##### UTILITIES ####### def generate_keywords(keywords = "../data/keywords/keywords_italy.txt"): """ Generate a list of keywords (Wikipedia's pages) which are used to select the columns of the dataframe we are going to use as dataset to train our model. :param keywords: the path to a file containing \n separated Wikipedia's page names. :return: a keyword list. """ selected_columns = [] file_ = open(keywords, "r") for line in file_: if line != "Week": selected_columns.append(line.replace("\n", "").replace("\\", "")) return selected_columns def generate_features(year_a, year_b, number_a, number_b): if not year_a.empty: if (number_a != 2007): first_part= year_a.copy()[41:52] else: first_part= year_a.copy()[48:52] else: first_part = pd.DataFrame() if not year_b.empty and number_b != 2007: second_part= year_b.copy()[0:15] else: second_part = pd.DataFrame() return first_part.append(second_part) def generate(stop_year, exclude, path_features="./../data/wikipedia_italy/new_data"): """ Generate a dataframe with as columns the Wikipedia's pages and as rows the number of pageviews for each week and for each page. The dataframe contains all the influenza season without the one specified by stop_year. :param stop_year: The influenza seasosn which will not be inserted into the final dataframe. :param path_features: the path to the directory containing all the files with the data. :return: a dataframe containing all influenza season, which can be used to train the model. """ # The stop year must not be in the exclude list assert (stop_year not in exclude) # Generate an empty dataframe dataset = pd.DataFrame() # Get all features files and sort the list file_list = os.listdir(path_features) file_list.sort() for i in range(0, len(file_list)-1): # If the file's year is equal than stop_year then do anything if int(file_list[i].replace(".csv", "")) != stop_year-1: tmp_a = pd.read_csv(os.path.join(path_features, file_list[i]), encoding = 'utf8', delimiter=',') else: tmp_a = pd.DataFrame() if int(file_list[i+1].replace(".csv", "")) != stop_year: tmp_b = pd.read_csv(os.path.join(path_features, file_list[i+1]), encoding = 'utf8', delimiter=',') else: tmp_b =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ### Read data from strip theory reference dataset ### Folder must contain List*.txt and Data*.*.bin files from array import array import pandas as pd import matplotlib.pyplot as mpl import os.path as path # to check either .csv file exists or not on disk Ncfd = 2 # No. of CFD strips; same as the number of modes = 1 or 2 plot_data = True # plot data data = {'nc':[],'md':[],'U':[],'d':[],'m':[],'L':[],'H':[],'Nt':[],'Dt':[],'tf':[],'ymax':[],'time':[],'y/d':[]} # dict object to create dataframe # open List*.txt file ftxt = open("List%d.txt" % Ncfd, "r") line = ftxt.readline() print(line[:-1]) for n in range(1000): line = ftxt.readline() if len(line) == 0: break print(line[:-1]) tmp = line.split() nc = int(tmp[0]) # case number in List file md = int(tmp[1]) # mode number U = float(tmp[2]) # wind/air velocity [m/s] d = float(tmp[3]) # cable diameter [m] m = float(tmp[4]) # cable mass per unit length [kg/m] L = float(tmp[5]) # cable length [m] H = float(tmp[6]) # cable tension [N] Nt = int(tmp[7]) # number of timesteps Dt = float(tmp[8]) # timestep length [s] tf = float(tmp[9]) # total time [s] ymax = float(tmp[10]) # max(y) value [m] filename = tmp[11] # = "Data%d.%d.bin" % (Ncfd, nc) # data file name # open Data*.*.bin file fdat=open(filename,"rb") float_array = array('d') float_array.fromfile(fdat, Nt) time = float_array.tolist() Fx = [[] for ncfd in range(Ncfd)] Fy = [[] for ncfd in range(Ncfd)] y = [[] for ncfd in range(Ncfd)] for ncfd in range(Ncfd): float_array = array('d') float_array.fromfile(fdat, Nt) Fx[ncfd] = float_array.tolist() float_array = array('d') float_array.fromfile(fdat, Nt) Fy[ncfd] = float_array.tolist() float_array = array('d') float_array.fromfile(fdat, Nt) y[ncfd] = float_array.tolist() fdat.close() # plot data if plot_data: fig3, axs = mpl.subplots(1) for ncfd in range(Ncfd): axs.plot(time, [y[ncfd][nt] / d for nt in range(Nt)]) for i,j in zip(time, [y[ncfd][nt] / d for nt in range(Nt)]): # appending required data into dict data['time'].append(i) data['y/d'].append(j) data['nc'].append(tmp[0]) data['md'].append(tmp[1]) data['U'].append(tmp[2]) data['d'].append(tmp[3]) data['m'].append(tmp[4]) data['L'].append(tmp[5]) data['H'].append(tmp[6]) data['Nt'].append(tmp[7]) data['Dt'].append(tmp[8]) data['tf'].append(tmp[9]) data['ymax'].append(tmp[10]) # can plot Fx and Fy in the same way axs.set_xlabel('time [s]') axs.set_ylabel('y / d') axs.set_title('md = %d, H = %gN, U = %gm/s' % (md, H, U)) mpl.show() ftxt.close() pd.DataFrame(data).to_csv('data'+str(Ncfd)+'.csv',index=False) # Store dataframe on disk for current case if path.exists('data1.csv') and path.exists('data2.csv'): # check if files exist on this path or not df1 = pd.read_csv('data1.csv') # read case 1 dataframe df2 = pd.read_csv('data2.csv') # read case 2 dataframe df =
pd.concat([df1,df2])
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- # License: BSD-3 (https://tldrlegal.com/license/bsd-3-clause-license-(revised)) # Copyright (c) 2016-2021, <NAME>; <NAME> # Copyright (c) 2022, QuatroPe # All rights reserved. # ============================================================================= # DOCS # ============================================================================= """Data abstraction layer. This module defines the DecisionMatrix object, which internally encompasses the alternative matrix, weights and objectives (MIN, MAX) of the criteria. """ # ============================================================================= # IMPORTS # ============================================================================= import enum import functools from collections import abc import numpy as np import pandas as pd from pandas.io.formats import format as pd_fmt import pyquery as pq from .dominance import DecisionMatrixDominanceAccessor from .plot import DecisionMatrixPlotter from .stats import DecisionMatrixStatsAccessor from ..utils import deprecated, doc_inherit # ============================================================================= # CONSTANTS # ============================================================================= class Objective(enum.Enum): """Representation of criteria objectives (Minimize, Maximize).""" #: Internal representation of minimize criteria MIN = -1 #: Internal representation of maximize criteria MAX = 1 # INTERNALS =============================================================== _MIN_STR = "\u25bc" _MAX_STR = "\u25b2" #: Another way to name the maximization criteria. _MAX_ALIASES = frozenset( [ MAX, _MAX_STR, max, np.max, np.nanmax, np.amax, "max", "maximize", "+", ">", ] ) #: Another ways to name the minimization criteria. _MIN_ALIASES = frozenset( [ MIN, _MIN_STR, min, np.min, np.nanmin, np.amin, "min", "minimize", "<", "-", ] ) # CUSTOM CONSTRUCTOR ====================================================== @classmethod def construct_from_alias(cls, alias): """Return the alias internal representation of the objective.""" if isinstance(alias, cls): return alias if isinstance(alias, str): alias = alias.lower() if alias in cls._MAX_ALIASES.value: return cls.MAX if alias in cls._MIN_ALIASES.value: return cls.MIN raise ValueError(f"Invalid criteria objective {alias}") # METHODS ================================================================= def __str__(self): """Convert the objective to an string.""" return self.name def to_string(self): """Return the printable representation of the objective.""" if self.value in Objective._MIN_ALIASES.value: return Objective._MIN_STR.value if self.value in Objective._MAX_ALIASES.value: return Objective._MAX_STR.value # ============================================================================= # _SLICER ARRAY # ============================================================================= class _ACArray(np.ndarray, abc.Mapping): """Immutable Array to provide access to the alternative and criteria \ values. The behavior is the same as a numpy.ndarray but if the slice it receives is a value contained in the array it uses an external function to access the series with that criteria/alternative. Besides this it has the typical methods of a dictionary. """ def __new__(cls, input_array, skc_slicer): obj = np.asarray(input_array).view(cls) obj._skc_slicer = skc_slicer return obj @doc_inherit(np.ndarray.__getitem__) def __getitem__(self, k): try: if k in self: return self._skc_slicer(k) return super().__getitem__(k) except IndexError: raise IndexError(k) def __setitem__(self, k, v): """Raise an AttributeError, this object are read-only.""" raise AttributeError("_SlicerArray are read-only") @doc_inherit(abc.Mapping.items) def items(self): return ((e, self[e]) for e in self) @doc_inherit(abc.Mapping.keys) def keys(self): return iter(self) @doc_inherit(abc.Mapping.values) def values(self): return (self[e] for e in self) # ============================================================================= # DECISION MATRIX # ============================================================================= class DecisionMatrix: """Representation of all data needed in the MCDA analysis. This object gathers everything necessary to represent a data set used in MCDA: - An alternative matrix where each row is an alternative and each column is of a different criteria. - An optimization objective (Minimize, Maximize) for each criterion. - A weight for each criterion. - An independent type of data for each criterion DecisionMatrix has two main forms of construction: 1. Use the default constructor of the DecisionMatrix class :py:class:`pandas.DataFrame` where the index is the alternatives and the columns are the criteria; an iterable with the objectives with the same amount of elements that columns/criteria has the dataframe; and an iterable with the weights also with the same amount of elements as criteria. .. code-block:: pycon >>> import pandas as pd >>> from skcriteria import DecisionMatrix, mkdm >>> data_df = pd.DataFrame( ... [[1, 2, 3], [4, 5, 6]], ... index=["A0", "A1"], ... columns=["C0", "C1", "C2"] ... ) >>> objectives = [min, max, min] >>> weights = [1, 1, 1] >>> dm = DecisionMatrix(data_df, objectives, weights) >>> dm C0[▼ 1.0] C1[▲ 1.0] C2[▲ 1.0] A0 1 2 3 A1 4 5 6 [2 Alternatives x 3 Criteria] 2. Use the classmethod `DecisionMatrix.from_mcda_data` which requests the data in a more natural way for this type of analysis (the weights, the criteria / alternative names, and the data types are optional) >>> DecisionMatrix.from_mcda_data( ... [[1, 2, 3], [4, 5, 6]], ... [min, max, min], ... [1, 1, 1]) C0[▼ 1.0] C1[▲ 1.0] C2[▲ 1.0] A0 1 2 3 A1 4 5 6 [2 Alternatives x 3 Criteria] For simplicity a function is offered at the module level analogous to ``from_mcda_data`` called ``mkdm`` (make decision matrix). Parameters ---------- data_df: :py:class:`pandas.DatFrame` Dataframe where the index is the alternatives and the columns are the criteria. objectives: :py:class:`numpy.ndarray` Aan iterable with the targets with sense of optimality of every criteria (You can use any alias defined in Objective) the same length as columns/criteria has the data_df. weights: :py:class:`numpy.ndarray` An iterable with the weights also with the same amount of elements as criteria. """ def __init__(self, data_df, objectives, weights): self._data_df = ( data_df.copy() if isinstance(data_df, pd.DataFrame) else pd.DataFrame(data_df) ) self._objectives = np.asarray(objectives, dtype=object) self._weights = np.asanyarray(weights, dtype=float) if not ( len(self._data_df.columns) == len(self._weights) == len(self._objectives) ): raise ValueError( "The number of weights, and objectives must be equal to the " "number of criteria (number of columns in data_df)" ) # CUSTOM CONSTRUCTORS ===================================================== @classmethod def from_mcda_data( cls, matrix, objectives, weights=None, alternatives=None, criteria=None, dtypes=None, ): """Create a new DecisionMatrix object. This method receives the parts of the matrix, in what conceptually the matrix of alternatives is usually divided Parameters ---------- matrix: Iterable The matrix of alternatives. Where every row is an alternative and every column is a criteria. objectives: Iterable The array with the sense of optimality of every criteria. You can use any alias provided by the objective class. weights: Iterable o None (default ``None``) Optional weights of the criteria. If is ``None`` all the criteria are weighted with 1. alternatives: Iterable o None (default ``None``) Optional names of the alternatives. If is ``None``, al the alternatives are names "A[n]" where n is the number of the row of `matrix` statring at 0. criteria: Iterable o None (default ``None``) Optional names of the criteria. If is ``None``, al the alternatives are names "C[m]" where m is the number of the columns of `matrix` statring at 0. dtypes: Iterable o None (default ``None``) Optional types of the criteria. If is None, the type is inferred automatically by pandas. Returns ------- :py:class:`DecisionMatrix` A new decision matrix. Example ------- >>> DecisionMatrix.from_mcda_data( ... [[1, 2, 3], [4, 5, 6]], ... [min, max, min], ... [1, 1, 1]) C0[▼ 1.0] C1[▲ 1.0] C2[▲ 1.0] A0 1 2 3 A1 4 5 6 [2 Alternatives x 3 Criteria] For simplicity a function is offered at the module level analogous to ``from_mcda_data`` called ``mkdm`` (make decision matrix). Notes ----- This functionality generates more sensitive defaults than using the constructor of the DecisionMatrix class but is slower. """ # first we need the number of alternatives and criteria try: a_number, c_number = np.shape(matrix) except ValueError: matrix_ndim = np.ndim(matrix) raise ValueError( f"'matrix' must have 2 dimensions, found {matrix_ndim} instead" ) alternatives = np.asarray( [f"A{idx}" for idx in range(a_number)] if alternatives is None else alternatives ) if len(alternatives) != a_number: raise ValueError(f"'alternatives' must have {a_number} elements") criteria = np.asarray( [f"C{idx}" for idx in range(c_number)] if criteria is None else criteria ) if len(criteria) != c_number: raise ValueError(f"'criteria' must have {c_number} elements") weights = np.asarray(np.ones(c_number) if weights is None else weights) data_df = pd.DataFrame(matrix, index=alternatives, columns=criteria) if dtypes is not None and len(dtypes) != c_number: raise ValueError(f"'dtypes' must have {c_number} elements") elif dtypes is not None: dtypes = {c: dt for c, dt in zip(criteria, dtypes)} data_df = data_df.astype(dtypes) return cls(data_df=data_df, objectives=objectives, weights=weights) # MCDA ==================================================================== # This properties are usefull to access interactively to the # underlying data a. Except for alternatives and criteria all other # properties expose the data as dataframes or series @property def alternatives(self): """Names of the alternatives.""" arr = self._data_df.index.to_numpy() slicer = self._data_df.loc.__getitem__ return _ACArray(arr, slicer) @property def criteria(self): """Names of the criteria.""" arr = self._data_df.columns.to_numpy() slicer = self._data_df.__getitem__ return _ACArray(arr, slicer) @property def weights(self): """Weights of the criteria.""" return pd.Series( self._weights, dtype=float, index=self._data_df.columns, name="Weights", ) @property def objectives(self): """Objectives of the criteria as ``Objective`` instances.""" return pd.Series( [Objective.construct_from_alias(a) for a in self._objectives], index=self._data_df.columns, name="Objectives", ) @property def minwhere(self): """Mask with value True if the criterion is to be minimized.""" mask = self.objectives == Objective.MIN mask.name = "minwhere" return mask @property def maxwhere(self): """Mask with value True if the criterion is to be maximized.""" mask = self.objectives == Objective.MAX mask.name = "maxwhere" return mask # READ ONLY PROPERTIES ==================================================== @property def iobjectives(self): """Objectives of the criteria as ``int``. - Minimize = Objective.MIN.value - Maximize = Objective.MAX.value """ return pd.Series( [o.value for o in self.objectives], dtype=np.int8, index=self._data_df.columns, ) @property def matrix(self): """Alternatives matrix as pandas DataFrame. The matrix excludes weights and objectives. If you want to create a DataFrame with objetvies and weights, use ``DecisionMatrix.to_dataframe()`` """ return self._data_df.copy() @property def dtypes(self): """Dtypes of the criteria.""" return self._data_df.dtypes.copy() # ACCESSORS (YES, WE USE CACHED PROPERTIES IS THE EASIEST WAY) ============ @property @functools.lru_cache(maxsize=None) def plot(self): """Plot accessor.""" return DecisionMatrixPlotter(self) @property @functools.lru_cache(maxsize=None) def stats(self): """Descriptive statistics accessor.""" return DecisionMatrixStatsAccessor(self) @property @functools.lru_cache(maxsize=None) def dominance(self): """Dominance information accessor.""" return DecisionMatrixDominanceAccessor(self) # UTILITIES =============================================================== def copy(self, **kwargs): """Return a deep copy of the current DecisionMatrix. This method is also useful for manually modifying the values of the DecisionMatrix object. Parameters ---------- kwargs : The same parameters supported by ``from_mcda_data()``. The values provided replace the existing ones in the object to be copied. Returns ------- :py:class:`DecisionMatrix` A new decision matrix. """ dmdict = self.to_dict() dmdict.update(kwargs) return self.from_mcda_data(**dmdict) def to_dataframe(self): """Convert the entire DecisionMatrix into a dataframe. The objectives and weights ara added as rows before the alternatives. Returns ------- :py:class:`pd.DataFrame` A Decision matrix as pandas DataFrame. Example ------- .. code-block:: pycon >>> dm = DecisionMatrix.from_mcda_data( >>> dm ... [[1, 2, 3], [4, 5, 6]], ... [min, max, min], ... [1, 1, 1]) C0[▼ 1.0] C1[▲ 1.0] C2[▲ 1.0] A0 1 2 3 A1 4 5 6 >>> dm.to_dataframe() C0 C1 C2 objectives MIN MAX MIN weights 1.0 1.0 1.0 A0 1 2 3 A1 4 5 6 """ data = np.vstack((self.objectives, self.weights, self.matrix)) index = np.hstack((["objectives", "weights"], self.alternatives)) df = pd.DataFrame(data, index=index, columns=self.criteria, copy=True) return df def to_dict(self): """Return a dict representation of the data. All the values are represented as numpy array. """ return { "matrix": self.matrix.to_numpy(), "objectives": self.iobjectives.to_numpy(), "weights": self.weights.to_numpy(), "dtypes": self.dtypes.to_numpy(), "alternatives": np.asarray(self.alternatives), "criteria": np.asarray(self.criteria), } @deprecated( reason=( "Use 'DecisionMatrix.stats()', " "'DecisionMatrix.stats(\"describe\")' or " "'DecisionMatrix.stats.describe()' instead." ), version=0.6, ) def describe(self, **kwargs): """Generate descriptive statistics. Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Parameters ---------- Same parameters as ``pandas.DataFrame.describe()``. Returns ------- ``pandas.DataFrame`` Summary statistics of DecisionMatrix provided. """ return self._data_df.describe(**kwargs) # CMP ===================================================================== @property def shape(self): """Return a tuple with (number_of_alternatives, number_of_criteria). dm.shape <==> np.shape(dm) """ return np.shape(self._data_df) def __len__(self): """Return the number ot alternatives. dm.__len__() <==> len(dm). """ return len(self._data_df) def equals(self, other): """Return True if the decision matrix are equal. This method calls `DecisionMatrix.aquals` whitout tolerance. Parameters ---------- other : :py:class:`skcriteria.DecisionMatrix` Other instance to compare. Returns ------- equals : :py:class:`bool:py:class:` Returns True if the two dm are equals. See Also -------- aequals, :py:func:`numpy.isclose`, :py:func:`numpy.all`, :py:func:`numpy.any`, :py:func:`numpy.equal`, :py:func:`numpy.allclose`. """ return self.aequals(other, 0, 0, False) def aequals(self, other, rtol=1e-05, atol=1e-08, equal_nan=False): """Return True if the decision matrix are equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference (`rtol` * abs(`b`)) and the absolute difference `atol` are added together to compare against the absolute difference between `a` and `b`. NaNs are treated as equal if they are in the same place and if ``equal_nan=True``. Infs are treated as equal if they are in the same place and of the same sign in both arrays. The proceeds as follows: - If ``other`` is the same object return ``True``. - If ``other`` is not instance of 'DecisionMatrix', has different shape 'criteria', 'alternatives' or 'objectives' returns ``False``. - Next check the 'weights' and the matrix itself using the provided tolerance. Parameters ---------- other : :py:class:`skcriteria.DecisionMatrix` Other instance to compare. rtol : float The relative tolerance parameter (see Notes in :py:func:`numpy.allclose`). atol : float The absolute tolerance parameter (see Notes in :py:func:`numpy.allclose`). equal_nan : bool Whether to compare NaN's as equal. If True, NaN's in dm will be considered equal to NaN's in `other` in the output array. Returns ------- aequals : :py:class:`bool:py:class:` Returns True if the two dm are equal within the given tolerance; False otherwise. See Also -------- equals, :py:func:`numpy.isclose`, :py:func:`numpy.all`, :py:func:`numpy.any`, :py:func:`numpy.equal`, :py:func:`numpy.allclose`. """ return (self is other) or ( isinstance(other, DecisionMatrix) and np.shape(self) == np.shape(other) and np.array_equal(self.criteria, other.criteria) and np.array_equal(self.alternatives, other.alternatives) and np.array_equal(self.objectives, other.objectives) and np.allclose( self.weights, other.weights, rtol=rtol, atol=atol, equal_nan=equal_nan, ) and np.allclose( self.matrix, other.matrix, rtol=rtol, atol=atol, equal_nan=equal_nan, ) ) # repr ==================================================================== def _get_cow_headers(self): """Columns names with COW (Criteria, Objective, Weight).""" headers = [] fmt_weights = pd_fmt.format_array(self.weights, None) for c, o, w in zip(self.criteria, self.objectives, fmt_weights): header = f"{c}[{o.to_string()}{w}]" headers.append(header) return headers def _get_axc_dimensions(self): """Dimension foote with AxC (Alternativs x Criteria).""" a_number, c_number = self.shape dimensions = f"{a_number} Alternatives x {c_number} Criteria" return dimensions def __repr__(self): """dm.__repr__() <==> repr(dm).""" header = self._get_cow_headers() dimensions = self._get_axc_dimensions() max_rows = pd.get_option("display.max_rows") min_rows = pd.get_option("display.min_rows") max_cols = pd.get_option("display.max_columns") max_colwidth =
pd.get_option("display.max_colwidth")
pandas.get_option
"""Tools for generating and forecasting with ensembles of models.""" import datetime import numpy as np import pandas as pd import json from autots.models.base import PredictionObject from autots.models.model_list import no_shared from autots.tools.impute import fill_median horizontal_aliases = ['horizontal', 'probabilistic'] def summarize_series(df): """Summarize time series data. For now just df.describe().""" df_sum = df.describe(percentiles=[0.1, 0.25, 0.5, 0.75, 0.9]) return df_sum def mosaic_or_horizontal(all_series: dict): """Take a mosaic or horizontal model and return series or models. Args: all_series (dict): dict of series: model (or list of models) """ first_value = all_series[next(iter(all_series))] if isinstance(first_value, dict): return "mosaic" else: return "horizontal" def parse_horizontal(all_series: dict, model_id: str = None, series_id: str = None): """Take a mosaic or horizontal model and return series or models. Args: all_series (dict): dict of series: model (or list of models) model_id (str): name of model to find series for series_id (str): name of series to find models for Returns: list """ if model_id is None and series_id is None: raise ValueError( "either series_id or model_id must be specified in parse_horizontal." ) if mosaic_or_horizontal(all_series) == 'mosaic': if model_id is not None: return [ser for ser, mod in all_series.items() if model_id in mod.values()] else: return list(set(all_series[series_id].values())) else: if model_id is not None: return [ser for ser, mod in all_series.items() if mod == model_id] else: # list(set([mod for ser, mod in all_series.items() if ser == series_id])) return [all_series[series_id]] def BestNEnsemble( ensemble_params, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime: dict, prediction_interval: float = 0.9, ): """Generate mean forecast for ensemble of models. Args: ensemble_params (dict): BestN ensemble param dict should have "model_weights": {model_id: weight} where 1 is default weight per model forecasts (dict): {forecast_id: forecast dataframe} for all models same for lower_forecasts, upper_forecasts forecast_runtime (dict): dictionary of {forecast_id: timedelta of runtime} prediction_interval (float): metadata on interval """ startTime = datetime.datetime.now() forecast_keys = list(forecasts.keys()) model_weights = dict(ensemble_params.get("model_weights", {})) ensemble_params['model_weights'] = model_weights ensemble_params['models'] = { k: v for k, v in dict(ensemble_params.get('models')).items() if k in forecast_keys } model_count = len(forecast_keys) if model_count < 1: raise ValueError("BestN failed, no component models available.") sample_df = next(iter(forecasts.values())) columnz = sample_df.columns indices = sample_df.index model_divisor = 0 ens_df = pd.DataFrame(0, index=indices, columns=columnz) ens_df_lower = pd.DataFrame(0, index=indices, columns=columnz) ens_df_upper = pd.DataFrame(0, index=indices, columns=columnz) for idx, x in forecasts.items(): current_weight = float(model_weights.get(idx, 1)) ens_df = ens_df + (x * current_weight) # also .get(idx, 0) ens_df_lower = ens_df_lower + (lower_forecasts[idx] * current_weight) ens_df_upper = ens_df_upper + (upper_forecasts[idx] * current_weight) model_divisor = model_divisor + current_weight ens_df = ens_df / model_divisor ens_df_lower = ens_df_lower / model_divisor ens_df_upper = ens_df_upper / model_divisor ens_runtime = datetime.timedelta(0) for x in forecasts_runtime.values(): ens_runtime = ens_runtime + x ens_result = PredictionObject( model_name="Ensemble", forecast_length=len(ens_df.index), forecast_index=ens_df.index, forecast_columns=ens_df.columns, lower_forecast=ens_df_lower, forecast=ens_df, upper_forecast=ens_df_upper, prediction_interval=prediction_interval, predict_runtime=datetime.datetime.now() - startTime, fit_runtime=ens_runtime, model_parameters=ensemble_params, ) return ens_result def DistEnsemble( ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval, ): """Generate forecast for distance ensemble.""" # handle that the inputs are now dictionaries forecasts = list(forecasts.values()) lower_forecasts = list(lower_forecasts.values()) upper_forecasts = list(upper_forecasts.values()) forecasts_runtime = list(forecasts_runtime.values()) first_model_index = forecasts_list.index(ensemble_params['FirstModel']) second_model_index = forecasts_list.index(ensemble_params['SecondModel']) forecast_length = forecasts[0].shape[0] dis_frac = ensemble_params['dis_frac'] first_bit = int(np.ceil(forecast_length * dis_frac)) second_bit = int(np.floor(forecast_length * (1 - dis_frac))) ens_df = ( forecasts[first_model_index] .head(first_bit) .append(forecasts[second_model_index].tail(second_bit)) ) ens_df_lower = ( lower_forecasts[first_model_index] .head(first_bit) .append(lower_forecasts[second_model_index].tail(second_bit)) ) ens_df_upper = ( upper_forecasts[first_model_index] .head(first_bit) .append(upper_forecasts[second_model_index].tail(second_bit)) ) id_list = list(ensemble_params['models'].keys()) model_indexes = [idx for idx, x in enumerate(forecasts_list) if x in id_list] ens_runtime = datetime.timedelta(0) for idx, x in enumerate(forecasts_runtime): if idx in model_indexes: ens_runtime = ens_runtime + forecasts_runtime[idx] ens_result_obj = PredictionObject( model_name="Ensemble", forecast_length=len(ens_df.index), forecast_index=ens_df.index, forecast_columns=ens_df.columns, lower_forecast=ens_df_lower, forecast=ens_df, upper_forecast=ens_df_upper, prediction_interval=prediction_interval, predict_runtime=datetime.timedelta(0), fit_runtime=ens_runtime, model_parameters=ensemble_params, ) return ens_result_obj def horizontal_classifier(df_train, known: dict, method: str = "whatever"): """ CLassify unknown series with the appropriate model for horizontal ensembling. Args: df_train (pandas.DataFrame): historical data about the series. Columns = series_ids. known (dict): dict of series_id: classifier outcome including some but not all series in df_train. Returns: dict. """ # known = {'EXUSEU': 'xx1', 'MCOILWTICO': 'xx2', 'CSUSHPISA': 'xx3'} columnz = df_train.columns.tolist() X = summarize_series(df_train).transpose() X = fill_median(X) known_l = list(known.keys()) unknown = list(set(columnz) - set(known_l)) Xt = X.loc[known_l] Xf = X.loc[unknown] Y = np.array(list(known.values())) from sklearn.naive_bayes import GaussianNB clf = GaussianNB() clf.fit(Xt, Y) result = clf.predict(Xf) result_d = dict(zip(Xf.index.tolist(), result)) # since this only has estimates, overwrite with known that includes more final = {**result_d, **known} # temp = pd.DataFrame({'series': list(final.keys()), 'model': list(final.values())}) # temp2 = temp.merge(X, left_on='series', right_index=True) return final def mosaic_classifier(df_train, known): """CLassify unknown series with the appropriate model for mosaic ensembles.""" known.index.name = "forecast_period" upload = pd.melt( known, var_name="series_id", value_name="model_id", ignore_index=False, ).reset_index(drop=False) upload['forecast_period'] = upload['forecast_period'].astype(int) missing_cols = df_train.columns[ ~df_train.columns.isin(upload['series_id'].unique()) ] if not missing_cols.empty: forecast_p = np.arange(upload['forecast_period'].max() + 1) p_full = np.tile(forecast_p, len(missing_cols)) missing_rows = pd.DataFrame( { 'forecast_period': p_full, 'series_id': np.repeat(missing_cols.values, len(forecast_p)), 'model_id': np.nan, }, index=None if len(p_full) > 1 else [0], ) upload =
pd.concat([upload, missing_rows])
pandas.concat
import numpy as np import pandas as pd from sklearn.model_selection import GridSearchCV, KFold from sklearn.metrics import f1_score, roc_curve, auc, precision_recall_curve, \ precision_recall_fscore_support, average_precision_score import os import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 22}) class Meter(): def __init__(self, props, gaps, model_types): self.props = props self.gaps = gaps self.model_types = model_types self.meter = {} for prop in self.props: self.meter[prop] = {} for gap in self.gaps: self.meter[prop][gap] = {} for model_type in self.model_types: self.meter[prop][gap][model_type] = [] # if prop == 'ael_bulk_modulus_vrh': # self.meter[prop][gap][model_type] = [] # prop, gap, model_type def update(self, prop, gap, model_type, output): self.meter[prop][gap][model_type] = output print(prop, gap, model_type) def metrics(self): precision = {} recall = {} fscore = {} roc_auc = {} pr_auc = {} roc_points = {} pr_points = {} for prop in self.props: precision[prop] = {} recall[prop] = {} fscore[prop] = {} roc_auc[prop] = {} pr_auc[prop] = {} roc_points[prop] = {} pr_points[prop] = {} for gap in self.gaps: precision[prop][gap] = {} recall[prop][gap] = {} fscore[prop][gap] = {} roc_auc[prop][gap] = {} pr_auc[prop][gap] = {} roc_points[prop][gap] = {} pr_points[prop][gap] = {} for model_type in self.model_types: if model_type == 'ridge_density' and prop != 'ael_bulk_modulus_vrh': continue output = self.meter[prop][gap][model_type] # get roc_auc metrics fpr, tpr, _ = roc_curve(output[2], output[3]) precisions, recalls, _ = precision_recall_curve(output[2], output[3]) roc_points[prop][gap][model_type] = [fpr, tpr] pr_points[prop][gap][model_type] = [recalls, precisions] y_pred_labeled = [1 if x >= output[0] else 0 for x in output[3]] prfs = precision_recall_fscore_support(output[2], y_pred_labeled) precision[prop][gap][model_type] = prfs[0] recall[prop][gap][model_type] = prfs[1] fscore[prop][gap][model_type] = prfs[2] roc_auc[prop][gap][model_type] = auc(fpr, tpr) pr_auc[prop][gap][model_type] = average_precision_score( output[2], output[3]) self.precision = precision self.recall = recall self.fscore = fscore self.roc_auc = roc_auc self.pr_auc = pr_auc self.roc_points = roc_points self.pr_points = pr_points def plot_curve(self, curve='roc', folder='figures'): for prop in self.props: for gap in self.gaps: plt.figure(figsize=(7, 7)) for model_type in self.model_types: if model_type == 'ridge_density' and prop != 'ael_bulk_modulus_vrh': continue if curve == 'roc': x, y = self.roc_points[prop][gap][model_type] xlabel = 'false positive rate' ylabel = 'true positive rate' metric = self.roc_auc[prop][gap] elif curve == 'pr': x, y = self.pr_points[prop][gap][model_type] xlabel = 'recall' ylabel = 'precision' metric = self.pr_auc[prop][gap] else: print('wronge curve type') break plt.plot(x, y, label=model_type) save_dir = folder+'/' + prop + '/' + str(gap) + '/' os.makedirs(save_dir, exist_ok=True) fig_name = save_dir + curve + '_curve.png' plt.legend() plt.xlabel(xlabel) plt.ylabel(ylabel) plt.tick_params(direction='in', top=True, right=True) plt.savefig(fig_name, dpi=300) print('Area under curve:', metric) def save(self, folder='figures'): for prop in self.props: for gap in self.gaps: save_dir = folder+'/' + prop + '/' + str(gap) + '/' os.makedirs(save_dir, exist_ok=True) columns = ['precision', 'recall', 'fscore', 'roc_auc', 'pr_auc'] df_metrics =
pd.DataFrame(columns=columns)
pandas.DataFrame
import itertools import numpy import os import random import re import scipy.spatial.distance as ssd import scipy.stats from scipy.cluster.hierarchy import dendrogram, linkage import pandas from matplotlib import colors from matplotlib import pyplot as plt import vectors from libs import tsne rubensteinGoodenoughData = None def rubensteinGoodenough(wordIndexMap, embeddings): global rubensteinGoodenoughData if rubensteinGoodenoughData is None: rubensteinGoodenoughData = [] rubensteinGoodenoughFilePath = 'res/RG/EN-RG-65.txt' with open(rubensteinGoodenoughFilePath) as rgFile: lines = rgFile.readlines() for line in lines: word0, word1, targetScore = tuple(line.strip().split('\t')) targetScore = float(targetScore) rubensteinGoodenoughData.append((word0, word1, targetScore)) scores = [] targetScores = [] for word0, word1, targetScore in rubensteinGoodenoughData: if word0 in wordIndexMap and word1 in wordIndexMap: targetScores.append(targetScore) word0Index = wordIndexMap[word0] word1Index = wordIndexMap[word1] word0Embedding = embeddings[word0Index] word1Embedding = embeddings[word1Index] score = vectors.cosineSimilarity(word0Embedding, word1Embedding) scores.append(score) if len(scores) == 0: return numpy.nan pearson, pearsonDeviation = scipy.stats.pearsonr(scores, targetScores) spearman, spearmanDeviation = scipy.stats.spearmanr(scores, targetScores) rubensteinGoodenoughMetric = numpy.mean([pearson, spearman]) return rubensteinGoodenoughMetric wordSimilarity353Data = None def wordSimilarity353(wordIndexMap, embeddings): global wordSimilarity353Data if wordSimilarity353Data is None: wordSimilarity353Data = [] wordSimilarity353FilePath = 'res/WordSimilarity-353/combined.csv' data = pandas.read_csv(wordSimilarity353FilePath) for word0, word1, score in zip(data['Word1'], data['Word2'], data['Score']): wordSimilarity353Data.append((word0, word1, score)) scores = [] targetScores = [] for word0, word1, targetScore in wordSimilarity353Data: if word0 in wordIndexMap and word1 in wordIndexMap: targetScores.append(targetScore) word0Index = wordIndexMap[word0] word1Index = wordIndexMap[word1] word0Embedding = embeddings[word0Index] word1Embedding = embeddings[word1Index] score = vectors.cosineSimilarity(word0Embedding, word1Embedding) scores.append(score) if len(scores) == 0: return numpy.nan pearson, pearsonDeviation = scipy.stats.pearsonr(scores, targetScores) spearman, spearmanDeviation = scipy.stats.spearmanr(scores, targetScores) metric = numpy.mean([pearson, spearman]) return metric simLex999Data = None def simLex999(wordIndexMap, embeddings): global simLex999Data if simLex999Data is None: simLex999Data = [] simLex999FilePath = 'res/SimLex-999/SimLex-999.txt' data = pandas.read_csv(simLex999FilePath, sep='\t') for word0, word1, targetScore in zip(data['word1'], data['word2'], data['SimLex999']): simLex999Data.append((word0, word1, targetScore)) targetScores = [] scores = [] for word0, word1, targetScore in simLex999Data: if word0 in wordIndexMap and word1 in wordIndexMap: targetScores.append(targetScore) word0Index = wordIndexMap[word0] word1Index = wordIndexMap[word1] word0Embedding = embeddings[word0Index] word1Embedding = embeddings[word1Index] score = vectors.cosineSimilarity(word0Embedding, word1Embedding) scores.append(score) if len(scores) == 0: return numpy.nan pearson, pearsonDeviation = scipy.stats.pearsonr(scores, targetScores) spearman, spearmanDeviation = scipy.stats.spearmanr(scores, targetScores) simLex999Metric = numpy.mean([pearson, spearman]) return simLex999Metric syntacticWordData = None def syntacticWordRelations(wordIndexMap, embeddings, maxWords=10): global syntacticWordData if syntacticWordData is None: syntacticWordData = [] syntWordRelFilePath = 'res/Syntactic-Word-Relations/questions-words.txt' with open(syntWordRelFilePath, 'r') as swrFile: lines = swrFile.readlines() syntacticWordData = [tuple(line.lower().split(' ')) for line in lines if not line.startswith(':')] syntacticWordData = [(word0.strip(), word1.strip(), word2.strip(), word3.strip()) for word0, word1, word2, word3 in syntacticWordData] scores = [] for word0, word1, word2, word3 in syntacticWordData: if word0 not in wordIndexMap or word1 not in wordIndexMap or word2 not in wordIndexMap or word3 not in wordIndexMap: continue word0Index = wordIndexMap[word0] word1Index = wordIndexMap[word1] word2Index = wordIndexMap[word2] word3Index = wordIndexMap[word3] word0Embedding = embeddings[word0Index] word1Embedding = embeddings[word1Index] word2Embedding = embeddings[word2Index] word3Embedding = embeddings[word3Index] similarity01 = vectors.cosineSimilarity(word0Embedding, word1Embedding) similarity23 = vectors.cosineSimilarity(word2Embedding, word3Embedding) score = 1 minSimilarityDelta = abs(similarity01 - similarity23) for embedding in embeddings[:maxWords]: similarity2N = vectors.cosineSimilarity(word2Embedding, embedding) similarityDelta = abs(similarity01 - similarity2N) score = not (similarityDelta < minSimilarityDelta) if not score: break scores.append(score) if len(scores) == 0: return numpy.nan syntacticWordRelationsMetric = float(sum(scores)) / len(scores) return syntacticWordRelationsMetric satQuestionsData = None def satQuestions(wordIndexMap, embeddings): global satQuestionsData if satQuestionsData is None: satQuestionsData = [] satQuestionsFilePath = 'res/SAT-Questions/SAT-package-V3.txt' maxLineLength = 50 aCode = ord('a') with open(satQuestionsFilePath) as satFile: line = satFile.readline() while line != '': if len(line) < maxLineLength: match = re.match('(?P<word0>[\w-]+)\s(?P<word1>[\w-]+)\s[nvar]:[nvar]', line) if match: stemWord0, stemWord1 = match.group('word0'), match.group('word1') satQuestion = [stemWord0, stemWord1] line = satFile.readline() match = re.match('(?P<word0>[\w-]+)\s(?P<word1>[\w-]+)\s[nvar]:[nvar]', line) while match: choiceWord0, choiceWord1 = match.group('word0'), match.group('word1') satQuestion.append(choiceWord0) satQuestion.append(choiceWord1) line = satFile.readline() match = re.match('(?P<word0>[\w-]+)\s(?P<word1>[\w-]+)\s[nvar]:[nvar]', line) correctChoiceIndex = ord(line.strip()) - aCode satQuestion.append(correctChoiceIndex) satQuestionsData.append(satQuestion) line = satFile.readline() scores = [] for satQuestion in satQuestionsData: if any([word not in wordIndexMap for word in satQuestion[:-1]]): continue stemWord0, stemWord1 = satQuestion[:2] stemWord0Index = wordIndexMap[stemWord0] stemWord1Index = wordIndexMap[stemWord1] stemWord0Embedding, stemWord1Embedding = embeddings[stemWord0Index], embeddings[stemWord1Index] stemSimilarity = vectors.cosineSimilarity(stemWord0Embedding, stemWord1Embedding) correctChoiceIndex = satQuestion[-1] choiceSimilarityDeltas = [] choices = satQuestion[2:-1] for i in xrange(0, len(choices), 2): choiceWord0, choiceWord1 = choices[i], choices[i+1] choiceWord0Index, choiceWord1Index = wordIndexMap[choiceWord0], wordIndexMap[choiceWord1] choiceWord0Embedding, choiceWord1Embedding = embeddings[choiceWord0Index], embeddings[choiceWord1Index] choiceSimilarity = vectors.cosineSimilarity(choiceWord0Embedding, choiceWord1Embedding) choiceSimilarityDelta = abs(stemSimilarity - choiceSimilarity) choiceSimilarityDeltas.append(choiceSimilarityDelta) choiceIndex = numpy.argmin(choiceSimilarityDeltas) scores.append(int(choiceIndex == correctChoiceIndex)) if len(scores) == 0: return numpy.nan metric = float(sum(scores)) / len(scores) return metric def validate(wordIndexMap, embeddings): rg = rubensteinGoodenough(wordIndexMap, embeddings) sim353 = wordSimilarity353(wordIndexMap, embeddings) sl999 = simLex999(wordIndexMap, embeddings) syntRel = syntacticWordRelations(wordIndexMap, embeddings) sat = satQuestions(wordIndexMap, embeddings) return rg, sim353, sl999, syntRel, sat def dump(metricsPath, epoch, customMetrics): metrics = { 'epoch': epoch } for name, value in customMetrics.items(): metrics[name] = value metrics = [metrics] if os.path.exists(metricsPath): with open(metricsPath, 'a') as metricsFile: metricsHistory =
pandas.DataFrame.from_dict(metrics)
pandas.DataFrame.from_dict
from datetime import datetime, timedelta import pandas as pd import argparse # My home instition(s) _home_insts = ['Argonne National Laboratory', 'University of Chicago'] # Read in the command-line options parser = argparse.ArgumentParser() parser.add_argument('--date', help='Date of proposal submission in MM-DD-YYYY', type=str, default=None) parser.add_argument('--format', help='Format of the output', type=str, default='latex', choices=['latex', 'bes', 'bes-plus-advisors', 'paragraph', 'nsf']) parser.add_argument('--years', help='Years of collaborators to print', default=4, type=int) parser.add_argument('--remove-home', action='store_true', help='Whether to remove people from home institution.') args = parser.parse_args() # Get the date of the proposal if args.date is None: # Assume the next 14 days date = datetime.now() + timedelta(days=14) else: date = datetime.strptime(args.date, '%m-%d-%Y') print(f'Getting collaborators {args.years} years before {date.date()}') # Read in collaborator list collabs =
pd.read_excel('collaborators.xlsx', sheet_name='Coauthors')
pandas.read_excel
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import matplotlib.dates as dates import numpy as np import pandas as pd from datetime import datetime, timedelta, time import calendar import seaborn as sns from hypnospy import Wearable from hypnospy import Experiment import warnings class Viewer(object): """ Class used for plotting sleep, activity and HR signals from the Wearable.data df. """ def __init__(self, input: {Wearable, Experiment}): if input is None: raise ValueError("Invalid value for input.") elif type(input) is Wearable: self.wearables = [input] elif type(input) is Experiment: self.wearables = input.get_all_wearables() sns.set_context("talk", font_scale=1.3, rc={"axes.linewidth": 2, 'image.cmap': 'plasma', }) plt.rcParams['font.size'] = 18 plt.rcParams['image.cmap'] = 'plasma' plt.rcParams['axes.linewidth'] = 2 plt.rc('font', family='serif') @staticmethod def __get_details(alphas, colors, edgecolors, labels, part, index, default_alpha=1.0, default_color="black", default_edgecolor=None, default_label="label"): alpha, color, edgecolor, label = default_alpha, default_color, default_edgecolor, default_label if alphas is not None and part in alphas: alpha = alphas[part] if isinstance(alpha, list): alpha = alpha[index] if colors is not None and part in colors: color = colors[part] if isinstance(color, list): color = color[index] if edgecolors is not None and part in edgecolors: edgecolor = edgecolors[part] if isinstance(edgecolor, list): edgecolor = edgecolor[index] if labels is not None and part in labels: label = labels[part] if isinstance(label, list): label = label[index] return alpha, color, edgecolor, label @staticmethod def get_day_label(df): s = "" startdate = df.index[0] enddate = df.index[-1] if startdate.day == enddate.day: s = "%d - %s\n %s" % ( startdate.day, calendar.month_name[startdate.month][:3], calendar.day_name[startdate.dayofweek]) else: if startdate.month == enddate.month: s = "%d/%d - %s\n %s/%s" % ( startdate.day, enddate.day, calendar.month_name[startdate.month][:3], calendar.day_name[startdate.dayofweek][:3], calendar.day_name[enddate.dayofweek][:3]) else: s = "%d - %s/%d - %s\n %s/%s" % ( startdate.day, calendar.month_name[startdate.month][:3], enddate.day, calendar.month_name[enddate.month][:3], calendar.day_name[startdate.dayofweek][:3], calendar.day_name[enddate.dayofweek][:3]) return s def view_signals(self, signal_categories: list = ["activity", "hr", "pa_intensity", "sleep"], other_signals: list = [], signal_as_area: list = [], resample_to: str = None, sleep_cols: list = [], select_days: list = None, zoom: list = ["00:00:00", "23:59:59"], alphas: dict = None, colors: dict = None, edgecolors: dict = None, labels: dict = None, text: list = [] ): # Many days, one day per panel for wearable in self.wearables: Viewer.view_signals_wearable(wearable, signal_categories, other_signals, signal_as_area, resample_to, sleep_cols, select_days, zoom, alphas, colors, edgecolors, labels, text) @staticmethod def view_signals_wearable(wearable: Wearable, signal_categories: list, other_signals: list, signal_as_area: list, resample_to: str, sleep_cols: list, select_days: list, zoom: list, alphas: dict = None, colors: dict = None, edgecolors: dict = None, labels: dict = None, text: list = []): # Convert zoom to datatime object: assert len(zoom) == 2 zoom_start = datetime.strptime(zoom[0], '%H:%M:%S') zoom_end = datetime.strptime(zoom[1], '%H:%M:%S') textstr = 'day: validation id \n' cols = [] for signal in signal_categories: if signal == "activity": cols.append(wearable.get_activity_col()) elif signal == "hr": if wearable.get_hr_col(): cols.append(wearable.get_hr_col()) else: raise KeyError("HR is not available for PID %s" % wearable.get_pid()) elif signal == "pa_intensity": if hasattr(wearable, 'pa_cutoffs') and hasattr(wearable, 'pa_names'): for pa in wearable.pa_names: if pa in wearable.data.keys(): cols.append(pa) else: raise ValueError("PA Intensity levels not available for PID %s" % (wearable.get_pid())) elif signal == "sleep": for sleep_col in sleep_cols: if sleep_col not in wearable.data.keys(): raise ValueError("Could not find sleep_col (%s). Aborting." % sleep_col) cols.append(sleep_col) elif signal == "diary" and wearable.diary_onset in wearable.data.keys() and \ wearable.diary_offset in wearable.data.keys(): cols.append(wearable.diary_onset) cols.append(wearable.diary_offset) else: cols.append(signal) if len(cols) == 0: raise ValueError("Aborting: Empty list of signals to show.") if wearable.data.empty: warnings.warn("Aborting: Dataframe for PID %s is empty." % wearable.get_pid()) return cols.append(wearable.time_col) for col in set(other_signals + signal_as_area): cols.append(col) if "validation" in text: df_plot = wearable.data[cols + ['hyp_invalid'] ].set_index(wearable.time_col) else: df_plot = wearable.data[cols].set_index(wearable.time_col) if resample_to is not None: df_plot = df_plot.resample(resample_to).mean() # Add column for experiment day. It will be resampled using the the mean cols.append(wearable.experiment_day_col) changed_experiment_hour = False if not Viewer.__is_default_zoom(zoom_start, zoom_end) and zoom_start.hour != wearable.hour_start_experiment: changed_experiment_hour = True saved_start_hour = wearable.hour_start_experiment wearable.change_start_hour_for_experiment_day(zoom_start.hour) if resample_to is not None: df_plot[wearable.experiment_day_col] = wearable.data[ [wearable.time_col, wearable.experiment_day_col]].set_index(wearable.time_col).resample(resample_to).median() else: df_plot[wearable.experiment_day_col] = wearable.data[ [wearable.time_col, wearable.experiment_day_col]].set_index(wearable.time_col)[wearable.experiment_day_col] if changed_experiment_hour: wearable.change_start_hour_for_experiment_day(saved_start_hour) # Daily version # dfs_per_day = [pd.DataFrame(group[1]) for group in df_plot.groupby(df_plot.index.day)] # Based on the experiment day gives us the correct chronological order of the days if select_days is not None: df_plot = df_plot[df_plot[wearable.experiment_day_col].isin(select_days)] if df_plot.empty: raise ValueError("Invalid day selection: no remaining data to show.") dfs_per_group = [
pd.DataFrame(group[1])
pandas.DataFrame
''' Module : Stats Description : Statistical calculations for Hatch Copyright : (c) <NAME>, 16 Oct 2019-2021 License : MIT Maintainer : <EMAIL> Portability : POSIX ''' import argparse import logging import pandas as pd import numpy as np from itertools import combinations import math import scipy from hatch.command_base import CommandBase import hatch.utils as utils import hatch.constants as const class IsNorm(CommandBase, name="isnorm"): description = "Test whether numerical features differ from a normal distribution." category = "transformation" def __init__(self): self.options = None def parse_args(self, args): parser = argparse.ArgumentParser(usage=f'{self.name} -h | {self.name} <arguments>', add_help=True) parser.add_argument( '-c', '--columns', metavar='FEATURE', nargs="*", type=str, required=False, help=f'Select only these columns (columns)') self.options = parser.parse_args(args) def run(self, df): options = self.options selected_df = df if options.columns is not None: utils.validate_columns_error(df, options.columns) selected_df = df[options.columns] # select only the numeric columns selected_df = selected_df.select_dtypes(include=np.number) selected_columns = selected_df.columns out_columns = [] out_stats = [] out_p_values = [] # process each column in turn, computing normaltest # we do each column separately so that we can handle NAs independently in each column for column in selected_columns: this_column = df[column] this_notna = this_column.dropna() k2, p_value = scipy.stats.normaltest(this_notna) out_columns.append(column) out_stats.append(k2) out_p_values.append(p_value) result_df = pd.DataFrame({'column': out_columns, 'statistic': out_stats, 'p_value': out_p_values}) return result_df class Correlation(CommandBase, name="corr"): description = "Pairwise correlation between numerical columns." category = "transformation" def __init__(self): self.options = None def parse_args(self, args): parser = argparse.ArgumentParser(usage=f'{self.name} -h | {self.name} <arguments>', add_help=True) parser.add_argument( '-c', '--columns', metavar='FEATURE', nargs="*", type=str, required=False, help=f'Select only these columns (columns)') parser.add_argument('--method', required=False, default=const.DEFAULT_CORR_METHOD, choices=const.ALLOWED_CORR_METHODS, help=f'Method for determining correlation. Allowed values: %(choices)s. Default: %(default)s.') self.options = parser.parse_args(args) def run(self, df): options = self.options if options.columns is not None: utils.validate_columns_error(df, options.columns) df = df[options.columns] corr_df_wide = df.corr(method=options.method).reset_index() corr_df_long =
pd.melt(corr_df_wide, id_vars='index')
pandas.melt
""" /*--------------------------------------------------------------------------------------------- * Copyright (c) Microsoft Corporation. All rights reserved. * Licensed under the MIT License. See License.txt in the project root for license information. *--------------------------------------------------------------------------------------------*/ @author: <NAME> """ import argparse import os import configparser as CP from jinja2 import Template import pandas as pd import create_input as ca from azure.storage.blob import BlockBlobService, PageBlobService, AppendBlobService from azure.storage.file import FileService import asyncio class ClipsInAzureStorageAccount(object): def __init__(self, config, alg): self._account_name = os.path.basename(config['StorageUrl']).split('.')[0] if '.file.core.windows.net' in config['StorageUrl']: self._account_type = 'FileStore' elif '.blob.core.windows.net' in config['StorageUrl']: self._account_type = 'BlobStore' self._account_key = config['StorageAccountKey'] self._container = config['Container'] self._alg = alg self._clips_path = config['Path'].lstrip('/') self._clip_names = [] self._modified_clip_names = [] self._SAS_token = '' @property def container(self): return self._container @property def alg(self): return self._alg @property def clips_path(self): return self._clips_path @property async def clip_names(self): if len(self._clip_names) <= 0: await self.get_clips() return self._clip_names @property def store_service(self): if self._account_type == 'FileStore': return FileService(account_name = self._account_name, account_key = self._account_key) elif self._account_type == 'BlobStore': return BlockBlobService(account_name=self._account_name, account_key=self._account_key) @property def modified_clip_names(self): self._modified_clip_names = [os.path.basename(clip) for clip in self._clip_names] return self._modified_clip_names async def traverse_down_filestore(self, dirname): files = self.store_service.list_directories_and_files(self.container, os.path.join(self.clips_path, dirname)) await self.retrieve_contents(files, dirname) async def retrieve_contents(self, list_generator, dirname=''): for e in list_generator: if '.wav' in e.name: if not dirname: self._clip_names.append(e.name) else: self._clip_names.append(posixpath.join(dirname.lstrip('/'), e.name)) else: await self.traverse_down_filestore(e.name) async def get_clips(self): if self._account_type == 'FileStore': files = self.store_service.list_directories_and_files(self.container, self.clips_path) if not self._SAS_token: self._SAS_token = self.store_service.generate_share_shared_access_signature(self.container, permission='read', expiry=datetime.datetime(2019, 10, 30, 12, 30), start=datetime.datetime.now()) await self.retrieve_contents(files) elif self._account_type == 'BlobStore': blobs = self.store_service.list_blobs(self.container, self.clips_path) await self.retrieve_contents(blobs) def make_clip_url(self, filename): if self._account_type == 'FileStore': source_url = self.store_service.make_file_url(self.container, self.clips_path, filename, sas_token=self._SAS_token) elif self._account_type == 'BlobStore': source_url = self.store_service.make_blob_url(self.container, filename) return source_url class GoldSamplesInStore(ClipsInAzureStorageAccount): def __init__(self, config, alg): super().__init__(config, alg) self._SAS_token = '' async def get_dataframe(self): clips = await self.clip_names df = pd.DataFrame(columns=['gold_clips', 'gold_clips_ans']) clipsList = [] for clip in clips: clipUrl = self.make_clip_url(clip) rating = 5 if 'noisy' in clipUrl.lower(): rating = 1 clipsList.append({'gold_clips':clipUrl, 'gold_clips_ans':rating}) df = df.append(clipsList) return df class TrappingSamplesInStore(ClipsInAzureStorageAccount): async def get_dataframe(self): clips = await self.clip_names df = pd.DataFrame(columns=['trapping_clips', 'trapping_ans']) clipsList = [] for clip in clips: clipUrl = self.make_clip_url(clip) rating = 0 if '_bad_' in clip.lower(): rating = 1 elif '_poor_' in clip.lower(): rating = 2 elif '_fair_' in clip.lower(): rating = 3 elif '_good_' in clip.lower(): rating = 4 elif '_excellent_' in clip.lower(): rating = 5 clipsList.append({'trapping_clips':clipUrl, 'trapping_ans':rating}) df = df.append(clipsList) return df class PairComparisonSamplesInStore(ClipsInAzureStorageAccount): async def get_dataframe(self): clips = await self.clip_names pair_a_clips = [self.make_clip_url(clip) for clip in clips if '40S_' in clip] pair_b_clips = [clip.replace('40S_', '50S_') for clip in pair_a_clips] df = pd.DataFrame({'pair_a':pair_a_clips, 'pair_b':pair_b_clips}) return df def create_analyzer_cfg_acr(cfg, template_path, out_path): """ create cfg file to be used by analyzer script (acr method) :param cfg: :param template_path: :param out_path: :return: """ print("Start creating config file for result_parser") config = {} config['q_num'] = int(cfg['create_input']['number_of_clips_per_session']) + \ int(cfg['create_input']['number_of_trapping_per_session']) + \ int(cfg['create_input']['number_of_gold_clips_per_session']) config['max_allowed_hits'] = cfg['acr_html']['allowed_max_hit_in_project'] config['quantity_hits_more_than'] = cfg['acr_html']['quantity_hits_more_than'] config['quantity_bonus'] = cfg['acr_html']['quantity_bonus'] config['quality_top_percentage'] = cfg['acr_html']['quality_top_percentage'] config['quality_bonus'] = cfg['acr_html']['quality_bonus'] with open(template_path, 'r') as file: content = file.read() file.seek(0) t = Template(content) cfg_file = t.render(cfg=config) with open(out_path, 'w') as file: file.write(cfg_file) file.close() print(f" [{out_path}] is created") def create_analyzer_cfg_dcr_ccr(cfg, template_path, out_path): """ create cfg file to be used by analyzer script (ccr/dcr method) :param cfg: :param template_path: :param out_path: :return: """ print("Start creating config file for result_parser") config = {} config['q_num'] = int(cfg['create_input']['number_of_clips_per_session']) + \ int(cfg['create_input']['number_of_trapping_per_session']) config['max_allowed_hits'] = cfg['dcr_ccr_html']['allowed_max_hit_in_project'] config['quantity_hits_more_than'] = cfg['dcr_ccr_html']['quantity_hits_more_than'] config['quantity_bonus'] = cfg['dcr_ccr_html']['quantity_bonus'] config['quality_top_percentage'] = cfg['dcr_ccr_html']['quality_top_percentage'] config['quality_bonus'] = cfg['dcr_ccr_html']['quality_bonus'] with open(template_path, 'r') as file: content = file.read() file.seek(0) t = Template(content) cfg_file = t.render(cfg=config) with open(out_path, 'w') as file: file.write(cfg_file) file.close() print(f" [{out_path}] is created") async def create_hit_app_ccr_dcr(cfg, template_path, out_path, training_path, cfg_g): """ Create the hit_app (html file) corresponding to this project for ccr and dcr :param cfg: :param template_path: :param out_path: :return: """ print("Start creating custom hit_app (html)") config = {} config['cookie_name'] = cfg['cookie_name'] config['qual_cookie_name'] = cfg['qual_cookie_name'] config['allowed_max_hit_in_project'] = cfg['allowed_max_hit_in_project'] config['hit_base_payment'] = cfg['hit_base_payment'] config['quantity_hits_more_than'] = cfg['quantity_hits_more_than'] config['quantity_bonus'] = cfg['quantity_bonus'] config['quality_top_percentage'] = cfg['quality_top_percentage'] config['quality_bonus'] = float(cfg['quality_bonus']) + float(cfg['quantity_bonus']) config['sum_quantity'] = float(cfg['quantity_bonus']) + float(cfg['hit_base_payment']) config['sum_quality'] = config['quality_bonus'] + float(cfg['hit_base_payment']) # rating urls rating_urls = [] n_clips = int(cfg_g['number_of_clips_per_session']) n_traps = int(cfg_g['number_of_trapping_per_session']) for i in range(0, n_clips): rating_urls.append({"ref": f"${{Q{i}_R}}", "processed": f"${{Q{i}_P}}"}) if n_traps > 1: print("more than 1 trapping clips question is not supported. Proceed with 1 trap") rating_urls.append({"ref": "${TP}", "processed": "${TP}"}) if 'number_of_gold_clips_per_session' in cfg_g: print("Gold clips are not supported for CCR and DCR method. Proceed without them") config['rating_urls'] = rating_urls # training urls df_train = pd.read_csv(training_path) train_urls = [] train_ref = None for index, row in df_train.iterrows(): if train_ref is None: train_ref = row['training_references'] train_urls.append({"ref": f"{row['training_references']}", "processed": f"{row['training_clips']}"}) # add a trapping clips to the training section train_urls.append({"ref": f"{train_ref}", "processed": f"{train_ref}"}) config['training_urls'] = train_urls config['training_trap_urls'] = train_ref with open(template_path, 'r') as file: content = file.read() file.seek(0) t = Template(content) html = t.render(cfg=config) with open(out_path, 'w') as file: file.write(html) print(f" [{out_path}] is created") async def create_hit_app_acr(cfg, template_path, out_path, training_path, trap_path, cfg_g, cfg_trapping_store): """ Create the ACR.html file corresponding to this project :param cfg: :param template_path: :param out_path: :return: """ print("Start creating custom acr.html") df_trap = pd.DataFrame() if trap_path and os.path.exists(trap_path): df_trap = pd.read_csv(trap_path, nrows=1) else: trapclipsstore = TrappingSamplesInStore(cfg_trapping_store, 'TrappingQuestions') df_trap = await trapclipsstore.get_dataframe() for index, row in df_trap.iterrows(): trap_url = row['trapping_clips'] trap_ans = row['trapping_ans'] config = {} config['cookie_name'] = cfg['cookie_name'] config['qual_cookie_name'] = cfg['qual_cookie_name'] config['allowed_max_hit_in_project'] = cfg['allowed_max_hit_in_project'] config['training_trap_urls'] = trap_url config['training_trap_ans'] = trap_ans config['hit_base_payment'] = cfg['hit_base_payment'] config['quantity_hits_more_than'] = cfg['quantity_hits_more_than'] config['quantity_bonus'] = cfg['quantity_bonus'] config['quality_top_percentage'] = cfg['quality_top_percentage'] config['quality_bonus'] = float(cfg['quality_bonus']) + float(cfg['quantity_bonus']) config['sum_quantity'] = float(cfg['quantity_bonus']) + float(cfg['hit_base_payment']) config['sum_quality'] = config['quality_bonus'] + float(cfg['hit_base_payment']) df_train = pd.read_csv(training_path) train = [] for index, row in df_train.iterrows(): train.append(row['training_clips']) train.append(trap_url) config['training_urls'] = train # rating urls rating_urls = [] n_clips = int(cfg_g['number_of_clips_per_session']) n_traps = int(cfg_g['number_of_trapping_per_session']) n_gold_clips = int(cfg_g['number_of_gold_clips_per_session']) for i in range(0, n_clips ): rating_urls.append('${Q'+str(i)+'}') if n_traps > 1: raise Exception("more than 1 trapping clips question is not supported.") if n_traps == 1: rating_urls.append('${TP}') if n_gold_clips > 1: raise Exception("more than 1 gold question is not supported.") if n_gold_clips == 1: rating_urls.append('${gold_clips}') config['rating_urls'] = rating_urls with open(template_path, 'r') as file: content = file.read() file.seek(0) t = Template(content) html = t.render(cfg=config) with open(out_path, 'w') as file: file.write(html) print(f" [{out_path}] is created") async def prepare_csv_for_create_input(cfg, test_method, clips, gold, trapping, general): """ Merge different input files into one dataframe :param test_method :param clips: :param trainings: :param gold: :param trapping: :param general: :return: """ df_clips = pd.DataFrame() df_gold = pd.DataFrame() df_trap = pd.DataFrame() rating_clips = [] if clips and os.path.exists(clips): df_clips = pd.read_csv(clips) else: rating_clips_stores = cfg.get('RatingClips', 'RatingClipsConfigurations').split(',') for model in rating_clips_stores: enhancedClip = ClipsInAzureStorageAccount(cfg[model], model) eclips = await enhancedClip.clip_names eclips_urls = [enhancedClip.make_clip_url(clip) for clip in eclips] print('length of urls for store [{0}] is [{1}]'.format(model, len(await enhancedClip.clip_names))) rating_clips = rating_clips + eclips_urls df_clips = pd.DataFrame({'rating_clips':rating_clips}) df_general = pd.read_csv(general) if test_method == "acr": if gold and os.path.exists(gold): df_gold = pd.read_csv(gold) else: goldclipsstore = GoldSamplesInStore(cfg['GoldenSample'], 'GoldenSample') df_gold = await goldclipsstore.get_dataframe() print('total gold clips from store [{0}]'.format(len(await goldclipsstore.clip_names))) if trapping and os.path.exists(trapping): df_trap = pd.read_csv(trapping) else: trapclipsstore = TrappingSamplesInStore(cfg['TrappingQuestions'], 'TrappingQuestions') df_trap = await trapclipsstore.get_dataframe() print('total trapping clips from store [{0}]'.format(len(await trapclipsstore.clip_names))) else: df_gold = None if not os.path.exists(clips): testclipsstore = ClipsInAzureStorageAccount(cfg['noisy'], 'noisy') testclipsurls = [testclipsstore.make_clip_url(clip) for clip in await testclipsstore.clip_names] print('The total test clips for our study is [{0}]'.format(len(testclipsurls))) clipdictList = [] for eclip in rating_clips: for i, c in enumerate(testclipsurls): if os.path.basename(c) in eclip: clipdictList.append({'rating_clips':eclip, 'references':testclipsurls[i]}) break df_clips = pd.DataFrame(clipdictList) df_trap = df_clips[['references']].copy() df_trap.rename(columns={'references': 'trapping_clips'}, inplace=True) result =
pd.concat([df_clips, df_gold, df_trap, df_general], axis=1, sort=False)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # > Note: KNN is a memory-based model, that means it will memorize the patterns and not generalize. It is simple yet powerful technique and compete with SOTA models like BERT4Rec. # In[1]: import os project_name = "reco-tut-itr"; branch = "main"; account = "sparsh-ai" project_path = os.path.join('/content', project_name) if not os.path.exists(project_path): get_ipython().system(u'cp /content/drive/MyDrive/mykeys.py /content') import mykeys get_ipython().system(u'rm /content/mykeys.py') path = "/content/" + project_name; get_ipython().system(u'mkdir "{path}"') get_ipython().magic(u'cd "{path}"') import sys; sys.path.append(path) get_ipython().system(u'git config --global user.email "<EMAIL>"') get_ipython().system(u'git config --global user.name "reco-tut"') get_ipython().system(u'git init') get_ipython().system(u'git remote add origin https://"{mykeys.git_token}":[email protected]/"{account}"/"{project_name}".git') get_ipython().system(u'git pull origin "{branch}"') get_ipython().system(u'git checkout main') else: get_ipython().magic(u'cd "{project_path}"') # In[2]: import os import numpy as np import pandas as pd import scipy.sparse from scipy.spatial.distance import correlation # In[13]: df = pd.read_parquet('./data/silver/rating.parquet.gz') df.info() # In[16]: df2 = pd.read_parquet('./data/silver/items.parquet.gz') df2.info() # In[17]: df = pd.merge(df, df2, on='itemId') df.info() # In[5]: rating_matrix = pd.pivot_table(df, values='rating', index=['userId'], columns=['itemId']) rating_matrix # In[6]: def similarity(user1, user2): try: user1=np.array(user1)-np.nanmean(user1) user2=np.array(user2)-np.nanmean(user2) commonItemIds=[i for i in range(len(user1)) if user1[i]>0 and user2[i]>0] if len(commonItemIds)==0: return 0 else: user1=np.array([user1[i] for i in commonItemIds]) user2=np.array([user2[i] for i in commonItemIds]) return correlation(user1,user2) except ZeroDivisionError: print("You can't divide by zero!") # In[31]: def nearestNeighbourRatings(activeUser, K): try: similarityMatrix=pd.DataFrame(index=rating_matrix.index,columns=['Similarity']) for i in rating_matrix.index: similarityMatrix.loc[i]=similarity(rating_matrix.loc[activeUser],rating_matrix.loc[i]) similarityMatrix=pd.DataFrame.sort_values(similarityMatrix,['Similarity'],ascending=[0]) nearestNeighbours=similarityMatrix[:K] neighbourItemRatings=rating_matrix.loc[nearestNeighbours.index] predictItemRating=
pd.DataFrame(index=rating_matrix.columns, columns=['Rating'])
pandas.DataFrame
import json import os import warnings import casadi as ca import numpy as np import pandas as pd import pandas.testing as pdt import pytest from scipy.signal import chirp from skmid.integrator import RungeKutta4 from skmid.models import DynamicModel from skmid.models import generate_model_attributes @pytest.fixture def load_non_linear_model_data(): """Generate input signal""" CWD = os.getcwd() DATA_DIR = "data" SUB_DATA_DIR = "non_linear_model" U = pd.read_csv( filepath_or_buffer=os.path.join(CWD, DATA_DIR, SUB_DATA_DIR, "u_data.csv"), index_col=0, ) Y = pd.read_csv( filepath_or_buffer=os.path.join(CWD, DATA_DIR, SUB_DATA_DIR, "y_data.csv"), index_col=0, ) # reading the data from the file with open( os.path.join(CWD, DATA_DIR, SUB_DATA_DIR, "settings.json"), mode="r" ) as j_object: settings = json.load(j_object) return (U, Y, settings) # test f(x,u) with multiple input, multiple size, list @pytest.fixture def generate_input_signal(): """Generate input signal""" N = 2000 # Number of samples fs = 500 # Sampling frequency [hz] t = np.linspace(0, (N - 1) * (1 / fs), N) df_input = pd.DataFrame( data={ "chirp": 2 * chirp(t, f0=1, f1=10, t1=5, method="logarithmic"), "noise": 2 * np.random.random(N), }, index=t, ) return (df_input, fs) @pytest.fixture def generate_step_signal(): """Generate Step input signal""" N = 1000 # Number of samples fs = 25 # Sampling frequency [hz] t = np.linspace(0, (N - 1) * (1 / fs), N) df_input = pd.DataFrame(index=t).assign( step=lambda x: np.where(x.index < t[int(N / 4)], 0, 1) ) return (df_input, fs) @pytest.fixture def generate_inpulse_signal(): """Generate Impulse input signal""" N = 500 # Number of samples fs = 50 # Sampling frequency [hz] t = np.linspace(0, (N - 1) * (1 / fs), N) df_input = pd.DataFrame(index=t).assign(inpulse=np.zeros(N)) df_input.iloc[0] = 1 return (df_input, fs) class TestRungeKutta4: """Test class for function generate_model_parameters.""" def test_model_with_states(self): """Test simulation with model dx=f(x).""" (x, _, _) = generate_model_attributes( state_size=1, input_size=0, parameter_size=0 ) # initialize first-order model tau = 1 sys = DynamicModel(state=x, model_dynamics=[-(1 / tau) * x]) n_steps = 50 x0 = [1] rk4 = RungeKutta4(model=sys) _ = rk4.simulate(initial_condition=x0, n_steps=n_steps) df_X = rk4.state_sim_ df_Y = rk4.output_sim_ # check equality of dataframe pdt.assert_frame_equal(df_X, df_Y) # check size of dataframe. Note: +1 is because it includes the initial condition assert len(df_X) == n_steps + 1 assert len(df_Y) == n_steps + 1 # check frequency is assigned correctly fs=1 default assert all(np.diff(df_Y.index) == 1) # check no missing values assert df_X.notna().all().values assert df_Y.notna().all().values # check model consistency: convergence with no bias assert df_X.iloc[0].values == pytest.approx(x0) assert df_X.iloc[-1].values == pytest.approx(0) def test_model_with_states_input(self, generate_step_signal): """Test simulation with model dx=f(x,u).""" (df_input, fs) = generate_step_signal # initialize first-order model (x, u, _) = generate_model_attributes( state_size=1, input_size=1, parameter_size=0 ) tau, kp = 1, 1 sys = DynamicModel( state=x, input=u, model_dynamics=[-(1 / tau) * x + (kp / tau) * u] ) rk4 = RungeKutta4(model=sys, fs=fs) _ = rk4.simulate(initial_condition=[0], input=df_input) df_X = rk4.state_sim_ df_Y = rk4.output_sim_ # check equality of dataframe
pdt.assert_frame_equal(df_X, df_Y)
pandas.testing.assert_frame_equal
import csv import itertools import numpy import numpy as np import pandas as pd import sklearn from matplotlib import pyplot as plt from pandas import DataFrame import tsv import experiments import utils from granularity import * from sklearn.metrics import f1_score, accuracy_score input_df =
pd.read_csv("data/answer_weather_ordinal.csv", sep=",")
pandas.read_csv
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox =
get_upcast_box(left, NaT, True)
pandas.tests.arithmetic.common.get_upcast_box
""" A collection of plotting functions to use with pandas, numpy, and pyplot. Created: 2016-36-28 11:10 """ import sys from operator import itemgetter from itertools import groupby, cycle import numpy as np import scipy as sp import scipy.stats as sts import pandas as pd import statsmodels.api as sm from statsmodels.sandbox.regression.predstd import wls_prediction_std import matplotlib as mpl from matplotlib import colors from matplotlib import gridspec from matplotlib import pyplot as plt import matplotlib.patches as mpatches import seaborn as sns import networkx as nx from adjustText import adjust_text import matplotlib_venn # Get rid of pandas future warnings import warnings as _warn _warn.simplefilter(action='ignore', category=FutureWarning) _warn.simplefilter(action='ignore', category=UserWarning) _warn.simplefilter(action='ignore', category=RuntimeWarning) ############################################################################### # Regression # ############################################################################### class LinearRegression(object): """ Use statsmodels, scipy, and numpy to do a linear regression. Regression includes confidence intervals and prediction intervals. Attributes ---------- {x,y} Original x, y data. X : pandas.core.frame.DataFrame Original X with a column of ones added as a constant (unless x already had a constant column). x_pred : numpy.ndarray Predicted evently spaced data. From ``numpy.linspace(x.min(), x.max(), len(x))`` x_pred_c : numpy.ndarry Original x_pred with a column of ones added as a constant y_pred :numpy.ndarray Predicted y values from the model model : statsmodels.regression.linear_model.OLS fitted : statsmodels.regression.linear_model.RegressionResultsWrapper Result of model.fit() summary : statsmodels.iolib.summary.Summary Summary data for regression reg_line : numpy.ndarray Statsmodels fitted values as an ndarray for plotting p : float P value for regression in x rsquared : float The r-squared for the regression conf : numpy.ndarray Confidence interval array for x values. ci_{upper,lower} : numpy.ndarray Upper and lower confidence interval arrays. 95% chance real regression line in this interval ci_t : float T statistic used for the confidence interval. 95% chance real y value is in this interval pred_{upper,lower} : numpy.ndarray Upper and lower prediction {y_hat,y_err,s_err,sdev} : numpy.ndarray """ def __init__(self, x, y): """ Do the regression. Params ------ {x,y} : numpy.ndarray or pandas.core.series.Series X and Y data log : bool Do the regression in log10 space instead """ self.x = x self.y = y self.n = len(x) self.X = sm.add_constant(x) # Do regression self.model = sm.OLS(self.y, self.X) self.fitted = self.model.fit() self.reg_line = self.fitted.fittedvalues self.reg_summary = self.fitted.summary() # Get predicted data self.x_pred = np.linspace(x.min(), x.max(), self.n) self.x_pred_c = sm.add_constant(self.x_pred) self.y_pred = self.fitted.predict(self.x_pred_c) # Calculate confidence intervals self.y_hat = self.fitted.predict(self.X) self.y_err = y - self.y_hat mean_x = self.x.T[1].mean() dof = self.n - self.fitted.df_model - 1 self.ci_t = sts.t.ppf(1-0.025, df=dof) self.s_err = np.sum(np.power(self.y_err, 2)) self.conf = ( self.ci_t * np.sqrt( ( self.s_err/(self.n-2) )*( 1.0/self.n + ( np.power( (self.x_pred-mean_x), 2 )/( (np.sum(np.power(self.x_pred,2))) - self.n*(np.power(mean_x,2)) ) ) ) ) ) self.ci_upper = self.y_pred + abs(self.conf) self.ci_lower = self.y_pred - abs(self.conf) # Get prediction intervals self.sdev, self.pred_lower, self.pred_upper = wls_prediction_std( self.fitted, exog=self.x_pred_c, alpha=0.05 ) # Assign stats self.rsquared = self.fitted.rsquared self.P = self.fitted.pvalues.tolist()[0] def plot_reg_line(self, ax, alpha=0.7, zorder=12, color=None, include_label=True, unlog=False): """Plot the regression line.""" color = color if color else 'darkorchid' x_pred = 10**self.x_pred if unlog else self.x_pred y_pred = 10**self.y_pred if unlog else self.y_pred label = self.legend_text() if include_label else None ax.plot( x_pred, y_pred, '-', color=color, linewidth=2, label=label, alpha=alpha, zorder=zorder ) def plot_ci_line(self, ax, alpha=0.3, zorder=10, color=None, unlog=False): """Plot the confidence interval lines.""" color = color if color else sns.xkcd_rgb['rust'] x_pred = 10**self.x_pred if unlog else self.x_pred ci_upper = 10**self.ci_upper if unlog else self.ci_upper ci_lower = 10**self.ci_lower if unlog else self.ci_lower ax.fill_between( x_pred, ci_lower, ci_upper, color=color, alpha=alpha, zorder=zorder ) def plot_pred_line(self, ax, alpha=0.1, zorder=5, color=None, unlog=False): """Plot the confidence interval lines.""" color = color if color else sns.xkcd_rgb['light green'] x_pred = 10**self.x_pred if unlog else self.x_pred pred_upper = 10**self.pred_upper if unlog else self.pred_upper pred_lower = 10**self.pred_lower if unlog else self.pred_lower ax.fill_between( x_pred, pred_lower, pred_upper, color=color, interpolate=True, alpha=alpha, zorder=zorder ) def print_reg_summary(self): """Print the regression summary.""" print(self.fitted.summary()) def legend_text(self): """Print summary stats.""" return 'OLS: {:.3} +/- {:.2}\n P: {:.2e}\n $R^2$: {:.2}'.format( self.fitted.params.tolist()[0], self.fitted.bse.tolist()[0], self.P, self.rsquared ) def __str__(self): """Return summary stats.""" return 'OLS: {:.3} +/- {:.2}\nP: {:.2e}\nR-squared: {:.2}'.format( self.fitted.params.tolist()[0], self.fitted.bse.tolist()[0], self.P, self.rsquared ) def __repr__(self): """Print repr for statsmodels.""" return 'LinearRegression({0}, R2: {1:.2e}, P: {2:.2e})'.format( repr(self.model), self.rsquared, self.P ) ############################################################################### # Basic Scatter Plots # ############################################################################### def distcomp(y, x=None, bins=500, kind='qq', style=None, ylabel=None, xlabel=None, title=None, fig=None, ax=None, size=10): """Compare two vectors of different length by creating equal bins. If kind is qq, the plot is a simple Quantile-Quantile plot, if it is pp, then the plot is a cumulative probability plot. There are three different formats: simple is a single scatter plot of either the QQ or cumulative dist joint includes the simple scatter plot, but also plots the contributing univatiate distributions on the axes column includes the scatter plot on the left and adds two independent histograms in two plots in a second column on the right. We also add the Mann-Whitney U P-value for the *original distributions*, pre-binning. Cumulative probability is calculated like this: Uses the min(x,y) and max(x,y) (+/- 1%) to set the limit of the bins, and then divides both x and y into an equal number of bins between those two limits, ensuring that the bin starts and ends are identical for both distributions. Bins are labelled by the center value of the bin. Bins are then converted into frequencies, such that the sum of all frequencies is 1. These frequencies are then converted to a cumulative frequency, so that the final bin will always have a value of one. Parameters ---------- y (actual|y-axis) : Series Series of actual data, will go on y-axis x (theoretical|x-axis) : Series or {'normal', 'uniform', 'pvalue'}, optional Series of theoretical data, will go on x-axis, can also be one of 'normal', 'uniform', or 'pvalue', to use a random distribution of the same length as the y data. normal: will use a normal distribution anchored at the mean of y, with a scope of the standard deviation of y. uniform: will use a uniform distribution min(y) >= dist <= max(y) pvalue: will use a uniform distribution between 0 and 1 Defaults to 'pvalue' if kind='qq_log' else 'normal' bins : int, optional Number of bins to use for plotting kind : {'qq', 'qq_log', 'pp', 'cum', 'lin_pp'}, optional qq: Plot a Q-Q plot qq_log: Plot a Q-Q plot of -log10(pvalues) pp|cum: Plot a cumulative probability plot lin_pp: Plot a probability plot where bins are evenly spaced style : str, optional simple: Plot a simple scatter plot joint: Plot a scatter plot with univariate dists on each axis. column: Plot a scatter plot with univariate histograms, separately calculated, on the side. {y/x}label : str, optional Optional label for y/x axis. y=Actual, x=Theretical title : str, optional Optional title for the whole plot size : int, optional A size to use for the figure, square is forced. Returns ------- fig, ax Figure and axes always returned, if joint is True, axes object will be a seaborn axgrid. """ if kind not in ['qq', 'qq_log', 'cum', 'pp', 'lin_pp']: raise ValueError('kind must be one of qq, qq_log, pp, cum, or lin_pp') if not style: if kind is 'qq' or kind is 'qq_log': style = 'simple' else: style = 'joint' if x is None: if kind is 'qq_log': x = 'pvalue' else: x = 'normal' if style not in ['simple', 'joint', 'column', 'scatter']: raise ValueError('style must be one of simple, joint, or colummn') # Convert to old names theoretical = x actual = y kind = 'cum' if kind == 'pp' else kind style = 'simple' if style == 'scatter' else style if isinstance(theoretical, str): if theoretical == 'normal': mean = np.mean(actual) std = np.std(actual) theoretical = np.random.normal( loc=mean, scale=std, size=len(actual) ) elif theoretical == 'uniform' or theoretical == 'random': theoretical = np.random.uniform( np.min(actual), np.max(actual), len(actual) ) elif theoretical == 'pvalue' or theoretical == 'p': theoretical = np.random.random_sample(len(actual)) else: raise ValueError('Invalid theoretical') if kind == 'qq_log': actual = -np.log10(actual) theoretical = -np.log10(theoretical) kind = 'qq' reg_pp = True # If false, do a pp plot that is evenly spaced in the hist. if kind is 'lin_pp': kind = 'cum' reg_pp = False # Choose central plot type if kind == 'qq': cum = False if not title: title = 'QQ Plot' # We use percentiles, so get evenly spaced percentiles from 0% to 100% q = np.linspace(0, 100, bins+1) xhist = np.percentile(theoretical, q) yhist = np.percentile(actual, q) elif kind == 'cum': cum = True # Create bins from sorted data theoretical_sort = sorted(theoretical) # Bins with approximately equal numbers of points if reg_pp: boundaries = uniform_bins(theoretical_sort, bins) if not title: title = 'Cumulative Probability Plot' # Bins with equal ranges else: mx = max(np.max(x), np.max(y)) mx += mx*0.01 mn = min(np.min(x), np.min(y)) mn -= mx*0.01 boundaries = np.linspace(mn, mx, bins+1, endpoint=True) if not title: title = 'Linear Spaced Cumulative Probability Plot' labels = [ (boundaries[i]+boundaries[i+1])/2 for i in range(len(boundaries)-1) ] # Bin two series into equal bins xb = pd.cut(x, bins=boundaries, labels=labels) yb = pd.cut(y, bins=boundaries, labels=labels) # Get value counts for each bin and sort by bin xhist = xb.value_counts().sort_index(ascending=True)/len(xb) yhist = yb.value_counts().sort_index(ascending=True)/len(yb) # Make cumulative for ser in [xhist, yhist]: ttl = 0 for idx, val in ser.iteritems(): ttl += val ser.loc[idx] = ttl # Set labels if not xlabel: if hasattr(x, 'name'): xlabel = x.name else: xlabel = 'Theoretical' if not ylabel: if hasattr(y, 'name'): ylabel = y.name else: ylabel = 'Actual' # Create figure layout if fig or ax: fig, ax == _get_fig_ax(fig, ax) style = 'simple' elif style == 'simple': fig, ax = plt.subplots(figsize=(size,size)) elif style == 'joint': # Create a jointgrid sns.set_style('darkgrid') gs = gridspec.GridSpec(2, 2, width_ratios=[5, 1], height_ratios=[1, 5]) fig = plt.figure(figsize=(size,size)) ax = plt.subplot(gs[1, 0]) axt = plt.subplot(gs[0, 0], sharex=ax, yticks=[]) axr = plt.subplot(gs[1, 1], sharey=ax, xticks=[]) # Plot side plots axt.hist(xhist, bins=bins, cumulative=cum) axr.hist(yhist, bins=bins, cumulative=cum, orientation='horizontal') elif style == 'column': # Create a two column grid fig = plt.figure(figsize=(size*2,size)) ax = plt.subplot2grid((2,2), (0,0), rowspan=2) ax2 = plt.subplot2grid((2,2), (0,1)) ax3 = plt.subplot2grid((2,2), (1,1), sharex=ax2, sharey=ax2) # Plot extra plots - these ones are traditional histograms sns.distplot(actual, ax=ax2, bins=bins) sns.distplot(theoretical, ax=ax3, bins=bins) ax2.set_title(ylabel) ax3.set_title(xlabel) for a in [ax2, ax3]: a.set_frame_on(True) a.set_xlabel = '' a.axes.get_yaxis().set_visible(True) a.yaxis.tick_right() a.yaxis.set_label_position('right') a.yaxis.set_label('count') # Plot the scatter plot ax.scatter(xhist, yhist, label='') ax.set_xlabel(xlabel, fontsize=20) ax.set_ylabel(ylabel, fontsize=20) # Make the plot a square emin = min(np.min(xhist), np.min(yhist)) emax = max(np.max(xhist), np.max(yhist)) t2b = abs(emax-emin) scale = t2b*0.01 emin -= scale emax += scale lim = (emin, emax) ax.set_xlim(lim) ax.set_ylim(lim) # Plot a 1-1 line in the background ax.plot(lim, lim, '-', color='0.75', alpha=0.9, zorder=0.9) # Add Mann-Whitney U p-value mwu = sts.mannwhitneyu(actual, theoretical) chi = sts.chisquare(yhist, xhist) handles, _ = ax.get_legend_handles_labels() prc, prp = sts.pearsonr(xhist, yhist) if round(prc, 4) > 0.998: plbl = 'pearsonr = {:.2f}; p = {:.2f}' else: plbl = 'pearsonr = {:.2}; p = {:.2e}' handles.append( mpatches.Patch( color='none', label=plbl.format(prc, prp) ) ) if kind == 'qq' or reg_pp: if chi.pvalue < 0.001: cpl = 'chisq = {:.2}; p = {:2e}' else: cpl = 'chisq = {:.2}; p = {:.2f}' handles.append( mpatches.Patch( color='none', label=cpl.format(chi.statistic, chi.pvalue) ) ) if mwu.pvalue < 0.001: mwl = 'mannwhitneyu = {:.2}; p = {:.2e}' else: mwl = 'mannwhitneyu = {:.2}; p = {:.5f}' handles.append( mpatches.Patch( color='none', label=mwl.format(mwu.statistic, mwu.pvalue) ) ) ax.legend(handles=handles, loc=0) fig.tight_layout() if title: if style == 'simple': ax.set_title(title, fontsize=14) else: fig.suptitle(title, fontsize=16) if style == 'joint': fig.subplots_adjust(top=0.95) elif style != 'simple': fig.subplots_adjust(top=0.93) # Last thing is to set the xtick labels for cummulative plots if kind == 'cum': labels = [round(i, 2) for i in labels] fig.canvas.draw() xlabels = ax.get_xticklabels() ylabels = ax.get_yticklabels() for i, tlabels in enumerate([xlabels, ylabels]): for tlabel in tlabels: pos = tlabel.get_position() if round(pos[i], 2) < 0.0 or round(pos[i], 2) > 1.0: tlabel.set_text('') continue if round(pos[i], 2) == 0.00: txt = labels[0] elif round(pos[i], 2) == 1.00: # The last label is the end of the bin, not the start txt = round(theoretical_sort[-1], 2) else: txt = labels[int(round(len(labels)*pos[i]))] tlabel.set_text(str(txt)) ax.set_xticklabels(xlabels) ax.set_yticklabels(ylabels) if style == 'joint': ax = (ax, axt, axr) elif style == 'column': ax = (ax, ax2, ax3) return fig, ax def scatter(x, y, df=None, xlabel=None, ylabel=None, title=None, pval=None, density=True, log_scale=False, handle_nan=True, regression=True, fill_reg=True, reg_details=False, labels=None, label_lim=10, shift_labels=False, highlight=None, highlight_label=None, legend='best', add_text=None, scale_factor=0.05, size=10, cmap=None, cmap_midpoint=0.5, lock_axes=True, fig=None, ax=None): """Create a simple 1:1 scatter plot plus regression line. Always adds a 1-1 line in grey and a regression line in green. Can color the points by density if density is true (otherwise they are always blue), can also do regular or negative log scaling. Regression is done using the statsmodels OLS regression with a constant added to the X values using sm.add_constant() to add a column of ones to the array of x values. If a constant is already present none is added. Parameters ---------- x : Series or str if df provided X values y : Series or str if df provided Y values df : DataFrame, optional If provided, x and y must be strings that are column names {x,y}label : str, optional A label for the axes, defaults column value if df provided title : str, optional Name of the plot pval : float, optional Draw a line at this point*point count density : bool or str, optional Color points by density, 'kde' uses a cool kde method, but is too slow on large datasets log_scale : str, optional Plot in log scale, can also be 'negative' for negative log scale. handle_nan : bool, optional When converting data to log, drop nan and inf values regression : bool, optional Do a regression fill_reg : bool, optional Add confidence lines to regression line reg_details : bool, optional Print regression summary labels : Series, optional Labels to show, must match indices of plotted data label_lim : int, optional Only show top # labels on each side of the line shift_labels: bool, optional If True, try to spread labels out. Imperfect. highlight_label : Series, optional Boolean series of same len as x/y legend : str, optional The location to place the legend add_text : str, optional Text to add to the legend scale_factor : float, optional A ratio to expand the axes by. size : int or tuple, optional Size of figure, defaults to square unless (x, y) length tuple given cmap : str or cmap, optional A cmap to use for density, defaults to a custom blue->red, light->dark cmap cmap_midpoint : float 0 <= n <= 1, optional A midpoint for the cmap, 0.5 means no change emphasizes density lock_axes : bool, optional Make X and Y axes the same length fig/ax : matplotlib objects, optional Use these instead Returns ------- fig : plt.figure ax : plt.axes reg : plots.LinearRegression or None Statsmodel OLS regression results wrapped in a LinearRegression object. If no regression requested, returns None """ f, a = _get_fig_ax(fig, ax, size=size) # a.grid(False) if isinstance(df, pd.DataFrame): assert isinstance(x, str) assert isinstance(y, str) if log_scale: df = df[(df[x] > 0) & (df[y] > 0)] if not xlabel: xlabel = x x = df[x] if not ylabel: ylabel = y y = df[y] elif df is not None: raise ValueError('df must be a DataFrame or None') if not xlabel and hasattr(x, 'name'): xlabel = x.name if not ylabel and hasattr(y, 'name'): ylabel = y.name if not xlabel: xlabel = 'X' if not ylabel: ylabel = 'Y' if hasattr(x, 'astype'): x = x.astype(np.float) else: x = np.float(x) if hasattr(y, 'astype'): y = y.astype(np.float) else: y = np.float(y) # Get a color iterator c = iter(sns.color_palette()) # Set up log scaling if necessary if log_scale: if log_scale == 'reverse' or log_scale == 'n' or log_scale == 'r': log_scale = 'negative' if log_scale == '-': log_scale = 'negative' lx = np.log10(x) ly = np.log10(y) if handle_nan: tdf =
pd.DataFrame([x, y, lx, ly])
pandas.DataFrame
from geopandas import GeoDataFrame import pandas as pd import numpy as np import geopandas as gp OLR= gp.read_file('Roadways_gridV6.shp') OLR1=pd.DataFrame(OLR) def label_race (row): if row['cat'] == 'trunk' : tcc=(row.length/263.778046)*0.38 return tcc elif row['cat'] == 'primary' : pcc=(row.length/355.954679)*0.28 return pcc elif row['cat'] == 'secondary' : pcc=(row.length/368.126161)*0.15 return pcc elif row['cat'] == 'tertiary' : pcc=(row.length/2180.144677)*0.13 return pcc elif row['cat'] == 'residential' : pcc=(row.length/1334.340583)*0.06 return pcc else: pcc=0 return pcc OLR1['lpc']=OLR1.apply (lambda row: label_race (row),axis=1) df4=OLR1.drop_duplicates(subset='gid', take_last=True) gidL=df4.gid.tolist() OLR2=OLR1.groupby('gid') aa=[] for gL in gidL: dL=OLR2.get_group(gL) dL1=dL.lpc.sum() pm25=dL1*918115910.4 pm10=dL1*3842589254.4 an=(gL,pm25,pm10) aa.append(an) sdb1=
pd.DataFrame(aa)
pandas.DataFrame
############################################################################### # Omid55 # Start date: 16 Jan 2020 # Modified date: 14 Apr 2020 # Author: <NAME> # Email: <EMAIL> # Module to load group dynamics logs for every team. ############################################################################### from __future__ import division, print_function, absolute_import, unicode_literals import glob import json import numpy as np import pandas as pd from collections import defaultdict from enum import Enum, unique from os.path import expanduser from typing import Dict from typing import List from typing import Text from typing import Tuple import utils @unique class AttachmentType(Enum): TO_INITIAL = 1 TO_PREVIOUS = 2 class TeamLogsLoader(object): """Processes the logs of one team who have finished the dyad group dynamics Usage: loader = TeamLogsLoader( directory='/home/omid/Datasets/Jeopardy') Properties: team_id: The id of the existing team in this object. """ taskid2taskname = { 52: 'GD_solo_asbestos_initial', 53: 'GD_group_asbestos1', 57: 'GD_influence_asbestos1', 61: 'GD_group_asbestos2', 62: 'GD_solo_asbestos1', 63: 'GD_influence_asbestos2', 67: 'GD_solo_asbestos2', 68: 'GD_group_asbestos3', 69: 'GD_influence_asbestos3', 70: 'GD_solo_asbestos3', 71: 'GD_solo_disaster_initial', 72: 'GD_group_disaster1', 73: 'GD_solo_disaster1', 74: 'GD_influence_disaster1', 75: 'GD_solo_disaster3', 76: 'GD_solo_disaster2', 77: 'GD_influence_disaster3', 78: 'GD_influence_disaster2', 79: 'GD_group_disaster2', 80: 'GD_group_disaster3', 81: 'GD_frustration_asbestos', 82: 'GD_frustration_disaster', 83: 'GD_solo_sports_initial', 84: 'GD_solo_sports1', 85: 'GD_solo_sports2', 86: 'GD_solo_sports3', 87: 'GD_group_sports2', 88: 'GD_group_sports3', 89: 'GD_group_sports1', 90: 'GD_influence_sports3', 91: 'GD_influence_sports2', 92: 'GD_influence_sports1', 93: 'GD_frustration_sports', 94: 'GD_solo_school_initial', 95: 'GD_solo_school1', 96: 'GD_solo_school2', 97: 'GD_solo_school3', 98: 'GD_group_school3', 99: 'GD_group_school2', 100: 'GD_group_school1', 101: 'GD_frustration_school', 102: 'GD_influence_school3', 103: 'GD_influence_school2', 104: 'GD_influence_school1', 105: 'GD_solo_surgery_initial', 106: 'GD_solo_surgery1', 107: 'GD_solo_surgery2', 108: 'GD_solo_surgery3', 109: 'GD_group_surgery1', 110: 'GD_group_surgery2', 111: 'GD_group_surgery3', 112: 'GD_influence_surgery1', 113: 'GD_influence_surgery2', 114: 'GD_influence_surgery3', 115: 'GD_frustration_surgery'} def __init__(self, directory: Text): self.messages = None self.answers = None self.influences = None self.frustrations = None self._load(directory=directory) def _load(self, directory: Text): """Loads all logs for one team in the given directory. """ logs_filepath = '{}/EventLog_*.csv'.format(directory) logs = pd.read_csv(glob.glob(expanduser(logs_filepath))[0]) logs = logs.sort_values(by='Timestamp') task_orders_filepath = '{}/CompletedTask_*.csv'.format(directory) task_orders = pd.read_csv( glob.glob(expanduser(task_orders_filepath))[0]) completed_taskid2taskname = {} for _, row in task_orders.iterrows(): completed_taskid2taskname[row.Id] = TeamLogsLoader.taskid2taskname[ row.TaskId] answers_dt = [] messages_dt = [] influences_dt = [] frustrations_dt = [] for _, row in logs.iterrows(): content_file_id = row.EventContent[9:] question_name = completed_taskid2taskname[row.CompletedTaskId] sender = row.Sender timestamp = row.Timestamp event_type = row.EventType json_file_path = '{}/EventLog/{}_*.json'.format( directory, content_file_id) json_file = glob.glob(expanduser(json_file_path)) if len(json_file) != 1: print( 'WARNING1: json file for id: {} was not found' ' in the EventLog folder.\n'.format( content_file_id)) else: with open(json_file[0], 'r') as f: content = json.load(f) if 'type' in content and content['type'] == 'JOINED': continue if event_type == 'TASK_ATTRIBUTE': input_str = '' if question_name[:7] == 'GD_solo': if content['attributeName'] == 'surveyAnswer0': input_str = 'answer' elif content['attributeName'] == 'surveyAnswer1': input_str = 'confidence' else: print('WARNING2: attribute name was unexpected.' ' It was {}, question was {} ' 'and content was {}\n'.format( content['attributeName'], question_name, content)) if question_name.endswith('_initial'): question_name = question_name.split( '_initial')[0] + '0' answers_dt.append( [sender, question_name, input_str, content['attributeStringValue'], timestamp]) elif question_name[:12] == 'GD_influence': if content['attributeName'] == 'surveyAnswer1': input_str = 'self' elif content['attributeName'] == 'surveyAnswer2': input_str = 'other' else: print('WARNING3: attribute name was unexpected.' ' It was {}\n'.format(content['attributeName'])) influences_dt.append( [sender, question_name, input_str, content['attributeStringValue'], timestamp]) elif question_name[:14] == 'GD_frustration': frustrations_dt.append( [sender, question_name, content['attributeStringValue'], timestamp]) else: print('WARNING4: There was an unexpected ' 'question: {}\n'.format(question_name)) elif event_type == 'COMMUNICATION_MESSAGE': if len(content['message']) > 0: messages_dt.append( [sender, question_name, content['message'], timestamp]) else: print('WARNING5: There was an unexpected' ' EventType: {}\n'.format(event_type)) self.answers = pd.DataFrame(answers_dt, columns = [ 'sender', 'question', 'input', 'value', 'timestamp']) self.influences = pd.DataFrame(influences_dt, columns = [ 'sender', 'question', 'input', 'value', 'timestamp']) self.frustrations = pd.DataFrame(frustrations_dt, columns = [ 'sender', 'question', 'value', 'timestamp']) self.messages = pd.DataFrame(messages_dt, columns = [ 'sender', 'question', 'text', 'timestamp']) # Sorts all based on timestamp. self.answers.sort_values(by='timestamp', inplace=True) self.influences.sort_values(by='timestamp', inplace=True) self.frustrations.sort_values(by='timestamp', inplace=True) self.messages.sort_values(by='timestamp', inplace=True) self.users = np.unique( self.influences.sender.tolist() + self.messages.sender.tolist() + self.answers.sender.tolist()) if self.users.size > 0: self.team_id = self.users[0].split('.')[0] def get_answers_in_simple_format(self) -> pd.DataFrame: """Gets all answers in a simple format to read them in the easiest way. """ # if len(self.answers) == 0: # raise ValueError('The object has not been initialized.') users = self.users questions = np.unique(self.answers.question) data = [] for question in questions: dt = [question[len('GD_solo_'):]] for user in users: for input in ['answer', 'confidence']: this_answer = self.answers[ (self.answers.question == question) & ( self.answers.sender == user) & ( self.answers.input == input)] val = '' if len(this_answer.value) > 0: # Because if there might be multiple log entry for the # same text box, we take the last one. val = list(this_answer.value)[-1] dt.append(val) data.append(dt) columns = ['Question'] for user in users: columns += [user + '\'s answer', user + '\'s confidence'] return
pd.DataFrame(data, columns=columns)
pandas.DataFrame
import gdax import csv import datetime as dt import pandas_datareader.data as web import pandas as pd import matplotlib.pyplot as plt from matplotlib.finance import candlestick_ohlc import matplotlib.dates as mdates #gets price data public_client = gdax.PublicClient() def coin_df_operations(df, coin_name): #converts unix time to readable time based on the coin dataframe passed to it df['regular time'] =
pd.to_datetime(df.index,unit='s')
pandas.to_datetime
# In[] import sys, os sys.path.append('../') sys.path.append('../src/') import numpy as np import pandas as pd from scipy import sparse import networkx as nx import torch import torch.nn.functional as F import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader import time from sklearn.decomposition import PCA from sklearn.manifold import MDS import diffusion_dist as diff import dataset as dataset import model as model import loss as loss import train import TI as ti import benchmark as bmk from umap import UMAP import utils as utils import post_align as palign from scipy.sparse import load_npz device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') plt.rcParams["font.size"] = 20 results_dir = "results_acc_anchor/" # In[] seeds = [0, 1, 2] latent_dims = [4, 8, 32] reg_ds = [1, 10] reg_gs = [0.01, 1, 10] reg_mmds = [1, 10, 20, 30] latent_dim = latent_dims[eval(sys.argv[1])] reg_d = reg_ds[eval(sys.argv[2])] reg_g = reg_gs[eval(sys.argv[3])] # harder to merge, need to make mmd loss larger reg_mmd = reg_mmds[eval(sys.argv[4])] learning_rate = 3e-4 n_epochs = 500 use_anchor = True ts = [30, 50, 70] use_potential = True norm = "l1" scores = pd.DataFrame(columns = ["dataset", "kendall-tau", "F1-score"]) # for data_name in ["lin_rand1", "lin_rand2", "lin_rand3", # "lin_new1", "lin_new2", "lin_new3", # "lin_new4", "lin_new5", "lin_new6", # "bifur1", "bifur2", "bifur3", # "bifur4", "bifur5", "bifur6", # "bifur7", "bifur8", "bifur9", # "trifur_rand1", "trifur_rand2", "trifur_rand3", # "trifur_new1","trifur_new2","trifur_new3", # "trifur_new4","trifur_new5","trifur_new6" # ]: # scores = pd.read_csv(results_dir + "scores.csv", index_col = 0) for data_name in ["lin1", "lin2", "lin3", "lin4", "lin5", "lin6", "bifur1", "bifur2", "bifur3","bifur4", "bifur5", "bifur6", "trifur1", "trifur2", "trifur3","trifur4","trifur5","trifur6"]: if not os.path.exists(results_dir + data_name + "/"): print("make directory") os.makedirs(results_dir + data_name + "/") for seed in seeds: print("Random seed: " + str(seed)) torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) counts_rna = pd.read_csv("../data/simulated/" + data_name + "/GxC1.txt", sep = "\t", header = None).values.T counts_atac = pd.read_csv("../data/simulated/" + data_name + "/RxC2.txt", sep = "\t", header = None).values.T label_rna = pd.read_csv("../data/simulated/" + data_name + "/cell_label1.txt", sep = "\t")["pop"].values.squeeze() label_atac = pd.read_csv("../data/simulated/" + data_name + "/cell_label2.txt", sep = "\t")["pop"].values.squeeze() pt_rna = pd.read_csv("../data/simulated/" + data_name + "/pseudotime1.txt", header = None).values.squeeze() pt_atac = pd.read_csv("../data/simulated/" + data_name + "/pseudotime2.txt", header = None).values.squeeze() # preprocessing libsize = 100 counts_rna = counts_rna/np.sum(counts_rna, axis = 1)[:, None] * libsize counts_rna = np.log1p(counts_rna) rna_dataset = dataset.dataset(counts = counts_rna, anchor = np.argsort(pt_rna)[:10]) atac_dataset = dataset.dataset(counts = counts_atac, anchor = np.argsort(pt_atac)[:10]) coarse_reg = torch.FloatTensor(
pd.read_csv("../data/simulated/" + data_name + "/region2gene.txt", sep = "\t", header = None)
pandas.read_csv
# Scientific Library import numpy as np import pandas as pd from scipy import stats from scipy.stats import norm as sp_norm from scipy.stats.distributions import chi2 as sp_chi2 # Standard Library from dataclasses import asdict, dataclass, field from importlib.metadata import version import importlib.resources as importlib_resources import logging from pathlib import Path import platform import shutil from typing import List, Optional, Union # Third Party from PyPDF2 import PdfFileReader from click_help_colors import HelpColorsCommand, HelpColorsGroup import dill from joblib import Parallel from psutil import cpu_count from rich import box from rich.console import Console, ConsoleOptions, RenderResult from rich.table import Table import toml # First Party from metadamage.progressbar import console, progress #%% logger = logging.getLogger(__name__) #%% @dataclass class Config: out_dir: Path # max_fits: Optional[int] max_cores: int # max_position: Optional[int] # min_alignments: int min_k_sum: int min_N_at_each_pos: int # substitution_bases_forward: str substitution_bases_reverse: str # bayesian: bool forced: bool version: str dask_port: int # filename: Optional[Path] = None shortname: Optional[str] = None N_filenames: Optional[int] = None N_fits: Optional[int] = None N_cores: int = field(init=False) def __post_init__(self): self._set_N_cores() def _set_N_cores(self): available_cores = cpu_count(logical=True) if self.max_cores > available_cores: self.N_cores = available_cores - 1 logger.info( f"'max_cores' is set to a value larger than the maximum available" f"so clipping to {self.N_cores} (available-1) cores" ) elif self.max_cores < 0: self.N_cores = available_cores - abs(self.max_cores) logger.info( f"'max-cores' is set to a negative value" f"so using {self.N_cores} (available-max_cores) cores" ) else: self.N_cores = self.max_cores def add_filenames(self, filenames): self.N_filenames = len(filenames) def add_filename(self, filename): self.filename = filename self.shortname = extract_name(filename) @property def filename_counts(self): if self.shortname is None: raise AssertionError( "Shortname has to be set before filename_counts is defined: " "cfg.add_filename(filename) " ) return self.out_dir / "counts" / f"{self.shortname}.parquet" @property def filename_fit_results(self): if self.shortname is None: raise AssertionError( "Shortname has to be set before filename_fit_results is defined: " "cfg.add_filename(filename) " ) return self.out_dir / "fit_results" / f"{self.shortname}.parquet" @property def filename_fit_predictions(self): if self.shortname is None: raise AssertionError( "Shortname has to be set before filename_fit_predictions is defined: " "cfg.add_filename(filename) " ) return self.out_dir / "fit_predictions" / f"{self.shortname}.parquet" def set_number_of_fits(self, df_counts): self.N_tax_ids = len(pd.unique(df_counts.tax_id)) if self.max_fits is not None and self.max_fits > 0: self.N_fits = min(self.max_fits, self.N_tax_ids) # use all TaxIDs available else: self.N_fits = self.N_tax_ids logger.info(f"Setting number_of_fits to {self.N_fits}") def to_dict(self): d_out = asdict(self) for key, val in d_out.items(): if isinstance(val, Path): d_out[key] = str(val) return d_out # def save_dict(self, dict_name): # d_out = self.to_dict() # with open(dict_name, "w") as f: # toml.dump(d_out, f) def __rich_console__( self, console: Console, options: ConsoleOptions ) -> RenderResult: yield f"" my_table = Table(title="[b]Configuration:[/b]", box=box.MINIMAL_HEAVY_HEAD) # my_table = Table(title="Configuration:") my_table.add_column("Attribute", justify="left", style="cyan") my_table.add_column("Value", justify="center", style="magenta") if self.N_filenames: my_table.add_row("Number of files", str(self.N_filenames)) my_table.add_row("Output directory", str(self.out_dir)) my_table.add_row("Maximum number of fits pr. file", str(self.max_fits)) if self.N_fits: my_table.add_row("Number of fits pr. file", str(self.N_fits)) my_table.add_row("Maximum number of cores to use", str(self.max_cores)) if self.N_cores: my_table.add_row("Number of cores to use", str(self.N_cores)) my_table.add_row("Minimum number of alignments", str(self.min_alignments)) my_table.add_row("Minimum k sum", str(self.min_k_sum)) my_table.add_row("Minimum N at each position", str(self.min_N_at_each_pos)) my_table.add_row( "Substitution bases forward", str(self.substitution_bases_forward) ) my_table.add_row( "Substitution bases reverse", str(self.substitution_bases_reverse) ) my_table.add_row("Bayesian", str(self.bayesian)) my_table.add_row("Forced", str(self.forced)) my_table.add_row("Version", self.version) if self.filename: my_table.add_row("Filename", str(self.filename)) my_table.add_row("Shortname", str(self.shortname)) yield my_table #%% def find_style_file(): with importlib_resources.path("metadamage", "style.mplstyle") as path: return path def is_ipython(): try: return __IPYTHON__ except NameError: return False def extract_name(filename, max_length=60): shortname = Path(filename).stem.split(".")[0] if len(shortname) > max_length: shortname = shortname[:max_length] + "..." logger.info(f"Running new file: {shortname}") return shortname def file_is_valid(filename): if Path(filename).exists() and Path(filename).stat().st_size > 0: return True exists = Path(filename).exists() valid_size = Path(filename).stat().st_size > 0 logger.error( f"{filename} is not a valid file. " f"{exists=} and {valid_size=}. " f"Skipping for now." ) return False def delete_folder(path): try: shutil.rmtree(path) except OSError: logger.exception(f"Could not delete folder, {path}") def init_parent_folder(filename): if isinstance(filename, str): filename = Path(filename) filename.parent.mkdir(parents=True, exist_ok=True) def is_forward(df): return df["strand"] == "5'" def get_forward(df): return df[is_forward(df)] def get_reverse(df): return df[~is_forward(df)] def get_specific_tax_id(df, tax_id): if tax_id == -1: tax_id = df.tax_id.iloc[0] return df.query("tax_id == @tax_id") def load_dill(filename): with open(filename, "rb") as file: return dill.load(file) def save_dill(filename, x): init_parent_folder(filename) with open(filename, "wb") as file: dill.dump(x, file) # def save_to_hdf5(filename, key, value): # with pd.HDFStore(filename, mode="a") as store: # store.put(key, value, data_columns=True, format="Table") # def save_metadata_to_hdf5(filename, key, value, metadata): # with pd.HDFStore(filename, mode="a") as store: # store.get_storer(key).attrs.metadata = metadata # def load_from_hdf5(filename, key): # if isinstance(key, str): # with pd.HDFStore(filename, mode="r") as store: # df = store.get(key) # return df # elif isinstance(key, (list, tuple)): # keys = key # out = [] # with pd.HDFStore(filename, mode="r") as store: # for key in keys: # out.append(store.get(key)) # return out # def load_metadata_from_hdf5(filename, key): # with pd.HDFStore(filename, mode="r") as store: # metadata = store.get_storer(key).attrs.metadata # return metadata # def get_hdf5_keys(filename, ignore_subgroups=False): # with pd.HDFStore(filename, mode="r") as store: # keys = store.keys() # if ignore_subgroups: # keys = list(set([key.split("/")[1] for key in keys])) # return keys # else: # raise AssertionError(f"ignore_subgroups=False not implemented yet.") #%% def downcast_dataframe(df, categories, fully_automatic=False): categories = [category for category in categories if category in df.columns] d_categories = {category: "category" for category in categories} df2 = df.astype(d_categories) int_cols = df2.select_dtypes(include=["integer"]).columns if df2[int_cols].max().max() > np.iinfo("uint32").max: raise AssertionError("Dataframe contains too large values.") for col in int_cols: if fully_automatic: df2.loc[:, col] = pd.to_numeric(df2[col], downcast="integer") else: if col == "position": df2.loc[:, col] = df2[col].astype("int8") else: df2.loc[:, col] = df2[col].astype("uint32") for col in df2.select_dtypes(include=["float"]).columns: if fully_automatic: df2.loc[:, col] =
pd.to_numeric(df2[col], downcast="float")
pandas.to_numeric
# -*- coding: utf-8 -*- from datetime import datetime from pandas.compat import range, lrange import operator import pytest from warnings import catch_warnings import numpy as np from pandas import Series, Index, isna, notna from pandas.core.dtypes.common import is_float_dtype from pandas.core.dtypes.missing import remove_na_arraylike from pandas.core.panel import Panel from pandas.core.panel4d import Panel4D from pandas.tseries.offsets import BDay from pandas.util.testing import (assert_frame_equal, assert_series_equal, assert_almost_equal) import pandas.util.testing as tm def add_nans(panel4d): for l, label in enumerate(panel4d.labels): panel = panel4d[label] tm.add_nans(panel) class SafeForLongAndSparse(object): def test_repr(self): repr(self.panel4d) def test_iter(self): tm.equalContents(list(self.panel4d), self.panel4d.labels) def test_count(self): f = lambda s: notna(s).sum() self._check_stat_op('count', f, obj=self.panel4d, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: pytest.skip("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel4d # # set some NAs # obj.loc[5:10] = np.nan # obj.loc[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na_arraylike(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) with catch_warnings(record=True): for i in range(obj.ndim): result = f(axis=i, skipna=False) expected = obj.apply(wrapper, axis=i) tm.assert_panel_equal(result, expected) else: skipna_wrapper = alternative wrapper = alternative with catch_warnings(record=True): for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): expected = obj.apply(skipna_wrapper, axis=i) tm.assert_panel_equal(result, expected) pytest.raises(Exception, f, axis=obj.ndim) class SafeForSparse(object): def test_get_axis(self): assert self.panel4d._get_axis(0) is self.panel4d.labels assert self.panel4d._get_axis(1) is self.panel4d.items assert self.panel4d._get_axis(2) is self.panel4d.major_axis assert self.panel4d._get_axis(3) is self.panel4d.minor_axis def test_set_axis(self): with catch_warnings(record=True): new_labels = Index(np.arange(len(self.panel4d.labels))) # TODO: unused? # new_items = Index(np.arange(len(self.panel4d.items))) new_major = Index(np.arange(len(self.panel4d.major_axis))) new_minor = Index(np.arange(len(self.panel4d.minor_axis))) # ensure propagate to potentially prior-cached items too # TODO: unused? # label = self.panel4d['l1'] self.panel4d.labels = new_labels if hasattr(self.panel4d, '_item_cache'): assert 'l1' not in self.panel4d._item_cache assert self.panel4d.labels is new_labels self.panel4d.major_axis = new_major assert self.panel4d[0].major_axis is new_major assert self.panel4d.major_axis is new_major self.panel4d.minor_axis = new_minor assert self.panel4d[0].minor_axis is new_minor assert self.panel4d.minor_axis is new_minor def test_get_axis_number(self): assert self.panel4d._get_axis_number('labels') == 0 assert self.panel4d._get_axis_number('items') == 1 assert self.panel4d._get_axis_number('major') == 2 assert self.panel4d._get_axis_number('minor') == 3 def test_get_axis_name(self): assert self.panel4d._get_axis_name(0) == 'labels' assert self.panel4d._get_axis_name(1) == 'items' assert self.panel4d._get_axis_name(2) == 'major_axis' assert self.panel4d._get_axis_name(3) == 'minor_axis' def test_arith(self): with catch_warnings(record=True): self._test_op(self.panel4d, operator.add) self._test_op(self.panel4d, operator.sub) self._test_op(self.panel4d, operator.mul) self._test_op(self.panel4d, operator.truediv) self._test_op(self.panel4d, operator.floordiv) self._test_op(self.panel4d, operator.pow) self._test_op(self.panel4d, lambda x, y: y + x) self._test_op(self.panel4d, lambda x, y: y - x) self._test_op(self.panel4d, lambda x, y: y * x) self._test_op(self.panel4d, lambda x, y: y / x) self._test_op(self.panel4d, lambda x, y: y ** x) pytest.raises(Exception, self.panel4d.__add__, self.panel4d['l1']) @staticmethod def _test_op(panel4d, op): result = op(panel4d, 1) tm.assert_panel_equal(result['l1'], op(panel4d['l1'], 1)) def test_keys(self): tm.equalContents(list(self.panel4d.keys()), self.panel4d.labels) def test_iteritems(self): """Test panel4d.iteritems()""" assert (len(list(self.panel4d.iteritems())) == len(self.panel4d.labels)) def test_combinePanel4d(self): with catch_warnings(record=True): result = self.panel4d.add(self.panel4d) tm.assert_panel4d_equal(result, self.panel4d * 2) def test_neg(self): with catch_warnings(record=True): tm.assert_panel4d_equal(-self.panel4d, self.panel4d * -1) def test_select(self): with catch_warnings(record=True): p = self.panel4d # select labels result = p.select(lambda x: x in ('l1', 'l3'), axis='labels') expected = p.reindex(labels=['l1', 'l3']) tm.assert_panel4d_equal(result, expected) # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) tm.assert_panel4d_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) tm.assert_panel4d_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=3) expected = p.reindex(minor=['A', 'D']) tm.assert_panel4d_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo',), axis='items') tm.assert_panel4d_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) def test_abs(self): with catch_warnings(record=True): result = self.panel4d.abs() expected = np.abs(self.panel4d) tm.assert_panel4d_equal(result, expected) p = self.panel4d['l1'] result = p.abs() expected = np.abs(p) tm.assert_panel_equal(result, expected) df = p['ItemA'] result = df.abs() expected = np.abs(df) assert_frame_equal(result, expected) class CheckIndexing(object): def test_getitem(self): pytest.raises(Exception, self.panel4d.__getitem__, 'ItemQ') def test_delitem_and_pop(self): with catch_warnings(record=True): expected = self.panel4d['l2'] result = self.panel4d.pop('l2') tm.assert_panel_equal(expected, result) assert 'l2' not in self.panel4d.labels del self.panel4d['l3'] assert 'l3' not in self.panel4d.labels pytest.raises(Exception, self.panel4d.__delitem__, 'l3') values = np.empty((4, 4, 4, 4)) values[0] = 0 values[1] = 1 values[2] = 2 values[3] = 3 panel4d = Panel4D(values, lrange(4), lrange(4), lrange(4), lrange(4)) # did we delete the right row? panel4dc = panel4d.copy() del panel4dc[0] tm.assert_panel_equal(panel4dc[1], panel4d[1]) tm.assert_panel_equal(panel4dc[2], panel4d[2]) tm.assert_panel_equal(panel4dc[3], panel4d[3]) panel4dc = panel4d.copy() del panel4dc[1] tm.assert_panel_equal(panel4dc[0], panel4d[0]) tm.assert_panel_equal(panel4dc[2], panel4d[2]) tm.assert_panel_equal(panel4dc[3], panel4d[3]) panel4dc = panel4d.copy() del panel4dc[2] tm.assert_panel_equal(panel4dc[1], panel4d[1]) tm.assert_panel_equal(panel4dc[0], panel4d[0]) tm.assert_panel_equal(panel4dc[3], panel4d[3]) panel4dc = panel4d.copy() del panel4dc[3] tm.assert_panel_equal(panel4dc[1], panel4d[1]) tm.assert_panel_equal(panel4dc[2], panel4d[2])
tm.assert_panel_equal(panel4dc[0], panel4d[0])
pandas.util.testing.assert_panel_equal
""" Goals ------ Program should generate a report (Excel File) that shows how data quality metrics for each HPO site change over time. Data quality metrics include: 1. the number of duplicates per table 2. number of 'start dates' that precede 'end dates' 3. number of records that are >30 days after a patient's death date 4. source table success rates 5. concept table success rates ASSUMPTIONS ----------- 1. The user has all of the files s/he wants to analyze in the current directory 2. The user will know to change the 'report' variables to match the file names of the .xlsx files in the current working directory. 3. All sheets are saved as month_date_year.xlsx - year should be four digits - this name is used to determine the date 4. The sheet names for all of the generated reports are consistent 5. The 'aggregate_info' statistics generated in some reports are always labeled as 'aggregate_info.' This ensures these rows can be excluded when generating initial dataframes. These aggregate statistics can then be generated more effectively down the line with an appropriate 'weighting'. 6. Assumes that all of the columns from the 'source' tab of the analytics reports will always have the same names. FIXME: ------------------------------------------------------- 1. tons of naming inconsistencies; does not allow effective parsing through files """ import datetime import math import os import sys import pandas as pd def get_user_analysis_choice(): """ Function gets the user input to determine what kind of data quality metrics s/he wants to investigate. :return: analytics_type (str): the data quality metric the user wants to investigate percent_bool (bool): determines whether the data will be seen as 'percentage complete' or individual instances of a particular error target_low (bool): determines whether the number displayed should be considered a desirable or undesirable characteristic """ analysis_type_prompt = "\nWhat kind of analysis over time report " \ "would you like to generate for each site?\n\n" \ "A. Duplicates\n" \ "B. Amount of data following death dates\n" \ "C. Amount of data with end dates preceding start dates\n" \ "D. Success Rate for Source Tables\n" \ "E. Success Rate for Concept Tables\n\n" \ "Please specify your choice by typing the corresponding letter." user_command = input(analysis_type_prompt).lower() choice_dict = { 'a': 'duplicates', 'b': 'data_after_death', 'c': 'end_before_begin', 'd': 'source', 'e': 'concept'} while user_command not in choice_dict.keys(): print("\nInvalid choice. Please specify a letter that corresponds " "to an appropriate analysis report.\n") user_command = input(analysis_type_prompt).lower() # NOTE: This dictionary needs to be expanded in the future percentage_dict = { 'duplicates': False, 'data_after_death': True, 'end_before_begin': True, 'source': True, 'concept': True} # dictionary indicates if the target is to minimize or maximize number target_low = { 'duplicates': True, 'data_after_death': True, 'end_before_begin': True, 'source': False, # table success rates 'concept': False} analytics_type = choice_dict[user_command] percent_bool = percentage_dict[analytics_type] target_low = target_low[analytics_type] return analytics_type, percent_bool, target_low def load_files(user_choice, file_names): """ Function loads the relevant sheets from all of the files in the directory (see 'file_names' list from above). 'Relevant sheet' is defined by previous user input. :parameter user_choice (string): represents the sheet from the analysis reports whose metrics will be compared over time file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. :returns sheets (list): list of pandas dataframes. each dataframe contains info about data quality for all of the sites for a date. """ num_files_indexed = 0 sheets = [] while num_files_indexed < len(file_names): try: file_name = file_names[num_files_indexed] sheet = pd.read_excel(file_name, sheet_name=user_choice) if sheet.empty: print("WARNING: No {} sheet found in dataframe {}".format( user_choice, file_name)) del file_names[num_files_indexed] num_files_indexed -= 1 # skip over the date else: sheets.append(sheet) num_files_indexed += 1 except FileNotFoundError: print("{} not found in the current directory: {}. Please " "ensure that the file names are consistent between " "the Python script and the file name in your current " "directory. ".format(file_names[num_files_indexed], cwd)) sys.exit(0) return sheets def get_comprehensive_tables(dataframes, analytics_type): """ Function is used to ensure that all of the HPO sites will have all of the same table types. This is important if a table type is introduced in future iterations of the analysis script. :param dataframes (lst): list of pandas dataframes that are representations of the Excel analytics files analytics_type (str): the data quality metric the user wants to investigate :return: final_tables (lst): list of the tables that should be represented for each HPO at each date. these are extracted from the column labels of the Excel analytics files. """ # FIXME: this is a hacky way to bypass columns we are less # interested in. Could be improved. Still want to prevent # hard-coding in tables that 'should' be there. # FIXME: We need to think about how to ensure we might only # be interested in getting tables that have the total row # count displayed on the source or concept sheets undocumented_cols = ['Unnamed: 0', 'src_hpo_id', 'HPO', 'total', 'device_exposure'] rate_focused_inputs = ['source', 'concept'] # FIXME: Need consistent way to document the rates between # different error reports; right now a 'hacky' fix because # of report naming inconsistencies for _, sheet in enumerate(dataframes): # for each date data_info = sheet.iloc[1, :] # just to get the columns column_names = data_info.keys() if analytics_type in rate_focused_inputs: for col_label, _ in data_info.iteritems(): if col_label[-5:] != '_rate' and \ col_label[-7:] != '_rate_y': undocumented_cols.append(col_label) final_tables = [x for x in column_names if x not in undocumented_cols] # eliminate duplicates final_tables = list(dict.fromkeys(final_tables)) return final_tables def get_info(sheet, row_num, percentage, sheet_name, mandatory_tables): """ Function is used to create a dictionary that contains the number of flawed records for a particular site. :param sheet (dataframe): pandas dataframe to traverse. Represents a sheet with numbers indicating data quality. row_num (int): row (0-index) with all of the information for the specified site's data quality percentage (boolean): used to determine whether or not the number is a simple record count (e.g. duplicates) versus the percentage of records (e.g. the success rate for each of the tables) sheet_name (str): name for the sheet for use in the error message analytics_type (str): the data quality metric the user wants to investigate mandatory_tables (lst): contains the tables that should be documented for every table and at every date. :return: err_dictionary (dictionary): key:value pairs represent the column name:number that represents the quality of the data NOTE: This function was modified from the e-mail generator. This function, however, logs ALL of the information in the returned error dictionary. This includes 0 values if the data is wholly complete. """ if row_num is not None: data_info = sheet.iloc[row_num, :] # series, row labels and values else: # row in future sheets but not current sheet data_info = sheet.iloc[1, :] # just to get the columns column_names = data_info.keys() null_list = [None] * len(column_names) data_info = pd.Series(null_list, column_names) err_dictionary = {} for col_label, number in data_info.iteritems(): if col_label in mandatory_tables: if number is None or number == 'No Data': # row does not exist err_dictionary[col_label] = float('NaN') else: try: number = float(number) except ValueError: pass else: if number < 0: # just in case raise ValueError("Negative number detected in sheet " "{} for column {}".format( sheet_name, col_label)) elif percentage and number > 100: raise ValueError("Percentage value > 100 detected in " "sheet {} for column {}".format( sheet_name, col_label)) elif percentage and target_low: # proportion w/ errors err_dictionary[col_label] = round(100 - number, 1) elif percentage and not target_low: # effective err_dictionary[col_label] = round(number, 1) elif not percentage and number > -1: err_dictionary[col_label] = int(number) else: pass # do nothing; do not want to document the column # adding all the tables; maintaining consistency for versatility for table in mandatory_tables: if table not in err_dictionary.keys(): err_dictionary[table] = float('NaN') return err_dictionary def find_hpo_row(sheet, hpo, sheet_name, selective_rows, analytics_type): """ Finds the row index of a particular HPO site within a larger sheet. :param sheet (dataframe): dataframe with all of the data quality metrics for the sites. hpo (string): represents the HPO site whose row in the particular sheet needs to be determined sheet_name (string): name of the file from which the particular sheet of user_command type was extracted selective_rows (list): list of rows (potentially HPO sites) that are in some (but not all) of the sheets used in the analysis report analytics_type (str): the data quality metric the user wants to investigate :return: row_num (int): row number where the HPO site of question lies within the sheet. returns none if the row is not in the sheet in question but exists in other sheets """ hpo_column_name = 'src_hpo_id' sheet_hpo_col = sheet[hpo_column_name] row_num = 9999 for idx, site_id in enumerate(sheet_hpo_col): row_not_in_sheet = ((hpo in selective_rows) and (hpo not in sheet_hpo_col)) if hpo == site_id: row_num = idx elif row_not_in_sheet: return None if row_num == 9999: # just in case raise NameError("{} not found in the {} sheet " "from {}".format( hpo, analytics_type, sheet_name)) return row_num def iterate_sheets(dataframes, hpo_id_list, selective_rows, percent, analytics_type, file_names): """ Function iterates through all of the sheets and ultimately generates a series of dictionaries that contain all of the data quality information for all of the a. dates (for the specified sheet) b. sites c. table types :param dataframes (list): list of the Pandas dataframes that contain data quality info for each of the sites hpo_id_list (list): HPO site IDs to iterate through on each sheet. organized alphabetically selective_rows (list): list of rows (potentially HPO sites) that are in some (but not all) of the sheets used in the analysis report percent (boolean): used to determine whether or not the number is a simple record count (e.g. duplicates) versus the percentage of records (e.g. the success rate for each of the tables) analytics_type (string): the user's choice for the data metric he/she wants to measure target_low (bool): determines whether the number displayed should be considered a positive or negative metric file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. :return: dates_and_info: dictionary with three sub-dictionaries. the key value pairs are as follows (highest-to-lowest level) a. dates_and_info key is a date value is the following dictionary b. hpo_errors_for_date key is an HPO site value is the following dictionary c. err_dict_for_hpo key is the table type value is a number representing the data quality for that table type mandatory_tables (lst): contains the tables that should be documented for every table and at every date. """ dates_and_info = {} # key:value will be date:dict mandatory_tables = get_comprehensive_tables( dataframes, analytics_type) for number, sheet in enumerate(dataframes): # for each date num_chars_to_chop = 5 # get rid of .xlsx sheet_name = file_names[number] sheet_name = sheet_name[:-num_chars_to_chop] errors_for_date = {} # key:value will be hpo:dict for hpo in hpo_id_list: # for each HPO hpo_row_idx = find_hpo_row( sheet, hpo, sheet_name, selective_rows, analytics_type) if hpo == 'aggregate counts': # will be added later pass else: err_dict_for_hpo = get_info( sheet, hpo_row_idx, percent, sheet_name, mandatory_tables) errors_for_date[hpo] = err_dict_for_hpo # error information for all of the dates dates_and_info[sheet_name] = errors_for_date return dates_and_info, mandatory_tables def generate_hpo_id_col(dataframes): """ Function is used to distinguish between row labels that are in all of the data analysis outputs versus row labels that are only in some of the data analysis outputs. :param dataframes (list): list of dataframes that were loaded from the analytics files in the path :return: hpo_id_col (list): list of the strings that should go into an HPO ID column. for use in generating subsequent dataframes. selective_rows (list): list of the strings that are in the HPO ID columns for some but not all of the sheets. useful down the line when detecting an HPO's row. """ hpo_col_name = 'src_hpo_id' selective_rows, total_hpo_id_columns = [], [] for _, df in enumerate(dataframes): hpo_id_col_sheet = df[hpo_col_name].values total_hpo_id_columns.append(hpo_id_col_sheet) # find the intersection of all the lists in_all_sheets = set(dataframes[0][hpo_col_name].values) for df in dataframes[1:]: hpo_id_col_sheet = set(df[hpo_col_name].values) in_all_sheets.intersection_update(hpo_id_col_sheet) # eliminate blank rows in_all_sheets = list(in_all_sheets) in_all_sheets = [row for row in in_all_sheets if isinstance(row, str)] # determining rows in some (but not all) of the dataframes for _, df in enumerate(dataframes): hpo_id_col_sheet = df[hpo_col_name].values selective = set(in_all_sheets) ^ set(hpo_id_col_sheet) for row in selective: if (row not in selective_rows) and isinstance(row, str): selective_rows.append(row) # standardize; all sheets now have the same rows hpo_id_col = in_all_sheets + selective_rows bad_rows = [' Avarage', 'aggregate counts'] # do not include hpo_id_col = [x for x in hpo_id_col if x not in bad_rows] hpo_id_col = sorted(hpo_id_col) return hpo_id_col, selective_rows def sort_names_and_tables(site_and_date_info, mandatory_tables): """ Function is used to sort the information (dates, tables, and HPO site names) in an intuitive manner to ensure consistency across sheets and dataframes. :param site_and_date_info (dict): dictionary with key:value of date:additional dictionaries that contain metrics for each HPO's data quality by type mandatory_tables (lst): contains the tables that should be documented for every table and at every date. :return: ordered_dates_str (list): list of all the dates (from most oldest to most recent) in string form sorted_names (list): names of all the HPO sites in alphabetical order (with the addition of 'aggregate info') sorted_tables (lits): names of all the table types in alphabetical order """ ordered_dates_dt = [] # NOTE: requires files to have full month name and 4-digit year for date_str in site_and_date_info.keys(): date = datetime.datetime.strptime(date_str, '%B_%d_%Y') ordered_dates_dt.append(date) ordered_dates_dt = sorted(ordered_dates_dt) # converting back to standard form to index into file ordered_dates_str = [x.strftime('%B_%d_%Y').lower() for x in ordered_dates_dt] # earlier code ensured all sheets have same rows - can just take first all_rows = site_and_date_info[ordered_dates_str[0]] sorted_names = sorted(all_rows.keys()) sorted_names.append('aggregate_info') mandatory_tables.sort() return ordered_dates_str, sorted_names, mandatory_tables def add_aggregate_info(site_and_date_info, percentage, sorted_names): """ Function is used to add an 'aggregate metric' that summarizes all of the data quality issues for a particular site on a particular date. NOTE: This function DOES NOT take the weighted value of all of these metrics. This is merely to attach the aggregate statistic. NOTE: This is for the DICTIONARY with the date as the first set of keys. :param site_and_date_info (dict): dictionary with key:value of date:additional dictionaries that contain metrics for each HPO's data quality by type percentage (boolean): used to determine whether or not the number is a simple record count (e.g. duplicates) versus the percentage of records (e.g. the success rate for each of the tables) sorted_names (lst): list of the names that should have an aggregate statistic analyzed (e.g. avoiding 'avarage' statistics) :return: site_and_date_info (dict): same as input parameter but now each site and date has an added aggregate statistic. """ for date in site_and_date_info.keys(): date_report = site_and_date_info[date] date_metric = 0 for site in sorted_names: table_metrics = date_report[site] date_metric, num_iterated = 0, 0 for table in table_metrics.keys(): stat = table_metrics[table] if not math.isnan(stat): date_metric += stat num_iterated += 1 if percentage and num_iterated > 0: # not really used date_metric = date_metric / num_iterated elif percentage and num_iterated == 0: date_metric = float('NaN') date_report['aggregate_info'] = date_metric return site_and_date_info def generate_weighted_average_table_sheet( file_names, date, table, new_col_info): """ Function is used to generate a weighted average to indicate the 'completeness' of a particular table type across all sites. This function is employed when the a. HPO sites are the ROWS b. The table types are the SHEETS This is to make the final value of the column (a weighted average). :param file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. date (str): date for the column that is being investigated table (str): table whose weighted average for a particular date is being determined new_col_info (list): shows the proportion of 'poor' records per HPO site :return: total_quality (float): indicates the overall proportion of well defined rows with respect to the total number of rows Function returns None object when it cannot calculate a weighted average """ hpo_total_rows_by_date, valid_cols_tot = generate_hpo_contribution( file_names, 'total') first_underscore = True underscore_idx = 0 for idx, char in enumerate(table): if first_underscore and char == '_': underscore_idx = idx first_underscore = False # NOTE: the analysis script needs to output to source with a consistent # naming convention with respect to the table types if not first_underscore: # no underscore in the table name table = table[0:underscore_idx] table_tot = table + "_total_row" if table_tot in valid_cols_tot: site_totals = hpo_total_rows_by_date[date][table_tot] total_table_rows_across_all_sites = 0 total_poor_rows_across_all_sites = 0 # can only count actual values for site_rows, site_err_rate in zip(site_totals, new_col_info): if not math.isnan(site_rows) and not math.isnan(site_err_rate): total_table_rows_across_all_sites += site_rows site_err_rate = site_err_rate / 100 # logged as a percent site_poor_rows = site_err_rate * site_rows total_poor_rows_across_all_sites += site_poor_rows if total_table_rows_across_all_sites > 0: total_quality = 100 * round(total_poor_rows_across_all_sites / total_table_rows_across_all_sites, 3) else: # table only started to appear in later sheets return float('NaN') return total_quality else: # no row count for table; cannot generate weighted average return None def generate_table_dfs(sorted_names, sorted_tables, ordered_dates_str, site_and_date_info, percentage, file_names): """ Function generates a unique dataframe containing data quality metrics. Each dataframe should match to the metrics for a particular table type. The ROWS of each dataframe should be each HPO site. NOTE: This function INTENTIONALLY excludes aggregate information generation. This is so it can be generated more efficiently down the line. :param sorted_names (lst): list of the hpo site names sorted alphabetically sorted_tables (lst): list of the different table types sorted alphabetically ordered_dates_str (lst): list of the different dates for the data analysis outputs. goes from oldest to most recent site_and_date_info (dict): dictionary with key:value of date:additional dictionaries that contain metrics for each HPO's data quality by type percentage (boolean): used to determine whether or not the number is a simple record count (e.g. duplicates) versus the percentage of records (e.g. the success rate for each of the tables) file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. :return: df_dictionary_by_table (dict): dictionary with key:value of table type: pandas df with the format described above """ # create a new pandas df for each of the table types total_dfs = [] num_tables = len(sorted_tables) for _ in range(num_tables): new_df = pd.DataFrame({'hpo_ids': sorted_names}) total_dfs.append(new_df) # df for each table for new_sheet_num, table in enumerate(sorted_tables): df_in_question = total_dfs[new_sheet_num] for date in ordered_dates_str: # generate the columns new_col_info = [] hpo_site_info = site_and_date_info[date] for site in sorted_names: # add the rows for the column if site != 'aggregate_info': hpo_table_info = hpo_site_info[site][table] if not math.isnan(hpo_table_info): new_col_info.append(hpo_table_info) else: new_col_info.append(float('NaN')) if not percentage: total = 0 for site_val in new_col_info: if not math.isnan(site_val): total += site_val new_col_info.append(total) # adding aggregate else: # FIXME: There is no way to actually create a weighted # average with some of the tables whose row counts # do not exist. weighted_avg = generate_weighted_average_table_sheet( file_names, date, table, new_col_info) if weighted_avg is not None: # successful calculation new_col_info.append(weighted_avg) else: new_col_info.append("N/A") df_in_question[date] = new_col_info df_dictionary_by_table = dict(zip(sorted_tables, total_dfs)) return df_dictionary_by_table def load_total_row_sheet(file_names, sheet_name): """ Function loads the sheets that contain information regarding the total number of rows for each site for each table type. This loads the corresponding sheets for all of the analytics reports in the current directory. :param file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. sheet_name (str): label for the sheet with the information containing the number of rows :return: dataframes (list): list of Pandas dataframes that contain the information regarding the total number of rows hpo_id_col (list): list of the strings that should go into an HPO ID column. for use in generating subsequent dataframes. selective_rows (list): list of the strings that are in the HPO ID columns for some but not all of the sheets """ num_files = len(file_names) dataframes = [] for file_num in range(num_files): sheet = pd.read_excel(file_names[file_num], sheet_name) dataframes.append(sheet) hpo_id_col, selective_rows = generate_hpo_id_col(dataframes) return dataframes, hpo_id_col, selective_rows def get_valid_columns(dataframes, contribution_type, row_sheet_name): """ Function is used to determine the columns to be investigated in across all of the site report dataframes. The columns should all be the same in the 'source' sheet (otherwise an error is thrown). The columns of interest are those that can help elucidate an HPO site's relative contribution (total rows, well defined rows, etc.) :param dataframes (lst): list of pandas dataframes loaded from the Excel files generated from the analysis reports contribution_type (str): string representing the types of columns to look at for the dataframe. either can represent the 'total' row metrics or the 'error' metrics for a particular column. row_sheet_name (str): sheet name within the analytics files that show the total number of rows and the number of well defined rows :return: valid_cols (lst): list of the columns that are consistent across all of the sheets and relevant to the HPO weighting report needed """ valid_cols = [] # find the columns you want to investigate for df in dataframes: for column in df: if contribution_type == 'total' and len(column) > 9 and \ column[-9:] == 'total_row': valid_cols.append(column) elif contribution_type == 'valid' and len(column) > 16 and \ column[-16:] == 'well_defined_row': valid_cols.append(column) valid_cols = list(dict.fromkeys(valid_cols)) valid_cols.sort() return valid_cols def generate_hpo_contribution(file_names, contribution_type): """ Function is used to determine the 'contribution' for each of the HPO sites. This is useful in determining the 'weight' each site should be given when generating aggregate statistics with respect to data quality. :param file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. contribution_type (str): string representing the types of columns to look at for the dataframe. either can represent the 'total' row metrics or the 'error' metrics for a particular column. :return: hpo_contributions_by_date (dictionary): dictionary with the following key:value pairings a. date:following dictionary b. table type: list with the relative contribution of each HPO with respect to the number of rows it contributes for the particular table type. the sequence of the list follows the alphabetical order of all the HPO sites. valid_cols (lst): list of the table types to be iterated over """ hpo_contributions_by_date = {} # key:value will be date:dict row_sheet_name = 'concept' dataframes, hpo_id_col, selective_rows = load_total_row_sheet( file_names, row_sheet_name) valid_cols = get_valid_columns(dataframes, contribution_type, row_sheet_name) for number, sheet in enumerate(dataframes): # for each date num_chars_to_chop = 5 # get rid of .xlsx date = file_names[number][:-num_chars_to_chop] total_per_sheet = {} for _, table_type in enumerate(valid_cols): # for each table rows_for_table = [] for hpo in hpo_id_col: # follows alphabetical order hpo_row_idx = find_hpo_row(sheet, hpo, date, selective_rows, row_sheet_name) if hpo == 'aggregate counts': # will be added later pass elif table_type not in sheet: pass elif hpo_row_idx is None: rows_for_table.append(float('NaN')) else: rows_for_hpo = sheet[table_type][hpo_row_idx] try: # later sheets put in the number of rows as a str rows_for_hpo = float(rows_for_hpo) except ValueError: pass if isinstance(rows_for_hpo, (int, float)) and \ not math.isnan(rows_for_hpo): rows_for_table.append(rows_for_hpo) else: rows_for_table.append(float('NaN')) # error information for the table type total_per_sheet[table_type] = rows_for_table # error information for all of the dates hpo_contributions_by_date[date] = total_per_sheet return hpo_contributions_by_date, valid_cols # This part of the script deals with making sheets where the # a. SITES are SHEETS # b. TABLES are ROWS def generate_site_dfs(sorted_names, sorted_tables, ordered_dates_str, site_and_date_info, percentage, file_names, analytics_type): """ Function generates a unique dataframe for each site containing data quality metrics. The dictionary has the following structure: a. HPO name:data quality metrics data quality metrics are stored in a pandas df The rows of each dataframe should be each table. The columns of each dataframe are the dates :param sorted_names (lst): list of the hpo site names sorted alphabetically sorted_tables (lst): list of the different table types sorted alphabetically ordered_dates_str (lst): list of the different dates for the data analysis outputs. goes from oldest to most recent. site_and_date_info (dict): dictionary with key:value of date:additional dictionaries that contain metrics for each HPO's data quality by type percentage (boolean): used to determine whether or not the number is a 'flawed' record count (e.g. duplicates) versus the percentage of 'acceptable' records file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. analytics_type (str): the data quality metric the user wants to investigate :return: df_dictionary_by_site (dict): dictionary with key:value of table type: pandas df with the format described above """ total_dfs = [] sorted_tables.append('total') # ignoring 'total' and 'aggregate info' tables_only, hpo_names_only = sorted_tables[:-1], sorted_names[:-1] # df generation for each HPO and 'total' for _ in range(len(hpo_names_only)): new_df = pd.DataFrame({'table_type': sorted_tables}) total_dfs.append(new_df) for new_sheet_num, site in enumerate(hpo_names_only): df_in_question = total_dfs[new_sheet_num] for date in ordered_dates_str: tot_errs_date = 0 new_col_info = [] site_info = site_and_date_info[date][site] for table in tables_only: # populating the row new_col_info.append(site_info[table]) tot_errs_date += site_info[table] # creating the 'aggregate' statistic if not percentage: new_col_info.append(tot_errs_date) else: weighted_errs = determine_overall_percent_of_an_hpo( site_and_date_info, file_names, sorted_names, sorted_tables, date, site) new_col_info.append(weighted_errs) df_in_question[date] = new_col_info # make the aggregate sheet aggregate_dfs = generate_aggregate_sheets( file_names, tables_only, site_and_date_info, ordered_dates_str, percentage, analytics_type, sorted_names) total_dfs.extend(aggregate_dfs) if len(aggregate_dfs) == 3: sorted_names.extend(['poorly_defined_rows_total', 'total_rows']) df_dictionary_by_site = dict(zip(sorted_names, total_dfs)) return df_dictionary_by_site def generate_nonpercent_aggregate_col(sorted_tables, site_and_date_info, date): """ Function is used to generate a column that shows the SUM of the data quality metrics for a particular table across all sites. This column is for one date of analytics. This function is employed when the TABLES are the ROWS in the outputted Excel sheet. This ONLY adds aggregate info for values that should NOW be weighted. :param sorted_tables (lst): list of the different table types sorted alphabetically site_and_date_info (dict): dictionary with key:value of date:additional dictionaries that contain metrics for each HPO's data quality by type date (string): string for the date used to generate the column. should be used to index into the larger data dictionary. :return: aggregate_metrics_col (list): list of values representing the total number of aggregate problems for each table. should follow the order of "sorted tables". should also represent the column for only one date. """ aggregate_metrics_col = [] info_for_date = site_and_date_info[date] for table in sorted_tables[:-1]: total, sites_and_dates_iterated = 0, 0 for site in list(info_for_date.keys())[:-1]: site_table_info = info_for_date[site][table] if not math.isnan(site_table_info): total += site_table_info sites_and_dates_iterated += 1 aggregate_metrics_col.append(total) total_across_all_tables = sum(aggregate_metrics_col) aggregate_metrics_col.append(total_across_all_tables) return aggregate_metrics_col def generate_aggregate_data_completeness_sheet( file_names, ordered_dates_str): """ Function is used to generate two 'aggregate data' sheets that show the data quality for various tables across the various dates. The two sheets generated show: a. the total number of 'poorly defined' rows for each of the table types b. the relative proportion by which each table contributes to the total number of 'poorly defined' rows. for instance, if half of the poorly defined rows are from the condition_occurrence table, condition_occurrence will have a value of 0.5 :param file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. ordered_dates_str (lst): list of the different dates for the data analysis outputs. goes from oldest to most recent. :return: total_dfs (lst): list with the two pandas dataframes described above. """ # need to generate aggregate df before any dates hpo_total_rows_by_date, valid_cols_tot = generate_hpo_contribution( file_names, 'total') hpo_errors_by_date, valid_cols_val = generate_hpo_contribution( file_names, 'valid') valid_cols_tot.append('total') aggregate_df_proportion = pd.DataFrame({'table_type': valid_cols_tot}) aggregate_df_error = pd.DataFrame({'table_type': valid_cols_tot}) aggregate_df_total =
pd.DataFrame({'table_type': valid_cols_tot})
pandas.DataFrame
import argparse import json import logging import sys import fiona import geopandas as gpd import numpy as np import pandas as pd import torch from eolearn.core.utils.fs import get_aws_credentials, join_path from sentinelhub import SHConfig from hiector.utils.aws_utils import LocalFile from hiector.utils.training_data import filter_dataframe, train_test_val_split stdout_handler = logging.StreamHandler(sys.stdout) handlers = [stdout_handler] logging.basicConfig( level=logging.INFO, format="[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s", handlers=handlers ) LOGGER = logging.getLogger(__name__) parser = argparse.ArgumentParser(description="Execute training and evaluation using the SSRDD model.\n") parser.add_argument("--config", type=str, help="Path to config file with execution parameters", required=True) args = parser.parse_args() def prepare_data(config): data_dir = config["data_dir"] sh_config = SHConfig() if config["aws_profile"]: sh_config = get_aws_credentials(aws_profile=config["aws_profile"], config=sh_config) input_gpkg_path = join_path(data_dir, config["input_dataframe_filename"]) dfs = [] with LocalFile(input_gpkg_path, mode="r", config=sh_config) as local_file: for layername in fiona.listlayers(local_file.path): scale = int(layername.split("_")[1]) # Assumes layers to be named as PATCHLETS_<SCALE>_<CRS_CODE> if scale in config["scale_sizes"]: LOGGER.info(f"Reading layer: {layername}") df = gpd.read_file(local_file.path, layer=layername) df["CRS"] = str(df.crs) df["LAYER_NAME"] = layername df["SCALE"] = scale # Convert to WGS84, because we want stuff from different CRSes to be stored together df = df.to_crs("epsg:4326") dfs.append(df) LOGGER.info("Concatenating layers together.") dataframe =
pd.concat(dfs)
pandas.concat
import numpy as np from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing, svm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics from sklearn.linear_model import LogisticRegression import statsmodels.api as sm import matplotlib.dates as mdates import warnings import itertools import dateutil import matplotlib.pyplot as plt import matplotlib.dates as mdates from sklearn.svm import SVR from sklearn.model_selection import GridSearchCV as gsc from sklearn.linear_model import Ridge,Lasso from sklearn.ensemble import RandomForestRegressor from sklearn.neural_network import MLPRegressor def main (): # Using svm data=pd.read_csv('Original_with_dummies.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y S1,S2=AQI_SVM(data) S3,S4=AQI_Feature_importance_SVM(data) S5,S6=AQI_Domain_Knowledge_SVM(data) S7,S8=AQI_without_Domain_Knowledge_SVM(data) ##Linear Regression data=pd.read_csv('Original_with_dummies.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y LR1,LR2=AQI(data) LR3,LR4=AQI_Feature_importance(data) LR5,LR6==AQI_Domain_Knowledge(data) LR7,LR8=AQI_without_Domain_Knowledge(data) ## Predincting for next day data=pd.read_csv('Original_with_dummies.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y normalize(data) y=pd.read_csv('AQI_prediction_add.csv') LR_F1,LR_F2=AQI_Future(data,y.AQI_predicted) LR_F3,LR_F4=AQI_Feature_importance_Future(data,y.AQI_predicted) LR_F5,LR_F6=AQI_Domain_Knowledge_Future(data,y.AQI_predicted) LR_F7,LR_F8=AQI_without_Domain_Knowledge_Future(data,y.AQI_predicted) ##Predicting for Autumn Season data=pd.read_csv('autumn_data.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y data=pd.get_dummies(data, columns=[' _conds'], prefix = [' _conds']) data=pd.get_dummies(data, columns=[' _wdire'], prefix = [' _wdire']) data=pd.get_dummies(data, columns=['Type'], prefix = ['Type']) LR_A1,LR_A2=AQI(data) LR_A3,LR_A4=AQI_Feature_importance(data) LR_A5,LR_A6=AQI_Domain_Knowledge(data) LR_A7,LR_A8=AQI_without_Domain_Knowledge(data) ##Predicting for Summer Season data=pd.read_csv('summer_data.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y data=pd.get_dummies(data, columns=[' _conds'], prefix = [' _conds']) data=pd.get_dummies(data, columns=[' _wdire'], prefix = [' _wdire']) data=pd.get_dummies(data, columns=['Type'], prefix = ['Type']) LR_S1,LR_S2=AQI(data) LR_S3,LR_S4=AQI_Feature_importance(data) LR_S5,LR_S6=AQI_Domain_Knowledge(data) LR_S7,LR_S8=AQI_without_Domain_Knowledge(data) ##Predicting for Winter Season data=pd.read_csv('winter_data.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y data=pd.get_dummies(data, columns=[' _conds'], prefix = [' _conds']) data=pd.get_dummies(data, columns=[' _wdire'], prefix = [' _wdire']) data=pd.get_dummies(data, columns=['Type'], prefix = ['Type']) LR_W1,LR_W2=AQI(data) LR_W3,LR_W4=AQI_Feature_importance(data) LR_W5,LR_W6=AQI_Domain_Knowledge(data) LR_W7,LR_W8=AQI_without_Domain_Knowledge(data) ##Using Ridge data = pd.read_csv('Original_with_dummies.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y h = BestParams(data) ## Using all features R1,R2=AQI_Ridge(data,h) R3,R4=AQI_Feature_importance_Ridge(data,h) R5,R6=AQI_Domain_Knowledge_Ridge(data,h) R7,R8=AQI_without_Domain_Knowledge_Ridge(data,h) ##Future data = pd.read_csv('Original_with_dummies.csv') y = data.AQI data = data.drop('AQI', axis=1) normalize(data) data['AQI'] = y h = BestParams(data) y = pd.read_csv('AQI_prediction_add.csv') R_F1,R_F2=AQI_Future_Ridge(data, y.AQI_predicted,h) R_F3,R_F4=AQI_Feature_importance_Future_Ridge(data, y.AQI_predicted,h) R_F5,R_F6=AQI_Domain_Knowledge_Future_Ridge(data, y.AQI_predicted,h) R_F7,R_F8=AQI_without_Domain_Knowledge_Future_Ridge(data, y.AQI_predicted,h) ##using Lasso data=
pd.read_csv('Original_with_dummies.csv')
pandas.read_csv
import os import pandas as pd import seaborn as sns import matplotlib.dates as d import matplotlib.pyplot as plt from ..utils import everion_keys from ..utils.plotter_helper import PlotterHelper from ..utils.data_aggregator import DataAggregator from ..patient.patient_data_loader import PatientDataLoader sns.set() class Plotter: loader = PatientDataLoader() aggregator = DataAggregator() def plot_patient(self, in_dir, out_dir, in_file_name): patient_id = in_file_name[:3] out_dir_subset = os.path.join(out_dir, 'subset') out_dir_quality = os.path.join(out_dir, 'quality') out_dir_all = os.path.join(out_dir, 'all') out_dir_qv = os.path.join(out_dir, 'quality_values') if not os.path.exists(out_dir): os.mkdir(out_dir) if not os.path.exists(out_dir_all): os.mkdir(out_dir_all) if not os.path.exists(out_dir_quality): os.mkdir(out_dir_quality) if not os.path.exists(out_dir_subset): os.mkdir(out_dir_subset) if not os.path.exists(out_dir_qv): os.mkdir(out_dir_qv) df = self.loader.load_everion_patient_data(in_dir, in_file_name, ';') if df.empty: return df['barometer_pressure'] = df['barometer_pressure'] / 100 self.generate_subset_plots(df, out_dir_subset, patient_id) self.generate_all_plots(df, out_dir_all, patient_id) self.generate_quality_plots(df, out_dir_quality, patient_id) self.generate_quality_value_plots(df, out_dir_qv, patient_id) def plot_patient_mixed_vital_raw(self, in_dir, out_dir, in_file_name, keys, start_idx, end_idx): patient_id = in_file_name[start_idx:end_idx] if not os.path.exists(out_dir): os.mkdir(out_dir) df = self.loader.load_everion_patient_data(in_dir, in_file_name, ';') if df.empty: return df['hour'] = df['timestamp'].dt.hour df['day'] = df['timestamp'].dt.day df['month'] = df['timestamp'].dt.month self.plot_keys(df, patient_id, os.path.join(out_dir, patient_id + '.png'), keys) def generate_subset_plots(self, df, out_dir_subset, patient_id): keys = {'heart_rate', 'heart_rate_variability', 'oxygen_saturation', 'core_temperature', 'respiration_rate'} self.plot_keys(df, patient_id, os.path.join(out_dir_subset, patient_id + '_subset' + '.png'), keys) def generate_all_plots(self, df, out_dir_all, patient_id): self.plot_keys(df, patient_id, os.path.join(out_dir_all, patient_id + '_all' + '.png'), everion_keys.ALL_VITAL) def generate_quality_plots(self, df, out_dir_quality, patient_id): keys = {'core_temperature_quality', 'respiration_rate_quality', 'heart_rate_variability_quality', 'energy_quality', 'activity_classification_quality', 'oxygen_saturation_quality', 'heart_rate_quality'} self.plot_keys(df, patient_id, os.path.join(out_dir_quality, patient_id + '_quality' + '.png'), keys) def generate_quality_value_plots(self, df, out_dir_qv, patient_id): keys = {'core_temperature', 'core_temperature_quality'} self.plot_keys(df, patient_id, os.path.join(out_dir_qv, patient_id + '_t_qv' + '.png'), keys) keys = {'respiration_rate', 'respiration_rate_quality'} self.plot_keys(df, patient_id, os.path.join(out_dir_qv, patient_id + '_rr_qv' + '.png'), keys) keys = {'heart_rate_variability', 'heart_rate_variability_quality'} self.plot_keys(df, patient_id, os.path.join(out_dir_qv, patient_id + '_hrv_qv' + '.png'), keys) keys = {'heart_rate', 'heart_rate_quality'} self.plot_keys(df, patient_id, os.path.join(out_dir_qv, patient_id + '_hr_qv' + '.png'), keys) keys = {'oxygen_saturation', 'oxygen_saturation_quality'} self.plot_keys(df, patient_id, os.path.join(out_dir_qv, patient_id + '_spo2_qv' + '.png'), keys) def plot_keys(self, df, patient_id, out_filename, keys): fig, ax = plt.subplots(figsize=[20, 6]) mdates = d.date2num(df['timestamp']) for key in keys: plt.plot_date(mdates, df[key], tz=None, xdate=True, linewidth=0.5, fmt="-") formatter = d.DateFormatter('%m/%d/%y %H:%M:%S') ax.xaxis.set_major_formatter(formatter) ax.xaxis.set_tick_params(rotation=30, labelsize=10) plt.legend(bbox_to_anchor=(0.95, 1.15), loc='upper left', labels = keys) plt.xlabel('Time [sec]') plt.title('Patient: ' + patient_id) fig.savefig(out_filename, bbox_inches='tight') plt.close(fig) def plot_hourly_lines(self, properties): for filename in os.listdir(properties.in_dir): if not (filename.endswith('csv')): continue patient_id = filename[properties.start_idx:properties.end_idx] print("processing file " + filename + " with pid=" + patient_id + " ...") df = self.loader.load_everion_patient_data(properties.in_dir, filename, ';') if not df.empty: df_hm = self.aggregator.aggregate_data_hourly(df, properties) out_file_path = os.path.join(properties.out_dir, 'Hourly_lines_' + patient_id + '.png') PlotterHelper.save_custom_plots(out_file_path, df, df_hm, patient_id, self.custom_line_plot, self.custom_plot_fct_empty, 0, 15, 3) def custom_line_plot(self, ax, custom_plot_fct, df_hm, font_size, x, x_daily_lines, x_ticks): color_dict = {'HR': 'limegreen', 'HRV': 'silver', 'RR': 'yellow', 'SpO2': 'deepskyblue', 'Temp': 'white'} ax0 = df_hm.plot(xticks=x_ticks, figsize=(15,3), color=[color_dict.get(x, '#333333') for x in df_hm.columns]) ax0.set_facecolor('dimgray') plt.grid(color='silver', linestyle='--', linewidth=0.7) def custom_plot_fct_empty(self): return def plot_hourly_lines_subplots(self, properties): for filename in os.listdir(properties.in_dir): if not (filename.endswith('csv')): continue patient_id = filename[properties.start_idx:properties.end_idx] print("processing file " + filename + " with pid=" + patient_id + " ...") df = self.loader.load_everion_patient_data(properties.in_dir, filename, ';') if not df.empty: df_hm = self.aggregator.aggregate_data_hourly(df, properties) out_file_path = os.path.join(properties.out_dir, 'Hourly_lines2_' + patient_id + '.png') PlotterHelper.save_custom_plots(out_file_path, df, df_hm, patient_id, PlotterHelper.custom_subplots, self.custom_plot_fct, 0, 15, 3) def custom_plot_fct(self, ax, font_size, key, signal, x): ax.plot(x, signal.transpose()) ax.set_ylabel(key, fontsize=font_size) ax.set_yticks([]) def plot_signals_and_labels(self, properties): for filename in os.listdir(properties.in_dir): if not (filename.endswith('csv')): continue patient_id = filename[properties.start_idx:properties.end_idx] print("processing file " + filename + " with pid=" + patient_id + " ...") in_file_suffix = '_storage-vital' filename_l = patient_id + 'L' + in_file_suffix + '.csv' filename_r = patient_id + 'R' + in_file_suffix + '.csv' df_l = self.loader.load_everion_patient_data(properties.in_dir, filename_l, ';') df_r = self.loader.load_everion_patient_data(properties.in_dir, filename_r, ';') keys = ['HR', 'DeMorton', 'DeMortonLabel'] if not df_l.empty: df_left = df_l.set_index("timestamp") df_left = df_left[keys] df_left = pd.concat([df_left], keys=["left"], axis=1) df_left = df_left.reorder_levels([1, 0], axis=1) else: df_left = df_l if not df_r.empty: df_right = df_r.set_index("timestamp") df_right = df_right[keys] df_right =
pd.concat([df_right], keys=["right"], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Wed Mar 7 09:40:49 2018 @author: yuwei """ import pandas as pd import numpy as np import math import random import time import scipy as sp import xgboost as xgb def loadData(): "下载数据" trainSet = pd.read_table('round1_ijcai_18_train_20180301.txt',sep=' ') testSet = pd.read_table('round1_ijcai_18_test_a_20180301.txt',sep=' ') return trainSet,testSet def splitData(trainSet,testSet): "按时间划分验证集" #转化测试集时间戳为标准时间 time_local = testSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) testSet['context_timestamp'] = time_local #转化训练集时间戳为标准时间 time_local = trainSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) trainSet['context_timestamp'] = time_local del time_local #处理训练集item_category_list属性 trainSet['item_category_list'] = trainSet.item_category_list.map(lambda x :x.split(';')) trainSet['item_category_list_2'] = trainSet.item_category_list.map(lambda x :x[1]) trainSet['item_category_list_3'] = trainSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) trainSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,trainSet['item_category_list_2'],trainSet['item_category_list_3'])) #处理测试集item_category_list属性 testSet['item_category_list'] = testSet.item_category_list.map(lambda x :x.split(';')) testSet['item_category_list_2'] = testSet.item_category_list.map(lambda x :x[1]) testSet['item_category_list_3'] = testSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) testSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,testSet['item_category_list_2'],testSet['item_category_list_3'])) del trainSet['item_category_list_3'];del testSet['item_category_list_3']; #处理predict_category_property的排名 trainSet['predict_category'] = trainSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) trainSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,trainSet['item_category_list_2'],trainSet['predict_category'])) testSet['predict_category'] = testSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) testSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,testSet['item_category_list_2'],testSet['predict_category'])) #统计item_category_list中和predict_category共同的个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) #不同个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) del trainSet['predict_category']; del testSet['predict_category'] "划分数据集" #测试集 23-24号特征提取,25号打标 test = testSet testFeat = trainSet[trainSet['context_timestamp']>'2018-09-23'] #验证集 22-23号特征提取,24号打标 validate = trainSet[trainSet['context_timestamp']>'2018-09-24'] validateFeat = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-24')] #训练集 21-22号特征提取,23号打标;20-21号特征提取,22号打标;19-20号特征提取,21号打标;18-19号特征提取,20号打标 #标签区间 train1 = trainSet[(trainSet['context_timestamp']>'2018-09-23') & (trainSet['context_timestamp']<'2018-09-24')] train2 = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-23')] train3 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-22')] train4 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-21')] #特征区间 trainFeat1 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-23')] trainFeat2 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-22')] trainFeat3 = trainSet[(trainSet['context_timestamp']>'2018-09-19') & (trainSet['context_timestamp']<'2018-09-21')] trainFeat4 = trainSet[(trainSet['context_timestamp']>'2018-09-18') & (trainSet['context_timestamp']<'2018-09-20')] return test,testFeat,validate,validateFeat,train1,trainFeat1,train2,trainFeat2,train3,trainFeat3,train4,trainFeat4 def modelXgb(train,test): "xgb模型" train_y = train['is_trade'].values # train_x = train.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property' # ],axis=1).values #根据皮卡尔相关系数,drop相关系数低于-0.2的属性 train_x = train.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property','is_trade', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first' # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service', ],axis=1).values # test_x = test.drop(['item_brand_id', # 'item_city_id','user_id','shop_id','context_id', # 'instance_id', 'item_id','item_category_list', # 'item_property_list', 'context_timestamp', # 'predict_category_property','is_trade', # 'item_price_level','user_rank_down', # 'item_category_list_2_not_buy_count', # 'item_category_list_2_count', # 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' # ],axis=1).values test_x = test.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' ],axis=1).values dtrain = xgb.DMatrix(train_x, label=train_y) dtest = xgb.DMatrix(test_x) # 模型参数 params = {'booster': 'gbtree', 'objective':'binary:logistic', 'eval_metric':'logloss', 'eta': 0.03, 'max_depth': 5, # 6 'colsample_bytree': 0.8,#0.8 'subsample': 0.8, 'scale_pos_weight': 1, 'min_child_weight': 18 # 2 } # 训练 watchlist = [(dtrain,'train')] bst = xgb.train(params, dtrain, num_boost_round=700,evals=watchlist) # 预测 predict = bst.predict(dtest) # test_xy = test[['instance_id','is_trade']] test_xy = test[['instance_id']] test_xy['predicted_score'] = predict return test_xy def get_item_feat(data,dataFeat): "item的特征提取" result = pd.DataFrame(dataFeat['item_id']) result = result.drop_duplicates(['item_id'],keep='first') "1.统计item出现次数" dataFeat['item_count'] = dataFeat['item_id'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_count',aggfunc='count').reset_index() del dataFeat['item_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "2.统计item历史被购买的次数" dataFeat['item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_buy_count',aggfunc='sum').reset_index() del dataFeat['item_buy_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "3.统计item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_buy_count,result.item_count)) result['item_buy_ratio'] = buy_ratio "4.统计item历史未被够买的次数" result['item_not_buy_count'] = result['item_count'] - result['item_buy_count'] return result def get_user_feat(data,dataFeat): "user的特征提取" result = pd.DataFrame(dataFeat['user_id']) result = result.drop_duplicates(['user_id'],keep='first') "1.统计user出现次数" dataFeat['user_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_count',aggfunc='count').reset_index() del dataFeat['user_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "2.统计user历史被购买的次数" dataFeat['user_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_buy_count',aggfunc='sum').reset_index() del dataFeat['user_buy_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "3.统计user转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_buy_count,result.user_count)) result['user_buy_ratio'] = buy_ratio "4.统计user历史未被够买的次数" result['user_not_buy_count'] = result['user_count'] - result['user_buy_count'] return result def get_context_feat(data,dataFeat): "context的特征提取" result = pd.DataFrame(dataFeat['context_id']) result = result.drop_duplicates(['context_id'],keep='first') "1.统计context出现次数" dataFeat['context_count'] = dataFeat['context_id'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_count',aggfunc='count').reset_index() del dataFeat['context_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "2.统计context历史被购买的次数" dataFeat['context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_buy_count',aggfunc='sum').reset_index() del dataFeat['context_buy_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "3.统计context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_buy_count,result.context_count)) result['context_buy_ratio'] = buy_ratio "4.统计context历史未被够买的次数" result['context_not_buy_count'] = result['context_count'] - result['context_buy_count'] return result def get_shop_feat(data,dataFeat): "shop的特征提取" result = pd.DataFrame(dataFeat['shop_id']) result = result.drop_duplicates(['shop_id'],keep='first') "1.统计shop出现次数" dataFeat['shop_count'] = dataFeat['shop_id'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_count',aggfunc='count').reset_index() del dataFeat['shop_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "2.统计shop历史被购买的次数" dataFeat['shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_buy_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "3.统计shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_buy_count,result.shop_count)) result['shop_buy_ratio'] = buy_ratio "4.统计shop历史未被够买的次数" result['shop_not_buy_count'] = result['shop_count'] - result['shop_buy_count'] return result def get_timestamp_feat(data,dataFeat): "context_timestamp的特征提取" result = pd.DataFrame(dataFeat['context_timestamp']) result = result.drop_duplicates(['context_timestamp'],keep='first') "1.统计context_timestamp出现次数" dataFeat['context_timestamp_count'] = dataFeat['context_timestamp'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_count',aggfunc='count').reset_index() del dataFeat['context_timestamp_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "2.统计context_timestamp历史被购买的次数" dataFeat['context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['context_timestamp_buy_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "3.统计context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_timestamp_buy_count,result.context_timestamp_count)) result['context_timestamp_buy_ratio'] = buy_ratio "4.统计context_timestamp历史未被够买的次数" result['context_timestamp_not_buy_count'] = result['context_timestamp_count'] - result['context_timestamp_buy_count'] return result def get_item_brand_feat(data,dataFeat): "item_brand的特征提取" result = pd.DataFrame(dataFeat['item_brand_id']) result = result.drop_duplicates(['item_brand_id'],keep='first') "1.统计item_brand出现次数" dataFeat['item_brand_count'] = dataFeat['item_brand_id'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_count',aggfunc='count').reset_index() del dataFeat['item_brand_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "2.统计item_brand历史被购买的次数" dataFeat['item_brand_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_buy_count',aggfunc='sum').reset_index() del dataFeat['item_brand_buy_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "3.统计item_brand转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_brand_buy_count,result.item_brand_count)) result['item_brand_buy_ratio'] = buy_ratio "4.统计item_brand历史未被够买的次数" result['item_brand_not_buy_count'] = result['item_brand_count'] - result['item_brand_buy_count'] return result def get_item_city_feat(data,dataFeat): "item_city的特征提取" result = pd.DataFrame(dataFeat['item_city_id']) result = result.drop_duplicates(['item_city_id'],keep='first') "1.统计item_city出现次数" dataFeat['item_city_count'] = dataFeat['item_city_id'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_count',aggfunc='count').reset_index() del dataFeat['item_city_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "2.统计item_city历史被购买的次数" dataFeat['item_city_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_buy_count',aggfunc='sum').reset_index() del dataFeat['item_city_buy_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "3.统计item_city转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_city_buy_count,result.item_city_count)) result['item_city_buy_ratio'] = buy_ratio "4.统计item_city历史未被够买的次数" result['item_city_not_buy_count'] = result['item_city_count'] - result['item_city_buy_count'] return result def get_user_gender_feat(data,dataFeat): "user_gender的特征提取" result = pd.DataFrame(dataFeat['user_gender_id']) result = result.drop_duplicates(['user_gender_id'],keep='first') "1.统计user_gender出现次数" dataFeat['user_gender_count'] = dataFeat['user_gender_id'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_count',aggfunc='count').reset_index() del dataFeat['user_gender_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "2.统计user_gender历史被购买的次数" dataFeat['user_gender_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_buy_count',aggfunc='sum').reset_index() del dataFeat['user_gender_buy_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "3.统计user_gender转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_gender_buy_count,result.user_gender_count)) result['user_gender_buy_ratio'] = buy_ratio "4.统计user_gender历史未被够买的次数" result['user_gender_not_buy_count'] = result['user_gender_count'] - result['user_gender_buy_count'] return result def get_user_occupation_feat(data,dataFeat): "user_occupation的特征提取" result = pd.DataFrame(dataFeat['user_occupation_id']) result = result.drop_duplicates(['user_occupation_id'],keep='first') "1.统计user_occupation出现次数" dataFeat['user_occupation_count'] = dataFeat['user_occupation_id'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_count',aggfunc='count').reset_index() del dataFeat['user_occupation_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "2.统计user_occupation历史被购买的次数" dataFeat['user_occupation_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_buy_count',aggfunc='sum').reset_index() del dataFeat['user_occupation_buy_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "3.统计user_occupation转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_occupation_buy_count,result.user_occupation_count)) result['user_occupation_buy_ratio'] = buy_ratio "4.统计user_occupation历史未被够买的次数" result['user_occupation_not_buy_count'] = result['user_occupation_count'] - result['user_occupation_buy_count'] return result def get_context_page_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['context_page_id']) result = result.drop_duplicates(['context_page_id'],keep='first') "1.统计context_page出现次数" dataFeat['context_page_count'] = dataFeat['context_page_id'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_count',aggfunc='count').reset_index() del dataFeat['context_page_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "2.统计context_page历史被购买的次数" dataFeat['context_page_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_buy_count',aggfunc='sum').reset_index() del dataFeat['context_page_buy_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "3.统计context_page转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_page_buy_count,result.context_page_count)) result['context_page_buy_ratio'] = buy_ratio "4.统计context_page历史未被够买的次数" result['context_page_not_buy_count'] = result['context_page_count'] - result['context_page_buy_count'] return result def get_shop_review_num_level_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['shop_review_num_level']) result = result.drop_duplicates(['shop_review_num_level'],keep='first') "1.统计shop_review_num_level出现次数" dataFeat['shop_review_num_level_count'] = dataFeat['shop_review_num_level'] feat =
pd.pivot_table(dataFeat,index=['shop_review_num_level'],values='shop_review_num_level_count',aggfunc='count')
pandas.pivot_table
import collections import dask from dask import delayed from dask.diagnostics import ProgressBar import logging import multiprocessing import pandas as pd import numpy as np import re import six import string import py_stringsimjoin as ssj from py_stringsimjoin.filter.overlap_filter import OverlapFilter from py_stringmatching.tokenizer.qgram_tokenizer import QgramTokenizer from py_stringmatching.tokenizer.whitespace_tokenizer import WhitespaceTokenizer from py_stringsimjoin.utils.missing_value_handler import get_pairs_with_missing_value import py_entitymatching.catalog.catalog_manager as cm from py_entitymatching.utils.catalog_helper import log_info, get_name_for_key, \ add_key_column from py_entitymatching.blocker.blocker import Blocker import py_entitymatching.utils.generic_helper as gh from py_entitymatching.utils.validation_helper import validate_object_type from py_entitymatching.dask.utils import validate_chunks, get_num_partitions, \ get_num_cores, wrap logger = logging.getLogger(__name__) class DaskOverlapBlocker(Blocker): def __init__(self): self.stop_words = ['a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'for', 'from', 'has', 'he', 'in', 'is', 'it', 'its', 'on', 'that', 'the', 'to', 'was', 'were', 'will', 'with'] logger.warning( "WARNING THIS BLOCKER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN " "RISK.") self.regex_punctuation = re.compile('[%s]' % re.escape(string.punctuation)) super(DaskOverlapBlocker, self).__init__() def block_tables(self, ltable, rtable, l_overlap_attr, r_overlap_attr, rem_stop_words=False, q_val=None, word_level=True, overlap_size=1, l_output_attrs=None, r_output_attrs=None, l_output_prefix='ltable_', r_output_prefix='rtable_', allow_missing=False, verbose=False, show_progress=True, n_ltable_chunks=1, n_rtable_chunks=1): """ WARNING THIS COMMAND IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK. Blocks two tables based on the overlap of token sets of attribute values. Finds tuple pairs from left and right tables such that the overlap between (a) the set of tokens obtained by tokenizing the value of attribute l_overlap_attr of a tuple from the left table, and (b) the set of tokens obtained by tokenizing the value of attribute r_overlap_attr of a tuple from the right table, is above a certain threshold. Args: ltable (DataFrame): The left input table. rtable (DataFrame): The right input table. l_overlap_attr (string): The overlap attribute in left table. r_overlap_attr (string): The overlap attribute in right table. rem_stop_words (boolean): A flag to indicate whether stop words (e.g., a, an, the) should be removed from the token sets of the overlap attribute values (defaults to False). q_val (int): The value of q to use if the overlap attributes values are to be tokenized as qgrams (defaults to None). word_level (boolean): A flag to indicate whether the overlap attributes should be tokenized as words (i.e, using whitespace as delimiter) (defaults to True). overlap_size (int): The minimum number of tokens that must overlap (defaults to 1). l_output_attrs (list): A list of attribute names from the left table to be included in the output candidate set (defaults to None). r_output_attrs (list): A list of attribute names from the right table to be included in the output candidate set (defaults to None). l_output_prefix (string): The prefix to be used for the attribute names coming from the left table in the output candidate set (defaults to 'ltable\_'). r_output_prefix (string): The prefix to be used for the attribute names coming from the right table in the output candidate set (defaults to 'rtable\_'). allow_missing (boolean): A flag to indicate whether tuple pairs with missing value in at least one of the blocking attributes should be included in the output candidate set (defaults to False). If this flag is set to True, a tuple in ltable with missing value in the blocking attribute will be matched with every tuple in rtable and vice versa. verbose (boolean): A flag to indicate whether the debug information should be logged (defaults to False). show_progress (boolean): A flag to indicate whether progress should be displayed to the user (defaults to True). n_ltable_chunks (int): The number of partitions to split the left table ( defaults to 1). If it is set to -1, then the number of partitions is set to the number of cores in the machine. n_rtable_chunks (int): The number of partitions to split the right table ( defaults to 1). If it is set to -1, then the number of partitions is set to the number of cores in the machine. Returns: A candidate set of tuple pairs that survived blocking (DataFrame). Raises: AssertionError: If `ltable` is not of type pandas DataFrame. AssertionError: If `rtable` is not of type pandas DataFrame. AssertionError: If `l_overlap_attr` is not of type string. AssertionError: If `r_overlap_attr` is not of type string. AssertionError: If `l_output_attrs` is not of type of list. AssertionError: If `r_output_attrs` is not of type of list. AssertionError: If the values in `l_output_attrs` is not of type string. AssertionError: If the values in `r_output_attrs` is not of type string. AssertionError: If `l_output_prefix` is not of type string. AssertionError: If `r_output_prefix` is not of type string. AssertionError: If `q_val` is not of type int. AssertionError: If `word_level` is not of type boolean. AssertionError: If `overlap_size` is not of type int. AssertionError: If `verbose` is not of type boolean. AssertionError: If `allow_missing` is not of type boolean. AssertionError: If `show_progress` is not of type boolean. AssertionError: If `n_ltable_chunks` is not of type int. AssertionError: If `n_rtable_chunks` is not of type int. AssertionError: If `l_overlap_attr` is not in the ltable columns. AssertionError: If `r_block_attr` is not in the rtable columns. AssertionError: If `l_output_attrs` are not in the ltable. AssertionError: If `r_output_attrs` are not in the rtable. SyntaxError: If `q_val` is set to a valid value and `word_level` is set to True. SyntaxError: If `q_val` is set to None and `word_level` is set to False. Examples: >>> from py_entitymatching.dask.dask_overlap_blocker import DaskOverlapBlocker >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='ID') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='ID') >>> ob = DaskOverlapBlocker() # Use all cores # # Use word-level tokenizer >>> C1 = ob.block_tables(A, B, 'address', 'address', l_output_attrs=['name'], r_output_attrs=['name'], word_level=True, overlap_size=1, n_ltable_chunks=-1, n_rtable_chunks=-1) # # Use q-gram tokenizer >>> C2 = ob.block_tables(A, B, 'address', 'address', l_output_attrs=['name'], r_output_attrs=['name'], word_level=False, q_val=2, n_ltable_chunks=-1, n_rtable_chunks=-1) # # Include all possible missing values >>> C3 = ob.block_tables(A, B, 'address', 'address', l_output_attrs=['name'], r_output_attrs=['name'], allow_missing=True, n_ltable_chunks=-1, n_rtable_chunks=-1) """ logger.warning( "WARNING THIS COMMAND IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN " "RISK.") # Input validations self.validate_types_params_tables(ltable, rtable, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, verbose, n_ltable_chunks, n_rtable_chunks) self.validate_types_other_params(l_overlap_attr, r_overlap_attr, rem_stop_words, q_val, word_level, overlap_size) self.validate_allow_missing(allow_missing) self.validate_show_progress(show_progress) self.validate_overlap_attrs(ltable, rtable, l_overlap_attr, r_overlap_attr) self.validate_output_attrs(ltable, rtable, l_output_attrs, r_output_attrs) self.validate_word_level_qval(word_level, q_val) log_info(logger, 'Required metadata: ltable key, rtable key', verbose) l_key, r_key = cm.get_keys_for_ltable_rtable(ltable, rtable, logger, verbose) # validate metadata cm._validate_metadata_for_table(ltable, l_key, 'ltable', logger, verbose) cm._validate_metadata_for_table(rtable, r_key, 'rtable', logger, verbose) # validate input table chunks validate_object_type(n_ltable_chunks, int, 'Parameter n_ltable_chunks') validate_object_type(n_rtable_chunks, int, 'Parameter n_rtable_chunks') validate_chunks(n_ltable_chunks) validate_chunks(n_rtable_chunks) if n_ltable_chunks == -1: n_ltable_chunks = multiprocessing.cpu_count() ltable_chunks = np.array_split(ltable, n_ltable_chunks) # preprocess/tokenize ltable if word_level == True: tokenizer = WhitespaceTokenizer(return_set=True) else: tokenizer = QgramTokenizer(qval=q_val, return_set=True) preprocessed_tokenized_ltbl = [] # Construct DAG for preprocessing/tokenizing ltable chunks start_row_id = 0 for i in range(len(ltable_chunks)): result = delayed(self.process_tokenize_block_attr)(ltable_chunks[i][ l_overlap_attr], start_row_id, rem_stop_words, tokenizer) preprocessed_tokenized_ltbl.append(result) start_row_id += len(ltable_chunks[i]) preprocessed_tokenized_ltbl = delayed(wrap)(preprocessed_tokenized_ltbl) # Execute the DAG if show_progress: with ProgressBar(): logger.info('Preprocessing/tokenizing ltable') preprocessed_tokenized_ltbl_vals = preprocessed_tokenized_ltbl.compute( scheduler="processes", num_workers=multiprocessing.cpu_count()) else: preprocessed_tokenized_ltbl_vals = preprocessed_tokenized_ltbl.compute( scheduler="processes", num_workers=multiprocessing.cpu_count()) ltable_processed_dict = {} for i in range(len(preprocessed_tokenized_ltbl_vals)): ltable_processed_dict.update(preprocessed_tokenized_ltbl_vals[i]) # build inverted index inverted_index = self.build_inverted_index(ltable_processed_dict) if n_rtable_chunks == -1: n_rtable_chunks = multiprocessing.cpu_count() rtable_chunks = np.array_split(rtable, n_rtable_chunks) # Construct the DAG for probing probe_result = [] start_row_id = 0 for i in range(len(rtable_chunks)): result = delayed(self.probe)(rtable_chunks[i][r_overlap_attr], inverted_index, start_row_id, rem_stop_words, tokenizer, overlap_size) probe_result.append(result) start_row_id += len(rtable_chunks[i]) probe_result = delayed(wrap)(probe_result) # Execute the DAG for probing if show_progress: with ProgressBar(): logger.info('Probing using rtable') probe_result = probe_result.compute(scheduler="processes", num_workers=multiprocessing.cpu_count()) else: probe_result = probe_result.compute(scheduler="processes", num_workers=multiprocessing.cpu_count()) # construct a minimal dataframe that can be used to add more attributes flat_list = [item for sublist in probe_result for item in sublist] tmp = pd.DataFrame(flat_list, columns=['fk_ltable_rid', 'fk_rtable_rid']) fk_ltable = ltable.iloc[tmp.fk_ltable_rid][l_key].values fk_rtable = rtable.iloc[tmp.fk_rtable_rid][r_key].values id_vals = list(range(len(flat_list))) candset = pd.DataFrame.from_dict( {'_id': id_vals, l_output_prefix+l_key: fk_ltable, r_output_prefix+r_key: fk_rtable}) # set the properties for the candidate set cm.set_key(candset, '_id') cm.set_fk_ltable(candset, 'ltable_'+l_key) cm.set_fk_rtable(candset, 'rtable_'+r_key) cm.set_ltable(candset, ltable) cm.set_rtable(candset, rtable) ret_candset = gh.add_output_attributes(candset, l_output_attrs=l_output_attrs, r_output_attrs=r_output_attrs, l_output_prefix=l_output_prefix, r_output_prefix=r_output_prefix, validate=False) # handle missing values if allow_missing: missing_value_pairs = get_pairs_with_missing_value(ltable, rtable, l_key, r_key, l_overlap_attr, r_overlap_attr, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, False, False) missing_value_pairs.insert(0, '_id', range(len(ret_candset), len(ret_candset)+len(missing_value_pairs))) if len(missing_value_pairs) > 0: ret_candset = pd.concat([ret_candset, missing_value_pairs], ignore_index=True, sort=False) cm.set_key(ret_candset, '_id') cm.set_fk_ltable(ret_candset, 'ltable_' + l_key) cm.set_fk_rtable(ret_candset, 'rtable_' + r_key) cm.set_ltable(ret_candset, ltable) cm.set_rtable(ret_candset, rtable) # Return the final candidate set to user. return ret_candset def block_candset(self, candset, l_overlap_attr, r_overlap_attr, rem_stop_words=False, q_val=None, word_level=True, overlap_size=1, allow_missing=False, verbose=False, show_progress=True, n_chunks=-1): """ WARNING THIS COMMAND IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK. Blocks an input candidate set of tuple pairs based on the overlap of token sets of attribute values. Finds tuple pairs from an input candidate set of tuple pairs such that the overlap between (a) the set of tokens obtained by tokenizing the value of attribute l_overlap_attr of the left tuple in a tuple pair, and (b) the set of tokens obtained by tokenizing the value of attribute r_overlap_attr of the right tuple in the tuple pair, is above a certain threshold. Args: candset (DataFrame): The input candidate set of tuple pairs. l_overlap_attr (string): The overlap attribute in left table. r_overlap_attr (string): The overlap attribute in right table. rem_stop_words (boolean): A flag to indicate whether stop words (e.g., a, an, the) should be removed from the token sets of the overlap attribute values (defaults to False). q_val (int): The value of q to use if the overlap attributes values are to be tokenized as qgrams (defaults to None). word_level (boolean): A flag to indicate whether the overlap attributes should be tokenized as words (i.e, using whitespace as delimiter) (defaults to True). overlap_size (int): The minimum number of tokens that must overlap (defaults to 1). allow_missing (boolean): A flag to indicate whether tuple pairs with missing value in at least one of the blocking attributes should be included in the output candidate set (defaults to False). If this flag is set to True, a tuple pair with missing value in either blocking attribute will be retained in the output candidate set. verbose (boolean): A flag to indicate whether the debug information
 should be logged (defaults to False). show_progress (boolean): A flag to indicate whether progress should be displayed to the user (defaults to True). n_chunks (int): The number of partitions to split the candidate set. If it is set to -1, the number of partitions will be set to the number of cores in the machine. Returns: A candidate set of tuple pairs that survived blocking (DataFrame). Raises: AssertionError: If `candset` is not of type pandas DataFrame. AssertionError: If `l_overlap_attr` is not of type string. AssertionError: If `r_overlap_attr` is not of type string. AssertionError: If `q_val` is not of type int. AssertionError: If `word_level` is not of type boolean. AssertionError: If `overlap_size` is not of type int. AssertionError: If `verbose` is not of type boolean. AssertionError: If `allow_missing` is not of type boolean. AssertionError: If `show_progress` is not of type boolean. AssertionError: If `n_chunks` is not of type int. AssertionError: If `l_overlap_attr` is not in the ltable columns. AssertionError: If `r_block_attr` is not in the rtable columns. SyntaxError: If `q_val` is set to a valid value and `word_level` is set to True. SyntaxError: If `q_val` is set to None and `word_level` is set to False. Examples: >>> import py_entitymatching as em >>> from py_entitymatching.dask.dask_overlap_blocker import DaskOverlapBlocker >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='ID') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='ID') >>> ob = DaskOverlapBlocker() >>> C = ob.block_tables(A, B, 'address', 'address', l_output_attrs=['name'], r_output_attrs=['name']) >>> D1 = ob.block_candset(C, 'name', 'name', allow_missing=True) # Include all possible tuple pairs with missing values >>> D2 = ob.block_candset(C, 'name', 'name', allow_missing=True) # Execute blocking using multiple cores >>> D3 = ob.block_candset(C, 'name', 'name', n_chunks=-1) # Use q-gram tokenizer >>> D2 = ob.block_candset(C, 'name', 'name', word_level=False, q_val=2) """ logger.warning( "WARNING THIS BLOCKER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN " "RISK.") # Validate input parameters self.validate_types_params_candset(candset, verbose, show_progress, n_chunks) self.validate_types_other_params(l_overlap_attr, r_overlap_attr, rem_stop_words, q_val, word_level, overlap_size) # get and validate metadata log_info(logger, 'Required metadata: cand.set key, fk ltable, fk rtable, ' 'ltable, rtable, ltable key, rtable key', verbose) # # get metadata key, fk_ltable, fk_rtable, ltable, rtable, l_key, r_key = cm.get_metadata_for_candset( candset, logger, verbose) # # validate metadata cm._validate_metadata_for_candset(candset, key, fk_ltable, fk_rtable, ltable, rtable, l_key, r_key, logger, verbose) # validate overlap attrs self.validate_overlap_attrs(ltable, rtable, l_overlap_attr, r_overlap_attr) # validate word_level and q_val self.validate_word_level_qval(word_level, q_val) # validate number of chunks validate_object_type(n_chunks, int, 'Parameter n_chunks') validate_chunks(n_chunks) # # do projection before merge l_df = ltable[[l_key, l_overlap_attr]] r_df = rtable[[r_key, r_overlap_attr]] # # set index for convenience l_df = l_df.set_index(l_key, drop=False) r_df = r_df.set_index(r_key, drop=False) # # case the overlap attribute to string if required. l_df.is_copy, r_df.is_copy = False, False # to avoid setwithcopy warning ssj.dataframe_column_to_str(l_df, l_overlap_attr, inplace=True) ssj.dataframe_column_to_str(r_df, r_overlap_attr, inplace=True) if word_level == True: tokenizer = WhitespaceTokenizer(return_set=True) else: tokenizer = QgramTokenizer(return_set=True) n_chunks = get_num_partitions(n_chunks, len(candset)) c_splits = np.array_split(candset, n_chunks) valid_splits = [] # Create DAG for i in range(n_chunks): result = delayed(self._block_candset_split)(c_splits[i], l_df, r_df, l_key, r_key, l_overlap_attr, r_overlap_attr, fk_ltable, fk_rtable, allow_missing, rem_stop_words, tokenizer, overlap_size) valid_splits.append(result) valid_splits = delayed(wrap)(valid_splits) # Execute the DAG if show_progress: with ProgressBar(): valid_splits = valid_splits.compute(scheduler="processes", num_workers=get_num_cores()) else: valid_splits = valid_splits.compute(scheduler="processes", num_workers=get_num_cores()) valid = sum(valid_splits, []) # construct output table if len(candset) > 0: out_table = candset[valid] else: out_table = pd.DataFrame(columns=candset.columns) # update the catalog cm.set_candset_properties(out_table, key, fk_ltable, fk_rtable, ltable, rtable) # return the output table return out_table # ------------ helper functions ------- # def _block_candset_split(self, c_df, l_df, r_df, l_key, r_key, l_block_attr, r_block_attr, fk_ltable, fk_rtable, allow_missing, rem_stop_words, tokenizer, overlap_threshold): valid = [] col_names = list(c_df.columns) lkey_idx = col_names.index(fk_ltable) rkey_idx = col_names.index(fk_rtable) l_dict = {} r_dict = {} for row in c_df.itertuples(index=False): row_lkey = row[lkey_idx] if row_lkey not in l_dict: l_dict[row_lkey] = l_df.loc[row_lkey, l_block_attr] l_val = l_dict[row_lkey] row_rkey = row[rkey_idx] if row_rkey not in r_dict: r_dict[row_rkey] = r_df.loc[row_rkey, r_block_attr] r_val = r_dict[row_rkey] if allow_missing: if pd.isnull(l_val) or pd.isnull(r_val) or l_val == r_val: valid.append(True) else: valid.append(False) else: if pd.notnull(l_val) and pd.notnull(r_val): l_tokens = self._process_tokenize_block_str(l_val, rem_stop_words, tokenizer) r_tokens = self._process_tokenize_block_str(r_val, rem_stop_words, tokenizer) overlap = len(set(l_tokens).intersection(r_tokens)) if overlap > overlap_threshold: valid.append(True) else: valid.append(False) else: valid.append(False) return valid def process_tokenize_block_attr(self, block_column_values, start_row_id, should_rem_stop_words, tokenizer): result_vals = {} row_id = start_row_id for s in block_column_values: if not s or pd.isnull(s): row_id += 1 continue val = self._process_tokenize_block_str(s, should_rem_stop_words, tokenizer) result_vals[row_id] = val row_id += 1 return result_vals def build_inverted_index(self, process_tok_vals): index = collections.defaultdict(set) for key in process_tok_vals: for val in process_tok_vals[key]: index[val].add(key) return index def _find_candidates(self, probe_tokens, inverted_index): overlap_candidates = {} for token in probe_tokens: candidates = inverted_index.get(token, []) for candidate in candidates: overlap_candidates[candidate] = overlap_candidates.get(candidate, 0) + 1 return overlap_candidates def probe(self, block_column_values, inverted_index, start_row_id, should_rem_stop_words, tokenizer, overlap_threshold): result = [] row_id = start_row_id for s in block_column_values: if not s: row_id += 1 continue probe_tokens = self._process_tokenize_block_str(s, should_rem_stop_words, tokenizer) candidates = self._find_candidates(probe_tokens, inverted_index) for cand, overlap in candidates.items(): if overlap >= overlap_threshold: result.append((cand, row_id)) row_id += 1 return result def _process_tokenize_block_str(self, s, should_rem_stop_words, tokenizer): if not s or pd.isnull(s): return s if isinstance(s, bytes): s = s.decode('utf-8', 'ignore') s = s.lower() s = self.regex_punctuation.sub('', s) tokens = list(set(s.strip().split())) if should_rem_stop_words: tokens = [token for token in tokens if token not in self.stop_words] s = ' '.join(tokens) tokenized_str = tokenizer.tokenize(s) return tokenized_str def validate_types_params_tables(self, ltable, rtable, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, verbose, n_ltable_chunks, n_rtable_chunks): validate_object_type(ltable, pd.DataFrame, error_prefix='Input left table') validate_object_type(rtable, pd.DataFrame, error_prefix='Input right table') if l_output_attrs: validate_object_type(l_output_attrs, list, 'Output attributes of left table') for x in l_output_attrs: validate_object_type(x, six.string_types, 'An output attribute name of left table') if r_output_attrs: validate_object_type(r_output_attrs, list, 'Output attributes of right table') for x in r_output_attrs: validate_object_type(x, six.string_types, 'An output attribute name of right table') validate_object_type(l_output_prefix, six.string_types, 'Output prefix of left table') validate_object_type(r_output_prefix, six.string_types, 'Output prefix of right table') validate_object_type(verbose, bool, 'Parameter verbose') validate_object_type(n_ltable_chunks, int, 'Parameter n_ltable_chunks') validate_object_type(n_rtable_chunks, int, 'Parameter n_rtable_chunks') def validate_types_other_params(self, l_overlap_attr, r_overlap_attr, rem_stop_words, q_val, word_level, overlap_size): validate_object_type(l_overlap_attr, six.string_types, error_prefix='Overlap attribute name of left table') validate_object_type(r_overlap_attr, six.string_types, error_prefix='Overlap attribute name of right table') validate_object_type(rem_stop_words, bool, error_prefix='Parameter rem_stop_words') if q_val != None and not isinstance(q_val, int): logger.error('Parameter q_val is not of type int') raise AssertionError('Parameter q_val is not of type int') validate_object_type(word_level, bool, error_prefix='Parameter word_level') validate_object_type(overlap_size, int, error_prefix='Parameter overlap_size') # validate the overlap attrs def validate_overlap_attrs(self, ltable, rtable, l_overlap_attr, r_overlap_attr): if not isinstance(l_overlap_attr, list): l_overlap_attr = [l_overlap_attr] assert set(l_overlap_attr).issubset( ltable.columns) is True, 'Left block attribute is not in the left table' if not isinstance(r_overlap_attr, list): r_overlap_attr = [r_overlap_attr] assert set(r_overlap_attr).issubset( rtable.columns) is True, 'Right block attribute is not in the right table' # validate word_level and q_val def validate_word_level_qval(self, word_level, q_val): if word_level == True and q_val != None: raise SyntaxError( 'Parameters word_level and q_val cannot be set together; Note that word_level is ' 'set to True by default, so explicity set word_level=false to use qgram with the ' 'specified q_val') if word_level == False and q_val == None: raise SyntaxError( 'Parameters word_level and q_val cannot be unset together; Note that q_val is ' 'set to None by default, so if you want to use qgram then ' 'explictiy set word_level=False and specify the q_val') def block_tuples(self, ltuple, rtuple, l_overlap_attr, r_overlap_attr, rem_stop_words=False, q_val=None, word_level=True, overlap_size=1, allow_missing=False): """Blocks a tuple pair based on the overlap of token sets of attribute values. Args: ltuple (Series): The input left tuple. rtuple (Series): The input right tuple. l_overlap_attr (string): The overlap attribute in left tuple. r_overlap_attr (string): The overlap attribute in right tuple. rem_stop_words (boolean): A flag to indicate whether stop words (e.g., a, an, the) should be removed from the token sets of the overlap attribute values (defaults to False). q_val (int): A value of q to use if the overlap attributes values are to be tokenized as qgrams (defaults to None). word_level (boolean): A flag to indicate whether the overlap attributes should be tokenized as words (i.e, using whitespace as delimiter) (defaults to True). overlap_size (int): The minimum number of tokens that must overlap (defaults to 1). allow_missing (boolean): A flag to indicate whether a tuple pair with missing value in at least one of the blocking attributes should be blocked (defaults to False). If this flag is set to True, the pair will be kept if either ltuple has missing value in l_block_attr or rtuple has missing value in r_block_attr or both. Returns: A status indicating if the tuple pair is blocked (boolean). Examples: >>> import py_entitymatching as em >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='ID') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='ID') >>> ob = em.OverlapBlocker() >>> status = ob.block_tuples(A.loc[0], B.loc[0], 'address', 'address') """ # validate data types of input parameters specific to overlap blocker self.validate_types_other_params(l_overlap_attr, r_overlap_attr, rem_stop_words, q_val, word_level, overlap_size) # validate word_level and q_val self.validate_word_level_qval(word_level, q_val) # determine which tokenizer to use if word_level == True: # # create a whitespace tokenizer tokenizer = WhitespaceTokenizer(return_set=True) else: # # create a qgram tokenizer tokenizer = QgramTokenizer(qval=q_val, return_set=True) # # cleanup the tuples from non-ascii characters, punctuations, and stop words l_val = self.cleanup_tuple_val(ltuple[l_overlap_attr], rem_stop_words) r_val = self.cleanup_tuple_val(rtuple[r_overlap_attr], rem_stop_words) # create a filter for overlap similarity overlap_filter = OverlapFilter(tokenizer, overlap_size, allow_missing=allow_missing) return overlap_filter.filter_pair(l_val, r_val) def cleanup_tuple_val(self, val, rem_stop_words): if
pd.isnull(val)
pandas.isnull
# -*- coding: utf-8 -*- """ Created on Sat Dec 1 09:21:40 2018 @author: @gary.allison This code is used to take ODNR files for Brine disposal fee and eventually create a file to be used to show overall injection volumes. The ODNR data have several limitations that we must find and account for: - data type consistency, - lumped API numbers - typos - different file formats across the years etc. """ import pandas as pd import numpy as np import pandas.api.types as ptypes from validAPI import getAPI10 ##### -------------------------------------------------- #### Input file definitions ##### -------------------------------------------------- # set data dirs for input files and for resulting output files datadir = './sources/' outdir = './out/' indir = datadir+'OH_injection/' pre_proc_out = outdir+'injection_tall_pre.csv' # input files are in four different formats: # for the oldest, specify filename, year and quarter: tuple (filename,yr,q) # all columns are named the same!! fn_old = [('OH_1ST QUARTER 2011 BRINE DISPOSAL FEES.xls',2011,1), ('OH_2ND QUARTER 2011 BRINE DISPOSAL FEES.xls',2011,2), ('OH_3RD QUARTER 2011 BRINE DISPOSAL FEES-1.xls',2011,3), ('OH_4TH QUARTER 2010 BRINE DISPOSAL FEES.xls',2010,4), ('OH_4TH QUARTER 2011 BRINE DISPOSAL FEES.xls',2011,4), ('OH_Brine Disposal Fee - 3rd Quarter 2010-2.xls',2010,3)] # the 2012 file is ina funky state - the set of worksheets have two different formats: a blend of old and main # so we have to process it separately fn_2012 = 'OH_BRINE DISPOSAL FEES FOR 2012.xls' # bulk of the data are here - first four worksheets are quarters. # Total worksheet (the fifth one) is ignored # specify the filename and the year: tuple: (filename,year) fn_2013_17 = [('BRINE DISPOSAL FEES FOR 2013.xlsx',2013), ('BRINE DISPOSAL FEES FOR 2014.xlsx',2014), ('BRINE DISPOSAL FEES FOR 2015.xlsx',2015), ('BRINE DISPOSAL FEES FOR 2016.xlsx',2016), ('BRINE DISPOSAL FEES FOR 2017.xlsx',2017)] # Finally, the current file is of a different format and must also # be treated separately. It currently includes all quarters of the # year (even if they are in the future) and on a single worksheet fn_2018_plus = [('BRINE DISPOSAL FEES FOR 2018.xlsx',2018), ('BRINE DISPOSAL FEES FOR 2019.xlsx',2019)] # The text file with the records to collapse into one aggfn = 'aggregateAPI.txt' # We define these temporary file to examine output in progress tempf = outdir+'temp.csv' tempf1 = outdir+'temp1.csv' def fetchAggregateList(fn=aggfn): agglist = [] aggaction = {} with open(fn) as f: f.readline() # ignore header for ln in f.readlines(): lst = ln.split('|') key = (lst[0],int(lst[1]),int(lst[2])) agglist.append(key) aggaction[key] = lst[3] # what to do when you find a match? return agglist, aggaction agglist, aggaction = fetchAggregateList() #print(agglist) def is_on_AggregateList(API10,yr,q): if (API10,yr,q) in agglist: #print(f'Aggregating {API10}') return True return False def getCollapseSet(ser,yr,q): # return list of APIs from the AggList to colllapse clst = [] for index,row in ser.iteritems(): if is_on_AggregateList(row,yr,q): clst.append(row) cset = set(clst) return cset ##### -------------------------------------------------- ##### Input file readers ##### -------------------------------------------------- #### -------------------------2010 - 2011 --------------- def read_old(fn,yr,quar,review=False,flag_problems=True): # read excel file and produce a pandas dataframe # we keep only 4 columns from the sheet, ignore the header, # and skip several rows at the top. # Unlike later files, these have only 1 volume column with a # label column to specify if it is from in-district or out-of-district # We must combine the two (in and out) into a single record d = pd.read_excel(indir+fn,skiprows=5,header=None,usecols=[7,8,10,11], names=['CompanyName','APIstr','Vol','In_Out']) # some volumes cells contain the work 'zero', d.Vol = d.Vol.where(d.Vol.str.lower().str.strip()!='zero',0) d.Vol = pd.to_numeric(d.Vol) # make all of in-out into lowercase d.In_Out = d.In_Out.str.lower() # some In_Out cells have 'zero' in them: assign them to In d.In_Out = d.In_Out.where(d.In_Out.str.lower().str.strip()!='zero','in') assert ptypes.is_numeric_dtype(d.Vol) assert ptypes.is_string_dtype(d.CompanyName) assert ptypes.is_string_dtype(d.APIstr) api10 = [] for index, row in d.iterrows(): api10.append(getAPI10(row[1],yr,quar,flag_problems=flag_problems)) if review: print(f'{api10[-1]}, {row[1]},{yr},{quar}') d['API10'] = api10 ### ---------- handle multiple entries for a given API --------- cset = getCollapseSet(d.API10,yr,quar) #print(cset) for capi in cset: tmp = d[d.API10 == capi] action = aggaction[(capi,yr,quar)] if action == 'sum': vol = tmp.groupby(['API10','In_Out'])['Vol'].sum() else: print(f'UNRECOGINIZED ACTION for {capi}') # make into df vol = pd.DataFrame(vol) # always take last of collapsed - assuming it is most recent other = tmp.groupby(['API10','In_Out'])['APIstr','CompanyName'].last() mg = pd.merge(vol,other,left_index=True,right_index=True, validate='1:1') mg.reset_index(level=[0,1],inplace=True) tmp = d[d.API10 != capi] # drop the old d = pd.concat([tmp,mg],sort=True) # add the new ### -------------------------------------------------------------- ### --------------- Make a meta df ---------------------------- meta = d.copy().filter(['API10','APIstr','CompanyName']) meta = meta.groupby(['API10'],as_index=False)['APIstr','CompanyName'].first() ### ----------------- snag all in-district records dIn = d[d.In_Out.str.lower().str[0]=='i'] #'In district' dIn = dIn.filter(['API10','Vol']) dIn.columns = ['API10','Vol_InDist'] # ============================================================================= # print(f'{len(dIn)}, {len(dIn.API10.unique())}') # print(dIn[dIn.API10.duplicated()==True]) # dIn.sort_values(by='API10').to_csv(tempf) # ============================================================================= assert len(dIn)==len(dIn.API10.unique()) # put together with all meta =
pd.merge(meta,dIn,how='left',on='API10',validate='1:1')
pandas.merge
#!/usr/bin/python # -*- coding: UTF-8 -*- from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.models import Model from tensorflow.keras.preprocessing import image from tensorflow.keras.preprocessing import sequence from deprecated import deprecated import os import numpy as np from tqdm import tqdm from PIL import Image import pickle import pandas as pd import re import string from collections import Counter from lib.utils_xrh import * class BatchDataGenerator: """ 数据批量生成器 当数据量过大时, 受限于内存空间, 不能每次都将全部数据喂给模型, 而是分批输入 Author: xrh Date: 2021-9-25 """ def __init__(self, dataset_dir='cache_data/train_dataset.json'): self.dataset_dir = dataset_dir def read_all(self, n_a, n_vocab, m, batch_size=32, dataset=None): """ 从磁盘中读取整个数据集(json)到内存, 每次随机采样一批数据, 喂入模型进行训练 :param n_a: :param n_vocab: :param m: 数据集的样本总数 :param batch_size: :param dataset: 以 DataFrame 存储的数据集 :return: """ # 只执行一次 if dataset is None: dataset = pd.read_json(self.dataset_dir) image_feature = np.array(dataset['image_feature'].tolist()) caption_encoding = np.array(dataset['caption_encoding'].tolist()) while True: # 每次调用 next() 执行下面的语句 mask = np.random.choice(m, batch_size) # 从 range(m) 中随机采样batch_size 组成list, N - 样本总数 batch_image_feature = image_feature[mask] batch_caption_encoding = caption_encoding[mask] m_batch = np.shape(batch_caption_encoding)[0] # 一个批次的样本的数量 c0 = np.zeros((m_batch, n_a)) # 语言模型的输入 和 输出要错开一个时刻, # eg. # output: 今天 /是 /个/好日子/<end> # input: <start>/今天/是/个 /好日子/ caption_out = batch_caption_encoding[:, 1:] # shape(N,39) caption_in = batch_caption_encoding[:, :-1] # shape(N,39) outputs = ArrayUtils.one_hot_array(caption_out, n_vocab) yield ((caption_in, batch_image_feature, c0), outputs) # 必须是 tuple 否则 ValueError: No gradients provided for any variable (Keras 2.4, Tensorflow 2.3.0) @deprecated() def read_by_chunk(self, image_feature_dir,caption_encoding_dir,n_a, n_vocab, m, batch_size=32): """ 读取预处理后的数据集(csv)时, 使用分批次的方式读入内存 :param n_a: :param n_vocab: :param m: 数据集的样本总数 :param batch_size: :return: """ # 只执行一次 image_feature = pd.read_csv(image_feature_dir, header=None, iterator=True) # csv 是如此之大, 无法一次读入内存 caption_encoding = pd.read_csv(caption_encoding_dir, header=None, iterator=True) steps_per_epoch = m // batch_size # 每一个 epoch 要生成的多少批数据 # N - 样本总数 count = 0 while True: # 每次调用 next() 执行下面的语句 batch_image_feature = image_feature.get_chunk(batch_size).iloc[:, 1:] # 排除第一列(索引列) batch_caption_encoding = caption_encoding.get_chunk(batch_size).iloc[:, 1:] batch_image_feature = batch_image_feature.to_numpy() batch_caption_encoding = batch_caption_encoding.to_numpy() N_batch = np.shape(batch_caption_encoding)[0] # 一个批次的样本的数量 c0 = np.zeros((N_batch, n_a)) # 语言模型的输入 和 输出要错开一个时刻, # eg. # output: 今天 /是 /个/好日子/<end> # input: <start>/今天/是/个 /好日子/ caption_out = batch_caption_encoding[:, 1:] # shape(N,39) caption_in = batch_caption_encoding[:, :-1] # shape(N,39) outputs = ArrayUtils.one_hot_array(caption_out, n_vocab) yield ((caption_in, batch_image_feature, c0), outputs) # 必须是 tuple 否则 ValueError: No gradients provided for any variable (Keras 2.4, Tensorflow 2.3.0) count += 1 if count > steps_per_epoch: # 所有批次已经走了一遍 image_feature =
pd.read_csv(image_feature_dir, header=None, iterator=True)
pandas.read_csv
import logging import pandas as pd from nltk import tokenize from nltk.sentiment.vader import SentimentIntensityAnalyzer from lib.settings import DATA_DIR, LOG_LEVEL from lib.characters import findAllMentionedCharacters comments =
pd.read_csv(DATA_DIR / 'comments.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Tue Apr 6 09:44:04 2021 @author: <NAME> """ import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from wu_rainfall import WuRainfall import datetime VER = "_01b" # Version, any string f = 'sw_tph_g_data_LVR.csv' # Data file, csv format df1 = pd.read_csv('sw_tph_g_data_LVR.csv', infer_datetime_format = True) df1["date_time"] =
pd.to_datetime(df1.Date)
pandas.to_datetime
import collections import pandas as pd import warnings import PIL from typing import Union, Optional, List, Dict, Tuple from ..constants import ( NULL, CATEGORICAL, NUMERICAL, TEXT, IMAGE_PATH, MULTICLASS, BINARY, REGRESSION, ) def is_categorical_column( data: pd.Series, valid_data: pd.Series, threshold: int = None, ratio: Optional[float] = None, oov_ratio_threshold: Optional[float] = None, is_label: bool = False, ) -> bool: """ Identify whether a column is one categorical column. If the number of unique elements in the column is smaller than min(#Total Sample * ratio, threshold), it will be treated as a categorical column. Parameters ---------- data One column of a multimodal pd.DataFrame for training. valid_data One column of a multimodal pd.DataFrame for validation. threshold The threshold for detecting categorical column. ratio The ratio detecting categorical column. oov_ratio_threshold The out-of-vocabulary ratio between training and validation. This is used to determine if the column is a categorical column. Usually, a categorical column can tolerate a small OOV ratio. is_label Whether the column is a label column. Returns ------- Whether the column is a categorical column. """ if data.dtype.name == 'category': return True else: if threshold is None: if is_label: threshold = 100 oov_ratio_threshold = 0 ratio = 0.1 else: threshold = 20 oov_ratio_threshold = 0 ratio = 0.1 threshold = min(int(len(data) * ratio), threshold) data_value_counts = data.value_counts(dropna=False) key_set = set(data_value_counts.keys()) if len(data_value_counts) < threshold: valid_value_counts = valid_data.value_counts(dropna=False) total_valid_num = len(valid_data) oov_num = 0 for k, v in zip(valid_value_counts.keys(), valid_value_counts.values): if k not in key_set: oov_num += v if is_label and oov_num != 0: return False if oov_num / total_valid_num > oov_ratio_threshold: return False return True return False def is_numerical_column( data: pd.Series, valid_data: Optional[pd.Series] = None, ) -> bool: """ Identify if a column is a numerical column. Here it uses a very simple rule to verify if this is a numerical column. Parameters ---------- data One column of a multimodal pd.DataFrame for training. valid_data One column of a multimodal pd.DataFrame for validation. Returns ------- Whether the column is a numerical column. """ try: numerical_data =
pd.to_numeric(data)
pandas.to_numeric
from convokit.model import Corpus, Conversation, User, Utterance from typing import List, Callable, Union from convokit import Transformer, CorpusObject import pandas as pd class Ranker(Transformer): def __init__(self, obj_type: str, score_func: Callable[[CorpusObject], Union[int, float]], selector: Callable[[CorpusObject], bool] = lambda obj: True, score_feat_name: str = "score", rank_feat_name: str = None): """ :param obj_type: type of Corpus object to rank: 'conversation', 'user', or 'utterance' :param score_func: function for computing the score of a given object :param selector: function to select for Corpus objects to transform :param score_feat_name: metadata feature name to use in annotation for score value, default: "score" :param rank_feat_name: metadata feature name to use in annotation for the rank value, default: "[score_feat_name]_rank" """ self.obj_type = obj_type self.score_func = score_func self.score_feat_name = score_feat_name self.rank_feat_name = score_feat_name + "_rank" if rank_feat_name is None else rank_feat_name self.selector = selector def transform(self, corpus: Corpus) -> Corpus: """ Annotate corpus objects with scores and rankings :param corpus: target corpus :return: annotated corpus """ obj_iters = {"conversation": corpus.iter_conversations, "user": corpus.iter_users, "utterance": corpus.iter_utterances} obj_scores = [(obj.id, self.score_func(obj)) for obj in obj_iters[self.obj_type](self.selector)] df = pd.DataFrame(obj_scores, columns=["id", self.score_feat_name]) \ .set_index('id').sort_values(self.score_feat_name, ascending=False) df[self.rank_feat_name] = [idx+1 for idx, _ in enumerate(df.index)] for obj in corpus.iter_objs(obj_type=self.obj_type): if obj.id in df.index: obj.add_meta(self.score_feat_name, df.loc[obj.id][self.score_feat_name]) obj.add_meta(self.rank_feat_name, df.loc[obj.id][self.rank_feat_name]) else: obj.add_meta(self.score_feat_name, None) obj.add_meta(self.rank_feat_name, None) return corpus def transform_objs(self, objs: List[CorpusObject]): """ Annotate list of Corpus objects with scores and rankings :param objs: target list of Corpus objects :return: list of annotated COrpus objects """ obj_scores = [(obj.id, self.score_func(obj)) for obj in objs] df = pd.DataFrame(obj_scores, columns=["id", self.score_feat_name]) \ .set_index('id').sort_values(self.score_feat_name, ascending=False) df[self.rank_feat_name] = [idx+1 for idx, _ in enumerate(df.index)] for obj in objs: obj.add_meta(self.score_feat_name, df.loc[obj.id][self.score_feat_name]) obj.add_meta(self.rank_feat_name, df.loc[obj.id][self.rank_feat_name]) return objs def summarize(self, corpus: Corpus = None, objs: List[CorpusObject] = None): """ Generate a dataframe indexed by object id, containing score + rank, and sorted by rank (in ascending order) of the objects in an annotated corpus, or a list of corpus objects :param corpus: annotated target corpus :param objs: list of annotated corpus objects :return: a pandas DataFrame """ if ((corpus is None) and (objs is None)) or ((corpus is not None) and (objs is not None)): raise ValueError("summarize() takes in either a Corpus or a list of users / utterances / conversations") if objs is None: obj_iters = {"conversation": corpus.iter_conversations, "user": corpus.iter_users, "utterance": corpus.iter_utterances} obj_scores_ranks = [(obj.id, obj.meta[self.score_feat_name], obj.meta[self.rank_feat_name]) for obj in obj_iters[self.obj_type](self.selector)] else: obj_scores_ranks = [(obj.id, obj.meta[self.score_feat_name], obj.meta[self.rank_feat_name]) for obj in objs] df =
pd.DataFrame(obj_scores_ranks, columns=["id", self.score_feat_name, self.rank_feat_name])
pandas.DataFrame
#!/usr/bin/env python3 from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Ridge, Lasso import pickle import os import yaml import numpy as np import scipy.signal as signal import pandas as pd from scipy.stats import pearsonr from datetime import datetime from urllib import request from pipeline.helpers import get_vi_f, get_vi_nf def download_data(fn, data_dir): url = "https://zenodo.org/record/3897289/files/{}?download=1".format(fn) fn = os.path.join(data_dir, fn) if not os.path.isfile(fn): print("Downloading data from", url) request.urlretrieve(url, fn) def preprocess_data(df, augment): rm_idx = np.concatenate((np.arange(0, 300, dtype=np.int), np.arange(len(df) - 300, len(df)))) df = df.drop(index=rm_idx) if augment: df_vi_f = get_vi_f(df, c_offset=2, verbose=False) df = pd.concat([df, df_vi_f], axis=1, sort=False) df_vi_nf = get_vi_nf(df, c_offset=2 + 41, verbose=False) df =
pd.concat([df, df_vi_nf], axis=1, sort=False)
pandas.concat
import numpy as np import pandas as pd import pytest from tabmat.categorical_matrix import CategoricalMatrix @pytest.fixture def cat_vec(): m = 10 seed = 0 rng = np.random.default_rng(seed) return rng.choice([0, 1, 2, np.inf, -np.inf], size=m) @pytest.mark.parametrize("vec_dtype", [np.float64, np.float32, np.int64, np.int32]) @pytest.mark.parametrize("drop_first", [True, False]) def test_recover_orig(cat_vec, vec_dtype, drop_first): orig_recovered = CategoricalMatrix(cat_vec, drop_first=drop_first).recover_orig() np.testing.assert_equal(orig_recovered, cat_vec) @pytest.mark.parametrize("vec_dtype", [np.float64, np.float32, np.int64, np.int32]) @pytest.mark.parametrize("drop_first", [True, False]) def test_csr_matvec_categorical(cat_vec, vec_dtype, drop_first): mat =
pd.get_dummies(cat_vec, drop_first=drop_first)
pandas.get_dummies
import matplotlib.pyplot as plt import seaborn as sns import pdb import requests import re import threading import concurrent.futures import numpy as np import pandas as pd from functools import reduce from collections import Counter from sklearn.preprocessing import normalize, StandardScaler, Normalizer, RobustScaler, MinMaxScaler, MaxAbsScaler import networkx as nx # import signal import warnings warnings.filterwarnings("ignore") from url_utils import * from wiki_scrapper import WikiScrapper from WikiMultiQuery import wiki_multi_query from graph_helpers import create_dispersion_df, dict_values_to_df, sort_dict_values, format_categories, compare_categories, rank_order, similarity_rank ################ # GraphCreator # ################ class GraphCreator: """ Retrieves data from the Wikipedia API and constructs a graph network of article relations. Allows for the fast creation of a graph based recommender system. Input: ------ entry (required, string) A string containing the title of a Wikipedia article or a valid Wikipedia URL. include_see_also (defaul: True, bool) If True, marks any see also links as important and related to the main topic (default). If False, does nothing to the see also links. Mark as False if validating recommendations max_recursive_requests (default: 50, int) The maximum number of times an API call will repeat to get all information. This can be an important parameter to set if efficiency is an issue. Lower values will be more efficient, but may miss important information. Higher values are less efficient, but gather more data. """ def __init__(self, entry, include_see_also=True, max_recursive_requests=50): self.graph = nx.DiGraph() self.entry = get_title(entry) # from url_utils self.max_requests = max_recursive_requests ws = WikiScrapper(f"https://en.wikipedia.org/wiki/{self.entry}") ws.parse_intro_links() self.primary_nodes = {title : True for title in ws.get_primary_links(include_see_also=include_see_also)} # see also articles to be used as targets for evaluation self.see_also_articles = ws.see_also_link_titles self.visited = {self.entry} self.next_links = [] self.categories = {} self.redirect_targets = [] self.redirect_sources = {} self.query_articles([self.entry]) # setup timeout function # def handle_alarm(signum, frame): # raise RuntimeError # signal.signal(signal.SIGALRM, handle_alarm) ###################################### # GRAPH SETUP & MAINTAINANCE METHODS # ###################################### def _add_edges(self, articles): """ Given a list of articles, adds nodes and connections (edges) to the network. It can be called manually, but the expected use is within an internal graph update call. """ for article in articles: self.categories[article['title']] = format_categories([category.split("Category:")[1] for category in article['categories'] if not bool(re.findall(r"(articles)|(uses)|(commons)|(category\:use)", category, re.I))]) self.graph.add_edges_from( [(article['title'], link) for link in article['links']]) self.graph.add_edges_from( [(linkhere, article['title']) for linkhere in article['linkshere']]) def update_edge_weights(self): """ Edges are weighted by the number of categories two connect nodes share. This method will look at each node and its neighbors and adjust in and outbound edge weights as needed. """ for edge in self.graph.out_edges: weight = compare_categories(edge[0], edge[1], self.categories) self.graph.add_edge(edge[0], edge[1], weight=weight) for edge in self.graph.in_edges: weight = compare_categories(edge[0], edge[1], self.categories) self.graph.add_edge(edge[0], edge[1], weight=weight) def get_edge_weights(self): """ A getter method to view the edge weights of each node (in and outbound). """ edge_weights = [] for edge in self.graph.edges: edge_weights.append((edge[0], edge[1], self.graph.get_edge_data(edge[0], edge[1])['weight'])) return pd.DataFrame(edge_weights, columns=["source_node", "target_node", "edge_weight"]).sort_values("edge_weight", ascending=False).reset_index().drop("index", axis=1) ############################## # FEATURE EXTRACTION METHODS # ############################## def get_shared_categories_with_source(self): cat_matches = {} for node in self.graph.nodes: cat_matches[node] = compare_categories(self.entry, node, self.categories, starting_count=0) return dict_values_to_df(cat_matches, ['node', 'category_matches_with_source']) def get_primary_nodes(self): """ Marks a node as a primary node if it appears in the article introduction or the See Also section. Primary nodes are considered to be more related to the main topics than others. """ primary_nodes = {} for node in self.graph.nodes: if node in primary_nodes: # allows for heavier weight to duplicates in intro and see also primary_nodes[node] += 1 if node in self.primary_nodes: primary_nodes[node] = 1 else: primary_nodes[node] = 0 return dict_values_to_df(primary_nodes, ["node", "primary_link"]) def get_degrees(self): """ Get all edges of a node and its neighbors (both in and outbound). """ return dict_values_to_df(dict(self.graph.degree()), ["node", "degree"]) def get_shared_neighbors_with_entry_score(self): """ A score comprised of the total number of shared neighbors with the target OVER the total number of neighbors of each node """ entry_neighbors = list(set(nx.all_neighbors(self.graph, self.entry))) shared_neighbors_score = {} for node in self.graph.nodes: target_neighbors = list(set(nx.all_neighbors(self.graph, node))) shared_neighbors = len(entry_neighbors) + len(target_neighbors) - len(set(entry_neighbors + target_neighbors)) # score is neighbors shared over how many possible unique neighbors could have been shared. shared_neighbors_score[node] = shared_neighbors / len(set(entry_neighbors + target_neighbors)) return dict_values_to_df(shared_neighbors_score, ["node", "shared_neighbors_with_entry_score"]) def get_edges(self): """ Gets the in and outbound edges of each node separately. Different from `get_degrees` as it return two columns with in and outbound edges separated. """ edges = [] for node in self.graph.nodes: node_in_edges = len(self.graph.in_edges(node)) node_out_edges = len(self.graph.out_edges(node)) edges.append({"node": node, "in_edges": node_in_edges, "out_edges": node_out_edges}) return pd.DataFrame(edges) def get_centrality(self): """ Gets the eigenvector centrality of each node. """ return dict_values_to_df(nx.eigenvector_centrality(self.graph, weight="weight"), ["node", "centrality"]) def get_dispersion(self, comparison_node=None, max_nodes=25_000): # depreciated """ Gets the dispersion of the central node compared to each other node. This is depreciated, and not included in features_df because it can take a long time to calculate. """ if not comparison_node: comparison_node = self.entry if max_nodes is None or len(self.graph.nodes) <= max_nodes: return dict_values_to_df(nx.dispersion(self.graph, u=comparison_node), ['node', 'dispersion']) else: # if the network is too large, perform calculation on ego graph of entry node ego = self.create_ego() return dict_values_to_df(nx.dispersion(ego, u=comparison_node), ['node', 'dispersion']) def get_pageranks(self): """ Calculates and returns the networkx pagerank for each node. """ page_ranks = sorted([(key, value) for key, value in nx.algorithms.link_analysis.pagerank( self.graph, weight='weight').items()], key=lambda x: x[1], reverse=True) return pd.DataFrame(page_ranks, columns=["node", "page_rank"]) def get_reciprocity(self): """ Gets the reciprocity score for each node. Note: Reciprocity in the context or Wikipedia articles can be a misleading metric. The intended use of this method is to be called in the `get_adjusted_reciprocity` method, which accounts for how many connects a node has. """ return dict_values_to_df(nx.algorithms.reciprocity(self.graph, self.graph.nodes), ['node', 'reciprocity']) def get_adjusted_reciprocity(self): """ Gets the adjusted reciprocity score for each node. Adjusted reciprocity accounts for how many edges a node has (vs reciprocity, which just sees how many outbount edges are returned). """ r = self.get_reciprocity() d = self.get_degrees() r_d = r.merge(d, on="node", how="inner") r_d['adjusted_reciprocity'] = r_d.reciprocity * r_d.degree adjusted_reci = r_d.sort_values("adjusted_reciprocity", ascending=False) adjusted_reci.adjusted_reciprocity = normalize([adjusted_reci.adjusted_reciprocity])[0] return adjusted_reci.reset_index().drop(["degree", "reciprocity", "index"], axis=1) def get_shortest_path_from_entry(self): """ Calculates the shortest path length from the entry node to every other node. If a path does not exist, return the longest path length from the entry + 1. """ paths = [] for node in self.graph.nodes: try: path_length = nx.shortest_path_length(self.graph, source=self.entry, target=node) paths.append({"node": node, "shortest_path_length_from_entry": path_length}) except: paths.append({"node": node, "shortest_path_length_from_entry": np.nan}) from_entry = pd.DataFrame(paths).sort_values("shortest_path_length_from_entry", ascending=False) return from_entry.fillna(np.max(from_entry.shortest_path_length_from_entry) + 1) def get_shortest_path_to_entry(self): """ Calculates the shortest path length from each node to the entry node. If a path does not exist, return the longest path length from the entry + 1. """ paths = [] for node in self.graph.nodes: try: path_length = nx.shortest_path_length(self.graph, source=node, target=self.entry) paths.append({"node": node, "shortest_path_length_to_entry": path_length}) except: paths.append({"node": node, "shortest_path_length_to_entry": np.nan}) to_entry = pd.DataFrame(paths) return to_entry.fillna(np.max(to_entry.shortest_path_length_to_entry) + 1) def get_jaccard_similarity(self): """ Calculates the Jaccard similarity score for each node compared to the entry node. """ entry_in_edges = set([x[0] for x in self.graph.in_edges(nbunch=self.entry)]) jaccard_scores = {} for node in self.graph.nodes: target_in_edges = set([x[0] for x in self.graph.in_edges(nbunch=node)]) in_edge_intersect = len(entry_in_edges.intersection(target_in_edges)) in_edge_union = len(entry_in_edges.union(target_in_edges)) jaccard_scores[node] = in_edge_intersect / in_edge_union return dict_values_to_df(jaccard_scores, ["node", "jaccard_similarity"]) def get_features_df(self, rank=False): """ A wrapper method for several of the other getter methods. It calls each getter method and combines the results into a pandas DataFrame. Input: ------ rank (default: False, bool) When True, ranks each column individually, and creates an additional column of the average ranking for each row. Default is no no average ranking. In this context, rank is not necessarily associated with the entry node, but the network structure itself. """ dfs = [] if rank: dfs.append(rank_order(self.get_degrees(), 'degree', ascending=False)) dfs.append(rank_order(self.get_shared_categories_with_source(), 'category_matches_with_source', ascending=False)) dfs.append(rank_order(self.get_shared_neighbors_with_entry_score(), 'shared_neighbors_with_entry_score', ascending=False)) dfs.append(self.get_edges()) dfs.append(rank_order(self.get_centrality(), 'centrality', ascending=True)) dfs.append(rank_order(self.get_pageranks(), "page_rank", ascending=False)) dfs.append(rank_order(self.get_adjusted_reciprocity(), "adjusted_reciprocity", ascending=False)) dfs.append(rank_order(self.get_shortest_path_from_entry(), "shortest_path_length_from_entry", ascending=True)) dfs.append(rank_order(self.get_shortest_path_to_entry(), "shortest_path_length_to_entry", ascending=True)) dfs.append(rank_order(self.get_jaccard_similarity(), "jaccard_similarity", ascending=False)) dfs.append(rank_order(self.get_primary_nodes(), "primary_node", ascending=False)) else: dfs.append(self.get_degrees()) dfs.append(self.get_shared_categories_with_source()) dfs.append(self.get_edges()) dfs.append(self.get_shared_neighbors_with_entry_score()) dfs.append(self.get_centrality()) dfs.append(self.get_pageranks()) dfs.append(self.get_adjusted_reciprocity()) dfs.append(self.get_shortest_path_from_entry()) dfs.append(self.get_shortest_path_to_entry()) dfs.append(self.get_jaccard_similarity()) dfs.append(self.get_primary_nodes()) self.features_df = reduce(lambda left, right: pd.merge(left, right, on="node", how="outer"), dfs) return self.features_df def rank_similarity(self): """ Calculates a cumulative similarity rank for each node compared to the entry node. Features are placed into bonus and penalty categories to determine how similar and favorable each node is to the entry node. """ degree_mean = np.mean(self.features_df.degree.unique()) self.features_df['similarity_rank'] = self.features_df.apply( similarity_rank, degree_mean=degree_mean, axis=1) def scale_features_df(self, scaler=StandardScaler, copy=True): """ A method to scale the values in the features_df using a sklearn scaler. Input: ------ scaler (default: StandardScaler, sklearn scaler) An sklearn scaler that will be fit to the numerical data of the features_df copy (default: True, bool) Whether or not to make a copy of the features_df. When False, overwrites the existing features_df in the class instance with the scaled version. """ # we cannot scale our node column (because it is object type) # and we don't want to scale our similarity_rank as it can cause strang reordering artifacts. nodes = self.features_df.node sim_rank = self.features_df.similarity_rank node_and_sim_removed = self.features_df.drop(["node", "similarity_rank"], axis=1) columns = node_and_sim_removed.columns scaled_features = scaler().fit_transform(node_and_sim_removed) scaled_features =
pd.DataFrame(scaled_features, columns=columns)
pandas.DataFrame
import numpy as np import pandas as pd from collections import OrderedDict from pandas.api.types import is_numeric_dtype, is_object_dtype, is_categorical_dtype from typing import List, Optional, Tuple, Callable def inspect_df(df: pd.DataFrame) -> pd.DataFrame: """ Show column types and null values in DataFrame df """ resdict = OrderedDict() # Inspect nulls null_series = df.isnull().sum() resdict["column"] = null_series.index resdict["null_fraction"] = np.round(null_series.values / len(df), 3) resdict["nulls"] = null_series.values # Inspect types types = df.dtypes.values type_names = [t.name for t in types] resdict["type"] = type_names # Is numeric? is_numeric = [] for col in df.columns: is_numeric.append(is_numeric_dtype(df[col])) resdict["is_numeric"] = is_numeric # Dataframe resdf = pd.DataFrame(resdict) resdf.sort_values("null_fraction", inplace=True) resdf.reset_index(inplace=True, drop=True) return resdf def summarize_df(df: pd.DataFrame) -> pd.DataFrame: """ Show stats; - rows: - column types - columns - number of columns - number of cols containing NaN's """ # Original DataFrame (nrows, _) = df.shape # Stats of DataFrame stats = inspect_df(df) data_types = np.unique(stats["type"].values) resdict = OrderedDict() # Column: data types resdict["type"] = data_types ncols_type = [] ncols_nan = [] n_nans = [] n_total = [] for dt in data_types: # Column: number of columns with type nc = len(stats[stats["type"] == dt]) ncols_type.append(nc) # Column: number of columns with NaNs nan_cols = stats[(stats["type"] == dt) & (stats["nulls"] > 0)] ncols_nan.append(len(nan_cols)) # Column: number of NaNs n_nans.append(nan_cols["nulls"].sum()) # Column: total number of values n_total.append(nc * nrows) # Prepare dict for the df resdict["ncols"] = ncols_type resdict["ncols_w_nans"] = ncols_nan resdict["n_nans"] = n_nans resdict["n_total"] = n_total # Proportions of NaNs in each column group. # Division by zero shouldn't occur nan_frac = np.array(n_nans) / np.array(n_total) resdict["nan_frac"] = np.round(nan_frac, 2) resdf = pd.DataFrame(resdict) resdf.sort_values("type", inplace=True) resdf.reset_index(inplace=True, drop=True) return resdf def add_datefields( df: pd.DataFrame, column: str, drop_original: bool = False, inplace: bool = False, attrs: Optional[List[str]] = None, ) -> pd.DataFrame: """ Add attributes of the date to dataFrame df """ raw_date = df[column] # Pandas datetime attributes if attrs is None: attributes = [ "dayofweek", "dayofyear", "is_month_end", "is_month_start", "is_quarter_end", "is_quarter_start", "quarter", "week", ] else: attributes = attrs # Return new? if inplace: resdf = df else: resdf = df.copy(deep=True) # Could probably be optimized with pd.apply() for attr in attributes: new_column = f"{column}_{attr}" # https://stackoverflow.com/questions/2612610/ new_vals = [getattr(d, attr) for d in raw_date] resdf[new_column] = new_vals if drop_original: resdf.drop(columns=column, inplace=True) return resdf def add_nan_columns( df: pd.DataFrame, inplace: bool = False, column_list: Optional[List[str]] = None ) -> pd.DataFrame: """ For each column containing NaNs, add a boolean column specifying if the column is NaN. Can be used if the data is later imputated. """ if column_list is not None: nan_columns = column_list else: # Get names of columns containing at least one NaN temp = df.isnull().sum() != 0 nan_columns = temp.index[temp.values] # Return new? if inplace: resdf = df else: resdf = df.copy(deep=True) for column in nan_columns: new_column = f"{column}_isnull" nans = df[column].isnull() resdf[new_column] = nans return resdf def numeric_nans(df: pd.DataFrame) -> pd.DataFrame: """ Inspect numerical NaN values of a DataFrame df """ stats = inspect_df(df) nan_stats = stats.loc[stats["is_numeric"] & (stats["nulls"] > 0)].copy(deep=True) len_uniques = [] uniques = [] for row in nan_stats["column"].values: uniq = np.unique(df[row][df[row].notnull()].values) len_uniques.append(len(uniq)) uniques.append(uniq) nan_stats["num_uniques"] = len_uniques nan_stats["uniques"] = uniques nan_stats.reset_index(inplace=True, drop=True) return nan_stats def categorize_df( df: pd.DataFrame, columns: Optional[List[str]] = None, inplace: bool = False, drop_original: bool = True, ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Categorize values in columns, and replace value with category. If no columns are given, default to all 'object' columns """ if columns is not None: cat_cols = columns else: cat_cols = df.columns[[dt.name == "object" for dt in df.dtypes.values]] if inplace: resdf = df else: resdf = df.copy(deep=True) df_codes = [] df_cats = [] n_cats = [] for column in cat_cols: new_column = f"{column}_cat" cat_column = df[column].astype("category") # By default, NaN is -1. We convert to zero by incrementing all. col_codes = cat_column.cat.codes + 1 resdf[new_column] = col_codes # DataFrame with the codes df_codes.append(col_codes) df_cats.append(cat_column.cat.categories) n_cats.append(len(np.unique(col_codes))) cat_dict = OrderedDict() cat_dict["column"] = cat_cols # MyPy picks up an error in the next line. Bug is where? # Additionally, Flake8 will report the MyPy ignore as an error cat_dict["n_categories"] = n_cats # type: ignore[assignment] # noqa: F821,F821 cat_dict["categories"] = df_cats cat_dict["codes"] = df_codes cat_df = pd.DataFrame(cat_dict) if drop_original: resdf.drop(columns=cat_cols, inplace=True) return (resdf, cat_df) def replace_numeric_nulls( df: pd.DataFrame, columns: Optional[List[str]] = None, function: Callable = np.median, inplace: bool = False, ) -> pd.DataFrame: """ Replace nulls in all numerical column with the median (default) or another callable function that works on NumPy arrays """ if columns is None: columns = [ colname for colname, column in df.items() if
is_numeric_dtype(column)
pandas.api.types.is_numeric_dtype
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import re import xlrd import pickle import os import requests # from bs4 import BeautifulSoup # or import bs4 as bs # import json # In[ ]: # In[2]: # setting directories for file loads and saves logs_dir = "./data/logs/" raw_dir = "./data/raw/" load_dir = save_dir = "./data/interim/" final_dir = "./data/processed/" # In[6]: xl = pd.read_pickle(load_dir + "school_profiles_2008_2017_df.pickle") xl.head() # In[4]: xl.info() # # MySchool website, Sherwood State School # In[5]: url = "https://www.myschool.edu.au/school/46461/naplan/similar/2017" # Packages the request, send the request and catch the response: r r = requests.get(url) # Extract the response: text text = r.text # Print the html text[:500] # In[6]: # using BeautifulSoup, turn html into cleaner text soup = BeautifulSoup(text, "lxml") # In[7]: print(soup.prettify()[:500]) # In[8]: # Find all 'script' tags (which define scripts): scripts scripts = soup.find_all('script') # Print the school data <script> to the shell #print(scripts[6]) # Save the school data <script> to a text file # In[9]: # adding data for POST to retrieve different SchoolYearId, DomainId and ViewModeId payload = {"SchoolYearId" : "5", "DomainId" : "1", "ViewModeId" : "0"} # retrieving the above from the same page as r r510 = requests.post(url, data = payload) # Extract the response: text text510 = r510.text # using BeautifulSoup, turn html into cleaner text soup510 = BeautifulSoup(text510, "lxml") # In[10]: # Find all 'script' tags (which define scripts): scripts scripts510 = soup510.find_all('script') # Print the head of scipts to the shell #print(scripts510) # In[11]: type(scripts[6]) # In[23]: type(scripts[6].contents[0].string) # In[27]: # This gives a string which is writable to file scripts[6].string[:50] # In[26]: # Writing to files f = open("sherwood310.txt", mode = "w", encoding = "utf-8") f.write(scripts[6].string) f.close() f = open("sherwood510.txt", mode = "w", encoding = "utf-8") f.write(scripts510[6].string) f.close() # In[16]: scripts[6].attrs # In[29]: s310 = scripts[6].string type(s310) # In[30]: s310slash = re.sub(r'\\', '', s310) s310colq = re.sub(r':"', ':', s310slash) s310qcomma = re.sub(r'",', ',', s310colq) # In[33]: s310qcomma[:1000] # In[35]: s310up2data = re.sub(r'.*?data":', '', s310qcomma) s310up2data[:500] # In[74]: s310apostro = re.sub(',"plotOptions(.*)', '', s310up2data) s310datalist = re.sub("u0027", "'", s310apostro) print(s310up2data[-500:]) s310datalist[-500:] # In[ ]: f = open('s310datalist.txt', mode = 'w', encoding = 'utf-8') f.write(s310datalist) # In[79]: grade = 3 domain = 1 view = 0 year = 2017 # In[80]: schoolIdList = re.findall('schoolId":(\d\d\d\d\d)', s310datalist) meanList = re.findall('mean":(\d\d\d)', s310datalist) lowerList = re.findall('lowerMargin":(\d\d\d)', s310datalist) upperList = re.findall('upperMargin":(\d\d\d)', s310datalist) sherwood_310_df = pd.DataFrame({'schoolId' : schoolIdList, 'grade' : grade, 'year' : year, 'mean' : meanList, 'lower' : lowerList, 'upper' : upperList}) sherwood_310_df.head() # In[ ]: sherwood_310_df.to_csv('sherwood_310_df.csv') # # Generic school, from the all school IDs list # In[81]: # adding data for POST to retrieve similar school list (ViewModeId = 1) payload = {"SchoolYearId" : "5", "DomainId" : "1", "ViewModeId" : "1"} # retrieving the above from the same page as r r511 = requests.post(url, data = payload) # Extract the response: text text511 = r511.text # using BeautifulSoup, turn html into cleaner text soup511 = BeautifulSoup(text510, "lxml") # In[84]: f = open('soup511_pretty.html', mode = 'w', encoding = 'utf-8') f.write(soup511.prettify()) f.close() # In[103]: scripts511 = soup511.find_all('script') s311schoolList = scripts511[6].string # In[113]: scripts511[6].string[-500:] # In[117]: simimlar_schools_2017 = re.findall(r'schoolId\\":(\d\d\d\d\d)', scripts511[6].string) #simimlar_schools_2017 # ## School profiles 2008 - 2017 # In[50]: file = load_dir + "school-profile-2008-2017.xlsx" xl =
pd.read_excel(file, sheet_name="School Profile")
pandas.read_excel
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import decimal import json import multiprocessing as mp from collections import OrderedDict from datetime import date, datetime, time, timedelta import numpy as np import numpy.testing as npt import pandas as pd import pandas.util.testing as tm import pytest import pyarrow as pa import pyarrow.types as patypes from pyarrow.compat import PY2 from .pandas_examples import dataframe_with_arrays, dataframe_with_lists def _alltypes_example(size=100): return pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, # TODO(wesm): Pandas only support ns resolution, Arrow supports s, ms, # us, ns 'datetime': np.arange("2016-01-01T00:00:00.001", size, dtype='datetime64[ms]'), 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) def _check_pandas_roundtrip(df, expected=None, use_threads=True, expected_schema=None, check_dtype=True, schema=None, preserve_index=False, as_batch=False): klass = pa.RecordBatch if as_batch else pa.Table table = klass.from_pandas(df, schema=schema, preserve_index=preserve_index, nthreads=2 if use_threads else 1) result = table.to_pandas(use_threads=use_threads) if expected_schema: # all occurences of _check_pandas_roundtrip passes expected_schema # without the pandas generated key-value metadata, so we need to # add it before checking schema equality expected_schema = expected_schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) if expected is None: expected = df tm.assert_frame_equal(result, expected, check_dtype=check_dtype, check_index_type=('equiv' if preserve_index else False)) def _check_series_roundtrip(s, type_=None, expected_pa_type=None): arr = pa.array(s, from_pandas=True, type=type_) if type_ is not None and expected_pa_type is None: expected_pa_type = type_ if expected_pa_type is not None: assert arr.type == expected_pa_type result = pd.Series(arr.to_pandas(), name=s.name) if patypes.is_timestamp(arr.type) and arr.type.tz is not None: result = (result.dt.tz_localize('utc') .dt.tz_convert(arr.type.tz)) tm.assert_series_equal(s, result) def _check_array_roundtrip(values, expected=None, mask=None, type=None): arr = pa.array(values, from_pandas=True, mask=mask, type=type) result = arr.to_pandas() values_nulls = pd.isnull(values) if mask is None: assert arr.null_count == values_nulls.sum() else: assert arr.null_count == (mask | values_nulls).sum() if mask is None: tm.assert_series_equal(pd.Series(result), pd.Series(values), check_names=False) else: expected = pd.Series(np.ma.masked_array(values, mask=mask)) tm.assert_series_equal(pd.Series(result), expected, check_names=False) def _check_array_from_pandas_roundtrip(np_array, type=None): arr = pa.array(np_array, from_pandas=True, type=type) result = arr.to_pandas() npt.assert_array_equal(result, np_array) class TestConvertMetadata(object): """ Conversion tests for Pandas metadata & indices. """ def test_non_string_columns(self): df = pd.DataFrame({0: [1, 2, 3]}) table = pa.Table.from_pandas(df) assert table.column(0).name == '0' def test_from_pandas_with_columns(self): df = pd.DataFrame({0: [1, 2, 3], 1: [1, 3, 3], 2: [2, 4, 5]}) table = pa.Table.from_pandas(df, columns=[0, 1]) expected = pa.Table.from_pandas(df[[0, 1]]) assert expected.equals(table) record_batch_table = pa.RecordBatch.from_pandas(df, columns=[0, 1]) record_batch_expected = pa.RecordBatch.from_pandas(df[[0, 1]]) assert record_batch_expected.equals(record_batch_table) def test_column_index_names_are_preserved(self): df = pd.DataFrame({'data': [1, 2, 3]}) df.columns.names = ['a'] _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns(self): columns = pd.MultiIndex.from_arrays([ ['one', 'two'], ['X', 'Y'] ]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_with_dtypes(self): columns = pd.MultiIndex.from_arrays( [ ['one', 'two'], pd.DatetimeIndex(['2017-08-01', '2017-08-02']), ], names=['level_1', 'level_2'], ) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_unicode(self): columns = pd.MultiIndex.from_arrays([[u'あ', u'い'], ['X', 'Y']]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_integer_index_column(self): df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')]) _check_pandas_roundtrip(df, preserve_index=True) def test_index_metadata_field_name(self): # test None case, and strangely named non-index columns df = pd.DataFrame( [(1, 'a', 3.1), (2, 'b', 2.2), (3, 'c', 1.3)], index=pd.MultiIndex.from_arrays( [['c', 'b', 'a'], [3, 2, 1]], names=[None, 'foo'] ), columns=['a', None, '__index_level_0__'], ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) col1, col2, col3, idx0, foo = js['columns'] assert col1['name'] == 'a' assert col1['name'] == col1['field_name'] assert col2['name'] is None assert col2['field_name'] == 'None' assert col3['name'] == '__index_level_0__' assert col3['name'] == col3['field_name'] idx0_name, foo_name = js['index_columns'] assert idx0_name == '__index_level_0__' assert idx0['field_name'] == idx0_name assert idx0['name'] is None assert foo_name == 'foo' assert foo['field_name'] == foo_name assert foo['name'] == foo_name def test_categorical_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), dtype='category') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'categorical' assert column_indexes['numpy_type'] == 'int8' md = column_indexes['metadata'] assert md['num_categories'] == 3 assert md['ordered'] is False def test_string_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), name='stringz') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] == 'stringz' assert column_indexes['name'] == column_indexes['field_name'] assert column_indexes['pandas_type'] == ('bytes' if PY2 else 'unicode') assert column_indexes['numpy_type'] == 'object' md = column_indexes['metadata'] if not PY2: assert len(md) == 1 assert md['encoding'] == 'UTF-8' else: assert md is None or 'encoding' not in md def test_datetimetz_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'datetimetz' assert column_indexes['numpy_type'] == 'datetime64[ns]' md = column_indexes['metadata'] assert md['timezone'] == 'America/New_York' def test_datetimetz_row_index(self): df = pd.DataFrame({ 'a': pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) }) df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_categorical_row_index(self): df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}) df['a'] = df.a.astype('category') df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_duplicate_column_names_does_not_crash(self): df = pd.DataFrame([(1, 'a'), (2, 'b')], columns=list('aa')) with pytest.raises(ValueError): pa.Table.from_pandas(df) def test_dictionary_indices_boundscheck(self): # ARROW-1658. No validation of indices leads to segfaults in pandas indices = [[0, 1], [0, -1]] for inds in indices: arr = pa.DictionaryArray.from_arrays(inds, ['a'], safe=False) batch = pa.RecordBatch.from_arrays([arr], ['foo']) table = pa.Table.from_batches([batch, batch, batch]) with pytest.raises(pa.ArrowInvalid): arr.to_pandas() with pytest.raises(pa.ArrowInvalid): table.to_pandas() def test_unicode_with_unicode_column_and_index(self): df = pd.DataFrame({u'あ': [u'い']}, index=[u'う']) _check_pandas_roundtrip(df, preserve_index=True) def test_mixed_unicode_column_names(self): df = pd.DataFrame({u'あ': [u'い'], b'a': 1}, index=[u'う']) # TODO(phillipc): Should this raise? with pytest.raises(AssertionError): _check_pandas_roundtrip(df, preserve_index=True) def test_binary_column_name(self): column_data = [u'い'] key = u'あ'.encode('utf8') data = {key: column_data} df = pd.DataFrame(data) # we can't use _check_pandas_roundtrip here because our metdata # is always decoded as utf8: even if binary goes in, utf8 comes out t = pa.Table.from_pandas(df, preserve_index=True) df2 = t.to_pandas() assert df.values[0] == df2.values[0] assert df.index.values[0] == df2.index.values[0] assert df.columns[0] == key def test_multiindex_duplicate_values(self): num_rows = 3 numbers = list(range(num_rows)) index = pd.MultiIndex.from_arrays( [['foo', 'foo', 'bar'], numbers], names=['foobar', 'some_numbers'], ) df = pd.DataFrame({'numbers': numbers}, index=index) table = pa.Table.from_pandas(df) result_df = table.to_pandas() tm.assert_frame_equal(result_df, df) def test_metadata_with_mixed_types(self): df = pd.DataFrame({'data': [b'some_bytes', u'some_unicode']}) table = pa.Table.from_pandas(df) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'bytes' assert data_column['numpy_type'] == 'object' def test_list_metadata(self): df = pd.DataFrame({'data': [[1], [2, 3, 4], [5] * 7]}) schema = pa.schema([pa.field('data', type=pa.list_(pa.int64()))]) table = pa.Table.from_pandas(df, schema=schema) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'list[int64]' assert data_column['numpy_type'] == 'object' def test_decimal_metadata(self): expected = pd.DataFrame({ 'decimals': [ decimal.Decimal('394092382910493.12341234678'), -decimal.Decimal('314292388910493.12343437128'), ] }) table = pa.Table.from_pandas(expected) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'decimal' assert data_column['numpy_type'] == 'object' assert data_column['metadata'] == {'precision': 26, 'scale': 11} def test_table_column_subset_metadata(self): # ARROW-1883 df = pd.DataFrame({ 'a': [1, 2, 3], 'b': pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')}) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']]) # non-default index for index in [ pd.Index(['a', 'b', 'c'], name='index'), pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')]: df = pd.DataFrame({'a': [1, 2, 3], 'b': [.1, .2, .3]}, index=index) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']].reset_index(drop=True)) def test_empty_list_metadata(self): # Create table with array of empty lists, forced to have type # list(string) in pyarrow c1 = [["test"], ["a", "b"], None] c2 = [[], [], []] arrays = OrderedDict([ ('c1', pa.array(c1, type=pa.list_(pa.string()))), ('c2', pa.array(c2, type=pa.list_(pa.string()))), ]) rb = pa.RecordBatch.from_arrays( list(arrays.values()), list(arrays.keys()) ) tbl = pa.Table.from_batches([rb]) # First roundtrip changes schema, because pandas cannot preserve the # type of empty lists df = tbl.to_pandas() tbl2 = pa.Table.from_pandas(df, preserve_index=True) md2 = json.loads(tbl2.schema.metadata[b'pandas'].decode('utf8')) # Second roundtrip df2 = tbl2.to_pandas() expected = pd.DataFrame(OrderedDict([('c1', c1), ('c2', c2)])) tm.assert_frame_equal(df2, expected) assert md2['columns'] == [ { 'name': 'c1', 'field_name': 'c1', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[unicode]', }, { 'name': 'c2', 'field_name': 'c2', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[empty]', }, { 'name': None, 'field_name': '__index_level_0__', 'metadata': None, 'numpy_type': 'int64', 'pandas_type': 'int64', } ] class TestConvertPrimitiveTypes(object): """ Conversion tests for primitive (e.g. numeric) types. """ def test_float_no_nulls(self): data = {} fields = [] dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] num_values = 100 for numpy_dtype, arrow_dtype in dtypes: values = np.random.randn(num_values) data[numpy_dtype] = values.astype(numpy_dtype) fields.append(pa.field(numpy_dtype, arrow_dtype)) df = pd.DataFrame(data) schema = pa.schema(fields) _check_pandas_roundtrip(df, expected_schema=schema) def test_float_nulls(self): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] names = ['f2', 'f4', 'f8'] expected_cols = [] arrays = [] fields = [] for name, arrow_dtype in dtypes: values = np.random.randn(num_values).astype(name) arr = pa.array(values, from_pandas=True, mask=null_mask) arrays.append(arr) fields.append(pa.field(name, arrow_dtype)) values[null_mask] = np.nan expected_cols.append(values) ex_frame = pd.DataFrame(dict(zip(names, expected_cols)), columns=names) table = pa.Table.from_arrays(arrays, names) assert table.schema.equals(pa.schema(fields)) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_float_nulls_to_ints(self): # ARROW-2135 df = pd.DataFrame({"a": [1.0, 2.0, pd.np.NaN]}) schema = pa.schema([pa.field("a", pa.int16(), nullable=True)]) table = pa.Table.from_pandas(df, schema=schema, safe=False) assert table[0].to_pylist() == [1, 2, None] tm.assert_frame_equal(df, table.to_pandas()) def test_integer_no_nulls(self): data = OrderedDict() fields = [] numpy_dtypes = [ ('i1', pa.int8()), ('i2', pa.int16()), ('i4', pa.int32()), ('i8', pa.int64()), ('u1', pa.uint8()), ('u2', pa.uint16()), ('u4', pa.uint32()), ('u8', pa.uint64()), ('longlong', pa.int64()), ('ulonglong', pa.uint64()) ] num_values = 100 for dtype, arrow_dtype in numpy_dtypes: info = np.iinfo(dtype) values = np.random.randint(max(info.min, np.iinfo(np.int_).min), min(info.max, np.iinfo(np.int_).max), size=num_values) data[dtype] = values.astype(dtype) fields.append(pa.field(dtype, arrow_dtype)) df = pd.DataFrame(data) schema = pa.schema(fields) _check_pandas_roundtrip(df, expected_schema=schema) def test_all_integer_types(self): # Test all Numpy integer aliases data = OrderedDict() numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'byte', 'ubyte', 'short', 'ushort', 'intc', 'uintc', 'int_', 'uint', 'longlong', 'ulonglong'] for dtype in numpy_dtypes: data[dtype] = np.arange(12, dtype=dtype) df = pd.DataFrame(data) _check_pandas_roundtrip(df) # Do the same with pa.array() # (for some reason, it doesn't use the same code paths at all) for np_arr in data.values(): arr = pa.array(np_arr) assert arr.to_pylist() == np_arr.tolist() def test_integer_with_nulls(self): # pandas requires upcast to float dtype int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 expected_cols = [] arrays = [] for name in int_dtypes: values = np.random.randint(0, 100, size=num_values) arr = pa.array(values, mask=null_mask) arrays.append(arr) expected = values.astype('f8') expected[null_mask] = np.nan expected_cols.append(expected) ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)), columns=int_dtypes) table = pa.Table.from_arrays(arrays, int_dtypes) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_array_from_pandas_type_cast(self): arr = np.arange(10, dtype='int64') target_type = pa.int8() result = pa.array(arr, type=target_type) expected = pa.array(arr.astype('int8')) assert result.equals(expected) def test_boolean_no_nulls(self): num_values = 100 np.random.seed(0) df = pd.DataFrame({'bools': np.random.randn(num_values) > 0}) field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_boolean_nulls(self): # pandas requires upcast to object dtype num_values = 100 np.random.seed(0) mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 10, size=num_values) < 5 arr = pa.array(values, mask=mask) expected = values.astype(object) expected[mask] = None field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) ex_frame = pd.DataFrame({'bools': expected}) table = pa.Table.from_arrays([arr], ['bools']) assert table.schema.equals(schema) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_float_object_nulls(self): arr = np.array([None, 1.5, np.float64(3.5)] * 5, dtype=object) df = pd.DataFrame({'floats': arr}) expected = pd.DataFrame({'floats': pd.to_numeric(arr)}) field = pa.field('floats', pa.float64()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected=expected, expected_schema=schema) def test_int_object_nulls(self): arr = np.array([None, 1, np.int64(3)] * 5, dtype=object) df = pd.DataFrame({'ints': arr}) expected = pd.DataFrame({'ints': pd.to_numeric(arr)}) field = pa.field('ints', pa.int64()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected=expected, expected_schema=schema) def test_boolean_object_nulls(self): arr = np.array([False, None, True] * 100, dtype=object) df = pd.DataFrame({'bools': arr}) field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_all_nulls_cast_numeric(self): arr = np.array([None], dtype=object) def _check_type(t): a2 = pa.array(arr, type=t) assert a2.type == t assert a2[0].as_py() is None _check_type(pa.int32()) _check_type(pa.float64()) def test_half_floats_from_numpy(self): arr = np.array([1.5, np.nan], dtype=np.float16) a = pa.array(arr, type=pa.float16()) x, y = a.to_pylist() assert isinstance(x, np.float16) assert x == 1.5 assert isinstance(y, np.float16) assert np.isnan(y) a = pa.array(arr, type=pa.float16(), from_pandas=True) x, y = a.to_pylist() assert isinstance(x, np.float16) assert x == 1.5 assert y is None @pytest.mark.parametrize('dtype', ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']) def test_array_integer_object_nulls_option(dtype): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 100, size=num_values, dtype=dtype) array = pa.array(values, mask=null_mask) if null_mask.any(): expected = values.astype('O') expected[null_mask] = None else: expected = values result = array.to_pandas(integer_object_nulls=True) np.testing.assert_equal(result, expected) @pytest.mark.parametrize('dtype', ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']) def test_table_integer_object_nulls_option(dtype): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 100, size=num_values, dtype=dtype) array = pa.array(values, mask=null_mask) if null_mask.any(): expected = values.astype('O') expected[null_mask] = None else: expected = values expected = pd.DataFrame({dtype: expected}) table = pa.Table.from_arrays([array], [dtype]) result = table.to_pandas(integer_object_nulls=True) tm.assert_frame_equal(result, expected) class TestConvertDateTimeLikeTypes(object): """ Conversion tests for datetime- and timestamp-like types (date64, etc.). """ def test_timestamps_notimezone_no_nulls(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) field = pa.field('datetime64', pa.timestamp('ns')) schema = pa.schema([field]) _check_pandas_roundtrip( df, expected_schema=schema, ) def test_timestamps_notimezone_nulls(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', None, '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) field = pa.field('datetime64', pa.timestamp('ns')) schema = pa.schema([field]) _check_pandas_roundtrip( df, expected_schema=schema, ) def test_timestamps_with_timezone(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123', '2006-01-13T12:34:56.432', '2010-08-13T05:46:57.437'], dtype='datetime64[ms]') }) df['datetime64'] = (df['datetime64'].dt.tz_localize('US/Eastern') .to_frame()) _check_pandas_roundtrip(df) _check_series_roundtrip(df['datetime64']) # drop-in a null and ns instead of ms df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', None, '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) df['datetime64'] = (df['datetime64'].dt.tz_localize('US/Eastern') .to_frame()) _check_pandas_roundtrip(df) def test_python_datetime(self): # ARROW-2106 date_array = [datetime.today() + timedelta(days=x) for x in range(10)] df = pd.DataFrame({ 'datetime': pd.Series(date_array, dtype=object) }) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.TimestampArray) result = table.to_pandas() expected_df = pd.DataFrame({ 'datetime': date_array }) tm.assert_frame_equal(expected_df, result) def test_python_datetime_subclass(self): class MyDatetime(datetime): # see https://github.com/pandas-dev/pandas/issues/21142 nanosecond = 0.0 date_array = [MyDatetime(2000, 1, 1, 1, 1, 1)] df = pd.DataFrame({"datetime": pd.Series(date_array, dtype=object)}) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.TimestampArray) result = table.to_pandas() expected_df = pd.DataFrame({"datetime": date_array}) # https://github.com/pandas-dev/pandas/issues/21142 expected_df["datetime"] = pd.to_datetime(expected_df["datetime"]) tm.assert_frame_equal(expected_df, result) def test_python_date_subclass(self): class MyDate(date): pass date_array = [MyDate(2000, 1, 1)] df = pd.DataFrame({"date": pd.Series(date_array, dtype=object)}) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.Date32Array) result = table.to_pandas() expected_df = pd.DataFrame( {"date": np.array(["2000-01-01"], dtype="datetime64[ns]")} ) tm.assert_frame_equal(expected_df, result) def test_datetime64_to_date32(self): # ARROW-1718 arr = pa.array([date(2017, 10, 23), None]) c = pa.Column.from_array("d", arr) s = c.to_pandas() arr2 = pa.Array.from_pandas(s, type=pa.date32()) assert arr2.equals(arr.cast('date32')) @pytest.mark.parametrize('mask', [ None, np.array([True, False, False]), ]) def test_pandas_datetime_to_date64(self, mask): s = pd.to_datetime([ '2018-05-10T00:00:00', '2018-05-11T00:00:00', '2018-05-12T00:00:00', ]) arr = pa.Array.from_pandas(s, type=pa.date64(), mask=mask) data = np.array([ date(2018, 5, 10), date(2018, 5, 11), date(2018, 5, 12) ]) expected = pa.array(data, mask=mask, type=pa.date64()) assert arr.equals(expected) @pytest.mark.parametrize('mask', [ None, np.array([True, False, False]) ]) def test_pandas_datetime_to_date64_failures(self, mask): s = pd.to_datetime([ '2018-05-10T10:24:01', '2018-05-11T10:24:01', '2018-05-12T10:24:01', ]) expected_msg = 'Timestamp value had non-zero intraday milliseconds' with pytest.raises(pa.ArrowInvalid, match=expected_msg): pa.Array.from_pandas(s, type=pa.date64(), mask=mask) def test_array_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') arr = pa.array(data) assert arr.equals(pa.array(expected)) result = arr.to_pandas() assert result.dtype == expected.dtype npt.assert_array_equal(arr.to_pandas(), expected) result = arr.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_chunked_array_convert_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') carr = pa.chunked_array([data]) result = carr.to_pandas() assert result.dtype == expected.dtype npt.assert_array_equal(carr.to_pandas(), expected) result = carr.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_column_convert_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') arr = pa.array(data) column = pa.column('date', arr) result = column.to_pandas() npt.assert_array_equal(column.to_pandas(), expected) result = column.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_table_convert_date_as_object(self): df = pd.DataFrame({ 'date': [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)]}) table = pa.Table.from_pandas(df, preserve_index=False) df_datetime = table.to_pandas() df_object = table.to_pandas(date_as_object=True) tm.assert_frame_equal(df.astype('datetime64[ns]'), df_datetime, check_dtype=True) tm.assert_frame_equal(df, df_object, check_dtype=True) def test_date_infer(self): df = pd.DataFrame({ 'date': [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)]}) table = pa.Table.from_pandas(df, preserve_index=False) field = pa.field('date', pa.date32()) # schema's metadata is generated by from_pandas conversion expected_schema = pa.schema([field], metadata=table.schema.metadata) assert table.schema.equals(expected_schema) result = table.to_pandas() expected = df.copy() expected['date'] = pd.to_datetime(df['date']) tm.assert_frame_equal(result, expected) def test_date_mask(self): arr = np.array([date(2017, 4, 3), date(2017, 4, 4)], dtype='datetime64[D]') mask = [True, False] result = pa.array(arr, mask=np.array(mask)) expected = np.array([None, date(2017, 4, 4)], dtype='datetime64[D]') expected = pa.array(expected, from_pandas=True) assert expected.equals(result) def test_date_objects_typed(self): arr = np.array([ date(2017, 4, 3), None, date(2017, 4, 4), date(2017, 4, 5)], dtype=object) arr_i4 = np.array([17259, -1, 17260, 17261], dtype='int32') arr_i8 = arr_i4.astype('int64') * 86400000 mask = np.array([False, True, False, False]) t32 = pa.date32() t64 = pa.date64() a32 = pa.array(arr, type=t32) a64 = pa.array(arr, type=t64) a32_expected = pa.array(arr_i4, mask=mask, type=t32) a64_expected = pa.array(arr_i8, mask=mask, type=t64) assert a32.equals(a32_expected) assert a64.equals(a64_expected) # Test converting back to pandas colnames = ['date32', 'date64'] table = pa.Table.from_arrays([a32, a64], colnames) table_pandas = table.to_pandas() ex_values = (np.array(['2017-04-03', '2017-04-04', '2017-04-04', '2017-04-05'], dtype='datetime64[D]') .astype('datetime64[ns]')) ex_values[1] = pd.NaT.value expected_pandas = pd.DataFrame({'date32': ex_values, 'date64': ex_values}, columns=colnames) tm.assert_frame_equal(table_pandas, expected_pandas) def test_dates_from_integers(self): t1 = pa.date32() t2 = pa.date64() arr = np.array([17259, 17260, 17261], dtype='int32') arr2 = arr.astype('int64') * 86400000 a1 = pa.array(arr, type=t1) a2 = pa.array(arr2, type=t2) expected = date(2017, 4, 3) assert a1[0].as_py() == expected assert a2[0].as_py() == expected @pytest.mark.xfail(reason="not supported ATM", raises=NotImplementedError) def test_timedelta(self): # TODO(jreback): Pandas only support ns resolution # Arrow supports ??? for resolution df = pd.DataFrame({ 'timedelta': np.arange(start=0, stop=3 * 86400000, step=86400000, dtype='timedelta64[ms]') }) pa.Table.from_pandas(df) def test_pytime_from_pandas(self): pytimes = [time(1, 2, 3, 1356), time(4, 5, 6, 1356)] # microseconds t1 = pa.time64('us') aobjs = np.array(pytimes + [None], dtype=object) parr = pa.array(aobjs) assert parr.type == t1 assert parr[0].as_py() == pytimes[0] assert parr[1].as_py() == pytimes[1] assert parr[2] is pa.NA # DataFrame df = pd.DataFrame({'times': aobjs}) batch = pa.RecordBatch.from_pandas(df) assert batch[0].equals(parr) # Test ndarray of int64 values arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') a1 = pa.array(arr, type=pa.time64('us')) assert a1[0].as_py() == pytimes[0] a2 = pa.array(arr * 1000, type=pa.time64('ns')) assert a2[0].as_py() == pytimes[0] a3 = pa.array((arr / 1000).astype('i4'), type=pa.time32('ms')) assert a3[0].as_py() == pytimes[0].replace(microsecond=1000) a4 = pa.array((arr / 1000000).astype('i4'), type=pa.time32('s')) assert a4[0].as_py() == pytimes[0].replace(microsecond=0) def test_arrow_time_to_pandas(self): pytimes = [time(1, 2, 3, 1356), time(4, 5, 6, 1356), time(0, 0, 0)] expected = np.array(pytimes[:2] + [None]) expected_ms = np.array([x.replace(microsecond=1000) for x in pytimes[:2]] + [None]) expected_s = np.array([x.replace(microsecond=0) for x in pytimes[:2]] + [None]) arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') null_mask = np.array([False, False, True], dtype=bool) a1 = pa.array(arr, mask=null_mask, type=pa.time64('us')) a2 = pa.array(arr * 1000, mask=null_mask, type=pa.time64('ns')) a3 = pa.array((arr / 1000).astype('i4'), mask=null_mask, type=pa.time32('ms')) a4 = pa.array((arr / 1000000).astype('i4'), mask=null_mask, type=pa.time32('s')) names = ['time64[us]', 'time64[ns]', 'time32[ms]', 'time32[s]'] batch = pa.RecordBatch.from_arrays([a1, a2, a3, a4], names) arr = a1.to_pandas() assert (arr == expected).all() arr = a2.to_pandas() assert (arr == expected).all() arr = a3.to_pandas() assert (arr == expected_ms).all() arr = a4.to_pandas() assert (arr == expected_s).all() df = batch.to_pandas() expected_df = pd.DataFrame({'time64[us]': expected, 'time64[ns]': expected, 'time32[ms]': expected_ms, 'time32[s]': expected_s}, columns=names) tm.assert_frame_equal(df, expected_df) def test_numpy_datetime64_columns(self): datetime64_ns = np.array([ '2007-07-13T01:23:34.123456789', None, '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') _check_array_from_pandas_roundtrip(datetime64_ns) datetime64_us = np.array([ '2007-07-13T01:23:34.123456', None, '2006-01-13T12:34:56.432539', '2010-08-13T05:46:57.437699'], dtype='datetime64[us]') _check_array_from_pandas_roundtrip(datetime64_us) datetime64_ms = np.array([ '2007-07-13T01:23:34.123', None, '2006-01-13T12:34:56.432', '2010-08-13T05:46:57.437'], dtype='datetime64[ms]') _check_array_from_pandas_roundtrip(datetime64_ms) datetime64_s = np.array([ '2007-07-13T01:23:34', None, '2006-01-13T12:34:56', '2010-08-13T05:46:57'], dtype='datetime64[s]') _check_array_from_pandas_roundtrip(datetime64_s) @pytest.mark.parametrize('dtype', [pa.date32(), pa.date64()]) def test_numpy_datetime64_day_unit(self, dtype): datetime64_d = np.array([ '2007-07-13', None, '2006-01-15', '2010-08-19'], dtype='datetime64[D]') _check_array_from_pandas_roundtrip(datetime64_d, type=dtype) def test_array_from_pandas_date_with_mask(self): m = np.array([True, False, True]) data = pd.Series([ date(1990, 1, 1), date(1991, 1, 1), date(1992, 1, 1) ]) result = pa.Array.from_pandas(data, mask=m) expected = pd.Series([None, date(1991, 1, 1), None]) assert pa.Array.from_pandas(expected).equals(result) def test_fixed_offset_timezone(self): df = pd.DataFrame({ 'a': [ pd.Timestamp('2012-11-11 00:00:00+01:00'), pd.NaT ] }) _check_pandas_roundtrip(df) _check_serialize_components_roundtrip(df) # ---------------------------------------------------------------------- # Conversion tests for string and binary types. class TestConvertStringLikeTypes(object): def test_pandas_unicode(self): repeats = 1000 values = [u'foo', None, u'bar', u'mañana', np.nan] df = pd.DataFrame({'strings': values * repeats}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_bytes_to_binary(self): values = [u'qux', b'foo', None, bytearray(b'barz'), 'qux', np.nan] df = pd.DataFrame({'strings': values}) table = pa.Table.from_pandas(df) assert table[0].type == pa.binary() values2 = [b'qux', b'foo', None, b'barz', b'qux', np.nan] expected = pd.DataFrame({'strings': values2}) _check_pandas_roundtrip(df, expected) @pytest.mark.large_memory def test_bytes_exceed_2gb(self): v1 = b'x' * 100000000 v2 = b'x' * 147483646 # ARROW-2227, hit exactly 2GB on the nose df = pd.DataFrame({ 'strings': [v1] * 20 + [v2] + ['x'] * 20 }) arr = pa.array(df['strings']) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 2 arr = None table = pa.Table.from_pandas(df) assert table[0].data.num_chunks == 2 def test_fixed_size_bytes(self): values = [b'foo', None, bytearray(b'bar'), None, None, b'hey'] df = pd.DataFrame({'strings': values}) schema = pa.schema([pa.field('strings', pa.binary(3))]) table = pa.Table.from_pandas(df, schema=schema) assert table.schema[0].type == schema[0].type assert table.schema[0].name == schema[0].name result = table.to_pandas() tm.assert_frame_equal(result, df) def test_fixed_size_bytes_does_not_accept_varying_lengths(self): values = [b'foo', None, b'ba', None, None, b'hey'] df = pd.DataFrame({'strings': values}) schema = pa.schema([pa.field('strings', pa.binary(3))]) with pytest.raises(pa.ArrowInvalid): pa.Table.from_pandas(df, schema=schema) def test_variable_size_bytes(self): s = pd.Series([b'123', b'', b'a', None]) _check_series_roundtrip(s, type_=pa.binary()) def test_binary_from_bytearray(self): s = pd.Series([bytearray(b'123'), bytearray(b''), bytearray(b'a'), None]) # Explicitly set type _check_series_roundtrip(s, type_=pa.binary()) # Infer type from bytearrays _check_series_roundtrip(s, expected_pa_type=pa.binary()) def test_table_empty_str(self): values = ['', '', '', '', ''] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result1 = table.to_pandas(strings_to_categorical=False) expected1 = pd.DataFrame({'strings': values}) tm.assert_frame_equal(result1, expected1, check_dtype=True) result2 = table.to_pandas(strings_to_categorical=True) expected2 = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result2, expected2, check_dtype=True) def test_selective_categoricals(self): values = ['', '', '', '', ''] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) expected_str = pd.DataFrame({'strings': values}) expected_cat = pd.DataFrame({'strings': pd.Categorical(values)}) result1 = table.to_pandas(categories=['strings']) tm.assert_frame_equal(result1, expected_cat, check_dtype=True) result2 = table.to_pandas(categories=[]) tm.assert_frame_equal(result2, expected_str, check_dtype=True) result3 = table.to_pandas(categories=('strings',)) tm.assert_frame_equal(result3, expected_cat, check_dtype=True) result4 = table.to_pandas(categories=tuple()) tm.assert_frame_equal(result4, expected_str, check_dtype=True) def test_table_str_to_categorical_without_na(self): values = ['a', 'a', 'b', 'b', 'c'] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result = table.to_pandas(strings_to_categorical=True) expected = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result, expected, check_dtype=True) with pytest.raises(pa.ArrowInvalid): table.to_pandas(strings_to_categorical=True, zero_copy_only=True) def test_table_str_to_categorical_with_na(self): values = [None, 'a', 'b', np.nan] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result = table.to_pandas(strings_to_categorical=True) expected = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result, expected, check_dtype=True) with pytest.raises(pa.ArrowInvalid): table.to_pandas(strings_to_categorical=True, zero_copy_only=True) # Regression test for ARROW-2101 def test_array_of_bytes_to_strings(self): converted = pa.array(np.array([b'x'], dtype=object), pa.string()) assert converted.type == pa.string() # Make sure that if an ndarray of bytes is passed to the array # constructor and the type is string, it will fail if those bytes # cannot be converted to utf-8 def test_array_of_bytes_to_strings_bad_data(self): with pytest.raises( pa.lib.ArrowInvalid, match="was not a utf8 string"): pa.array(np.array([b'\x80\x81'], dtype=object), pa.string()) def test_numpy_string_array_to_fixed_size_binary(self): arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') converted = pa.array(arr, type=pa.binary(3)) expected = pa.array(list(arr), type=pa.binary(3)) assert converted.equals(expected) mask = np.array([True, False, True]) converted = pa.array(arr, type=pa.binary(3), mask=mask) expected = pa.array([b'foo', None, b'baz'], type=pa.binary(3)) assert converted.equals(expected) with pytest.raises(pa.lib.ArrowInvalid, match=r'Got bytestring of length 3 \(expected 4\)'): arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') pa.array(arr, type=pa.binary(4)) with pytest.raises( pa.lib.ArrowInvalid, match=r'Got bytestring of length 12 \(expected 3\)'): arr = np.array([b'foo', b'bar', b'baz'], dtype='|U3') pa.array(arr, type=pa.binary(3)) class TestConvertDecimalTypes(object): """ Conversion test for decimal types. """ decimal32 = [ decimal.Decimal('-1234.123'), decimal.Decimal('1234.439') ] decimal64 = [ decimal.Decimal('-129934.123331'), decimal.Decimal('129534.123731') ] decimal128 = [ decimal.Decimal('394092382910493.12341234678'), decimal.Decimal('-314292388910493.12343437128') ] @pytest.mark.parametrize(('values', 'expected_type'), [ pytest.param(decimal32, pa.decimal128(7, 3), id='decimal32'), pytest.param(decimal64, pa.decimal128(12, 6), id='decimal64'), pytest.param(decimal128, pa.decimal128(26, 11), id='decimal128') ]) def test_decimal_from_pandas(self, values, expected_type): expected = pd.DataFrame({'decimals': values}) table = pa.Table.from_pandas(expected, preserve_index=False) field = pa.field('decimals', expected_type) # schema's metadata is generated by from_pandas conversion expected_schema = pa.schema([field], metadata=table.schema.metadata) assert table.schema.equals(expected_schema) @pytest.mark.parametrize('values', [ pytest.param(decimal32, id='decimal32'), pytest.param(decimal64, id='decimal64'), pytest.param(decimal128, id='decimal128') ]) def test_decimal_to_pandas(self, values): expected = pd.DataFrame({'decimals': values}) converted = pa.Table.from_pandas(expected) df = converted.to_pandas() tm.assert_frame_equal(df, expected) def test_decimal_fails_with_truncation(self): data1 = [decimal.Decimal('1.234')] type1 = pa.decimal128(10, 2) with pytest.raises(pa.ArrowInvalid): pa.array(data1, type=type1) data2 = [decimal.Decimal('1.2345')] type2 = pa.decimal128(10, 3) with pytest.raises(pa.ArrowInvalid): pa.array(data2, type=type2) def test_decimal_with_different_precisions(self): data = [ decimal.Decimal('0.01'), decimal.Decimal('0.001'), ] series = pd.Series(data) array = pa.array(series) assert array.to_pylist() == data assert array.type == pa.decimal128(3, 3) array = pa.array(data, type=pa.decimal128(12, 5)) expected = [decimal.Decimal('0.01000'), decimal.Decimal('0.00100')] assert array.to_pylist() == expected def test_decimal_with_None_explicit_type(self): series = pd.Series([decimal.Decimal('3.14'), None]) _check_series_roundtrip(series, type_=pa.decimal128(12, 5)) # Test that having all None values still produces decimal array series = pd.Series([None] * 2) _check_series_roundtrip(series, type_=pa.decimal128(12, 5)) def test_decimal_with_None_infer_type(self): series = pd.Series([decimal.Decimal('3.14'), None]) _check_series_roundtrip(series, expected_pa_type=pa.decimal128(3, 2)) def test_strided_objects(self, tmpdir): # see ARROW-3053 data = { 'a': {0: 'a'}, 'b': {0: decimal.Decimal('0.0')} } # This yields strided objects df = pd.DataFrame.from_dict(data) _check_pandas_roundtrip(df) class TestListTypes(object): """ Conversion tests for list<> types. """ def test_column_of_arrays(self): df, schema = dataframe_with_arrays() _check_pandas_roundtrip(df, schema=schema, expected_schema=schema) table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) # schema's metadata is generated by from_pandas conversion expected_schema = schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) for column in df.columns: field = schema.field_by_name(column) _check_array_roundtrip(df[column], type=field.type) def test_column_of_arrays_to_py(self): # Test regression in ARROW-1199 not caught in above test dtype = 'i1' arr = np.array([ np.arange(10, dtype=dtype), np.arange(5, dtype=dtype), None, np.arange(1, dtype=dtype) ]) type_ = pa.list_(pa.int8()) parr = pa.array(arr, type=type_) assert parr[0].as_py() == list(range(10)) assert parr[1].as_py() == list(range(5)) assert parr[2].as_py() is None assert parr[3].as_py() == [0] def test_column_of_lists(self): df, schema = dataframe_with_lists() _check_pandas_roundtrip(df, schema=schema, expected_schema=schema) table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) # schema's metadata is generated by from_pandas conversion expected_schema = schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) for column in df.columns: field = schema.field_by_name(column) _check_array_roundtrip(df[column], type=field.type) def test_column_of_lists_first_empty(self): # ARROW-2124 num_lists = [[], [2, 3, 4], [3, 6, 7, 8], [], [2]] series = pd.Series([np.array(s, dtype=float) for s in num_lists]) arr = pa.array(series) result = pd.Series(arr.to_pandas()) tm.assert_series_equal(result, series) def test_column_of_lists_chunked(self): # ARROW-1357 df = pd.DataFrame({ 'lists': np.array([ [1, 2], None, [2, 3], [4, 5], [6, 7], [8, 9] ], dtype=object) }) schema = pa.schema([ pa.field('lists', pa.list_(pa.int64())) ]) t1 = pa.Table.from_pandas(df[:2], schema=schema) t2 = pa.Table.from_pandas(df[2:], schema=schema) table = pa.concat_tables([t1, t2]) result = table.to_pandas() tm.assert_frame_equal(result, df) def test_column_of_lists_chunked2(self): data1 = [[0, 1], [2, 3], [4, 5], [6, 7], [10, 11], [12, 13], [14, 15], [16, 17]] data2 = [[8, 9], [18, 19]] a1 = pa.array(data1) a2 = pa.array(data2) t1 = pa.Table.from_arrays([a1], names=['a']) t2 = pa.Table.from_arrays([a2], names=['a']) concatenated = pa.concat_tables([t1, t2]) result = concatenated.to_pandas() expected = pd.DataFrame({'a': data1 + data2})
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import argparse import config import todoist import mystrings as s import pandas as pd import numpy as np from datetime import datetime, timedelta import os def initialize_todoist_api(): # Used an access token obtained from https://developer.todoist.com/appconsole.html # Stored this access token "access_token" in file config.py (not included in the repo) todoist_api = todoist.TodoistAPI(config.access_token) todoist_api.sync() return todoist_api def get_projects_df(todoist_api): # Creating DataFrame of projects from 'projects' list of dicts # .data attribute retrieves a python dictionary rather than todoist.models.Project projects = [project.data for project in todoist_api.state[s.PROJECTS]] df = pd.DataFrame(projects) return df def get_tasks_df(todoist_api): tasks = [task.data for task in todoist_api.state[s.ITEMS]] df = pd.DataFrame(tasks) return df def add_parent_projects_to_tasks(df_p, df_t): # Adds "project parent" column to projects dataframe map_project = dict(df_p[[s.ID, s.NAME]].values) df_p[s.PARENT_PROJECT] = df_p.parent_id.map(map_project) map_project_parent = dict(df_p[[s.ID, s.PARENT_PROJECT]].values) # Use these mappings to create task columns with tasks' project name and parent project df_t[s.PROJECT_NAME] = df_t.project_id.map(map_project) df_t[s.PARENT_PROJECT] = df_t.project_id.map(map_project_parent) return df_t def add_parent_tasks_to_tasks(df_t): # Create maps to create task columns with parent task, and parent task priority map_task = dict(df_t[[s.ID, s.CONTENT]].values) map_priorities = dict(df_t[[s.ID, s.PRIORITY]].values) df_t[s.PARENT_TASK] = df_t.parent_id.map(map_task) df_t[s.PARENT_PRIORITY] = df_t.parent_id.map(map_priorities) # Fill in values when task is top leel df_t[s.PARENT_PRIORITY] = np.where(pd.isnull(df_t[s.PARENT_TASK]), df_t[s.PRIORITY], df_t[s.PARENT_PRIORITY]) df_t[s.PARENT_TASK] = np.where(pd.isnull(df_t[s.PARENT_TASK]), df_t[s.CONTENT], df_t[s.PARENT_TASK]) df_t[s.PARENT_ID] = np.where(pd.isnull(df_t[s.PARENT_ID]), 0, df_t[s.PARENT_ID]) return df_t def convert_datetimes_to_tz(df, timezone, datetime_format): # Convert Date strings (in UTC by default) to datetime and format it df[s.DATE_ADDED] = pd.to_datetime( (pd.to_datetime(df[s.DATE_ADDED], utc=True) .dt.tz_convert(timezone) .dt.strftime(datetime_format))) df[s.DATE_COMPLETED] = pd.to_datetime( (
pd.to_datetime(df[s.DATE_COMPLETED], utc=True)
pandas.to_datetime
import os import random import math import numpy as np import pandas as pd import itertools from functools import lru_cache ########################## ## Compliance functions ## ########################## def delayed_ramp_fun(Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current date tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start-tau_days)/pd.Timedelta('1D') def ramp_fun(Nc_old, Nc_new, t, t_start, l): """ t : timestamp current date l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start)/pd.Timedelta('1D') ############################### ## Mobility update functions ## ############################### def load_all_mobility_data(agg, dtype='fractional', beyond_borders=False): """ Function that fetches all available mobility data and adds it to a DataFrame with dates as indices and numpy matrices as values. Make sure to regularly update the mobility data with the notebook notebooks/preprocessing/Quick-update_mobility-matrices.ipynb to get the data for the most recent days. Also returns the average mobility over all available data, which might NOT always be desirable as a back-up mobility. Input ----- agg : str Denotes the spatial aggregation at hand. Either 'prov', 'arr' or 'mun' dtype : str Choose the type of mobility data to return. Either 'fractional' (default), staytime (all available hours for region g spent in h), or visits (all unique visits from region g to h) beyond_borders : boolean If true, also include mobility abroad and mobility from foreigners Returns ------- all_mobility_data : pd.DataFrame DataFrame with datetime objects as indices ('DATE') and np.arrays ('place') as value column average_mobility_data : np.array average mobility matrix over all available dates """ ### Validate input ### if agg not in ['mun', 'arr', 'prov']: raise ValueError( "spatial stratification '{0}' is not legitimate. Possible spatial " "stratifications are 'mun', 'arr', or 'prov'".format(agg) ) if dtype not in ['fractional', 'staytime', 'visits']: raise ValueError( "data type '{0}' is not legitimate. Possible mobility matrix " "data types are 'fractional', 'staytime', or 'visits'".format(dtype) ) ### Load all available data ### # Define absolute location of this file abs_dir = os.path.dirname(__file__) # Define data location for this particular aggregation level data_location = f'../../../data/interim/mobility/{agg}/{dtype}' # Iterate over all available interim mobility data all_available_dates=[] all_available_places=[] directory=os.path.join(abs_dir, f'{data_location}') for csv in os.listdir(directory): # take YYYYMMDD information from processed CSVs. NOTE: this supposes a particular data name format! datum = csv[-12:-4] # Create list of datetime objects all_available_dates.append(pd.to_datetime(datum, format="%Y%m%d")) # Load the CSV as a np.array if beyond_borders: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').values else: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').drop(index='Foreigner', columns='ABROAD').values if dtype=='fractional': # make sure the rows sum up to 1 nicely again after dropping a row and a column place = place / place.sum(axis=1) # Create list of places all_available_places.append(place) # Create new empty dataframe with available dates. Load mobility later df = pd.DataFrame({'DATE' : all_available_dates, 'place' : all_available_places}).set_index('DATE') all_mobility_data = df.copy() # Take average of all available mobility data average_mobility_data = df['place'].values.mean() return all_mobility_data, average_mobility_data class make_mobility_update_function(): """ Output the time-dependent mobility function with the data loaded in cache Input ----- proximus_mobility_data : DataFrame Pandas DataFrame with dates as indices and matrices as values. Output of mobility.get_proximus_mobility_data. proximus_mobility_data_avg : np.array Average mobility matrix over all matrices """ def __init__(self, proximus_mobility_data, proximus_mobility_data_avg): self.proximus_mobility_data = proximus_mobility_data self.proximus_mobility_data_avg = proximus_mobility_data_avg @lru_cache() # Define mobility_update_func def __call__(self, t, default_mobility=None): """ time-dependent function which has a mobility matrix of type dtype for every date. Note: only works with datetime input (no integer time steps). This Input ----- t : timestamp current date as datetime object states : str formal necessity param : str formal necessity default_mobility : np.array or None If None (default), returns average mobility over all available dates. Else, return user-defined mobility Returns ------- place : np.array square matrix with mobility of type dtype (fractional, staytime or visits), dimension depending on agg """ t = pd.Timestamp(t.date()) try: # if there is data available for this date (if the key exists) place = self.proximus_mobility_data['place'][t] except: if default_mobility: # If there is no data available and a user-defined input is given place = self.default_mobility else: # No data and no user input: fall back on average mobility place = self.proximus_mobility_data_avg return place def mobility_wrapper_func(self, t, states, param, default_mobility=None): t = pd.Timestamp(t.date()) if t <= pd.Timestamp('2020-03-17'): place = self.__call__(t, default_mobility=default_mobility) return np.eye(place.shape[0]) else: return self.__call__(t, default_mobility=default_mobility) ################### ## VOC functions ## ################### class make_VOC_function(): """ Class that returns a time-dependant parameter function for COVID-19 SEIRD model parameter alpha (variant fraction). Current implementation includes the alpha - delta strains. If the class is initialized without arguments, a logistic model fitted to prelevance data of the alpha-gamma variant is used. The class can also be initialized with the alpha-gamma prelavence data provided by Prof. <NAME>. A logistic model fitted to prelevance data of the delta variant is always used. Input ----- *df_abc: pd.dataFrame (optional) Alpha, Beta, Gamma prelevance dataset by <NAME>, obtained using: `from covid19model.data import VOC` `df_abc = VOC.get_abc_data()` `VOC_function = make_VOC_function(df_abc)` Output ------ __class__ : function Default variant function """ def __init__(self, *df_abc): self.df_abc = df_abc self.data_given = False if self.df_abc != (): self.df_abc = df_abc[0] # First entry in list of optional arguments (dataframe) self.data_given = True @lru_cache() def VOC_abc_data(self,t): return self.df_abc.iloc[self.df_abc.index.get_loc(t, method='nearest')]['baselinesurv_f_501Y.V1_501Y.V2_501Y.V3'] @lru_cache() def VOC_abc_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-02-14') k = 0.07 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) @lru_cache() def VOC_delta_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-06-25') k = 0.11 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) # Default VOC function includes British and Indian variants def __call__(self, t, states, param): # Convert time to timestamp t = pd.Timestamp(t.date()) # Introduction Indian variant t1 = pd.Timestamp('2021-05-01') # Construct alpha if t <= t1: if self.data_given: return np.array([1-self.VOC_abc_data(t), self.VOC_abc_data(t), 0]) else: return np.array([1-self.VOC_abc_logistic(t), self.VOC_abc_logistic(t), 0]) else: return np.array([0, 1-self.VOC_delta_logistic(t), self.VOC_delta_logistic(t)]) ########################### ## Vaccination functions ## ########################### from covid19model.data.model_parameters import construct_initN class make_vaccination_function(): """ Class that returns a two-fold time-dependent parameter function for the vaccination strategy by default. First, first dose data by sciensano are used. In the future, a hypothetical scheme is used. If spatial data is given, the output consists of vaccination data per NIS code. Input ----- df : pd.dataFrame *either* Sciensano public dataset, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_sciensano_COVID19_data(update=False)` *or* public spatial vaccination data, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_public_spatial_vaccination_data(update=False,agg='arr')` spatial : Boolean True if df is spatially explicit. None by default. Output ------ __class__ : function Default vaccination function """ def __init__(self, df, age_classes=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): age_stratification_size = len(age_classes) # Assign inputs to object self.df = df self.age_agg = age_stratification_size # Check if spatial data is provided self.spatial = None if 'NIS' in self.df.index.names: self.spatial = True self.space_agg = len(self.df.index.get_level_values('NIS').unique().values) # infer aggregation (prov, arr or mun) if self.space_agg == 11: self.agg = 'prov' elif self.space_agg == 43: self.agg = 'arr' elif self.space_agg == 581: self.agg = 'mun' else: raise Exception(f"Space is {G}-fold stratified. This is not recognized as being stratification at Belgian province, arrondissement, or municipality level.") # Check if dose data is provided self.doses = None if 'dose' in self.df.index.names: self.doses = True self.dose_agg = len(self.df.index.get_level_values('dose').unique().values) # Define start- and enddate self.df_start = pd.Timestamp(self.df.index.get_level_values('date').min()) self.df_end = pd.Timestamp(self.df.index.get_level_values('date').max()) # Perform age conversion # Define dataframe with desired format iterables=[] for index_name in self.df.index.names: if index_name != 'age': iterables += [self.df.index.get_level_values(index_name).unique()] else: iterables += [age_classes] index = pd.MultiIndex.from_product(iterables, names=self.df.index.names) self.new_df = pd.Series(index=index) # Four possibilities exist: can this be sped up? if self.spatial: if self.doses: # Shorten? for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, NIS, slice(None), dose)] self.new_df.loc[(date, NIS, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): data = self.df.loc[(date,NIS)] self.new_df.loc[(date, NIS)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: if self.doses: for date in self.df.index.get_level_values('date').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, slice(None), dose)] self.new_df.loc[(date, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes).values else: for date in self.df.index.get_level_values('date').unique(): data = self.df.loc[(date)] self.new_df.loc[(date)] = self.convert_age_stratified_vaccination_data(data, age_classes).values self.df = self.new_df def convert_age_stratified_vaccination_data(self, data, age_classes, agg=None, NIS=None): """ A function to convert the sciensano vaccination data to the desired model age groups Parameters ---------- data: pd.Series A series of age-stratified vaccination incidences. Index must be of type pd.Intervalindex. age_classes : pd.IntervalIndex Desired age groups of the vaccination dataframe. agg: str Spatial aggregation: prov, arr or mun NIS : str NIS code of consired spatial element Returns ------- out: pd.Series Converted data. """ # Pre-allocate new series out = pd.Series(index = age_classes, dtype=float) # Extract demographics if agg: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).loc[NIS,:].values demographics = construct_initN(None, agg).loc[NIS,:].values else: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).values demographics = construct_initN(None, agg).values # Loop over desired intervals for idx,interval in enumerate(age_classes): result = [] for age in range(interval.left, interval.right): try: result.append(demographics[age]/data_n_individuals[data.index.get_level_values('age').contains(age)]*data.iloc[np.where(data.index.get_level_values('age').contains(age))[0][0]]) except: result.append(0) out.iloc[idx] = sum(result) return out @lru_cache() def get_data(self,t): if self.spatial: if self.doses: try: # Only includes doses A, B and C (so not boosters!) for now data = np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) data[:,:,:-1] = np.array(self.df.loc[t,:,:,:].values).reshape( (self.space_agg, self.age_agg, self.dose_agg) ) return data except: return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.space_agg, self.age_agg) ) except: return np.zeros([self.space_agg, self.age_agg]) else: if self.doses: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.age_agg, self.dose_agg) ) except: return np.zeros([self.age_agg, self.dose_agg]) else: try: return np.array(self.df.loc[t,:].values) except: return np.zeros(self.age_agg) def unidose_2021_vaccination_campaign(self, states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal): # Compute the number of vaccine eligible individuals VE = states['S'] + states['R'] # Initialize N_vacc N_vacc = np.zeros(self.age_agg) # Start vaccination loop idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses = 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx]] = daily_doses daily_doses = 0 else: N_vacc[vacc_order[idx]] = VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc def booster_campaign(self, states, daily_doses, vacc_order, stop_idx, refusal): # Compute the number of booster eligible individuals VE = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] \ + states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Initialize N_vacc N_vacc = np.zeros([self.age_agg,self.dose_agg]) # Booster vaccination strategy without refusal idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses= 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx],3] = daily_doses daily_doses= 0 else: N_vacc[vacc_order[idx],3] = VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc # Default vaccination strategy = Sciensano data + hypothetical scheme after end of data collection for unidose model only (for now) def __call__(self, t, states, param, initN, daily_doses=60000, delay_immunity = 21, vacc_order = [8,7,6,5,4,3,2,1,0], stop_idx=9, refusal = [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]): """ time-dependent function for the Belgian vaccination strategy First, all available first-dose data from Sciensano are used. Then, the user can specify a custom vaccination strategy of "daily_first_dose" first doses per day, administered in the order specified by the vector "vacc_order" with a refusal propensity of "refusal" in every age group. This vaccination strategy does not distinguish between vaccination doses, individuals are transferred to the vaccination circuit after some time delay after the first dose. For use with the model `COVID19_SEIRD` and `COVID19_SEIRD_spatial_vacc` in `~src/models/models.py` Parameters ---------- t : int Simulation time states: dict Dictionary containing values of model states param : dict Model parameter dictionary initN : list or np.array Demographics according to the epidemiological model age bins daily_first_dose : int Number of doses administered per day. Default is 30000 doses/day. delay_immunity : int Time delay between first dose vaccination and start of immunity. Default is 21 days. vacc_order : array Vector containing vaccination prioritization preference. Default is old to young. Must be equal in length to the number of age bins in the model. stop_idx : float Index of age group at which the vaccination campaign is halted. An index of 9 corresponds to vaccinating all age groups, an index of 8 corresponds to not vaccinating the age group corresponding with vacc_order[idx]. refusal: array Vector containing the fraction of individuals refusing a vaccine per age group. Default is 30% in every age group. Must be equal in length to the number of age bins in the model. Return ------ N_vacc : np.array Number of individuals to be vaccinated at simulation time "t" per age, or per [patch,age] """ # Convert time to suitable format t = pd.Timestamp(t.date()) # Convert delay to a timedelta delay = pd.Timedelta(str(int(delay_immunity))+'D') # Compute vaccinated individuals after spring-summer 2021 vaccination campaign check_time = pd.Timestamp('2021-10-01') # Only for non-spatial multi-vaccindation dose model if not self.spatial: if self.doses: if t == check_time: self.fully_vaccinated_0 = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] + \ states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Use data if t <= self.df_end + delay: return self.get_data(t-delay) # Projection into the future else: if self.spatial: if self.doses: # No projection implemented return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: # No projection implemented return np.zeros([self.space_agg,self.age_agg]) else: if self.doses: return self.booster_campaign(states, daily_doses, vacc_order, stop_idx, refusal) else: return self.unidose_2021_vaccination_campaign(states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal) ################################### ## Google social policy function ## ################################### class make_contact_matrix_function(): """ Class that returns contact matrix based on 4 prevention parameters by default, but has other policies defined as well. Input ----- Nc_all : dictionnary contact matrices for home, schools, work, transport, leisure and others df_google : dataframe google mobility data Output ------ __class__ : default function Default output function, based on contact_matrix_4prev """ def __init__(self, df_google, Nc_all): self.df_google = df_google.astype(float) self.Nc_all = Nc_all # Compute start and endtimes of dataframe self.df_google_start = df_google.index.get_level_values('date')[0] self.df_google_end = df_google.index.get_level_values('date')[-1] # Check if provincial data is provided self.provincial = None if 'NIS' in self.df_google.index.names: self.provincial = True self.space_agg = len(self.df_google.index.get_level_values('NIS').unique().values) @lru_cache() # once the function is run for a set of parameters, it doesn't need to compile again def __call__(self, t, prev_home=1, prev_schools=1, prev_work=1, prev_rest = 1, school=None, work=None, transport=None, leisure=None, others=None, home=None): """ t : timestamp current date prev_... : float [0,1] prevention parameter to estimate school, work, transport, leisure, others : float [0,1] level of opening of these sectors if None, it is calculated from google mobility data only school cannot be None! """ if school is None: raise ValueError( "Please indicate to which extend schools are open") places_var = [work, transport, leisure, others] places_names = ['work', 'transport', 'leisure', 'others'] GCMR_names = ['work', 'transport', 'retail_recreation', 'grocery'] if self.provincial: if t < pd.Timestamp('2020-03-17'): return np.ones(self.space_agg)[:,np.newaxis,np.newaxis]*self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[(t, slice(None)),:]/100 else: # Extract last 14 days and take the mean row = -self.df_google.loc[(self.df_google_end - pd.Timedelta(days=14)): self.df_google_end, slice(None)].mean(level='NIS')/100 # Sort NIS codes from low to high row.sort_index(level='NIS', ascending=True,inplace=True) # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]].values else: try: test=len(place) except: place = place*np.ones(self.space_agg) values_dict.update({places_names[idx]: place}) # Schools: try: test=len(school) except: school = school*np.ones(self.space_agg) # Construct contact matrix CM = (prev_home*np.ones(self.space_agg)[:, np.newaxis,np.newaxis]*self.Nc_all['home'] + (prev_schools*school)[:, np.newaxis,np.newaxis]*self.Nc_all['schools'] + (prev_work*values_dict['work'])[:,np.newaxis,np.newaxis]*self.Nc_all['work'] + (prev_rest*values_dict['transport'])[:,np.newaxis,np.newaxis]*self.Nc_all['transport'] + (prev_rest*values_dict['leisure'])[:,np.newaxis,np.newaxis]*self.Nc_all['leisure'] + (prev_rest*values_dict['others'])[:,np.newaxis,np.newaxis]*self.Nc_all['others']) else: if t < pd.Timestamp('2020-03-17'): return self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[t]/100 else: # Extract last 14 days and take the mean row = -self.df_google[-14:-1].mean()/100 # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]] values_dict.update({places_names[idx]: place}) # Construct contact matrix CM = (prev_home*self.Nc_all['home'] + prev_schools*school*self.Nc_all['schools'] + prev_work*values_dict['work']*self.Nc_all['work'] + prev_rest*values_dict['transport']*self.Nc_all['transport'] + prev_rest*values_dict['leisure']*self.Nc_all['leisure'] + prev_rest*values_dict['others']*self.Nc_all['others']) return CM def all_contact(self): return self.Nc_all['total'] def all_contact_no_schools(self): return self.Nc_all['total'] - self.Nc_all['schools'] def ramp_fun(self, Nc_old, Nc_new, t, t_start, l): """ t : timestamp current simulation time t_start : timestamp start of policy change l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start)/pd.Timedelta('1D') ) def delayed_ramp_fun(self, Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current simulation time t_start : timestamp start of policy change tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start-tau_days)/pd.Timedelta('1D') ) #################### ## National model ## #################### def policies_all(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array (9x9) Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-03') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 = pd.Timestamp('2020-09-01') # end of summer holidays t7 = pd.Timestamp('2020-09-21') # Opening universities # Define key dates of second wave t8 = pd.Timestamp('2020-10-19') # lockdown (1) t9 = pd.Timestamp('2020-11-02') # lockdown (2) t10 = pd.Timestamp('2020-11-16') # schools re-open t11 = pd.Timestamp('2020-12-18') # Christmas holiday starts t12 = pd.Timestamp('2021-01-04') # Christmas holiday ends t13 = pd.Timestamp('2021-02-15') # Spring break starts t14 = pd.Timestamp('2021-02-21') # Spring break ends t15 = pd.Timestamp('2021-02-28') # Contact increase in children t16 = pd.Timestamp('2021-03-26') # Start of Easter holiday t17 = pd.Timestamp('2021-04-18') # End of Easter holiday t18 = pd.Timestamp('2021-06-01') # Start of lockdown relaxation t19 = pd.Timestamp('2021-07-01') # Start of Summer holiday t20 = pd.Timestamp('2021-09-01') # End of Summer holiday t21 = pd.Timestamp('2021-09-21') # Opening of universities t22 = pd.Timestamp('2021-10-01') # Flanders releases all measures t23 = pd.Timestamp('2021-11-01') # Start of autumn break t24 = pd.Timestamp('2021-11-07') # End of autumn break t25 = pd.Timestamp('2021-12-26') # Start of Christmass break t26 = pd.Timestamp('2022-01-06') # End of Christmass break t27 = pd.Timestamp('2022-02-28') # Start of Spring Break t28 = pd.Timestamp('2022-03-06') # End of Spring Break t29 = pd.Timestamp('2022-04-04') # Start of Easter Break t30 = pd.Timestamp('2022-04-17') # End of Easter Break t31 = pd.Timestamp('2022-07-01') # Start of summer holidays t32 = pd.Timestamp('2022-09-01') # End of summer holidays t33 = pd.Timestamp('2022-09-21') # Opening of universities t34 = pd.Timestamp('2022-10-31') # Start of autumn break t35 = pd.Timestamp('2022-11-06') # End of autumn break if t <= t1: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t1 < t <= t1 + l1_days: t = pd.Timestamp(t.date()) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) policy_new = self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) return self.ramp_fun(policy_old, policy_new, t, t1, l1) elif t1 + l1_days < t <= t2: return self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) elif t2 < t <= t3: l = (t3 - t2)/pd.Timedelta(days=1) r = (t3 - t2)/(t4 - t2) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t2, l) elif t3 < t <= t4: l = (t4 - t3)/pd.Timedelta(days=1) r = (t3 - t2)/(t4 - t2) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t3, l) elif t4 < t <= t5: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t5 < t <= t6: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) # Second wave elif t6 < t <= t7: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0.7) elif t7 < t <= t8: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t8 < t <= t8 + l2_days: policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) policy_new = self.__call__(t, prev_schools, prev_work, prev_rest_lockdown, school=1) return self.ramp_fun(policy_old, policy_new, t, t8, l2) elif t8 + l2_days < t <= t9: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t9 < t <= t10: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t10 < t <= t11: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t11 < t <= t12: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t12 < t <= t13: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t13 < t <= t14: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t14 < t <= t15: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t15 < t <= t16: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t16 < t <= t17: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t17 < t <= t18: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t18 < t <= t19: l = (t19 - t18)/pd.Timedelta(days=1) r = (t19 - t18)/(t20 - t18) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=1) return self.ramp_fun(policy_old, policy_new, t, t18, l) elif t19 < t <= t20: l = (t20 - t19)/pd.Timedelta(days=1) r = (t19 - t18)/(t20 - t18) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, 0.75*prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t19, l) elif t20 < t <= t21: return self.__call__(t, prev_home, prev_schools, prev_work, 0.75*prev_rest_relaxation, school=0.7) elif t21 < t <= t22: return self.__call__(t, prev_home, prev_schools, prev_work, 0.70*prev_rest_relaxation, school=1) elif t22 < t <= t23: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t23 < t <= t24: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) elif t24 < t <= t25: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t25 < t <= t26: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t26 < t <= t27: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t27 < t <= t28: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, leisure=1.1, work=0.9, transport=1, others=1, school=0) elif t28 < t <= t29: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t29 < t <= t30: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t30 < t <= t31: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t31 < t <= t32: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t32 < t <= t33: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=0.8) elif t33 < t <= t34: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t34 < t <= t35: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.9, leisure=1.1, transport=1, others=1, school=0) else: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) def policies_all_WAVE4(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home, date_measures, scenario): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-03') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 = pd.Timestamp('2020-09-01') # end of summer holidays t7 = pd.Timestamp('2020-09-21') # Opening universities # Define key dates of second wave t8 = pd.Timestamp('2020-10-19') # lockdown (1) t9 = pd.Timestamp('2020-11-02') # lockdown (2) t10 = pd.Timestamp('2020-11-16') # schools re-open t11 = pd.Timestamp('2020-12-18') # Christmas holiday starts t12 = pd.Timestamp('2021-01-04') # Christmas holiday ends t13 = pd.Timestamp('2021-02-15') # Spring break starts t14 = pd.Timestamp('2021-02-21') # Spring break ends t15 = pd.Timestamp('2021-02-28') # Contact increase in children t16 = pd.Timestamp('2021-03-26') # Start of Easter holiday t17 = pd.Timestamp('2021-04-18') # End of Easter holiday t18 = pd.Timestamp('2021-06-01') # Start of lockdown relaxation t19 = pd.Timestamp('2021-07-01') # Start of Summer holiday t20 = pd.Timestamp('2021-09-01') # End of Summer holiday t21 = pd.Timestamp('2021-09-21') # Opening of universities t22 = pd.Timestamp('2021-10-01') # Flanders releases all measures t23 = pd.Timestamp('2021-11-01') # Start of autumn break t24 = pd.Timestamp('2021-11-07') # End of autumn break # Fourth WAVE t25 = pd.Timestamp('2021-11-22') # Start of mandatory telework + start easing in leisure restrictions t26 = pd.Timestamp('2021-12-18') # Start of Christmass break for schools t27 = pd.Timestamp('2021-12-26') # Start of Christmass break for general population t28 = pd.Timestamp('2022-01-06') # End of Christmass break t29 = pd.Timestamp('2022-01-28') # End of measures t30 = pd.Timestamp('2022-02-28') # Start of Spring Break t31 = pd.Timestamp('2022-03-06') # End of Spring Break t32 = pd.Timestamp('2022-04-04') # Start of Easter Break t33 = pd.Timestamp('2022-04-17') # End of Easter Break t34 = pd.Timestamp('2022-07-01') # Start of summer holidays t35 = pd.Timestamp('2022-09-01') # End of summer holidays t36 = pd.Timestamp('2022-09-21') # Opening of universities t37 = pd.Timestamp('2022-10-31') # Start of autumn break t38 = pd.Timestamp('2022-11-06') # End of autumn break scenarios_work = [1, 0.7, 0.7, 0.7, 0.7] scenarios_schools = [1, 1, 1, 1, 1] scenarios_leisure = [1, 1, 0.75, 0.50, 0.25] if t <= t1: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t1 < t <= t1 + l1_days: policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) policy_new = self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) return self.ramp_fun(policy_old, policy_new, t, t1, l1) elif t1 + l1_days < t <= t2: return self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) elif t2 < t <= t3: l = (t3 - t2)/pd.Timedelta(days=1) r = (t3 - t2)/(t4 - t2) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t2, l) elif t3 < t <= t4: l = (t4 - t3)/pd.Timedelta(days=1) r = (t3 - t2)/(t4 - t2) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t3, l) elif t4 < t <= t5: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t5 < t <= t6: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) # Second wave elif t6 < t <= t7: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0.7) elif t7 < t <= t8: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t8 < t <= t8 + l2_days: policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) policy_new = self.__call__(t, prev_schools, prev_work, prev_rest_lockdown, school=1) return self.ramp_fun(policy_old, policy_new, t, t8, l2) elif t8 + l2_days < t <= t9: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t9 < t <= t10: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t10 < t <= t11: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t11 < t <= t12: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t12 < t <= t13: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t13 < t <= t14: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t14 < t <= t15: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t15 < t <= t16: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t16 < t <= t17: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t17 < t <= t18: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t18 < t <= t19: l = (t19 - t18)/pd.Timedelta(days=1) r = (t19 - t18)/(t20 - t18) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=1) return self.ramp_fun(policy_old, policy_new, t, t18, l) elif t19 < t <= t20: l = (t20 - t19)/pd.Timedelta(days=1) r = (t19 - t18)/(t20 - t18) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, 0.75*prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t19, l) elif t20 < t <= t21: return self.__call__(t, prev_home, prev_schools, prev_work, 0.75*prev_rest_relaxation, school=0.7) elif t21 < t <= t22: return self.__call__(t, prev_home, prev_schools, prev_work, 0.70*prev_rest_relaxation, school=1) elif t22 < t <= t23: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t23 < t <= t24: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) elif t24 < t <= t25: # End of autumn break --> Date of measures return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t25 < t <= t25 + pd.Timedelta(5, unit='D'): # Date of measures --> End easing in leisure restrictions policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=scenarios_work[scenario], school=1) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=scenarios_work[scenario], leisure=scenarios_leisure[scenario], school=scenarios_schools[scenario]) return self.ramp_fun(policy_old, policy_new, t, t25, 5) elif t25 + pd.Timedelta(5, unit='D') < t <= t26: # End easing in leisure restrictions --> Early schools closure before Christmas holiday return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=scenarios_work[scenario], leisure=scenarios_leisure[scenario], school=scenarios_schools[scenario]) elif t26 < t <= t27: # Early schools closure before Christmas holiday --> Christmas holiday return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=scenarios_work[scenario], leisure=scenarios_leisure[scenario], school=0) elif t27 < t <= t28: # Christmas holiday return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=scenarios_work[scenario]-0.2, leisure=scenarios_leisure[scenario], transport=scenarios_work[scenario]-0.2, school=0) elif t28 < t <= t29: # Christmass holiday --> End of measures return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, leisure=scenarios_leisure[scenario], work=scenarios_work[scenario], school=1) elif t29 < t <= t30: # End of Measures --> Spring break return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, leisure=1, work=1, transport=1, others=1, school=1) elif t30 < t <= t31: # Spring Break return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1, transport=0.7, others=1, school=0) elif t31 < t <= t32: # Spring Break --> Easter return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t32 < t <= t33: # Easter return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1, transport=1, others=1, school=0) elif t33 < t <= t34: # Easter --> Summer return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t34 < t <= t35: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1, transport=1, others=1, school=0) elif t35 < t <= t36: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=0.7) elif t36 < t <= t37: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t37 < t <= t38: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1, transport=1, others=1, school=0) else: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) ################### ## Spatial model ## ################### def policies_all_spatial(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array (9x9) Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-07') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 = pd.Timestamp('2020-09-01') # end of summer holidays t7 = pd.Timestamp('2020-09-21') # Opening universities # Define key dates of second wave t8 = pd.Timestamp('2020-10-19') # lockdown (1) t9 = pd.Timestamp('2020-11-02') # lockdown (2) t10 = pd.Timestamp('2020-11-16') # schools re-open t11 = pd.Timestamp('2020-12-18') # Christmas holiday starts t12 = pd.Timestamp('2021-01-04') # Christmas holiday ends t13 = pd.Timestamp('2021-02-15') # Spring break starts t14 = pd.Timestamp('2021-02-21') # Spring break ends t15 = pd.Timestamp('2021-02-28') # Contact increase in children t16 = pd.Timestamp('2021-03-26') # Start of Easter holiday t17 = pd.Timestamp('2021-04-18') # End of Easter holiday t18 = pd.Timestamp('2021-05-07') # Start of relaxations t19 = pd.Timestamp('2021-07-01') # Start of Summer holiday t20 = pd.Timestamp('2021-09-01') # End of Summer holiday t21 = pd.Timestamp('2021-09-21') # Opening of universities t22 = pd.Timestamp('2021-11-01') # Start of autumn break t23 = pd.Timestamp('2021-11-07') # End of autumn break t24 = pd.Timestamp('2021-12-26') # Start of Christmass break t25 = pd.Timestamp('2022-01-06') # End of Christmass break t26 = pd.Timestamp('2022-02-28') # Start of Spring Break t27 = pd.Timestamp('2022-03-06') # End of Spring Break t28 = pd.Timestamp('2022-04-04') # Start of Easter Break t29 = pd.Timestamp('2022-04-17') # End of Easter Break t30 = pd.Timestamp('2022-07-01') # Start of summer holidays t31 = pd.Timestamp('2022-09-01') # End of summer holidays t32 = pd.Timestamp('2022-09-21') # Opening of universities t33 = pd.Timestamp('2022-10-31') # Start of autumn break t34 = pd.Timestamp('2022-11-06') # End of autumn break spatial_summer_lockdown_2020 = tuple(np.array([prev_rest_lockdown, prev_rest_lockdown, # F prev_rest_lockdown, # W prev_rest_lockdown, # Bxl prev_rest_lockdown, prev_rest_lockdown, # F prev_rest_relaxation, prev_rest_relaxation, # W prev_rest_lockdown, # F 0.7*prev_rest_relaxation, 0.7*prev_rest_relaxation])) # W co_F = 0.60 co_W = 0.50 co_Bxl = 0.45 spatial_summer_2021 = tuple(np.array([co_F*prev_rest_relaxation, co_F*prev_rest_relaxation, # F co_W*prev_rest_relaxation, # W co_Bxl*prev_rest_relaxation, # Bxl co_F*prev_rest_relaxation, co_F*prev_rest_relaxation, # F co_W*prev_rest_relaxation, co_W*prev_rest_relaxation, # W co_F*prev_rest_relaxation, # F co_W*prev_rest_relaxation, co_W*prev_rest_relaxation])) # W co_F = 1.00 co_W = 0.50 co_Bxl = 0.45 relaxation_flanders_2021 = tuple(np.array([co_F*prev_rest_relaxation, co_F*prev_rest_relaxation, # F co_W*prev_rest_relaxation, # W co_Bxl*prev_rest_relaxation, # Bxl co_F*prev_rest_relaxation, co_F*prev_rest_relaxation, # F co_W*prev_rest_relaxation, co_W*prev_rest_relaxation, # W co_F*prev_rest_relaxation, # F co_W*prev_rest_relaxation, co_W*prev_rest_relaxation])) # W if t <= t1: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) #self.Nc_all['total'] elif t1 < t <= t1 + l1_days: t = pd.Timestamp(t.date()) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) #self.Nc_all['total'] policy_new = self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) return self.ramp_fun(policy_old, policy_new, t, t1, l1) elif t1 + l1_days < t <= t2: return self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) elif t2 < t <= t3: l = (t3 - t2)/pd.Timedelta(days=1) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t2, l) # 2020 elif t3 < t <= t4: return self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_relaxation, school=0) elif t4 < t <= t5: return self.__call__(t, prev_home, prev_schools, prev_work, spatial_summer_lockdown_2020, school=0) elif t5 < t <= t6: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) # Second wave elif t6 < t <= t7: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0.8) elif t7 < t <= t8: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t8 < t <= t8 + l2_days: policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) policy_new = self.__call__(t, prev_schools, prev_work, prev_rest_lockdown, school=1) return self.ramp_fun(policy_old, policy_new, t, t8, l2) elif t8 + l2_days < t <= t9: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t9 < t <= t10: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t10 < t <= t11: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t11 < t <= t12: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t12 < t <= t13: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t13 < t <= t14: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t14 < t <= t15: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t15 < t <= t16: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t16 < t <= t17: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t17 < t <= t18: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t18 < t <= t19: l = (t19 - t18)/pd.Timedelta(days=1) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, spatial_summer_2021, school=0) return self.ramp_fun(policy_old, policy_new, t, t18, l) elif t19 < t <= t20: return self.__call__(t, prev_home, prev_schools, prev_work, spatial_summer_2021, school=0) elif t20 < t <= t21: return self.__call__(t, prev_home, prev_schools, prev_work, spatial_summer_2021, school=0.8) elif t21 < t <= t22: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, school=1) elif t22 < t <= t23: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, school=0) elif t23 < t <= t24: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, school=1) elif t24 < t <= t25: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t25 < t <= t26: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, work=1, leisure=1, transport=1, others=1, school=1) elif t26 < t <= t27: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, leisure=1.1, work=0.9, transport=1, others=1, school=0) elif t27 < t <= t28: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, work=1, leisure=1, transport=1, others=1, school=1) elif t28 < t <= t29: return self.__call__(t, prev_home, prev_schools, prev_work, relaxation_flanders_2021, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t29 < t <= t30: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t30 < t <= t31: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t31 < t <= t32: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=0.8) elif t32 < t <= t33: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t33 < t <= t34: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.9, leisure=1.1, transport=1, others=1, school=0) else: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) def policies_all_spatial_WAVE4(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home, date_measures, scenario): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-07') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 =
pd.Timestamp('2020-09-01')
pandas.Timestamp
import argparse from data_utils import get_n_examples_per_class import os import pandas as pd from shutil import copyfile def main(): parser = argparse.ArgumentParser() parser.add_argument("DATA_DIRECTORY", type=str) parser.add_argument("--N_train", type=int, nargs='+') parser.add_argument("--N_valid", type=int, nargs='+') parser.add_argument("--SEED", type=int, default=42) args = parser.parse_args() assert len(args.N_train) == len(args.N_valid) df_full_train = pd.read_csv(os.path.join(args.DATA_DIRECTORY, "full", "train.tsv"), sep='\t') df_full_test_name = os.path.join(args.DATA_DIRECTORY, "full", "test.tsv") df_valid = df_full_train.loc[df_full_train["is_valid"] == True] df_train = df_full_train.loc[df_full_train["is_valid"] == False] label_y = df_train.columns[1] for (n_train, n_valid) in zip(args.N_train, args.N_valid): directory_section = os.path.join(args.DATA_DIRECTORY, str(n_train)) if not os.path.exists(directory_section): os.makedirs(directory_section) df_section_test_name = os.path.join(directory_section, "test.tsv") copyfile(df_full_test_name, df_section_test_name) _, df_reduced_train = get_n_examples_per_class(df_train, n_train, label_y) _, df_reduced_valid = get_n_examples_per_class(df_valid, n_valid, label_y) # FULL VALIDATION SET df_ =
pd.concat([df_reduced_train, df_valid])
pandas.concat
import pytest import numpy as np import numpy.testing as npt import pandas as pd import statsmodels.api as sm import statsmodels.formula.api as smf from scipy.stats import logistic from scipy.optimize import root from delicatessen import MEstimator from delicatessen.utilities import inverse_logit np.random.seed(236461) class TestMEstimation: def test_error_nan(self): """Checks for an error when estimating equations return a NaN at the init values """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, np.nan]) def psi(theta): return y - theta mestimator = MEstimator(psi, init=[0, ]) with pytest.raises(ValueError, match="at least one np.nan"): mestimator.estimate() def test_error_rootfinder1(self): """Checks for an error when an invalid root finder is provided """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) def psi(theta): return y - theta mestimator = MEstimator(psi, init=[0, ]) with pytest.raises(ValueError, match="The solver 'not-avail'"): mestimator.estimate(solver='not-avail') def test_error_rootfinder2(self): """Check that user-specified solver has correct arguments """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) def psi(theta): return y - theta def custom_solver(stacked_equations): options = {"maxiter": 1000} opt = root(stacked_equations, x0=np.asarray([0, ]), method='lm', tol=1e-9, options=options) return opt.x mestimator = MEstimator(psi, init=[0, ]) with pytest.raises(TypeError, match="The user-specified root-finding `solver` must be a function"): mestimator.estimate(solver=custom_solver) def test_error_rootfinder3(self): """Check that user-specified solver returns something besides None """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) def psi(theta): return y - theta def custom_solver(stacked_equations, init): options = {"maxiter": 1000} opt = root(stacked_equations, x0=np.asarray(init), method='lm', tol=1e-9, options=options) mestimator = MEstimator(psi, init=[0, ]) with pytest.raises(ValueError, match="must return the solution to the"): mestimator.estimate(solver=custom_solver) def test_mean_variance_1eq(self): """Tests the mean / variance with a single estimating equation. """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) def psi(theta): return y - theta mestimator = MEstimator(psi, init=[0, ]) mestimator.estimate() # Checking mean estimate npt.assert_allclose(mestimator.theta, np.mean(y), atol=1e-6) # Checking variance estimates npt.assert_allclose(mestimator.asymptotic_variance, np.var(y, ddof=0), atol=1e-6) def test_mean_variance_1eq_lm_solver(self): """Tests the mean / variance with a single estimating equation. """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) def psi(theta): return y - theta mestimator = MEstimator(psi, init=[0, ]) mestimator.estimate(solver='lm') # Checking mean estimate npt.assert_allclose(mestimator.theta, np.mean(y), atol=1e-6) # Checking variance estimates npt.assert_allclose(mestimator.asymptotic_variance, np.var(y, ddof=0), atol=1e-6) def test_mean_variance_2eq(self): """Tests the mean / variance with two estimating equations. """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) def psi(theta): return y - theta[0], (y - theta[0]) ** 2 - theta[1] mestimator = MEstimator(psi, init=[0, 0]) mestimator.estimate() # Checking mean estimate npt.assert_allclose(mestimator.theta[0], np.mean(y), atol=1e-6) # Checking variance estimates npt.assert_allclose(mestimator.theta[1], mestimator.asymptotic_variance[0][0], atol=1e-6) npt.assert_allclose(mestimator.theta[1], np.var(y, ddof=0), atol=1e-6) def test_mean_variance_2eq_lm_solver(self): """Tests the mean / variance with two estimating equations. """ # Data set y = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) def psi(theta): return y - theta[0], (y - theta[0]) ** 2 - theta[1] mestimator = MEstimator(psi, init=[0, 0]) mestimator.estimate(solver='lm') # Checking mean estimate npt.assert_allclose(mestimator.theta[0], np.mean(y), atol=1e-6) # Checking variance estimates npt.assert_allclose(mestimator.theta[1], mestimator.asymptotic_variance[0][0], atol=1e-6) npt.assert_allclose(mestimator.theta[1], np.var(y, ddof=0), atol=1e-6) def test_ratio_estimator(self): """Tests the ratio with a single estimating equation. """ # Data sets data = pd.DataFrame() data['Y'] = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) data['X'] = np.array([1, 5, 3, 5, 1, 4, 1, 2, 5, 1, 2, 12, 1, 8]) def psi(theta): return data['Y'] - data['X']*theta mestimator = MEstimator(psi, init=[0, ]) mestimator.estimate() # Closed form solutions from SB theta = np.mean(data['Y']) / np.mean(data['X']) var = (1 / np.mean(data['X']) ** 2) * np.mean((data['Y'] - theta * data['X']) ** 2) # Checking mean estimate npt.assert_allclose(mestimator.theta, theta, atol=1e-6) # Checking variance estimates npt.assert_allclose(mestimator.asymptotic_variance, var, atol=1e-6) def test_alt_ratio_estimator(self): """Tests the alternative ratio with three estimating equations. """ # Data sets data = pd.DataFrame() data['Y'] = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) data['X'] = np.array([1, 5, 3, 5, 1, 4, 1, 2, 5, 1, 2, 12, 1, 8]) data['C'] = 1 def psi(theta): return (data['Y'] - theta[0], data['X'] - theta[1], data['C'] * theta[0] - theta[1] * theta[2]) mestimator = MEstimator(psi, init=[0, 0, 0]) mestimator.estimate() # Closed form solutions from SB theta = np.mean(data['Y']) / np.mean(data['X']) var = (1 / np.mean(data['X']) ** 2) * np.mean((data['Y'] - theta * data['X']) ** 2) # Checking mean estimate npt.assert_allclose(mestimator.theta[-1], theta, atol=1e-6) # Checking variance estimates npt.assert_allclose(mestimator.asymptotic_variance[-1][-1], var, atol=1e-5) def test_alt_ratio_estimator_lm_solver(self): """Tests the alternative ratio with three estimating equations. """ # Data sets data = pd.DataFrame() data['Y'] = np.array([5, 1, 2, 4, 2, 4, 5, 7, 11, 1, 6, 3, 4, 6]) data['X'] = np.array([1, 5, 3, 5, 1, 4, 1, 2, 5, 1, 2, 12, 1, 8]) data['C'] = 1 def psi(theta): return (data['Y'] - theta[0], data['X'] - theta[1], data['C'] * theta[0] - theta[1] * theta[2]) mestimator = MEstimator(psi, init=[0, 0, 0]) mestimator.estimate(solver='lm') # Closed form solutions from SB theta = np.mean(data['Y']) / np.mean(data['X']) var = (1 / np.mean(data['X']) ** 2) * np.mean((data['Y'] - theta * data['X']) ** 2) # Checking mean estimate npt.assert_allclose(mestimator.theta[-1], theta, atol=1e-6) # Checking variance estimates npt.assert_allclose(mestimator.asymptotic_variance[-1][-1], var, atol=1e-5) def test_ols(self): """Tests linear regression by-hand with a single estimating equation. """ n = 500 data =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime import logging import reader.cache import hashlib import dateutil.parser from pandas import DataFrame, NaT from clubhouse import ClubhouseClient class Clubhouse: def __init__(self, clubhouse_config: dict, workflow: dict) -> None: super().__init__() self.clubhouse_config = clubhouse_config self.project_id = clubhouse_config["project_id"] self.workflow = workflow def cache_name(self): api_key = self.clubhouse_config["api_key"] workflow = str(self.workflow) name_hashed = hashlib.md5( (api_key + self.project_id + workflow).encode("utf-8") ) return name_hashed.hexdigest() self.cache = reader.cache.Cache(cache_name(self)) def get_clubhouse_instance(self) -> ClubhouseClient: clubhouse = ClubhouseClient(self.clubhouse_config["api_key"]) return clubhouse def get_story_data(self, story): logging.debug("Reading data for story %s", str(story["id"])) story_data = { "Key": story["id"], "Type": story["story_type"], "Story Points": story["estimate"], "Creator": NaT, "Created": dateutil.parser.parse(story["created_at"]).replace(tzinfo=None), "Started": ( dateutil.parser.parse(story["started_at"]).replace(tzinfo=None) if story["started"] else NaT ), "Done": ( dateutil.parser.parse(story["completed_at"]).replace(tzinfo=None) if story["completed"] else NaT ), } return story_data def get_stories(self): logging.debug("Getting stories") clubhouse = self.get_clubhouse_instance() stories = clubhouse.get(f"projects/{self.project_id}/stories") return stories def get_data(self) -> DataFrame: logging.debug("Getting stories from Clubhouse.io") if self.clubhouse_config["cache"] and self.cache.is_valid(): logging.debug("Getting clubhouse.io data from cache") df_story_data = self.cache.read() return df_story_data stories = self.get_stories() stories_data = [self.get_story_data(story) for story in stories] df_stories_data =
DataFrame(stories_data)
pandas.DataFrame