prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize( "values, dtype", [ ([1, 2, 3], "int64"), ([1.0, 2.0, 3.0], "float64"), (["a", "b", "c"], "object"), (["a", "b", "c"], "string"), ([1, 2, 3], "datetime64[ns]"), ([1, 2, 3], "datetime64[ns, CET]"), ([1, 2, 3], "timedelta64[ns]"), (["2000", "2001", "2002"], "Period[D]"), ([1, 0, 3], "Sparse"), ([pd.Interval(0, 1), pd.Interval(1, 2), pd.Interval(3, 4)], "interval"), ], ) @pytest.mark.parametrize( "mask", [[True, False, False], [True, True, True], [False, False, False]] ) @pytest.mark.parametrize("box_mask", [True, False]) @pytest.mark.parametrize("frame", [True, False]) def test_series_mask_boolean(values, dtype, mask, box_mask, frame): ser = pd.Series(values, dtype=dtype, index=["a", "b", "c"]) if frame: ser = ser.to_frame() mask = pd.array(mask, dtype="boolean") if box_mask: mask =
pd.Series(mask, index=ser.index)
pandas.Series
import numpy as np import pandas as pd; pd.options.mode.chained_assignment = None import matplotlib.pyplot as plt from tqdm import tqdm from scipy.stats import pearsonr from scipy.stats import spearmanr from scipy.optimize import minimize from scipy.optimize import least_squares import os def is_const(x): if np.linalg.norm(x - np.mean(x)) < 1e-13 * np.abs(np.mean(x)): return True elif np.all( x==x[0]): return True else: return False def calc_eval_metrics(y, y_hat, y_hat_map=None, d=None, ci=None): ''' Calculate RMSE, Pearson's correlation. ''' r = { 'r_p': np.nan, 'r_p_map': np.nan, 'rmse': np.nan, 'rmse_map': np.nan, 'rmse_star_map': np.nan, } if is_const(y_hat): r['r_p'] = np.nan else: r['r_p'] = pearsonr(y, y_hat)[0] r['rmse'] = calc_rmse(y, y_hat) if y_hat_map is not None: r['rmse_map'] = calc_rmse(y, y_hat_map, d=d) r['r_p_map'] = pearsonr(y, y_hat_map)[0] if ci is not None: r['rmse_star_map'] = calc_rmse_star(y, y_hat_map, ci, d)[0] return r def calc_rmse(y_true, y_pred, d=0): if d== 0: rmse = np.sqrt(np.mean(np.square(y_true - y_pred))) else: N = y_true.shape[0] if (N - d) < 1: rmse = np.nan else: rmse = np.sqrt(1 / (N - d) * np.sum(np.square(y_true - y_pred))) # Eq (7-29) P.1401 return rmse def calc_rmse_star(mos_sub, mos_obj, ci, d): N = mos_sub.shape[0] error = mos_sub - mos_obj if ci[0] == -1: p_error = np.nan rmse_star = np.nan else: p_error = (abs(error) - ci).clip(min=0) # Eq (7-27) P.1401 if (N - d) < 1: rmse_star = np.nan else: rmse_star = np.sqrt(1 / (N - d) * sum(p_error) ** 2) # Eq (7-29) P.1401 return rmse_star, p_error, error def calc_mapped(x, b): N = x.shape[0] order = b.shape[0] - 1 A = np.zeros([N, order + 1]) for i in range(order + 1): A[:, i] = x ** (i) return A @ b def fit_first_order(y_con, y_con_hat): A = np.vstack([np.ones(len(y_con_hat)), y_con_hat]).T b = np.linalg.lstsq(A, y_con, rcond=None)[0] return b def fit_second_order(y_con, y_con_hat): A = np.vstack([np.ones(len(y_con_hat)), y_con_hat, y_con_hat ** 2]).T b = np.linalg.lstsq(A, y_con, rcond=None)[0] return b def fit_third_order(y_con, y_con_hat): A = np.vstack([np.ones(len(y_con_hat)), y_con_hat, y_con_hat ** 2, y_con_hat ** 3]).T b = np.linalg.lstsq(A, y_con, rcond=None)[0] p = np.poly1d(np.flipud(b)) p2 = np.polyder(p) rr = np.roots(p2) r = rr[np.imag(rr) == 0] monotonic = all(np.logical_or(r > max(y_con_hat), r < min(y_con_hat))) if monotonic == False: print('Not monotonic!!!') return b def fit_monotonic_third_order( dfile_db, dcon_db=None, pred=None, target_mos=None, target_ci=None, mapping=None): y = dfile_db[target_mos].to_numpy() y_hat = dfile_db[pred].to_numpy() if dcon_db is None: if target_ci in dfile_db: ci = dfile_db[target_ci].to_numpy() else: ci = 0 else: y_con = dcon_db[target_mos].to_numpy() if target_ci in dcon_db: ci = dcon_db[target_ci].to_numpy() else: ci = 0 x = y_hat y_hat_min = min(y_hat) - 0.01 y_hat_max = max(y_hat) + 0.01 def polynomial(p, x): return p[0] + p[1] * x + p[2] * x ** 2 + p[3] * x ** 3 def constraint_2nd_der(p): return 2 * p[2] + 6 * p[3] * x def constraint_1st_der(p): x = np.arange(y_hat_min, y_hat_max, 0.1) return p[1] + 2 * p[2] * x + 3 * p[3] * x ** 2 def objective_con(p): x_map = polynomial(p, x) dfile_db['x_map'] = x_map x_map_con = dfile_db.groupby('con').mean().x_map.to_numpy() err = x_map_con - y_con if mapping == 'pError': p_err = (abs(err) - ci).clip(min=0) return (p_err ** 2).sum() elif mapping == 'error': return (err ** 2).sum() else: raise NotImplementedError def objective_file(p): x_map = polynomial(p, x) err = x_map - y if mapping == 'pError': p_err = (abs(err) - ci).clip(min=0) return (p_err ** 2).sum() elif mapping == 'error': return (err ** 2).sum() else: raise NotImplementedError cons = dict(type='ineq', fun=constraint_1st_der) if dcon_db is None: res = minimize( objective_file, x0=np.array([0., 1., 0., 0.]), method='SLSQP', constraints=cons, ) else: res = minimize( objective_con, x0=np.array([0., 1., 0., 0.]), method='SLSQP', constraints=cons, ) b = res.x return b def calc_mapping( dfile_db, mapping=None, dcon_db=None, target_mos=None, target_ci=None, pred=None, ): if dcon_db is not None: y = dcon_db[target_mos].to_numpy() y_hat = dfile_db.groupby('con').mean().get(pred).to_numpy() else: y = dfile_db[target_mos].to_numpy() y_hat = dfile_db[pred].to_numpy() if mapping == None: b = np.array([0, 1, 0, 0]) d_map = 0 elif mapping == 'first_order': b = fit_first_order(y, y_hat) d_map = 1 elif mapping == 'second_order': b = fit_second_order(y, y_hat) d_map = 3 elif mapping == 'third_order': b = fit_third_order(y, y_hat) d_map = 4 elif mapping == 'monotonic_third_order': b = fit_monotonic_third_order( dfile_db, dcon_db=dcon_db, pred=pred, target_mos=target_mos, target_ci=target_ci, mapping='error', ) d_map = 4 else: raise NotImplementedError return b, d_map def eval_results( df, target_mos='mos', target_ci='mos_ci', pred='mos_pred', mapping=None, do_print=False ): ''' Evaluates a trained model on given dataset. ''' # Loop through databases db_results_df = [] df['y_hat_map'] = np.nan # s = df.db.astype("category").cat.categories for db_name in df.db.astype("category").cat.categories: df_db = df.loc[df.db == db_name] # per file ----------------------------------------------------------- y = df_db[target_mos].to_numpy() if np.isnan(y).any(): r = {'r_p': np.nan, 'r_s': np.nan, 'rmse': np.nan, 'r_p_map': np.nan, 'r_s_map': np.nan, 'rmse_map': np.nan} else: y_hat = df_db[pred].to_numpy() b, d = calc_mapping( df_db, mapping=mapping, target_mos=target_mos, target_ci=target_ci, pred=pred ) y_hat_map = calc_mapped(y_hat, b) r = calc_eval_metrics(y, y_hat, y_hat_map=y_hat_map, d=d) r.pop('rmse_star_map') r = {f'{k}_file': v for k, v in r.items()} if do_print and (not np.isnan(y).any()): print('%-30s r_p_file: %0.2f, rmse_file: %0.2f, rmse_map_file: %0.2f' % (db_name + ':', r['r_p_file'],r['rmse_file'], r['rmse_map_file'])) db_results_df.append({'db': db_name, **r}) # Save individual database results in DataFrame db_results_df = pd.DataFrame(db_results_df) r_average = {} r_average['r_p_mean_file'] = db_results_df.r_p_file.mean() r_average['rmse_mean_file'] = db_results_df.rmse_file.mean() r_average['rmse_map_mean_file'] = db_results_df.rmse_map_file.mean() y = df[target_mos].to_numpy() y_hat = df[pred].to_numpy() r_total_file = calc_eval_metrics(y, y_hat) r_total_file = {'r_p_all': r_total_file['r_p'], 'rmse_all': r_total_file['rmse']} overall_results = { **r_total_file, **r_average } return db_results_df, overall_results def evaluate_mos(csv_mos,csv_mos_pre): df = pd.read_csv(csv_mos) df2 = pd.read_csv(csv_mos_pre) dbs = [] degs =[] moss =[] pre_moss=[] pre_score_dict ={} for i in range(len(df2)): pre_score_dict[df2.iloc[i]['deg_wav']]=df2.iloc[i]['predict_mos'] for i in range(len(df)): dbs.append(df.iloc[i]['db']) degs.append(df.iloc[i]['deg_wav']) moss.append(df.iloc[i]['mos']) pre_moss.append(pre_score_dict[df.iloc[i]['deg_wav']]) df_merge =pd.DataFrame({'db':dbs,'deg_wav':degs,'mos':moss,'mos_pred':pre_moss}) db_results_df, overall_results = eval_results( df_merge, target_mos='mos', target_ci= 'mos_ci', pred='mos_pred', mapping = 'monotonic_third_order', do_print=True) print('r_p_mean_file {:0.4f} rmse_mean_file {:0.4f} rmse_map_mean_file {:0.4f} ' .format(overall_results['r_p_mean_file'], overall_results['rmse_mean_file'], overall_results['rmse_map_mean_file']) ) return db_results_df, overall_results def evaluate_mos_dir(dir,csv): teams =[] teams_plcc =[] teams_rmse =[] teams_rmse_map =[] MSFT_PSTN_Test_plcc =[] MSFT_PSTN_Test_rmse = [] MSFT_PSTN_Test_rmse_map = [] TUB_IS22_DB1_plcc =[] TUB_IS22_DB1_rmse = [] TUB_IS22_DB1_rmse_map = [] TencentCorupsVal_plcc =[] TencentCorupsVal_rmse = [] TencentCorupsVal_rmse_map = [] for path,subpath,files in os.walk(dir): for file in files: if file.endswith('.csv'): fullpath = os.path.join(path,file) assert os.path.exists(fullpath) print('results of team ' +fullpath+':') # sym = check_audio_order(csv,fullpath) # if not sym: # print(fullpath) db_results_df, overall_results= evaluate_mos(csv,fullpath) teams.append(fullpath.split('\\')[-2]) teams_plcc.append(overall_results['r_p_mean_file']) teams_rmse.append(overall_results['rmse_mean_file']) teams_rmse_map.append(overall_results['rmse_map_mean_file']) s = db_results_df['r_p_file'] MSFT_PSTN_Test_plcc.append(db_results_df['r_p_file'][0]) MSFT_PSTN_Test_rmse.append(db_results_df['rmse_file'][0]) MSFT_PSTN_Test_rmse_map.append(db_results_df['rmse_map_file'][0]) TUB_IS22_DB1_plcc.append(db_results_df['r_p_file'][1]) TUB_IS22_DB1_rmse.append(db_results_df['rmse_file'][1]) TUB_IS22_DB1_rmse_map.append(db_results_df['rmse_map_file'][1]) TencentCorupsVal_plcc.append(db_results_df['r_p_file'][2]) TencentCorupsVal_rmse.append(db_results_df['rmse_file'][2]) TencentCorupsVal_rmse_map.append(db_results_df['rmse_map_file'][2]) df = pd.DataFrame({'team_name':teams,'plcc_all_mean':teams_plcc,'rmse_all_mean':teams_rmse,'rmse_map_all_mean':teams_rmse_map,'MSFT_PSTN_Test_plcc':MSFT_PSTN_Test_plcc,'MSFT_PSTN_Test_rmse':MSFT_PSTN_Test_rmse,'MSFT_PSTN_Test_rmse_map':MSFT_PSTN_Test_rmse_map , 'TUB_IS22_DB1_plcc': TUB_IS22_DB1_plcc, 'TUB_IS22_DB1_rmse': TUB_IS22_DB1_rmse, 'TUB_IS22_DB1t_rmse_map': TUB_IS22_DB1_rmse_map ,'TencentCorupsVal_plcc':TencentCorupsVal_plcc,'TencentCorupsVal_rmse':TencentCorupsVal_rmse,'TencentCorupsVal_rmse_map':TencentCorupsVal_rmse_map}) df.to_csv(os.path.join(dir,'result.csv'),index=False,encoding="utf-8-sig") def check_audio_order(csv1,csv2): df1 = pd.read_csv(csv1) df2 =
pd.read_csv(csv2)
pandas.read_csv
# Copyright (c) 2019, MD2K Center of Excellence # - <NAME> <<EMAIL>>, <NAME> <<EMAIL>> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import pandas as pd from geopy.distance import great_circle from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.sql.group import GroupedData from pyspark.sql.types import StructField, StructType, DoubleType, IntegerType from scipy.spatial import ConvexHull from shapely.geometry.multipoint import MultiPoint from sklearn.cluster import DBSCAN from cerebralcortex.algorithms.utils.mprov_helper import CC_MProvAgg from cerebralcortex.algorithms.utils.util import update_metadata from cerebralcortex.core.datatypes import DataStream from cerebralcortex.core.metadata_manager.stream.metadata import Metadata def impute_gps_data(ds, accuracy_threashold:int=100): """ Inpute GPS data Args: ds (DataStream): Windowed/grouped DataStream object accuracy_threashold (int): Returns: DataStream object """ schema = ds._data.schema @pandas_udf(schema, PandasUDFType.GROUPED_MAP) def gps_imputer(data): data = data.sort_values('localtime').reset_index(drop=True) data['latitude'][data.accuracy > accuracy_threashold] = np.nan data['longitude'][data.accuracy > accuracy_threashold] = np.nan data = data.fillna(method='ffill').dropna() return data # check if datastream object contains grouped type of DataFrame if not isinstance(ds._data, GroupedData): raise Exception( "DataStream object is not grouped data type. Please use 'window' operation on datastream object before running this algorithm") data = ds._data.apply(gps_imputer) results = DataStream(data=data, metadata=Metadata()) metadta = update_metadata(stream_metadata=results.metadata, stream_name="gps--org.md2k.imputed", stream_desc="impute GPS data", module_name="cerebralcortex.algorithms.gps.clustering.impute_gps_data", module_version="1.0.0", authors=[{"Azim": "<EMAIL>"}]) results.metadata = metadta return results def cluster_gps(ds: DataStream, epsilon_constant:int = 1000, km_per_radian:int = 6371.0088, geo_fence_distance:int = 30, minimum_points_in_cluster:int = 1, latitude_column_name:str = 'latitude', longitude_column_name:str = 'longitude'): """ Cluster GPS data - Algorithm used to cluster GPS data is based on DBScan Args: ds (DataStream): Windowed/grouped DataStream object epsilon_constant (int): km_per_radian (int): geo_fence_distance (int): minimum_points_in_cluster (int): latitude_column_name (str): longitude_column_name (str): Returns: DataStream object """ centroid_id_name = 'centroid_id' features_list = [StructField('centroid_longitude', DoubleType()), StructField('centroid_latitude', DoubleType()), StructField('centroid_id', IntegerType()), StructField('centroid_area', DoubleType())] schema = StructType(ds._data._df.schema.fields + features_list) column_names = [a.name for a in schema.fields] def reproject(latitude, longitude): from math import pi, cos, radians earth_radius = 6371009 # in meters lat_dist = pi * earth_radius / 180.0 y = [lat * lat_dist for lat in latitude] x = [long * lat_dist * cos(radians(lat)) for lat, long in zip(latitude, longitude)] return np.column_stack((x, y)) def get_centermost_point(cluster: np.ndarray) -> object: """ Get center most point of a cluster Args: cluster (np.ndarray): Returns: """ try: if cluster.shape[0]>=3: points_project = reproject(cluster[:,0],cluster[:,1]) hull = ConvexHull(points_project) area = hull.area else: area = 1 except: area = 1 centroid = ( MultiPoint(cluster).centroid.x, MultiPoint(cluster).centroid.y) centermost_point = min(cluster, key=lambda point: great_circle(point, centroid).m) return list(centermost_point) + [area] @pandas_udf(schema, PandasUDFType.GROUPED_MAP) @CC_MProvAgg('gps--org.md2k.phonesensor--phone', 'gps_clustering', 'gps--org.md2k.clusters', ['user', 'timestamp'], ['user', 'timestamp']) def gps_clustering(data): if data.shape[0] < minimum_points_in_cluster: return pd.DataFrame([], columns=column_names) elif data.shape[0] < 2: data['centroid_area'] = 1 data['centroid_id'] = 0 data['centroid_latitude'] = data[latitude_column_name].values[0] data['centroid_longitude'] = data[longitude_column_name].values[0] return data coords = np.float64(data[[latitude_column_name, longitude_column_name]].values) epsilon = geo_fence_distance / ( epsilon_constant * km_per_radian) db = DBSCAN(eps=epsilon, min_samples= minimum_points_in_cluster, algorithm='ball_tree', metric='haversine').fit( np.radians(coords)) data[centroid_id_name] = db.labels_ cluster_labels = db.labels_ clusters = pd.Series( [coords[cluster_labels == n] for n in np.unique(cluster_labels)]) cluster_names = np.array([n for n in np.unique(cluster_labels)]) centermost_points = clusters.map(get_centermost_point) centermost_points = np.array(centermost_points) all_dict = [] for i, col in enumerate(cluster_names): cols = np.array(centermost_points[i]) all_dict.append([col, cols[0], cols[1], cols[2]]) temp_df =
pd.DataFrame(all_dict, columns=[centroid_id_name, 'centroid_latitude', 'centroid_longitude', 'centroid_area'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Functions for cleaning mdredze Sandy Twitter dataset. """ import matplotlib.pyplot as plt import numpy as np import pandas as pd from statsmodels.graphics.tsaplots import plot_acf from twitterinfrastructure.tools import cross_corr, output, query def create_timeseries_diff(df, col1, col2, zone_col, write_path=None): """Creates a dataframe where col1 and col2 columns are replaced by first differenced time series. Parameters ---------- df : Dataframe Dataframe to containing time series data to difference (e.g. from create_timeseries). Assumes dataframe is multi-indexed by zone_col and timedelta (in hours). col1 : str Name of column containing first time series. col2 : str Name of column containing second time series. zone_col : str Name of zone column: 'zone_id' (nyiso zone), 'location_id' (taxi zone), or 'borough' (taxi borough). write_path : str or None If str, then write a csv of the time series dataframe to the specified path. Else, do not write. Returns ------- df_diff : dataframe Notes ----- """ # create differenced time series dataframe df_diff = pd.DataFrame(columns=[zone_col, 'timedelta', col1, col2]) df_diff.set_index([zone_col, 'timedelta'], inplace=True) zones = pd.unique(df.index.get_level_values(level=zone_col)) for zone in zones: s_y1 = df[col1].xs(zone, level=0).dropna() s_y2 = df[col2].xs(zone, level=0).dropna() s_y1.index = pd.to_timedelta(s_y1.index.values, unit='h') s_y2.index = pd.to_timedelta(s_y2.index.values, unit='h') # difference both timeseries s_y1_diff = pd.Series(data=np.diff(s_y1), index=s_y1.index.values[0:-1], name=col1) s_y2_diff = pd.Series(data=np.diff(s_y2), index=s_y2.index.values[0:-1], name=col2) df_zone = pd.concat([s_y1_diff, s_y2_diff], axis=1) df_zone.index.name = 'timedelta' df_zone = df_zone.reset_index() df_zone[zone_col] = zone df_zone = df_zone.set_index([zone_col, 'timedelta']) # add zone to differenced dataframe df_diff = df_diff.append(df_zone, ignore_index=False, sort='False') # save to csv if write_path: df_csv = df_diff.reset_index() df_csv['timedelta'] = df_csv['timedelta'].astype('timedelta64[h]') df_csv.to_csv(write_path, index=False) return df_diff def create_timeseries_shift(df, df_max_rho, col1, col2, zone_col, write_path=None): """Creates a dataframe where the 2nd time series column is time-shifted. Parameters ---------- df : Dataframe Dataframe to containing time series data to shift (e.g. from create_timeseries). Assumes dataframe is multi-indexed by zone_col and timedelta (in hours). df_max_rho : Dataframe Dataframe containing desired shifts for col2 in a 'max-lag' column, indexed by zone_col. col1 : str Name of column containing first time series (copied). col2 : str Name of column containing second time series. This is the shifted time series, where col2_shifted = col2 + shift. zone_col : str Name of zone column: 'zone_id' (nyiso zone), 'location_id' (taxi zone), or 'borough' (taxi borough). write_path : str or None If str, then write a csv of the time series dataframe to the specified path. Else, do not write. Returns ------- df_shift : dataframe Notes ----- """ # create shifted time series dataframe df_shift = pd.DataFrame(columns=[zone_col, 'timedelta', col1, col2]) df_shift.set_index([zone_col, 'timedelta'], inplace=True) for zone in df_max_rho.index.values: if not np.isnan(df_max_rho.loc[zone, 'max-rho']): s_y1 = df[col1].xs(zone, level=0).dropna() s_y2 = df[col2].xs(zone, level=0).dropna() s_y1.index = pd.to_timedelta(s_y1.index.values, unit='h') s_y2.index = pd.to_timedelta(s_y2.index.values, unit='h') # shift 2nd time series shift = df_max_rho.loc[zone, 'max-shift'] s_y2_shift = s_y2.shift(1, freq=pd.Timedelta(shift, unit='h')) df_zone = pd.concat([s_y1, s_y2_shift], axis=1) df_zone.index.name = 'timedelta' df_zone = df_zone.reset_index() df_zone[zone_col] = zone df_zone = df_zone.set_index([zone_col, 'timedelta']) # add zone to shifted dataframe df_shift = df_shift.append(df_zone, ignore_index=False, sort='False') # save to csv if write_path: df_csv = df_shift.reset_index() df_csv['timedelta'] = df_csv['timedelta'].astype('timedelta64[h]') df_csv.to_csv(write_path, index=False) return df_shift def create_timeseries(df, zone_col, min_count, write_path=None, verbose=0): """Creates a time series dataframe where each column of df is independently linearly interpolated over the total range of timedeltas of each zone. Only time series with at least min_count data points are included. Assumes the dataframe is indexed by a zone column (zone_col) and a timedelta column (e.g. using index_timedelta). Parameters ---------- df : Dataframe Dataframe to calculate time series from. zone_col : str Name of zone column: 'zone_id' (nyiso zone), 'location_id' (taxi zone), or 'borough' (taxi borough). min_count : int Minimum number of data points needed to convert to a time series. write_path : str or None If str, then write a csv of the time series dataframe to the specified path. Else, do not write. verbose : int Defines verbosity for output statements. Returns ------- df_ts : dataframe Notes ----- """ # loop through zones df_ts = pd.DataFrame() skipped = [] zones = pd.unique(df.index.get_level_values(zone_col)) for zone in zones: df_zone = df.xs(zone, level=0) # loop through columns (i.e. data to convert to time series) y_interps = [] cols = df_zone.columns.values for col in cols: s = df_zone[col].dropna() if s.count() < min_count: skipped.append((zone, col)) else: timedeltas = range(s.index.astype('timedelta64[h]').min(), s.index.astype('timedelta64[h]').max() + 1) y_interp = pd.Series(data=np.interp( timedeltas, s.index.astype('timedelta64[h]'), s.values), index=timedeltas, name=col) y_interps.append(y_interp) # add interpolated data to dataframe if y_interps: df_temp = pd.concat(objs=y_interps, axis=1, join='outer') df_temp = df_temp.set_index( pd.to_timedelta(df_temp.index.values, unit='h')) df_temp[zone_col] = zone df_temp.set_index(zone_col, append=True, inplace=True) df_temp.index.names = ['timedelta', zone_col] df_temp = df_temp.reorder_levels([1, 0]) df_ts = df_ts.append(df_temp, sort=False) # save to csv if write_path: df_csv = df_ts.reset_index() df_csv['timedelta'] = df_csv['timedelta'].astype('timedelta64[h]') df_csv.to_csv(write_path, index=False) if verbose >= 1: output('skipped zones for having less than {min_count} data points ' 'in original column data: {skipped}'.format(skipped=skipped, min_count=min_count)) return df_ts def index_timedelta(df, datetime_ref, datetime_col): """Indexes a dataframe on a timedelta calculated from datetime_col relative to datetime_ref. Parameters ---------- df : Dataframe Dataframe to reindex on timedelta. datetime_ref : Timestamp Reference datetime to calculate timedelta relative to, specified as a timezone-aware Pandas Timestamp object. Calculates timedelta as datetime_col - datetime_ref. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') datetime_col : str Name of column (or index) containing the datetime data to calculate timedelta from. Returns ------- df : dataframe Notes ----- """ indexes = df.index.names df = df.reset_index() # calculate and add timedelta df['timedelta'] = df['datetimeNY'] - datetime_ref # df['timedelta'] = [int(td.total_seconds() / 3600) for td # in df['timedelta']] # df['timedelta'] = pd.to_timedelta(df['timedelta'], unit='h') # drop columns and reindex with datetime_col replaced by timedelta df = df.drop([datetime_col], axis=1) indexes = ['timedelta' if ind == datetime_col else ind for ind in indexes] df = df.set_index(indexes) df = df.sort_index(level=0) return df def load_nyctlc_zone(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=0): """Query and clean nyctlc dropoff or pickup data for the specified date range from a sqlite database, grouped by zone. Assumes the database contains a standard_zonedropoff_hour_sandy or standard_zonepickup_hour_sandy table created using create_standard_zone_hour. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') trip_type : str Trip type: 'dropoff' or 'pickup'. trip_count_filter : int Minimum number of trips required to load a data point. db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df_taxi : dataframe Notes ----- Sqlite date queries are inclusive for start and end, datetimes in nyctlc database are local (i.e. NY timezone). """ df_taxi = load_nyctlc_zone_hour(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=verbose) # remove index, remove columns, and group by zone df_taxi = df_taxi.reset_index() df_taxi = df_taxi.drop(['datetimeNY'], axis=1) df_taxi = df_taxi.groupby(['location_id']).mean() if verbose >= 1: if trip_type == 'dropoff': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-drop'])) + ', ' + str(np.nanmax(df_taxi['zpace-drop'])) + '], [' + str(np.nanmin(df_taxi['ztrips-drop'])) + ', ' + str(np.nanmax(df_taxi['ztrips-drop'])) + '].') elif trip_type == 'pickup': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-pick'])) + ', ' + str(np.nanmax(df_taxi['zpace-pick'])) + '], [' + str(np.nanmin(df_taxi['ztrips-pick'])) + ', ' + str(np.nanmax(df_taxi['ztrips-pick'])) + '].') return df_taxi def load_nyctlc_zone_date(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=0): """Query and clean nyctlc dropoff or pickup data for the specified date range from a sqlite database, grouped by zone and date. Assumes the database contains a standard_zonedropoff_hour_sandy or standard_zonepickup_hour_sandy table created using create_standard_zone_hour. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') trip_type : str Trip type: 'dropoff' or 'pickup'. trip_count_filter : int Minimum number of trips required to load a data point. db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df_taxi : dataframe Notes ----- Sqlite date queries are inclusive for start and end, datetimes in nyctlc database are local (i.e. NY timezone). """ df_taxi = load_nyctlc_zone_hour(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=verbose) # remove index, adjust datetime to date, and group by zone and date df_taxi = df_taxi.reset_index() df_taxi['datetimeNY'] = pd.to_datetime(df_taxi['datetimeNY']).dt.date df_taxi = df_taxi.groupby(['location_id', 'datetimeNY']).mean() if verbose >= 1: if trip_type == 'dropoff': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-drop'])) + ', ' + str(np.nanmax(df_taxi['zpace-drop'])) + '], [' + str(np.nanmin(df_taxi['ztrips-drop'])) + ', ' + str(np.nanmax(df_taxi['ztrips-drop'])) + '].') elif trip_type == 'pickup': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-pick'])) + ', ' + str(np.nanmax(df_taxi['zpace-pick'])) + '], [' + str(np.nanmin(df_taxi['ztrips-pick'])) + ', ' + str(np.nanmax(df_taxi['ztrips-pick'])) + '].') return df_taxi def load_nyctlc_zone_hour(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=0): """Query and clean nyctlc dropoff or pickup data for the specified date range from a sqlite database, grouped by zone and hour. Assumes the database contains a standard_zonedropoff_hour_sandy or standard_zonepickup_hour_sandy table created using create_standard_zone_hour. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') trip_type : str Trip type: 'dropoff' or 'pickup'. trip_count_filter : int Minimum number of trips required to load a data point. db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df_taxi : dataframe Notes ----- Sqlite date queries are inclusive for start and end, datetimes in nyctlc database are local (i.e. NY timezone). """ if verbose >= 1: output('Started query.') # define trip type if trip_type not in ['dropoff', 'pickup']: raise ValueError('Invalid trip_type argument: {arg}.'.format( arg=trip_type)) # convert datetimes enddate_exclusive = enddate - pd.Timedelta('1 second') startdate_sql = startdate.strftime("%Y-%m-%d %H:%M:%S") enddate_sql = enddate_exclusive.strftime("%Y-%m-%d %H:%M:%S") # load dropoff/pickup data sql = """ SELECT {trip_type}_datetime AS datetimeNY, {trip_type}_location_id AS location_id, z_mean_pace AS zpace, z_trip_count AS ztrips FROM standard_zone{trip_type}_hour_sandy WHERE trip_count > {trip_count_filter} AND {trip_type}_datetime BETWEEN "{startdate_sql}" AND "{enddate_sql}" ;""".format(trip_count_filter=trip_count_filter, startdate_sql=startdate_sql, enddate_sql=enddate_sql, trip_type=trip_type) df_taxi = query(db_path, sql) # add columns df_taxi['abs-zpace'] = abs(df_taxi['zpace']) df_taxi['abs-ztrips'] = abs(df_taxi['ztrips']) # convert datetimes df_taxi['datetimeNY'] = pd.to_datetime(df_taxi['datetimeNY']) df_taxi['datetimeNY'] = [dt.tz_localize(tz='America/New_York') for dt in df_taxi['datetimeNY']] # index and sort df_taxi = df_taxi.set_index(['location_id', 'datetimeNY']) df_taxi = df_taxi.sort_index(level=0) if verbose >= 1: output('[min, max] taxi datetimeNY (hourly): [' + str(min(df_taxi.index.get_level_values(level=1))) + ', ' + str(max(df_taxi.index.get_level_values(level=1))) + '].') output('[min, max] taxi pace and trips mean z-score (hourly): [' + str(np.nanmin(df_taxi['zpace'])) + ', ' + str(np.nanmax(df_taxi['zpace'])) + '], [' + str(np.nanmin(df_taxi['ztrips'])) + ', ' + str(np.nanmax(df_taxi['ztrips'])) + '].') # add drop or pick to column names if trip_type == 'dropoff': val = '-drop' elif trip_type == 'pickup': val = '-pick' else: pass col_dict = {} for col in df_taxi.columns.values: col_dict[col] = col + val df_taxi = df_taxi.rename(col_dict, axis='columns') return df_taxi def load_nyiso(startdate, enddate, db_path, verbose=0): """Query and clean nyiso load forecast error data for the specified date range from a sqlite database. Assumes the database contains a forecast_error table created using create_forecast_err. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df : dataframe Notes ----- Sqlite date queries are inclusive for start and end, forecast_error datetimes are UTC. """ if verbose >= 1: output('Started query.') # convert datetimes startdateUTC = startdate.tz_convert('UTC') enddateUTC = enddate.tz_convert('UTC') - pd.Timedelta('1 second') startdate_sql = startdateUTC.strftime("%Y-%m-%d %H:%M:%S") enddate_sql = enddateUTC.strftime("%Y-%m-%d %H:%M:%S") # load nyiso load data sql = """ SELECT datetimeUTC, zone_id AS nyiso_zone, forecast_error_p0 AS err0 FROM forecast_error WHERE datetimeUTC BETWEEN "{startdate_sql}" AND "{enddate_sql}" ;""".format(startdate_sql=startdate_sql, enddate_sql=enddate_sql) df = query(db_path, sql) # convert datetimes df['datetimeUTC'] = pd.to_datetime(df['datetimeUTC']) df['datetimeUTC'] = [datetime.tz_localize(tz='UTC') for datetime in df['datetimeUTC']] df['datetimeNY'] = [datetime.tz_convert('America/New_York') for datetime in df['datetimeUTC']] # add and drop columns df['percent-err0'] = df['err0'] * 100 df = df.drop(['datetimeUTC'], axis=1) # index and sort df = df.set_index(['nyiso_zone', 'datetimeNY']) df = df.sort_index(level=0) if verbose >= 1: output('[min, max] forecast error datetimeNY: [' + str(min(df.index.get_level_values(level=1))) + ', ' + str(max(df.index.get_level_values(level=1))) + '].') output('[min, max] forecast error: [' + str(np.nanmin(df['err0'])) + ', ' + str(np.nanmax(df['err0'])) + '].') output('Finished query.') return df def max_cross_corr(df, col1, col2, zone_col, shifts, min_overlap, verbose=0): """Creates a dataframe containing the time shift that maximizes cross-correlation between two time series, the max cross-correlation value, and the number of overlapping data points in those series. Parameters ---------- df : Dataframe Dataframe to containing time series data (e.g. from create_timeseries). Assumes dataframe is multi-indexed by zone_col and timedelta (in hours). col1 : str Name of column containing first time series. col2 : str Name of column containing second time series. This is the shifted time series, where col2_shifted = col2 + shift. zone_col : str Name of spatial zone index. shifts : list List of time shifts to apply to 2nd time series (in hours). min_overlap : int Minimum number of overlapping data points (after the 2nd series is time shifted) needed to calculate cross-correlation. verbose : int Defines verbosity for output statements. Returns ------- df_max_rho : dataframe Dataframe of max cross-correlations and associated shifts and counts. df_rho : dataframe Dataframe of cross-correlations and associated shifts and counts for all shifts. Notes ----- """ df_rho = pd.DataFrame(columns=['shift', zone_col, 'rho']) df_count = pd.DataFrame(columns=['shift', zone_col, 'count']) skipped = [] zones = pd.unique(df.index.get_level_values(zone_col)) for shift in shifts: for zone in zones: s_y1 = df[col1].xs(zone, level=0).dropna() s_y2 = df[col2].xs(zone, level=0).dropna() s_y1.index =
pd.to_timedelta(s_y1.index.values, unit='h')
pandas.to_timedelta
import shutil import random import tempfile import pandas as pd from catalyst.exchange.exchange_bundle import ExchangeBundle from catalyst.exchange.exchange_bcolz import BcolzExchangeBarWriter, \ BcolzExchangeBarReader from catalyst.exchange.bundle_utils import get_df_from_arrays from nose.tools import assert_equals class TestBcolzWriter(object): @classmethod def setup_class(cls): cls.columns = ['open', 'high', 'low', 'close', 'volume'] def setUp(self): self.root_dir = tempfile.mkdtemp() # Create a temporary directory def tearDown(self): shutil.rmtree(self.root_dir) # Remove the directory after the test def generate_df(self, exchange_name, freq, start, end): bundle = ExchangeBundle(exchange_name) index = bundle.get_calendar_periods_range(start, end, freq) df = pd.DataFrame(index=index, columns=self.columns) df.fillna(random.random(), inplace=True) return df def test_bcolz_write_daily_past(self): start = pd.to_datetime('2016-01-01') end = pd.to_datetime('2016-12-31') freq = 'daily' df = self.generate_df('bitfinex', freq, start, end) writer = BcolzExchangeBarWriter( rootdir=self.root_dir, start_session=start, end_session=end, data_frequency=freq, write_metadata=True) data = [] data.append((1, df)) writer.write(data) pass def test_bcolz_write_daily_present(self): start = pd.to_datetime('2017-01-01') end = pd.to_datetime('today') freq = 'daily' df = self.generate_df('bitfinex', freq, start, end) writer = BcolzExchangeBarWriter( rootdir=self.root_dir, start_session=start, end_session=end, data_frequency=freq, write_metadata=True) data = [] data.append((1, df)) writer.write(data) pass def test_bcolz_write_minute_past(self): start =
pd.to_datetime('2015-04-01 00:00')
pandas.to_datetime
import pandas from dmscripts.models.writecsv import csv_path from dmscripts.models.modeltrawler import ModelTrawler def base_model(base_model, keys, get_data_kwargs, client, logger=None, limit=None): """Fetch all the data for a given Digital Marketplace model from the api. :param base_model: A Digital Marketplace model (client must have a 'find_{model}_iter' method) :param keys: The attributes we require of that model. :param get_data_kwargs: Additional kwargs for the get request the client will make. :param client: Instantiated Digital Marketplace APIClient :param logger: :param limit: Maximum number of requests for the client to perform. :return: A pandas DataFrame of the requested data. Columns as model attributes, rows as instances. """ mt = ModelTrawler(base_model, client) data = list(mt.get_data(keys=keys, limit=limit, **get_data_kwargs)) if logger: logger.info( '{} {} returned after {}s'.format(len(data), base_model, mt.get_time_running()) ) return pandas.DataFrame(data) if data else
pandas.DataFrame(columns=keys)
pandas.DataFrame
import fcntl import sys import time import numpy as np import pandas as pd from keras.layers import Dense, BatchNormalization, Dropout from keras.models import Sequential from keras.optimizers import SGD from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import StratifiedKFold # random search # # grid search # opt = str(sys.argv[1]) seed = 7 np.random.seed(seed) start_time = time.time() print('Start running..................') datadir= './data/' predictions = "./predictions/" logs = './logs/' training_data = pd.read_csv(datadir + 'numerai_training_data.csv', header=0) tournament_data = pd.read_csv(datadir + 'numerai_tournament_data.csv', header=0) validation_data = tournament_data[tournament_data.data_type == 'validation'] complete_training_data = pd.concat([training_data, validation_data]) features = [f for f in list(complete_training_data) if "feature" in f] X = complete_training_data[features] Y = complete_training_data["target"] def create_model(learn_rate=0.01, momentum=0,optimizer='adam', activation='sigmoid', neurons=500, neurons2=100, neurons3=50, dropout=0.2): model = Sequential() model.add(Dense(neurons, input_shape=(50,), kernel_initializer='glorot_uniform', activation='relu', use_bias=False)) model.add(Dropout(dropout)) model.add(BatchNormalization()) model.add(Dense(neurons2, kernel_initializer='uniform', activation='relu')) model.add(Dropout(dropout)) model.add(BatchNormalization()) model.add(Dense(neurons3, kernel_initializer='uniform', activation='relu')) model.add(Dropout(dropout)) model.add(BatchNormalization()) model.add(Dense(1, kernel_initializer='glorot_normal', activation=activation)) if optimizer == 'SGD': optimizer = SGD(lr=learn_rate, momentum=momentum) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['binary_crossentropy', 'accuracy']) return model model = KerasClassifier(build_fn=create_model, epochs=8, batch_size=128, verbose=0) # parameters to tune learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3] momentum = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9] batch_size = [128, 256] epochs = [8, 17, 19, 40, 60] optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam'] activation = ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear'] dropout = [0.01, 0.26, 0.37,0.40] neurons = [7, 10, 14, 600, 800, 1000, 1200] neurons2 = [300, 200, 100] neurons3 = [50, 75] param_grid = dict(learn_rate=learn_rate, momentum=momentum, batch_size=batch_size, epochs=epochs, optimizer=optimizer, activation=activation, neurons=neurons, neurons2=neurons2, neurons3=neurons3, dropout=dropout) stratified_kf = StratifiedKFold(n_splits=10) kfold_split = stratified_kf.split(X, Y, groups=complete_training_data.era) model = RandomizedSearchCV(estimator=model, param_distributions=param_grid, cv=kfold_split, scoring='neg_log_loss', n_jobs=1, verbose=3) model_result = model.fit(X.values, Y.values) print("Best: %f using %s" % (model_result.best_score_, model_result.best_params_)) means = model_result.cv_results_['mean_test_score'] stds = model_result.cv_results_['std_test_score'] params = model_result.cv_results_['params'] for mean, stdev, param in zip(means, stds, params): print("%f (%f) with: %r" % (mean, stdev, param)) model.best_estimator_.model.save('./my_model_2017-11-07_IV.h5') model.best_estimator_.model.summary() def check_consistency(model, valid_data): eras = valid_data.era.unique() count = 0 count_consistent = 0 for era in eras: count += 1 current_valid_data = valid_data[validation_data.era == era] features = [f for f in list(complete_training_data) if "feature" in f] X_valid = current_valid_data[features] Y_valid = current_valid_data["target"] loss = model.evaluate(X_valid.values, Y_valid.values, batch_size=128, verbose=0)[0] if (loss < 0.693): consistent = True count_consistent += 1 else: consistent = False print("{}: loss - {} consistent: {}".format(era, loss, consistent)) consistency = count_consistent / count print("Consistency: {}".format(consistency)) return consistency consistency = check_consistency(model.best_estimator_.model, validation_data) if consistency > 0.58: x_prediction = tournament_data[features] t_id = tournament_data["id"] y_prediction = model.best_estimator_.model.predict_proba(x_prediction.values, batch_size=128) ll = model_result.best_score_ results = np.reshape(y_prediction, -1) results_df =
pd.DataFrame(data={'probability': results})
pandas.DataFrame
import bedrock.viz import bedrock.common from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import RFE from sklearn.naive_bayes import BernoulliNB, MultinomialNB from tpot import TPOTClassifier from sklearn.svm import LinearSVC from sklearn.feature_selection import SelectFwe, f_classif from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier from tpot.builtins import OneHotEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold, RepeatedKFold from sklearn.model_selection import cross_val_score, cross_validate from sklearn.model_selection import StratifiedKFold import matplotlib.pyplot as plt import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer def tpot_search(X_train, X_test, y_train, y_test, target_column): pipeline_optimizer = TPOTClassifier( generations=30, population_size=30, cv=5, random_state=42, verbosity=2, config_dict='TPOT sparse' ) pipeline_optimizer.fit(X_train, y_train) # print(pipeline_optimizer.score(X_test, y_test)) pipeline_optimizer.export('output/tpot_exported_pipeline_' + target_column + '.py') # from sklearn.metrics import classification_report # target_names = ['class 0', 'class 1', 'class 2'] # print(classification_report(y_true, y_pred, target_names=target_names)) def grid_search(x, y): bernoulli = BernoulliNB() parameters = { 'alpha': np.arange(0.01, 2, 0.1), 'binarize': np.arange(0, 1, 0.1), 'fit_prior': [True, False] } grid = GridSearchCV(bernoulli, parameters) grid.fit(x, y) def cross_bnb(x, y): clf = BernoulliNB() skf = StratifiedKFold(n_splits=10) # skf.get_n_splits(x,y) scores = cross_val_score(clf, x, y, cv=skf) print(scores) n, bins, patches = plt.hist(scores, 5) plt.show() def bnb(X_train, X_test, y_train, y_test, persist_path=None, do_viz=False): # Feature selection before SVC # print('BeronulliNB') pipeline = make_pipeline( RFE( estimator=ExtraTreesClassifier( criterion="gini", max_features=0.1, n_estimators=100 ), step=0.4 ), BernoulliNB(alpha=0.01, fit_prior=False) ) pipeline.fit(X_train, y_train) predicted = pipeline.predict(X_test) if do_viz: bedrock.viz.show_stats(y_test, predicted) from sklearn.metrics import accuracy_score print('Accuracy', accuracy_score(y_test, predicted)) bedrock.common.save_pickle(pipeline, persist_path) # returns train and test classified return pipeline tpot_pipelines = { 'ICB': make_pipeline( TfidfVectorizer(), KNeighborsClassifier(n_neighbors=11, p=1, weights="distance")), # LinearSVC(C=10.0, dual=True, loss="hinge", penalty="l2", tol=0.001), 'fracture': make_pipeline( TfidfVectorizer(), LinearSVC(C=10.0, dual=False, loss="squared_hinge", penalty="l1", tol=0.01)), 'hydrocephalus': make_pipeline( TfidfVectorizer(), SelectFwe(score_func=f_classif, alpha=0.006), RandomForestClassifier(bootstrap=False, criterion="gini", max_features=0.3, min_samples_leaf=2, min_samples_split=17, n_estimators=100, ) ), 'midline': make_pipeline( TfidfVectorizer(), RandomForestClassifier(bootstrap=False, criterion="entropy", max_features=0.25, min_samples_leaf=2, min_samples_split=20, n_estimators=100)), 'vessels': make_pipeline( TfidfVectorizer(), RFE(estimator=ExtraTreesClassifier(criterion="entropy", max_features=0.15000000000000002, n_estimators=100), step=0.6500000000000001), #OneHotEncoder(minimum_fraction=0.25), LinearSVC(C=0.5, dual=True, loss="hinge", penalty="l2", tol=0.001) ) } def tpot_models(X_train, X_test, y_train, y_test, target_column, persist_path=None, do_viz=False): pipeline = tpot_pipelines[target_column] pipeline.fit(X_train, y_train) y_hat = pipeline.predict(X_test) if do_viz: bedrock.viz.show_stats(y_test, y_hat) bedrock.common.save_pickle(pipeline, persist_path) def get_model_map(): return { 'BNB': make_pipeline( TfidfVectorizer(), MultinomialNB() ), 'SVM': make_pipeline( TfidfVectorizer(), LinearSVC(), ), 'RFC': make_pipeline( TfidfVectorizer(), RandomForestClassifier() ), 'EXT': make_pipeline( TfidfVectorizer(), ExtraTreesClassifier() ) } import pandas as pd class DataFrameScorer: def __init__(self, groups): # groups is a df column on which you want to group by self.groups = groups def __call__(self, estimator, X, y): df = pd.DataFrame({'X': X, 'y': y, 'group': self.groups}) df['predicted'] = estimator.predict(X) f = {'predicted': ['max'], 'y': ['max']} df_agg = df.groupby(['group']).agg(f) correct = df_agg['predicted', 'max'] == df_agg['y', 'max'] return sum(correct)/len(correct) def group_accuracy(estimator, X, y, groups): df = pd.DataFrame({'X': X, 'y': y, 'group': groups}) df['predicted'] = estimator.predict(X) f = {'predicted': ['max'], 'y': ['max']} df_agg = df.groupby(['group']).agg(f) correct = df_agg['predicted', 'max'] == df_agg['y', 'max'] return sum(correct)/len(correct) def group_accuracy_2(y_df, y_hat, groups_df): df =
pd.DataFrame({'y': y_df, 'y_hat': y_hat, 'group': groups_df[y_df.index]})
pandas.DataFrame
import pandas as pd import numpy as np import datetime def min2day_v2(df,lag_ps): intraday = df; #preparation intraday['range1']=intraday['high'].rolling(lag_ps).max()-intraday['close'].rolling(lag_ps).min() intraday['range2']=intraday['close'].rolling(lag_ps).max()-intraday['low'].rolling(lag_ps).min() intraday['range']=np.where(intraday['range1']>intraday['range2'], intraday['range1'], intraday['range2']) return intraday #signal generation #even replace assignment with pandas.at #it still takes a while for us to get the result #any optimization suggestion besides using numpy array? def signal_generation(df, intraday, param, column, lag_ps, stop_pr, is_prophetic): #as the lags of days have been set to 5 #we should start our backtesting after 4 workdays(這裡改成前四分鐘算) of current month #cumsum is to control the holding of underlying asset #sigup and siglo are the variables to store the upper/lower threshold #upper and lower are for the purpose of tracking sigup and siglo signals=df[df.index>=intraday['date0'].iloc[lag_ps-1]] signals['signals']=0 signals['cumsum']=0 signals['upper']=0.0 signals['lower']=0.0 sigup=float(0) siglo=float(0) #for traversal on time series #the tricky part is the slicing #we have to either use [i:i] or pd.Series #first we set up thresholds at the beginning of london market which is est 3am #if the price exceeds either threshold #we will take long/short positions for i in signals.index: #note that intraday and dataframe have different frequencies #obviously different metrics for indexes #we use variable date for index convertion # """ date: 年月日時分""" # date ='%s-%s-%s %s-%s-%s%s' %(i.year,i.month, i.day, i.hour, i.minute, i.second, i.second) ## date = '2015-1-5 9-20-00' # market opening if is_prophetic: # 從Daily return來算開般的action signal? time = pd.to_datetime(i) td1 = datetime.timedelta(hours=6) td2 = datetime.timedelta(minutes=-31)# time_shift = time + td1 + td2 time_shift = str(time_shift) if (i.hour==9 and i.minute==31): if signals['open'][i] > signals['close'][time_shift]: signals.at[i,'signals']=-1 if signals['open'][i] <= signals['close'][time_shift]: signals.at[i,'signals']=1 #set up thresholds # if (i.hour==9 and i.minute==16): # sigup=float(param*intraday['range'][date]+pd.Series(signals[column])[i]) # siglo=float(-(1-param)*intraday['range'][date]+pd.Series(signals[column])[i]) if (i.hour==9 and i.minute==31) or (i.hour==10 and i.minute==31) \ or (i.hour==13 and i.minute==1) or (i.hour==14 and i.minute==1): sigup=float(param[0]*intraday['range'][i]+pd.Series(signals[column])[i]) siglo=float(-(1-param[1])*intraday['range'][i]+pd.Series(signals[column])[i]) #thresholds got breached #signals generating if (sigup!=0 and pd.Series(signals[column])[i]>sigup): signals.at[i,'signals']=1 if (siglo!=0 and pd.Series(signals[column])[i]<siglo): signals.at[i,'signals']=-1 #check if signal has been generated #if so, use cumsum to verify that we only generate one signal for each situation if
pd.Series(signals['signals'])
pandas.Series
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s =
Series(1, index=['a', 'a', 'b', 'b', 'c'])
pandas.Series
#!/usr/bin/env python # encoding: utf-8 import os import numpy as np import scipy as sp import matplotlib as mpl mpl.use("TkAgg") mpl.rcParams['pdf.fonttype'] = 42 import matplotlib.pylab as plt import seaborn as sns import pandas as pd from IPython import embed as shell from tqdm import tqdm from sim_tools import get_OU_traces, apply_bounds_diff_trace, _bounds, _bounds_collapse_linear, _bounds_collapse_hyperbolic from sim_tools import summary_plot, conditional_response_plot sns.set(style='ticks', font='Arial', font_scale=1, rc={ 'axes.linewidth': 0.25, 'axes.labelsize': 7, 'axes.titlesize': 7, 'xtick.labelsize': 6, 'ytick.labelsize': 6, 'legend.fontsize': 6, 'xtick.major.width': 0.25, 'ytick.major.width': 0.25, 'text.color': 'Black', 'axes.labelcolor':'Black', 'xtick.color':'Black', 'ytick.color':'Black',} ) sns.plotting_context() def do_simulations(params): rt = [] response = [] stimulus = [] for stim in [1,0]: # get traces: x = get_OU_traces(v=params['v'], ll=params['ll'], dc=params['dc'], z=params['z'], pre_generated=False, stim=stim, nr_trials=params['nr_trials'], tmax=tmax, dt=dt,) # get bounds: if params['bound'] == 'default': b1, b0 = _bounds(a=params['a'], lower_is_0=False, tmax=tmax, dt=dt) elif params['bound'] == 'collapse_linear': b1, b0 = _bounds_collapse_linear(a=params['a'], c1=params['c1'], c0=params['c0'], lower_is_0=False, tmax=tmax, dt=dt) elif params['bound'] == 'collapse_hyperbolic': b1, b0 = _bounds_collapse_hyperbolic(a=params['a'], c=params['c'], lower_is_0=False, tmax=tmax, dt=dt) # apply bounds: rt_dum, response_dum = apply_bounds_diff_trace(x=x, b1=b1, b0=b0) # store results: rt.append((rt_dum*dt)+ndt) response.append(response_dum) stimulus.append(np.ones(params['nr_trials']) * stim) df =
pd.DataFrame()
pandas.DataFrame
import glob import os from networkx.readwrite import json_graph import json import networkx as nx import pandas as pd from subs2network.utils import add_prefix_to_dict_keys from subs2network.imdb_dataset import imdb_data from subs2network.consts import MOVIE_YEAR def get_node_features(g): closeness = nx.closeness_centrality(g) betweenness = nx.betweenness_centrality(g) betweenness_weight = nx.betweenness_centrality(g, weight="weight") degree_centrality = nx.degree_centrality(g) pr = nx.pagerank(g, weight=None) pr_weight = nx.pagerank(g, weight="weight") clustering = nx.clustering(g) for v in g.nodes(): res = {"total_weight": g.degree(v, weight="weight"), "degree": g.degree(v), "movie_name": g.graph["movie_name"], "year": g.graph["movie_year"], "imdb_rating": g.graph["imdb_rating"], "closeness": closeness[v], "betweenness_weight": betweenness_weight[v], "betweenness": betweenness[v], "degree_centrality": degree_centrality[v], "clustering": clustering[v], "pagerank": pr[v], "pr_weight": pr_weight[v], "gender": imdb_data.get_actor_gender(v), "name": v} yield res def get_actor_features(g, actor): res = {} closeness = nx.closeness_centrality(g) betweenness = nx.betweenness_centrality(g) betweenness_weight = nx.betweenness_centrality(g, weight="weight") degree_centrality = nx.degree_centrality(g) clustering = nx.clustering(g) pr = nx.pagerank(g, weight=None) pr_weight = nx.pagerank(g) v = actor res["total_weight"] = g.degree(v, weight="weight") res["degree"] = g.degree(v) res["closeness"] = closeness[v] res["betweenness"] = betweenness[v] res["betweenness_weight"] = betweenness_weight[v] res["degree_centrality"] = degree_centrality[v] res["clustering"] = clustering[v] res["movie_rating"] = g.graph["imdb_rating"] res["pagerank"] = pr[v] res["pagerank_weight"] = pr_weight[v] # res["gender"] = imdb_data.get_actor_gender(v) return res def average_graph_weight(g): stats = pd.Series(list(nx.get_edge_attributes(g, "weight").values())).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "weight") def average_graph_degree(g): stats = pd.Series([d for n, d in nx.degree(g, g.nodes())]).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "degree") def average_actor_appearance(g): stats = pd.Series([g.degree(v, weight="weight") for v in g.nodes()]).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "appearance") def average_closeness_centrality(g): stats = pd.Series(list(nx.closeness_centrality(g).values())).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "closeness") def average_eigenvector_centrality(g): stats = pd.Series(list(nx.eigenvector_centrality(g).values())).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "eigenvector") def average_betweenness_centrality(g): stats = pd.Series(list(nx.betweenness_centrality(g).values())).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "betweenness") def average_pagerank(g): stats = pd.Series(list(nx.nx.pagerank(g, weight=None).values())).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "pagerank") def average_weighted_pagerank(g): stats = pd.Series(list(nx.nx.pagerank(g, weight="weight").values())).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "weighted_pagerank") def average_weighted_betweenness_centrality(g): stats = pd.Series(list(nx.betweenness_centrality(g).values())).describe() del stats["count"] return add_prefix_to_dict_keys(stats.to_dict(), "weighted_betweenness") def average_clustering(g): try: return {"average_clustering": nx.average_clustering(g)} except: return {"average_clustering": 0} def average_weighted_clustering(g): try: return {"average_weighted_clustering": nx.average_clustering(g, weight="weight")} except: return {"average_clustering": 0} def graph_clique_number(g): return {"clique_number": nx.graph_clique_number(g)} def average_degree_connectivity(g): return {"average_degree_connectivity": nx.average_degree_connectivity(g)} def get_edge_number(g): return {"edge_number": len(g.edges)} def get_node_number(g): return {"node_number": len(g.node)} def analyze_movies(): p = "../temp/movies/" res = [] for movie in tqdm(os.listdir(p)): path = os.path.join(p, movie) g_pth = os.path.join(path, f"json/{movie}.json") if not os.path.exists(g_pth): g_pth = glob.glob(os.path.join(path, f"json/*.json")) if g_pth: g_pth = g_pth[0] if g_pth: # try: with open(g_pth) as f: g = json_graph.node_link_graph(json.load(f)) if g.number_of_nodes() == 0: continue d = extract_graph_features(g) # # with open(os.path.join(path, f"{movie}.json")) as f: # movie_info = json.load(f) # d.update(json.loads(movie_info)) res.append(d) # except: # pass # else: # print(movie) pd.DataFrame(res).to_csv(f"../temp//graph_features.csv", index=False) def analyze_directors(): p = "../temp/directors/" for director in os.listdir(p): res = [] json_path = os.path.join(p, director, "json") graphs = [] for g_pth in glob.glob(os.path.join(json_path, f"*roles*")): if g_pth: try: with open(g_pth) as f: g = json_graph.node_link_graph(json.load(f)) d = extract_graph_features(g) d.update({"rating": g.graph["imdb_rating"], "year": g.graph["movie_year"], "name": g.graph["movie_name"]}) graphs.append(g) res.append(d) except: pass if graphs: joined_grpah = nx.compose_all(graphs) d = extract_graph_features(joined_grpah) d["name"] = "combined" res.append(d) pd.DataFrame(res).to_csv(f"../temp/output/{director}.csv", index=False) def get_triangles(g): all_cliques = nx.enumerate_all_cliques(g) return [x for x in all_cliques if len(x) == 3] def analyze_triangles(): p = "../temp/movies/" res = [] json_path = os.path.join(p, "*", "json") for g_pth in tqdm(glob.glob(os.path.join(json_path, f"*roles.json"))): if g_pth: with open(g_pth) as f: g = json_graph.node_link_graph(json.load(f)) tr = get_triangles(g) for t in tr: t.append(g.graph["movie_name"].replace(" - roles", "")) t.append(g.graph["movie_year"]) res += tr
pd.DataFrame(res)
pandas.DataFrame
# pylint: disable=too-many-lines """Field class.""" import os import sys from copy import deepcopy import weakref from functools import partial from string import Template import logging import numpy as np import pandas as pd import h5py import pyvista as pv from anytree import PreOrderIter from deprecated.sphinx import deprecated from .base_spatial import SpatialComponent from .grids import OrthogonalUniformGrid, CornerPointGrid, Grid from .rock import Rock from .states import States from .aquifer import Aquifers from .wells import Wells from .tables import Tables from .rates import calc_rates, calc_rates_multiprocess from .decorators import state_check, cached_property from .parse_utils import (tnav_ascii_parser, preprocess_path, dates_to_str, read_dates_from_buffer) from .plot_utils import lines_from_points from .template_models import (ORTHOGONAL_GRID, CORNERPOINT_GRID, DEFAULT_TN_MODEL, DEFAULT_ECL_MODEL) from .utils import get_single_path, get_well_mask, get_spatial_well_control, get_spatial_cf_and_perf from .configs import default_config from .dump_ecl_utils import egrid, init, restart, summary ACTOR = None COMPONENTS_DICT = {'cornerpointgrid': ['grid', CornerPointGrid], 'orthogonaluniformgrid': ['grid', OrthogonalUniformGrid], 'grid': ['grid', Grid], 'rock': ['rock', Rock], 'states': ['states', States], 'wells': ['wells', Wells], 'tables': ['tables', Tables], 'aquifers': ['aquifers', Aquifers] } DEFAULT_HUNITS = {'METRIC': ['sm3/day', 'ksm3/day', 'ksm3', 'Msm3', 'bara'], 'FIELD': ['stb/day', 'Mscf/day', 'Mstb', 'MMscf', 'psia']} #pylint: disable=protected-access class FieldState: """State holder.""" def __init__(self, field): self._field = weakref.ref(field) @property def field(self): """Reference Field.""" return self._field() @property def spatial(self): """Common state of spatial components.""" states = np.array([comp.state.spatial for comp in self.field._components.values() if isinstance(comp, SpatialComponent)]) if 'wells' in self.field.components: states = np.concatenate([states, [self.field.wells.state.spatial]]) if np.all(states): return True if np.all(~states): return False raise ValueError('Spatial components have different states.') class Field: """Reservoir model. Contains components of reservoir model and preprocessing actions. Parameters ---------- path : str, optional Path to source model files. config : dict, optional Components and attributes to load. logfile : str, optional Path to log file. enoding : str, optional Files encoding. Set 'auto' to infer encoding from initial file block. Sometimes it might help to specify block size, e.g. 'auto:3000' will read first 3000 bytes to infer encoding. loglevel : str, optional Log level to be printed while loading. Default to 'INFO'. """ def __init__(self, path=None, config=None, logfile=None, encoding='auto', loglevel='INFO'): self._path = preprocess_path(path) if path is not None else None self._encoding = encoding self._components = {} self._config = None self._meta = {'UNITS': 'METRIC', 'DATES': pd.to_datetime([]), 'FLUIDS': [], 'HUNITS': DEFAULT_HUNITS['METRIC']} self._state = FieldState(self) logging.shutdown() handlers = [logging.StreamHandler(sys.stdout)] if logfile is not None: handlers.append(logging.FileHandler(logfile, mode='w')) logging.basicConfig(handlers=handlers) self._logger = logging.getLogger('Field') self._logger.setLevel(getattr(logging, loglevel)) if self._path is not None: self._init_components(config) self._pyvista_grid = None self._pyvista_grid_params = {'use_only_active': True, 'cell_size': None, 'scaling': True} def _init_components(self, config): """Initialize components.""" fmt = self._path.suffix.strip('.').upper() if config is not None: config = {k.lower(): self._config_parser(v) for k, v in config.items()} if fmt == 'HDF5': with h5py.File(self._path, 'r') as f: keys = [k.lower() for k in f] if config is None: config = {k: {'attrs': None, 'kwargs': {}} for k in keys} elif 'grid' in config: if 'cornerpointgrid' in keys: config['cornerpointgrid'] = config.pop('grid') elif 'orthogonaluniformgrid' in keys: config['orthogonaluniformgrid'] = config.pop('grid') elif config is None: self._logger.info('Using default config.') config = {k.lower(): self._config_parser(v) for k, v in default_config.items()} self._components = {COMPONENTS_DICT[k][0]: COMPONENTS_DICT[k][1]() for k in config} self._config = {COMPONENTS_DICT[k][0]: v for k, v in config.items()} @staticmethod def _config_parser(value): """Separate config into attrs and kwargs.""" if isinstance(value, str): attrs = [value.upper()] kwargs = {} elif isinstance(value, (list, tuple)): attrs = [x.upper() for x in value] kwargs = {} elif isinstance(value, dict): attrs = value['attrs'] if attrs is None: pass elif isinstance(attrs, str): attrs = [attrs.upper()] else: attrs = [x.upper() for x in attrs] kwargs = {k: v for k, v in value.items() if k != 'attrs'} else: raise TypeError("Component's config should be of type str, list, tuple or dict. Found {}." .format(type(value))) return {'attrs': attrs, 'kwargs': kwargs} def assert_components_available(self, *comp_names): # FIXME add to all the methods where required """Raises ValueError in case comp_names are not presented in self.""" for comp in comp_names: if not hasattr(self, comp): raise ValueError('Component %s is not loaded!' % comp) @property def meta(self): """"Model meta data.""" return self._meta @property def state(self): """"Field state.""" return self._state @property def start(self): """Model start time in a datetime format.""" return
pd.to_datetime(self.meta['START'])
pandas.to_datetime
import pytest from mapping import mappings from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np from pandas.tseries.offsets import BDay @pytest.fixture def dates(): return pd.Series( [
TS('2016-10-20')
pandas.Timestamp
import pandas as pd import numpy as np import time import sys import json from jsmin import jsmin from collections import Counter import os.path from xlrd.biffh import XLRDError from aenum import IntEnum import time # set up logging (to console) import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(levelname)s] %(message)s') handler = logging.StreamHandler(stream=sys.stdout) handler.setFormatter(formatter) handler.setLevel(logging.DEBUG) logger.addHandler(handler) logger.setLevel(logging.DEBUG) PATH_TO_SETTINGS = 'settings/settings.json' DEFAULT_SETTINGS = dict( # path to panel structure excel file path_panel='settings/panel.xlsx', # name of sheets in panel structure excel file sheet_persons='persons', sheet_panel_entities='panel_entities', sheet_companies='companies', sheet_groups='groups', sheet_questions='data dictionary', sheet_scales='scales', # path to survey data - {} will be replaced with year (YYYY) path_results='survey-results/results_{}.xlsx', # path to resulting output file path_output='output/dnp_panel-data_{}-{}', # years to include years=[2013, 2014, 2015, 2016, 2017, 2018, 2019], # exclude deprecated variables exclude_deprecated=True, # exclude variables with personal information exclude_personal=True, # exclude variables with auxiliary information exclude_auxiliary=True, # exclude variables from special sections exclude_special_sections=True, # exclude din meta data exclude_din_meta_data=True, # exclude variables with less x years in which they were part of the questionnaire exclude_years_min=0, # allow missing observations: include panel entities which did not complete all specified years allow_missing=True, # save the results to an excel file save_output=True ) def load_excel_sheet(file, sheet=None, exit_on_error=True): """ Load an Excel sheet and return as Pandas dataframe with user friendly error-handling. :param file: Path to excel file :param sheet: Name of sheet to load. Default: None -> Loads first sheet. :param exit_on_error: Whether to call exit(0) on exception. :returns: Pandas DataFrame, or None in case of error. """ df = None try: if sheet is not None: df = pd.read_excel(file, sheet_name=sheet) else: df = pd.read_excel(file) except FileNotFoundError: logger.error("Could not find file '{}'.".format(file)) if exit_on_error: exit(0) except pd.errors.EmptyDataError: logger.error("File '{}' is empty.".format(file)) if exit_on_error: exit(0) except pd.errors.ParserError: logger.error("File '{}' is broken.".format(file)) if exit_on_error: exit(0) except XLRDError: logger.error("Sheet '{}' is missing in {}.".format(sheet, file)) if exit_on_error: exit(0) except Exception: logger.error("There was an error while loading '{}'".format(file)) if exit_on_error: exit(0) return df class DataSetType: SINGLE_YEAR = 1 PANEL = 2 class SelectionReason(IntEnum): """ Reasons why a participant was / was not selected for sample; Reason > 0 : selected, Reason <= 0 : not selected """ NOT_ENOUGH_QUESTIONS_ANSWERED = -1 NOT_SELECTED_OTHER_REPRESENTATIVE_WAS_SELECTED = 0 SELECTED_AS_COMPANY_REPRESENTATIVE = 1 SELECTED_AS_COMPANY_REPRESENTATIVE_NO_OTHERS_FOUND = 2 SELECTED_AS_INDUSTRY_REPRESENTATIVE = 3 class DataSetCreator(object): dataset_extra_cols = { 'selected', 'algorithmic_selection', 'algorithmic_selection_comment', 'historic_selection', 'panel_entity_id', 'person_id', 'year', 'cat_position', 'email' } required_settings = ['path_panel', 'sheet_persons', 'sheet_panel_entities', 'sheet_companies', 'sheet_groups', 'sheet_questions', 'sheet_scales', 'sheet_selection', 'path_results', 'path_output', 'years', 'exclude_deprecated', 'exclude_personal', 'exclude_auxiliary', 'exclude_din_meta_data', 'exclude_special_sections', 'exclude_years_min', 'allow_missing', 'save_output', 'use_selection_history'] def __init__(self, settings=DEFAULT_SETTINGS): # settings: dataframe self.settings = settings self.years = self.settings['years'] self._validate_settings() # list people (per year) that can't be found when creating dataset self.missing_persons = {y: set() for y in self.years} # load data according to settings... # data: dictionary year:dataframe per self.years # questions, q_dict, scales: data structure dataframes # participant database: dataframes # selection: historic (who was in the samples of the past?), dataframes logger.info("Loading data...") self.data, self.questions, self.q_dict, self.scales, self.persons, self.companies,\ self.panel_entities, self.groups,\ self.selection = DataSetCreator._load_data( settings=self.settings ) # create lookup for persons self.persons_lookup = (self.persons .drop_duplicates( subset=["email", "wave_added"], keep="last" ) .set_index( ["email", "wave_added"] ) [["id", "panel_entity_id"]] .rename( columns={ "id": "person_id" }) .to_dict( orient='index' ) ) logger.info("Mapping scales...") self.data = self._map_scales( data=self.data, scales=self.scales, q_dict=self.q_dict ) logger.info("Generating panel data...") self.panel_df, self.available_questions_per_year = self._make_panel_df() # warn if persons couldn't be identified for y, missing in self.missing_persons.items(): if len(missing) > 0: logger.warning("Missing in {}: {} persons".format(y, len(missing))) # ", ".join(missing))) def _validate_settings(self): for s in self.required_settings: if s not in self.settings.keys(): logger.error("Setting '{}' is missing.".format(s)) exit(0) if not os.path.isfile(self.settings["path_panel"]): logger.error("Panel file '{}' could not be found.".format(self.settings["path_panel"])) exit(0) outdir = "/".join(self.settings["path_output"].split("/")[:-1]) if not os.path.isdir(outdir): logger.error("Can't find output directory '{}'.".format(outdir)) exit(0) def _set_sheet_settings_attribute(self, attr_name): """ Sets an object attribute (=attr_name) to a df generate from the sheet of the same name in the panel file ("panel.xlsx"). :param attr_name: Object attribute = sheet name to set :return: None """ setattr(self, attr_name, load_excel_sheet( self.settings['path_panel'], self.settings['sheet_{}'.format(attr_name)] )) def _get_relevant_questions(self, dataset_type=DataSetType.SINGLE_YEAR): """ Get a set of question names that should be included in dataset according to settings: in/exclude deprecated, personal, auxiliary questions, meta data, questions that appear in a minimum number of years, special sections, etc. :param dataset_type: default: DataSetType.SINGLE_YEAR. If DataSetType.PANEL, exclude special section questions :return: Set of question names """ query = 'name != "NaN"' query += ' and not deprecated' if self.settings['exclude_deprecated'] else "" query += ' and not personal_data' if self.settings['exclude_personal'] else "" query += ' and not auxiliary' if self.settings['exclude_auxiliary'] else "" query += ' and not name.str.startswith("din_")' if self.settings['exclude_din_meta_data'] else "" query += ' and num_years_observed >= {}'.format(self.settings['exclude_years_min']) if dataset_type==DataSetType.PANEL: query += ' and special_section_year == "NaN"' if self.settings[ 'exclude_special_sections'] else "" return set(self.questions.query(query, engine='python')['name'].tolist()) @staticmethod def _load_data(settings): """ Load survey data files and additional settings from panel.xlsx. :param settings: :return: DataFrames (data, questions, q_dict, scales, persons, companies, groups, panel_entities, selection) """ # load survey data data = {y: load_excel_sheet( settings['path_results'].format(y)) for y in settings['years'] } # load sheets from panel.xlsx questions = load_excel_sheet(settings['path_panel'], settings['sheet_questions']) scales = load_excel_sheet(settings['path_panel'], settings['sheet_scales']) persons = load_excel_sheet(settings['path_panel'], settings['sheet_persons']) companies = load_excel_sheet(settings['path_panel'], settings['sheet_companies']) groups = load_excel_sheet(settings['path_panel'], settings['sheet_groups']) panel_entities = load_excel_sheet(settings['path_panel'], settings['sheet_panel_entities']) selection = load_excel_sheet(settings['path_panel'], settings['sheet_selection']) # group scale entries scales = scales.groupby('scale') # make sure deprecated works... questions['deprecated'] = questions['deprecated'].astype('bool') # save dict representation of questions try: q_dict = questions.set_index('name').to_dict(orient='index') except ValueError: logger.error("questions are not unique") counter = Counter(questions['name'].tolist()) logger.error(["{}({})".format(i, counter[i]) for i in counter if counter[i] > 1]) exit(0) except Exception as ex: logger.error("Can not generate question dictionary, questions not properly loaded or defined") raise ex return data, questions, q_dict, scales, persons,\ companies, groups, panel_entities, selection def _was_selected(self, email, year): selected = np.nan selection_col = "selection_{}".format(year) # try all indices for y in self.years: try: sel = self.selection.set_index("email_{}".format(y)) selected = True if sel.loc[email][selection_col] == 1 else False break except KeyError: pass # logger.warning("could not find {} in {}".format(email, y)) return selected def _select_by_history(self, df): return df.apply(lambda x: self._was_selected(x['email'], x['year']), axis=1) @staticmethod def _get_q_map(q, q_dict, scales): """ Map observations to desired values, using the corresponding question's scale definition. :param q: question name :param q_dict: question dictionary (q->{...,scale: scalename}) :param scales: Pandas DataFrame :return: dict {original_data_value: mapped_data_value} """ q_scale = q_dict[q]['scale'] q_map = {} # if question is not associated with any scale, no mapping is necessary if q_scale in scales.groups.keys(): for r in scales.get_group(q_scale).iterrows(): r = r[1] for n in range(1, 50): key_name = 'alternative_{}'.format(n) if key_name in r.keys(): original = r['alternative_{}'.format(n)] if not pd.isnull(original): # cast all values to str to avoid type mismatches q_map[str(original)] = str(r['value']) return q_map def identify(self, email, year): """ Get id of associated panel entity and person based on email and year of observation. :param email: person's e-mail address :param year: year of entry in participant DB :return: {panel_entity_id:int value, person_id:int value} """ res = None for i in range(year, min(self.persons.wave_added)-1, -1): try: res = self.persons_lookup[(email, i)] break except KeyError: pass if res is None: self.missing_persons[year].add(email) return { 'panel_entity_id': None, 'person_id': None } else: return res @staticmethod def _select_company_representative(group): """ Algorithm for selecting DNP participants: When there are multiple participants who answer for the same company in one wave, a set of rules has to determine the one participant whose answers to take into account. Prerequisites: All participants need to be matched to a company. Company names have to be cleaned / coded, considering a threshold up to which organization subdivisions are regarded as separate units. :param group: A Pandas group of participants, where each participant represents the same company. :return: Pandas Series with bool selected """ # selected = [] # order by fraction of answered questions (most first) # ranked = group.sort_values(['fill'], ascending=False) fill = group["total_fill"] max_fill = max(fill) # de-select all participants with too much missing data # group.loc[fill < min_fill, "selected"] = SelectionReason.NOT_ENOUGH_QUESTIONS_ANSWERED # CASE A: only one participant in group if len(group) == 1: group.loc[ :, "selected" ] = SelectionReason.SELECTED_AS_COMPANY_REPRESENTATIVE_NO_OTHERS_FOUND # CASE B: multiple potential representatives else: # find best candidate = first cand. with max fill and standardization position candidates = ( group[(fill == max_fill) & group.std_position].index if group[fill == max_fill].std_position.any() else group[fill == max_fill].index ) # the representative group.loc[ group.index == candidates[0], "selected" ] = SelectionReason.SELECTED_AS_COMPANY_REPRESENTATIVE # the rest is not selected group.loc[ pd.isnull(group.selected), "selected" ] = SelectionReason.NOT_SELECTED_OTHER_REPRESENTATIVE_WAS_SELECTED return group.selected def _select(self, df): """ Select one participant from all participant groups in the data. Calls DataSetCreator._select on each group. Appends selection reasons. :param df: Pandas DataFrame :return: """ participants = None try: participants = df[["panel_entity_id", "person_id", "year", "total_fill", "cat_position", "view"]].copy() except Exception as ex: logger.error("Data is missing for {}:".format(df['year'].unique()[0])) logger.error(ex) logger.info("Make sure that the following variables exist and have completely mapped scales:") logger.info("email, cat_position, num_empl, num_turnover, view") exit(0) participants["selected"] = np.nan participants.loc[ participants.total_fill < self.settings["min_fill"], "selected" ] = SelectionReason.NOT_ENOUGH_QUESTIONS_ANSWERED participants["std_position"] = participants['cat_position'].str.contains('standard', case=False) selection = [] if self.settings["include_privates_in_representative_selection"]: # group all participants that answered enough questions # by their panel_entity_id and the year of participantion for name, group in participants.groupby(['panel_entity_id', 'year']): group_selection = self._select_company_representative(group.copy()) selection.append(group_selection) else: # select all participants with view=private & enough answered questions participants.loc[ (participants.view == "private") & (participants.total_fill >= self.settings["min_fill"]), "selected" ] = SelectionReason.SELECTED_AS_INDUSTRY_REPRESENTATIVE selection.append(participants[participants.view == "private"].selected) # group all view=company participants that answered enough questions # by their panel_entity_id and the year of participantion remaining = participants[ (participants.view != "private") & (pd.isnull(participants.selected)) ].copy() for name, group in remaining.groupby(['panel_entity_id', 'year']): group_selection = DataSetCreator._select_company_representative(group) selection.append(group_selection) selected = pd.concat(selection) return ( selected > 0, selected.replace({r.value: r.name.lower() for r in SelectionReason}) ) @staticmethod def get_fill(df): """ Get percentage of questions filled in by participants as Pandas Series. :param df: Pandas DataFrame :return: Pandas Series """ col_delta = set(df.columns).intersection(DataSetCreator.dataset_extra_cols) return df.count(axis=1).divide(len(df.columns) - len(col_delta)) def make_dataset(self, data, selected_years): """ Prepare a dataset from given data for the specified years: - select a sample of participants based on DataSetCreator.select() - include historical selection if available - drop variables that are not available in time-span :param data: Pandas DataFrame (stacked panel data in long format with var 'year') :param selected_years: list<int> of years :return: dataset (Pandas DataFrame) """ # keep only observations for selected years df = data[data['year'].isin(selected_years)].dropna(axis=1, how='all').copy() # drop questions that are not required try: relevant_questions = self._get_relevant_questions( DataSetType.SINGLE_YEAR if len(selected_years) == 1 else DataSetType.PANEL ) drop_cols = set(df.columns) - relevant_questions - DataSetCreator.dataset_extra_cols df = df.drop(drop_cols, axis=1) except Exception as ex: logger.error("An error occured when trying to drop irrelevant questions:") raise ex exit(0) # calculate % of questions filled in df['total_fill'] = DataSetCreator.get_fill(df) logger.info("{}: {} participants dropped due to too many missings".format( ", ".join([str(y) for y in selected_years]), len(df.total_fill[df.total_fill < self.settings["min_fill"]].index) )) # create "selection" column selection, selection_reason = self._select(df) df['algorithmic_selection'] = selection df['algorithmic_selection_comment'] = selection_reason # create "historic selection" column df['historic_selection'] = self._select_by_history(df) # create merged selection column (history if available, otherwise alg. selection) # TODO: review # df['selected'] = df['historic_selection'].fillna(df['algorithmic_selection']) df['selected'] = df['algorithmic_selection'] logger.info("{}: selected {}/{} participants".format( ", ".join([str(y) for y in selected_years]), len(df.selected[df.selected > 0].index), len(df.selected) )) # drop email address if self.settings['exclude_personal']: df = df.drop(['email'], axis=1) return df @staticmethod def _map_scales(data, scales, q_dict): """ Replaces all data values for questions that have defined scales. A default mapped value can be set by setting the $default$ flag, all original data values that can't be mapped will be mapped to the default value. :param data: dict{year:DataFrame} of survey data :param scales: :param q_dict: :return: """ obs_map = {} for y in data.keys(): for q in q_dict.keys(): obs_map[q_dict[q]['name_{}'.format(y)]] = DataSetCreator._get_q_map(q, q_dict, scales) for y in data.keys(): for c in data[y].columns: if c in obs_map.keys(): observations = data[y][c] scale = q_dict[c] if c in q_dict.keys() else None scale_map = obs_map[c] default_map = {} # if a default value is set, # replace all original values for which no mapping exists # with that default mapping value if "$default$" in scale_map.keys(): # all values in the data that do not appear in map: unmapped = set(observations.unique()) - set(scale_map.keys()) - {'', np.nan, 'nan'} default_map = {str(k): scale_map["$default$"] for k in unmapped} # replace values with mapped + default values data[y][c] = observations.astype(str).replace({ **scale_map, **default_map, **{ 'nan': np.nan, '': np.nan } }) # if scale is in defined as numeric, cast column to numeric # if c in q_dict.keys() and q_dict[c]['format'] == 'numeric': if scale is not None and scale['format'] == 'numeric': data[y][c] = pd.to_numeric(observations, errors='coerce') return data def _make_panel_df(self): """ Create panel DataFrame by stacking yearly data, adding year variable, and identifying persons and panel entities by <year, email> information. :return: panel (Pandas DataFrame), number of available questions per year (dict{year:num}) """ panel_data = [] available_questions_per_year = {} # iterate over columns (questions) for y, d in self.data.items(): qs = {q_info['name_{}'.format(y)]: q_panel for q_panel, q_info in self.q_dict.items()} found_qs = [k for k in qs.keys() if k in d.columns] not_found_qs = list(set(qs.keys()) - set(found_qs)) available_questions_per_year[y] = [qs[f] for f in found_qs] for _ in d.iterrows(): row = _[1] panel_data.append({ **{'year': y}, **{qs[q]: row[q] for q in found_qs}, **{qs[nf_q]: np.nan for nf_q in not_found_qs} }) # identify panel entities panel_df = pd.DataFrame(panel_data).replace({'nan': np.nan}) # t = time.process_time() ident = panel_df.apply( lambda x: self.identify(x['email'], x['year']), axis=1).apply(pd.Series) # logger.info("identifying took {} s".format(time.process_time() - t)) panel_df['panel_entity_id'] = ident['panel_entity_id'] panel_df['person_id'] = ident['person_id'] return panel_df, available_questions_per_year def get_datasets(self, years=None): if years is None: years = self.years datasets = {} if len(years) == 1: datasets = { '{}'.format(years[0]): self.make_dataset(self.panel_df, years) } elif len(years) > 1: datasets = { 'panel {}-{}'.format(years[0], years[-1]): self.make_dataset(self.panel_df, years), **{'{}'.format(y): self.make_dataset(self.panel_df, [y]) for y in years} } return datasets def to_excel(self): # prepare datasets logger.info("Preparing all datasets...") datasets = self.get_datasets() fn = self.settings['path_output'].format(min(self.years), max(self.years)) filename = '{}_{}.xlsx'.format(fn, time.strftime("%Y%m%d-%H%M%S")) writer = pd.ExcelWriter(filename, engine='xlsxwriter') info_years = "the years {} to {}".format( min(self.years), max(self.years)) if len(self.years) > 1 else "{}".format(self.years[0]) info = [ "German Standardization Panel", "Deutsches Normungspanel (DNP)", "", "This data set contains pseudonymized survey data from " + info_years + ".", "It was created automatically on " + time.strftime("%Y-%m-%d") + ".", "The data structure is described in the sheets 'variables' and 'scales'.", "Observations:" ] for n, dat in datasets.items(): c_text = "Sheet {}: Selected observations: {}. Total: {}.".format( n, len(dat[dat['selected'] == True].index), len(dat.index) ) if "-" in n: c_text += " Panel observations: " selected = dat[dat['selected'] == True] try: selected_grouped = selected.groupby('panel_entity_id').agg({'year': pd.Series.nunique}) yearly = selected_grouped['year'].value_counts().to_dict() c_text += ". ".join(["{} year(s): {}".format(y, c) for y, c in yearly.items()]) except KeyError: logger.error(selected.groupby('panel_entity_id')) info.append(c_text) # write questions and scales questions_drop_cols = set(self.questions.columns) - { 'name', 'question', 'label', 'scale', 'format' } scales_drop_cols = set(self.scales.obj.columns) - {'scale', 'value'} # sheet 'info' pd.DataFrame({'info': info}).to_excel(writer, sheet_name='info') # sheet 'variables' self.questions.drop(questions_drop_cols, axis=1).to_excel(writer, sheet_name='variables') # sheet 'scales' self.scales.obj.drop(scales_drop_cols, axis=1).to_excel(writer, sheet_name='scales') # sheets yyyy for n, dat in datasets.items(): dat.to_excel(writer, sheet_name=n) # stack all years and put them in one sheet years_dat = [d for y, d in datasets.items() if y.isdigit()] # sheet 'data'
pd.concat(years_dat, sort=False)
pandas.concat
"""Amazon Neptune Module.""" import logging import re from typing import Any import pandas as pd from gremlin_python.process.graph_traversal import GraphTraversalSource, __ from gremlin_python.process.translator import Translator from gremlin_python.process.traversal import Cardinality, T from gremlin_python.structure.graph import Graph from awswrangler import exceptions from awswrangler.neptune.client import NeptuneClient _logger: logging.Logger = logging.getLogger(__name__) def execute_gremlin(client: NeptuneClient, query: str) -> pd.DataFrame: """Return results of a Gremlin traversal as pandas dataframe. Parameters ---------- client : neptune.Client instance of the neptune client to use traversal : str The gremlin traversal to execute Returns ------- Union[pandas.DataFrame, Iterator[pandas.DataFrame]] Results as Pandas DataFrame Examples -------- Run a Gremlin Query >>> import awswrangler as wr >>> client = wr.neptune.connect(neptune_endpoint, neptune_port, iam_enabled=False) >>> df = wr.neptune.execute_gremlin(client, "g.V().limit(1)") """ results = client.read_gremlin(query) df = pd.DataFrame.from_records(results) return df def execute_opencypher(client: NeptuneClient, query: str) -> pd.DataFrame: """Return results of a openCypher traversal as pandas dataframe. Parameters ---------- client : NeptuneClient instance of the neptune client to use query : str The openCypher query to execute Returns ------- Union[pandas.DataFrame, Iterator[pandas.DataFrame]] Results as Pandas DataFrame Examples -------- Run an openCypher query >>> import awswrangler as wr >>> client = wr.neptune.connect(neptune_endpoint, neptune_port, iam_enabled=False) >>> resp = wr.neptune.execute_opencypher(client, "MATCH (n) RETURN n LIMIT 1") """ resp = client.read_opencypher(query) df = pd.DataFrame.from_dict(resp) return df def execute_sparql(client: NeptuneClient, query: str) -> pd.DataFrame: """Return results of a SPARQL query as pandas dataframe. Parameters ---------- client : NeptuneClient instance of the neptune client to use query : str The SPARQL traversal to execute Returns ------- Union[pandas.DataFrame, Iterator[pandas.DataFrame]] Results as Pandas DataFrame Examples -------- Run a SPARQL query >>> import awswrangler as wr >>> client = wr.neptune.connect(neptune_endpoint, neptune_port, iam_enabled=False) >>> df = wr.neptune.execute_sparql(client, "PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?name WHERE { ?person foaf:name ?name . """ data = client.read_sparql(query) df = None if "results" in data and "bindings" in data["results"]: df = pd.DataFrame(data["results"]["bindings"]) df.applymap(lambda x: x["value"]) else: df = pd.DataFrame(data) return df def to_property_graph( client: NeptuneClient, df: pd.DataFrame, batch_size: int = 50, use_header_cardinality: bool = True ) -> bool: """Write records stored in a DataFrame into Amazon Neptune. If writing to a property graph then DataFrames for vertices and edges must be written separately. DataFrames for vertices must have a ~label column with the label and a ~id column for the vertex id. If the ~id column does not exist, the specified id does not exists, or is empty then a new vertex will be added. If no ~label column exists an exception will be thrown. DataFrames for edges must have a ~id, ~label, ~to, and ~from column. If the ~id column does not exist the specified id does not exists, or is empty then a new edge will be added. If no ~label, ~to, or ~from column exists an exception will be thrown. If you would like to save data using `single` cardinality then you can postfix (single) to the column header and set use_header_cardinality=True (default). e.g. A column named `name(single)` will save the `name` property as single cardinality. You can disable this by setting by setting `use_header_cardinality=False`. Parameters ---------- client : NeptuneClient instance of the neptune client to use df : pandas.DataFrame Pandas DataFrame https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html batch_size: int The number of rows to save at a time. Default 50 use_header_cardinality: bool If True, then the header cardinality will be used to save the data. Default True Returns ------- bool True if records were written Examples -------- Writing to Amazon Neptune >>> import awswrangler as wr >>> client = wr.neptune.connect(neptune_endpoint, neptune_port, iam_enabled=False) >>> wr.neptune.gremlin.to_property_graph( ... df=df ... ) """ # check if ~id and ~label column exist and if not throw error g = Graph().traversal() is_edge_df = False is_update_df = True if "~id" in df.columns: if "~label" in df.columns: is_update_df = False if "~to" in df.columns and "~from" in df.columns: is_edge_df = True else: raise exceptions.InvalidArgumentValue( "Dataframe must contain at least a ~id and a ~label column to be saved to Amazon Neptune" ) # Loop through items in the DF for (index, row) in df.iterrows(): # build up a query if is_update_df: g = _build_gremlin_update(g, row, use_header_cardinality) elif is_edge_df: g = _build_gremlin_insert_edges(g, row.to_dict(), use_header_cardinality) else: g = _build_gremlin_insert_vertices(g, row.to_dict(), use_header_cardinality) # run the query if index > 0 and index % batch_size == 0: res = _run_gremlin_insert(client, g) if res: g = Graph().traversal() return _run_gremlin_insert(client, g) def to_rdf_graph( client: NeptuneClient, df: pd.DataFrame, batch_size: int = 50, subject_column: str = "s", predicate_column: str = "p", object_column: str = "o", graph_column: str = "g", ) -> bool: """Write records stored in a DataFrame into Amazon Neptune. The DataFrame must consist of triples with column names for the subject, predicate, and object specified. If you want to add data into a named graph then you will also need the graph column. Parameters ---------- client (NeptuneClient) : instance of the neptune client to use df (pandas.DataFrame) : Pandas DataFrame https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html subject_column (str, optional) : The column name in the dataframe for the subject. Defaults to 's' predicate_column (str, optional) : The column name in the dataframe for the predicate. Defaults to 'p' object_column (str, optional) : The column name in the dataframe for the object. Defaults to 'o' graph_column (str, optional) : The column name in the dataframe for the graph if sending across quads. Defaults to 'g' Returns ------- bool True if records were written Examples -------- Writing to Amazon Neptune >>> import awswrangler as wr >>> client = wr.neptune.connect(neptune_endpoint, neptune_port, iam_enabled=False) >>> wr.neptune.gremlin.to_rdf_graph( ... df=df ... ) """ is_quads = False if pd.Series([subject_column, object_column, predicate_column]).isin(df.columns).all(): if graph_column in df.columns: is_quads = True else: raise exceptions.InvalidArgumentValue( """Dataframe must contain at least the subject, predicate, and object columns defined or the defaults (s, p, o) to be saved to Amazon Neptune""" ) query = "" # Loop through items in the DF for (index, row) in df.iterrows(): # build up a query if is_quads: insert = f"""INSERT DATA {{ GRAPH <{row[graph_column]}> {{<{row[subject_column]}> <{str(row[predicate_column])}> <{row[object_column]}> . }} }}; """ query = query + insert else: insert = f"""INSERT DATA {{ <{row[subject_column]}> <{str(row[predicate_column])}> <{row[object_column]}> . }}; """ query = query + insert # run the query if index > 0 and index % batch_size == 0: res = client.write_sparql(query) if res: query = "" return client.write_sparql(query) def connect(host: str, port: int, iam_enabled: bool = False, **kwargs: Any) -> NeptuneClient: """Create a connection to a Neptune cluster. Parameters ---------- host : str The host endpoint to connect to port : int The port endpoint to connect to iam_enabled : bool, optional True if IAM is enabled on the cluster. Defaults to False. Returns ------- NeptuneClient [description] """ return NeptuneClient(host, port, iam_enabled, **kwargs) def _get_column_name(column: str) -> str: if "(single)" in column.lower(): return re.compile(r"\(single\)", re.IGNORECASE).sub("", column) return column def _set_properties(g: GraphTraversalSource, use_header_cardinality: bool, row: Any) -> GraphTraversalSource: for (column, value) in row.items(): if column not in ["~id", "~label", "~to", "~from"]: # If the column header is specifying the cardinality then use it if use_header_cardinality: if column.lower().find("(single)") > 0 and pd.notna(value): g = g.property(Cardinality.single, _get_column_name(column), value) else: g = _expand_properties(g, _get_column_name(column), value) else: # If not using header cardinality then use the default of set g = _expand_properties(g, column, value) return g def _expand_properties(g: GraphTraversalSource, column: str, value: Any) -> GraphTraversalSource: # If this is a list then expand it out into multiple property calls if isinstance(value, list) and len(value) > 0: for item in value: g = g.property(Cardinality.set_, column, item) elif pd.notna(value): g = g.property(Cardinality.set_, column, value) return g def _build_gremlin_update(g: GraphTraversalSource, row: Any, use_header_cardinality: bool) -> GraphTraversalSource: g = g.V(str(row["~id"])) g = _set_properties(g, use_header_cardinality, row) return g def _build_gremlin_insert_vertices( g: GraphTraversalSource, row: Any, use_header_cardinality: bool = False ) -> GraphTraversalSource: g = g.V(str(row["~id"])).fold().coalesce(__.unfold(), __.addV(row["~label"]).property(T.id, str(row["~id"]))) g = _set_properties(g, use_header_cardinality, row) return g def _build_gremlin_insert_edges( g: GraphTraversalSource, row: pd.Series, use_header_cardinality: bool ) -> GraphTraversalSource: g = ( g.V(str(row["~from"])) .fold() .coalesce(__.unfold(), _build_gremlin_insert_vertices(__, {"~id": row["~from"], "~label": "Vertex"})) .addE(row["~label"]) .property(T.id, str(row["~id"])) .to( __.V(str(row["~to"])) .fold() .coalesce(__.unfold(), _build_gremlin_insert_vertices(__, {"~id": row["~to"], "~label": "Vertex"})) ) ) g = _set_properties(g, use_header_cardinality, row) return g def _run_gremlin_insert(client: NeptuneClient, g: GraphTraversalSource) -> bool: translator = Translator("g") s = translator.translate(g.bytecode) s = s.replace("Cardinality.", "") # hack to fix parser error for set cardinality _logger.debug(s) res = client.write_gremlin(s) return res def flatten_nested_df( df: pd.DataFrame, include_prefix: bool = True, seperator: str = "_", recursive: bool = True ) -> pd.DataFrame: """Flatten the lists and dictionaries of the input data frame. Parameters ---------- df : pd.DataFrame The input data frame include_prefix : bool, optional If True, then it will prefix the new column name with the original column name. Defaults to True. seperator : str, optional The seperator to use between field names when a dictionary is exploded. Defaults to "_". recursive : bool, optional If True, then this will recurse the fields in the data frame. Defaults to True. Returns ------- pd.DataFrame: The flattened data frame """ if seperator is None: seperator = "_" df = df.reset_index() # search for list and map s = (df.applymap(type) == list).all() list_columns = s[s].index.tolist() s = (df.applymap(type) == dict).all() dict_columns = s[s].index.tolist() if len(list_columns) > 0 or len(dict_columns) > 0: new_columns = [] for col in dict_columns: # expand dictionaries horizontally expanded = None if include_prefix: expanded = pd.json_normalize(df[col], sep=seperator).add_prefix(f"{col}{seperator}") else: expanded = pd.json_normalize(df[col], sep=seperator).add_prefix(f"{seperator}") expanded.index = df.index df =
pd.concat([df, expanded], axis=1)
pandas.concat
import io import os import re import sys import time import pandas import datetime import requests import mplfinance from matplotlib import dates # Basic Data file_name = __file__[:-3] absolute_path = os.path.dirname(os.path.abspath(__file__)) # <editor-fold desc='common'> def load_json_config(): global file_directory config_file = os.path.join(os.sep, absolute_path, 'Config.cfg') with open(config_file, 'r') as file_handler: config_data = file_handler.read() regex = 'FILE_DIRECTORY=.*' match = re.findall(regex, config_data) file_directory = match[0].split('=')[1].strip() # </editor-fold> # <editor-fold desc='daily update'> def save_dict_to_file(dic, txt): f = open(txt, 'w', encoding='utf-8') f.write(dic) f.close() def load_dict_from_file(txt): f = open(txt, 'r', encoding='utf-8') data = f.read() f.close() return eval(data) def crawl_price(date=datetime.datetime.now()): date_str = str(date).split(' ')[0].replace('-', '') r = requests.post('http://www.twse.com.tw/exchangeReport/MI_INDEX?response=csv&date=' + date_str + '&type=ALL') ret = pandas.read_csv(io.StringIO('\n'.join([i.translate({ord(c): None for c in ' '}) for i in r.text.split('\n') if len(i.split(',')) == 17 and i[0] != '='])), header=0, index_col='證券代號') ret['成交金額'] = ret['成交金額'].str.replace(',', '') ret['成交股數'] = ret['成交股數'].str.replace(',', '') return ret def original_crawl_price(date='2011-01-01 00:00:00'): print('Begin: original_crawl_price!') data = {} success = False dateFormatter = '%Y-%m-%d %H:%M:%S' date = datetime.datetime.strptime(date, dateFormatter) while not success: print('parsing', date) try: data[date.date()] = crawl_price(date) print('success!') success = True except pandas.errors.EmptyDataError: # 假日爬不到 print('fail! check the date is holiday') # 減一天 date += datetime.timedelta(days=1) time.sleep(10) writer = pandas.ExcelWriter(stock_file_path, engine='xlsxwriter') stock_volume = pandas.DataFrame({k: d['成交股數'] for k, d in data.items()}).transpose() stock_volume.index = pandas.to_datetime(stock_volume.index) stock_volume.to_excel(writer, sheet_name='stock_volume', index=True) stock_open = pandas.DataFrame({k: d['開盤價'] for k, d in data.items()}).transpose() stock_open.index = pandas.to_datetime(stock_open.index) stock_open.to_excel(writer, sheet_name='stock_open', index=True) stock_close = pandas.DataFrame({k: d['收盤價'] for k, d in data.items()}).transpose() stock_close.index = pandas.to_datetime(stock_close.index) stock_close.to_excel(writer, sheet_name='stock_close', index=True) stock_high = pandas.DataFrame({k: d['最高價'] for k, d in data.items()}).transpose() stock_high.index = pandas.to_datetime(stock_high.index) stock_high.to_excel(writer, sheet_name='stock_high', index=True) stock_low = pandas.DataFrame({k: d['最低價'] for k, d in data.items()}).transpose() stock_low.index = pandas.to_datetime(stock_low.index) stock_low.to_excel(writer, sheet_name='stock_low', index=True) writer.save() print('End: original_crawl_price!') def update_stock_info(): print('Begin: update_stock_info!') data = {} count = 1 fail_count = 0 allow_continuous_fail_count = 20 try: pandas.read_excel(stock_file_path, sheet_name='stock_volume', index_col=0) print(r'{} Exist.'.format(stock_file_path)) except FileNotFoundError: print(r'{} Not Exist.'.format(stock_file_path)) original_crawl_price() stock_volume_old = pandas.read_excel(stock_file_path, sheet_name='stock_volume', index_col=0) stock_volume_old.index = pandas.to_datetime(stock_volume_old.index) stock_open_old = pandas.read_excel(stock_file_path, sheet_name='stock_open', index_col=0) stock_open_old.index = pandas.to_datetime(stock_open_old.index) stock_close_old = pandas.read_excel(stock_file_path, sheet_name='stock_close', index_col=0) stock_close_old.index = pandas.to_datetime(stock_close_old.index) stock_high_old = pandas.read_excel(stock_file_path, sheet_name='stock_high', index_col=0) stock_high_old.index = pandas.to_datetime(stock_high_old.index) stock_low_old = pandas.read_excel(stock_file_path, sheet_name='stock_low', index_col=0) stock_low_old.index = pandas.to_datetime(stock_low_old.index) last_date = stock_volume_old.index[-1] dateFormatter = '%Y-%m-%d %H:%M:%S' date = datetime.datetime.strptime(str(last_date), dateFormatter) date += datetime.timedelta(days=1) if date > datetime.datetime.now(): print('Finish update_stock_info!') sys.exit(0) while date < datetime.datetime.now() and count <= 100: print('parsing', date) try: data[date.date()] = crawl_price(date) print('success {} times!'.format(count)) fail_count = 0 count += 1 except pandas.errors.EmptyDataError: # 假日爬不到 print('fail! check the date is holiday') fail_count += 1 if fail_count == allow_continuous_fail_count: raise date += datetime.timedelta(days=1) time.sleep(10) writer = pandas.ExcelWriter(stock_file_path, engine='xlsxwriter') stock_volume_new = pandas.DataFrame({k: d['成交股數'] for k, d in data.items()}).transpose() stock_volume_new.index = pandas.to_datetime(stock_volume_new.index) stock_volume = pandas.concat([stock_volume_old, stock_volume_new], join='outer') stock_volume.to_excel(writer, sheet_name='stock_volume', index=True) stock_open_new = pandas.DataFrame({k: d['開盤價'] for k, d in data.items()}).transpose() stock_open_new.index = pandas.to_datetime(stock_open_new.index) stock_open =
pandas.concat([stock_open_old, stock_open_new], join='outer')
pandas.concat
#!/usr/bin/env python # Author: <NAME> (jsh) [<EMAIL>] import itertools import joblib import logging import os.path import pathlib import random import shutil import sys import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from sklearn import preprocessing as skpreproc from keras.layers import Dense from keras.models import Sequential logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') np.set_printoptions(precision=4, suppress=True) _CODEDIR = pathlib.Path(__file__).parent MODELDIR = _CODEDIR / 'model' MODELFILE = MODELDIR / 'model.d5'.format(**locals()) XS_FILE = MODELDIR / 'xscaler.dump' YS_FILE = MODELDIR / 'yscaler.dump' _EPOCHS = 30 _BATCH_SIZE = 32 def _build_linear_model(num_features): model = Sequential() model.add(Dense(1, input_dim=num_features, activation='linear')) model.compile(loss='mse', metrics=['mse'], optimizer='adam') return model def _expand_dummies(frame): categories = dict() bases = ['A', 'C', 'G', 'T'] idxs = [x for x in range(20)] # Magic number because guidelen is fixed. pairs = [''.join(pair) for pair in itertools.product(bases, bases)] categories['mm_idx'] = idxs categories['mm_trans'] = pairs widecols = list() for column in frame.columns: if column not in categories: continue frame[column] = frame[column].astype(CategoricalDtype(categories[column])) return pd.get_dummies(frame) def _get_linear_encoder(): def encoder(inrow): vari = inrow.variant orig = inrow.original mm_idx = None for i in range(len(vari)): if vari[i] != orig[i]: if orig != vari[:i] + orig[i] + vari[i+1:]: template = 'too many mismatches in pair {vari} <- {orig}' raise ValueError(template.format(**locals())) mm_idx = i if mm_idx == None: template = 'no mismatch in pair {vari} <- {orig}' raise ValueError(template.format(**locals())) features = dict() features['mm_idx'] = mm_idx mm_trans = ''.join([orig[mm_idx], vari[mm_idx]]) features['mm_trans'] = mm_trans features['gc_cont'] = orig.count('G') + orig.count('C') row = pd.Series(features) return row return encoder def train_and_save_mismatch_model(voframe, yframe): if voframe.shape[0] != yframe.shape[0]: logging.fatal('voframe and training values had different length') sys.exit(2) if 'variant' not in voframe.columns or 'original' not in voframe.columns: logging.fatal('voframe missing variant and/or original') sys.exit(2) encoder = _get_linear_encoder() encodings = voframe.apply(encoder, axis=1) Xframe = encodings.set_index(voframe.variant) Xframe = _expand_dummies(Xframe) X = np.array(Xframe, dtype=float) y = np.array(yframe.y, dtype=float).reshape(-1, 1) shutil.rmtree(MODELDIR, ignore_errors=True) while os.path.exists(MODELDIR): continue MODELDIR.mkdir(parents=True, exist_ok=True) y_orig = y X_scaler = skpreproc.StandardScaler() X = X_scaler.fit_transform(X) y_scaler = skpreproc.StandardScaler() y = y_scaler.fit_transform(y) model = _build_linear_model(X.shape[1]) # Feed training Data model.fit(X, y, epochs=_EPOCHS, batch_size=_BATCH_SIZE) joblib.dump(X_scaler, XS_FILE) joblib.dump(y_scaler, YS_FILE) joblib.dump(model, MODELFILE) def _retrieve_mismatch_model(): try: return (joblib.load(MODELFILE), joblib.load(XS_FILE), joblib.load(YS_FILE)) except FileNotFoundError: logging.fatal('Tried to make predictions without a model in place') sys.exit(2) def predict_mismatch_scores(reference): if 'variant' not in reference.columns or 'original' not in reference.columns: logging.fatal('reference missing variant and/or original') sys.exit(2) refsize = len(reference) logging.info('Applying model to {refsize} guides...'.format(**locals())) model, xscaler, yscaler = _retrieve_mismatch_model() encoder = _get_linear_encoder() voframe = reference[['variant', 'original']] voframe = voframe.drop_duplicates() matchmask = (voframe.variant == voframe.original) parents =
pd.DataFrame(voframe.loc[matchmask])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 12 17:13:29 2018 @author: pamelaanderson """ from difflib import SequenceMatcher import json import numpy as np import os import operator import pandas as pd def load_adverse_events(path, year, q): """ Loading adverse drug events while performing basic pre-processing""" path_w_year = path + year + '/' + q + '/' json_files = os.listdir(path_w_year) df_adverse_ev =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # # QTPyLib: Quantitative Trading Python Library # https://github.com/ranaroussi/qtpylib # # Copyright 2016-2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import atexit import json import logging import os import pickle import sys import tempfile import time import glob import subprocess from datetime import datetime from abc import ABCMeta import zmq import pandas as pd from dateutil.parser import parse as parse_date import pymysql from pymysql.constants.CLIENT import MULTI_STATEMENTS from numpy import ( isnan as np_isnan, nan as np_nan, int64 as np_int64 ) from ezibpy import ( ezIBpy, dataTypes as ibDataTypes ) from qtpylib import ( tools, asynctools, path, futures, __version__ ) # ============================================= # check min, python version if sys.version_info < (3, 4): raise SystemError("QTPyLib requires Python version >= 3.4") # ============================================= # Configure logging tools.createLogger(__name__, logging.INFO) # Disable ezIBpy logging (Blotter handles errors itself) logging.getLogger('ezibpy').setLevel(logging.CRITICAL) # ============================================= # set up threading pool __threads__ = tools.read_single_argv("--threads") __threads__ = __threads__ if tools.is_number(__threads__) else None asynctools.multitasking.createPool(__name__, __threads__) # ============================================= cash_ticks = {} class Blotter(): """Broker class initilizer :Optional: name : string name of the blotter (used by other modules) symbols : str IB contracts CSV database (default: ./symbols.csv) ibport : int TWS/GW Port to use (default: 4001) ibclient : int TWS/GW Client ID (default: 999) ibserver : str IB TWS/GW Server hostname (default: localhost) zmqport : str ZeroMQ Port to use (default: 12345) zmqtopic : str ZeroMQ string to use (default: _qtpylib_BLOTTERNAME_) orderbook : str Get Order Book (Market Depth) data (default: False) dbhost : str MySQL server hostname (default: localhost) dbport : str MySQL server port (default: 3306) dbname : str MySQL server database (default: qpy) dbuser : str MySQL server username (default: root) dbpass : str MySQL server password (default: none) dbskip : str Skip MySQL logging (default: False) """ __metaclass__ = ABCMeta def __init__(self, name=None, symbols="symbols.csv", ibport=4001, ibclient=999, ibserver="localhost", dbhost="localhost", dbport="3306", dbname="qtpy", dbuser="root", dbpass="", dbskip=False, orderbook=False, zmqport="12345", zmqtopic=None, **kwargs): # whats my name? self.name = str(self.__class__).split('.')[-1].split("'")[0].lower() if name is not None: self.name = name # initilize class logger self.log_blotter = logging.getLogger(__name__) # do not act on first tick (timezone is incorrect) self.first_tick = True self._bars = pd.DataFrame( columns=['open', 'high', 'low', 'close', 'volume']) self._bars.index.names = ['datetime'] self._bars.index = pd.to_datetime(self._bars.index, utc=True) # self._bars.index = self._bars.index.tz_convert(settings['timezone']) self._bars = {"~": self._bars} self._raw_bars = pd.DataFrame(columns=['last', 'volume']) self._raw_bars.index.names = ['datetime'] self._raw_bars.index = pd.to_datetime(self._raw_bars.index, utc=True) self._raw_bars = {"~": self._raw_bars} # global objects self.dbcurr = None self.dbconn = None self.context = None self.socket = None self.ibConn = None self.symbol_ids = {} # cache self.cash_ticks = cash_ticks # outside cache self.rtvolume = set() # has RTVOLUME? # ------------------------------- # work default values # ------------------------------- if zmqtopic is None: zmqtopic = "_qtpylib_" + str(self.name.lower()) + "_" # if no path given for symbols' csv, use same dir if symbols == "symbols.csv": symbols = path['caller'] + '/' + symbols # ------------------------------- # override args with any (non-default) command-line args self.args = {arg: val for arg, val in locals().items( ) if arg not in ('__class__', 'self', 'kwargs')} self.args.update(kwargs) self.args.update(self.load_cli_args()) # read cached args to detect duplicate blotters self.duplicate_run = False self.cahced_args = {} self.args_cache_file = "%s/%s.qtpylib" % ( tempfile.gettempdir(), self.name) if os.path.exists(self.args_cache_file): self.cahced_args = self._read_cached_args() # don't display connection errors on ctrl+c self.quitting = False # do stuff on exit atexit.register(self._on_exit) # track historical data download status self.backfilled = False self.backfilled_symbols = [] self.backfill_resolution = "1 min" # be aware of thread count self.threads = asynctools.multitasking.getPool(__name__)['threads'] # ------------------------------------------- def _on_exit(self, terminate=True): if "as_client" in self.args: return self.log_blotter.info("Blotter stopped...") if self.ibConn is not None: self.log_blotter.info("Cancel market data...") self.ibConn.cancelMarketData() self.log_blotter.info("Disconnecting...") self.ibConn.disconnect() if not self.duplicate_run: self.log_blotter.info("Deleting runtime args...") self._remove_cached_args() if not self.args['dbskip']: self.log_blotter.info("Disconnecting from MySQL...") try: self.dbcurr.close() self.dbconn.close() except Exception as e: pass if terminate: os._exit(0) # ------------------------------------------- @staticmethod def _detect_running_blotter(name): return name # ------------------------------------------- @staticmethod def _blotter_file_running(): try: # not sure how this works on windows... command = 'pgrep -f ' + sys.argv[0] process = subprocess.Popen( command, shell=True, stdout=subprocess.PIPE) stdout_list = process.communicate()[0].decode('utf-8').split("\n") stdout_list = list(filter(None, stdout_list)) return len(stdout_list) > 0 except Exception as e: return False # ------------------------------------------- def _check_unique_blotter(self): if os.path.exists(self.args_cache_file): # temp file found - check if really running # or if this file wasn't deleted due to crash if not self._blotter_file_running(): # print("REMOVING OLD TEMP") self._remove_cached_args() else: self.duplicate_run = True self.log_blotter.error("Blotter is already running...") sys.exit(1) self._write_cached_args() # ------------------------------------------- def _remove_cached_args(self): if os.path.exists(self.args_cache_file): os.remove(self.args_cache_file) def _read_cached_args(self): if os.path.exists(self.args_cache_file): return pickle.load(open(self.args_cache_file, "rb")) return {} def _write_cached_args(self): pickle.dump(self.args, open(self.args_cache_file, "wb")) tools.chmod(self.args_cache_file) # ------------------------------------------- def load_cli_args(self): parser = argparse.ArgumentParser( description='QTPyLib Blotter', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--symbols', default=self.args['symbols'], help='IB contracts CSV database', required=False) parser.add_argument('--ibport', default=self.args['ibport'], help='TWS/GW Port to use', required=False) parser.add_argument('--ibclient', default=self.args['ibclient'], help='TWS/GW Client ID', required=False) parser.add_argument('--ibserver', default=self.args['ibserver'], help='IB TWS/GW Server hostname', required=False) parser.add_argument('--zmqport', default=self.args['zmqport'], help='ZeroMQ Port to use', required=False) parser.add_argument('--orderbook', action='store_true', help='Get Order Book (Market Depth) data', required=False) parser.add_argument('--dbhost', default=self.args['dbhost'], help='MySQL server hostname', required=False) parser.add_argument('--dbport', default=self.args['dbport'], help='MySQL server port', required=False) parser.add_argument('--dbname', default=self.args['dbname'], help='MySQL server database', required=False) parser.add_argument('--dbuser', default=self.args['dbuser'], help='MySQL server username', required=False) parser.add_argument('--dbpass', default=self.args['dbpass'], help='MySQL server password', required=False) parser.add_argument('--dbskip', default=self.args['dbskip'], required=False, help='Skip MySQL logging (flag)', action='store_true') # only return non-default cmd line args # (meaning only those actually given) cmd_args, _ = parser.parse_known_args() args = {arg: val for arg, val in vars( cmd_args).items() if val != parser.get_default(arg)} return args # ------------------------------------------- def ibCallback(self, caller, msg, **kwargs): if caller == "handleConnectionClosed": self.log_blotter.info("Lost conncetion to Interactive Brokers...") self._on_exit(terminate=False) self.run() elif caller == "handleHistoricalData": self.on_ohlc_received(msg, kwargs) elif caller == "handleTickString": self.on_tick_string_received(msg.tickerId, kwargs) elif caller == "handleTickPrice" or caller == "handleTickSize": self.on_quote_received(msg.tickerId) elif caller in "handleTickOptionComputation": self.on_option_computation_received(msg.tickerId) elif caller == "handleMarketDepth": self.on_orderbook_received(msg.tickerId) elif caller == "handleError": # don't display connection errors on ctrl+c if self.quitting and \ msg.errorCode in ibDataTypes["DISCONNECT_ERROR_CODES"]: return # errorCode can be None... if 1100 <= msg.errorCode < 2200 or msg.errorCode == 0: self.log_blotter.warning( '[IB #%d] %s', msg.errorCode, msg.errorMsg) elif msg.errorCode not in (502, 504): # connection error self.log_blotter.error( '[IB #%d] %s', msg.errorCode, msg.errorMsg) # ------------------------------------------- def on_ohlc_received(self, msg, kwargs): symbol = self.ibConn.tickerSymbol(msg.reqId) if kwargs["completed"]: self.backfilled_symbols.append(symbol) tickers = set( {v: k for k, v in self.ibConn.tickerIds.items() if v.upper() != "SYMBOL"}.keys()) if tickers == set(self.backfilled_symbols): self.backfilled = True print(".") try: self.ibConn.cancelHistoricalData( self.ibConn.contracts[msg.reqId]) except Exception as e: pass else: data = { "symbol": symbol, "symbol_group": tools.gen_symbol_group(symbol), "asset_class": tools.gen_asset_class(symbol), "timestamp": tools.datetime_to_timezone( datetime.fromtimestamp(int(msg.date)), tz="UTC" ).strftime("%Y-%m-%d %H:%M:%S"), } # incmoing second data if "sec" in self.backfill_resolution: data["last"] = tools.to_decimal(msg.close) data["lastsize"] = int(msg.volume) # msg.count? data["bid"] = 0 data["bidsize"] = 0 data["ask"] = 0 data["asksize"] = 0 data["kind"] = "TICK" else: data["open"] = tools.to_decimal(msg.open) data["high"] = tools.to_decimal(msg.high) data["low"] = tools.to_decimal(msg.low) data["close"] = tools.to_decimal(msg.close) data["volume"] = int(msg.volume) data["kind"] = "BAR" # print(data) # store in db self.log2db(data, data["kind"]) # ------------------------------------------- @asynctools.multitasking.task def on_tick_string_received(self, tickerId, kwargs): # kwargs is empty if not kwargs: return data = None symbol = self.ibConn.tickerSymbol(tickerId) # for instruments that receive RTVOLUME events if "tick" in kwargs: self.rtvolume.add(symbol) data = { # available data from ib "symbol": symbol, "symbol_group": tools.gen_symbol_group(symbol), # ES_F, ... "asset_class": tools.gen_asset_class(symbol), "timestamp": kwargs['tick']['time'], "last": tools.to_decimal(kwargs['tick']['last']), "lastsize": int(kwargs['tick']['size']), "bid": tools.to_decimal(kwargs['tick']['bid']), "ask": tools.to_decimal(kwargs['tick']['ask']), "bidsize": int(kwargs['tick']['bidsize']), "asksize": int(kwargs['tick']['asksize']), # "wap": kwargs['tick']['wap'], } # for instruments that DOESN'T receive RTVOLUME events (exclude options) elif symbol not in self.rtvolume and \ self.ibConn.contracts[tickerId].m_secType not in ("OPT", "FOP"): tick = self.ibConn.marketData[tickerId] if not tick.empty and tick['last'].values[-1] > 0 < tick['lastsize'].values[-1]: data = { # available data from ib "symbol": symbol, # ES_F, ... "symbol_group": tools.gen_symbol_group(symbol), "asset_class": tools.gen_asset_class(symbol), "timestamp": tick.index.values[-1], "last": tools.to_decimal(tick['last'].values[-1]), "lastsize": int(tick['lastsize'].values[-1]), "bid": tools.to_decimal(tick['bid'].values[-1]), "ask": tools.to_decimal(tick['ask'].values[-1]), "bidsize": int(tick['bidsize'].values[-1]), "asksize": int(tick['asksize'].values[-1]), # "wap": kwargs['tick']['wap'], } # proceed if data exists if data is not None: # cache last tick if symbol in self.cash_ticks.keys(): if data == self.cash_ticks[symbol]: return self.cash_ticks[symbol] = data # add options fields data = tools.force_options_columns(data) # print('.', end="", flush=True) self.on_tick_received(data) # ------------------------------------------- @asynctools.multitasking.task def on_quote_received(self, tickerId): try: symbol = self.ibConn.tickerSymbol(tickerId) if self.ibConn.contracts[tickerId].m_secType in ("OPT", "FOP"): quote = self.ibConn.optionsData[tickerId].to_dict(orient='records')[ 0] quote['type'] = self.ibConn.contracts[tickerId].m_right quote['strike'] = tools.to_decimal( self.ibConn.contracts[tickerId].m_strike) quote["symbol_group"] = self.ibConn.contracts[tickerId].m_symbol + \ '_' + self.ibConn.contracts[tickerId].m_secType quote = tools.mark_options_values(quote) else: quote = self.ibConn.marketData[tickerId].to_dict(orient='records')[ 0] quote["symbol_group"] = tools.gen_symbol_group(symbol) quote["symbol"] = symbol quote["asset_class"] = tools.gen_asset_class(symbol) quote['bid'] = tools.to_decimal(quote['bid']) quote['ask'] = tools.to_decimal(quote['ask']) quote['last'] = tools.to_decimal(quote['last']) quote["kind"] = "QUOTE" # cash markets do not get RTVOLUME (handleTickString) if quote["asset_class"] == "CSH": quote['last'] = round( float((quote['bid'] + quote['ask']) / 2), 5) quote['timestamp'] = datetime.utcnow( ).strftime("%Y-%m-%d %H:%M:%S.%f") # create synthetic tick if symbol in self.cash_ticks.keys() and quote['last'] != self.cash_ticks[symbol]: self.on_tick_received(quote) else: self.broadcast(quote, "QUOTE") self.cash_ticks[symbol] = quote['last'] else: self.broadcast(quote, "QUOTE") except Exception as e: pass # ------------------------------------------- @asynctools.multitasking.task def on_option_computation_received(self, tickerId): # try: symbol = self.ibConn.tickerSymbol(tickerId) tick = self.ibConn.optionsData[tickerId].to_dict(orient='records')[0] # must have values! for key in ('bid', 'ask', 'last', 'bidsize', 'asksize', 'lastsize', 'volume', 'delta', 'gamma', 'vega', 'theta'): if tick[key] == 0: return tick['type'] = self.ibConn.contracts[tickerId].m_right tick['strike'] = tools.to_decimal( self.ibConn.contracts[tickerId].m_strike) tick["symbol_group"] = self.ibConn.contracts[tickerId].m_symbol + \ '_' + self.ibConn.contracts[tickerId].m_secType tick['volume'] = int(tick['volume']) tick['bid'] = tools.to_decimal(tick['bid']) tick['bidsize'] = int(tick['bidsize']) tick['ask'] = tools.to_decimal(tick['ask']) tick['asksize'] = int(tick['asksize']) tick['last'] = tools.to_decimal(tick['last']) tick['lastsize'] = int(tick['lastsize']) tick['price'] = tools.to_decimal(tick['price'], 2) tick['underlying'] = tools.to_decimal(tick['underlying']) tick['dividend'] = tools.to_decimal(tick['dividend']) tick['volume'] = int(tick['volume']) tick['iv'] = tools.to_decimal(tick['iv']) tick['oi'] = int(tick['oi']) tick['delta'] = tools.to_decimal(tick['delta']) tick['gamma'] = tools.to_decimal(tick['gamma']) tick['vega'] = tools.to_decimal(tick['vega']) tick['theta'] = tools.to_decimal(tick['theta']) tick["symbol"] = symbol tick["symbol_group"] = tools.gen_symbol_group(symbol) tick["asset_class"] = tools.gen_asset_class(symbol) tick = tools.mark_options_values(tick) # is this a really new tick? prev_last = 0 prev_lastsize = 0 if symbol in self.cash_ticks.keys(): prev_last = self.cash_ticks[symbol]['last'] prev_lastsize = self.cash_ticks[symbol]['lastsize'] if tick == self.cash_ticks[symbol]: return self.cash_ticks[symbol] = dict(tick) # assign timestamp tick['timestamp'] = self.ibConn.optionsData[tickerId].index[0] if tick['timestamp'] == 0: tick['timestamp'] = datetime.utcnow().strftime( ibDataTypes['DATE_TIME_FORMAT_LONG_MILLISECS']) # treat as tick if last/volume changed if tick['last'] != prev_last or tick['lastsize'] != prev_lastsize: tick["kind"] = "TICK" self.on_tick_received(tick) # otherwise treat as quote else: tick["kind"] = "QUOTE" self.broadcast(tick, "QUOTE") # except Exception as e: # pass # ------------------------------------------- @asynctools.multitasking.task def on_orderbook_received(self, tickerId): orderbook = self.ibConn.marketDepthData[tickerId].dropna( subset=['bid', 'ask']).fillna(0).to_dict(orient='list') # add symbol data to list symbol = self.ibConn.tickerSymbol(tickerId) orderbook['symbol'] = symbol orderbook["symbol_group"] = tools.gen_symbol_group(symbol) orderbook["asset_class"] = tools.gen_asset_class(symbol) orderbook["kind"] = "ORDERBOOK" # broadcast self.broadcast(orderbook, "ORDERBOOK") # ------------------------------------------- @asynctools.multitasking.task def on_tick_received(self, tick): # data symbol = tick['symbol'] timestamp = datetime.strptime(tick['timestamp'], ibDataTypes["DATE_TIME_FORMAT_LONG_MILLISECS"]) # do not act on first tick (timezone is incorrect) if self.first_tick: self.first_tick = False return try: timestamp = parse_date(timestamp) except Exception as e: pass # placeholders if symbol not in self._raw_bars: self._raw_bars[symbol] = self._raw_bars['~'] if symbol not in self._bars: self._bars[symbol] = self._bars['~'] # send tick to message self.broadcast tick["kind"] = "TICK" self.broadcast(tick, "TICK") self.log2db(tick, "TICK") # add tick to raw self._bars tick_data = pd.DataFrame(index=['timestamp'], data={'timestamp': timestamp, 'last': tick['last'], 'volume': tick['lastsize']}) tick_data.set_index(['timestamp'], inplace=True) _raw_bars = self._raw_bars[symbol].copy() _raw_bars = _raw_bars.append(tick_data) # add tools.resampled raw to self._bars ohlc = _raw_bars['last'].resample('1T').ohlc() vol = _raw_bars['volume'].resample('1T').sum() vol = _raw_bars['volume'].resample('1T').sum() opened_bar = ohlc opened_bar['volume'] = vol # add bar to self._bars object previous_bar_count = len(self._bars[symbol]) self._bars[symbol] = self._bars[symbol].append(opened_bar) self._bars[symbol] = self._bars[symbol].groupby( self._bars[symbol].index).last() if len(self._bars[symbol].index) > previous_bar_count: bar = self._bars[symbol].to_dict(orient='records')[0] bar["symbol"] = symbol bar["symbol_group"] = tick['symbol_group'] bar["asset_class"] = tick['asset_class'] bar["timestamp"] = self._bars[symbol].index[0].strftime( ibDataTypes["DATE_TIME_FORMAT_LONG"]) bar["kind"] = "BAR" self.broadcast(bar, "BAR") self.log2db(bar, "BAR") self._bars[symbol] = self._bars[symbol][-1:] _raw_bars.drop(_raw_bars.index[:], inplace=True) self._raw_bars[symbol] = _raw_bars # ------------------------------------------- def broadcast(self, data, kind): def int64_handler(o): if isinstance(o, np_int64): try: return pd.to_datetime(o, unit='ms').strftime( ibDataTypes["DATE_TIME_FORMAT_LONG"]) except Exception as e: return int(o) raise TypeError string2send = "%s %s" % ( self.args["zmqtopic"], json.dumps(data, default=int64_handler)) # print(kind, string2send) try: self.socket.send_string(string2send) except Exception as e: pass # ------------------------------------------- def log2db(self, data, kind): if self.args['dbskip'] or len(data["symbol"].split("_")) > 2: return # connect to mysql per call (thread safe) if self.threads > 0: dbconn = self.get_mysql_connection() dbcurr = dbconn.cursor() else: dbconn = self.dbconn dbcurr = self.dbcurr # set symbol details symbol_id = 0 symbol = data["symbol"].replace("_" + data["asset_class"], "") if symbol in self.symbol_ids.keys(): symbol_id = self.symbol_ids[symbol] else: symbol_id = get_symbol_id( data["symbol"], dbconn, dbcurr, self.ibConn) self.symbol_ids[symbol] = symbol_id # insert to db if kind == "TICK": try: mysql_insert_tick(data, symbol_id, dbcurr) except Exception as e: pass elif kind == "BAR": try: mysql_insert_bar(data, symbol_id, dbcurr) except Exception as e: pass # commit try: dbconn.commit() except Exception as e: pass # disconect from mysql if self.threads > 0: dbcurr.close() dbconn.close() # ------------------------------------------- def run(self): """Starts the blotter Connects to the TWS/GW, processes and logs market data, and broadcast it over TCP via ZeroMQ (which algo subscribe to) """ self._check_unique_blotter() # connect to mysql self.mysql_connect() self.context = zmq.Context(zmq.REP) self.socket = self.context.socket(zmq.PUB) self.socket.bind("tcp://*:" + str(self.args['zmqport'])) db_modified = 0 contracts = [] prev_contracts = [] first_run = True self.log_blotter.info("Connecting to Interactive Brokers...") self.ibConn = ezIBpy() self.ibConn.ibCallback = self.ibCallback while not self.ibConn.connected: self.ibConn.connect(clientId=int(self.args['ibclient']), port=int(self.args['ibport']), host=str(self.args['ibserver'])) time.sleep(1) if not self.ibConn.connected: print('*', end="", flush=True) self.log_blotter.info("Connection established...") try: while True: if not os.path.exists(self.args['symbols']): pd.DataFrame(columns=['symbol', 'sec_type', 'exchange', 'currency', 'expiry', 'strike', 'opt_type'] ).to_csv(self.args['symbols'], header=True, index=False) tools.chmod(self.args['symbols']) else: time.sleep(0.1) # read db properties db_data = os.stat(self.args['symbols']) db_size = db_data.st_size db_last_modified = db_data.st_mtime # empty file if db_size == 0: if prev_contracts: self.log_blotter.info('Cancel market data...') self.ibConn.cancelMarketData() time.sleep(0.1) prev_contracts = [] continue # modified? if not first_run and db_last_modified == db_modified: continue # continue... db_modified = db_last_modified # read contructs db df = pd.read_csv(self.args['symbols'], header=0) if df.empty: continue # removed expired df = df[( (df['expiry'] < 1000000) & ( df['expiry'] >= int(datetime.now().strftime('%Y%m')))) | ( (df['expiry'] >= 1000000) & ( df['expiry'] >= int(datetime.now().strftime('%Y%m%d')))) | np_isnan(df['expiry']) ] # fix expiry formatting (no floats) df['expiry'] = df['expiry'].fillna( 0).astype(int).astype(str) df.loc[df['expiry'] == "0", 'expiry'] = "" df = df[df['sec_type'] != 'BAG'] df.fillna("", inplace=True) df.to_csv(self.args['symbols'], header=True, index=False) tools.chmod(self.args['symbols']) # ignore commentee df = df[~df['symbol'].str.contains("#")] contracts = [tuple(x) for x in df.values] if first_run: first_run = False else: if contracts != prev_contracts: # cancel market data for removed contracts for contract in prev_contracts: if contract not in contracts: self.ibConn.cancelMarketData( self.ibConn.createContract(contract)) if self.args['orderbook']: self.ibConn.cancelMarketDepth( self.ibConn.createContract(contract)) time.sleep(0.1) contract_string = self.ibConn.contractString( contract).split('_')[0] self.log_blotter.info( 'Contract Removed [%s]', contract_string) # request market data for contract in contracts: if contract not in prev_contracts: self.ibConn.requestMarketData( self.ibConn.createContract(contract)) if self.args['orderbook']: self.ibConn.requestMarketDepth( self.ibConn.createContract(contract)) time.sleep(0.1) contract_string = self.ibConn.contractString( contract).split('_')[0] self.log_blotter.info( 'Contract Added [%s]', contract_string) # update latest contracts prev_contracts = contracts time.sleep(2) except (KeyboardInterrupt, SystemExit): self.quitting = True # don't display connection errors on ctrl+c print( "\n\n>>> Interrupted with Ctrl-c...\n(waiting for running tasks to be completed)\n") # asynctools.multitasking.killall() # stop now asynctools.multitasking.wait_for_tasks() # wait for threads to complete sys.exit(1) # ------------------------------------------- # CLIENT / STATIC # ------------------------------------------- def _fix_history_sequence(self, df, table): """ fix out-of-sequence ticks/bars """ # remove "Unnamed: x" columns cols = df.columns[df.columns.str.startswith('Unnamed:')].tolist() df.drop(cols, axis=1, inplace=True) # remove future dates df['datetime'] =
pd.to_datetime(df['datetime'], utc=True)
pandas.to_datetime
import subprocess, gzip, datetime, pickle, glob, os, openpyxl, shutil, math import pandas as pd from plotly.subplots import make_subplots from pathlib import Path from joblib import Parallel, delayed import plotly.graph_objects as go import plotly.express as px from statistics import mean from statistics import median from statistics import stdev import numpy as np import PySimpleGUI as sg ############################################################################ ## general function def calculate_read_stats(lst): minimum = min(lst) maximum = max(lst) average = round(mean(lst),2) med = round(median(lst),2) deviation = round(stdev(lst),2) return([minimum, maximum, average, med, deviation]) ## Plot a heatmap of the ESV or OTU table def plot_heatmap(file, unit, project): """ Function to plot a heatmap of the OTU or ESV table """ ## load OTU table and extract read numbers df = pd.read_excel(file) ID_list = df['ID'].values.tolist() df = df.drop(columns=['ID', 'Seq']) Sample_list = df.columns.tolist() z = [] for i in df.values.tolist(): sublist=[] for num in i: if num == 0: sublist.append(0) else: sublist.append(math.log(num)) z.append(sublist) ## create heatmap fig = px.imshow(z, y=ID_list, x=Sample_list, aspect="auto") ## calculate optimal height and trim maximum height and adjust layout h = len(ID_list)*15 if h >= 3000: h = 3000 fig.update_layout(template='simple_white', width=1500, height=h, title='log('+unit+')', coloraxis_showscale=False) fig.update_yaxes(showticklabels=False, title=unit+'s') else: fig.update_layout(template='simple_white', width=1500, height=h, title='log('+unit+')', coloraxis_showscale=False) fig.update_yaxes(tickmode='linear') fig.update_xaxes(tickmode='linear') ## write image out_pdf = Path(project).joinpath('0_statistics', 'Summary_statistics', unit + '_heatmap.pdf') fig.write_image(str(out_pdf)) out_html = Path(project).joinpath('0_statistics', 'Summary_statistics', unit + '_heatmap.html') fig.write_html(str(out_html)) def plot_reads(Project_report, project, ESV_table_lulu, OTU_table_lulu): df_3 = pd.read_excel(Project_report, sheet_name='3_PE merging') df_4 = pd.read_excel(Project_report, sheet_name='4_primer_trimming') df_5 = pd.read_excel(Project_report, sheet_name='5_quality_filtering') df_7 = pd.read_excel(Project_report, sheet_name='7_otu_clustering') df_9_OTUs = pd.read_excel(OTU_table_lulu) df_9_ESVs = pd.read_excel(ESV_table_lulu) samples = df_7['File'].values.tolist() raw_reads = df_3['processed reads'].values.tolist() merged_reads = df_3['merged reads'].values.tolist() trimmed_reads = df_4['trimmed reads'].values.tolist() filtered_reads = df_5['passed reads'].values.tolist() mapped_reads_OTUs = [sum(df_9_OTUs[sample].values.tolist()) for sample in samples] mapped_reads_ESVs = [sum(df_9_ESVs[sample].values.tolist()) for sample in samples] stats_raw_reads = calculate_read_stats(raw_reads) stats_merged_reads = calculate_read_stats(merged_reads) stats_trimmed_reads = calculate_read_stats(trimmed_reads) stats_filtered_reads = calculate_read_stats(filtered_reads) stats_mapped_reads_OTUs = calculate_read_stats(mapped_reads_OTUs) stats_mapped_reads_ESVs = calculate_read_stats(mapped_reads_ESVs) ## dataframe df_stats =
pd.DataFrame()
pandas.DataFrame
""" test fancy indexing & misc """ from datetime import datetime import re import weakref import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import ( is_float_dtype, is_integer_dtype, ) import pandas as pd from pandas import ( DataFrame, Index, NaT, Series, date_range, offsets, timedelta_range, ) import pandas._testing as tm from pandas.core.api import Float64Index from pandas.tests.indexing.common import _mklbl from pandas.tests.indexing.test_floats import gen_obj # ------------------------------------------------------------------------ # Indexing test cases class TestFancy: """pure get/set item & fancy indexing""" def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) # invalid msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) # valid df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], "bar"] expected = Series( [2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar" ) tm.assert_series_equal(result, expected) def test_setitem_ndarray_1d_2(self): # GH5508 # dtype getting changed? df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df[2:5] = np.arange(1, 4) * 1j def test_getitem_ndarray_3d( self, index, frame_or_series, indexer_sli, using_array_manager ): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) msgs = [] if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]: msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]") if using_array_manager: msgs.append("Passed array should be 1-dimensional") if frame_or_series is Series or indexer_sli is tm.iloc: msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)") if using_array_manager: msgs.append("indexer should be 1-dimensional") if indexer_sli is tm.loc or ( frame_or_series is Series and indexer_sli is tm.setitem ): msgs.append("Cannot index with multidimensional key") if frame_or_series is DataFrame and indexer_sli is tm.setitem: msgs.append("Index data must be 1-dimensional") if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc: msgs.append("Index data must be 1-dimensional") if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)): msgs.append("Data must be 1-dimensional") if len(index) == 0 or isinstance(index, pd.MultiIndex): msgs.append("positional indexers are out-of-bounds") msg = "|".join(msgs) potential_errors = (IndexError, ValueError, NotImplementedError) with pytest.raises(potential_errors, match=msg): idxr[nd3] def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) if indexer_sli is tm.iloc: err = ValueError msg = f"Cannot set values with ndim > {obj.ndim}" else: err = ValueError msg = "|".join( [ r"Buffer has wrong number of dimensions \(expected 1, got 3\)", "Cannot set values with ndim > 1", "Index data must be 1-dimensional", "Data must be 1-dimensional", "Array conditional must be same shape as self", ] ) with pytest.raises(err, match=msg): idxr[nd3] = 0 def test_getitem_ndarray_0d(self): # GH#24924 key = np.array(0) # dataframe __getitem__ df = DataFrame([[1, 2], [3, 4]]) result = df[key] expected = Series([1, 3], name=0) tm.assert_series_equal(result, expected) # series __getitem__ ser = Series([1, 2]) result = ser[key] assert result == 1 def test_inf_upcast(self): # GH 16957 # We should be able to use np.inf as a key # np.inf should cause an index to convert to float # Test with np.inf in rows df = DataFrame(columns=[0]) df.loc[1] = 1 df.loc[2] = 2 df.loc[np.inf] = 3 # make sure we can look up the value assert df.loc[np.inf, 0] == 3 result = df.index expected = Float64Index([1, 2, np.inf]) tm.assert_index_equal(result, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df["c"] = np.nan assert df["c"].dtype == np.float64 df.loc[0, "c"] = "foo" expected = DataFrame( [{"a": 1, "b": np.nan, "c": "foo"}, {"a": 3, "b": 2, "c": np.nan}] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("val", [3.14, "wxyz"]) def test_setitem_dtype_upcast2(self, val): # GH10280 df = DataFrame( np.arange(6, dtype="int64").reshape(2, 3), index=list("ab"), columns=["foo", "bar", "baz"], ) left = df.copy() left.loc["a", "bar"] = val right = DataFrame( [[0, val, 2], [3, 4, 5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_integer_dtype(left["foo"]) assert is_integer_dtype(left["baz"]) def test_setitem_dtype_upcast3(self): left = DataFrame( np.arange(6, dtype="int64").reshape(2, 3) / 10.0, index=list("ab"), columns=["foo", "bar", "baz"], ) left.loc["a", "bar"] = "wxyz" right = DataFrame( [[0, "wxyz", 0.2], [0.3, 0.4, 0.5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_float_dtype(left["foo"]) assert is_float_dtype(left["baz"]) def test_dups_fancy_indexing(self): # GH 3455 df = tm.makeCustomDataframe(10, 3) df.columns = ["a", "a", "b"] result = df[["b", "a"]].columns expected =
Index(["b", "a", "a"])
pandas.Index
import pytest import jax.numpy as np import pandas as pd from pzflow import Flow from pzflow.bijectors import Chain, Reverse, Scale from pzflow.distributions import * @pytest.mark.parametrize( "data_columns,bijector,info,file", [ (None, None, None, None), (("x", "y"), None, None, None), (None, Reverse(), None, None), (("x", "y"), None, None, "file"), (None, Reverse(), None, "file"), (None, None, "fake", "file"), ], ) def test_bad_inputs(data_columns, bijector, info, file): with pytest.raises(ValueError): Flow(data_columns, bijector=bijector, info=info, file=file) @pytest.mark.parametrize( "flow", [ Flow(("redshift", "y"), Reverse(), latent=Normal(2)), Flow(("redshift", "y"), Reverse(), latent=Tdist(2)), Flow(("redshift", "y"), Reverse(), latent=Uniform((-3, 3), (-3, 3))), ], ) def test_returns_correct_shape(flow): xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) x = pd.DataFrame(xarray, columns=("redshift", "y")) conditions = flow._get_conditions(x, xarray.shape[0]) x_with_errs = flow._array_with_errs(x) assert x_with_errs.shape == (3, 4) x_with_errs = flow._array_with_errs(x, skip="redshift") assert x_with_errs.shape == (3, 3) xfwd, xfwd_log_det = flow._forward(flow._params, xarray, conditions=conditions) assert xfwd.shape == x.shape assert xfwd_log_det.shape == (x.shape[0],) xinv, xinv_log_det = flow._inverse(flow._params, xarray, conditions=conditions) assert xinv.shape == x.shape assert xinv_log_det.shape == (x.shape[0],) J = flow._jacobian(flow._params, xarray, conditions=conditions) assert J.shape == (3, 2, 2) nsamples = 4 assert flow.sample(nsamples).shape == (nsamples, x.shape[1]) assert flow.log_prob(x).shape == (x.shape[0],) grid = np.arange(0, 2.1, 0.12) pdfs = flow.posterior(x, column="y", grid=grid) assert pdfs.shape == (x.shape[0], grid.size) pdfs = flow.posterior(x.iloc[:, 1:], column="redshift", grid=grid) assert pdfs.shape == (x.shape[0], grid.size) pdfs = flow.posterior(x.iloc[:, 1:], column="redshift", grid=grid, batch_size=2) assert pdfs.shape == (x.shape[0], grid.size) assert len(flow.train(x, epochs=11, verbose=True)) == 12 def test_error_convolution(): xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) x = pd.DataFrame(xarray, columns=("redshift", "y")) flow = Flow(("redshift", "y"), Reverse(), latent=Normal(2)) assert flow.log_prob(x, convolve_err=True).shape == (x.shape[0],) assert np.allclose( flow.log_prob(x, convolve_err=True), flow.log_prob(x, convolve_err=False), ) grid = np.arange(0, 2.1, 0.12) pdfs = flow.posterior(x, column="y", grid=grid, convolve_err=True) assert pdfs.shape == (x.shape[0], grid.size) assert ( len(flow.train(x, epochs=11, convolve_err=True, burn_in_epochs=4, verbose=True)) == 17 ) flow = Flow(("redshift", "y"), Reverse(), latent=Tdist(2)) with pytest.raises(ValueError): flow.log_prob(x, convolve_err=True).shape with pytest.raises(ValueError): flow.posterior(x, column="y", grid=grid, convolve_err=True) with pytest.raises(ValueError): flow.train(x, epochs=11, convolve_err=True, burn_in_epochs=4, verbose=True) def test_columns_with_errs(): columns = ("redshift", "y") flow = Flow(columns, Reverse()) xarray = np.array([[1, 2, 0.4, 0.2], [3, 4, 0.1, 0.9]]) x =
pd.DataFrame(xarray, columns=("redshift", "y", "y_err", "redshift_err"))
pandas.DataFrame
import requests import pandas as pd from io import StringIO, BytesIO from lxml import etree as et API_KEY = '<GREATSCHOOLS.ORG API KEY GOES HERE>' def generate_file(name, response): d = {} df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import random from rpy2.robjects.packages import importr utils = importr('utils') prodlim = importr('prodlim') survival = importr('survival') #KMsurv = importr('KMsurv') #cvAUC = importr('pROC') #utils.install_packages('pseudo') #utils.install_packages('prodlim') #utils.install_packages('survival') #utils.install_packages('KMsurv') #utils.install_packages('pROC') import rpy2.robjects as robjects from rpy2.robjects import r def sim_event_times_case1(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) censored_times = np.random.uniform(low=0,high=true_times) censored_indicator = np.random.binomial(n=1,p=.3,size=digits.shape[0]) times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen #split data train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case2(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) denom = np.exp( 1.4*clinical_data[:,0]+2.6*clinical_data[:,1] -.2*clinical_data[:,2] )*6 censored_times = np.sqrt(-np.log(np.random.uniform(low=0,high=1,size=num_samples))/denom ) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case3(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1* digits- 1.6*np.cos(digits)*clinical_data[:,0]+.3*clinical_data[:,1]*clinical_data[:,0] )* (.7/2) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) #denom = np.exp( 1.4*clinical_data[:,0]+2.6*clinical_data[:,1] -.2*clinical_data[:,2] )*6 shape_c = np.maximum(0.001,np.exp(-1.8*clinical_data[:,0]+1.4*clinical_data[:,1]+1.5 *clinical_data[:,0]*clinical_data[:,1])) censored_times = np.random.gamma(shape_c,digits, num_samples) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case4(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] shape = np.maximum(0.001,np.exp(.5*digits+.2*clinical_data[:,0] * np.cos(digits)+1.5*clinical_data[:,1]+1.2*clinical_data[:,0])) true_times = np.random.gamma(shape,digits, num_samples) # shape = shape; scale = digits censored_times = np.random.uniform(low=0,high=true_times) censored_indicator = np.random.binomial(n=1,p=.3,size=digits.shape[0]) times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case5(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] shape = np.maximum(0.001,np.exp(.5*digits+.2*clinical_data[:,0] * np.cos(digits)+1.5*clinical_data[:,1]+1.2*clinical_data[:,0])) true_times = np.random.gamma(shape,digits, num_samples) # shape = shape; scale = digits denom = np.exp( -3.4*clinical_data[:,0]+.6*clinical_data[:,1] -2.2*clinical_data[:,2] ) * .005 censored_times = np.sqrt(-np.log(np.random.uniform(low=0,high=1,size=num_samples))/denom ) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata =
pd.get_dummies(long_test_clindata, columns=['time_point'])
pandas.get_dummies
#!/usr/bin/python import time import numpy as np import pandas as pd import argparse from math import exp from math import sqrt from datetime import datetime from os import listdir import sys # BOKEH from bokeh import events from bokeh.io import output_file, show from bokeh.models import CustomJS, HoverTool, ColumnDataSource, Slider, CheckboxGroup, RadioGroup, Button, MultiSelect from bokeh.plotting import figure from bokeh.transform import linear_cmap from bokeh.transform import log_cmap from bokeh.util.hex import axial_to_cartesian from bokeh.util.hex import cartesian_to_axial from bokeh.layouts import column, row from bokeh.palettes import Viridis256, Greys256 def import_table(file): ''' This function imports the pkl files from the tables forlder, and returns a pandas dataframe. ''' table = pd.read_pickle(file) return table def create_array(table): ''' This function recieves a dataframe with logP and Mass values for every ChEBI identifier. It returns two numpy arrays: for mass and logP. ''' # create lists x = [float(logP) for logP in table.logP] y = [float(mass) for mass in table.Mass] return np.asarray(x), np.asarray(y) def hexbin(df, x, y, size, aspect_scale, orientation): ''' This function recieves x and y coordinate arrays and converts these into q and r hexagon coordinates by calling Bokeh's "cartesian_to_axial" function. The q and r coordinates are added to the dataframe, and this dataframe is returend. ''' q, r = cartesian_to_axial(x, y, size, orientation=orientation, aspect_scale=aspect_scale) df.loc[:'q'] = q df.loc[:'r'] = r return df def add_tooltip_columns(df, table): ''' For every hexagon, a tooltip will be created that will be shown when the user hovers with the mouse over the hexagon. The tooltip will show the 3 most frequent ChEBI identifiers and additional information. This function recieves: - a "df" dataframe (with hexagonal coordinates) that will be the source for the multiplot - the "table" dataframe with information that is needed for the tooltip such as name, mass, logP for every ChEBI identifier In this function, the tooltip information will be added to the original dataframe in additional columns. These columns will be used by JavaScript code to display in the tooltip. ''' table = table.drop(['Class', 'logP', 'Mass'], axis=1) table = table.reset_index() # Define tooltip size TOOLTIP_COUNT = 3 columns = table.columns tooltip_columns = {column+str(i):[] for i in range(1, TOOLTIP_COUNT+1) for column in columns} # Extract ChEBI identifiers from dataframe chebi_ids = [ids if isinstance(ids, list) else [] for ids in df.ChEBI] list_for_df = [] # Use chebi identifiers to look up information in the "table" dataframe for ids in chebi_ids: rows = table[table.ChEBI.isin(ids)] # Sort and select most frequent ChEBI identifiers rows = rows.sort_values(by='Count', ascending=False) values_nested = rows[0:TOOLTIP_COUNT-1].values.tolist() # Unnest information from the table, values_unnested = [item for sublist in values_nested for item in sublist] while len(values_unnested) < (TOOLTIP_COUNT*len(columns)): values_unnested.append("-") list_for_df.append(values_unnested) df_tooltip = pd.DataFrame(list_for_df, columns = tooltip_columns) df = df.join(df_tooltip, how='left') return df def get_blur(x,y,sigma_x,sigma_y): ''' This function recieves x, y values and sigma x, sigma y values and returns the calculated blur value. See https://en.wikipedia.org/wiki/Multivariate_normal_distribution ''' return exp(-0.5*(x*x/sigma_x/sigma_x + y*y/sigma_y/sigma_y)) def get_rows(q, r, counts, tfidf, kernel, blur_max, step_size): ''' For every hexagon (=row in the dataframe), counts will be distributed to surrounding hexagons in a gaussian manner (blur). This function recieves information for one hexagon so that it can distribute its counts to other hexagons. To distribute the counts to other hexagons/rows, we use the "kernel". We create new rows for other hexagons, which means we might create many rows with the same hexagonal coorindates. Newly created rows will be returned ''' # initiate original row rows = [[q, r, counts, tfidf] + [counts for i in np.arange(0, blur_max+step_size, step_size)] + [tfidf for i in np.arange(0, blur_max+step_size, step_size)]] # use kernel to distribute counts to other rows for coords_new, blur_factors in kernel.items(): q_new = q + coords_new[0] r_new = r + coords_new[1] # create new row, use kernels coordinates and calculated blur values new_row = [q_new, r_new, 0, 0] + list(map(lambda n: n * counts, blur_factors)) + list(map(lambda n: n*tfidf, blur_factors)) rows.append(new_row) return rows def construct_kernel(blur_max, step_size): ''' This function recieves the maximum blur and step size to construct the kernel. The kernel is a dictionary that uses the coordinates as keys, and the blur values as values. The blur values depend on sd_x, so the kernel will return a list of blur values from 0 to blur_max. Blur values are calculated by "get_blur()"". The kernel will be used by "get_rows()" to distribute counts to surrounding hexagons. ''' coordinates_to_distance = {(-5,2):(7.5, sqrt(3)/2),(-5,3):(7.5, sqrt(3)/2), (-4,1):(6, sqrt(3)),(-4,2):(6, 0),(-4,3):(6,sqrt(3)), (-3,0):(4.5, 3*sqrt(3)/2),(-3,1):(4.5, sqrt(3)/2),(-3,2):(4.5, sqrt(3)/2),(-3,3):(4.5, 3*sqrt(3)/2), (-2,-1):(3, 2*sqrt(3)),(-2,0):(3, sqrt(3)),(-2,1):(3, 0),(-2,2):(3, sqrt(3)),(-2,3):(3, 2*sqrt(3)), (-1,-1):(1.5, 3*sqrt(3)/2),(-1,0):(1.5, sqrt(3)/2),(-1,1):(1.5, sqrt(3)/2),(-1,2):(1.5, 3*sqrt(3)/2), (0,-2):(0, 2*sqrt(3)),(0,-1):(0, sqrt(3)),(0,1):(0, sqrt(3)),(0,2):(0, 2*sqrt(3)), (1,-2):(1.5, 3*sqrt(3)/2),(1,-1):(1.5, sqrt(3)/2),(1,0):(1.5, sqrt(3)/2),(1,1):(1.5, 3*sqrt(3)/2),(2,-3):(3, 2*sqrt(3)), (2,-2):(3, sqrt(3)),(2,-1):(3, 0),(2,0):(3, sqrt(3)),(2,1):(3, 2*sqrt(3)), (3,-3):(4.5, 3*sqrt(3)/2),(3,-2):(4.5, sqrt(3)/2),(3,-1):(4.5, sqrt(3)/2),(3,0):(4.5, 3*sqrt(3)/2), (4,-3):(6, sqrt(3)),(4,-2):(6, 0),(4,-1):(6, sqrt(3)), (5,-3):(7.5, sqrt(3)/2),(5,-2):(7.5, sqrt(3)/2)} kernel = {} for key, distance in coordinates_to_distance.items(): kernel[key] = [0] for sd_x in np.arange(step_size, blur_max+step_size, step_size): kernel[key].append(get_blur(distance[0], distance[1], sd_x, sd_x/2)) return kernel def add_gaussian_blur(df, blur_max, step_size): ''' Function: This function adds gaussian blur to the plot by going through all hexagons and applying the kernel to the neighbouring hexagons. To speed up the process, the pandas dataframe is put in a python dictionary, so to quickly find the neighbouring hexagon coordinates using the coordinates as keys. After bluring, the dictionary is put in a pandas dataframe again, and this dataframe is returned. Columns: sd_x values for calculating blur values are used to name a column with counts that result from blurring with that specific sd_x. This makes selecting correct sd_x column easy with the slider code, because the slider returns values that represent sd_x values. ColumnDataSource does not accept intergers as column names, so sd_x column names are changed to string. sd_x columns contain lists, in a list the first value is the normal counts, the second value is the tfidf count. ''' kernel = construct_kernel(blur_max, step_size) columns = ['q', 'r', 'Count', 'TFIDF'] + [str(sd_x) for sd_x in np.arange(0, (blur_max+step_size), step_size)] + ['%s_tfidf' % str(sd_x) for sd_x in np.arange(0, (blur_max+step_size), step_size)] df_blur = pd.concat([pd.DataFrame(get_rows(q, r, counts, tfidf, kernel, blur_max, step_size), columns=columns) for q, r, counts, tfidf in zip(df.q, df.r, df.Count, df.TFIDF)], ignore_index=True) df_blur = df_blur.groupby(['q', 'r'], as_index=False).agg(sum) df_joined = df_blur.merge(df.loc[:,['q', 'r', 'ChEBI']], on=['q', 'r'], how='outer') return df_joined def check_for_ids(id_list, class_id): ''' This functions checks if the Class identifier is in the "id_list". This ChEBI ID-specific list contains other ChEBI identifers of chemicals that are of higher level hierarchical class. ''' # check = any(class_id == id for id in id_list) check = any(str(class_id) == str(id) for id in id_list) return check def create_class_source(table, size, ratio, orientation, class_id): ''' This function finds all chemicals belonging to class "class_id" as defined by the ChEBI ontology. It returns a dataframe filtered for these chemicals. ''' if class_id == None: # if no class id is given, then class source should be empty df =
pd.DataFrame()
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem cop = s.copy() cop[omask] = 5 s[mask] = 5 assert_series_equal(cop, s) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, offset=datetools.bday) > ts.median() self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assert_((s[:4] == 0).all()) self.assert_(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) def test_getitem_box_float64(self): value = self.ts[5] self.assert_(isinstance(value, np.float64)) def test_getitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_setitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__setitem__, 1, 5) self.assertRaises(KeyError, s.ix.__setitem__, 1, 5) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assert_(self.series.index[9] not in numSlice.index) self.assert_(self.objSeries.index[9] not in objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assert_(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assert_((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1,2,17]] = np.NaN self.ts[6] = np.NaN self.assert_(np.isnan(self.ts[6])) self.assert_(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assert_(not np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assert_((series[::2] == 0).all()) # set item that's not contained self.assertRaises(Exception, self.series.__setitem__, 'foobar', 1) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assert_(res is self.ts) self.assertEqual(self.ts[idx], 0) res = self.series.set_value('foobar', 0) self.assert_(res is not self.series) self.assert_(res.index[-1] == 'foobar') self.assertEqual(res['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertEqual(len(sl.index.indexMap), len(sl.index)) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] self.assertRaises(Exception, self.ts.__getitem__, (slice(None, None), 2)) self.assertRaises(Exception, self.ts.__setitem__, (slice(None, None), 2), 2) # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5]
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
from collections import OrderedDict import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, ) import pandas._testing as tm from pandas.core.construction import create_series_with_explicit_dtype class TestFromDict: # Note: these tests are specific to the from_dict method, not for # passing dictionaries to DataFrame.__init__ def test_from_dict_scalars_requires_index(self): msg = "If using all scalar values, you must pass an index" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(OrderedDict([("b", 8), ("a", 5), ("a", 6)])) def test_constructor_list_of_odicts(self): data = [ OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]]), OrderedDict([["a", 1.5], ["b", 3], ["d", 6]]), OrderedDict([["a", 1.5], ["d", 6]]), OrderedDict(), OrderedDict([["a", 1.5], ["b", 3], ["c", 4]]), OrderedDict([["b", 3], ["c", 4], ["d", 6]]), ] result = DataFrame(data) expected = DataFrame.from_dict( dict(zip(range(len(data)), data)), orient="index" ) tm.assert_frame_equal(result, expected.reindex(result.index)) def test_constructor_single_row(self): data = [OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip([0], data)), orient="index").reindex( result.index ) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [ OrderedDict([["a", 1.5], ["b", 3.0], ["c", 4.0]]), OrderedDict([["a", 1.5], ["b", 3.0], ["c", 6.0]]), ] sdict = OrderedDict(zip(["x", "y"], data)) idx = Index(["a", "b", "c"]) # all named data2 = [ Series([1.5, 3, 4], idx, dtype="O", name="x"), Series([1.5, 3, 6], idx, name="y"), ] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected) # some unnamed data2 = [ Series([1.5, 3, 4], idx, dtype="O", name="x"), Series([1.5, 3, 6], idx), ] result = DataFrame(data2) sdict = OrderedDict(zip(["x", "Unnamed 0"], data)) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected) # none named data = [ OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]]), OrderedDict([["a", 1.5], ["b", 3], ["d", 6]]), OrderedDict([["a", 1.5], ["d", 6]]), OrderedDict(), OrderedDict([["a", 1.5], ["b", 3], ["c", 4]]), OrderedDict([["b", 3], ["c", 4], ["d", 6]]), ] data = [ create_series_with_explicit_dtype(d, dtype_if_empty=object) for d in data ] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series(dtype=object)]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [ OrderedDict([["a", 1.5], ["b", 3.0], ["c", 4.0]]), OrderedDict([["a", 1.5], ["b", 3.0], ["c", 6.0]]), ] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(["a", "b", "c"]) data2 = [Series([1.5, 3, 4], idx, dtype="O"), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected) def test_constructor_orient(self, float_string_frame): data_dict = float_string_frame.T._series recons = DataFrame.from_dict(data_dict, orient="index") expected = float_string_frame.reindex(index=recons.index) tm.assert_frame_equal(recons, expected) # dict of sequence a = {"hi": [32, 3, 3], "there": [3, 5, 3]} rs = DataFrame.from_dict(a, orient="index") xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_constructor_from_ordered_dict(self): # GH#8425 a = OrderedDict( [ ("one", OrderedDict([("col_a", "foo1"), ("col_b", "bar1")])), ("two", OrderedDict([("col_a", "foo2"), ("col_b", "bar2")])), ("three", OrderedDict([("col_a", "foo3"), ("col_b", "bar3")])), ] ) expected =
DataFrame.from_dict(a, orient="columns")
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """project3.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1PW90I5c1X5VipzIvowFpbLOAtjLw7-co """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns """1.**transforming data csv to pandas dataframe** """ data=
pd.read_csv("/content/drive/MyDrive/simplilearn/python with data science /project3/Comcast_telecom_complaints_data.csv")
pandas.read_csv
import pandas as pd from autor import Author from excel import ExcelFile from individuos import Student, Egress from verifica_autores import em_lista_autores, trata_exceçoes from valores import ND, quadrennium from PyscopusModified import ScopusModified from pprint import pprint from excecoes import excecoes_artigos_scopus def calcula_AE(data_frame, lista_egressos, lista_alunos): egressos_nomes = [] for egresso in lista_egressos: egressos_nomes.append(trata_exceçoes(egresso.name.strip())) alunos_nomes = [] for aluno in lista_alunos: alunos_nomes.append(trata_exceçoes(aluno.name.strip())) AE_quantidade = 0 for index, row in data_frame.iterrows(): AE = False for coluna in row.index: if "Autor" in str(coluna): if data_frame[coluna][index] != "": for pos_egresso, egresso in enumerate(egressos_nomes): if data_frame[coluna][index] == egresso: if lista_egressos[pos_egresso].period[str(int(data_frame["Ano"][index]))[2:]] == True: AE = True for pos_aluno, aluno in enumerate(alunos_nomes): if data_frame[coluna][index] == aluno: if lista_alunos[pos_aluno].period[str(data_frame["Ano"][index])[2:]] == True: AE = True if AE == True: AE_quantidade += 1 return AE_quantidade def calcula_quantidade(data_frame, aux_porc, lista_egressos, lista_alunos): qtd_AE = calcula_AE(data_frame, lista_egressos, lista_alunos) qtd = len(data_frame.index) porc = f"{aux_porc * qtd:.2f}%" try: porc_AE = f"{100/qtd * qtd_AE:.2f}%" except ZeroDivisionError: porc_AE = "0%" return (qtd, qtd_AE, porc, porc_AE) def get_indicadores(info, lista_egressos, lista_alunos, geral = False): data_frame = pd.DataFrame(info) porcentagens = [] total_artigos = len(data_frame["Tipo"]) if total_artigos != 0: aux_porc = 100/total_artigos else: aux_porc = 0 porcentagens_AE = [] periodicos = data_frame.loc[data_frame["Tipo"] == "Periódico"] periodicos, AE_periodicos, porc_periodicos, porc_AE_periodicos = calcula_quantidade(periodicos, aux_porc, lista_egressos, lista_alunos) anais = data_frame.loc[data_frame["Tipo"] == "Anais"] anais, AE_anais, porc_anais, porc_AE_anais = calcula_quantidade(anais, aux_porc, lista_egressos, lista_alunos) a1 = data_frame.loc[data_frame["Qualis 2019"] == "A1"] a1, AE_a1, porc_a1, porc_AE_a1 = calcula_quantidade(a1, aux_porc, lista_egressos, lista_alunos) a2 = data_frame.loc[data_frame["Qualis 2019"] == "A2"] a2, AE_a2, porc_a2, porc_AE_a2 = calcula_quantidade(a2, aux_porc, lista_egressos, lista_alunos) a3 = data_frame.loc[data_frame["Qualis 2019"] == "A3"] a3, AE_a3, porc_a3, porc_AE_a3 = calcula_quantidade(a3, aux_porc, lista_egressos, lista_alunos) a4 = data_frame.loc[data_frame["Qualis 2019"] == "A4"] a4, AE_a4, porc_a4, porc_AE_a4 = calcula_quantidade(a4, aux_porc, lista_egressos, lista_alunos) a1_a4 = a1 + a2 + a3 + a4 AE_a1_a4 = AE_a1 + AE_a2 + AE_a3 + AE_a4 porc_a1_a4 = f"{aux_porc * a1_a4:.2f}%" try: porc_AE_a1_a4 = f"{100/a1_a4 * AE_a1_a4:.2f}%" except ZeroDivisionError: porc_AE_a1_a4 = "0%" b1 = data_frame.loc[data_frame["Qualis 2019"] == "B1"] b1, AE_b1, porc_b1, porc_AE_b1 = calcula_quantidade(b1, aux_porc, lista_egressos, lista_alunos) b2 = data_frame.loc[data_frame["Qualis 2019"] == "B2"] b2, AE_b2, porc_b2, porc_AE_b2 = calcula_quantidade(b2, aux_porc, lista_egressos, lista_alunos) b3 = data_frame.loc[data_frame["Qualis 2019"] == "B3"] b3, AE_b3, porc_b3, porc_AE_b3 = calcula_quantidade(b3, aux_porc, lista_egressos, lista_alunos) b4 = data_frame.loc[data_frame["Qualis 2019"] == "B4"] b4, AE_b4, porc_b4, porc_AE_b4 = calcula_quantidade(b4, aux_porc, lista_egressos, lista_alunos) b1_b4 = b1 + b2 + b3 + b4 AE_b1_b4 = AE_b1 + AE_b2 + AE_b3 + AE_b4 porc_b1_b4 = f"{aux_porc * b1_b4:.2f}%" try: porc_AE_b1_b4 = f"{100/b1_b4 * AE_b1_b4:.2f}%" except ZeroDivisionError: porc_AE_b1_b4 = "0%" outros = data_frame.loc[((data_frame["Qualis 2019"] != "A1") & (data_frame["Qualis 2019"] != "A2") & (data_frame["Qualis 2019"] != "A3") & (data_frame["Qualis 2019"] != "A4"))] outros = outros.loc[((outros["Qualis 2019"] != "B1") & (outros["Qualis 2019"] != "B2") & (outros["Qualis 2019"] != "B3") & (outros["Qualis 2019"] != "B4"))] outros, AE_outros, porc_outros, porc_AE_outros = calcula_quantidade(outros, aux_porc, lista_egressos, lista_alunos) porcentagens.append(porc_periodicos) porcentagens.append(porc_anais) porcentagens.append(porc_a1_a4) porcentagens.append(porc_a1) porcentagens.append(porc_a2) porcentagens.append(porc_a3) porcentagens.append(porc_a4) porcentagens.append(porc_b1_b4) porcentagens.append(porc_b1) porcentagens.append(porc_b2) porcentagens.append(porc_b3) porcentagens.append(porc_b4) porcentagens.append(porc_outros) porcentagens_AE.append(porc_AE_periodicos) porcentagens_AE.append(porc_AE_anais) porcentagens_AE.append(porc_AE_a1_a4) porcentagens_AE.append(porc_AE_a1) porcentagens_AE.append(porc_AE_a2) porcentagens_AE.append(porc_AE_a3) porcentagens_AE.append(porc_AE_a4) porcentagens_AE.append(porc_AE_b1_b4) porcentagens_AE.append(porc_AE_b1) porcentagens_AE.append(porc_AE_b2) porcentagens_AE.append(porc_AE_b3) porcentagens_AE.append(porc_AE_b4) porcentagens_AE.append(porc_AE_outros) tipo_qualis = ["Periódicos", "Anais", "A1-A4", "A1", "A2", "A3", "A4", "B1-B4", "B1", "B2", "B3", "B4", "Outros"] tabela = {"Tipo/Qualis": tipo_qualis, "Quantidade": [], "Porcentagem": [], "Quantidade com alunos/egressos":[], "Porcentagem alunos/egressos":[]} tabela["Tipo/Qualis"].append(None) tabela["Tipo/Qualis"].append("Índice") tabela["Tipo/Qualis"].append("Irestrito") tabela["Tipo/Qualis"].append("Igeral") tabela["Quantidade"].append(periodicos) tabela["Quantidade"].append(anais) tabela["Quantidade"].append(a1_a4) tabela["Quantidade"].append(a1) tabela["Quantidade"].append(a2) tabela["Quantidade"].append(a3) tabela["Quantidade"].append(a4) tabela["Quantidade"].append(b1_b4) tabela["Quantidade"].append(b1) tabela["Quantidade"].append(b2) tabela["Quantidade"].append(b3) tabela["Quantidade"].append(b4) tabela["Quantidade"].append(outros) tabela["Quantidade"].append(None) Irestrito = a1 + (a2 * 0.875) + (a3 * 0.75) + (a4 * 0.625) if Irestrito != 0: Irestrito = round(Irestrito, 2) Irestrito_medio = round((Irestrito/ND), 2) else: Irestrito_medio = 0 Igeral = Irestrito + (b1 * 0.5) + (b2 * 0.2) + (b3 * 0.1) + (b4 * 0.05) if Igeral != 0: Igeral = round(Igeral, 2) Igeral_medio = round((Igeral/ND), 2) else: Igeral_medio = 0 tabela["Quantidade"].append("Acumulado") tabela["Quantidade"].append(Irestrito) tabela["Quantidade"].append(Igeral) tabela["Quantidade com alunos/egressos"].append(AE_periodicos) tabela["Quantidade com alunos/egressos"].append(AE_anais) tabela["Quantidade com alunos/egressos"].append(AE_a1_a4) tabela["Quantidade com alunos/egressos"].append(AE_a1) tabela["Quantidade com alunos/egressos"].append(AE_a2) tabela["Quantidade com alunos/egressos"].append(AE_a3) tabela["Quantidade com alunos/egressos"].append(AE_a4) tabela["Quantidade com alunos/egressos"].append(AE_b1_b4) tabela["Quantidade com alunos/egressos"].append(AE_b1) tabela["Quantidade com alunos/egressos"].append(AE_b2) tabela["Quantidade com alunos/egressos"].append(AE_b3) tabela["Quantidade com alunos/egressos"].append(AE_b4) tabela["Quantidade com alunos/egressos"].append(AE_outros) tabela["Quantidade com alunos/egressos"].append(None) tabela["Quantidade com alunos/egressos"].append(None) tabela["Quantidade com alunos/egressos"].append(None) tabela["Quantidade com alunos/egressos"].append(None) tabela["Porcentagem alunos/egressos"] = porcentagens_AE tabela["Porcentagem alunos/egressos"].append(None) tabela["Porcentagem alunos/egressos"].append(None) tabela["Porcentagem alunos/egressos"].append(None) tabela["Porcentagem alunos/egressos"].append(None) tabela["Porcentagem"] = porcentagens tabela["Porcentagem"].append(None) if geral: tabela["Porcentagem"].append("Média por docente") tabela["Porcentagem"].append(Irestrito_medio) tabela["Porcentagem"].append(Igeral_medio) else: tabela["Porcentagem"].append(None) tabela["Porcentagem"].append(None) tabela["Porcentagem"].append(None) return pd.DataFrame(tabela) def read_files(): # Read files - People try: professors = pd.read_csv("UNIVALI - PPGC - Professores.csv", sep=";", encoding='iso-8859-1') except: professors = pd.read_csv("UNIVALI - PPGC - Professores.csv", sep=";", encoding='utf-8') try: egress = pd.read_csv("planilha_egressos_lattes.CSV", sep=";", encoding='iso-8859-1') except: egress = pd.read_csv("planilha_egressos_lattes.CSV", sep=";", encoding='utf-8') try: students = pd.read_csv("Planilha - Levantamento alunos ativos.CSV", sep=";", encoding='iso-8859-1') except: students = pd.read_csv("Planilha - Levantamento alunos ativos.CSV", sep=";", encoding='utf-8') # Read files - Qualis try: qualis_cc2016_file =
pd.read_csv("Qualis/QualisCC_2013_2016.csv", sep=";", encoding='iso-8859-1')
pandas.read_csv
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt import settings from vectorbt.utils.random import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) settings.returns['year_freq'] = '252 days' # same as empyrical price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_process_order_nb(): # Errors, ignored and rejected orders log_record = np.empty(1, dtype=log_dt)[0] log_record[0] = 0 log_record[1] = 0 log_record[2] = 0 log_record[3] = 0 log_record[-1] = 0 cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=0)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=1)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( -100., 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.nan, 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.inf, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.nan, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., -100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=0), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=np.nan), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=2), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., np.nan, nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., -10., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., np.inf, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., -10., 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., np.nan, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 10., 10., 1100., nb.create_order_nb(size=0, price=10), log_record) assert cash_now == 100. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1., raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1.), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.All), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 180. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 909. assert shares_now == -100. assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 50. assert shares_now == 4.9 assert_same_tuple(order_result, OrderResult( size=4.9, price=10.0, fees=1., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 49. assert shares_now == 5. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=1., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 100., nb.create_order_nb(size=1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., -10., 10., 100., nb.create_order_nb(size=-1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == -20. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 150., -5., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=0., side=1, status=0, status_info=-1)) # Logging _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.nan, 0, 2, np.nan, 0., 0., 0., 0., np.inf, 0., True, False, True, 100., 0., np.nan, np.nan, np.nan, -1, 1, 0, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 0., 10., 10., 10., 0., 0, 0, -1, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., -np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 200., -10., 10., 10., 0., 1, 0, -1, 0 )) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_all(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='all', **kwargs) def from_signals_longonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='shortonly', **kwargs) class TestFromSignals: def test_one_column(self): record_arrays_close( from_signals_all().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_signals_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 200., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 100., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0), (2, 0, 1, 100., 1., 0., 1), (3, 3, 1, 50., 4., 0., 0), (4, 0, 2, 100., 1., 0., 1), (5, 3, 2, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size(self): record_arrays_close( from_signals_all(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 2.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 3, 2, 1.0, 4.0, 0.0, 0), (4, 0, 3, 100.0, 1.0, 0.0, 1), (5, 3, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception) as e_info: _ = from_signals_all(size=0.5, size_type='percent') record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True, accumulate=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 3, 0, 31.25, 4., 0., 1), (3, 4, 0, 15.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_signals_longonly( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 25., 1., 0., 0), (2, 0, 2, 12.5, 1., 0., 0), (3, 3, 0, 50., 4., 0., 1), (4, 3, 1, 25., 4., 0., 1), (5, 3, 2, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 3, 0, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 3, 0, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 3, 0, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_signals_all(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.8, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.4, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.4, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_all(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.1, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_all(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 2.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 1.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 0.9, 0.0, 1), (3, 3, 1, 1.0, 4.4, 0.0, 0), (4, 0, 2, 1.0, 0.0, 0.0, 1), (5, 3, 2, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_all(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_all(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 4, 0, 0.5, 5.0, 0.0, 1), (3, 0, 1, 1.0, 1.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 1), (6, 0, 2, 1.0, 1.0, 0.0, 0), (7, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1), (4, 0, 2, 1.0, 1.0, 0.0, 0), (5, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 3, 0, 0.5, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_all(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_close_first(self): record_arrays_close( from_signals_all(close_first=[[False, True]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1), (4, 4, 1, 80.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all( price=pd.Series(price.values[::-1], index=price.index), entries=pd.Series(entries.values[::-1], index=price.index), exits=pd.Series(exits.values[::-1], index=price.index), close_first=[[False, True]] ).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 3, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 20.0, 5.0, 0.0, 1), (3, 3, 1, 20.0, 2.0, 0.0, 0), (4, 4, 1, 160.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_all(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1), (2, 3, 1, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 3, 0, 275.0, 4.0, 0.0, 0), (2, 0, 1, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 3, 0, 50.0, 4.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_all(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_all(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_accumulate(self): record_arrays_close( from_signals_all(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_log(self): record_arrays_close( from_signals_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 3, 0, 0, 0.0, 100.0, 4.0, 400.0, -np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 800.0, -100.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_conflict_mode(self): kwargs = dict( price=price.iloc[:3], entries=pd.DataFrame([ [True, True, True, True, True], [True, True, True, True, False], [True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True], [False, False, False, False, True], [True, True, True, True, True] ]), size=1., conflict_mode=[[ 'ignore', 'entry', 'exit', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_all(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 1, 2, 2.0, 2.0, 0.0, 0), (4, 2, 2, 2.0, 3.0, 0.0, 1), (5, 1, 3, 1.0, 2.0, 0.0, 0), (6, 2, 3, 2.0, 3.0, 0.0, 1), (7, 1, 4, 1.0, 2.0, 0.0, 1), (8, 2, 4, 2.0, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 1, 2, 1.0, 2.0, 0.0, 0), (3, 2, 2, 1.0, 3.0, 0.0, 1), (4, 1, 3, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 1), (2, 1, 2, 1.0, 2.0, 0.0, 1), (3, 2, 2, 1.0, 3.0, 0.0, 0), (4, 1, 3, 1.0, 2.0, 0.0, 1), (5, 2, 3, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_all(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 3, 0, 1.0, 4.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 3, 1, 2.0, 4.0, 0.0, 1), (3, 0, 2, 1.0, 1.0, 0.0, 0), (4, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 1, 1.0, 1.0, 0.0, 0), (1, 3, 1, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 0.25, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 0.5, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_all(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_signals_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) portfolio = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_max_orders(self): _ = from_signals_all(price=price_wide) _ = from_signals_all(price=price_wide, max_orders=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, max_orders=5) def test_max_logs(self): _ = from_signals_all(price=price_wide, log=True) _ = from_signals_all(price=price_wide, log=True, max_logs=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, log=True, max_logs=5) # ############# from_holding ############# # class TestFromHolding: def test_from_holding(self): record_arrays_close( vbt.Portfolio.from_holding(price).order_records, vbt.Portfolio.from_signals(price, True, False, accumulate=False).order_records ) # ############# from_random_signals ############# # class TestFromRandom: def test_from_random_n(self): result = vbt.Portfolio.from_random_signals(price, n=2, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, True, False, False], [False, True, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, n=[1, 2], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [True, False], [False, True], [False, False], [False, False]], [[False, False], [False, True], [False, False], [False, True], [True, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.Int64Index([1, 2], dtype='int64', name='rand_n') ) def test_from_random_prob(self): result = vbt.Portfolio.from_random_signals(price, prob=0.5, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, False, False, False], [False, False, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, prob=[0.25, 0.5], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [False, False], [False, False], [False, False], [True, False]], [[False, False], [False, True], [False, False], [False, False], [False, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.MultiIndex.from_tuples([(0.25, 0.25), (0.5, 0.5)], names=['rprob_entry_prob', 'rprob_exit_prob']) ) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_all(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='all', **kwargs) def from_orders_longonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='longonly', **kwargs) def from_orders_shortonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_all().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1), (8, 0, 2, 100.0, 1.0, 0.0, 0), (9, 1, 2, 100.0, 2.0, 0.0, 1), (10, 3, 2, 50.0, 4.0, 0.0, 0), (11, 4, 2, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 0, 2, 100.0, 1.0, 0.0, 1), (5, 1, 2, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_all(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 198.01980198019803, 2.02, 0.0, 1), (2, 3, 0, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 1), (2, 3, 0, 49.504950495049506, 4.04, 0.0, 0), (3, 4, 0, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 3, 1, 1.0, 4.0, 0.4, 1), (7, 4, 1, 1.0, 5.0, 0.5, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 2.0, 0), (10, 3, 2, 1.0, 4.0, 4.0, 1), (11, 4, 2, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 3, 1, 1.0, 4.0, 0.1, 1), (7, 4, 1, 1.0, 5.0, 0.1, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 1.0, 0), (10, 3, 2, 1.0, 4.0, 1.0, 1), (11, 4, 2, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_all(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 3, 1, 1.0, 3.6, 0.0, 1), (7, 4, 1, 1.0, 5.5, 0.0, 0), (8, 0, 2, 1.0, 0.0, 0.0, 1), (9, 1, 2, 1.0, 4.0, 0.0, 0), (10, 3, 2, 1.0, 0.0, 0.0, 1), (11, 4, 2, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_all(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_all(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 1, 0, 0.5, 2.0, 0.0, 0), (2, 3, 0, 0.5, 4.0, 0.0, 1), (3, 4, 0, 0.5, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0), (8, 0, 2, 1.0, 1.0, 0.0, 1), (9, 1, 2, 1.0, 2.0, 0.0, 0), (10, 3, 2, 1.0, 4.0, 0.0, 1), (11, 4, 2, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_all(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 3, 1, 1.0, 4.0, 0.0, 0), (6, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 3, 1, 1.0, 4.0, 0.0, 0), (5, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 4, 1, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0), (4, 0, 1, 1000.0, 1.0, 0.0, 1), (5, 3, 1, 1000.0, 4.0, 0.0, 1), (6, 4, 1, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_orders_all(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 1, 0, 0, 0.0, 100.0, 2.0, 200.0, -np.inf, 0, 2, 2.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 2, 0, 0, 400.0, -100.0, 3.0, 100.0, np.nan, 0, 2, 3.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 3, 0, 0, 400.0, -100.0, 4.0, 0.0, np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 4, 0, 0, 0.0, 0.0, 5.0, 0.0, -np.inf, 0, 2, 5.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 3, 1, 200.0, 4.0, 0.0, 0), (4, 4, 1, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 3, 1, 100.0, 4.0, 0.0, 0), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_orders_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_target_shares(self): record_arrays_close( from_orders_all(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=75., size_type='targetshares', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_all(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 2, 1, 8.333333333333332, 3.0, 0.0, 0), (8, 3, 1, 4.166666666666668, 4.0, 0.0, 0), (9, 4, 1, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 25.0, 2.0, 0.0, 0), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 0), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 0), (4, 4, 0, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0), (2, 1, 0, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 1, 2, 25.0, 2.0, 0.0, 0), (5, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (6, 2, 1, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (9, 3, 1, 4.166666666666668, 4.0, 0.0, 1), (10, 3, 2, 4.166666666666668, 4.0, 0.0, 1), (11, 4, 0, 2.5, 5.0, 0.0, 1), (12, 4, 1, 2.5, 5.0, 0.0, 1), (13, 4, 2, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 2, 1, 6.25, 3.0, 0.0, 0), (8, 3, 1, 2.34375, 4.0, 0.0, 0), (9, 4, 1, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 37.5, 2.0, 0.0, 0), (2, 2, 0, 6.25, 3.0, 0.0, 0), (3, 3, 0, 2.34375, 4.0, 0.0, 0), (4, 4, 0, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 0, 1, 2.50000000e+01, 1., 0., 0), (2, 0, 2, 1.25000000e+01, 1., 0., 0), (3, 1, 0, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 1, 2, 7.81250000e-01, 2., 0., 0), (6, 2, 0, 2.60416667e-01, 3., 0., 0), (7, 2, 1, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 3, 0, 2.44140625e-02, 4., 0., 0), (10, 3, 1, 1.22070312e-02, 4., 0., 0), (11, 3, 2, 6.10351562e-03, 4., 0., 0), (12, 4, 0, 2.44140625e-03, 5., 0., 0), (13, 4, 1, 1.22070312e-03, 5., 0., 0), (14, 4, 2, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_all(price=price_wide) _ = from_orders_all(price=price_wide, max_orders=9) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_all(price=price_wide, log=True) _ = from_orders_all(price=price_wide, log=True, max_logs=15) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, log=True, max_logs=14) # ############# from_order_func ############# # @njit def order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col]) @njit def log_order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col], log=True) class TestFromOrderFunc: @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_one_column(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price.tolist(), order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func(price, order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_multiple_columns(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price_wide, order_func_nb, np.inf, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (5, 0, 1, 100.0, 1.0, 0.0, 0), (6, 1, 1, 200.0, 2.0, 0.0, 1), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_shape(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5,), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise, keys=pd.Index(['first'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0, 1, 2], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise, keys=pd.Index(['first', 'second', 'third'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first', 'second', 'third'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_group_by(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (8, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_cash_sharing(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_call_seq(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed', row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 2, 200.0, 2.0, 0.0, 1), (4, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (4, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (5, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='auto', row_wise=test_row_wise ) target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) @njit def segment_prep_func_nb(sc, target_hold_value): order_size = np.copy(target_hold_value[sc.i, sc.from_col:sc.to_col]) order_size_type = np.full(sc.group_len, SizeType.TargetValue) direction = np.full(sc.group_len, Direction.All) order_value_out = np.empty(sc.group_len, dtype=np.float_) sc.last_val_price[sc.from_col:sc.to_col] = sc.close[sc.i, sc.from_col:sc.to_col] nb.sort_call_seq_nb(sc, order_size, order_size_type, direction, order_value_out) return order_size, order_size_type, direction @njit def pct_order_func_nb(oc, order_size, order_size_type, direction): col_i = oc.call_seq_now[oc.call_idx] return nb.create_order_nb( size=order_size[col_i], size_type=order_size_type[col_i], price=oc.close[oc.i, col_i], direction=direction[col_i] ) portfolio = vbt.Portfolio.from_order_func( price_wide * 0 + 1, pct_order_func_nb, group_by=np.array([0, 0, 0]), cash_sharing=True, segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(target_hold_value.values,), row_wise=test_row_wise) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 1, 0], [0, 2, 1], [1, 0, 2], [2, 1, 0] ]) ) pd.testing.assert_frame_equal( portfolio.holding_value(group_by=False), target_hold_value ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_value(self, test_row_wise): @njit def target_val_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_val_order_func_nb(oc): return nb.create_order_nb(size=50., size_type=SizeType.TargetValue, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, segment_prep_func_nb=target_val_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_percent(self, test_row_wise): @njit def target_pct_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_pct_order_func_nb(oc): return nb.create_order_nb(size=0.5, size_type=SizeType.TargetPercent, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, segment_prep_func_nb=target_pct_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_init_cash(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=[1., 10., np.inf]) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 10.0, 1.0, 0.0, 0), (2, 0, 2, 10.0, 1.0, 0.0, 0), (3, 1, 0, 10.0, 2.0, 0.0, 1), (4, 1, 1, 10.0, 2.0, 0.0, 1), (5, 1, 2, 10.0, 2.0, 0.0, 1), (6, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 2, 2, 10.0, 3.0, 0.0, 0), (9, 3, 0, 10.0, 4.0, 0.0, 1), (10, 3, 1, 10.0, 4.0, 0.0, 1), (11, 3, 2, 10.0, 4.0, 0.0, 1), (12, 4, 0, 8.0, 5.0, 0.0, 0), (13, 4, 1, 8.0, 5.0, 0.0, 0), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 10.0, 2.0, 0.0, 1), (2, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (3, 3, 0, 10.0, 4.0, 0.0, 1), (4, 4, 0, 8.0, 5.0, 0.0, 0), (5, 0, 1, 10.0, 1.0, 0.0, 0), (6, 1, 1, 10.0, 2.0, 0.0, 1), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 3, 1, 10.0, 4.0, 0.0, 1), (9, 4, 1, 8.0, 5.0, 0.0, 0), (10, 0, 2, 10.0, 1.0, 0.0, 0), (11, 1, 2, 10.0, 2.0, 0.0, 1), (12, 2, 2, 10.0, 3.0, 0.0, 0), (13, 3, 2, 10.0, 4.0, 0.0, 1), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) assert type(portfolio._init_cash) == np.ndarray base_portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=np.inf) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.Auto) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.Auto portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.AutoAlign) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.AutoAlign def test_func_calls(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def group_prep_func_nb(gc, call_i, group_lst): call_i[0] += 1 group_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,) ) assert call_i[0] == 28 assert list(sim_lst) == [1] assert list(group_lst) == [2, 18] assert list(segment_lst) == [3, 6, 9, 12, 15, 19, 21, 23, 25, 27] assert list(order_lst) == [4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 22, 24, 26, 28] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, True], [False, False], [False, True], [False, False], [False, True], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask ) assert call_i[0] == 8 assert list(sim_lst) == [1] assert list(group_lst) == [2] assert list(segment_lst) == [3, 5, 7] assert list(order_lst) == [4, 6, 8] def test_func_calls_row_wise(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def row_prep_func_nb(gc, call_i, row_lst): call_i[0] += 1 row_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), row_wise=True ) assert call_i[0] == 31 assert list(sim_lst) == [1] assert list(row_lst) == [2, 8, 14, 20, 26] assert list(segment_lst) == [3, 6, 9, 12, 15, 18, 21, 24, 27, 30] assert list(order_lst) == [4, 5, 7, 10, 11, 13, 16, 17, 19, 22, 23, 25, 28, 29, 31] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask, row_wise=True ) assert call_i[0] == 14 assert list(sim_lst) == [1] assert list(row_lst) == [2, 5, 9] assert list(segment_lst) == [3, 6, 10, 13] assert list(order_lst) == [4, 7, 8, 11, 12, 14] @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_orders(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=14) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_logs(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=14) # ############# Portfolio ############# # price_na = pd.DataFrame({ 'a': [np.nan, 2., 3., 4., 5.], 'b': [1., 2., np.nan, 4., 5.], 'c': [1., 2., 3., 4., np.nan] }, index=price.index) order_size_new = pd.Series([1., 0.1, -1., -0.1, 1.]) directions = ['longonly', 'shortonly', 'all'] group_by = pd.Index(['first', 'first', 'second'], name='group') portfolio = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=None, init_cash=[100., 100., 100.], freq='1D' ) # independent portfolio_grouped = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=False, init_cash=[100., 100., 100.], freq='1D' ) # grouped portfolio_shared = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=True, init_cash=[200., 100.], freq='1D' ) # shared class TestPortfolio: def test_config(self, tmp_path): assert vbt.Portfolio.loads(portfolio['a'].dumps()) == portfolio['a'] assert vbt.Portfolio.loads(portfolio.dumps()) == portfolio portfolio.save(tmp_path / 'portfolio') assert vbt.Portfolio.load(tmp_path / 'portfolio') == portfolio def test_wrapper(self): pd.testing.assert_index_equal( portfolio.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio.wrapper.columns, price_na.columns ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.grouper.group_by is None assert portfolio.wrapper.grouper.allow_enable assert portfolio.wrapper.grouper.allow_disable assert portfolio.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_grouped.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_grouped.wrapper.columns, price_na.columns ) assert portfolio_grouped.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_grouped.wrapper.grouper.group_by, group_by ) assert portfolio_grouped.wrapper.grouper.allow_enable assert portfolio_grouped.wrapper.grouper.allow_disable assert portfolio_grouped.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_shared.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_shared.wrapper.columns, price_na.columns ) assert portfolio_shared.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_shared.wrapper.grouper.group_by, group_by ) assert not portfolio_shared.wrapper.grouper.allow_enable assert portfolio_shared.wrapper.grouper.allow_disable assert not portfolio_shared.wrapper.grouper.allow_modify def test_indexing(self): assert portfolio['a'].wrapper == portfolio.wrapper['a'] assert portfolio['a'].orders == portfolio.orders['a'] assert portfolio['a'].logs == portfolio.logs['a'] assert portfolio['a'].init_cash == portfolio.init_cash['a'] pd.testing.assert_series_equal(portfolio['a'].call_seq, portfolio.call_seq['a']) assert portfolio['c'].wrapper == portfolio.wrapper['c'] assert portfolio['c'].orders == portfolio.orders['c'] assert portfolio['c'].logs == portfolio.logs['c'] assert portfolio['c'].init_cash == portfolio.init_cash['c'] pd.testing.assert_series_equal(portfolio['c'].call_seq, portfolio.call_seq['c']) assert portfolio[['c']].wrapper == portfolio.wrapper[['c']] assert portfolio[['c']].orders == portfolio.orders[['c']] assert portfolio[['c']].logs == portfolio.logs[['c']] pd.testing.assert_series_equal(portfolio[['c']].init_cash, portfolio.init_cash[['c']]) pd.testing.assert_frame_equal(portfolio[['c']].call_seq, portfolio.call_seq[['c']]) assert portfolio_grouped['first'].wrapper == portfolio_grouped.wrapper['first'] assert portfolio_grouped['first'].orders == portfolio_grouped.orders['first'] assert portfolio_grouped['first'].logs == portfolio_grouped.logs['first'] assert portfolio_grouped['first'].init_cash == portfolio_grouped.init_cash['first'] pd.testing.assert_frame_equal(portfolio_grouped['first'].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped[['first']].wrapper == portfolio_grouped.wrapper[['first']] assert portfolio_grouped[['first']].orders == portfolio_grouped.orders[['first']] assert portfolio_grouped[['first']].logs == portfolio_grouped.logs[['first']] pd.testing.assert_series_equal( portfolio_grouped[['first']].init_cash, portfolio_grouped.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_grouped[['first']].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped['second'].wrapper == portfolio_grouped.wrapper['second'] assert portfolio_grouped['second'].orders == portfolio_grouped.orders['second'] assert portfolio_grouped['second'].logs == portfolio_grouped.logs['second'] assert portfolio_grouped['second'].init_cash == portfolio_grouped.init_cash['second'] pd.testing.assert_series_equal(portfolio_grouped['second'].call_seq, portfolio_grouped.call_seq['c']) assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].wrapper == portfolio_grouped.wrapper[['second']] assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].logs == portfolio_grouped.logs[['second']] pd.testing.assert_series_equal( portfolio_grouped[['second']].init_cash, portfolio_grouped.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_grouped[['second']].call_seq, portfolio_grouped.call_seq[['c']]) assert portfolio_shared['first'].wrapper == portfolio_shared.wrapper['first'] assert portfolio_shared['first'].orders == portfolio_shared.orders['first'] assert portfolio_shared['first'].logs == portfolio_shared.logs['first'] assert portfolio_shared['first'].init_cash == portfolio_shared.init_cash['first'] pd.testing.assert_frame_equal(portfolio_shared['first'].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].wrapper == portfolio_shared.wrapper[['first']] assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].logs == portfolio_shared.logs[['first']] pd.testing.assert_series_equal( portfolio_shared[['first']].init_cash, portfolio_shared.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_shared[['first']].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared['second'].wrapper == portfolio_shared.wrapper['second'] assert portfolio_shared['second'].orders == portfolio_shared.orders['second'] assert portfolio_shared['second'].logs == portfolio_shared.logs['second'] assert portfolio_shared['second'].init_cash == portfolio_shared.init_cash['second'] pd.testing.assert_series_equal(portfolio_shared['second'].call_seq, portfolio_shared.call_seq['c']) assert portfolio_shared[['second']].wrapper == portfolio_shared.wrapper[['second']] assert portfolio_shared[['second']].orders == portfolio_shared.orders[['second']] assert portfolio_shared[['second']].logs == portfolio_shared.logs[['second']] pd.testing.assert_series_equal( portfolio_shared[['second']].init_cash, portfolio_shared.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_shared[['second']].call_seq, portfolio_shared.call_seq[['c']]) def test_regroup(self): assert portfolio.regroup(None) == portfolio assert portfolio.regroup(False) == portfolio assert portfolio.regroup(group_by) != portfolio pd.testing.assert_index_equal(portfolio.regroup(group_by).wrapper.grouper.group_by, group_by) assert portfolio_grouped.regroup(None) == portfolio_grouped assert portfolio_grouped.regroup(False) != portfolio_grouped assert portfolio_grouped.regroup(False).wrapper.grouper.group_by is None assert portfolio_grouped.regroup(group_by) == portfolio_grouped assert portfolio_shared.regroup(None) == portfolio_shared with pytest.raises(Exception) as e_info: _ = portfolio_shared.regroup(False) assert portfolio_shared.regroup(group_by) == portfolio_shared def test_cash_sharing(self): assert not portfolio.cash_sharing assert not portfolio_grouped.cash_sharing assert portfolio_shared.cash_sharing def test_call_seq(self): pd.testing.assert_frame_equal( portfolio.call_seq, pd.DataFrame( np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_grouped.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) def test_incl_unrealized(self): assert not vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=False).incl_unrealized assert vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=True).incl_unrealized def test_orders(self): record_arrays_close( portfolio.orders.values, np.array([ (0, 1, 0, 0.1, 2.02, 0.10202, 0), (1, 2, 0, 0.1, 2.9699999999999998, 0.10297, 1), (2, 4, 0, 1.0, 5.05, 0.1505, 0), (3, 0, 1, 1.0, 0.99, 0.10990000000000001, 1), (4, 1, 1, 0.1, 1.98, 0.10198, 1), (5, 3, 1, 0.1, 4.04, 0.10404000000000001, 0), (6, 4, 1, 1.0, 4.95, 0.14950000000000002, 1), (7, 0, 2, 1.0, 1.01, 0.1101, 0), (8, 1, 2, 0.1, 2.02, 0.10202, 0), (9, 2, 2, 1.0, 2.9699999999999998, 0.1297, 1), (10, 3, 2, 0.1, 3.96, 0.10396000000000001, 1) ], dtype=order_dt) ) result = pd.Series( np.array([3, 4, 4]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.orders.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_orders(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_orders(group_by=False).count(), result ) result = pd.Series( np.array([7, 4]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_orders(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.orders.count(), result ) pd.testing.assert_series_equal( portfolio_shared.orders.count(), result ) def test_logs(self): record_arrays_close( portfolio.logs.values, np.array([ (0, 0, 0, 0, 100.0, 0.0, np.nan, 100.0, 1.0, 0, 0, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.0, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1), (1, 1, 0, 0, 100.0, 0.0, 2.0, 100.0, 0.1, 0, 0, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.69598, 0.1, 0.1, 2.02, 0.10202, 0, 0, -1, 0), (2, 2, 0, 0, 99.69598, 0.1, 3.0, 99.99598, -1.0, 0, 0, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, 0.1, 2.9699999999999998, 0.10297, 1, 0, -1, 1), (3, 3, 0, 0, 99.89001, 0.0, 4.0, 99.89001, -0.1, 0, 0, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, np.nan, np.nan, np.nan, -1, 2, 8, -1), (4, 4, 0, 0, 99.89001, 0.0, 5.0, 99.89001, 1.0, 0, 0, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 94.68951, 1.0, 1.0, 5.05, 0.1505, 0, 0, -1, 2), (5, 0, 1, 1, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 1, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.8801, -1.0, 1.0, 0.99, 0.10990000000000001, 1, 0, -1, 3), (6, 1, 1, 1, 100.8801, -1.0, 2.0, 98.8801, 0.1, 0, 1, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, 0.1, 1.98, 0.10198, 1, 0, -1, 4), (7, 2, 1, 1, 100.97612, -1.1, np.nan, np.nan, -1.0, 0, 1, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, np.nan, np.nan, np.nan, -1, 1, 1, -1), (8, 3, 1, 1, 100.97612, -1.1, 4.0, 96.57611999999999, -0.1, 0, 1, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.46808, -1.0, 0.1, 4.04, 0.10404000000000001, 0, 0, -1, 5), (9, 4, 1, 1, 100.46808, -1.0, 5.0, 95.46808, 1.0, 0, 1, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 105.26858, -2.0, 1.0, 4.95, 0.14950000000000002, 1, 0, -1, 6), (10, 0, 2, 2, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 2, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.8799, 1.0, 1.0, 1.01, 0.1101, 0, 0, -1, 7), (11, 1, 2, 2, 98.8799, 1.0, 2.0, 100.8799, 0.1, 0, 2, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.57588000000001, 1.1, 0.1, 2.02, 0.10202, 0, 0, -1, 8), (12, 2, 2, 2, 98.57588000000001, 1.1, 3.0, 101.87588000000001, -1.0, 0, 2, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.41618000000001, 0.10000000000000009, 1.0, 2.9699999999999998, 0.1297, 1, 0, -1, 9), (13, 3, 2, 2, 101.41618000000001, 0.10000000000000009, 4.0, 101.81618000000002, -0.1, 0, 2, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, 0.1, 3.96, 0.10396000000000001, 1, 0, -1, 10), (14, 4, 2, 2, 101.70822000000001, 0.0, np.nan, 101.70822000000001, 1.0, 0, 2, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1) ], dtype=log_dt) ) result = pd.Series( np.array([5, 5, 5]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.logs.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_logs(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_logs(group_by=False).count(), result ) result = pd.Series( np.array([10, 5]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_logs(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.logs.count(), result ) pd.testing.assert_series_equal( portfolio_shared.logs.count(), result ) def test_trades(self): record_arrays_close( portfolio.trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 0.1, 0, 1.0799999999999998, 0.019261818181818182, 3, 4.04, 0.10404000000000001, -0.4193018181818182, -3.882424242424243, 1, 1, 2), (3, 1, 2.0, 0, 3.015, 0.3421181818181819, 4, 5.0, 0.0, -4.312118181818182, -0.7151108095884214, 1, 0, 2), (4, 2, 1.0, 0, 1.1018181818181818, 0.19283636363636364, 2, 2.9699999999999998, 0.1297, 1.5456454545454543, 1.4028135313531351, 0, 1, 3), (5, 2, 0.10000000000000009, 0, 1.1018181818181818, 0.019283636363636378, 3, 3.96, 0.10396000000000001, 0.1625745454545457, 1.4755115511551162, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 2, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.trades.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_trades(group_by=False).count(), result ) result = pd.Series( np.array([4, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.trades.count(), result ) pd.testing.assert_series_equal( portfolio_shared.trades.count(), result ) def test_positions(self): record_arrays_close( portfolio.positions.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0), (2, 1, 2.1, 0, 2.9228571428571426, 0.36138000000000003, 4, 4.954285714285714, 0.10404000000000001, -4.731420000000001, -0.7708406647116326, 1, 0), (3, 2, 1.1, 0, 1.1018181818181818, 0.21212000000000003, 3, 3.06, 0.23366000000000003, 1.7082200000000003, 1.4094224422442245, 0, 1) ], dtype=position_dt) ) result = pd.Series( np.array([2, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.positions.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_positions(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_positions(group_by=False).count(), result ) result = pd.Series( np.array([3, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_positions(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.positions.count(), result ) pd.testing.assert_series_equal( portfolio_shared.positions.count(), result ) def test_drawdowns(self): record_arrays_close( portfolio.drawdowns.values, np.array([ (0, 0, 0, 4, 4, 0), (1, 1, 0, 4, 4, 0), (2, 2, 2, 3, 4, 0) ], dtype=drawdown_dt) ) result = pd.Series( np.array([1, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_drawdowns(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_drawdowns(group_by=False).count(), result ) result = pd.Series( np.array([1, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_drawdowns(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_shared.drawdowns.count(), result ) def test_close(self): pd.testing.assert_frame_equal(portfolio.close, price_na) pd.testing.assert_frame_equal(portfolio_grouped.close, price_na) pd.testing.assert_frame_equal(portfolio_shared.close, price_na) def test_fill_close(self): pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=False), price_na ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=False), price_na.ffill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=True), price_na.bfill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=True), price_na.ffill().bfill() ) def test_share_flow(self): pd.testing.assert_frame_equal( portfolio.share_flow(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 0.1], [-0.1, 0., -1.], [0., 0., -0.1], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.share_flow(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 0.1, 0.], [0., 0., 0.], [0., -0.1, 0.], [0., 1., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -0.1, 0.1], [-0.1, 0., -1.], [0., 0.1, -0.1], [1., -1., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.share_flow(), result ) def test_shares(self): pd.testing.assert_frame_equal( portfolio.shares(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 1.1], [0., 0., 0.1], [0., 0., 0.], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.shares(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 1.1, 0.], [0., 1.1, 0.], [0., 1., 0.], [0., 2., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -1.1, 1.1], [0., -1.1, 0.1], [0., -1., 0.], [1., -2., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.shares(), result ) pd.testing.assert_frame_equal( portfolio_grouped.shares(), result ) pd.testing.assert_frame_equal( portfolio_shared.shares(), result ) def test_pos_mask(self): pd.testing.assert_frame_equal( portfolio.pos_mask(direction='longonly'), pd.DataFrame( np.array([ [False, False, True], [True, False, True], [False, False, True], [False, False, False], [True, False, False] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.pos_mask(direction='shortonly'), pd.DataFrame( np.array([ [False, True, False], [False, True, False], [False, True, False], [False, True, False], [False, True, False] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [False, True, True], [True, True, True], [False, True, True], [False, True, False], [True, True, False] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(group_by=False), result ) result = pd.DataFrame( np.array([ [True, True], [True, True], [True, True], [True, False], [True, False] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.pos_mask(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(), result ) def test_pos_coverage(self): pd.testing.assert_series_equal( portfolio.pos_coverage(direction='longonly'), pd.Series(np.array([0.4, 0., 0.6]), index=price_na.columns).rename('pos_coverage') ) pd.testing.assert_series_equal( portfolio.pos_coverage(direction='shortonly'), pd.Series(np.array([0., 1., 0.]), index=price_na.columns).rename('pos_coverage') ) result = pd.Series(np.array([0.4, 1., 0.6]), index=price_na.columns).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(group_by=False), result ) result = pd.Series( np.array([0.7, 0.6]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(), result ) def test_cash_flow(self): pd.testing.assert_frame_equal( portfolio.cash_flow(short_cash=False), pd.DataFrame( np.array([ [0., -1.0999, -1.1201], [-0.30402, -0.29998, -0.30402], [0.19403, 0., 2.8403], [0., 0.29996, 0.29204], [-5.2005, -5.0995, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., 0.8801, -1.1201], [-0.30402, 0.09602, -0.30402], [0.19403, 0., 2.8403], [0., -0.50804, 0.29204], [-5.2005, 4.8005, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(group_by=False), result ) result = pd.DataFrame( np.array([ [0.8801, -1.1201], [-0.208, -0.30402], [0.19403, 2.8403], [-0.50804, 0.29204], [-0.4, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.cash_flow(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(), result ) def test_init_cash(self): pd.testing.assert_series_equal( portfolio.init_cash, pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_grouped.get_init_cash(group_by=False), pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_shared.get_init_cash(group_by=False), pd.Series(np.array([200., 200., 100.]), index=price_na.columns).rename('init_cash') ) result = pd.Series( np.array([200., 100.]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') pd.testing.assert_series_equal( portfolio.get_init_cash(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.init_cash, result ) pd.testing.assert_series_equal( portfolio_shared.init_cash, result ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=None).init_cash, pd.Series( np.array([14000., 12000., 10000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=
pd.Index(['first', 'second'], dtype='object', name='group')
pandas.Index
import pandas as pd import os import warnings import pickle from nltk.corpus import stopwords from nltk.tokenize import RegexpTokenizer from collections import namedtuple Fact = namedtuple("Fact", "uid fact file") answer_key_map = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5} tables_dir = "annotation/expl-tablestore-export-2017-08-25-230344/tables/" stopwords = stopwords.words('english') tokenizer = RegexpTokenizer(r'\w+') # Lemmatization map lemmatization = {} with open('annotation/lemmatization-en.txt', 'r') as f: for line in f: l0 = line.strip().split('\t') lemmatization[l0[1]] = l0[0] print(f"len(lemmatization): {len(lemmatization)}") ###################### # FACT AS NODE GRAPH # ###################### # Map from "words" to facts containing the "words" graph_word_to_fact_map = {} fact_base = {} for path, _, files in os.walk(tables_dir): for f in files: print(".", end="") df = pd.read_csv(os.path.join(path, f), sep='\t') uid = None header = [] graph_header = [] check_skip_dep = False # if "[SKIP] DEP" in df.columns: # check_skip_dep = True for name in df.columns: if name.startswith("[SKIP]"): if 'UID' in name: if uid is None: uid = name else: raise AttributeError('Possibly misformatted file: ' + path) elif name.startswith("[FILL]"): header.append(name) else: graph_header.append(name) header.append(name) if not uid or len(df) == 0: warnings.warn('Possibly misformatted file: ' + f) continue for _, row in df.iterrows(): row_uid = row[uid] # if check_skip_dep and not pd.isna(row["[SKIP] DEP"]): # skip deprecated row # continue if row_uid in fact_base: print(f"repeated UID {row_uid} in file {f}") continue fact_base[row_uid] = Fact(row_uid, ' '.join(str(s) for s in list(row[header]) if not
pd.isna(s)
pandas.isna
import streamlit as st import streamlit.components.v1 as stc import time from random import random import numpy as np import pandas as pd import altair as alt from altair import Chart, X, Y, Axis, SortField, OpacityValue # 2020-10-25 edit@ from st.annotated_text import annotated_text from annotated_text import annotated_text import st_state def main(): st.beta_set_page_config( page_title="AB Testing", # String or None. Strings get appended with "• Streamlit". page_icon="🎲", # String, anything supported by st.image, or None. layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="auto") # Can be "auto", "expanded", "collapsed" # load state object state = st_state._get_state() # ==================== Nav Bar ==================== # if state.nav is None: state.nav = 0 nav = state.nav part1, part2, part3 = st.beta_columns([1, 1, 1]) pages = ['⚪ Part I: Probability     ', '⚪ Part II: Error          ', '⚪ Part III: P-values      '] pages[nav] = '🔴 ' + pages[nav][2:] with part1: if st.button(pages[0]): state.nav = 0 with part2: if st.button(pages[1]): state.nav = 1 with part3: if st.button(pages[2]): state.nav = 2 st.markdown('---') if nav == 0: ############ PART I ############ st.header('👩‍🔬 Exploring Intuitions Around AB Testing') st.write('In AB testing we want to know how often an event occurs, and compare it against a competing design. In practice however, we can only observe the outcome of measuring an event, and not the true conversion rate behind it. ') st.write('For example, we may observe that 2/10 visitors click a button. So how many clicks would we expect if we had 100 visitors? By generating random numbers we can simulate behaviour on our website.') st.header('🎲 Random Click Generator') conversion_rate = st.number_input('True Conversion Rate', value=0.2) n_samples = st.number_input('Sample size (people)', value=100) # ============== Setup placeholder chart =============== # res = [] df = pd.DataFrame() df['A'] =
pd.Series(res)
pandas.Series
import os import pandas as pd BASE_DIR = os.path.abspath(os.path.dirname(__file__)) def open_csv(filepath, header_names=None): """Opens CSV file with option to add header names.""" if header_names and hasattr(header_names, "__iter__"): return
pd.read_csv(filepath, sep=",", header=0, names=header_names)
pandas.read_csv
# -*- coding: utf-8 -*- """ @author: <NAME> - https://www.linkedin.com/in/adamrvfisher/ """ #This is a strategy tester #pandas_datareader is deprecated, use YahooGrabber #Import modules from pandas_datareader import data import pandas as pd import numpy as np #Assign ticker ticker = '^GSPC' #Request data s = data.DataReader(ticker, 'yahoo', start='01/01/2016', end='01/01/2050') #Calculate log returns s['LogRet'] = np.log(s['Adj Close']/s['Adj Close'].shift(1)) s['LogRet'] = s['LogRet'].fillna(0) #Iterable s['Ranger'] = range(len(s)) #Create dataframe k = pd.DataFrame(index = s['Ranger']) #Empty list AroonUp = [] AroonDown = [] AroonDate = [] #Variable assignment #Time factor tf = 7 AdjClose = s['Adj Close'].tolist() AdjCloseSeries = pd.Series(AdjClose) k['Adj Close'] = AdjCloseSeries Date = s['Ranger'].tolist() counter = tf #Calculate Aroon indicator while counter < len(s): Aroon_Up = ((k['Adj Close'][counter-tf:counter].tolist().index(max (k['Adj Close'][counter-tf:counter])))/float(tf)*100) Aroon_Down = ((k['Adj Close'][counter-tf:counter].tolist().index(min (k['Adj Close'][counter-tf:counter])))/float(tf)*100) AroonUp.append(Aroon_Up) AroonDown.append(Aroon_Down) AroonDate.append(Date[counter]) counter = counter + 1 s = s[tf:] #List to series AroonUpSeries =
pd.Series(AroonUp, index=s.index)
pandas.Series
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import numpy as np import pytest from pandas.compat import lrange, range import pandas as pd from pandas import DataFrame, Index, Series import pandas.util.testing as tm from pandas.util.testing import assert_series_equal def test_get(): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 assert result == expected s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 assert result == expected # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') assert result == 'Missing' vc = df.b.value_counts() result = vc.get(False, default='Missing') assert result == 3 result = vc.get(True, default='Missing') assert result == 'Missing' def test_get_nan(): # GH 8569 s = pd.Float64Index(range(10)).to_series() assert s.get(np.nan) is None assert s.get(np.nan, default='Missing') == 'Missing' def test_get_nan_multiple(): # GH 8569 # ensure that fixing "test_get_nan" above hasn't broken get # with multiple elements s = pd.Float64Index(range(10)).to_series() idx = [2, 30] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert_series_equal(s.get(idx), Series([2, np.nan], index=idx)) idx = [2, np.nan] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert_series_equal(s.get(idx), Series([2, np.nan], index=idx)) # GH 17295 - all missing keys idx = [20, 30] assert(s.get(idx) is None) idx = [np.nan, np.nan] assert(s.get(idx) is None) def test_delitem(): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() with pytest.raises(KeyError): del s[0] # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_slice_float64(): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end]
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import argparse import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns def parse_args(args): """define arguments""" parser = argparse.ArgumentParser(description="TATA_enrichment_plots") parser.add_argument( "file_names", type=str, help="Name of folder and filenames for the promoters extracted", ) parser.add_argument( "gat_TATA_constitutive_output", type=str, help="Location of constitutive promoter gat analysis output", ) parser.add_argument( "gat_TATA_variable_output", type=str, help="Location of variable promoter gat analysis output", ) parser.add_argument( "gat_TATA_nonspecific_output", type=str, help="Location of non-specific promoter gat analysis output", ) parser.add_argument( "gat_TATA_tissue_specific_output", type=str, help="Location of tissue_specific promoter gat analysis output", ) parser.add_argument( "output_prefix", type=str, help="Output prefix to add to plot file name", ) parser.add_argument( "output_folder_name", type=str, help="Optional output folder name ending in a forward slash", default="", nargs="?", ) parser.add_argument( "palette_cv", type=str, help="Optional replacement colour palette for cv", default=None, nargs="?", ) parser.add_argument( "palette_tau", type=str, help="Optional replacement colour palette for tau", default=None, nargs="?", ) return parser.parse_args( args ) # let argparse grab args from sys.argv itself to allow for testing in module import def create_plot( gat_TATA_constitutive_output, gat_TATA_variable_output, gat_TATA_nonspecific_output, gat_TATA_tissuespecific_output, output_prefix, palette_cv, palette_tau, output_folder_name, file_names, ): """import and process the raw outputs after running gat (Genomic association tester). Then create barplot of constitutive and variable gene TATA enrichment""" # import gat output files as dfs def merge_gatfiles(gat_output1, gat_output2, palette): df1 = pd.read_table(gat_output1, sep="\t", header=0) df2 =
pd.read_table(gat_output2, sep="\t", header=0)
pandas.read_table
""" PFRA Module for working with HEC-RAS model output files """ import gdal from time import time import geopandas as gpd from geopandas.tools import sjoin from shapely.ops import cascaded_union from shapely.geometry import Point, LineString, Polygon import numpy as np import pandas as pd import h5py from matplotlib import pyplot as plt from hecrasio.core import ResultsZip from io import BytesIO import boto3 import rasterio from rasterio.plot import show import pathlib as pl import os import shutil from collections import ChainMap import json # Add additional keys as needed GEOMETRY_ATTRIBUTES = '/Geometry/2D Flow Areas/Attributes' GEOMETRY_2DFLOW_AREA = '/Geometry/2D Flow Areas' PLAN_DATA = '/Plan Data' EVENT_DATA_BC = '/Event Conditions/Unsteady/Boundary Conditions' UNSTEADY_SUMMARY = '/Results/Unsteady/Summary' TSERIES_RESULTS_2DFLOW_AREA = '/Results/Unsteady/Output/Output Blocks/Base Output/Unsteady Time Series/2D Flow Areas' class PFRAError: """ Generic Error Class for PFRA """ def __init__(self, error): self.Error = error class HDFResultsFile: """ HEC-RAS HDF Plan File Object to compute flow data at breaklines. Some functionality may be useful for other ras objects. """ def __init__(self, model:ResultsZip, model_path:str, path:str): self.__model = model if '.zip' in model_path: self.__zip_path = path else: self.__path = path def decoder(): """ Decode bytes objects from hdf file :return: """ if isinstance(x, bytes): return x.decode() else: return x def local_hdf(): """ Add Description :return: """ try: self.__model.zipfile.extract(self.__zip_path) return h5py.File(self.__zip_path, 'r') except: return h5py.File(self.__path, 'r') def get_2dFlowArea_data(): """ Add Description :return: """ table_data = self._hdfLocal[GEOMETRY_ATTRIBUTES] names = table_data.dtype.names domain_data = {} # Use [1:-1] to pull the name from the 0 element (row[0]) for row in table_data: domain_data[row[0].decode()] = list(row)[1:-1] return pd.DataFrame(domain_data, index=names[1:-1]) def get_planData(table): """ Add Description :param table: :return: """ table_data = self._hdfLocal['{}/{}'.format(PLAN_DATA, table)].attrs values = [table_data[n] for n in list(table_data.keys())] # Add wrapper here? values = [v[0] if isinstance(v, list) else v for v in values] values = [v.decode() if isinstance(v, bytes) else v for v in values] return pd.DataFrame(data=values, index=list(table_data.keys()), columns=['Results']) def get_geometry_data(table, domain): """Read in data from results tables""" data = '{}/{}/{}'.format(GEOMETRY_2DFLOW_AREA, domain, table) return np.array(self._plan_data[data]) def get_perimeter(domain): """Creates a perimeter polygon from points""" d_array = get_geometry_data('Perimeter', domain) aoi = Polygon([tuple(p) for p in d_array]) return gpd.GeoDataFrame(geometry=gpd.GeoSeries(aoi)) def get_domain_geometries(): domains = self._domains if len(domains) > 1: poly_list = [get_perimeter(domain) for domain in domains] df = pd.concat(poly_list).reset_index(level=0, drop=True) return gpd.GeoDataFrame(df) else: print('Single domain found...') pass def get_2dSummary(): """Add Description""" try: table_data = self._hdfLocal[UNSTEADY_SUMMARY].attrs values = [table_data[n] for n in list(table_data.keys())] values = [v.decode() if isinstance(v, bytes) else v for v in values] values = [str(v) if isinstance(v, list) else v for v in values] return pd.DataFrame(data=values, index=list(table_data.keys()), columns=['Results']) except KeyError as e: print('You do not seem to have a summary table...') print('Exiting.') self._hdfLocal = local_hdf() self._plan_data = self._hdfLocal self._Plan_Information = get_planData('Plan Information') self._Plan_Parameters = get_planData('Plan Parameters') self._2dFlowArea = get_2dFlowArea_data() self._domains = self._2dFlowArea.columns.tolist() self._domain_polys = get_domain_geometries() self._summary = get_2dSummary() # Getter functions @property def hdfLocal(self): """Add Description""" return self._hdfLocal @property def domains(self): """Add Description""" return self._domains @property def domain_polys(self): """Domain Polygons""" return self._domain_polys @property def Plan_Information(self): """Add Description""" return self._Plan_Information @property def Plan_Parameters(self): """Add Description""" return self._Plan_Parameters @property def summary(self): """Add Description""" return self._summary @property def get_2dFlowArea(self): """Add Description""" return self._2dFlowArea class DomainResults: """ HEC-RAS HDF Plan File Object to compute flow data at breaklines. Some functionality may be useful for other ras objects. """ def __init__(self, model: ResultsZip, plan: HDFResultsFile, domain: str): # Specify Domain to instantiate Object self.__model = model self._plan = plan self._domain = domain self._plan_data = self._plan.hdfLocal def get_domain_cell_size(): """Identifies mean cell size for a domain""" flowData = self._plan.get_2dFlowArea.copy() flowData = flowData[self._domain] xspacing = flowData.loc['Spacing dx'] yspacing = flowData.loc['Spacing dy'] return np.mean([xspacing, yspacing]) def get_tseries_results(table): """Read in data from results tables as a Pandas DataFrame""" try: data = '{}/{}/{}'.format(TSERIES_RESULTS_2DFLOW_AREA, self._domain, table) d_array = np.array(self._plan_data[data]).T return pd.DataFrame(d_array) except: print('{} is missing from the HDF!'.format(table)) def get_tseries_forcing(table): """This table is not domain specific""" group = list(self._plan_data['{}/{}'.format(EVENT_DATA_BC, table)]) table_data = {} for g in group: table_data[g] = np.array(self._plan_data['{}/{}/{}'.format(EVENT_DATA_BC, table, g)]) return table_data def get_geometry_data(table): """Read in data from results tables""" data = '{}/{}/{}'.format(GEOMETRY_2DFLOW_AREA, self._domain, table) return np.array(self._plan_data[data]) def get_perimeter(): """Creates a perimeter polygon from points""" d_array = get_geometry_data('Perimeter') aoi = Polygon([tuple(p) for p in d_array]) return gpd.GeoDataFrame(geometry=gpd.GeoSeries(aoi)) def get_face(): """Returns GeoDataFrame with Faces per pair of Face Indices""" gdf = gpd.GeoDataFrame(self._Faces_FacePoint_Indexes, columns=['from_idx', 'to_idx']) gdf['face'] = gdf.apply(lambda row: LineString([self._Face_FacePoints_Coordinate[row['from_idx']], self._Face_FacePoints_Coordinate[row['to_idx']]]), axis=1) gdf['geometry'] = gdf['face'] gdf = gdf.drop(['from_idx', 'to_idx', 'face'], axis=1) return gdf def get_centroids(): """Returns GeoDataFrame with Face centroids per pair of Face Indices""" gdf = get_face() gdf['face_cnt'] = gdf.apply(lambda row: row.geometry.centroid, axis=1) gdf['geometry'] = gdf['face_cnt'] gdf = gdf.drop(['face_cnt'], axis=1) return gdf def describe_depth(): """Calculate max, min, and range of depths for each cell center""" # Pull in cell centroids and attribute them cc_array = self._Cells_Center_Coordinate cc_gdf = gpd.GeoDataFrame([Point([coord[0], coord[1]]) for coord in cc_array], columns=['geometry']) depth_array = self._Depth # Attribute cell centroids with depths # NOT USED? # cc_attr = pd.concat([cc_gdf, depth_array], axis=1) # Obtain descriptive statistics for each centroid max_attr = pd.DataFrame(depth_array.max(axis=1), columns=['max']) max_gdf = pd.concat([cc_gdf, max_attr], axis=1) max_gdf_nonzero = max_gdf[max_gdf['max'] != 0] min_attr = pd.DataFrame(depth_array.min(axis=1), columns=['min']) min_gdf = pd.concat([cc_gdf, min_attr], axis=1) min_gdf_nonzero = min_gdf[min_gdf['min'] != 0] return max_gdf_nonzero, min_gdf_nonzero def get_avg_depth(): """Calculates average depth at faces returning an array.""" depth_list = [] for (c1_idx, c2_idx) in self._Faces_Cell_Indexes: # cat_depths = np.stack([self._Depth.loc[c1_idx], self._Depth.loc[c2_idx]]) cat_depths = np.stack([self._Depth[c1_idx, :], self._Depth[c2_idx, :]]) avg_face = np.average(cat_depths, axis=0) depth_list.append(np.around(avg_face, decimals=2)) # np.stack use default axis=0 return pd.DataFrame(np.stack(depth_list)) def get_extreme_edge_depths(): """Identifies Face Centroids with absolute, avgerage depths greater-than one foot""" # Obtain boundary line boundary_line = list(self._Perimeter['geometry'])[0].boundary # Identify external faces df = pd.DataFrame() df['exterior'] = self._Faces.geometry.apply(lambda lstring: lstring.intersects(boundary_line)) # Identify minima attr = pd.DataFrame(abs(self._Avg_Face_Depth).max(axis=1), columns=['abs_max']) face_dp = pd.concat([self._Face_Centroid_Coordinates, attr], axis=1) exterior_faces = face_dp[df['exterior'] == True] return exterior_faces[exterior_faces['abs_max'] > 1] def get_extreme_edge_depths(): """Identifies Face Centroids with absolute, avgerage depths greater-than one foot""" # Obtain boundary line boundary_line = list(self._Perimeter['geometry'])[0].boundary # Identify external faces df = pd.DataFrame() perimeter = gpd.GeoDataFrame(gpd.GeoSeries(boundary_line).to_frame(), geometry=0) intersections = gpd.sjoin(perimeter, self._Faces, how="inner", op='intersects') # Identify minima attr = pd.DataFrame(abs(self._Avg_Face_Depth).max(axis=1), columns=['abs_max']) face_dp = pd.concat([self._Face_Centroid_Coordinates, attr], axis=1) exterior_faces = face_dp.loc[intersections['index_right']] return exterior_faces[exterior_faces['abs_max'] > 1] try: self._StageBC = get_tseries_forcing('Stage Hydrographs') except KeyError as e: self._StageBC = None try: self._FlowBC = get_tseries_forcing('Flow Hydrographs') except KeyError as e: print(e) self._FlowBC = None try: self._PrecipBC = get_tseries_forcing('Precipitation Hydrographs') except KeyError as e: print(e) self._PrecipBC = None self._CellSize = get_domain_cell_size() self._Faces_FacePoint_Indexes = get_geometry_data('Faces FacePoint Indexes') self._Face_FacePoints_Coordinate = get_geometry_data('FacePoints Coordinate') self._Faces_Cell_Indexes = get_geometry_data('Faces Cell Indexes') self._Face_Velocity = abs(get_tseries_results('Face Velocity')) self._Face_Centroid_Coordinates = get_centroids() self._Cells_Center_Coordinate = get_geometry_data('Cells Center Coordinate') self._Depth = np.array(get_tseries_results('Depth')) self._Describe_Depths = describe_depth() self._Avg_Face_Depth = get_avg_depth() self._Perimeter = get_perimeter() self._Faces = get_face() self._Extreme_Edges = get_extreme_edge_depths() @property def CellSize(self): """Domain mean cell size""" print('Domain ID: {}, Average Cell Size = {}'.format(self._domain, self._CellSize)) return self._CellSize @property def StageBC(self): """Stage boundary conditions""" return self._StageBC @property def FlowBC(self): """Flow boundary conditions""" return self._FlowBC @property def PrecipBC(self): """Precipitation boundary conditions""" return self._PrecipBC @property def Faces_FacePoint_Indexes(self): """Indices of face points used to create each Face""" return self._Faces_FacePoint_Indexes @property def Face_FacePoints_Coordinate(self): """Coordinates of face points""" return self._Face_FacePoints_Coordinate @property def Cells_Center_Coordinate(self): """Coordinates of cell centers""" return self._Cells_Center_Coordinate @property def Faces(self): """Faces created from face point indecies and coordinates""" return self._Faces @property def Face_Centroid_Coordinates(self): """Centroid of faces""" return self._Face_Centroid_Coordinates @property def Faces_Cell_Indexes(self): """Indecies of cells bounded by each face""" return self._Faces_Cell_Indexes @property def Face_Velocity(self): """Velocity measurements at each face""" return self._Face_Velocity @property def Depth(self): """Depth measurements at each cell center""" return self._Depth @property def Describe_Depths(self): """Max, min, and range of depths for each cell center""" return self._Describe_Depths @property def Avg_Face_Depth(self): """Average depth of cell centers bounding a face""" return self._Avg_Face_Depth @property def Perimeter(self): """Domain area polygon""" return self._Perimeter @property def Extreme_Edges(self): """Perimeter face centroids with absolute, average depths greater than one""" return self._Extreme_Edges def find_anomalous_attributes(self, attr: str = 'Face_Velocity', threshold: int = 30): """ Returns attributed points with the maximum of their attributes exceeding a threshold :param attr: :param threshold: :return: """ max_attr = pd.DataFrame(getattr(self, attr).max(axis=1), columns=['max']) df_thresh = max_attr[max_attr['max'] > threshold] gdf_thresh = self.Face_Centroid_Coordinates.iloc[df_thresh.index] try: return pd.concat([gdf_thresh, df_thresh], axis=1) except ValueError as e: print('No Anomolous Data Found') return None def count_anomalous_attributes(self, attr: str = 'Face_Velocity', threshold: int = 30): """ Returns attributed points with a count of their attributes exceeding a threshold :param attr: :param threshold: :return: """ dseries = getattr(self, attr).apply(lambda row: sum(row > threshold), axis=1) non_nan = dseries[dseries != 0].dropna() df_non_nan = pd.DataFrame(non_nan, columns=['count']) gdf_thresh = self.Face_Centroid_Coordinates.iloc[df_non_nan.index] try: return pd.concat([gdf_thresh, df_non_nan], axis=1) except ValueError as e: print('No Anomolous Data Found') return None # Functions --------------------------------------------------------------------- def all_aoi_gdf(domain_results:list) -> gpd.geodataframe.GeoDataFrame: """ Creates a geodataframe containing polygons for all domains. :param domain_results: """ perimeters = [domain.Perimeter for domain in domain_results] df = pd.concat(perimeters).reset_index(drop=True) return gpd.GeoDataFrame(df) def group_excessive_points(gdf: gpd.geodataframe.GeoDataFrame, cell_size: float): """ Creates groupings of collocated points exceeding a threshold. By default, a grouping is defined as three times the average cell size of the input file. :param gdf: :param cell_size: :return: """ gdf_aois = gpd.GeoDataFrame() gdf_aois['point'] = gdf.geometry gdf_aois['polygon'] = gdf_aois.point.apply(lambda row: row.buffer(cell_size * 3)) gdf_aois['geometry'] = gdf_aois['polygon'] try: diss_aois = list(cascaded_union(gdf_aois.geometry)) gdf_diss_aois = gpd.GeoDataFrame(diss_aois, columns=['geometry']) except: diss_aois = cascaded_union(gdf_aois.geometry) gdf_diss_aois = gpd.GeoDataFrame([diss_aois], columns=['geometry']) return gdf_diss_aois def subset_data(grouping_polys: gpd.geodataframe.GeoDataFrame, thresheld_gdf: gpd.geodataframe.GeoDataFrame, count_gdf: gpd.geodataframe.GeoDataFrame, face_gdf: gpd.geodataframe.GeoDataFrame, buff_distance: int = 100) -> [list, list, list]: """ Creates three lists of dataframes subset by a polygon where the polygon is a grouping of centroids. The first list contains maximum values for each face centroid, the second list contains counts of instances above a threshold, and the third lists faces within the buffered bounding box of a group of centroids. :param grouping_polys: :param thresheld_gdf: :param count_gdf: :param face_gdf: :param buff_distance: :return: """ subset_max_list, subset_count_list, subset_face_list = [], [], [] for i, poly in enumerate(grouping_polys.geometry): subset_max = thresheld_gdf[thresheld_gdf.within(poly)] subset_max_list.append(subset_max) # NOT USED? # subset_count = count_gdf.loc[subset_max.index] subset_count_list.append(count_gdf.loc[subset_max.index]) x0, y0, x1, y1 = poly.buffer(buff_distance).bounds bbox = Polygon([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) subset_faces = face_gdf[face_gdf.within(bbox)] subset_face_list.append(subset_faces) return subset_max_list, subset_count_list, subset_face_list def find_large_and_small_groups(count_list: list, max_list: list, face_list: list, gdf_groups: gpd.geodataframe.GeoDataFrame, min_count: int = 5) -> [dict, dict]: """ Identifies large groupings, i.e. above minimum count, of points and small groupings. Returns two dictionaries. One with large idxs, maximums, counts, faces, and groups as well as one with small idxs, maximums, and counts. :param count_list: :param max_list: :param face_list: :param gdf_groups: :param min_count: :return: """ large_dict, small_dict = {}, {} large_tuples = [(i, count) for i, count in enumerate(count_list) if len(count) > min_count] large_dict['idxs'] = [large_tuple[0] for large_tuple in large_tuples] large_dict['maxes'] = [max_list[i] for i in large_dict['idxs']] large_dict['counts'] = [large_tuple[1] for large_tuple in large_tuples] large_dict['faces'] = [face_list[i] for i in large_dict['idxs']] large_dict['groups'] = [gdf_groups.iloc[i] for i in large_dict['idxs']] small_tuples = [(i, count) for i, count in enumerate(count_list) if len(count) <= min_count] small_dict['idxs'] = [small_tuple[0] for small_tuple in small_tuples] small_dict['maxes'] = [max_list[i] for i in small_dict['idxs']] small_dict['counts'] = [small_tuple[1] for small_tuple in small_tuples] return large_dict, small_dict def velCheckMain(results, domain, plot_tseries=5): """ Add Description :param results: :param plot_tseries: :param domain: """ # Identify face velocities above a given threshold df_thresh = results.find_anomalous_attributes() df_count = results.count_anomalous_attributes() if df_count.shape[0] > 1 and df_thresh.shape[0] > 1: # Identify groups of excessive centroids gdf_groups = group_excessive_points(df_thresh, results.CellSize) # Using a method nearly doubles the time max_list, count_list, face_list = subset_data(gdf_groups, df_thresh, df_count, results.Faces) # Split groups into large (n > 5) clusters vs. everything else l_dict, s_dict = find_large_and_small_groups(count_list, max_list, face_list, gdf_groups) # Identify group of interest for idx in range(len(l_dict['groups'])): plot_instabilities(l_dict['maxes'], l_dict['counts'], l_dict['faces'], results.Perimeter, l_dict['groups'], idx) # NOT USED? maxes = l_dict['maxes'][idx] # counts = l_dict['counts'][idx] # faces = l_dict['faces'][idx] # group = l_dict['groups'][idx] max_vFaceIDs = list(maxes.sort_values(by='max', ascending=False)[0:plot_tseries].index) # NOT USED? # groupID = idx depths = results.Avg_Face_Depth.iloc[max_vFaceIDs] velocities = results.Face_Velocity.iloc[max_vFaceIDs] for i in depths.index: DepthVelPlot(depths.loc[i], velocities.loc[i], i) try: plot_disparate_instabilities(s_dict['maxes'], s_dict['counts'], results.Perimeter, domain) except: print('No disparate instabilities found. All instabilities must be grouped!') return pd.DataFrame(data=[len(pd.concat(count_list)), max(pd.concat(max_list)['max'])], columns=['Results'], index=['Instability Count', 'Max Velocity']) else: max_vel = results.Face_Velocity.values.max() return pd.DataFrame(data=[0, max_vel], columns=['Results'], index=['Instability Count', 'Max Velocity']) print('No Velocity Errors Found in Domain {}'.format(domain)) # Plotting Functions ------------------------------------------------------------ def show_results(domains:list, model, rasPlan, plot_tseries:int=3) -> None: """Wrapper function plotting descriptive statistics, extreme edges, boundary conditions and velocity values. """ if len(domains) > 1: results = {domain: DomainResults(model, rasPlan, domain) for domain in domains} results_table = {} for domain, result in results.items(): plot_descriptive_stats(result.Describe_Depths, result.Perimeter, domain) plot_extreme_edges(result.Extreme_Edges, result.Perimeter, mini_map=rasPlan.domain_polys) plotBCs(result, domain) results_table[domain] = velCheckMain(result, domain, plot_tseries) instability_count = sum([value.loc['Instability Count'] for value in list(results_table.values())])[0] max_velocity = max([value.loc['Max Velocity'].values[0] for value in list(results_table.values())]) return pd.DataFrame(data=[instability_count, max_velocity], columns=['Results'], index=['Instability Count', 'Max Velocity']) else: domain = domains[0] result = DomainResults(model, rasPlan, domain) plot_descriptive_stats(result.Describe_Depths, result.Perimeter, domain) plot_extreme_edges(result.Extreme_Edges, result.Perimeter) plotBCs(result, domain) return velCheckMain(result, domain, plot_tseries) def plot_instabilities(max_list, count_list, gdf_face, gdf_face_all, ex_groups, idx): """ Add Description :param max_list: :param count_list: :param gdf_face: :param gdf_face_all: :param ex_groups: :param idx: """ fig, _ = plt.subplots(2, 2, figsize=(20, 8)) x0, y0, x1, y1 = ex_groups[idx].geometry.buffer(100).bounds # Plot Max Velocities ax1 = plt.subplot2grid((2, 2), (0, 0)) max_list[idx].plot(column='max', cmap='viridis', legend=True, ax=ax1) gdf_face[idx].plot(alpha=0.1, color='black', ax=ax1) ax1.set_title('Maximum Velocity recorded at Cell Face (ft/s)') ax1.set_xlim(x0, x1) ax1.set_ylim(y0, y1) # Plot Number of instabilities recorded (timesteps above threshold) ax2 = plt.subplot2grid((2, 2), (1, 0)) ax2 = count_list[idx].plot(column='count', cmap='viridis', legend=True, ax=ax2) ax2 = gdf_face[idx].plot(alpha=0.1, color='black', ax=ax2) ax2.set_title('Number of Instabilities recorded at Cell Face (n)') ax2.set_xlim(x0, x1) ax2.set_ylim(y0, y1) # Plot Map Key (domain) ax3 = plt.subplot2grid((2, 2), (0, 1), rowspan=2) gdf_face_all.plot(alpha=0.05, color='black', ax=ax3) pnt_group = gpd.GeoDataFrame(geometry=gpd.GeoSeries(ex_groups[idx].geometry.buffer(1000))) pnt_group.plot(alpha=0.5, color='Red', legend=False, ax=ax3) ax3.set_title('Map Legend') ax1.axis('off') ax2.axis('off') ax3.axis('off') fig.suptitle('Group {}'.format(idx + 1), fontsize=16, fontweight='bold') def plot_disparate_instabilities(max_list, count_list, bounding_polygon, domain): """ Add Description :param max_list: :param count_list: :param bounding_polygon: :param domain: """ small_maxes = pd.concat(max_list) small_counts = pd.concat(count_list) fig, _ = plt.subplots(1, 2, figsize=(20, 8)) ax1 = plt.subplot2grid((1, 2), (0, 0)) small_maxes.plot(column='max', cmap='viridis', legend=True, ax=ax1) bounding_polygon.plot(alpha=0.1, color='black', ax=ax1) ax1.set_title('Maximum Velocity recorded at Cell Face (ft/s)') ax2 = plt.subplot2grid((1, 2), (0, 1)) ax2 = small_counts.plot(column='count', cmap='viridis', legend=True, ax=ax2) ax2 = bounding_polygon.plot(alpha=0.1, color='black', ax=ax2) ax2.set_title('Number of Instabilities recorded at Cell Face (n)') ax1.axis('off') ax2.axis('off') fig.suptitle('Isolated Points above Threshold for Domain {}'.format(domain), fontsize=16, fontweight='bold') def plot_descriptive_stats(stat_lists: tuple, aoi: gpd.geodataframe.GeoDataFrame, domain:str) -> None: """ Plots the descriptive statistics (Max, Min) for cell centers with the area of interest underneath. :param stat_lists: :param aoi: """ maximums, minimums = stat_lists # Plot descriptive statistics fig, (ax_string) = plt.subplots(1, 2, figsize=(20, 8)) ax1 = plt.subplot2grid((1, 2), (0, 0)) aoi.plot(color='k', alpha=0.25, ax=ax1) maximums.plot(column='max', cmap='viridis', markersize=0.1, legend=True, ax=ax1) ax1.set_title('Maximum Depth (ft)') ax2 = plt.subplot2grid((1, 2), (0, 1)) aoi.plot(color='k', alpha=0.25, ax=ax2) ax2 = minimums.plot(column='min', cmap='viridis', markersize=0.1, legend=True, ax=ax2, s=1) ax2.set_title('Minimum Depth (ft)') ax1.axis('off') ax2.axis('off') fig.suptitle('Depths at Cell Centers of Domain {}'.format(domain), fontsize=16, fontweight='bold') def plot_extreme_edges(gdf: gpd.geodataframe.GeoDataFrame, aoi: gpd.geodataframe.GeoDataFrame, **kwargs) -> None: """ Plots extreme depths along edges along with an overview map showing current plotted domain versus all other domains. :param gdf: :param aoi: :param \**kwargs: See below :Keyword Arguments: * *mini_map* (gpd.geodataframe.GeoDataFrame) -- Multiple domain perimeters. """ if 'mini_map' in kwargs.keys(): mini_map = list(kwargs.values())[0] fig, (ax_string) = plt.subplots(1, 2, figsize=(20, 8)) ax1 = plt.subplot2grid((1, 2), (0, 0)) aoi.plot(color='k', alpha=0.25, ax=ax1) gdf.plot(column='abs_max', cmap='viridis', legend=True, ax=ax1, markersize=16) ax1.set_title('Cell Locations with Depths > 1 ft\n(Check for Ponding)'.format(len(gdf)), fontsize=12, fontweight='bold') ax1.axis('off') ax2 = plt.subplot2grid((1, 2), (0, 1)) mini_map.plot(color='#BFBFBF', edgecolor='k', ax=ax2, markersize=16) aoi.plot(color='#FFC0CB', edgecolor='k', ax=ax2) ax2.set_title('Current domain (pink) compared to all domains (grey)'.format(len(gdf)), fontsize=12, fontweight='bold') ax2.axis('off') else: fig, ax = plt.subplots(figsize = (7,7)) aoi.plot(color='k', alpha=0.25, ax=ax) gdf.plot(column='abs_max', cmap='viridis', legend=True, ax=ax, markersize=16) ax.set_title('Cell Locations with Depths > 1 ft\n(Check for Ponding)'.format(len(gdf)), fontsize=12, fontweight='bold') ax.axis('off') def DepthVelPlot(depths: pd.Series, velocities: pd.Series, groupID: int, velThreshold: int = 30): """ Add Description :param depths: :param velocities: :param groupID: :param velThreshold: """ t = depths.index data1 = depths data2 = velocities fig, ax1 = plt.subplots(figsize=(10, 2)) fig.suptitle('Velocity Anomalies at face {}'.format(groupID), fontsize=12, fontweight='bold', x=0.49, y=1.1) color = 'blue' ax1.set_xlabel('Time Steps') ax1.set_ylabel('Depth (ft)', color=color) ax1.plot(data1, color=color) ax1.tick_params(axis='y', labelcolor=color) ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis color = 'red' ax2.set_ylabel('Velocity (ft/s)', color=color) # we already handled the x-label with ax1 ax2.plot(data2, color=color, alpha=0.5) ax2.tick_params(axis='y', labelcolor=color) ax2.hlines(velThreshold, t.min(), t.max(), colors='k', linestyles='--', alpha=0.5, label='Threshold') ax2.hlines(velThreshold * -1, t.min(), t.max(), colors='k', linestyles='--', alpha=0.5, label='Threshold') fig.tight_layout() # otherwise the right y-label is slightly clipped plt.show() def plotBCs(results, domain:str): """ Add Description """ if results.FlowBC is not None: for k, v in results.FlowBC.items(): if domain in k: fig, ax = plt.subplots(figsize=(20, 2)) ax.set_title('{}\nPeak Flow of {} cfs'.format(k, int(v[:, 1].max()))) ax.set_ylabel('Flow (ft)') ax.set_xlabel('Days') ax.plot(v[:, 0], v[:, 1]) ax.grid() if results.StageBC is not None: for k, v in results.StageBC.items(): if domain in k: fig, ax = plt.subplots(figsize=(20, 2)) ax.set_title(k) ax.set_ylabel('Stage (cfs)') ax.set_xlabel('Days') ax.plot(v[:, 0], v[:, 1]) ax.grid() if results.PrecipBC is not None: for k, v in results.PrecipBC.items(): if domain in k: fig, ax = plt.subplots(figsize=(20, 2)) ax.set_title(k) ax.set_ylabel('Precipitation (inches)') ax.set_xlabel('Days') ax.plot(v[:, 0], v[:, 1]) ax.grid() def identify_unique_values(result_table:pd.core.frame.DataFrame, desired_columns:list) -> pd.core.frame.DataFrame: """ Identifies unique values within a results table for a given attribute. """ df = pd.DataFrame(columns=['Unique_Values']) df['Result_Attribute'] =
pd.Index(desired_columns)
pandas.Index
import pandas as pd import json import os import sys import datetime from datetime import time from src.util import logger def loadIntradayData(filepath): data =
pd.read_csv(filepath, parse_dates=[0], names=['datetime', 'value'])
pandas.read_csv
# -*- coding: utf-8 -*- """ @file:base_6900.py @time:2019/7/6 21:49 @author:Tangj @software:Pycharm @Desc """ import pandas as pd import numpy as np from sklearn.model_selection import StratifiedKFold from lightgbm.sklearn import LGBMClassifier from sklearn.metrics import mean_squared_error, mean_absolute_error, log_loss, accuracy_score from sklearn.feature_extraction.text import CountVectorizer from scipy import sparse from scipy.stats import kurtosis import time import warnings warnings.filterwarnings('ignore') pd.set_option('display.max_columns', None) ''' 方案思路:33分类。 label为规定还款日期距还款日期的天数,可能的情况有0天到31天,未还款定义为-1,一共33个类别。 预测出每个label对应的概率,然后分别乘以应还的金额,就是每天需要还的金额。 这里可以将预测概率非常小的还款直接归0,因为实际情况来说,只有一天还款,且还款金额是全部借款数。 ''' # 读取数据,并将相应的日期解析为时间格式 train_data = pd.read_csv('../data/train.csv', parse_dates=['auditing_date', 'due_date', 'repay_date']) train_data['repay_date'] = train_data[['due_date', 'repay_date']].apply( lambda x: x['repay_date'] if x['repay_date'] != '\\N' else x['due_date'], axis=1 ) train_data['repay_amt'] = train_data['repay_amt'].apply(lambda x: x if x != '\\N' else 0).astype('float32') train_data['label'] = (train_data['due_date'] - train_data['repay_date']).dt.days train_data.loc[train_data['repay_amt'] == 0, 'label'] = -1 # 读取user_repay_logs文件扩充训练集,order_id是为了区分原始的train和扩充的train train_data.loc[:, 'order_id'] = 0 train_expand = pd.read_csv('../data/user_repay_logs.csv', parse_dates=['due_date', 'repay_date']) train_expand = train_expand[train_expand['order_id'] == 1] # del train_expand['order_id'] train_expand.loc[train_expand['repay_date'].dt.year == 2200, 'repay_amt'] = 0 train_expand['label'] = (train_expand['due_date'] - train_expand['repay_date']).dt.days train_expand.loc[train_expand['repay_amt'] == 0, 'label'] = -1 train_data = pd.concat([train_data, train_expand]) train_data = train_data.drop_duplicates('listing_id').reset_index(drop=True) # 扩充的训练集中有的不是2018年的数据,因此这里只保留2018年的数据作为train集合 mask = train_data['due_date'].dt.year == 2018 train_data = train_data[mask] clf_labels = train_data['label'].values + 1 amt_labels = train_data['repay_amt'].values del train_data['label'], train_data['repay_amt'], train_data['repay_date'] train_due_amt_data = train_data[['due_amt']] train_num = train_data.shape[0] # 对test集合的处理 test_data = pd.read_csv('../data/test.csv', parse_dates=['auditing_date', 'due_date']) sub = test_data[['listing_id', 'auditing_date', 'due_amt', 'due_date']] data = pd.concat([train_data, test_data], axis=0, ignore_index=True) listing_info_data = pd.read_csv('../data/listing_info.csv') del listing_info_data['user_id'], listing_info_data['auditing_date'] data = data.merge(listing_info_data, on='listing_id', how='left') # 将user信息加入进来,表中有少数user不止一条记录,因此按日期排序,去重,只保留最新的一条记录。 user_info_data = pd.read_csv('../data/user_info.csv', parse_dates=['reg_mon', 'insertdate']) user_info_data.rename(columns={'insertdate': 'info_insert_date'}, inplace=True) user_info_data_1 = user_info_data.sort_values(by='info_insert_date', ascending=False).drop_duplicates('user_id').reset_index(drop=True)#按照插入日期降序排列,去重,只保留最新的一条 user_info_data_1['foreign_land']=np.where(user_info_data_1['cell_province']==user_info_data_1['id_province'],'n','y') modifyInfoNum=user_info_data.groupby('user_id').count()['info_insert_date'].to_frame().rename(columns={'info_insert_date':'modify_info_num'}) user_info_data_2=pd.merge(user_info_data_1,modifyInfoNum,how='left',on='user_id') # 将user信息中的年龄信息分桶 def map_age(s): if s < 25: return 'Young' elif s>24 and s < 36: return 'Middle1' elif s>35 and s < 51: return 'Middle2' else: return 'Old' user_info_data_2['map_age']=user_info_data_2['age'].map(map_age) data = data.merge(user_info_data_2, on='user_id', how='left')#将用户基础信息表合并到训练集之中 # 将用户画像标签列表信息加入,对于多于的数据,排序去重合并 user_tag_data = pd.read_csv('../data/user_taglist.csv', parse_dates=['insertdate']) user_tag_data.rename(columns={'insertdate': 'tag_insert_date'}, inplace=True) user_tag_data_1 = user_tag_data.sort_values(by='tag_insert_date', ascending=False).drop_duplicates('user_id').reset_index(drop=True) modifyTagListNum = user_tag_data.groupby('user_id').count()['tag_insert_date'].to_frame().rename(columns={'tag_insert_date':'modify_taglist_num'}) user_tag_data_2=pd.merge(user_tag_data_1,modifyTagListNum,how='left',on='user_id') data = data.merge(user_tag_data_2, on='user_id', how='left') # 用户行为表 user_behavior_logs =
pd.read_csv('../data/user_behavior_logs.csv', parse_dates=['behavior_time'])
pandas.read_csv
from ..parsers import get_parsing_function import pandas as pd from tqdm import tqdm from ..DataStructures import reg_fixed_fileds from ...settings import get_regions_batch_size # Loading strategy loading_strategy = "single_core" batch = get_regions_batch_size() def load_regions(collected_result): # get the number of regions # n_regions = collected_result.getNumberOfRegions() # get the string delimiters regions_delimiter = collected_result.REGIONS_DELIMITER() values_delimiter = collected_result.VALUES_DELIMITER() end_of_stream = collected_result.END_OF_STREAM() # get how the strings are structured names, types = get_schema(collected_result) result = [] from ...settings import is_progress_enabled if loading_strategy == 'single_core': bar = tqdm(disable=not is_progress_enabled(), desc='Collecting regions') region = collected_result.getRegionAsString(batch) while region != end_of_stream: region = region.split(regions_delimiter) bar.update(len(region)) result.extend(map(lambda x: string_to_dictionary(x, values_delimiter, names, types), region)) region = collected_result.getRegionAsString(batch) # # get the full string # regions_string = collected_result.getRegionAsString(none()) # if regions_string: # # convert to list of strings # regions_string = regions_string.split(regions_delimiter) # iterator = map(lambda x: string_to_dictionary(x, values_delimiter, names, types), # tqdm(regions_string, disable=not is_progress_enabled())) # result.extend(iterator) # elif loading_strategy == 'multi_core': # # number of divisions # divisions = 10 # chunk_size = math.ceil(n_regions / divisions) # p = pool.Pool(min(4, cpu_count())) # # std_partial = partial(string_to_dictionary, values_delimiter=values_delimiter, # names=names, types=types) # # for _ in tqdm(range(divisions), disable=not is_progress_enabled()): # # get the full string # regions_string = collected_result.getRegionsAsString(Some(chunk_size)) # if regions_string: # # convert to list of strings # regions_string = regions_string.split(regions_delimiter) # # iterator = p.map(std_partial, regions_string) # result.extend(iterator) # # p.close() else: raise ValueError("Unknown loading mode ({})".format(loading_strategy)) columns = reg_fixed_fileds + names if len(result) > 0: df =
pd.DataFrame.from_dict(result)
pandas.DataFrame.from_dict
""" Module for static data retrieval. These functions were performed once during the initial project creation. Resulting data is now provided in bulk at the url above. """ import datetime import json from math import sin, cos, sqrt, atan2, radians import re import requests import pandas as pd from riverrunner import settings from riverrunner.context import StationRiverDistance from riverrunner.repository import Repository def scrape_rivers_urls(): """scrape river run data from Professor Paddle generates URLs from the array of strings below. Each element represents a unique river. Each page is requested with the entire HTML contents being saved to disk. The parsed river data is saved to 'data/rivers.csv' """ # copied from jquery selection in chrome dev tools on main prof paddle run table river_links = pd.read_csv('riverrunner/data/static_river_urls.csv').columns.values river_ids = [r[r.find("=")+1:] for r in river_links] url = "http://www.professorpaddle.com/rivers/riverdetails.asp?riverid=" for id in river_ids: r = requests.get(url + id) if r.status_code == 200: with open("river_%s.html" % id, 'w+') as f: f.write(str(r.content)) rivers = [] for rid in river_ids: with open('data/river_%s.html' % rid) as f: river = f.readlines() r = river[0] row = {} # title and river name r = r[r.find('<font size="+2">'):] run_name = r[r.find(">") + 1:r.find('<a')] run_name = re.sub(r'<[^>]*>|&nbsp;', ' ', run_name) river_name = run_name[:run_name.find(' ')] run_name = run_name[len(river_name):] run_name = re.sub(r'&#039;', "'", run_name) run_name = re.sub(r'&#8212;', "", run_name).strip() row['run_name'] = re.sub(r'( )+', ' ', run_name) row['river_name'] = river_name # chunk off the class r = r[r.find('Class'):] rating = r[6:r.find('</strong>')] row['class_rating'] = rating # river length r = r[r.find('<strong>')+8:] length = r[:r.find("<")] row['river_length'] = length # zip code r = r[r.find('Zip Code'):] r = r[r.find('path')+6:] row['zip'] = r[:r.find("<")] # put in long r = r[r.find("Put In Longitude"):] r = r[r.find('path')+6:] row['put_in_long'] = r[:r.find("<")] # put in lat r = r[r.find("Put In Latitude"):] r = r[r.find('path')+6:] row['put_in_lat'] = r[:r.find("<")] # take out long r = r[r.find("Take Out Longitude"):] r = r[r.find('path')+6:] row['take_out_long'] = r[:r.find("<")] # take out lat r = r[r.find("Take Out Latitude"):] r = r[r.find('path')+6:] row['take_out_lat'] = r[:r.find("<")] # county r = r[r.find("County"):] r = r[r.find('path')+6:] row['county'] = r[:r.find("<")] # min level r = r[r.find("Minimum Recomended Level"):] r = r[r.find("&nbsp;")+6:] row['min_level'] = r[:r.find("&")] # min level units r = r[r.find(';')+1:] row['min_level_units'] = r[:r.find('&')] # Maximum Recomended Level r = r[r.find("Maximum Recomended Level"):] r = r[r.find("&nbsp;")+6:] row['max_level'] = r[:r.find("&")] # max level units r = r[r.find(';')+1:] row['max_level_units'] = r[:r.find('&')] row['id'] = rid row['url'] = url + rid rivers.append(row) pd.DataFrame(rivers).to_csv('data/rivers.csv') def parse_location_components(components, lat, lon): """parses location data from a Goggle address component list""" location = {'latitude': lat, 'longitude': lon} for component in components: component_type = component['types'] if 'route' in component_type: location['address'] = component['long_name'] elif 'locality' in component_type: location['city'] = component['long_name'] elif 'administrative_area_level_2' in component_type: location['route'] = re.sub(r'County', '', component['long_name']) elif 'administrative_area_level_1' in component_type: location['state'] = component['short_name'] elif 'postal_code' in component_type: location['zip'] = component['long_name'] print(location) return location def parse_addresses_from_rivers(): """parses river geolocation data and retrieves associated address information from Google geolocation services""" df = pd.read_csv('data/rivers.csv').fillna('null') addresses = [] # put in addresses for name, group in df.groupby(['put_in_lat', 'put_in_long']): if name[0] == 0 or name[1] == 0: continue r = requests.get('https://maps.googleapis.com/maps/api/geocode/json?latlng=%s,%s&key=%s' % (name[0], name[1], settings.GEOLOCATION_API_KEY)) components = json.loads(r.content)['results'][0]['address_components'] addresses.append(parse_location_components(components, name[0], name[1])) # take out addresses for name, group in df.groupby(['take_out_lat', 'take_out_long']): if name[0] == 0 or name[1] == 0: continue r = requests.get('https://maps.googleapis.com/maps/api/geocode/json?latlng=%s,%s&key=%s' % (name[0], name[1], settings.GEOLOCATION_API_KEY)) if r.status_code == 200 and len(r.content) > 10: components = json.loads(r.content)['results'][0]['address_components'] addresses.append(parse_location_components(components, name[0], name[1])) pd.DataFrame(addresses).to_csv('data/addresses_takeout.csv', index=False) def scrape_snowfall(): """scrapes daily snowfall data from NOAA""" base_url = 'https://www.ncdc.noaa.gov/snow-and-ice/daily-snow/WA-snow-depth-' snowfall = [] for year in [2016, 2017, 2018]: for month in range(1, 13): for day in range(1, 32): try: date = '%s%02d%02d' % (year, month, day) r = requests.get(base_url + date + '.json') if r.status_code == 200 and len(r.content) > 0: snf = json.loads(r.content) for row in snf['rows']: lat = row['c'][0]['v'] lon = row['c'][1]['v'] location_name = row['c'][2]['v'].strip().lower() depth = row['c'][3]['v'] this_row = (datetime.datetime.strptime(str(date), '%Y%m%d').date(), lat, lon, location_name, depth) snowfall.append(this_row) print(this_row) except Exception as e: print([str(a) for a in e.args]) df = pd.DataFrame(snowfall) df.columns = ['date', 'lat', 'lon', 'location_name', 'depth'] df.to_csv('data/snowfall.csv', index=None) def parse_addresses_and_stations_from_snowfall(): """iterate through snowfall geolocation data for associated station addresses""" df = pd.read_csv('data/snowfall.csv') addresses, stations = [], [] for name, group in df.groupby(['lat', 'lon']): if name[0] == 0 or name[1] == 0: continue # parse address information r = requests.get('https://maps.googleapis.com/maps/api/geocode/json?latlng=%s,%s&key=%s' % (name[0], name[1], settings.GEOLOCATION_API_KEY)) components = json.loads(r.content)['results'][0]['address_components'] addresses.append(parse_location_components(components, name[0], name[1])) # parse station information station = dict() name = pd.unique(group.location_name)[0] station['station_id'] = name[name.find('(') + 1:-1].strip().lower() parts = name[:name.find(',')].split(' ') for i, s in enumerate(parts): if s.isdigit() or s not in \ ['N', 'NE', 'NNE', 'ENE', 'E', 'ESE', 'SSE', 'SE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW']: parts[i] = s.title() station['name'] = ' '.join(parts) station['source'] = 'NOAA' station['latitude'] = pd.unique(group.lat)[0] station['longitude'] = pd.unique(group.lon)[0] stations.append(station) pd.DataFrame(addresses).to_csv('data/addresses_snowfall.csv', index=False) pd.DataFrame(stations).to_csv('data/stations_snowfall.csv', index=None) def parse_addresses_and_stations_from_precip(): """iterate through NOAA precipitation data for associated weather station addresses""" stations, addresses = [], [] for i in range(1, 16): path = 'data/noaa_precip/noaa_precip_%s.csv' % i df = pd.read_csv(path) for name, group in df.groupby(['STATION_NAME']): station = dict() # parse the station station['name'] = re.sub(r'(WA|US)', '', name).strip().title() station['station_id'] = re.sub(r':', '',
pd.unique(group.STATION)
pandas.unique
""" Machine learning examples with SciPy and scikit-learn. """ from pandas import Categorical, DataFrame, Series from scipy.cluster.hierarchy import fcluster, linkage from sklearn import linear_model class Classify: """ Train, use, and re-use an automatic classifier. Input training data, then call with new data to return a Series. Constructor inputs: clues DataFrame: Training data with numeric columns. answers Iterable: Known classes. Must align with clues. model optional str: Name of an sklearn.linear_model. **kwargs will be passed to the chosen model. Call inputs: clues DataFrame: Same columns as training 'clues'. probs bool: Return a DataFrame of class probabilties? Note: Some models cannot return class probabilities. """ def __init__(self, clues, answers, model="LogisticRegressionCV", **kwargs): answers = Categorical(answers) clues = DataFrame(clues) model = getattr(linear_model, str(model)) self.cats = answers.categories.tolist() self.columns = clues.columns.tolist() self.model = model(**kwargs).fit(clues, answers.codes) def __call__(self, clues, probs=False): cats, model = self.cats, self.model clues = DataFrame(clues) if probs: data = DataFrame(model.predict_proba(clues), columns=cats) data.index = clues.index else: data = Categorical.from_codes(model.predict(clues), categories=cats) data =
Series(data, index=clues.index, name="class")
pandas.Series
# Copyright 2015 Novo Nordisk Foundation Center for Biosustainability, DTU. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function from itertools import combinations from numpy import ndarray from pandas import DataFrame, melt from driven.data_sets.normalization import or2min_and2max from driven.stats import freedman_diaconis from driven.utils import get_common_start from driven.vizualization.plotting import plotting class ExpressionProfile(object): """ Representation of an Expression profile. It can be RNA-Seq, Proteomics, TNSeq or any other profile that links genes/proteins to a value (continuous or discrete). It the storage of single or multiple conditions as well as p-values. Attributes ---------- identifiers: list The gene or protein ids conditions: list The conditions in the expression profile (time points, media conditions, etc...) expression: numpy.ndarray An 2 dimensional array (nxm) where n is the number of genes and m the number of conditions. p_values: numpy.ndarray The p-values between conditions. """ @classmethod def from_csv(cls, file_path, sep=",", replicas=None): """ Reads and expression profile from a Comma Separated Values (CSV) file. Parameters ---------- file_path: str The path to load. sep: str Default is "," replicas: int number of replicas. It uses the median of the replicas. Returns ------- ExpressionProfile An expression profile built from the file. """ data = DataFrame.from_csv(file_path, sep=sep) if replicas: columns = data.columns data = DataFrame([data[columns[i:i+replicas]].median(axis=1) for i in range(0, len(columns), replicas)]).transpose() data.columns = [get_common_start(*columns[i:i+replicas].tolist()) for i in range(0, len(columns), replicas)] return cls.from_data_frame(data) @classmethod def from_data_frame(cls, data_frame): """ Reads and expression profile from a pandas.DataFrame. Parameters ---------- data_frame: pandas.DataFrame A DataFrame containing the genes as index and the columns as conditions. For more information about p-values see @ExpressionProfile.p_value_columns Returns ------- ExpressionProfile An expression profile built from the DataFrame. """ columns = list(data_frame.columns) conditions = [c for c in columns if "p-value" not in c] p_value_keys = [c for c in columns if "p-value" in c] if len(p_value_keys) > 0: p_values = data_frame[p_value_keys].values else: p_values = None expression = data_frame[conditions].values identifiers = list(data_frame.index) return ExpressionProfile(identifiers, conditions, expression, p_values) def __init__(self, identifiers, conditions, expression, p_values=None): assert isinstance(identifiers, list) assert isinstance(conditions, list) assert isinstance(expression, ndarray) assert expression.shape == (len(identifiers), len(conditions)) self.conditions = conditions self._condition_index = dict((c, i) for i, c in enumerate(conditions)) self.identifiers = identifiers self._gene_index = dict((g, i) for i, g in enumerate(identifiers)) self.expression = expression self._p_values = p_values def __getitem__(self, item): if not isinstance(item, tuple): raise AttributeError( "Non supported slicing method. E.g. profile[1,2] or profile[\"id1\", \"condition_a\"]") if isinstance(item[0], str): i = self._gene_index[item[0]] elif isinstance(item[0], (slice, int)): i = item[0] else: raise AttributeError( "Non supported slicing value. E.g. profile[1,2] or profile[\"id1\", \"condition_a\"]") if isinstance(item[1], str): j = self._condition_index[item[1]] elif isinstance(item[1], (slice, int)): j = item[1] else: raise AttributeError( "Non supported slicing method. E.g. profile[1,2] or profile[\"id1\", \"condition_a\"]") return self.expression[i, j] def __eq__(self, other): if not isinstance(other, ExpressionProfile): return False else: if self._p_values is None and other.p_values is None: return self.identifiers == other.identifiers and \ self.conditions == other.conditions and \ self._p_values == other._p_values and \ (self.expression == other.expression).all() else: return self.identifiers == other.identifiers and \ self.conditions == other.conditions and \ (self._p_values == other._p_values).all() and \ (self.expression == other.expression).all() def _repr_html_(self): return self.data_frame._repr_html_() @property def data_frame(self): """ Builds a pandas.DataFrame from the ExpressionProfile. Returns ------- pandas.DataFrame A DataFrame """ if self._p_values is None: return DataFrame(self.expression, index=self.identifiers, columns=self.conditions) else: return DataFrame(self.expression+self.p_values, index=self.identifiers, columns=self.conditions+self.p_value_columns) @property def p_value_columns(self): """ Generates the p-value column names. The p-values are between conditions. Returns ------- list A list with p-value column headers. """ return ["%s %s p-value" % c for c in combinations(self.conditions, 2)] @property def p_values(self): return self._p_values @p_values.setter def p_values(self, p_values): assert isinstance(p_values, (ndarray, type(None))) if p_values is not None: if p_values.shape[1] != len(self.p_value_columns): raise ValueError("Argument p_values does not cover all conditions (expected %s)" % self.p_value_columns) self._p_values = p_values @p_values.deleter def p_values(self): self._p_values = None def histogram(self, conditions=None, transform=None, filter=None, bins=None, width=800, height=None, palette='Spectral'): if conditions is None: conditions = self.conditions data = melt(self.data_frame[conditions], var_name='condition') if filter: data = data.query(filter) if transform: data['value'] = data['value'].apply(transform) hist = plotting.histogram(data, values='value', groups='condition', bins=bins, width=width, height=height, palette=palette, title="Histogram of expression values", legend=True) plotting.display(hist) return hist def scatter(self, condition1=None, condition2=None, transform=float, width=800, height=None, color="#AFDCEC"): if len(self.conditions) <= 1: raise AssertionError("Cannot build a scatter with only one condition") if condition1 is None: condition1 = self.conditions[0] elif isinstance(condition1, int): condition1 = self.conditions[condition1] if condition2 is None: condition2 = self.conditions[1] elif isinstance(condition2, int): condition2 = self.conditions[condition2] if transform: data = self.data_frame.applymap(transform) else: data = self.data_frame data = data.reset_index() scatter = plotting.scatter(data, x=condition1, y=condition2, width=width, height=height, color=color, label='index', title="Expression values %s vs. %s" % (condition1, condition2), xaxis_label="Expression %s" % condition1, yaxis_label="Expression %s" % condition2) plotting.display(scatter) return scatter def heatmap(self, conditions=None, identifiers=None, transform=None, low="green", mid="yellow", high="blue", width=800, height=None, id_map=None): id_map = {} if id_map is None else id_map identifiers = self.identifiers if identifiers is None else identifiers conditions = self.conditions if conditions is None else conditions data = self.data_frame[conditions] data['y'] = [id_map.get(i, i) for i in identifiers] data =
melt(data, id_vars=['y'], var_name='x')
pandas.melt
import pandas as pd import matplotlib.pyplot as plt def plot_results_for_probability_changes(): df1 = pd.read_csv("base.csv") df2 = pd.read_csv("base_pc_100_pm_80.csv") df3 = pd.read_csv("base_pc_80_pm_5.csv") df_iterations = pd.DataFrame({ "90%% crossover, 40%% mutação": df1["iterations"], "100%% crossover, 80%% mutação": df2["iterations"], "80%% crossover, 5%% mutação": df3["iterations"] }) df_avg_fitness = pd.DataFrame({ "90%% crossover, 40%% mutação": df1["average fitness"], "100%% crossover, 80%% mutação": df2["average fitness"], "80%% crossover, 5%% mutação": df3["average fitness"] }) df_iterations.boxplot() plt.show() df_avg_fitness.boxplot() plt.show() def plot_results_for_pop_size_changes(): df1 = pd.read_csv("base_pc_100_pm_80_pop_20.csv") df2 = pd.read_csv("base_pc_100_pm_80_pop_50.csv") df3 = pd.read_csv("base_pc_100_pm_80.csv") df4 = pd.read_csv("base_pc_100_pm_80_pop_200.csv") df_iterations = pd.DataFrame({ "20 indivíduos": df1["iterations"], "50 indivíduos": df2["iterations"], "100 indivíduos": df3["iterations"], "200 indivíduos": df4["iterations"] }) df_avg_fitness = pd.DataFrame({ "20 indivíduos": df1["average fitness"], "50 indivíduos": df2["average fitness"], "100 indivíduos": df3["average fitness"], "200 indivíduos": df4["average fitness"] }) df_iterations.boxplot() plt.show() df_avg_fitness.boxplot() plt.show() def plot_results_for_crossover_changes(): df1 = pd.read_csv("base_pc_100_pm_80_pop_200.csv") df2 =
pd.read_csv("pmx_pc_100_pm_80_pop_200.csv")
pandas.read_csv
import pandas as pd from datetime import date from pandas.core.indexes import category import config as config from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler, MaxAbsScaler from main_table import MainInsert class AlgoInsert: def __init__(self): self.category = config.Config.CATEGORY self.naver = config.Config.NAVER self.kakao = config.Config.KAKAO self.camp=config.Config.CAMP self.weights=config.Config.WEIGHTS self.main_cat=config.Config.MAIN_CAT # 태그 컬럼 전처리 def make_tag(self, camp_df): camping_data = camp_df[['place_id', 'content_id', 'place_name', 'addr', 'tag', 'animal_cmg']] camping_data['tag'] = camping_data['tag'].fillna("") # 반려견 출입 가능 유무 컬럼으로 반려견 태그 만들기 camping_data["tag"][camping_data["animal_cmg"] == "가능"] = camping_data[camping_data["animal_cmg"] == "가능"]["tag"] + "#반려견" camping_data["tag"][camping_data["animal_cmg"] == "가능(소형견)"] = camping_data[camping_data["animal_cmg"] == "가능(소형견)"]["tag"] + "#반려견" # 태그 내에서 봄,여름,가을,겨울 제외 camping_data['tag'] = [t[:] if type(t) == str else "" for t in camping_data['tag']] for kw in ['#봄 ', '#여름 ', '#가을', '#가을 ', '#겨울', '봄 ', '여름 ', '가을 ', '겨울',]: camping_data['tag'] = [t.replace(kw, "") if type(t) == str else "" for t in camping_data['tag']] return camping_data # 소분류 one hot encoding def subcat(self, camping_data): camping_data["tag"] = camping_data["tag"].str.replace(" ", "") subcat = camping_data["tag"].str.split("#").apply(pd.Series).loc[:, 1:] sub_df = pd.get_dummies(subcat.stack()).reset_index().groupby("level_0").sum().drop("level_1", 1) return sub_df # 대분류 one hot encoding def maincat(self, sub_df): # 대분류 불러오기 lookup = pd.DataFrame(columns=["sub_cat", "main_cat"], data=self.category) lookup['main_cat'] = lookup['main_cat'].str.replace(" ","") main_df = pd.DataFrame() for i in range(len(sub_df)): main_df = pd.concat([pd.DataFrame(sub_df.values[i] * lookup["main_cat"].T), main_df], 1) main_df = main_df.T.reset_index(drop=True) main_df = pd.get_dummies(main_df.stack()).reset_index().groupby("level_0").sum().drop("level_1", 1) main_df = main_df.iloc[:,1:] main_df.index = sub_df.index return main_df # 소분류와 대분류 one hot encoding concat def make_algo_search(self, camp_df): camping_data = self.make_tag(camp_df) sub_df = self.subcat(camping_data) main_df = self.maincat(sub_df) last_df = pd.concat([sub_df, main_df], 1) last_df[last_df > 1] = 1 last_df['index']= last_df.index algo_search_df =
pd.merge(camping_data, last_df, how="left", left_on = 'place_id', right_on='index')
pandas.merge
import pandas as pd import numpy as np def frequency_encoding(df,feature): map_dict=df[feature].value_counts().to_dict() df[feature]=df[feature].map(map_dict) def target_guided_encoding(df,feature,target): order=df.groupby([feature])[target].mean().sort_values().index map_dic={k:i for i,k in enumerate(order,0)} df[feature]=df[feature].map(map_dic) def mean_encoding(df,feature,target): map_dict=df.groupby([feature])[target].mean().to_dict() df[feature]=df[feature].map(map_dict) def probability_ratio_encoding(df,feature,target): order=df.groupby([feature])[target].mean() prob_df=
pd.DataFrame(order)
pandas.DataFrame
from pathlib import Path import pandas as pd import typer from jinja2 import Environment, FileSystemLoader from reki.data_finder import find_local_file from reki_data_tool.postprocess.grid.gfs.ne.config import OUTPUT_DIRECTORY from reki_data_tool.postprocess.grid.gfs.util import get_random_start_time, get_random_forecast_time app = typer.Typer() @app.command("serial") def create_serial_task( output_script_path: Path = typer.Option(Path(OUTPUT_DIRECTORY, "03-serial", "gfs_ne_grib2_serial_case_1.sh")) ): start_time = get_random_start_time() start_time_label = start_time.strftime("%Y%m%d%H") forecast_time = get_random_forecast_time() forecast_time_label = f"{int(forecast_time / pd.Timedelta(hours=1)):03}" print(start_time_label, forecast_time_label) output_directory = OUTPUT_DIRECTORY output_file_path = Path( output_directory, f'ne_{start_time_label}_{forecast_time_label}.grb2' ) file_loader = FileSystemLoader(Path(__file__).parent) env = Environment(loader=file_loader) template = env.get_template("slurm_job.sh") job_params = dict( job_name=output_script_path.stem, is_parallel=False, partition="serial", model_path="reki_data_tool.postprocess.grid.gfs.ne", options=f"""serial \\ --start-time={start_time_label} \\ --forecast-time={forecast_time_label}h \\ --output-file-path={output_file_path}""" ) task_script_content = template.render(**job_params) with open(output_script_path, "w") as f: f.write(task_script_content) return output_script_path @app.command("dask-v1") def create_dask_v1_task( output_script_path: Path = typer.Option(Path(OUTPUT_DIRECTORY, "11-dask-v1", "dask_v1_case_1.sh")), work_directory: Path = typer.Option(Path(OUTPUT_DIRECTORY)), start_time: str = typer.Option(None), forecast_time: str = typer.Option(None), nodes: int = 1, ntasks_per_node: int = 32, partition: str = "normal" ): if start_time is None: start_time = get_random_start_time() else: start_time =
pd.to_datetime(start_time, format="%Y%m%d%H")
pandas.to_datetime
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Any, Dict, List import requests from pandas import DataFrame, concat, isna from lib.case_line import convert_cases_to_time_series from lib.cast import safe_int_cast, numeric_code_as_string from lib.pipeline import DataSource from lib.time import datetime_isoformat from lib.utils import table_rename _IBGE_STATES = { # Norte "RO": 11, "AC": 12, "AM": 13, "RR": 14, "PA": 15, "AP": 16, "TO": 17, # Nordeste "MA": 21, "PI": 22, "CE": 23, "RN": 24, "PB": 25, "PE": 26, "AL": 27, "SE": 28, "BA": 29, # Sudeste "MG": 31, "ES": 32, "RJ": 33, "SP": 35, # Sul "PR": 41, "SC": 42, "RS": 43, # Centro-Oeste "MS": 50, "MT": 51, "GO": 52, "DF": 53, } class BrazilMunicipalitiesDataSource(DataSource): def fetch( self, output_folder: Path, cache: Dict[str, str], fetch_opts: List[Dict[str, Any]] ) -> Dict[str, str]: # Get the URL from a fake browser request url = requests.get( "https://xx9p7hp1p7.execute-api.us-east-1.amazonaws.com/prod/PortalGeral", headers={ "Accept": "application/json, text/plain, */*", "Accept-Language": "en-GB,en;q=0.5", "X-Parse-Application-Id": "unAFkcaNDeXajurGB7LChj8SgQYS2ptm", "Origin": "https://covid.saude.gov.br", "Connection": "keep-alive", "Referer": "https://covid.saude.gov.br/", "Pragma": "no-cache", "Cache-Control": "no-cache", "TE": "Trailers", }, ).json()["results"][0]["arquivo"]["url"] # Pass the actual URL down to fetch it return super().fetch(output_folder, cache, [{"url": url}]) def parse_dataframes( self, dataframes: Dict[str, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: data = table_rename( dataframes[0], { "data": "date", "estado": "subregion1_code", "codmun": "subregion2_code", "municipio": "subregion2_name", "casosNovos": "new_confirmed", "obitosNovos": "new_deceased", "casosAcumulado": "total_confirmed", "obitosAcumulado": "total_deceased", "Recuperadosnovos": "total_recovered", }, drop=True, ) # Convert date to ISO format data["date"] = data["date"].astype(str) # Parse region codes as strings data["subregion2_code"] = data["subregion2_code"].apply( lambda x: numeric_code_as_string(x, 6) ) # Country-level data has null state data["key"] = None country_mask = data["subregion1_code"].isna() data.loc[country_mask, "key"] = "BR" # State-level data has null municipality state_mask = data["subregion2_code"].isna() data.loc[~country_mask & state_mask, "key"] = "BR_" + data["subregion1_code"] # We can derive the key from subregion1 + subregion2 data.loc[~country_mask & ~state_mask, "key"] = ( "BR_" + data["subregion1_code"] + "_" + data["subregion2_code"] ) # Drop bogus data data = data[data["subregion2_code"].str.slice(-4) != "0000"] return data _column_adapter = { "sexo": "sex", "idade": "age", "municipioIBGE": "subregion2_code", "dataTeste": "date_new_tested", "dataInicioSintomas": "_date_onset", "estadoIBGE": "_state_code", "evolucaoCaso": "_prognosis", "dataEncerramento": "_date_update", "resultadoTeste": "_test_result", "classificacaoFinal": "_classification", } class BrazilStratifiedDataSource(DataSource): def fetch( self, output_folder: Path, cache: Dict[str, str], fetch_opts: List[Dict[str, Any]] ) -> Dict[str, str]: # The source URL is a template which we must format for the requested state parse_opts = self.config["parse"] fetch_opts = [ {**opts, "url": opts["url"].format(parse_opts["subregion1_code"].lower())} for opts in fetch_opts ] return super().fetch(output_folder, cache, fetch_opts) def parse(self, sources: Dict[str, str], aux: Dict[str, DataFrame], **parse_opts) -> DataFrame: # Manipulate the parse options here because we have access to the columns adapter parse_opts = {**parse_opts, "error_bad_lines": False, "usecols": _column_adapter.keys()} return super().parse(sources, aux, **parse_opts) def parse_dataframes( self, dataframes: Dict[str, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: cases = table_rename(dataframes[0], _column_adapter, drop=True) # Keep only cases for a single state subregion1_code = parse_opts["subregion1_code"] cases = cases[cases["_state_code"].apply(safe_int_cast) == _IBGE_STATES[subregion1_code]] # Confirmed cases are only those with a confirmed positive test result cases["date_new_confirmed"] = None confirmed_mask = cases["_test_result"] == "Positivo" cases.loc[confirmed_mask, "date_new_confirmed"] = cases.loc[ confirmed_mask, "date_new_tested" ] # Deceased cases have a specific label and the date is the "closing" date cases["date_new_deceased"] = None deceased_mask = cases["_prognosis"] == "Óbito" cases.loc[confirmed_mask, "date_new_deceased"] = cases.loc[deceased_mask, "_date_update"] # Recovered cases have a specific label and the date is the "closing" date cases["date_new_recovered"] = None recovered_mask = cases["_prognosis"] == "Cured" cases.loc[confirmed_mask, "date_new_recovered"] = cases.loc[recovered_mask, "_date_update"] # Drop columns which we have no use for cases = cases[[col for col in cases.columns if not col.startswith("_")]] # Subregion code comes from the parsing parameters cases["subregion1_code"] = subregion1_code # Make sure our region code is of type str cases["subregion2_code"] = cases["subregion2_code"].apply(safe_int_cast) # The last digit of the region code is actually not necessary cases["subregion2_code"] = cases["subregion2_code"].apply( lambda x: None if
isna(x)
pandas.isna
#파이썬으로 상관분석 회기분석테스트 import numpy as np import pandas as pd #csv 파일 읽어오기 hdr = ['V1','V2','V3','V4','V5','V6','V7','V8','V9'] df =
pd.read_csv('c:/java/phone-02.csv', header=None,names=hdr)
pandas.read_csv
from caes import ICAES2 import pandas as pd from joblib import Parallel, delayed, parallel_backend import time import os from datetime import datetime # ===================== # function to enable sensitivity analysis # ===================== def sizing_and_sensitivity(wrkdir, xlsx_filename, sheet_name, capacity, duration, polytropic_index, float_perm, int_perm, debug): # create folder to store results result_dir = os.path.join(wrkdir, sheet_name) try: os.stat(result_dir) except: os.mkdir(result_dir) # ----------------------------- # prepare for sizing # ----------------------------- entries = ['depth_m', 'thickness_m', 'porosity', 'capacity_MW', 'duration_hr', 'permeability_mD', 'n_cmp1', 'n_exp1'] user_input = pd.read_excel(xlsx_filename, sheet_name=sheet_name) user_input = user_input.set_index('Variable') s = pd.Series(index=entries) s['sheet_name'] = sheet_name s['depth_m'] = user_input.loc['depth', 'Baseline'] s['thickness_m'] = user_input.loc['h', 'Baseline'] s['porosity'] = user_input.loc['phi', 'Baseline'] s['capacity_MW'] = capacity s['duration_hr'] = duration s['permeability_mD'] = user_input.loc['k', 'Baseline'] s['r_w'] = user_input.loc['r_w', 'Baseline'] s['n_cmp1'] = polytropic_index s['n_exp1'] = polytropic_index # ------------------ # run sizing # ------------------ sized_result = sizing(s, debug=False) # save inputs os.chdir(result_dir) sized_result.to_csv('sizing_results.csv') # ------------------ # prepare for sensitivity # ------------------ os.chdir(wrkdir) user_input = pd.read_excel(xlsx_filename, sheet_name=sheet_name) os.chdir(result_dir) # use results from sizing m_dot =
pd.Series()
pandas.Series
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty = Series([]).astype(dtype) tm.assert_series_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see GH#4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_float_to_period(self): result = Series([np.nan]).astype("period[D]") expected = Series([NaT], dtype="period[D]") tm.assert_series_equal(result, expected) def test_astype_no_pandas_dtype(self): # https://github.com/pandas-dev/pandas/pull/24866 ser = Series([1, 2], dtype="int64") # Don't have PandasDtype in the public API, so we use `.array.dtype`, # which is a PandasDtype. result = ser.astype(ser.array.dtype) tm.assert_series_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_astype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] s = Series(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") request.node.add_marker(mark) msg = ( fr"The '{dtype.__name__}' dtype has no unit\. " fr"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): s.astype(dtype) def test_astype_dt64_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Series(dti).astype(str) expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_series_equal(result, expected) def test_astype_dt64tz_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Series(dti_tz).astype(str) expected = Series( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_series_equal(result, expected) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see GH#9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series(["2010-01-04"]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected =
Series(["2010-01-04 00:00:00-05:00"])
pandas.Series
import re import time import requests import pandas as pd from bs4 import BeautifulSoup class stackScrape(object): def __init__(self): pass def extractDataFromUrl(self, url): ''' Returns the scraped data from the target URL in raw format (HTML), which can be stackoverflow or stackexchange Paramaters ---------- url: url of the website to be scraped (parameter passed by scrape_data function) Returns ------- a JSON with the raw format (HTML) of all the page (BeautifulSoup object) ''' # server request response = requests.get(url) # Read the request, as a HTML text html = response.text # String -> Soup (special data structure of information) soup = BeautifulSoup(html, 'html.parser') # Extracts the desired information from the website and passes it on to json data = stackScrape.parseTaggedPage(self, soup) return data def multiplyViews(self, text): ''' checks for the existence of an order of magnitude (e.g. 10k), converts this string to a value by multiplying\n by the respective order of magnitude value Paramaters ---------- text: given to be treated, parameter passed by the clean_scraped_data function Returns ------- returns an integer ''' # multiplier ratio by order of magnitude pattern = { 'k': 1000, 'm': 1000000 } # multiplication of the value by the order of magnitude try: mult = int(re.search('(\d+)', text).group(1)) * pattern[re.search('([A-Za-z]+)', text).group(1)] # exception for smaller data which is the smallest order of magnitude except AttributeError: mult = int(re.search('(\d+)', text).group(1)) return mult def cleanScrapedData(self, text , keyname=None): ''' performs data transformations as trim of the data if necessary and calls another function to handle values Paramaters ---------- text: given to be treated, parameter passed by the parse_tagged_page function keyname: refers to which encapsulation function should be performed by means of a key-value - default=None Returns ------- returns the data with the proper transformation ''' # encapsulated treatments by means of a key transforms = { 'votes': text.replace('\nvote', '').strip('s'), 'answer': text.replace('answer', '').strip('s'), 'views': text.replace('views', '') } # application of the treatment if keyname in transforms.keys(): # application of excision treatment if keyname == 'views': # transformation of the data into an integer and multiplies it by the order of magnitude trasnf = stackScrape.multiplyViews(self, transforms[keyname]) return trasnf return transforms[keyname] # data that do not need treatment else: return text def getId(self, q): ''' returns the clean question id on page Paramaters ---------- q: cleaning target, this parameter is passed by parse_tagged_page function Returns ------- string with the clean question id ''' # cleaning pattern pattern = 'href="/questions/([^"]+)[\/]' # applies the established pattern to extract the id q_id = re.search(pattern,q).group(1) return q_id def parseTaggedPage(self, soup): ''' Returns the scraped data from the target URL, which can be stackoverflow or stackexchange Paramaters ---------- soup: a JSON with the raw format (HTML) of all the page (BeautifulSoup object), this parameter is passed by extract_data_from_url function Returns ------- a JSON with the 'Question', 'Number of Votes', 'question-related tags', 'number of responses' and 'number of views' data\n\t\t from the records of one page ''' # css target class questionSummaries = soup.select('.question-summary') # list of names to be assigned to data keyNames = ['question', 'votes', 'tags', 'answer', 'views'] # css target class subclasses classesNeeded = ['.question-hyperlink', '.vote', '.tags', '.status', '.views'] datas = [] # loop in each data extracted through the target css class for q_el in questionSummaries: questionData = {} # loop in each enumerate subclass listed above for i, _class in enumerate(classesNeeded): # obtain the value of each subclass sub_el = q_el.select(_class)[0] # obtains the value of each subclass to generate the dictionary key keyname = keyNames[i] # attach the given treaty with its respective key to the dictionary questionData[keyname] = stackScrape.cleanScrapedData(self, sub_el.text.strip(), keyname=keyname) # subclass that receives a treatment of exception to the others if _class == '.question-hyperlink': # get the id of each question questionData['id'] = stackScrape.getId(self, str(sub_el)) # attach the complete dictionary of each question to the empty list created datas.append(questionData) return datas def scrapeData(self, base_url, tag, query_filter, max_pages, pagesize): ''' Itera on all selected pages by rotating the function to extract the data from each page and gather it in a json Paramaters ---------- base_url: url path to all question filter by a tag - stackexchange: https://stats.stackexchange.com/questions/tagged/ - stackoverflow: https://stackoverflow.com/questions/tagged/ tag: tag to be filtered (e.g.: 'python', 'r', 'javascript', ...) query_filter: filter to perform a query ('Newest', 'Active', 'Bounties', 'Unanswered', 'Frequent', Votes') max_pages: the maximum number of pages to be scraped pagesize: the number of records per page (the maximum number is 50) Returns ------- a DataFrame with the 'Question', 'Number of Votes', 'question-related tags', 'number of responses' and 'number of views' data\n\t\t from the records of all selected pages ''' datas = list() # loop on each page of the given range for p in range(max_pages): # adjustment of the iteration variable page_num = p + 1 # target page url formation url = f'{base_url}{tag}?tab={query_filter}&page={page_num}&pagesize={pagesize}' # url data extraction datas += stackScrape.extractDataFromUrl(self, url) # time control time.sleep(0.5) # DataFrame dfStack = pd.DataFrame(datas, columns=datas[0].keys()) # DataFrame convert dtypes (int) dfStack['votes'] = dfStack['votes'].astype(int) dfStack['answer'] = dfStack['answer'].astype(int) dfStack['views'] = dfStack['views'].astype(int) return dfStack def TagsStack(self, base_url, tag, query_filter, max_pages, pagesize): ''' returns a dataframe with the top 15 tags ranked by the ratio of Views by Incidence\n\t\t among the most incident tags in the issues recorded in stackoverflow or stackexchange.\n\t\t The purpose of this dataframe is to use in other stages of the Project, such as, for example,\n\t\t the youtube data scraping parameter Paramaters ---------- base_url: url path to all question filter by a tag - stackexchange: https://stats.stackexchange.com/questions/tagged/ - stackoverflow: https://stackoverflow.com/questions/tagged/ tag: tag to be filtered (e.g.: 'python', 'r', 'javascript', ...) query_filter: filter to perform a query ('Newest', 'Active', 'Bounties', 'Unanswered', 'Frequent', Votes') max_pages: the maximum number of pages to be scraped pagesize: the number of records per page (the maximum number is 50) Returns ------- a DataFrame with the 'Tag', 'Incidence', 'Votes', 'Answer' and 'ViewsPerIncidence' data\n\t\t of the top 15 tags () ranked by the ratio of Views by Incidence\n\t\t among the most incident tags in stackoverflow or stackexchange issues ''' # Empty Dictinaries bagOfWords = {} bagOfWordsVotes = {} bagOfWordsAnswers = {} bagOfWordsViews = {} # DataFrame with all the question that was scraped df = stackScrape.scrapeData(self, base_url, tag, query_filter, max_pages, pagesize) count = 0 # loop on each row of the DataFrame with the questions for row in df['tags'].apply(lambda row: row.split()): # loop on each tag of the set of tags in each row of the DataFrame for i in row: # Incidence of each tag bagOfWords[i] = bagOfWords.get(i, 0) + 1 # sum total of votes per tag bagOfWordsVotes[i] = bagOfWordsVotes.get(i, 0) + df.loc[count, 'votes'] # sum total of answers per tag bagOfWordsAnswers[i] = bagOfWordsAnswers.get(i, 0) + df.loc[count, 'answer'] # sum total of views per tag bagOfWordsViews[i] = bagOfWordsViews.get(i, 0) + df.loc[count, 'views'] count += 1 # Merge All the dictionaries into one DataFrame DfTags = pd.Series(bagOfWords).to_frame().rename(columns={0:'Incidence'}).reset_index() DfTags = pd.merge(DfTags, pd.Series(bagOfWordsVotes).to_frame().rename(columns={0:'Votes'}).reset_index(), how='left', left_on='index', right_on='index') DfTags = pd.merge(DfTags, pd.Series(bagOfWordsAnswers).to_frame().rename(columns={0:'Answer'}).reset_index(), how='left', left_on='index', right_on='index') DfTags = pd.merge(DfTags,
pd.Series(bagOfWordsViews)
pandas.Series
import csv import json import multiprocessing import os import queue import subprocess import warnings from datetime import datetime, timedelta from glob import glob from time import time import joblib import numpy as np import pandas as pd import psutil # import wfdb from sklearn.model_selection import train_test_split from tqdm import tqdm from xgboost import XGBClassifier from driver import load_challenge_data from neurokit2_parallel import ( ECG_LEAD_NAMES, KEYS_INTERVALRELATED, KEYS_TSFRESH, wfdb_record_to_feature_dataframe, ) from util import parse_fc_parameters from util.elapsed_timer import ElapsedTimer from util.evaluate_12ECG_score import is_number, load_table from util.evaluation_helper import evaluate_score_batch from util.log import configure_logging from util.raw_to_wfdb import convert_to_wfdb_record def _get_fieldnames(): field_names = ["header_file", "age", "sex"] for lead_name in ECG_LEAD_NAMES: for key in KEYS_INTERVALRELATED: field_names.append(f"{lead_name}_{key}") for key in KEYS_TSFRESH: hb_key = f"hb__{key}" field_names.append(f"{lead_name}_{hb_key}") for key in KEYS_TSFRESH: sig_key = f"sig__{key}" field_names.append(f"{lead_name}_{sig_key}") return field_names def feat_extract_process( input_queue: multiprocessing.JoinableQueue, output_queue: multiprocessing.JoinableQueue, fc_parameters: [None, dict], ): while True: try: header_file_path = input_queue.get(True, 1) input_queue.task_done() except queue.Empty: # When the input queue is empty, worker process terminates # NOTE: queue.Empty may be raised even in input_queue contains values # parent process should respawn new workers in this edge case break # for some reason, OS FileError (Too many files) is raised... # r = wfdb.rdrecord(header_file_path.rsplit(".hea")[0]) with warnings.catch_warnings(): warnings.simplefilter("ignore") mat_fp = header_file_path.replace(".hea", ".mat") data, header_data = load_challenge_data(mat_fp) r = convert_to_wfdb_record(data, header_data) record_features, dx = wfdb_record_to_feature_dataframe( r, fc_parameters=fc_parameters ) # turn dataframe record_features into dict flatten out the values (one key to one row) ecg_features = dict( (k, v[0]) for (k, v) in record_features.to_dict().items() ) output_queue.put((header_file_path, ecg_features, dx)) def train_12ECG_classifier( input_directory, output_directory, labels_fp="dxs.txt", features_fp="features.csv", weights_file="evaluation-2020/weights.csv", early_stopping_rounds=20, experiments_to_run=1, # 1 for challenge, 100 for paper evaluation_size=0, # 0 for challenge, 0.15 for paper limit_features_to=1000, ): logger = configure_logging() labels_fp = os.path.join(output_directory, labels_fp) features_fp = os.path.join(output_directory, features_fp) fieldnames = _get_fieldnames() fc_parameters = None # HARD CODE IN THE IMPORTANCES RANK! importance_data = None importances_fp = os.path.join("importances_rank.json") if os.path.exists(importances_fp): logger.info(f"Loading importances from '{importances_fp}'") with open(importances_fp) as importancesfile: importance_data = json.load(importancesfile) # update the fieldnames to be the important features logger.info( f"Limiting classification to top {limit_features_to} important features!" ) important_fields = importance_data["sorted_keys"][:limit_features_to] fc_parameters = parse_fc_parameters(important_fields) fieldnames = ["header_file",] + sorted(important_fields) else: logger.info( "No importances_rank.json found, generating full feature set (VERY SLOW)." ) logger.info(f"Loading feature extraction result from '{labels_fp}'...") # check how many files have been processed already, allows feature extraction to be resumable label_mapped_records = [] if os.path.isfile(labels_fp): with open(labels_fp, mode="r", newline="\n") as labelfile: for line in labelfile.readlines(): header_file_path, _ = json.loads(line) label_mapped_records.append(header_file_path) logger.info(f"Loaded {len(label_mapped_records)} from prior run.") else: logger.info("No labels file found.") with open(labels_fp, mode="w"): # initialize the file pass logger.info(f"Loading feature extraction result from '{features_fp}'...") feature_mapped_records = [] if os.path.isfile(features_fp): # get fieldnames of existing records with open(features_fp, "r", newline="\n") as csvfile: reader = csv.reader(csvfile) fieldnames = next(reader) with open(features_fp, "r", newline="\n") as csvfile: reader = csv.DictReader(csvfile, fieldnames=fieldnames) next(reader) # ignore header with tqdm(reader) as t: for row in t: feature_mapped_records.append(row["header_file"]) else: logger.info("No features file found.") logger.info(f"Discovering ECG input files in '{input_directory}'...") process_header_files = tuple( hfp for hfp in glob(os.path.join(input_directory, "**/*.hea"), recursive=True) if hfp not in label_mapped_records or hfp not in feature_mapped_records ) del label_mapped_records del feature_mapped_records logger.info( "Number of ECG records remain to process: %d", len(process_header_files) ) # Setup & populate input queue, then initialize output queue input_queue = multiprocessing.JoinableQueue() for header_file in process_header_files: input_queue.put_nowait(header_file) output_queue = multiprocessing.JoinableQueue() # calculate CPUs used for feature extraction num_cpus = len(os.sched_getaffinity(0)) logger.info("Number of available CPUs: %d", num_cpus) total_ram_bytes = psutil.virtual_memory().total total_ram_GiB = total_ram_bytes / (1024 ** 3) ram_bottleneck_cpus = max(int(total_ram_GiB / 2.3), 1) logger.info(f"Available virtual memory: {total_ram_GiB} GiB") # quick test for GPUs used, allow no GPU classifier training try: num_gpus = str(subprocess.check_output(["nvidia-smi", "-L"])).count("UUID") except Exception: num_gpus = 0 logger.info(f"Detected {num_gpus} gpus.") if ram_bottleneck_cpus < num_cpus: logger.info( f"Each proccess takes ~2.3 GiB, capping to {ram_bottleneck_cpus} processes" ) num_cpus = ram_bottleneck_cpus num_feature_extractor_procs = max(num_cpus, 1) feature_extractor_procs = [] killed_extractor_procs = [] for _ in range(num_feature_extractor_procs): p = multiprocessing.Process( target=feat_extract_process, args=(input_queue, output_queue, fc_parameters) ) p.start() feature_extractor_procs.append(p) # main process used for concatenating features processed_files_counter = 0 out_start = datetime.now() out_log = None avg_records_per_sec = 0 # initialize the header if the file does not exist if not os.path.isfile(features_fp): with open(features_fp, "w", newline="\n") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() with open(features_fp, "a", newline="\n") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames) with open(labels_fp, "a") as labelfile: while True: try: header_file_path, f_dict, dxs = output_queue.get(True, 0.1) labelfile.write(json.dumps((header_file_path, dxs)) + "\n") labelfile.flush() f_dict["header_file"] = header_file_path writer.writerow(f_dict) output_queue.task_done() processed_files_counter += 1 except queue.Empty: # When the output queue is empty and all workers are terminated # all files have been processed if input_queue.empty() and all( not p.is_alive() for p in feature_extractor_procs ): # input queue is empty and all children processes have exited break elif not input_queue.empty(): # input queue is not empty, restart stopped workers num_feature_extractor_procs = len(feature_extractor_procs) for fe_proc_idx in range(num_feature_extractor_procs): p = feature_extractor_procs[fe_proc_idx] if p in killed_extractor_procs: continue if not p.is_alive(): disp_str = ( f"{p.pid} (exitcode: {p.exitcode}) is not alive " f"while input queue contains {input_queue.qsize()} tasks! " "Restarting..." ) logger.info(disp_str) p.join() killed_extractor_procs.append(p) p_new = multiprocessing.Process( target=feat_extract_process, args=(input_queue, output_queue), ) p_new.start() feature_extractor_procs.append(p_new) finally: out_cur = datetime.now() if out_log is None or out_cur - out_log > timedelta(seconds=5): start_delta = out_cur - out_start remaining_time, avg_records_per_sec = _eta_calculate( start_delta, processed_files_counter, len(process_header_files), avg_records_per_sec, ) logger.info( f"Processed {processed_files_counter}/{len(process_header_files)} in {start_delta} (est {remaining_time} remain)" ) out_log = out_cur out_cur = datetime.now() start_delta = out_cur - out_start logger.info( f"Finished processing {processed_files_counter}/{len(process_header_files)} in {start_delta}" ) # Close the queues input_queue.close() input_queue.join_thread() output_queue.close() output_queue.join_thread() # print(input_queue.qsize(), output_queue.qsize(), processed_files_counter) # load the data logger.info(f"Loading record label mapping from '{labels_fp}'") mapped_records = {} with open(labels_fp, mode="r", newline="\n") as labelfile: for line in labelfile.readlines(): header_file_path, dxs = json.loads(line) mapped_records[header_file_path] = dxs logger.info(f"Loading features_df from '{features_fp}'") features_df = pd.read_csv( features_fp, header=0, names=fieldnames, index_col="header_file" ) logger.info("Constructing labels array...") labels = [mapped_records[row[0]] for row in features_df.itertuples()] # logger.info("Dropping 'header_file' column from features_df") # features_df.reset_index(drop=True, inplace=True) # is necessary? # Load the SNOMED CT code mapping table with open("data/snomed_ct_dx_map.json", "r") as f: SNOMED_CODE_MAP = json.load(f) logger.info("Loading scoring function weights") rows, cols, all_weights = load_table(weights_file) assert rows == cols, "rows and cols mismatch" scored_codes = rows for experiment_num in range(experiments_to_run): with ElapsedTimer() as timer: logger.info(f"Running experiment #{experiment_num}") logger.info( f"Splitting data into training and evaluation split ({evaluation_size})" ) if evaluation_size > 0: ( train_features, eval_features, train_labels, eval_labels, ) = train_test_split(features_df, labels, test_size=evaluation_size) else: train_features = features_df train_labels = labels eval_features =
pd.DataFrame({})
pandas.DataFrame
import warnings from copy import deepcopy from typing import Dict from typing import List from typing import Optional from typing import Union import numpy as np import pandas as pd from sklearn.base import TransformerMixin from etna.core import StringEnumWithRepr from etna.transforms.base import Transform from etna.transforms.utils import match_target_quantiles class TransformMode(StringEnumWithRepr): """Enum for different metric aggregation modes.""" macro = "macro" per_segment = "per-segment" class SklearnTransform(Transform): """Base class for different sklearn transforms.""" def __init__( self, in_column: Optional[Union[str, List[str]]], out_column: Optional[str], transformer: TransformerMixin, inplace: bool = True, mode: Union[TransformMode, str] = "per-segment", ): """ Init SklearnTransform. Parameters ---------- in_column: columns to be transformed, if None - all columns will be transformed. transformer: sklearn.base.TransformerMixin instance. inplace: features are changed by transformed. out_column: base for the names of generated columns, uses self.__repr__() if not given. mode: "macro" or "per-segment", way to transform features over segments. If "macro", transforms features globally, gluing the corresponding ones for all segments. If "per-segment", transforms features for each segment separately. Raises ------ ValueError: if incorrect mode given """ if inplace and (out_column is not None): warnings.warn("Transformation will be applied inplace, out_column param will be ignored") self.transformer = transformer if isinstance(in_column, str): in_column = [in_column] self.in_column = in_column if in_column is None else sorted(in_column) self.inplace = inplace self.mode = TransformMode(mode) self.out_column = out_column self.out_columns: Optional[List[str]] = None def _get_column_name(self, in_column: str) -> str: if self.out_column is None: new_transform = deepcopy(self) new_transform.in_column = [in_column] return f"{new_transform.__repr__()}" else: return f"{self.out_column}_{in_column}" def fit(self, df: pd.DataFrame) -> "SklearnTransform": """ Fit transformer with data from df. Parameters ---------- df: DataFrame to fit transformer. Returns ------- self """ segments = sorted(set(df.columns.get_level_values("segment"))) if self.in_column is None: self.in_column = sorted(set(df.columns.get_level_values("feature"))) if self.inplace: self.out_columns = self.in_column else: self.out_columns = [self._get_column_name(column) for column in self.in_column] if self.mode == TransformMode.per_segment: x = df.loc[:, (segments, self.in_column)].values elif self.mode == TransformMode.macro: x = self._reshape(df) else: raise ValueError(f"'{self.mode}' is not a valid TransformMode.") self.transformer.fit(X=x) return self def transform(self, df: pd.DataFrame) -> pd.DataFrame: """ Transform given data with fitted transformer. Parameters ---------- df: DataFrame to transform with transformer. Returns ------- transformed DataFrame. """ segments = sorted(set(df.columns.get_level_values("segment"))) if self.mode == TransformMode.per_segment: x = df.loc[:, (segments, self.in_column)].values transformed = self.transformer.transform(X=x) elif self.mode == TransformMode.macro: x = self._reshape(df) transformed = self.transformer.transform(X=x) transformed = self._inverse_reshape(df, transformed) else: raise ValueError(f"'{self.mode}' is not a valid TransformMode.") if self.inplace: df.loc[:, (segments, self.in_column)] = transformed else: transformed_features = pd.DataFrame( transformed, columns=df.loc[:, (segments, self.in_column)].columns, index=df.index ) transformed_features.columns = pd.MultiIndex.from_product([segments, self.out_columns]) df = pd.concat((df, transformed_features), axis=1) df = df.sort_index(axis=1) return df def inverse_transform(self, df: pd.DataFrame) -> pd.DataFrame: """ Apply inverse transformation to DataFrame. Parameters ---------- df: DataFrame to apply inverse transform. Returns ------- transformed DataFrame. """ segments = sorted(set(df.columns.get_level_values("segment"))) if self.in_column is None: raise ValueError("Transform is not fitted yet.") if "target" in self.in_column: quantiles = match_target_quantiles(set(df.columns.get_level_values("feature"))) else: quantiles = set() if self.inplace: quantiles_arrays: Dict[str, pd.DataFrame] = dict() if self.mode == TransformMode.per_segment: x = df.loc[:, (segments, self.in_column)].values transformed = self.transformer.inverse_transform(X=x) # quantiles inverse transformation for quantile_column_nm in quantiles: df_slice_copy = df.loc[:, (segments, self.in_column)].copy() df_slice_copy.loc[:, (segments, "target")] = df.loc[:, (segments, quantile_column_nm)].values df_slice_copy.loc[:, (segments, self.in_column)] = self.transformer.inverse_transform( X=df_slice_copy ) quantiles_arrays[quantile_column_nm] = df_slice_copy.loc[:, (segments, "target")].rename( columns={"target": quantile_column_nm} ) elif self.mode == TransformMode.macro: x = self._reshape(df) transformed = self.transformer.inverse_transform(X=x) transformed = self._inverse_reshape(df, transformed) # quantiles inverse transformation for quantile_column_nm in quantiles: df_slice_copy = df.loc[:, (segments, self.in_column)].copy() df_slice_copy.loc[:, (segments, "target")] = df.loc[:, (segments, quantile_column_nm)].values df_slice_copy_reshaped_array = self._reshape(df_slice_copy) transformed_ = self.transformer.inverse_transform(X=df_slice_copy_reshaped_array) df_slice_copy.loc[:, (segments, self.in_column)] = self._inverse_reshape( df_slice_copy, transformed_ ) quantiles_arrays[quantile_column_nm] = df_slice_copy.loc[:, (segments, "target")].rename( columns={"target": quantile_column_nm} ) else: raise ValueError(f"'{self.mode}' is not a valid TransformMode.") df.loc[:, (segments, self.in_column)] = transformed for quantile_column_nm in quantiles: df.loc[:, (segments, quantile_column_nm)] = quantiles_arrays[quantile_column_nm].values return df def _reshape(self, df: pd.DataFrame) -> np.ndarray: segments = sorted(set(df.columns.get_level_values("segment"))) x = df.loc[:, (segments, self.in_column)] x =
pd.concat([x[segment] for segment in segments])
pandas.concat
"""Functions for transofrmation of films and books datasets. Functions --------- get_books_ratings - transform books dataset get_films_ratings - transform films dataset generate_datasets - generate films and books datasets """ from typing import Set import pandas as pd from pathlib import Path from os import mkdir, path BOOKS_LOCATION = 'raw_data/books.csv' FILMS_LOCATIONS = ['raw_data/title.basics.tsv', 'raw_data/title.ratings.tsv'] BOOKS_COLS = {'original_title': 'title', 'ratings_count': 'num_votes'} FILMS_COLS = {'originalTitle': 'title', 'startYear': 'year', 'averageRating': 'average_rating', 'numVotes': 'num_votes'} def get_books_ratings(location: str) -> pd.DataFrame: """ Read data from books rating dataset, select <NAME>' books and remove unnecessary data. :param location: location of the dataset :return: transformed data >>> get_books_ratings(BOOKS_LOCATION) title average_rating num_votes 0 The Time Machine 7.74 276076 1 The War of the Worlds 7.60 159752 2 The Invisible Man 7.24 84778 3 The Island of Dr. Moreau 7.44 60346 """ dataframe = pd.read_csv(location, low_memory=False) dataframe = dataframe.loc[(dataframe['authors'].str.contains( '<NAME>')) & (~dataframe['language_code'].isnull())] # transform rating from 0-5 to 0-10 system dataframe['average_rating'] *= 2 # only keep columns with title, rating and ratings count dataframe = dataframe.loc[:, ['original_title', 'average_rating', 'ratings_count']].reset_index(drop=True) # rename columns dataframe.rename(columns=BOOKS_COLS, inplace=True) return dataframe def get_films_ratings(location_1: str, location_2: str, books: Set[str]) -> pd.DataFrame: """ Read and transform data from two film datasets, only selecting corresponding films for the given set of books. :param location_1: location of film titles dataset :param location_1: location of film ratings dataset :param books: a set of books to select films to :return: a dataframe with films ratings >>> get_films_ratings(*FILMS_LOCATIONS, {'The Time Machine', 'The Island of Dr. Moreau',\ 'The Invisible Man', 'The War of the Worlds'}) title year average_rating num_votes 0 The Invisible Man 1933 7.7 30172 1 The War of the Worlds 1953 7.1 32429 2 The Time Machine 1960 7.6 35786 3 The Island of Dr. Moreau 1977 5.9 5677 4 The Island of Dr. Moreau 1996 4.6 30894 5 The Time Machine 2002 6.0 117796 6 The Invisible Man 2020 7.1 152154 7 The Invisible Man 2017 3.3 168 """ # read title basics data df_basics =
pd.read_csv(location_1, sep='\t', low_memory=False)
pandas.read_csv
import streamlit as st import pandas as pd import numpy as np import plotly.graph_objects as go from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from MulticoreTSNE import MulticoreTSNE as TSNE import umap from sklearn.cluster import KMeans SEED = 100 # @st.cache is speedup option @st.cache def standardize(df): X = df.values X_std = StandardScaler().fit_transform(X) return pd.DataFrame(X_std, columns=df.columns) @st.cache def do_pca(df): pca = PCA(n_components=3) embedding = pca.fit_transform(df.values) return pd.DataFrame(embedding) @st.cache def do_umap(df): umap_ = umap.UMAP(n_components=3) embedding = umap_.fit_transform(df.values) return pd.DataFrame(embedding) @st.cache def do_tsne(df): tsne = TSNE(n_components=3) embedding = tsne.fit_transform(df.values) return pd.DataFrame(embedding) def reduce_dimension(df, method='PCA'): if method == 'PCA': df = do_pca(df) elif method == 'UMAP': df = do_umap(df) elif method == 't-SNE': df = do_tsne(df) return df # @st.cache def do_kmeans(df, num_c): kmeans = KMeans(n_clusters=num_c, random_state=SEED) clusters = kmeans.fit(df.values) return clusters.labels_ def clustering(df, method='k-means', num_c=4): if method == 'k-means': labels = do_kmeans(df, num_c) return labels def main(): st.title('csv visualizer') link = '[use example csv](https://raw.githubusercontent.com/root4kaido/csv_visualize_app/main/heart.csv)' st.sidebar.markdown(link, unsafe_allow_html=True) uploaded_file = st.sidebar.file_uploader("csv file upload", type='csv') if uploaded_file is not None: df_raw =
pd.read_csv(uploaded_file)
pandas.read_csv
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Series(values, index=self.obj.index) else: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result = Series(values, index=index).sort_index() result.index = self.obj.index return result def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if isinstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != len(values): v = next(v for v in values if v is not None) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([ x.index for x in values ]) singular_series = (len(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.tools.merge import concat return concat(values) if not all_indexed_same: return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = set(v.name for v in values) if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if not _np_version_under1p7 or isinstance(v.index,MultiIndex) or key_index is None: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values,index=key_index,columns=index) else: # GH5788 instead of stacking; concat gets the dtypes correct from pandas.tools.merge import concat result = concat(values,keys=key_index,names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values.T,index=v.index,columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here if (self._selected_obj.ndim == 2 and self._selected_obj.dtypes.isin(_DATELIKE_DTYPES).any()): cd = 'coerce' else: cd = True return result.convert_objects(convert_dates=cd) else: # only coerce dates if we find at least 1 datetime cd = 'coerce' if any([ isinstance(v,Timestamp) for v in values ]) else False return Series(values, index=key_index).convert_objects(convert_dates=cd) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.tools.merge import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, 'name', name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except Exception: # pragma: no cover res = fast_path(group) path = fast_path else: res = path(group) # broadcasting if isinstance(res, Series): if res.index.is_(obj.index): group.T.values[:] = res else: group.values[:] = res applied.append(group) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index concatenated = concat(applied, join_axes=[concat_index], axis=self.axis, verify_integrity=False) concatenated.sort_index(inplace=True) return concatenated def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed DataFrame on each group and return a DataFrame having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each subframe Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) """ # try to do a fast transform via merge if possible try: obj = self._obj_with_exclusions if isinstance(func, compat.string_types): result = getattr(self, func)(*args, **kwargs) else: cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: result = getattr(self, cyfunc)() else: return self._transform_general(func, *args, **kwargs) except: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) # a grouped that doesn't preserve the index, remap index based on the grouper # and broadcast it if ((not isinstance(obj.index,MultiIndex) and type(result.index) != type(obj.index)) or len(result.index) != len(obj.index)): results = obj.values.copy() for (name, group), (i, row) in zip(self, result.iterrows()): indexer = self._get_index(name) results[indexer] = np.tile(row.values,len(indexer)).reshape(len(indexer),-1) return DataFrame(results,columns=result.columns,index=obj.index).convert_objects() # we can merge the result in # GH 7383 names = result.columns result = obj.merge(result, how='outer', left_index=True, right_index=True).iloc[:,-result.shape[1]:] result.columns = names return result def _define_paths(self, func, *args, **kwargs): if isinstance(func, compat.string_types): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) # compare that we get the same results if res.shape == res_fast.shape: res_r = res.values.ravel() res_fast_r = res_fast.values.ravel() mask = notnull(res_r) if (res_r[mask] == res_fast_r[mask]).all(): path = fast_path except: pass return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.append(i) except Exception: pass if len(output) == 0: # pragma: no cover raise TypeError('Transform function invalid for data types') columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return
DataFrame(output, index=obj.index, columns=columns)
pandas.core.frame.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: from pandas import ExcelFile from pandas import ExcelWriter from scipy import ndimage from scipy.stats import randint as sp_randint from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel from sklearn import datasets from sklearn import metrics from sklearn import pipeline from sklearn.metrics import roc_auc_score, roc_curve from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import PredefinedSplit from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import FunctionTransformer from sklearn.preprocessing import Imputer from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.utils import resample import matplotlib.pyplot as plt import numpy as np import openpyxl import pandas as pd import scipy import xlsxwriter import os from matplotlib import pyplot as plt from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from math import sqrt print("All the libraries are loaded") # In[27]: FCPC = pd.read_excel(r"test_preds_FCPC.xlsx") FCPCe = pd.read_excel(r'test_preds_FCPCe.xlsx') C1DS = pd.read_excel(r'test_preds_C1DS.xlsx') C2DF = pd.read_excel(r'test_preds_C2DF.xlsx') MGC = pd.read_excel(r'test_preds_MGC.xlsx') MWC = pd.read_excel(r'test_preds_MWC.xlsx') ACTIVITY = pd.read_excel(r'test.xlsx') ACTIVITY=ACTIVITY['ACTIVITY'] # In[28]: Average_output=(FCPC['FCPC_out']+FCPCe['FCPCe_out']+C1DS['C1DS_out']+C2DF['C2DF_out']+MGC['MGC_out']+MWC['MWC_out'])/6 # In[29]: print(type(Average_output)) # In[30]: Average_output=
pd.DataFrame(Average_output)
pandas.DataFrame
import pandas as pd import numpy as np def get_rating_summary(df,num_users = None, num_items = None): ''' print summary of user-item matrix args: df: data frame which contains userId & itemId columns ''' if num_users == None: num_users = len(df['userId'].unique()) if num_items == None: num_items = len(df['itemId'].unique()) num_values = len(df) sparsity = 1 - (num_values/(num_users * num_items)) print('# users: {0}, # items: {1}, # vals: {2}, sparsity: {3:.7f}'. format(num_users, num_items, num_values, sparsity)) def get_tag_summary(df, num_users = None, num_items = None, tagcol = 'tagId'): ''' print summary of user-item-tag matrix args: df: data frame which contains userId & itemId & tagId columns ''' if num_users == None: num_users = len(df['userId'].unique()) if num_items == None: num_items = len(df['itemId'].unique()) num_tags = len(df[tagcol].unique()) tagnum_per_interaction = df.groupby(['userId','itemId'])[tagcol].apply(lambda x:len(set(x))).reset_index()[tagcol] num_interaction = len(tagnum_per_interaction) sparsity = 1 - (num_interaction/(num_users * num_items)) tagged_items_per_user = df.groupby('userId')['itemId'].apply(lambda x:len(set(x))).reset_index()['itemId'] tag_count = df.groupby(tagcol)['itemId'].apply(len).reset_index()['itemId'] print('# users: {0}, # items: {1}, # tags: {2}, #interaction: {3}, sparsity: {4:.7f}'. format(num_users, num_items, num_tags, num_interaction, sparsity)) print("summary for the number of tags per interation") print(tagnum_per_interaction.describe()) print("summary for the number of tagged items per users") print(tagged_items_per_user.describe()) print("summary for the occurence per tag") print(tag_count.describe()) def preprocess_ratings(ratings, min_rating): if min_rating > 1: ratings = ratings[ratings['rating'] >= min_rating] return ratings[['userId','itemId']] def preprocess_tags(tags, tag_user_threshold, tag_item_threshold): ''' stemming tags and remove rare tags. ''' tags = tags[['userId','itemId','tag']] tags['tag'] = tags['tag'].apply(lambda x: x.lower().replace('.', '')) #tags.loc[:,'tag'] = tt if tag_item_threshold > 1: #limit the vocabulary of tags to those that have been applied by at least "tag_item_threshold" items counter = tags.groupby('tag')['itemId'].apply(lambda x: len(set(x))).to_frame('count').reset_index() counter = counter[counter['count']>=tag_item_threshold] tags = pd.merge(tags,counter,on='tag')[['userId','itemId','tag']] if tag_user_threshold > 1: #limit the vocabulary of tags to those that have been applied by at least "tag_user_threshold" users counter = tags.groupby('tag')['userId'].apply(lambda x: len(set(x))).to_frame('count').reset_index() counter = counter[counter['count']>=tag_user_threshold] tags = pd.merge(tags,counter,on='tag')[['userId','itemId','tag']] return tags def set_tagId(tags): ''' set uinque tag id for tags. ''' tag_list = list(tags['tag'].unique()) tagId_list = list(range(len(tag_list))) tag_tagId = pd.DataFrame({'tag':tag_list,'tagId':tagId_list}) tags = pd.merge(tags,tag_tagId, on='tag')[['userId','itemId','tagId']] return tags, tag_tagId def _update_id(ratings, tags): old_itemId = ratings['itemId'].unique() new_itemId = np.arange(len(old_itemId)) updated_itemId = pd.DataFrame({'itemId':old_itemId,'new_itemId':new_itemId}) old_userId = ratings['userId'].unique() new_userId = np.arange(len(old_userId)) updated_userId =
pd.DataFrame({'userId':old_userId,'new_userId':new_userId})
pandas.DataFrame
# for each 1-minute window from the training data, apply the ensemble model to get the score. Sort the scores and find out what score s is at a specific percentile p. e.g., if p=10, it means that 10% of scores are <= than s # --- Imports --- from sklearn.preprocessing import MinMaxScaler import scipy.integrate as integrate import pandas as pd import numpy as np import time import os, sys # add the parent directory to the path sys.path.insert(0, os.path.abspath("../")) sys.path.insert(0, os.path.abspath("ensemble/")) sys.path.insert(0, os.path.abspath("ranking/")) from common import * from model import * from ranking import * from ensemble_for_ranking import * from constants_model import * WEIGHTED=True FEATURE_IMP_DIR = "../data/results/feature_importance_coefficients/" # --- Main --- if __name__ == '__main__': print("\nFeature cols:", FEATURE_COLS) # get the model; we usually use previously trained models feature_str = get_feature_str(FEATURE_COLS, feature_imp_str=None) print("Features, feature str:", FEATURE_COLS, feature_str) if not USE_SAVED_MODEL: print("Please train the model first") exit() print("Model location: ", MODEL_DIR) print("Train directory: ", TRAIN_DIR) # dictionaries of scores and results for each file (day) df_scores = dict() dir_scores = SCORES_TRAINING_DIR dir_scores = os.path.join(dir_scores, "weighted_ensemble") os.makedirs(dir_scores, exist_ok=True) print("Output dir for scores in training: ", dir_scores) # get the train data train_files = sorted(os.listdir(TRAIN_DIR)) train_files = [os.path.join(TRAIN_DIR, obj) for obj in train_files] train_files = [f for f in train_files if os.path.isfile(f)] print("Train files: ", train_files) for port in PORTS: print("\nPort:", port) scores_combined = np.asarray([]) for crt_file in train_files: print("Train file: ", crt_file) scores_crt, _ = get_combined_scores_per_port(port, FEATURE_COLS, crt_file, model_dir=MODEL_DIR, feature_imp_dir=FEATURE_IMP_DIR, weighted=WEIGHTED, labeled=None, ranking=False, port_feat_imp=port) print("scores_crt: ", scores_crt) if len(scores_crt) == 0: continue scores_combined = np.concatenate((scores_combined, scores_crt), axis=None) percentiles = [] thresh = [0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] + list(range(1, 101)) for i in thresh: percentile_i = np.percentile(scores_combined, i, axis=None) percentiles.append(tuple([i, percentile_i])) scores_topk = get_top_k_scores(scores_combined, len(scores_combined)) print("Len of scores: ", len(scores_combined)) COL_NAMES_RANKING = ["window", "score"] COL_NAMES_PERCENTILES = ["percentile", "score"] newf = "scores_training_p{}.obj".format(port) newfcsv = "scores_training_p{}.csv".format(port) percentiles_csv = "percentiles_training_p{}.csv".format(port) newf = os.path.join(dir_scores, newf) newfcsv = os.path.join(dir_scores, newfcsv) percentiles_csv = os.path.join(dir_scores, percentiles_csv) write_pickle(newf, scores_topk)
pd.DataFrame(scores_topk, columns=COL_NAMES_RANKING)
pandas.DataFrame
import pandas as pd import numpy as np from random import gauss, uniform def get_makespan(curr_plan, num_resources, workflow_inaccur, positive=False, dynamic_res=False): ''' Calculate makespan ''' under = False reactive_resource_usage = [0] * num_resources resource_usage = [0] * num_resources expected = [0] * num_resources tmp_idx = [0] * num_resources for placement in curr_plan: workflow = placement[0] resource = placement[1] resource_id = resource['id'] expected_finish = placement[3] if dynamic_res: perf = gauss(resource['performance'], resource['performance'] * 0.0644) else: pref = resource['performance'] if positive: inaccur = uniform(0, workflow_inaccur) else: inaccur = uniform(-workflow_inaccur, workflow_inaccur) exec_time = (workflow['num_oper'] * (1 + inaccur)) / perf reactive_resource_usage[resource_id - 1] += exec_time resource_usage[resource_id - 1] = max(resource_usage[resource_id - 1] + exec_time, expected_finish) expected[resource_id - 1] = expected_finish tmp_idx[resource_id - 1] += 1 return max(resource_usage), max(reactive_resource_usage), max(expected) # ------------------------------------------------------------------------------ # test_case = pd.read_csv('../Data/heft/DynHeteroResources_StHeteroCampaignsHEFT.csv') results = pd.DataFrame(columns=['size','planner','plan','makespan', 'reactive', 'expected','mpn_snt', 'rect_snt', 'time']) for idx, row in test_case.iterrows(): size = row['size'] planner = row['planner'] plan = eval(row['plan']) makespan, reactive, expected = get_makespan(plan, size, 0, dynamic_res=True) time = row['time'] results.loc[len(results)] = [size, planner, plan, makespan, reactive, expected, makespan - expected, reactive - expected, time] results.to_csv('../Data/heft/DynHeteroResources_StHeteroCampaignsHEFT.csv', index=False) test_case =
pd.read_csv('../Data/heft/DynHeteroResources_StHomoCampaignsHEFT.csv')
pandas.read_csv
from __future__ import absolute_import, division, print_function import os import numpy as np import pandas as pd import shutil import requests import numpy.testing as npt import pytest import skimage.io as skio from .. import argus_shapes as shapes import pulse2percept.implants as p2pi try: FileNotFoundError except NameError: # Python 2 FileNotFoundError = IOError def generate_dummy_data(): X = pd.DataFrame() X['subject'] = pd.Series(['S1', 'S1', 'S2', 'S2', 'S3', 'S3']) X['feature1'] = pd.Series([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) X['feature2'] = pd.Series([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) y = pd.DataFrame() y['subject'] = pd.Series(['S1', 'S1', 'S2', 'S2', 'S3', 'S3'], index=X.index) y['target'] = pd.Series([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], index=X.index) y['image'] = pd.Series([np.random.rand(10, 10)] * 6) y['area'] = pd.Series([1, 2, 3, 4, 5, 6]) return X, y def test_download_file(): fname = "test.zip" with pytest.raises(requests.exceptions.HTTPError): shapes.download_file("https://github.com/VisCog/blah", fname) shapes.download_file("https://osf.io/rduj4", fname) os.remove(fname) def test_fetch_data(): test_dir = "test" with pytest.raises(ValueError): shapes.fetch_data() shapes.fetch_data(save_path=test_dir) npt.assert_equal( os.path.exists(os.path.join(test_dir, 'argus_shapes.zip')), True ) npt.assert_equal(os.path.isdir(os.path.join(test_dir, 'argus_shapes')), True) npt.assert_equal( os.path.exists(os.path.join(test_dir, 'argus_shapes', 'drawings_single.csv')), True ) npt.assert_equal( os.path.exists(os.path.join(test_dir, 'argus_shapes', 'subjects.csv')), True ) shutil.rmtree(test_dir) def test_load_data(): with pytest.raises(FileNotFoundError): shapes.load_data("doesforsurenotexist.csv", auto_fetch=False) csvfile = "data.csv" csvfile2 = "data2.csv" imgfile = "test_image.png" skio.imsave(imgfile, np.random.randint(256, size=(10, 10))) subjects = ['S1', 'S2'] electrodes = ['A1', 'F9'] amps = [2.0, 3.0] for use_fullpath in [True, False]: data = [] for subject in subjects: for electrode in electrodes: for amp in amps: if use_fullpath: fname = os.path.join(os.getcwd(), imgfile) else: fname = imgfile row = { 'subject_id': subject, 'PTS_ELECTRODE': electrode, 'PTS_FILE': fname, 'PTS_AMP': amp, 'PTS_FREQ': 20.0, 'PTS_PULSE_DUR': 0.45, 'stim_class': 'SingleElectrode', 'date': '1985/09/30' } data.append(row)
pd.DataFrame(data)
pandas.DataFrame
import sys import pandas as pd import numpy as np from scipy import stats from itertools import compress import statsmodels.stats.multitest as smt import scikits.bootstrap as bootstrap from sklearn.decomposition import PCA from .scaler import scaler from .imputeData import imputeData class statistics: usage = """Generate a table of parametric or non-parametric statistics and merges them with the Peak Table (node table). Initial_Parameters ---------- peaktable : Pandas dataframe containing peak data. Must contain 'Name' and 'Label'. datatable : Pandas dataframe matrix containing values for statistical analysis Methods ------- set_params : Set parameters - parametric: Perform parametric statistical analysis, assuming the data is normally distributed (default: True) log_data: Perform a log ('natural', base 2 or base 10) on all data prior to statistical analysis (default: (False, 2)) scale_data: Scale the data ('standard' (centers to the mean and scales to unit variance), 'minmax' (scales between 0 and 1), 'maxabs' (scales to the absolute maximum value), 'robust' (centers to the median and scales to between 25th and 75th quantile range) (default: (True, 'standard')) impute_data: Impute any missing values using KNN impute with a set number of nearest neighbours (default: (False, 3)) group_column_name: The group column name used in the datatable (default: None) control_group_name: The control group name in the datatable, if available (default: None) group_alpha_CI: The alpha value for group confidence intervals (default: 0.05) fold_change_alpha_CI: The alpha value for mean/median fold change confidence intervals (default: 0.05) pca_alpha_CI: The alpha value for the PCA confidence intervals (default: 0.05) total_missing: Calculate the total missing values per feature (Default: False) group_missing: Calculate the missing values per feature per group (if group_column_name not None) (Default: False) pca_loadings: Calculate PC1 and PC2 loadings for each feature (Default: True) normality_test: Determine normal distribution across whole dataset using Shapiro-Wilk test (pvalues < 0.05 ~ non-normal distribution) (default: True) group_normality_test: Determine normal distribution across each group (if group_column_name not None) using Shapiro-Wilk test (pvalues < 0.05 ~ non-normal distribution) (default: True) group_mean_CI: Determine the mean with bootstrapped CI across each group (if parametric = True and group_column_name not None) (default: True) group_median_CI: Determine the median with bootstrapped CI across each group (if parametric = False and group_column_name not None) (default: True) mean_fold_change: Calculate the mean fold change with bootstrapped confidence intervals (if parametric = True, group_column_name not None and control_group_name not None) (default: False) median_fold_change: Calculate the median fold change with bootstrapped confidence intervals (if parametric = False, group_column_name not None and control_group_name not None) (default: False) levene_twoGroup: Test null hypothesis that control group and each of the other groups come from populations with equal variances (if group_column_name not None and control_group_name not None) (default: False) levene_allGroup: Test null hypothesis that all groups come from populations with equal variances (if group_column_name not None) (default: False) oneway_Anova_test: Test null hypothesis that all groups have the same population mean, with included Benjamini-Hochberg FDR (if parametric = True and group_column_name not None) (default: False) kruskal_wallis_test: Test null hypothesis that population median of all groups are equal, with included Benjamini-Hochberg FDR (if parametric = False and group_column_name not None) (default: False) ttest_oneGroup: Calculate the T-test for the mean across all the data (one group), with included Benjamini-Hochberg FDR (if parametric = True, group_column_name is None or there is only 1 group in the data) (default: False) ttest_twoGroup: Calculate the T-test for the mean of two groups, with one group being the control group, with included Benjamini-Hochberg FDR (if parametric = True, group_column_name not None and control_group_name not None) (default: False) mann_whitney_u_test: Compute the Mann-Whitney U test to determine differences in distribution between two groups, with one being the control group, with included Benjamini-Hochberg FDR (if parametric = False, group_column_name not None and control_group_name not None) (default: False) help : Print this help text calculate : Performs the statistical calculations and outputs the Peak Table (node table) with the results appended. """ def __init__(self, peaktable, datatable): peaktable = self.__checkPeakTable(self.__checkData(peaktable)) datatable = self.__checkData(datatable) #Slice the meta-data, and select only peaks from the peaktable for processing, and add the meta-data back meta = datatable.T[~datatable.T.index.isin(peaktable['Name'])].T.reset_index(drop=True) dat = datatable[peaktable['Name']].reset_index() datatable = pd.concat([meta, dat], axis=1).set_index(['index']) datatable.index.name = None self.__peaktable = peaktable self.__datatable = datatable self.set_params() def help(self): print(statistics.usage) def set_params(self, parametric=True, log_data=(False,2), scale_data=(False, 'standard'), impute_data=(False, 3), group_column_name=None, control_group_name=None, group_alpha_CI=0.05, fold_change_alpha_CI=0.05, pca_alpha_CI=0.05, total_missing=False, group_missing=False, pca_loadings=True, normality_test=True, group_normality_test=True, group_mean_CI=True, group_median_CI=True, mean_fold_change=False, median_fold_change=False, kruskal_wallis_test=False, levene_twoGroup=False, levene_allGroup=False, oneway_Anova_test=False, ttest_oneGroup=False, ttest_twoGroup=False, mann_whitney_u_test=False): parametric, log_data, scale_data, impute_data, group_column_name, control_group_name, group_alpha_CI, fold_change_alpha_CI, pca_alpha_CI, total_missing, group_missing, pca_loadings, normality_test, group_normality_test, group_mean_CI, group_median_CI, mean_fold_change, median_fold_change, oneway_Anova_test, kruskal_wallis_test, levene_twoGroup, levene_allGroup, ttest_oneGroup, ttest_twoGroup, mann_whitney_u_test = self.__paramCheck(parametric, log_data, scale_data, impute_data, group_column_name, control_group_name, group_alpha_CI, fold_change_alpha_CI, pca_alpha_CI, total_missing, group_missing, pca_loadings, normality_test, group_normality_test, group_mean_CI, group_median_CI, mean_fold_change, median_fold_change, oneway_Anova_test, kruskal_wallis_test, levene_twoGroup, levene_allGroup, ttest_oneGroup, ttest_twoGroup, mann_whitney_u_test) self.__parametric = parametric; self.__log_data = log_data; self.__scale_data = scale_data; self.__impute_data = impute_data; self.__group_column_name = group_column_name; self.__control_group_name = control_group_name; self.__group_alpha_CI = group_alpha_CI; self.__fold_change_alpha_CI = fold_change_alpha_CI; self.__pca_alpha_CI = pca_alpha_CI; self.__total_missing = total_missing; self.__group_missing = group_missing; self.__pca_loadings = pca_loadings; self.__normality_test = normality_test; self.__group_normality_test = group_normality_test; self.__group_mean_CI = group_mean_CI; self.__group_median_CI = group_median_CI; self.__mean_fold_change = mean_fold_change; self.__median_fold_change = median_fold_change; self.__oneway_Anova_test = oneway_Anova_test; self.__kruskal_wallis_test = kruskal_wallis_test; self.__levene_twoGroup = levene_twoGroup; self.__levene_allGroup = levene_allGroup; self.__ttest_oneGroup = ttest_oneGroup; self.__ttest_twoGroup = ttest_twoGroup; self.__mann_whitney_u_test = mann_whitney_u_test; def calculate(self): peaktable = self.__peaktable datatable = self.__datatable parametric = self.__parametric log_data = self.__log_data scale_data = self.__scale_data impute_data = self.__impute_data group_column_name = self.__group_column_name control_group_name = self.__control_group_name group_alpha_CI = self.__group_alpha_CI fold_change_alpha_CI = self.__fold_change_alpha_CI pca_alpha_CI = self.__pca_alpha_CI total_missing = self.__total_missing group_missing = self.__group_missing pca_loadings = self.__pca_loadings normality_test = self.__normality_test group_normality_test = self.__group_normality_test group_mean_CI = self.__group_mean_CI group_median_CI = self.__group_median_CI mean_fold_change = self.__mean_fold_change median_fold_change = self.__median_fold_change kruskal_wallis_test = self.__kruskal_wallis_test levene_twoGroup = self.__levene_twoGroup levene_allGroup = self.__levene_allGroup oneway_Anova_test = self.__oneway_Anova_test ttest_oneGroup = self.__ttest_oneGroup ttest_twoGroup = self.__ttest_twoGroup mann_whitney_u_test = self.__mann_whitney_u_test peakNames = list(peaktable['Name'].values) meta = datatable.T[~datatable.T.index.isin(peakNames)].T.reset_index(drop=True) peakData = datatable[peakNames].reset_index(drop=True) (log_bool, log_base) = log_data; if log_bool: if isinstance(log_base, str) and log_base.lower() == 'natural': peakData = peakData.applymap(np.log) elif log_base == 2: peakData = peakData.applymap(np.log2) elif log_base == 10: peakData = peakData.applymap(np.log10) else: print("Error: The chosen log type is invalid.") sys.exit() (scale_bool, scale_type) = scale_data if scale_bool: if isinstance(scale_type, str) and scale_type.lower() == 'standard': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'minmax': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'maxabs': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'robust': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) else: print("Error: The chosen scale type is invalid.") sys.exit() (impute_bool, k) = impute_data; if impute_bool: peakData = imputeData(peakData, k=k).reset_index(drop=True) if not isinstance(peakData, pd.DataFrame): peakData = pd.DataFrame(peakData, columns=list(peakNames)).reset_index(drop=True) #Add the meta data back in with the logged, scaled, or imputed data datatable = pd.concat([meta, peakData], axis=1).reset_index(drop=True) statsData = pd.DataFrame() if group_column_name is not None: groups = np.unique(datatable[group_column_name].values) groupData = [] # Append each group to a list for group in groups: groupData.append(datatable.loc[datatable[group_column_name] == group]) #Iterate over each peak/feature and calculate statistics for peakName in peakNames: statsDataDict = {} groupDict = {} df_totalGrpMissing = pd.DataFrame() totalGrpMissingTitles = [] df_meanFold = pd.DataFrame() df_medianFold = pd.DataFrame() df_mannWhitney = pd.DataFrame() df_ttest = pd.DataFrame() df_levene_twoGroup = pd.DataFrame() df_groupNormality = pd.DataFrame() df_grpMeanCI = pd.DataFrame() df_grpMedianCI = pd.DataFrame() mannWhitneyTitles = [] ttestTitles = [] leveneTwoGroupTitles = [] mannwhitney_pvalue_name = '' mannwhitney_statistic_name = '' # for each group populate a group dictionary if group_column_name is not None: for grpIdx, group in enumerate(groupData): # Calculate values missing within each group if group_missing: df_totalGrpMissing = self.__GroupMissing_Calc(group, groups, grpIdx, peakName, totalGrpMissingTitles, df_totalGrpMissing) statsDataDict['GroupMissingValues'] = df_totalGrpMissing x = group[[peakName]].values groupDict[groups[grpIdx]] = x[~np.isnan(x)] if control_group_name is not None: controlGroup = groupDict[control_group_name]; if group_column_name is not None: for key, group in groupDict.items(): if group_normality_test: df_groupNormality = self.__GroupNormality(key, group, df_groupNormality) statsDataDict['GroupNormality'] = df_groupNormality if parametric: if group_mean_CI: df_grpMeanCI = self.__GroupMeanCI(key, group, df_grpMeanCI, group_alpha_CI) statsDataDict['GroupMeanCI'] = df_grpMeanCI else: if group_median_CI: df_grpMedianCI = self.__GroupMedianCI(key, group, df_grpMedianCI, group_alpha_CI) statsDataDict['GroupMedianCI'] = df_grpMedianCI if key != control_group_name and control_group_name is not None: # Merge group and control, accounting for different array lengths by replacing with nan (indices need to be the same length for bootstrapping) groupPairDict = dict(controlGroup=controlGroup, caseGroup=group) groupPair = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in groupPairDict.items() ])) controlList = np.array(groupPair['controlGroup'].values) caseList = np.array(groupPair['caseGroup'].values) groupList = list(zip(controlList, caseList)) if parametric: if ttest_twoGroup: # T-test statistic calculation for two samples (one always being the control) TTEST_twoGroup_statistic, TTEST_twoGroup_pvalue = self.__TTEST_twoGroup(groupList) if mean_fold_change: meanFoldChange = self.__mean_fold(groupList) # Boostrap for confidence intervals for the mean fold change if ((len(group) > 2) and (len(controlGroup) > 2)): meanFold = lambda x: self.__mean_fold(x) CIs = bootstrap.ci(data=groupList, statfunction=meanFold, n_samples=500, alpha=fold_change_alpha_CI) else: CIs = [np.nan, np.nan] else: if mann_whitney_u_test: # Mann-Whitney U statistic calculation for two samples (one always being the control) MannWhitney_statistic, MannWhitney_pvalue = self.__MANN_WHITNEY_U(groupList) if median_fold_change: medianFoldChange = self.__median_fold(groupList) # Boostrap for confidence intervals for the median fold change if ((len(group) > 2) and (len(controlGroup) > 2)): medianFold = lambda x: self.__median_fold(x) CIs = bootstrap.ci(data=groupList, statfunction=medianFold, n_samples=500, alpha=fold_change_alpha_CI) else: CIs = [np.nan, np.nan] if levene_twoGroup: # Levene statistic calculation for two samples (one always being the control) LEVENE_twoGroup_statistic, LEVENE_twoGroup_pvalue = self.__LEVENE_twoGroup(groupList) if parametric: ttest_twoGroup_statistics_name = 'TTEST-twoGroup_statistic_' + str(key) ttest_twoGroup_pvalue_name = 'TTEST-twoGroup_pvalue_' + str(key) ttestTitles.append(ttest_twoGroup_statistics_name) ttestTitles.append(ttest_twoGroup_pvalue_name) mean_fold_change_name = 'MeanFoldChange_' + str(key) mean_fold_change_name_CIlower = 'MeanFoldChange_CI_lower_' + str(key) mean_fold_change_name_CIupper = 'MeanFoldChange_CI_upper_' + str(key) mean_fold_change_name_sig = 'MeanFoldChange_sig_' + str(key) else: mannwhitney_statistic_name = 'MannWhitneyU_statistic_' + str(key) mannwhitney_pvalue_name = 'MannWhitneyU_pvalue_' + str(key) mannWhitneyTitles.append(mannwhitney_statistic_name) mannWhitneyTitles.append(mannwhitney_pvalue_name) median_fold_change_name = 'MedianFoldChange_' + str(key) median_fold_change_name_CIlower = 'MedianFoldChange_CI_lower_' + str(key) median_fold_change_name_CIupper = 'MedianFoldChange_CI_upper_' + str(key) median_fold_change_name_sig = 'MedianFoldChange_sig_' + str(key) levene_twoGroup_statistics_name = 'LEVENE-twoGroup_statistic_' + str(key) levene_twoGroup_pvalue_name = 'LEVENE-twoGroup_pvalue_' + str(key) leveneTwoGroupTitles.append(levene_twoGroup_statistics_name) leveneTwoGroupTitles.append(levene_twoGroup_pvalue_name) if ttest_twoGroup and parametric: if df_ttest.empty: df_ttest = pd.DataFrame({ttest_twoGroup_statistics_name: [TTEST_twoGroup_statistic], ttest_twoGroup_pvalue_name: [TTEST_twoGroup_pvalue]}) else: df_ttest = pd.concat([df_ttest, pd.DataFrame({ttest_twoGroup_statistics_name: [TTEST_twoGroup_statistic], ttest_twoGroup_pvalue_name: [TTEST_twoGroup_pvalue]})], axis=1).reset_index(drop=True) statsDataDict['TTEST-twoGroup'] = df_ttest if mann_whitney_u_test and not parametric: if df_mannWhitney.empty: df_mannWhitney = pd.DataFrame({mannwhitney_statistic_name: [MannWhitney_statistic], mannwhitney_pvalue_name: [MannWhitney_pvalue]}) else: df_mannWhitney = pd.concat([df_mannWhitney, pd.DataFrame({mannwhitney_statistic_name: [MannWhitney_statistic], mannwhitney_pvalue_name: [MannWhitney_pvalue]})], axis=1).reset_index(drop=True) statsDataDict['MannWhitneyU'] = df_mannWhitney if mean_fold_change and parametric: sigMeanFold = np.add(np.sign(np.multiply(CIs[0], CIs[1])), 1).astype(bool); if df_meanFold.empty: df_meanFold = pd.DataFrame({mean_fold_change_name: [meanFoldChange], mean_fold_change_name_CIlower: CIs[0], mean_fold_change_name_CIupper: CIs[1], mean_fold_change_name_sig: [sigMeanFold]}) else: df_meanFold = pd.concat([df_meanFold, pd.DataFrame({mean_fold_change_name: [meanFoldChange], mean_fold_change_name_CIlower: CIs[0], mean_fold_change_name_CIupper: CIs[1], mean_fold_change_name_sig: [sigMeanFold]})], axis=1).reset_index(drop=True) statsDataDict['MeanFoldChange'] = df_meanFold if median_fold_change and not parametric: sigMedianFold = np.add(np.sign(np.multiply(CIs[0], CIs[1])), 1).astype(bool); if df_medianFold.empty: df_medianFold = pd.DataFrame({median_fold_change_name: [medianFoldChange], median_fold_change_name_CIlower: CIs[0], median_fold_change_name_CIupper: CIs[1], median_fold_change_name_sig: [sigMedianFold]}) else: df_medianFold = pd.concat([df_medianFold, pd.DataFrame({median_fold_change_name: [medianFoldChange], median_fold_change_name_CIlower: CIs[0], median_fold_change_name_CIupper: CIs[1], median_fold_change_name_sig: [sigMedianFold]})], axis=1).reset_index(drop=True) statsDataDict['MedianFoldChange'] = df_medianFold if levene_twoGroup: if df_levene_twoGroup.empty: df_levene_twoGroup = pd.DataFrame({levene_twoGroup_statistics_name: [LEVENE_twoGroup_statistic], levene_twoGroup_pvalue_name: [LEVENE_twoGroup_pvalue]}) else: df_levene_twoGroup = pd.concat([df_levene_twoGroup, pd.DataFrame({levene_twoGroup_statistics_name: [LEVENE_twoGroup_statistic], levene_twoGroup_pvalue_name: [LEVENE_twoGroup_pvalue]})], axis=1).reset_index(drop=True) statsDataDict['LEVENE-twoGroup'] = df_levene_twoGroup # Filter dictionary for empty values groupDict_filt = {} for key, group in groupDict.items(): if (len(group) > 0): groupDict_filt[key] = group # One-way Anova and Kruskal-Wallis test for each group if oneway_Anova_test and parametric and group_column_name is not None: df_onewayANOVA = self.__oneWayANOVA(groupDict_filt) statsDataDict['One-way ANOVA'] = df_onewayANOVA if kruskal_wallis_test and not parametric and group_column_name is not None: df_KW = self.__kruskalWallis(groupDict_filt) statsDataDict['Kruskal-Wallis'] = df_KW if levene_allGroup and group_column_name is not None: df_levene_allGroup = self.__LEVENE_allGroup(groupDict_filt) statsDataDict['LEVENE-allGroup'] = df_levene_allGroup peak = datatable[[peakName]] if total_missing: df_totalMissing = self.__TotalMissing_Calc(peak); statsDataDict['TotalMissing'] = df_totalMissing pList = peak.values pList = pList[~np.isnan(pList)] if normality_test: df_normality = self.__normality(pList); statsDataDict['Normality'] = df_normality if ttest_oneGroup: df_TTEST = self.__TTEST_oneGroup(pList) statsDataDict['TTEST-oneGroup'] = df_TTEST if statsData.empty: if statsDataDict: statsData = pd.concat(list(statsDataDict.values()), axis=1) else: if statsDataDict: statsData = pd.concat([statsData, pd.concat(list(statsDataDict.values()), axis=1)], axis=0).reset_index(drop=True) if ttest_oneGroup and parametric: TTEST_qvalueData = pd.DataFrame() pvals = statsData['TTEST-oneGroup_pvalue'].values.flatten() mask = np.isfinite(pvals) pval_masked = [x for x in compress(pvals, mask)] TTEST_BHFDR_qval = np.empty(len(pvals)) TTEST_BHFDR_qval.fill(np.nan) _, TTEST_BHFDR_qval[mask] = smt.multipletests(pval_masked, alpha=0.05, method='fdr_bh')[:2] TTEST_qvalueData['TTEST-oneGroup_BHFDR_qvalue'] = pd.Series(TTEST_BHFDR_qval) statsData = pd.merge(statsData, TTEST_qvalueData, left_index=True, right_index=True) if ttest_twoGroup and parametric and group_column_name is not None: TTEST_qvalueData = pd.DataFrame() ttestTitles_pvalues = ttestTitles[1:len(ttestTitles):2] ttestQvalueNames = [] for val in ttestTitles_pvalues: pvals = statsData[val].values.flatten() mask = np.isfinite(pvals) pval_masked = [x for x in compress(pvals, mask)] Ttest_BHFDR_qval = np.empty(len(pvals)) Ttest_BHFDR_qval.fill(np.nan) _, Ttest_BHFDR_qval[mask] = smt.multipletests(pval_masked, alpha=0.05, method='fdr_bh')[:2] val_BHFDR_qvalue = val.replace('pvalue', 'BHFDR_qvalue') ttestQvalueNames.append(val_BHFDR_qvalue) TTEST_qvalueData[val_BHFDR_qvalue] = pd.Series(Ttest_BHFDR_qval) statsData = pd.merge(statsData, TTEST_qvalueData, left_index=True, right_index=True) if oneway_Anova_test and parametric and group_column_name is not None: onewayANOVA_qvalueData = pd.DataFrame() pvals = statsData['onewayANOVA_pvalue'].values.flatten() mask = np.isfinite(pvals) pval_masked = [x for x in compress(pvals, mask)] onewayANOVA_BHFDR_qval = np.empty(len(pvals)) onewayANOVA_BHFDR_qval.fill(np.nan) onewayANOVA_BYFDR_qval = np.empty(len(pvals)) onewayANOVA_BYFDR_qval.fill(np.nan) _, onewayANOVA_BHFDR_qval[mask] = smt.multipletests(pval_masked, alpha=0.05, method='fdr_bh')[:2] onewayANOVA_qvalueData['onewayANOVA_BHFDR_qvalue'] = pd.Series(onewayANOVA_BHFDR_qval) statsData = pd.merge(statsData, onewayANOVA_qvalueData, left_index=True, right_index=True) if kruskal_wallis_test and not parametric and group_column_name is not None: KW_qvalueData = pd.DataFrame() pvals = statsData['Kruskal–Wallis_pvalue'].values.flatten() mask = np.isfinite(pvals) pval_masked = [x for x in compress(pvals, mask)] KW_BHFDR_qval = np.empty(len(pvals)) KW_BHFDR_qval.fill(np.nan) KW_BYFDR_qval = np.empty(len(pvals)) KW_BYFDR_qval.fill(np.nan) _, KW_BHFDR_qval[mask] = smt.multipletests(pval_masked, alpha=0.05, method='fdr_bh')[:2] KW_qvalueData['Kruskal-Wallis_BHFDR_qvalue'] = pd.Series(KW_BHFDR_qval) statsData = pd.merge(statsData, KW_qvalueData, left_index=True, right_index=True) if mann_whitney_u_test and not parametric and group_column_name is not None: MannWhitney_qvalueData = pd.DataFrame() mannWhitneyTitles_pvalues = mannWhitneyTitles[1:len(mannWhitneyTitles):2] mannWhitneyQvalueNames = [] for val in mannWhitneyTitles_pvalues: pvals = statsData[val].values.flatten() mask = np.isfinite(pvals) pval_masked = [x for x in compress(pvals, mask)] MannWhitney_BHFDR_qval = np.empty(len(pvals)) MannWhitney_BHFDR_qval.fill(np.nan) _, MannWhitney_BHFDR_qval[mask] = smt.multipletests(pval_masked, alpha=0.05, method='fdr_bh')[:2] val_BHFDR_qvalue = val.replace('pvalue', 'BHFDR_qvalue') mannWhitneyQvalueNames.append(val_BHFDR_qvalue) MannWhitney_qvalueData[val_BHFDR_qvalue] = pd.Series(MannWhitney_BHFDR_qval) statsData = pd.merge(statsData, MannWhitney_qvalueData, left_index=True, right_index=True) if pca_loadings: peakData = datatable[peakNames].reset_index(drop=True) d_filled = imputeData(peakData, 3) #pca, pca_x, pca_loadings = self.__PCA_Calc(d_filled) pca, pca_loadings = self.__PCA_Calc(d_filled) df_pca_components = pd.DataFrame(pca_loadings, columns=['PC1', 'PC2']) bootpc1 = lambda x: self.__boot_pca(x, pca.components_.T, 1) bootpc2 = lambda x: self.__boot_pca(x, pca.components_.T, 2) PC1_CIs = bootstrap.ci(data=d_filled, statfunction=bootpc1, n_samples=500, alpha=pca_alpha_CI) PC2_CIs = bootstrap.ci(data=d_filled, statfunction=bootpc2, n_samples=500, alpha=pca_alpha_CI) pc1_lower = np.array(PC1_CIs[0, :]).flatten() pc1_upper = np.array(PC1_CIs[1, :]).flatten() pc2_lower = np.array(PC2_CIs[0, :]).flatten() pc2_upper = np.array(PC2_CIs[1, :]).flatten() sigPC1 = np.add(np.sign(np.multiply(pc1_lower, pc1_upper)), 1).astype(bool); sigPC2 = np.add(np.sign(np.multiply(pc2_lower, pc2_upper)), 1).astype(bool); df_pca_stats = pd.DataFrame({"PC1_lower": pc1_lower, "PC1_upper": pc1_upper, "PC1_sig": sigPC1, "PC2_lower": pc2_lower, "PC2_upper": pc2_upper, "PC2_sig": sigPC2}) if not statsData.empty: df_pca = pd.merge(statsData, df_pca_components, left_index=True, right_index=True); statsData = pd.merge(df_pca, df_pca_stats, left_index=True, right_index=True); else: statsData = pd.merge(df_pca_components, df_pca_stats, left_index=True, right_index=True); if not statsData.empty: statsData = pd.merge(peaktable.reset_index(drop=True), statsData, left_index=True, right_index=True) else: statsData = peaktable.copy() return statsData def __checkData(self, df): if not isinstance(df, pd.DataFrame): print("Error: A dataframe was not entered. Please check your data.") return df def __checkPeakTable(self, PeakTable): if "Name" not in PeakTable.columns: print("Error: \"Name\" column not in Peak Table. Please check your data.") sys.exit() if "Label" not in PeakTable.columns: print("Error: \"Label\" column not in Peak Table. Please check your data.") sys.exit() # Do not assume the peaks/nodes have been indexed correctly. Remove any index columns and reindex. column_list = [column.lower() for column in PeakTable.columns] if 'idx' in column_list: index = column_list.index('idx') column_name = PeakTable.columns[index] PeakTable = PeakTable.drop(columns=[column_name]) if 'index' in column_list: index = column_list.index('index') column_name = PeakTable.columns[index] PeakTable = PeakTable.drop(columns=[column_name]) PeakTable = PeakTable.reset_index(drop=True) PeakTable.index.name = 'Idx' PeakTable = PeakTable.reset_index() return PeakTable def __paramCheck(self, parametric, log_data, scale_data, impute_data, group_column_name, control_group_name, group_alpha_CI, fold_change_alpha_CI, pca_alpha_CI, total_missing, group_missing, pca_loadings, normality_test, group_normality_test, group_mean_CI, group_median_CI, mean_fold_change, median_fold_change, oneway_Anova_test, kruskal_wallis_test, levene_twoGroup, levene_allGroup, ttest_oneGroup, ttest_twoGroup, mann_whitney_u_test): peaks = self.__peaktable data = self.__datatable meta = data.T[~data.T.index.isin(peaks['Name'])].T.reset_index(drop=True) col_list = list(meta.columns) if group_column_name is not None: group_names = list(set(list(meta[group_column_name].values))) else: group_names = [] if not isinstance(parametric, bool): print("Error: Parametric not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(log_data, tuple): print("Error: Log data type if not a tuple. Please ensure the value is a tuple (e.g. (True, 2).") sys.exit() else: (log_bool, log_base) = log_data if not isinstance(log_bool, bool): print("Error: Log data first tuple item is not a boolean value. Choose either \"True\" or \"False\".") sys.exit() base_types = ['natural', 2, 10] if isinstance(log_base, str): log_base = log_base.lower() if log_base not in base_types: print("Error: Log data second tuple item is not valid. Choose one of {}.".format(', '.join(base_types))) sys.exit() if not isinstance(scale_data, tuple): print("Error: Scale data type if not a tuple. Please ensure the value is a tuple (e.g. (True, 'standard').") sys.exit() else: (scale_bool, scale_type) = scale_data if not isinstance(scale_bool, bool): print("Error: Scale data first tuple item is not a boolean value. Choose either \"True\" or \"False\".") sys.exit() scale_types = ['standard', 'minmax', 'maxabs', 'robust'] if isinstance(scale_type, str): scale_type = scale_type.lower() if scale_type not in scale_types: print("Error: Scale data second tuple item is not valid. Choose one of {}.".format( ', '.join(scale_types))) sys.exit() if not isinstance(impute_data, tuple): print("Error: Impute data type if not a tuple. Please ensure the value is a tuple (e.g. (True, 3).") sys.exit() else: (impute_bool, k) = impute_data if not isinstance(impute_bool, bool): print("Error: Impute data first tuple item is not a boolean value. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(k, float): if not isinstance(k, int): print("Error: Impute data second tuple item, the nearest neighbours k value, is not valid. Choose a float or integer value.") sys.exit() if group_column_name is not None: if not isinstance(group_column_name, str): print("Error: Group column name is not valid. Choose a string value.") sys.exit() else: if group_column_name not in col_list: print("Error: Group column name not valid. Choose one of {}.".format(', '.join(col_list))) sys.exit() if control_group_name is not None: if not isinstance(control_group_name, str): print("Error: Control group name is not valid. Choose a string value.") sys.exit() else: if control_group_name not in group_names: print("Error: Control group name not valid. Choose one of {}.".format(', '.join(group_names))) sys.exit() if not isinstance(group_alpha_CI, float): print("Error: Group alpha confidence interval is not valid. Choose a float value.") sys.exit() if not isinstance(fold_change_alpha_CI, float): print("Error: Mean/Median fold change alpha confidence interval is not valid. Choose a float value.") sys.exit() if not isinstance(pca_alpha_CI, float): print("Error: PCA alpha confidence interval is not valid. Choose a float value.") sys.exit() if not isinstance(total_missing, bool): print("Error: Total missing is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(group_missing, bool): print("Error: Group missing is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(pca_loadings, bool): print("Error: PCA loadings is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(normality_test, bool): print("Error: Normality test is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(group_normality_test, bool): print("Error: Group normality test is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(group_mean_CI, bool): print("Error: Group mean confidence interval is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(group_median_CI, bool): print("Error: Group median confidence interval is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(mean_fold_change, bool): print("Error: Mean fold change is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(median_fold_change, bool): print("Error: Median fold change is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(oneway_Anova_test, bool): print("Error: One-way Anova test is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(kruskal_wallis_test, bool): print("Error: Kruskal–Wallis test is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(levene_twoGroup, bool): print("Error: Levene two group is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(levene_allGroup, bool): print("Error: Levene all group is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(ttest_oneGroup, bool): print("Error: T-test one group is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(ttest_twoGroup, bool): print("Error: T-test two group is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(mann_whitney_u_test, bool): print("Error: Mann–Whitney U test is not valid. Choose either \"True\" or \"False\".") sys.exit() return parametric, log_data, scale_data, impute_data, group_column_name, control_group_name, group_alpha_CI, fold_change_alpha_CI, pca_alpha_CI, total_missing, group_missing, pca_loadings, normality_test, group_normality_test, group_mean_CI, group_median_CI, mean_fold_change, median_fold_change, oneway_Anova_test, kruskal_wallis_test, levene_twoGroup, levene_allGroup, ttest_oneGroup, ttest_twoGroup, mann_whitney_u_test def __mean_fold(self, groupList): (controlGroup, caseGroup) = zip(*groupList) if ((len(list(caseGroup)) > 0) and (len(list(controlGroup)) > 0)): meanFoldChange = np.nanmean(list(caseGroup)) / np.nanmean(list(controlGroup)) else: meanFoldChange = np.nan return meanFoldChange def __median_fold(self, groupList): (controlGroup, caseGroup) = zip(*groupList) if ((len(list(caseGroup)) > 0) and (len(list(controlGroup)) > 0)): medianFoldChange = np.nanmedian(list(caseGroup)) / np.nanmedian(list(controlGroup)) else: medianFoldChange = np.nan return medianFoldChange def __PCA_Calc(self, data): pca = PCA(n_components=2) pca.fit_transform(data) return pca, pca.components_.T def __TotalMissing_Calc(self, peak): missing = peak.isnull().sum() totalMissing = np.multiply(np.divide(missing, peak.shape[0]).tolist(), 100) df_totalMissing =
pd.DataFrame({'Percent_Total_Missing': totalMissing})
pandas.DataFrame
import codecs import math import os import re import gensim import jieba.posseg as jieba import numpy as np import pandas as pd from sklearn.cluster import KMeans # 返回特征词向量 def getWordVecs(wordList, model): name = [] vecs = [] for word in wordList: word = word.replace('\n', '') try: if word in model: # 模型中存在该词的向量表示 name.append(word) vecs.append(model[word]) except KeyError: continue a =
pd.DataFrame(name, columns=['word'])
pandas.DataFrame
import matplotlib.image as mpimg import matplotlib.style as style import matplotlib.pyplot as plt from matplotlib import rcParams from simtk.openmm.app import * from simtk.openmm import * from simtk.unit import * from sys import stdout import seaborn as sns from math import exp import pandas as pd import mdtraj as md import pickle as pk import numpy as np import statistics import itertools import fileinput import fnmatch import shutil import random import math import os import re def fix_cap_remove_ace(pdb_file): """ Removes the H atoms of the capped ACE residue. """ remove_words = [ "H1 ACE", "H2 ACE", "H3 ACE", "H31 ACE", "H32 ACE", "H33 ACE", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_ace(pdb_file): """ Replaces the alpha carbon atom of the capped ACE residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA ACE", "CH3 ACE") data = data.replace("C ACE", "CH3 ACE") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def fix_cap_remove_nme(pdb_file): """ Removes the H atoms of the capped NME residue. """ remove_words = [ "H1 NME", "H2 NME", "H3 NME", "H31 NME", "H32 NME", "H33 NME", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_nme(pdb_file): """ Replaces the alpha carbon atom of the capped NME residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA NME", "CH3 NME") data = data.replace("C NME", "CH3 NME") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def prepare_alanine_dipeptide(): """ Prepares the alanine dipeptide system for Gaussian Accelerated Molecular Dynamics (GaMD) simulations. Downloads the pdb structure from https://markovmodel.github.io/mdshare/ALA2/ and parameterizes it using General Amber Force Field (GAFF). """ os.system( "curl -O http://ftp.imp.fu-berlin.de/pub/cmb-data/alanine-dipeptide-nowater.pdb" ) os.system( "rm -rf system_inputs" ) # Removes any existing directory named system_inputs os.system("mkdir system_inputs") # Creates a directory named system_inputs cwd = os.getcwd() target_dir = cwd + "/" + "system_inputs" os.system("pdb4amber -i alanine-dipeptide-nowater.pdb -o intermediate.pdb") # Delete HH31, HH32 and HH33 from the ACE residue (tleap adds them later) remove_words = ["HH31 ACE", "HH32 ACE", "HH33 ACE"] with open("intermediate.pdb") as oldfile, open( "system.pdb", "w" ) as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) os.system("rm -rf intermediate*") # save the tleap script to file with open("input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system.pdb solvateBox pdb TIP3PBOX 15 saveamberparm pdb system_TIP3P.prmtop system_TIP3P.inpcrd saveamberparm pdb system_TIP3P.parm7 system_TIP3P.rst7 savepdb pdb system_TIP3P.pdb quit """ ) os.system("tleap -f input_TIP3P.leap") os.system("rm -rf leap.log") shutil.copy( cwd + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb" ) shutil.copy( cwd + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7" ) shutil.copy(cwd + "/" + "system.pdb", target_dir + "/" + "system.pdb") shutil.copy( cwd + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap" ) os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf input_TIP3P.leap") os.system("rm -rf alanine-dipeptide-nowater.pdb") def create_vectors(x): """ Extracts peridic box information from the given line. """ x = str(x) x = x.replace("Vec3", "") x = re.findall("\d*\.?\d+", x) for i in range(0, len(x)): x[i] = float(x[i]) x = tuple(x) n = int(len(x) / 3) x = [x[i * n : (i + 1) * n] for i in range((len(x) + n - 1) // n)] return x def simulated_annealing( parm="system_TIP3P.prmtop", rst="system_TIP3P.inpcrd", annealing_output_pdb="system_annealing_output.pdb", annealing_steps=100000, pdb_freq=100000, starting_temp=0, target_temp=300, temp_incr=3, ): """ Performs simulated annealing of the system from 0K to 300 K (default) using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file rst: str System's coordinate file annealing_output_pdb: str System's output trajectory file annealing_steps: int Aneealing steps at each temperatrure jump pdb_freq: int Trajectory to be saved after every pdb_freq steps starting_temp: int Initial temperature of Simulated Annealing target_temp: int Final temperature of Simulated Annealing temp_incr: int Temmperature increase for every step """ prmtop = AmberPrmtopFile(parm) inpcrd = AmberInpcrdFile(rst) annealing_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) annealing_integrator = LangevinIntegrator( 0 * kelvin, 1 / picosecond, 2 * femtoseconds ) total_steps = ((target_temp / temp_incr) + 1) * annealing_steps annealing_temp_range = int((target_temp / temp_incr) + 1) annealing_platform = Platform.getPlatformByName("CUDA") annealing_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} annealing_simulation = Simulation( prmtop.topology, annealing_system, annealing_integrator, annealing_platform, annealing_properties, ) annealing_simulation.context.setPositions(inpcrd.positions) if inpcrd.boxVectors is not None: annealing_simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors) annealing_simulation.minimizeEnergy() annealing_simulation.reporters.append( PDBReporter(annealing_output_pdb, pdb_freq) ) simulated_annealing_last_frame = ( annealing_output_pdb[:-4] + "_last_frame.pdb" ) annealing_simulation.reporters.append( PDBReporter(simulated_annealing_last_frame, total_steps) ) annealing_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=total_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) temp = starting_temp while temp <= target_temp: annealing_integrator.setTemperature(temp * kelvin) if temp == starting_temp: annealing_simulation.step(annealing_steps) annealing_simulation.saveState("annealing.state") else: annealing_simulation.loadState("annealing.state") annealing_simulation.step(annealing_steps) temp += temp_incr state = annealing_simulation.context.getState() print(state.getPeriodicBoxVectors()) annealing_simulation_box_vectors = state.getPeriodicBoxVectors() print(annealing_simulation_box_vectors) with open("annealing_simulation_box_vectors.pkl", "wb") as f: pk.dump(annealing_simulation_box_vectors, f) print("Finshed NVT Simulated Annealing Simulation") def npt_equilibration( parm="system_TIP3P.prmtop", npt_output_pdb="system_npt_output.pdb", pdb_freq=500000, npt_steps=5000000, target_temp=300, npt_pdb="system_annealing_output_last_frame.pdb", ): """ Performs NPT equilibration MD of the system using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file npt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps npt_steps: int NPT simulation steps target_temp: int Temperature for MD simulation npt_pdb: str Last frame of the simulation """ npt_init_pdb = PDBFile(npt_pdb) prmtop = AmberPrmtopFile(parm) npt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) barostat = MonteCarloBarostat(25.0 * bar, target_temp * kelvin, 25) npt_system.addForce(barostat) npt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) npt_platform = Platform.getPlatformByName("CUDA") npt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} npt_simulation = Simulation( prmtop.topology, npt_system, npt_integrator, npt_platform, npt_properties, ) npt_simulation.context.setPositions(npt_init_pdb.positions) npt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("annealing_simulation_box_vectors.pkl", "rb") as f: annealing_simulation_box_vectors = pk.load(f) annealing_simulation_box_vectors = create_vectors( annealing_simulation_box_vectors ) npt_simulation.context.setPeriodicBoxVectors( annealing_simulation_box_vectors[0], annealing_simulation_box_vectors[1], annealing_simulation_box_vectors[2], ) npt_last_frame = npt_output_pdb[:-4] + "_last_frame.pdb" npt_simulation.reporters.append(PDBReporter(npt_output_pdb, pdb_freq)) npt_simulation.reporters.append(PDBReporter(npt_last_frame, npt_steps)) npt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=npt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) npt_simulation.minimizeEnergy() npt_simulation.step(npt_steps) npt_simulation.saveState("npt_simulation.state") state = npt_simulation.context.getState() print(state.getPeriodicBoxVectors()) npt_simulation_box_vectors = state.getPeriodicBoxVectors() print(npt_simulation_box_vectors) with open("npt_simulation_box_vectors.pkl", "wb") as f: pk.dump(npt_simulation_box_vectors, f) print("Finished NPT Simulation") def nvt_equilibration( parm="system_TIP3P.prmtop", nvt_output_pdb="system_nvt_output.pdb", pdb_freq=500000, nvt_steps=5000000, target_temp=300, nvt_pdb="system_npt_output_last_frame.pdb", ): """ Performs NVT equilibration MD of the system using OpenMM MD engine saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file nvt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps nvt_steps: int NVT simulation steps target_temp: int Temperature for MD simulation nvt_pdb: str Last frame of the simulation """ nvt_init_pdb = PDBFile(nvt_pdb) prmtop = AmberPrmtopFile(parm) nvt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) nvt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) nvt_platform = Platform.getPlatformByName("CUDA") nvt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} nvt_simulation = Simulation( prmtop.topology, nvt_system, nvt_integrator, nvt_platform, nvt_properties, ) nvt_simulation.context.setPositions(nvt_init_pdb.positions) nvt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("npt_simulation_box_vectors.pkl", "rb") as f: npt_simulation_box_vectors = pk.load(f) npt_simulation_box_vectors = create_vectors(npt_simulation_box_vectors) nvt_simulation.context.setPeriodicBoxVectors( npt_simulation_box_vectors[0], npt_simulation_box_vectors[1], npt_simulation_box_vectors[2], ) nvt_last_frame = nvt_output_pdb[:-4] + "_last_frame.pdb" nvt_simulation.reporters.append(PDBReporter(nvt_output_pdb, pdb_freq)) nvt_simulation.reporters.append(PDBReporter(nvt_last_frame, nvt_steps)) nvt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=nvt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) nvt_simulation.minimizeEnergy() nvt_simulation.step(nvt_steps) nvt_simulation.saveState("nvt_simulation.state") state = nvt_simulation.context.getState() print(state.getPeriodicBoxVectors()) nvt_simulation_box_vectors = state.getPeriodicBoxVectors() print(nvt_simulation_box_vectors) with open("nvt_simulation_box_vectors.pkl", "wb") as f: pk.dump(nvt_simulation_box_vectors, f) print("Finished NVT Simulation") def run_equilibration(): """ Runs systematic simulated annealing followed by NPT and NVT equilibration MD simulation. """ cwd = os.getcwd() target_dir = cwd + "/" + "equilibration" os.system("rm -rf equilibration") os.system("mkdir equilibration") shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system.pdb", target_dir + "/" + "system.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap", ) os.chdir(target_dir) simulated_annealing() npt_equilibration() nvt_equilibration() os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf alanine-dipeptide-nowater.pdb") os.system("rm -rf input_TIP3P.leap") os.chdir(cwd) def create_starting_structures(): """ Prepares starting structures for Amber GaMD simulations. All input files required to run Amber GaMD simulations are placed in the starting_structures directory. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" os.system("rm -rf starting_structures") os.system("mkdir starting_structures") shutil.copy( cwd + "/" + "equilibration" + "/" + "system_nvt_output_last_frame.pdb", target_dir + "/" + "system_nvt_output_last_frame.pdb", ) os.chdir(target_dir) fix_cap_remove_nme("system_nvt_output_last_frame.pdb") fix_cap_replace_nme("system_nvt_output_last_frame.pdb") # Save the tleap script to file with open("final_input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system_nvt_output_last_frame.pdb saveamberparm pdb system_final.prmtop system_final.inpcrd saveamberparm pdb system_final.parm7 system_final.rst7 savepdb pdb system_final.pdb quit """ ) os.system("tleap -f final_input_TIP3P.leap") os.system("rm -rf leap.log") os.system("rm -rf system_nvt_output_last_frame.pdb") os.chdir(cwd) def add_vec_inpcrd(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the inpcrd file. Only to be used when the box dimensions are not present in the inpcrd file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( (nvt_simulation_box_vectors[0][0]) * 10, (nvt_simulation_box_vectors[1][1]) * 10, (nvt_simulation_box_vectors[2][2]) * 10, ) vectors = ( round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7), ) last_line = ( " " + str(vectors[0]) + " " + str(vectors[1]) + " " + str(vectors[2]) + " 90.0000000" + " 90.0000000" + " 90.0000000" ) with open("system_final.inpcrd", "a+") as f: f.write(last_line) os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def add_vec_prmtop(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the prmtop file. Only to be used when the box dimensions are not present in the prmtop file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( nvt_simulation_box_vectors[0][0], nvt_simulation_box_vectors[1][1], nvt_simulation_box_vectors[2][2], ) vectors = round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7) oldbeta = "9.00000000E+01" x = str(vectors[0]) + str(0) + "E+" + "01" y = str(vectors[1]) + str(0) + "E+" + "01" z = str(vectors[2]) + str(0) + "E+" + "01" line1 = "%FLAG BOX_DIMENSIONS" line2 = "%FORMAT(5E16.8)" line3 = " " + oldbeta + " " + x + " " + y + " " + z with open("system_final.prmtop") as i, open( "system_intermediate_final.prmtop", "w" ) as f: for line in i: if line.startswith("%FLAG RADIUS_SET"): line = line1 + "\n" + line2 + "\n" + line3 + "\n" + line f.write(line) os.system("rm -rf system_final.prmtop") os.system("mv system_intermediate_final.prmtop system_final.prmtop") os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def create_filetree( nst_lim=26000000, ntw_x=1000, nt_cmd=1000000, n_teb=1000000, n_tave=50000, ntcmd_prep=200000, nteb_prep=200000, ): """ Creates a directory named gamd_simulations. Inside this directory, there are subdirectories for dihedral, dual and total potential-boosted GaMD with upper and lower threshold boosts separately. Parameters ---------- nst_lim: int Total simulation time including preparatory simulation. For example, if nst_lim = 26000000, then, we may have 2 ns of preparatory simulation i.e. 1000000 preparation steps and 50 ns of GaMD simulation i.e. 25000000 simulation steps ntw_x: int Saving coordinates of the simulation every ntw_x timesteps. For example, 2 ps implies 1000 timesteps nt_cmd: int Number of initial MD simulation step, 2 ns of preparatory simulation requires 1000000 preparation timesteps n_teb: int Number of biasing MD simulation steps n_tave: int Number of simulation steps used to calculate the average and standard deviation of potential energies ntcmd_prep: int Number of preparation conventional molecular dynamics steps.This is used for system equilibration and potential energies are not collected for statistics nteb_prep: int Number of preparation biasing molecular dynamics simulation steps. This is used for system equilibration """ cwd = os.getcwd() os.system("rm -rf gamd_simulations") os.system("mkdir gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations") source_dir = cwd + "/" + "starting_structures" target_dir = cwd + "/" + "gamd_simulations" dir_list = [ "dihedral_threshold_lower", "dihedral_threshold_upper", "dual_threshold_lower", "dual_threshold_upper", "total_threshold_lower", "total_threshold_upper", ] for i in range(len(dir_list)): os.mkdir(dir_list[i]) os.chdir(target_dir + "/" + dir_list[i]) shutil.copy( source_dir + "/" + "system_final.inpcrd", target_dir + "/" + dir_list[i] + "/" + "system_final.inpcrd", ) shutil.copy( source_dir + "/" + "system_final.prmtop", target_dir + "/" + dir_list[i] + "/" + "system_final.prmtop", ) if "lower" in dir_list[i]: i_E = 1 if "upper" in dir_list[i]: i_E = 2 if "total" in dir_list[i]: i_gamd = 1 if "dihedral" in dir_list[i]: i_gamd = 2 if "dual" in dir_list[i]: i_gamd = 3 with open("md.in", "w") as f: f.write("&cntrl" + "\n") f.write(" imin = 0, irest = 0, ntx = 1," + "\n") f.write(" nstlim = " + str(nst_lim) + ", dt = 0.002," + "\n") f.write(" ntc = 2, ntf = 2, tol = 0.000001," + "\n") f.write(" iwrap = 1, ntb = 1, cut = 8.0," + "\n") f.write(" ntt = 3, temp0 = 300.0, gamma_ln = 1.0, " + "\n") f.write( " ntpr = 500, ntwx = " + str(ntw_x) + ", ntwr = 500," + "\n" ) f.write(" ntxo = 2, ioutfm = 1, ig = -1, ntwprt = 0," + "\n") f.write( " igamd = " + str(i_gamd) + ", iE = " + str(i_E) + ", irest_gamd = 0," + "\n" ) f.write( " ntcmd = " + str(nt_cmd) + ", nteb = " + str(n_teb) + ", ntave = " + str(n_tave) + "," + "\n" ) f.write( " ntcmdprep = " + str(ntcmd_prep) + ", ntebprep = " + str(nteb_prep) + "," + "\n" ) f.write(" sigma0D = 6.0, sigma0P = 6.0" + " \n") f.write("&end" + "\n") os.chdir(target_dir) os.chdir(cwd) def run_simulations(): """ Runs GaMD simulations for each of the dihedral, dual and total potential boosts for both thresholds i.e. upper and lower potential thresholds. (Remember to check md.in files for further details and flag information). """ cwd = os.getcwd() os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd) def create_data_files( jump=10, traj="system_final.nc", topology="system_final.prmtop", T=300, ): """ Extracts data from GaMD log files and saves them as weights.dat, Psi.dat and Phi_Psi.dat. gamd.log file contains data excluding the initial equilibration MD simulation steps but trajectory output file has all the trajectories including the initial equilibration MD steps. This part has ben taken care to make the data consistent. Parameters ---------- jump: int Every nth frame to be considered for reweighting traj: str System's trajectory file topology: str System's topology file T: int MD simulation temperature """ # To make data consistent with gamd.log and .nc file factor = 0.001987 * T with open("md.in") as f: lines = f.readlines() for i in lines: if "nstlim =" in i: nstlim_line = i if "ntcmd =" in i: ntcmd_line = i if "ntwx =" in i: ntwx_line = i x = re.findall(r"\b\d+\b", ntcmd_line) ntcmd = int(x[0]) x = re.findall(r"\b\d+\b", nstlim_line) nstlim = int(x[0]) x = re.findall(r"\b\d+\b", ntwx_line) ntwx = int(x[1]) # From the .nc trajectory files, we will not consider ntcmd trajectories leave_frames = int(ntcmd / ntwx) no_frames = int(nstlim / ntwx) # Recheck conditions file = open("gamd.log", "r") number_of_lines = 0 for line in file: line = line.strip("\n") number_of_lines += 1 file.close() f = open("gamd.log") fourth_line = f.readlines()[3] if str(ntcmd) in fourth_line: datapoints = number_of_lines - 4 if not str(ntcmd) in fourth_line: datapoints = number_of_lines - 3 print(datapoints == int((nstlim - ntcmd) / ntwx)) # Creating Psi.dat and Phi_Psi.dat traj = md.load(traj, top=topology) traj = traj[leave_frames:no_frames:jump] phi = md.compute_phi(traj) phi = phi[1] # 0:indices, 1:phi angles phi = np.array([math.degrees(i) for i in phi]) # radians to degrees psi = md.compute_psi(traj) psi = psi[1] # 0:indices, 1:psi angles psi = np.array([math.degrees(i) for i in psi]) # radians to degrees df_psi = pd.DataFrame(phi, columns=["Psi"]) df_psi = df_psi.tail(int(datapoints)) df_psi.to_csv("Psi.dat", sep="\t", index=False, header=False) df_phi = pd.DataFrame(psi, columns=["Phi"]) df_phi = df_phi.tail(int(datapoints)) df_phi_psi = pd.concat([df_phi, df_psi], axis=1) df_phi_psi.to_csv("Phi_Psi.dat", sep="\t", index=False, header=False) # Creating weights.dat with open("gamd.log") as f: lines = f.readlines() column_names = lines[2] column_names = column_names.replace("#", "") column_names = column_names.replace("\n", "") column_names = column_names.replace(" ", "") column_names = column_names.split(",") list_words = ["#"] with open("gamd.log") as oldfile, open("data.log", "w") as newfile: for line in oldfile: if not any(word in line for word in list_words): newfile.write(line) df = pd.read_csv("data.log", delim_whitespace=True, header=None) df.columns = column_names df["dV(kcal/mol)"] = ( df["Boost-Energy-Potential"] + df["Boost-Energy-Dihedral"] ) df["dV(kbT)"] = df["dV(kcal/mol)"] / factor df_ = df[["dV(kbT)", "total_nstep", "dV(kcal/mol)"]] df_ = df_[::jump] df_.to_csv("weights.dat", sep="\t", index=False, header=False) os.system("rm -rf data.log") print(df_phi_psi.shape) print(df_phi.shape) print(df_.shape) def create_bins(lower_bound, width, upper_bound): """ Creates bin if given the lower and upper bound with the wirdth information. """ bins = [] for low in range(lower_bound, upper_bound, width): bins.append([low, low + width]) return bins def find_bin(value, bins): """ Finds which value belongs to which bin. """ for i in range(0, len(bins)): if bins[i][0] <= value < bins[i][1]: return i return -1 def reweight_1d( binspace=10, n_structures=4, Xdim=[-180, 180], T=300.0, min_prob=0.000001 ): """ Reweights boosted potential energies in one-dimension based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Psi = pd.read_csv("Psi.dat", delim_whitespace=True, header=None) df_Psi.columns = ["Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) hist, hist_edges = np.histogram(df_Psi[["Psi"]], bins=binsX, weights=None) pstarA = [i / sum_total for i in list(hist)] bins = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) data = df_Psi["Psi"].values.tolist() binned_weights = [] for value in data: bin_index = find_bin(value, bins) binned_weights.append(bin_index) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df = pd.concat([df_index, df_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 = pd.DataFrame(data_c1, columns=["bins", "pA_c1"]) df_c12 = pd.DataFrame(data_c12, columns=["bins", "pA_c12"]) df_c123 = pd.DataFrame(data_c123, columns=["bins", "pA_c123"]) ####c1 df_c1.to_csv("c1_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c1_1d.txt", "r") as f1, open("pA_c1_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_1d.txt") ####c12 df_c12.to_csv("c12_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c12_1d.txt", "r") as f1, open("pA_c12_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_1d.txt") ####c123 df_c123.to_csv("c123_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c123_1d.txt", "r") as f1, open("pA_c123_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_1d.txt") ####c1_arranged df_c1_arranged = df_c1.sort_values(by="pA_c1", ascending=False) df_c1_arranged = df_c1_arranged[df_c1_arranged.pA_c1 > min_prob] df_c1_arranged.to_csv( "c1_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_arranged_1d.txt", "r") as f1, open( "pA_c1_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_arranged_1d.txt") ####c12_arranged df_c12_arranged = df_c12.sort_values(by="pA_c12", ascending=False) df_c12_arranged = df_c12_arranged[df_c12_arranged.pA_c12 > min_prob] df_c12_arranged.to_csv( "c12_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_arranged_1d.txt", "r") as f1, open( "pA_c12_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_arranged_1d.txt") ####c123_arranged df_c123_arranged = df_c123.sort_values(by="pA_c123", ascending=False) df_c123_arranged = df_c123_arranged[df_c123_arranged.pA_c123 > min_prob] df_c123_arranged.to_csv( "c123_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_arranged_1d.txt", "r") as f1, open( "pA_c123_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_arranged_1d.txt") ####c1_arranged df_c1_arranged["index"] = df_c1_arranged.index index_list_c1 = df_c1_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c1 = [] index_indces_c1 = [] for i in index_list_c1: df_index_list_c1 = df_frame_index.loc[df_frame_index["index"] == i] frame_c1 = df_index_list_c1["frame_index"].tolist() frame_indices_c1.append(frame_c1) index_c1 = [i] * len(frame_c1) index_indces_c1.append(index_c1) frame_indices_c1 = [item for elem in frame_indices_c1 for item in elem] index_indces_c1 = [item for elem in index_indces_c1 for item in elem] df_c1_frame = pd.DataFrame(frame_indices_c1, columns=["frame_index"]) df_c1_index = pd.DataFrame(index_indces_c1, columns=["index"]) df_c1_frame_index = pd.concat([df_c1_frame, df_c1_index], axis=1) df_c1_frame_index = df_c1_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c1_frame_index.to_csv( "c1_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_frame_index_1d.txt", "r") as f1, open( "c1_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_frame_index_1d.txt") ####c12_arranged df_c12_arranged["index"] = df_c12_arranged.index index_list_c12 = df_c12_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c12 = [] index_indces_c12 = [] for i in index_list_c12: df_index_list_c12 = df_frame_index.loc[df_frame_index["index"] == i] frame_c12 = df_index_list_c12["frame_index"].tolist() frame_indices_c12.append(frame_c12) index_c12 = [i] * len(frame_c12) index_indces_c12.append(index_c12) frame_indices_c12 = [item for elem in frame_indices_c12 for item in elem] index_indces_c12 = [item for elem in index_indces_c12 for item in elem] df_c12_frame = pd.DataFrame(frame_indices_c12, columns=["frame_index"]) df_c12_index = pd.DataFrame(index_indces_c12, columns=["index"]) df_c12_frame_index = pd.concat([df_c12_frame, df_c12_index], axis=1) df_c12_frame_index = df_c12_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c12_frame_index.to_csv( "c12_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_frame_index_1d.txt", "r") as f1, open( "c12_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_frame_index_1d.txt") ####c123_arranged df_c123_arranged["index"] = df_c123_arranged.index index_list_c123 = df_c123_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c123 = [] index_indces_c123 = [] for i in index_list_c123: df_index_list_c123 = df_frame_index.loc[df_frame_index["index"] == i] frame_c123 = df_index_list_c123["frame_index"].tolist() frame_indices_c123.append(frame_c123) index_c123 = [i] * len(frame_c123) index_indces_c123.append(index_c123) frame_indices_c123 = [item for elem in frame_indices_c123 for item in elem] index_indces_c123 = [item for elem in index_indces_c123 for item in elem] df_c123_frame = pd.DataFrame(frame_indices_c123, columns=["frame_index"]) df_c123_index = pd.DataFrame(index_indces_c123, columns=["index"]) df_c123_frame_index = pd.concat([df_c123_frame, df_c123_index], axis=1) df_c123_frame_index = df_c123_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c123_frame_index.to_csv( "c123_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_frame_index_1d.txt", "r") as f1, open( "c123_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_frame_index_1d.txt") ####c1 indices_c1_1d = df_c1_frame_index["index"].unique() frames_c1 = [] for i in indices_c1_1d: x = df_c1_frame_index.loc[df_c1_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c1.append(z) frames_c1_1d = [item for elem in frames_c1 for item in elem] with open("frames_c1_1d.pickle", "wb") as f: pk.dump(frames_c1_1d, f) with open("indices_c1_1d.pickle", "wb") as f: pk.dump(indices_c1_1d, f) ####c12 indices_c12_1d = df_c12_frame_index["index"].unique() frames_c12 = [] for i in indices_c12_1d: x = df_c12_frame_index.loc[df_c12_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c12.append(z) frames_c12_1d = [item for elem in frames_c12 for item in elem] with open("frames_c12_1d.pickle", "wb") as f: pk.dump(frames_c12_1d, f) with open("indices_c12_1d.pickle", "wb") as f: pk.dump(indices_c12_1d, f) ####c123 indices_c123_1d = df_c123_frame_index["index"].unique() frames_c123 = [] for i in indices_c123_1d: x = df_c123_frame_index.loc[df_c123_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c123.append(z) frames_c123_1d = [item for elem in frames_c123 for item in elem] with open("frames_c123_1d.pickle", "wb") as f: pk.dump(frames_c123_1d, f) with open("indices_c123_1d.pickle", "wb") as f: pk.dump(indices_c123_1d, f) ##saving probabilities for each selected frame ####c1 prob_c1_1d_list = [] for i in indices_c1_1d: prob_c1_1d_list.append(df_c1["pA_c1"][i]) prob_c1_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c1_1d_list ) ) prob_c1_1d_list = [x / n_structures for x in prob_c1_1d_list] with open("prob_c1_1d_list.pickle", "wb") as f: pk.dump(prob_c1_1d_list, f) ####c12 prob_c12_1d_list = [] for i in indices_c12_1d: prob_c12_1d_list.append(df_c12["pA_c12"][i]) prob_c12_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c12_1d_list ) ) prob_c12_1d_list = [x / n_structures for x in prob_c12_1d_list] with open("prob_c12_1d_list.pickle", "wb") as f: pk.dump(prob_c12_1d_list, f) ####c123 prob_c123_1d_list = [] for i in indices_c123_1d: prob_c123_1d_list.append(df_c123["pA_c123"][i]) prob_c123_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c123_1d_list ) ) prob_c123_1d_list = [x / n_structures for x in prob_c123_1d_list] with open("prob_c123_1d_list.pickle", "wb") as f: pk.dump(prob_c123_1d_list, f) ref_df_1d = pd.DataFrame(bins, columns=["dim0", "dim1"]) ref_df_1d["bins"] = ref_df_1d.agg( lambda x: f"[{x['dim0']} , {x['dim1']}]", axis=1 ) ref_df_1d = ref_df_1d[["bins"]] index_ref_1d = [] for i in range(len(bins)): index_ref_1d.append(i) index_ref_df_1d = pd.DataFrame(index_ref_1d, columns=["index"]) df_ref_1d = pd.concat([ref_df_1d, index_ref_df_1d], axis=1) df_ref_1d.to_csv("ref_1d.txt", header=True, index=None, sep=" ", mode="w") df.to_csv("df_1d.csv", index=False) os.system("rm -rf __pycache__") print("Successfully Completed Reweighing") def reweight_2d( binspace=10, n_structures=4, Xdim=[-180, 180], Ydim=[-180, 180], T=300.0, min_prob=0.000001, ): """ Reweights boosted potential energies in two-dimensions based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles (1st dimension) Ydim: list Range of dihedral angles (2nd dimension) T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Phi_Psi = pd.read_csv("Phi_Psi.dat", delim_whitespace=True, header=None) df_Phi_Psi.columns = ["Phi", "Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Phi_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) binsY = np.arange(float(Ydim[0]), (float(Ydim[1]) + binspace), binspace) hist2D, hist_edgesX, hist_edgesY = np.histogram2d( df_Phi_Psi["Phi"].values.tolist(), df_Phi_Psi["Psi"].values.tolist(), bins=(binsX, binsY), weights=None, ) pstarA_2D = [i / sum_total for i in list(hist2D)] bins_tuple_X = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) bins_tuple_Y = create_bins( lower_bound=int(Ydim[0]), width=binspace, upper_bound=int(Ydim[1]) ) bins = [] for i in range(len(bins_tuple_X)): for j in range(len(bins_tuple_Y)): bins.append([bins_tuple_X[i], bins_tuple_Y[j]]) pstarA = [item for elem in pstarA_2D for item in elem] hist = [item for elem in hist2D for item in elem] hist = [int(i) for i in hist] data_X = df_Phi_Psi["Phi"].values.tolist() binned_weights_X = [] for value in data_X: bin_index_X = find_bin(value, bins_tuple_X) binned_weights_X.append(bin_index_X) data_Y = df_Phi_Psi["Psi"].values.tolist() binned_weights_Y = [] for value in data_Y: bin_index_Y = find_bin(value, bins_tuple_Y) binned_weights_Y.append(bin_index_Y) binned_weights_2D = [] for i in range(len(binned_weights_X)): binned_weights_2D.append([binned_weights_X[i], binned_weights_Y[i]]) binned_weights = [] for i in range(len(binned_weights_2D)): binned_weights.append( (binned_weights_2D[i][0] * len(bins_tuple_Y)) + (binned_weights_2D[i][1] + 1) ) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df_index["index"] = df_index["index"] - 1 df = pd.concat([df_index, df_Phi_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 =
pd.DataFrame(data_c1, columns=["bins", "pA_c1"])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 18 17:54:55 2020 @author: RredRrobin """ import os import tkinter as tk import tkinter.filedialog as filedialog import tkinter.ttk as ttk import pandas as pd from datetime import datetime, timedelta import numpy as np class TextScrollCombo(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) self.grid_propagate(True) self.text = tk.Text(self, wrap="none") self.text.grid(row=0, column=0, sticky="nsew", padx=2, pady=2) scroll_bar_y = ttk.Scrollbar(self, command=self.text.yview) scroll_bar_y.grid(row=0, column=1, sticky='nsew') self.text['yscrollcommand'] = scroll_bar_y.set scroll_bar_x = ttk.Scrollbar(self, command=self.text.xview, orient=tk.HORIZONTAL) scroll_bar_x.grid(row=1, column=0, sticky='nsew') self.text['xscrollcommand'] = scroll_bar_x.set def add(self, row): self.text.insert("end", row) def empty(self): self.text.delete('1.0', "end") class program(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) self.grid() self.grid_propagate(False) self.grid_rowconfigure(0, weight=1) self.grid_columnconfigure(0, weight=1) self.menubar = tk.Menu(master) master.config(menu=self.menubar) self.menu_create() self.combo = TextScrollCombo(master) self.combo.grid(row=0, column=0, sticky='nsew') style = ttk.Style() style.theme_use('clam') self.WD_open ="/" # set root as default directory to open files self.WD_save ="/" # set root as default directory to save files def menu_create(self): self.progs = tk.Menu(self.menubar, tearoff=False) self.progs.add_command(label="Choose directory to OPEN files", command=self.chooseWD_open) self.progs.add_command(label="Choose directory to SAVE files", command=self.chooseWD_save) self.progs.add_command(label="Close", command=self.close) self.menubar.add_cascade(label="Program", menu=self.progs) self.menuPs = tk.Menu(self.menubar, tearoff=False) self.menuPs.add_command(label="Load data", command=self.data_import) self.menuPs.add_command(label="Select interval", command=self.interval_select) self.menuPs.add_command(label="Cut & save interval", command=self.interval_cut) self.menubar.add_cascade(label="HRdata", menu=self.menuPs) def data_import(self): self.file_name = filedialog.askopenfilename(initialdir = self.WD_open, title = "Select file",filetypes = (("HRM files","*.hrm"),("Text files","*.txt"),("all files","*.*"))) file = open(self.file_name) data = file.read() file.close() self.combo.add(data) # to display # load dataframe self.df = pd.read_csv(self.file_name, sep = ",") self.df.columns = ["IBI"] # name column "IBI" (Inter-beat interval) # delete unnessecary information a = list(self.df.IBI) # convert column from self.df to list b = list(self.df.IBI).index('[HRData]') # recognize beginning of HR data in the list del a[0:4] # deletes first four rows del a[1:b-3] # deletes rows 2 to "[HRData]" self.df = pd.DataFrame({'IBI':a}) # writes dataframe # create column with forth-counted time self.df['IBI'] = self.df['IBI'].str.replace('StartTime=','') # deletes "StartTime=" to obtain just time value self.df['IBItime'] = pd.to_timedelta(self.df['IBI'])*1000000 # *1.000.000, because IBI-values are interpreted in microseconds (except for StartTime-value) l = len(self.df) # calculate length of DF / number of IBIs liste = list(range(1,l)) # create list from 1 to end (the unused ro with the time has the index number '0' and the last row has length minus 1) self.df['time'] = pd.to_timedelta(self.df['IBI'][0]) for i in liste: self.df['time'][i] = self.df['time'][i-1] + self.df['IBItime'][i] # adds continuously the respective time value (previous time value plus length of IBI) self.combo.empty() # empty screen self.combo.add(self.df) # save as .csv-file filename_w_ext = os.path.basename(self.file_name) # change file name to be saved in a way that filename, file_extension = os.path.splitext(filename_w_ext) # it has the same name as -hrm file, but self.n = filename+'.csv' # with .csv as ending self.df.to_csv(self.n, sep='\t', index=False) # options: tabulator as seperator; without indexing return(self.df) def interval_select(self): def time_select(num1,num2,num3,num4,num5,num6): stime = (num1+":"+num2+":"+num3) # select start time dtime = (num4+":"+num5+":"+num6) print(stime) # print in console print(dtime) st = datetime.strptime(stime,"%H:%M:%S") dt = datetime.strptime(dtime,"%H:%M:%S") self.Stime = timedelta(hours = st.hour, minutes = st.minute, seconds= st.second)# format into sth that can be used later self.Dtime = timedelta(hours = dt.hour, minutes = dt.minute, seconds= dt.second) return(self.Stime) return(self.Dtime) # create window intwin = tk.Tk() intwin.geometry("200x100+100+100") intwin.title('Interval') # label tk.Label(intwin, text="Start time").grid(row=1, column=0) tk.Label(intwin, text=":").grid(row=1, column=2) tk.Label(intwin, text=":").grid(row=1, column=4) tk.Label(intwin, text="Duration").grid(row=2, column=0) tk.Label(intwin, text=":").grid(row=2, column=2) tk.Label(intwin, text=":").grid(row=2, column=4) # set type of variable number1 = tk.IntVar() number2 = tk.IntVar() number3 = tk.IntVar() number4 = tk.IntVar() number5 = tk.IntVar() number6 = tk.IntVar() # create entry slot sHH = tk.Entry(intwin, textvariable=number1, width=2) # commentary: it would be nice to limit the entry options to two digits by default - not just visually - , in order to avoid nonsense entries / typos sHH.grid(row=1, column=1) sMM = tk.Entry(intwin, textvariable=number2, width=2) sMM.grid(row=1, column=3) sSS = tk.Entry(intwin, textvariable=number3, width=2) sSS.grid(row=1, column=5) dHH = tk.Entry(intwin, textvariable=number4, width=2) dHH.grid(row=2, column=1) dMM = tk.Entry(intwin, textvariable=number5, width=2) dMM.grid(row=2, column=3) dSS = tk.Entry(intwin, textvariable=number6, width=2) dSS.grid(row=2, column=5) tk.Button(intwin, text = "OK", command=lambda: time_select(sHH.get(),sMM.get(),sSS.get(),dHH.get(),dMM.get(),dSS.get()), activebackground = "white", activeforeground = "blue").place(x = 70, y = 50) intwin.mainloop() self.combo.add(self.Stime) self.combo.add(self.Dtime) def interval_cut(self): # load dataframe self.df2 = pd.read_csv(self.n, sep = "\t") # define times as timedelta data self.df2['IBI'] = pd.to_numeric(self.df2['IBI'][1:]) self.df2['IBItime'] = pd.to_timedelta(self.df2['IBItime']) self.df2['time'] =
pd.to_timedelta(self.df2['time'])
pandas.to_timedelta
"""Tests for the sdv.constraints.tabular module.""" import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( ColumnFormula, CustomConstraint, GreaterThan, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test__valid_separator_valid(self): """Test ``_valid_separator`` for a valid separator. If the separator and data are valid, result is ``True``. Input: - Table data (pandas.DataFrame) Output: - True (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert is_valid def test__valid_separator_non_valid_separator_contained(self): """Test ``_valid_separator`` passing a column that contains the separator. If any of the columns contains the separator string, result is ``False``. Input: - Table data (pandas.DataFrame) with a column that contains the separator string ('#') Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', '#', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test__valid_separator_non_valid_name_joined_exists(self): """Test ``_valid_separator`` passing a column whose name is obtained after joining the column names using the separator. If the column name obtained after joining the column names using the separator already exists, result is ``False``. Input: - Table data (pandas.DataFrame) with a column name that will be obtained by joining the column names and the separator. Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'b#c': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup transformed_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(transformed_data) # Run out = instance.reverse_transform(transformed_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False def test___init___strict_true(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' - strict = True Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True def test_fit_int(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'i' def test_fit_float(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_datetime(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'M' def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform_int_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_high(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_low(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_float_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type float. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_datetime_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type datetime. If the columns are of type datetime, ``transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], '#a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = np.dtype('float') # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = np.dtype('<M8[ns]') # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], '#a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = np.dtype('<M8[ns]') # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], '#a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b':
pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01'])
pandas.to_datetime
"""Data abstractions.""" from abc import abstractmethod from collections import defaultdict, namedtuple import copy import os import time import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, IterableDataset TYPE_NORMAL_ATTR = 0 TYPE_INDICATOR = 1 TYPE_FANOUT = 2 def time_this(f): def timed_wrapper(*args, **kw): start_time = time.time() result = f(*args, **kw) end_time = time.time() # Time taken = end_time - start_time print('| func:%r took: %2.4f seconds |' % \ (f.__name__, end_time - start_time)) return result return timed_wrapper # Column factorization. # # See estimators::FactorizedProgressiveSampling::update_factor_mask for # a description of dominant operators. # # What each operator projects to. PROJECT_OPERATORS = { "<": "<=", ">": ">=", "!=": "ALL_TRUE", "<=": "<=", ">=": ">=", } # What each operator projects to for the last subvar, if not the same as other # subvars. PROJECT_OPERATORS_LAST = { "<": "<", ">": ">", "!=": "!=", } # What the dominant operator for each operator is. PROJECT_OPERATORS_DOMINANT = { "<=": "<", ">=": ">", "<": "<", ">": ">", "!=": "!=", } class Column(object): """A column. Data is write-once, immutable-after. Typical usage: col = Column('myCol').Fill(data).SetDistribution(domain_vals) "data" and "domain_vals" are NOT copied. """ def __init__(self, name, distribution_size=None, pg_name=None, factor_id=None, bit_width=None, bit_offset=None, domain_bits=None, num_bits=None): self.name = name # Data related fields. self.data = None self.all_distinct_values = None self.distribution_size = distribution_size # Factorization related fields. self.factor_id = factor_id self.bit_width = bit_width self.bit_offset = bit_offset self.domain_bits = domain_bits self.num_bits = num_bits # pg_name is the name of the corresponding column in the Postgres db. if pg_name: self.pg_name = pg_name else: self.pg_name = name def Name(self): """Name of this column.""" return self.name def DistributionSize(self): """This column will take on discrete values in [0, N). Used to dictionary-encode values to this discretized range. """ return self.distribution_size def ProjectValue(self, value): """Bit slicing: returns the relevant bits in binary for a sub-var.""" assert self.factor_id is not None, "Only for factorized cols" return (value >> self.bit_offset) & (2**self.bit_width - 1) def ProjectOperator(self, op): assert self.factor_id is not None, "Only for factorized cols" if self.bit_offset > 0: # If not found, no need to project. return PROJECT_OPERATORS.get(op, op) # Last subvar: identity (should not project). return op def ProjectOperatorDominant(self, op): assert self.factor_id is not None, "Only for factorized cols" return PROJECT_OPERATORS_DOMINANT.get(op, op) def BinToVal(self, bin_id): assert bin_id >= 0 and bin_id < self.distribution_size, bin_id return self.all_distinct_values[bin_id] def ValToBin(self, val): if isinstance(self.all_distinct_values, list): return self.all_distinct_values.index(val) inds = np.where(self.all_distinct_values == val) assert len(inds[0]) > 0, val return inds[0][0] def FindProjection(self, val): if val in self.all_distinct_values: return (self.ValToBin(val), True) elif val > self.all_distinct_values[-1]: return (len(self.all_distinct_values), False) elif val < self.all_distinct_values[0]: return (-1, False) else: return (next( i for i, v in enumerate(self.all_distinct_values) if v > val), False) def SetDistribution(self, distinct_values): """This is all the values this column will ever see.""" assert self.all_distinct_values is None # pd.isnull returns true for both np.nan and np.datetime64('NaT'). is_nan = pd.isnull(distinct_values) contains_nan = np.any(is_nan) dv_no_nan = distinct_values[~is_nan] # IMPORTANT: np.sort puts NaT values at beginning, and NaN values # at end for our purposes we always add any null value to the # beginning. vs = np.sort(np.unique(dv_no_nan)) if contains_nan and np.issubdtype(distinct_values.dtype, np.datetime64): vs = np.insert(vs, 0, np.datetime64('NaT')) elif contains_nan: vs = np.insert(vs, 0, np.nan) if self.distribution_size is not None: assert len(vs) == self.distribution_size self.all_distinct_values = vs self.distribution_size = len(vs) return self def Fill(self, data_instance, infer_dist=False): assert self.data is None self.data = data_instance # If no distribution is currently specified, then infer distinct values # from data. if infer_dist: self.SetDistribution(self.data) return self def InsertNullInDomain(self): # Convention: np.nan would only appear first. if not pd.isnull(self.all_distinct_values[0]): if self.all_distinct_values.dtype == np.dtype('object'): # String columns: inserting nan preserves the dtype. self.all_distinct_values = np.insert(self.all_distinct_values, 0, np.nan) else: # Assumed to be numeric columns. np.nan is treated as a # float. self.all_distinct_values = np.insert( self.all_distinct_values.astype(np.float64, copy=False), 0, np.nan) self.distribution_size = len(self.all_distinct_values) def __repr__(self): return 'Column({}, distribution_size={})'.format( self.name, self.distribution_size) class Table(object): """A collection of Columns.""" def __init__(self, name, columns, pg_name=None, validate_cardinality=True): """Creates a Table. Args: name: Name of this table object. columns: List of Column instances to populate this table. pg_name: name of the corresponding table in Postgres. """ self.name = name if validate_cardinality: self.cardinality = self._validate_cardinality(columns) else: # Used as a wrapper, not a real table. self.cardinality = None self.columns = columns # Bin to val funcs useful for sampling. Takes # (col 1's bin id, ..., col N's bin id) # and converts it to # (col 1's val, ..., col N's val). self.column_bin_to_val_funcs = [c.BinToVal for c in columns] self.val_to_bin_funcs = [c.ValToBin for c in columns] self.name_to_index = {c.Name(): i for i, c in enumerate(self.columns)} if pg_name: self.pg_name = pg_name else: self.pg_name = name def __repr__(self): return '{}({})'.format(self.name, self.columns) def _validate_cardinality(self, columns): """Checks that all the columns have same the number of rows.""" cards = [len(c.data) for c in columns] c = np.unique(cards) assert len(c) == 1, c return c[0] def to_df(self): return
pd.DataFrame({c.name: c.data for c in self.columns})
pandas.DataFrame
"""Build daily-level feature sets, stitching together weather datasets and defining features. """ import numpy as np import pandas as pd import geopandas as gpd from dask import dataframe as dd from loguru import logger from shapely.ops import nearest_points from src.data.gfs.utils import grb2gdf from src.conf import settings start_year = 2017 end_year = 2019 OUTPUT_DIR = settings.DATA_DIR / "processed/training/" if __name__ == "__main__": df = pd.concat( [ pd.read_parquet(settings.DATA_DIR / f"processed/caiso_hourly/{y}.parquet") for y in range(2017, 2020) ] ) df.index = df.index.tz_convert("US/Pacific") # Preprocessed hourly data is in MWh, so we can simply sum up to resample to days df = df.groupby(pd.Grouper(freq="D")).sum() df.reset_index(inplace=True) # By construction, we are interested in Feb to May (inclusive) season_filter = df["timestamp"].dt.month.isin(range(2, 6)) df = df[season_filter] # Define whether something is a weekday/weekend df["is_weekday"] = df["timestamp"].dt.weekday.isin([5, 6]) # Integrate forecast data gfs_data_files = ( settings.DATA_DIR / f"interim/gfs/ca/gfs_3_201[7-9][01][2-5]*_0000_{i*3:03}.parquet" for i in range(5, 10) ) forecasts = [*(gfs_data_files)] dayahead_weather = dd.read_parquet(forecasts).compute() # Add UTC timezone and convert to US/Pacific dayahead_weather["timestamp"] = ( dayahead_weather["valid_time"].dt.tz_localize("UTC").dt.tz_convert("US/Pacific") ) dayahead_weather = grb2gdf(dayahead_weather) # Include powerplant data counties = gpd.read_file( settings.DATA_DIR / "processed/geography/CA_Counties/CA_Counties_TIGER2016.shp" ) weather_point_measurements = dayahead_weather["geometry"].geometry.unary_union powerplants = pd.read_parquet( settings.DATA_DIR / f"processed/geography/powerplants.parquet" ) # Add geometry powerplants = gpd.GeoDataFrame( powerplants, geometry=gpd.points_from_xy(powerplants["longitude"], powerplants["latitude"]), crs="EPSG:4326", ) powerplants["geometry"] = ( powerplants["geometry"] .apply(lambda x: nearest_points(x, weather_point_measurements)) .str.get(1) ) # In order to integrate powerplant data, we have to merge on the powerplant's closest county location. powerplants = gpd.tools.sjoin( powerplants.to_crs("EPSG:4326"), counties[["GEOID", "geometry"]].to_crs("EPSG:4326"), op="within", how="left", ) powerplants["online_date"] = powerplants["online_date"].dt.tz_localize("US/Pacific") powerplants["retire_date"] = powerplants["retire_date"].dt.tz_localize("US/Pacific") # Now group over GEOIDs, and sum up the capacity # For each month, we have to only associate capacity for powerplants that were online. weather_orig = dayahead_weather.copy() capacities = {} results = [] for date, weather_df in dayahead_weather.groupby( pd.Grouper(key="timestamp", freq="MS"), as_index=False ): if weather_df.empty: logger.warning("Weather data for {date} is empty!", date=date) continue logger.debug("Assigning capacity for weather points as of {date}.", date=date) valid_plants = (powerplants["online_date"] <= date) & ( powerplants["retire_date"].isnull() | (powerplants["retire_date"] > date) ) valid_plants = powerplants[valid_plants] county_mw = valid_plants.groupby("GEOID", as_index=False)["capacity_mw"].sum() weather_df = weather_df.merge(county_mw, on="GEOID", how="left") weather_df["capacity_mw"] = weather_df["capacity_mw"].fillna(0) results.append(weather_df) # Note that this is still on the original df grain as we did not aggregate the groupby! dayahead_weather = pd.concat(results, ignore_index=True) # Roll-up to dailies daily_capacity = ( dayahead_weather.groupby(by=["GEOID", pd.Grouper(key="timestamp", freq="D")])[ "capacity_mw" ] .mean() .reset_index() .groupby(by=pd.Grouper(key="timestamp", freq="D"))["capacity_mw"] .sum() ) county_level_dailies = dayahead_weather.groupby( by=["GEOID", pd.Grouper(key="timestamp", freq="D")], as_index=True ).agg( t_min=("t", "min"), t_max=("t", "max"), t_mean=("t", "mean"), dswrf_mean=("dswrf", "mean"), dswrf_max=("dswrf", "max"), capacity_mw=("capacity_mw", "mean"), ).reset_index() def weighted_mean_factory(weight_col): def weighted_avg(s): if s.empty: return 0.0 else: return np.average(s, weights=dayahead_weather.loc[s.index, weight_col]) weighted_avg.__name__ = f"{weight_col}_wmean" return weighted_avg # GFS is missing certain days for one reason or another. # Furthermore, pandas timestamps fill in timesteps to build a full frequency datetime # Since we don't have continuity in time, we ignore those. dayahead_daily = ( county_level_dailies.groupby(by=pd.Grouper(key="timestamp", freq="D"),) .agg( t_mean=
pd.NamedAgg(column="t_mean", aggfunc="mean")
pandas.NamedAgg
import pandas as pd import numpy as np # from.tools import * from Multivariate_Markov_Switching_Model.tools import * from Multivariate_Markov_Switching_Model.core import * from Multivariate_Markov_Switching_Model.tools import _2dim import numpy as np import os # os.chdir("Multivariate_Markov_Switching_Model") """ test A """ data = [] with open("Multivariate_Markov_Switching_Model/test_data/MSVARUN.txt") as f: for _ in f.readlines(): data.append(_.strip().split("\t")) data = pd.DataFrame(data) s = data.set_index([1,0]).replace(".",np.nan)[2].astype(float).rename_axis(['year','month']) apr = data.set_index([1,0]).replace(".",np.nan)[3].astype(float).rename_axis(['year','month']) apriori = apr[apr.index.get_loc(("1967","7")):apr.index.get_loc(("2004","3"))].values k_lag = 2 _ = np.log(s).diff(k_lag)*100 s = _[_.index.get_loc(("1967","2"))+k_lag:_.index.get_loc(("2004","2"))+1] s = ((s-s.mean())/s.std()).values[:,np.newaxis] y = s z = generate_lagged_regressors(s,3).values x = [1]*z.shape[0] x = _2dim(np.array(x)) model = Markov_Multivarite_Regression(y[-z.shape[0]:],x,z,2,2,"full",apriori=None) # model = Multivariate_Markov_Switching_Model(y[-z.shape[0]:],x,None,2,2,"full",apriori=None) res = model.fit() """ test B """ data = [] with open("Multivariate_Markov_Switching_Model/test_data/MSVARANAS.txt") as f: for _ in f.readlines(): data.append(_.strip().split("\t")) data =
pd.DataFrame(data)
pandas.DataFrame
# Classification # SVM # -*- coding: utf-8 -*- ### 기본 라이브러리 불러오기 import pandas as pd import seaborn as sns ''' [Step 1] 데이터 준비/ 기본 설정 ''' # load_dataset 함수를 사용하여 데이터프레임으로 변환 df = sns.load_dataset('titanic') # IPython 디스플레이 설정 - 출력할 열의 개수 한도 늘리기
pd.set_option('display.max_columns', 15)
pandas.set_option
# This script generates the scoring and schema files # Creates the schema, and holds the init and run functions needed to # operationalize the chestXray model import os, sys, pickle, base64 import keras.models import keras.layers import keras_contrib.applications.densenet import pandas as pd import numpy as np import azure_chestxray_utils, azure_chestxray_cam #################################### # Parameters #################################### global chest_XRay_model global as_string_b64encoded_pickled_data_column_name as_string_b64encoded_pickled_data_column_name = 'encoded_image' global densenet_weights_file_name # densenet_weights_file_name = 'weights_only_chestxray_model_14_weights_712split_epoch_029_val_loss_147.7599.hdf5' densenet_weights_file_name = 'weights_only_chestxray_model_14_weights_712split_epoch_029_val_loss_147.7599 - Copy.hdf5' # Import data collection library. Only supported for docker mode. # Functionality will be ignored when package isn't found try: from azureml.datacollector import ModelDataCollector except ImportError: print("Data collection is currently only supported in docker mode. May be disabled for local mode.") # Mocking out model data collector functionality class ModelDataCollector(object): def nop(*args, **kw): pass def __getattr__(self, _): return self.nop def __init__(self, *args, **kw): return None pass #################################### # Utils #################################### def as_string_b64encoded_pickled(input_object): #b64encode returns bytes class, make it string by calling .decode('utf-8') return (base64.b64encode(pickle.dumps(input_object))).decode('utf-8') def unpickled_b64decoded_as_bytes(input_object): if input_object.startswith('b\''): input_object = input_object[2:-1] # make string bytes input_object = input_object.encode('utf-8') #decode and the unpickle the bytes to recover original object return (pickle.loads(base64.b64decode(input_object))) def get_image_score_and_serialized_cam(crt_cv2_image, crt_chest_XRay_model): prj_consts = azure_chestxray_utils.chestxray_consts() crt_cv2_image = azure_chestxray_utils.normalize_nd_array(crt_cv2_image) crt_cv2_image = 255*crt_cv2_image crt_cv2_image=crt_cv2_image.astype('uint8') predictions, cam_image, predicted_disease_index = \ azure_chestxray_cam.get_score_and_cam_picture(crt_cv2_image, crt_chest_XRay_model) blended_image = azure_chestxray_cam.process_cam_image(cam_image, crt_cv2_image) serialized_image = azure_chestxray_cam.plot_cam_results(blended_image, cam_image, crt_cv2_image, \ prj_consts.DISEASE_list[predicted_disease_index]) return predictions, serialized_image #################################### # API functions #################################### # Prepare the web service definition by authoring # init() and run() functions. Test the functions # before deploying the web service. def init(): try: print("init() method: Python version: " + str(sys.version)) print("crt Dir: " + os.getcwd()) import pip # pip.get_installed_distributions() myDistr = pip.get_installed_distributions() type(myDistr) for crtDist in myDistr: print(crtDist) # load the model file global chest_XRay_model chest_XRay_model = azure_chestxray_utils.build_DenseNetImageNet201_model() chest_XRay_model.load_weights(densenet_weights_file_name) print('Densenet model loaded') except Exception as e: print("Exception in init:") print(str(e)) def run(input_df): try: import json debugCounter = 0 print("run() method: Python version: " + str(sys.version) ); print('Step '+str(debugCounter));debugCounter+=1 print ('\ninput_df shape {}'.format(input_df.shape)) print(list(input_df)) print(input_df) input_df = input_df[as_string_b64encoded_pickled_data_column_name][0]; print('Step '+str(debugCounter));debugCounter+=1 input_cv2_image = unpickled_b64decoded_as_bytes(input_df); print('Step '+str(debugCounter));debugCounter+=1 #finally scoring predictions, serialized_cam_image = get_image_score_and_serialized_cam(input_cv2_image, chest_XRay_model) #predictions = chest_XRay_model.predict(input_cv2_image[None,:,:,:]) # prediction_dc.collect(ADScores) outDict = {"chestXrayScore": str(predictions), "chestXrayCAM":as_string_b64encoded_pickled(serialized_cam_image)} return json.dumps(outDict) except Exception as e: return(str(e)) #################################### # main function can be used for test and demo #################################### def main(): from azureml.api.schema.dataTypes import DataTypes from azureml.api.schema.sampleDefinition import SampleDefinition from azureml.api.realtime.services import generate_schema print('Entered main function:') print(os.getcwd()) amlWBSharedDir = os.environ['AZUREML_NATIVE_SHARE_DIRECTORY'] print(amlWBSharedDir) def get_files_in_dir(crt_dir): return( [f for f in os.listdir(crt_dir) if os.path.isfile(os.path.join(crt_dir, f))]) fully_trained_weights_dir=os.path.join( amlWBSharedDir, os.path.join(*(['chestxray', 'output', 'trained_models_weights']))) crt_models = get_files_in_dir(fully_trained_weights_dir) print(fully_trained_weights_dir) print(crt_models) test_images_dir=os.path.join( amlWBSharedDir, os.path.join(*(['chestxray', 'data', 'ChestX-ray8', 'test_images']))) test_images = get_files_in_dir(test_images_dir) print(test_images_dir) print(len(test_images)) # score in local mode (i.e. here in main function) model = azure_chestxray_utils.build_DenseNetImageNet201_model() model.load_weights(os.path.join( fully_trained_weights_dir, densenet_weights_file_name)) print('Model weoghts loaded!') import cv2 cv2_image = cv2.imread(os.path.join(test_images_dir,test_images[0])) x, serialized_cam_image = get_image_score_and_serialized_cam(cv2_image, model) file_bytes = np.asarray(bytearray(serialized_cam_image.read()), dtype=np.uint8) recovered_image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # x = model.predict(cv2_image[None,:,:,:]) print(test_images[0]) print(x) print(recovered_image.shape) # score in local mode (i.e. here in main function) using encoded data encoded_image = as_string_b64encoded_pickled(cv2_image) df_for_api =
pd.DataFrame(data=[[encoded_image]], columns=[as_string_b64encoded_pickled_data_column_name])
pandas.DataFrame
import json import logging import os import pandas as pd import wandb import yaml from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score from transformers import RobertaConfig, RobertaTokenizerFast, RobertaForSequenceClassification, Trainer, \ TrainingArguments from ClassificationDataset import ClassificationDataset def compute_metrics(pred): labels = pred.label_ids preds = (pred.predictions >= 0.5).astype(int) # .argmax(-1) # print(labels, preds) # try: acc = accuracy_score(labels, preds) # except ValueError: return { 'accuracy': acc, 'f1': f1_score(y_true=labels, y_pred=preds, average='weighted'), 'precision': precision_score(y_true=labels, y_pred=preds, average='weighted'), 'recall': recall_score(y_true=labels, y_pred=preds, average='weighted') } if __name__ == '__main__': logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # load config logging.info("Loading config...") config = yaml.safe_load(open("./params.yaml"))['classification_train'] config_train = yaml.safe_load(open("./params.yaml"))['language_modeling_train'] os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(item) for item in config['cuda_visible_devices']]) # log to wandb logging.info("Logging to wandb...") wandb.login() # setup datasets paths dev_ds = "./data/dev/" test_ds = "./data/test/" train_ds = "./data/train/" # set models path lm_model_path = "./models/roberta_lm" models_path = "./models/roberta_classifier" os.makedirs(models_path, exist_ok=True) # define special characters logging.info("Defining special characters...") special_tokens = [ '<url>', '<email>', '<number>', '<date>', ] logging.info("Loading tokenizer...") tokenizer = RobertaTokenizerFast.from_pretrained(lm_model_path, max_len=config_train['max_seq_length'], use_fast=True) # add special tokens tokenizer.add_special_tokens({ 'additional_special_tokens': special_tokens }) # load datasets logging.info("Loading datasets...") data1 =
pd.read_csv("./data/dev/in.tsv", delimiter='\t', header=None, encoding="utf8", quoting=0)
pandas.read_csv
################################################################################ ### Python port of rlassoEffects.R ### https://github.com/cran/hdm/blob/master/R/rlassoEffects.R ################################################################################ ################################################################################ ### 1: Load modules ################################################################################ # Standard Python modules import joblib as jbl import multiprocess as mp import numpy as np import pandas as pd from scipy import linalg from scipy.stats import multivariate_normal, norm from sklearn.linear_model import LinearRegression as lm # Other parts of hmdpy from hdmpy.help_functions import cvec from hdmpy.rlasso import rlasso ################################################################################ ### 2: Define functions ################################################################################ ################################################################################ ### 2.1: Functions which are not in the original R package ### These are generally helper functions to allow an implementation which ### reads as closely to the original R code as possible, and to ease a ### Python implementation, including parallelizing the code ################################################################################ # Define a function which calculates the homoskedastic variance estimator for # OLS, based on X and the residuals def get_cov(X, e, add_intercept=True, homoskedastic=False): """ Calculates OLS variance estimator based on X and residuals Inputs X: n by k matrix, RHS variables e: n by 1 vector or vector-like, residuals from an OLS regression add_intercept: Boolean, if True, adds an intercept as the first column of X (and increases k by one) Outputs V_hat: k by k NumPy array, estimated covariance matrix """ # Get the number of observations n and parameters k n, k = X.shape # Check whether an intercept needs to be added if add_intercept: # If so, add the intercept X = np.concatenate([np.ones(shape=(n,1)), X], axis=1) # Don't forget to increase k k = k + 1 # Make sure the residuals are a proper column vector e = cvec(e) # Calculate X'X XX = X.T @ X # Calculate its inverse XXinv = linalg.inv(XX) # Check whether to use homoskedastic errors if homoskedastic: # If so, calculate the homoskedastic variance estimator V_hat = (1 / (n-k)) * XXinv * (e.T @ e) else: # Otherwise, calculate an intermediate object S = (e @ np.ones(shape=(1,k))) * X # Then, get the HC0 sandwich estimator V_hat = (n / (n-k)) * XXinv @ (S.transpose() @ S) @ XXinv # Return the result return V_hat # Define a function which wraps rlassoEffect, so it can easily be parallelized # within rlassoEffects() def rlassoEffect_wrapper(i, x, y, d, method='double selection', I3=None, post=True, colnames_d=None, colnames_x=None, intercept=True, model=True, homoskedastic=False, X_dependent_lambda=False, lambda_start=None, c=1.1, gamma=None, numSim=5000, numIter=15, tol=10**(-5), threshold=-np.inf, par=True, corecap=np.inf, fix_seed=True, verbose=False): """ Wrapper for rlassoEffect() Inputs i: Integer, index of the current variable of interest See the rlassoEffect() documentation for other inputs Output res: Dictionary, contains a collection of results from rlassoEffect(), or a collection of empty strings and NANs if an error is encountered while running rlassoEffect() """ if np.amin(x.shape) == 1: x = cvec(x) y = cvec(y) d = cvec(d) try: col = rlassoEffect(x, y, d, method=method, I3=I3, post=post, colnames_d=colnames_d, colnames_x=colnames_x, intercept=intercept, model=model, homoskedastic=homoskedastic, X_dependent_lambda=X_dependent_lambda, lambda_start=lambda_start, c=c, gamma=gamma, numSim=numSim, numIter=numIter, tol=tol, threshold=threshold, par=par, corecap=corecap, fix_seed=fix_seed) smat = np.zeros(shape=(x.shape[1]+1, 1)) * np.nan smat[np.arange(smat.shape[0]) != i] = col['selection_index'] res = { 'coefficients': [i, col['alpha']], 'se': [i, col['se'][0]], 't': [i, col['t'][0]], 'pval': [i, col['pval'][0]], 'lasso_regs': {i: col}, 'reside': [i, col['residuals']['epsilon']], 'residv': [i, col['residuals']['v']], 'coef_mat': {i: col['coefficients_reg']}, 'selection_matrix': [i, smat] } except Exception as e: # Mimic the results in the original code, where any errors result in a # variable being skipped, and the preallocated results arrays containing # either NANs or empty lists res = { 'coefficients': [i, np.nan], 'se': [i, np.nan], 't': [i, np.nan], 'lasso_regs': {i: e}, 'pval': [i, np.nan], 'reside': [i, np.zeros(shape=(x.shape[0], 1)) * np.nan], 'residv': [i, np.zeros(shape=(x.shape[0], 1)) * np.nan], 'coef_mat': {i: []}, 'selection_matrix': [i, np.zeros(shape=(x.shape[1]+1, 1)) * np.nan] } if verbose: print('Error encountered in rlassoEffect_wrapper()') print(e) print() return res # Define a function to simulate quantiles needed for joint confidence intervals def simul_ci(k=1, Omega=None, var=None, seed=0, fix_seed=True, verbose=False): if Omega is None: Omega = np.identity(k) else: k = Omega.shape[0] if var is None: var = np.diag(Omega) try: if fix_seed: # This is a key difference between the R and Python implementation. # For some data sets, especially when k > n, scipy.stats.norm() will # return an error, claiming than Omega is singular. R's # MASS::mvrnorm(), on the other hand, will happily use Omega and # calculate draws from it. I had to add allow_singular to get both # implementations to work similarly. beta = multivariate_normal(cov=Omega, allow_singular=True).rvs( random_state=seed ) else: beta = multivariate_normal(cov=Omega, allow_singular=True).rvs() sim = np.amax(np.abs(cvec(beta) / cvec(np.sqrt(var)))) except Exception as e: if verbose: print('Error encountered in simul_ci():') print(e) print() sim = np.nan return sim ################################################################################ ### 2.2: Functions which are in the original R package ################################################################################ def rlassoEffect(x, y, d, method='double selection', I3=None, post=True, colnames_d=None, colnames_x=None, intercept=True, model=True, homoskedastic=False, X_dependent_lambda=False, lambda_start=None, c=1.1, gamma=None, numSim=5000, numIter=15, tol=10**(-5), threshold=-np.inf, par=True, corecap=np.inf, fix_seed=True): d = cvec(d) y = cvec(y) n, kx = x.shape if colnames_d is None: colnames_d = ['d1'] if (colnames_x is None) and (x is not None): colnames_x = ['x' + str(i) for i in np.arange(kx)] if method == 'double selection': I1 = rlasso(x, d, post=post, colnames=colnames_x, intercept=intercept, model=model, homoskedastic=homoskedastic, X_dependent_lambda=X_dependent_lambda, lambda_start=lambda_start, c=c, gamma=gamma, numSim=numSim, numIter=numIter, tol=tol, threshold=threshold, par=par, corecap=corecap, fix_seed=fix_seed).est['index'] I2 = rlasso(x, y, post=post, colnames=colnames_x, intercept=intercept, model=model, homoskedastic=homoskedastic, X_dependent_lambda=X_dependent_lambda, lambda_start=lambda_start, c=c, gamma=gamma, numSim=numSim, numIter=numIter, tol=tol, threshold=threshold, par=par, corecap=corecap, fix_seed=fix_seed).est['index'] # Original code checks if type(I3) is bool, but I believe they only do # that to see whether it has been defined by the user if I3 is not None: I3 = cvec(I3) I = cvec(I1.astype(bool) | I2.astype(bool) | I3.astype(bool)) else: I = cvec(I1.astype(bool) | I2.astype(bool)) # missing here: names(I) <- union(names(I1),names(I2)) if I.sum() == 0: I = None x = np.concatenate([d, x[:, I[:,0]]], axis=1) reg1 = lm(fit_intercept=True).fit(x, y) alpha = reg1.coef_[0,0] names_alpha = colnames_d resid = y - cvec(reg1.predict(x)) if I is None: xi = (resid) * np.sqrt(n/(n - 1)) else: xi = (resid) * np.sqrt(n/(n - I.sum() - 1)) if I is None: # Fit an intercept-only model reg2 = lm(fit_intercept=False).fit(np.ones_like(d), d) v = d - cvec(reg2.predict(np.ones_like(d))) else: reg2 = lm(fit_intercept=True).fit(x[:, 1:], d) v = d - cvec(reg2.predict(x[:, 1:])) var = ( (1/n) * (1/np.mean(v**2, axis=0)) * np.mean((v**2) * (xi**2), axis=0) * (1/np.mean(v**2, axis=0)) ) se = np.sqrt(var) tval = alpha / np.sqrt(var) pval = 2 * norm.cdf(-np.abs(tval)) if I is None: no_selected = 1 else: no_selected = 0 res = {'epsilon': xi, 'v': v} if np.issubdtype(type(colnames_d), np.str_): colnames_d = [colnames_d] results = { 'alpha': alpha, #'se': pd.DataFrame(se, index=colnames_d), 'se': se, 't': tval, 'pval': pval, 'no_selected': no_selected, 'coefficients': alpha, 'coefficient': alpha, 'coefficients_reg': reg1.coef_, 'selection_index': I, 'residuals': res, #call = match.call(), 'samplesize': n } elif method == 'partialling out': reg1 = rlasso(x, y, post=post, colnames=colnames_x, intercept=intercept, model=model, homoskedastic=homoskedastic, X_dependent_lambda=X_dependent_lambda, lambda_start=lambda_start, c=c, gamma=gamma, numSim=numSim, numIter=numIter, tol=tol, threshold=threshold, par=par, corecap=corecap, fix_seed=fix_seed) yr = reg1.est['residuals'] reg2 = rlasso(x, d, post=post, colnames=colnames_x, intercept=intercept, model=model, homoskedastic=homoskedastic, X_dependent_lambda=X_dependent_lambda, lambda_start=lambda_start, c=c, gamma=gamma, numSim=numSim, numIter=numIter, tol=tol, threshold=threshold, par=par, corecap=corecap, fix_seed=fix_seed) dr = reg2.est['residuals'] reg3 = lm(fit_intercept=True).fit(dr, yr) alpha = reg3.coef_[0,0] resid = yr - cvec(reg3.predict(dr)) # This is a difference to the original code. The original code uses # var <- vcov(reg3)[2, 2], which is the homoskedastic covariance # estimator for OLS. I wrote get_cov() to calculate that, because the # linear regression implementation in sklearn does not include standard # error calculations. (I could have switched to statsmodels instead, but # sklearn seems more likely to be maintained in the future.) I then # added the option to get_cov() to calculate heteroskedastic standard # errors. I believe that if the penalty term is adjusted for # heteroskedasticity, heteroskedastic standard errors should also be # used here, to be internally consistent. var = np.array([get_cov(dr, resid, homoskedastic=homoskedastic)[1,1]]) se = np.sqrt(var) tval = alpha / np.sqrt(var) pval = 2 * norm.cdf(-np.abs(tval)) res = {'epsilon': resid, 'v': dr} I1 = reg1.est['index'] I2 = reg2.est['index'] I = cvec(I1.astype(bool) | I2.astype(bool)) #names(I) <- union(names(I1),names(I2)) results = { 'alpha': alpha, 'se': se, 't': tval, 'pval': pval, 'coefficients': alpha, 'coefficient': alpha, 'coefficients_reg': reg1.est['coefficients'], 'selection_index': I, 'residuals': res, #call = match.call(), 'samplesize': n } return results ################################################################################ ### 3: Define classes ################################################################################ class rlassoEffects(): # Initialize index to None to get index=c(1:ncol(x)) def __init__(self, x, y, index=None, method='partialling out', I3=None, post=True, colnames=None, intercept=True, model=True, homoskedastic=False, X_dependent_lambda=False, lambda_start=None, c=1.1, gamma=None, numSim=5000, numIter=15, tol=10**(-5), threshold=-np.inf, par_outer=True, par_inner=False, par_any=True, corecap=np.inf, fix_seed=True, verbose=False): # Initialize internal variables if isinstance(x, pd.DataFrame) and colnames is None: colnames = x.columns self.x = np.array(x).astype(np.float32) self.y = cvec(y).astype(np.float32) if index is None: self.index = cvec(np.arange(self.x.shape[1])) else: self.index = cvec(index) self.method = method self.I3 = I3 self.post = post self.colnames = colnames if self.index.dtype == bool: self.k = self.p1 = self.index.sum() else: self.k = self.p1 = len(self.index) self.n = x.shape[1] self.intercept = intercept self.model = model self.homoskedastic = homoskedastic self.X_dependent_lambda = X_dependent_lambda self.lambda_start = lambda_start self.c = c self.gamma = gamma self.numSim = numSim self.numIter = numIter self.tol = tol self.threshold = threshold self.par_outer = par_outer self.par_inner = par_inner self.par_any = par_any self.corecap = corecap self.fix_seed = fix_seed if not self.par_any: self.par_outer = self.par_inner = False elif self.par_outer and self.par_inner: self.par_outer = False self.verbose = verbose # Initialize internal variables used in other functions self.B = None self.parm = None self.level = None self.joint = None # preprocessing index numerical vector if np.issubdtype(self.index.dtype, np.number): self.index = self.index.astype(np.int) if not (np.all(self.index[:,0] < self.x.shape[1]) and (len(self.index) <= self.x.shape[1])): raise ValueError('Numeric index includes elements which are ' + 'outside of the column range of x, or the ' + 'indexing vector is too long') elif self.index.dtype == bool: if not (len(self.index) <= self.x.shape[1]): raise ValueError('Boolean index vector is too long') self.index = cvec([i for i, b in enumerate(self.index[:,0]) if b]) elif np.issubdtype(self.index.dtype, np.str_): if not np.all([s in self.x.columns for s in self.index[:,0]]): raise ValueError('String index specifies column names which ' + 'are not in the column names of x') self.index = ( cvec([i for i, s in enumerate(self.index[:,0]) if s in self.x.columns]) ) else: raise ValueError('Argument index has an invalid type') if (self.method == 'double selection') and (self.I3 is not None): I3ind = cvec([i for i, b in enumerate(self.I3) if b]) if I3ind != []: if len([x for x in I3ind[:,0] if x in self.index[:,0]]) > 0: raise ValueError('I3 and index must not overlap!') if self.colnames is None: self.colnames = ['V' + str(i+1) for i in range(self.x.shape[1])] # Check whether to use parallel processing if self.par_outer: # If so, get the number of cores to use cores = np.int(np.amin([mp.cpu_count(), self.corecap])) else: # Otherwise, use only one core (i.e. run sequentially) cores = 1 if (self.I3 is not None): res = jbl.Parallel(n_jobs=cores)( jbl.delayed(rlassoEffect_wrapper)( i, x=np.delete(self.x, i, axis=1), y=self.y, d=self.x[:, i], method=self.method, I3=np.delete(self.I3, i, axis=0), post=self.post, colnames_d=self.colnames[i], colnames_x=[c for j, c in enumerate(self.colnames) if j!=i], intercept=self.intercept, model=self.model, homoskedastic=self.homoskedastic, X_dependent_lambda=self.X_dependent_lambda, lambda_start=self.lambda_start, c=self.c, gamma=self.gamma, numSim=self.numSim, numIter=self.numIter, tol=self.tol, threshold=self.threshold, par=self.par_inner, corecap=self.corecap, fix_seed=self.fix_seed, verbose=self.verbose ) for i in self.index[:,0] ) else: res = jbl.Parallel(n_jobs=cores)( jbl.delayed(rlassoEffect_wrapper)( i, x=np.delete(self.x, i, axis=1), y=self.y, d=self.x[:, i], method=self.method, I3=self.I3, post=self.post, colnames_d=self.colnames[i], colnames_x=[c for j, c in enumerate(self.colnames) if j!=i], intercept=self.intercept, model=self.model, homoskedastic=self.homoskedastic, X_dependent_lambda=self.X_dependent_lambda, lambda_start=self.lambda_start, c=self.c, gamma=self.gamma, numSim=self.numSim, numIter=self.numIter, tol=self.tol, threshold=self.threshold, par=self.par_inner, corecap=self.corecap, fix_seed=self.fix_seed, verbose=self.verbose ) for i in self.index[:,0] ) # Convert collection of parallel results into usable results sorted by # their index coefficients = np.array([r['coefficients'] for r in res]) coefficients = cvec(coefficients[coefficients[:,0].argsort(), 1]) se = np.array([r['se'] for r in res]) se = cvec(se[se[:,0].argsort(), 1]) t = np.array([r['t'] for r in res]) t = cvec(t[t[:,0].argsort(), 1]) pval = np.array([r['pval'] for r in res]) pval = cvec(pval[pval[:,0].argsort(), 1]) lasso_regs = {} [lasso_regs.update(r['lasso_regs']) for r in res] reside = ( np.array([np.concatenate([cvec(r['reside'][0]), r['reside'][1]], axis=0)[:,0] for r in res]) ) reside = reside[reside[:,0].argsort(), 1:].T residv = ( np.array([np.concatenate([cvec(r['residv'][0]), r['residv'][1]], axis=0)[:,0] for r in res]) ) residv = residv[residv[:,0].argsort(), 1:].T coef_mat = {} [coef_mat.update(r['coef_mat']) for r in res] # Replaced this with the following two steps, to ensure this always # results in a two dimensional array #selection_matrix = ( # np.array([np.concatenate([cvec(r['selection_matrix'][0]), # r['selection_matrix'][1]], # axis=0)[:,0] # for r in res]) #) selection_matrix = [ np.concatenate([cvec(r['selection_matrix'][0]), r['selection_matrix'][1]], axis=0).T for r in res ] selection_matrix = ( np.concatenate(selection_matrix, axis=0) ) selection_matrix = ( selection_matrix[selection_matrix[:,0].argsort(), 1:] ) # Added this, to be able to add names to results objects idx = [self.colnames[i] for i in self.index[:,0]] residuals = { 'e': pd.DataFrame(reside, columns=idx), 'v': pd.DataFrame(residv, columns=idx) } self.res = { 'coefficients': pd.DataFrame(coefficients, index=idx), 'se':
pd.DataFrame(se, index=idx)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Module to parse/process/visualize/export GTFS feed. @author: ikespand """ import pandas as pd import zipfile # from keplergl_cli.keplergl_cli import Visualize from rasta.rasta_kepler import RastaKepler from shapely.geometry import Point, LineString import geopandas as gpd # %% class Gtfs: """GTFS feed parser and visualizer.""" def __init__(self, zip_file): self.fname = zip_file self.zf = zipfile.ZipFile(self.fname) self.check_required_files() self.read_required_files() def check_required_files(self): """GTFS protocol has certain files which are compulsory and this function checks for the same. """ required_files = [ "agency.txt", "stops.txt", "routes.txt", "trips.txt", "stop_times.txt", ] if set(required_files).issubset(self.zf.namelist()): print("All required files for GTFS are available") else: print("Error. Required files are not available. Exiting..") def read_required_files(self): """Function to read FEW of the required files of GTFS""" self.stops = pd.read_csv(self.zf.open("stops.txt")) self.routes = pd.read_csv(self.zf.open("routes.txt")) self.trips = pd.read_csv(self.zf.open("trips.txt")) def visualize_route(self, MAPBOX_API_KEY, output_map=None): """Function to enable a visualization""" if output_map is None: self.output_map = "Unknown_" else: self.output_map = output_map if not ("shapes.txt" in self.zf.namelist()): print("Shape file is not present!") # self.visualize_stops(MAPBOX_API_KEY) Gtfs.visualizer( {"stops": self.stops}, MAPBOX_API_KEY, self.output_map ) else: print("Shape file is present, processing...") self.process_shapes(MAPBOX_API_KEY) @staticmethod def visualizer(data, MAPBOX_API_KEY, output_map): """Static function which simply usage keplergl_cli to add the data to the map. """ vis = RastaKepler(api_key=MAPBOX_API_KEY, output_map=output_map) for key in data: vis.add_data(data=data[key], names=key) html_path = vis.render(open_browser=False, read_only=False) return html_path def process_shapes(self, MAPBOX_API_KEY): """Here, we find the shape_id from the shapes.txt and then with that filter out the route_id and create a geopandas df for each route. """ self.shapes = pd.read_csv(self.zf.open("shapes.txt")) if (self.shapes).empty: print("Shape file is present, however empty!") self.visualize_stops(MAPBOX_API_KEY) else: shape_ids = self.shapes["shape_id"].unique() geo_df = [] for shape_id in shape_ids: # Filter out the shape for given `shape_id` shape = self.shapes[self.shapes["shape_id"] == shape_id] # Find the trip by matching `shape_idz trip = self.trips[self.trips["shape_id"] == shape_id] # Find the `route` from the given route_id from the `trip` route = self.routes[ self.routes["route_id"] == trip["route_id"].unique()[0] ] route = route.reset_index(drop=True) # zip the coordinates into shapely points and convert to gdf geometry = [ Point(xy) for xy in zip(shape.shape_pt_lon, shape.shape_pt_lat) ] __df = pd.DataFrame() __df.loc[0, "shape_id"] = shape_id # Concat the route info to the shape for tooltip in map __df1 = pd.concat([__df, route], axis=1) # Append for each route geo_df.append( gpd.GeoDataFrame(__df1, geometry=[LineString(geometry)]) ) self.shape_route =
pd.concat(geo_df)
pandas.concat
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Series, date_range, ) import pandas._testing as tm from pandas.core.api import Int64Index class TestDataFrameTruncate: def test_truncate(self, datetime_frame, frame_or_series): ts = datetime_frame[::3] if frame_or_series is Series: ts = ts.iloc[:, 0] start, end = datetime_frame.index[3], datetime_frame.index[6] start_missing = datetime_frame.index[2] end_missing = datetime_frame.index[7] # neither specified truncated = ts.truncate() tm.assert_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) tm.assert_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) tm.assert_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) tm.assert_equal(truncated, expected) truncated = ts.truncate(before=start_missing) tm.assert_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) tm.assert_equal(truncated, expected) truncated = ts.truncate(after=end_missing) tm.assert_equal(truncated, expected) # corner case, empty series/frame returned truncated = ts.truncate(after=ts.index[0] - ts.index.freq) assert len(truncated) == 0 truncated = ts.truncate(before=ts.index[-1] + ts.index.freq) assert len(truncated) == 0 msg = "Truncate: 2000-01-06 00:00:00 must be after 2000-02-04 00:00:00" with pytest.raises(ValueError, match=msg): ts.truncate( before=ts.index[-1] - ts.index.freq, after=ts.index[0] + ts.index.freq ) def test_truncate_copy(self, datetime_frame): index = datetime_frame.index truncated = datetime_frame.truncate(index[5], index[10]) truncated.values[:] = 5.0 assert not (datetime_frame.values[5:11] == 5).any() def test_truncate_nonsortedindex(self, frame_or_series): # GH#17935 obj = DataFrame({"A": ["a", "b", "c", "d", "e"]}, index=[5, 3, 2, 9, 0]) if frame_or_series is Series: obj = obj["A"] msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): obj.truncate(before=3, after=9) def test_sort_values_nonsortedindex(self): # TODO: belongs elsewhere? rng = date_range("2011-01-01", "2012-01-01", freq="W") ts = DataFrame( {"A": np.random.randn(len(rng)), "B": np.random.randn(len(rng))}, index=rng ) msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): ts.sort_values("A", ascending=False).truncate( before="2011-11", after="2011-12" ) def test_truncate_nonsortedindex_axis1(self): # GH#17935 df = DataFrame( { 3: np.random.randn(5), 20: np.random.randn(5), 2: np.random.randn(5), 0: np.random.randn(5), }, columns=[3, 20, 2, 0], ) msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): df.truncate(before=2, after=20, axis=1) @pytest.mark.parametrize( "before, after, indices", [(1, 2, [2, 1]), (None, 2, [2, 1, 0]), (1, None, [3, 2, 1])], ) @pytest.mark.parametrize("klass", [Int64Index, DatetimeIndex]) def test_truncate_decreasing_index( self, before, after, indices, klass, frame_or_series ): # https://github.com/pandas-dev/pandas/issues/33756 idx = klass([3, 2, 1, 0]) if klass is DatetimeIndex: before = pd.Timestamp(before) if before is not None else None after = pd.Timestamp(after) if after is not None else None indices = [pd.Timestamp(i) for i in indices] values = frame_or_series(range(len(idx)), index=idx) result = values.truncate(before=before, after=after) expected = values.loc[indices]
tm.assert_equal(result, expected)
pandas._testing.assert_equal
import os import pickle import numpy as np import torch import torch.nn.functional as F from collections import Counter from collections import OrderedDict import copy from sys import argv import json import pandas as pd import argparse from tqdm.auto import tqdm from IPython.core.debugger import Pdb split_files = { "nqueens_11_6_test.pkl": (8332,"nqueens_11_6_test_unique.pkl","nqueens_11_6_test_amb.pkl"), "nqueens_11_6_val.pkl": (8335,"nqueens_11_6_val_unique.pkl","nqueens_11_6_val_amb.pkl"), "futo_6_18_5_test.pkl": (7505,"futo_6_18_5_test_unique.pkl","futo_6_18_5_test_amb.pkl"), "futo_6_18_5_val.pkl": (7544,"futo_6_18_5_val_unique.pkl","futo_6_18_5_val_amb.pkl") } def exclude_rows(table,colname,values): return table[~table[colname].isin(set(values))] def read_tables(exp_dir,dir_list): gdf = None for this_dir in dir_list: df = main(os.path.join(exp_dir, this_dir)) df = to_numeric(df, df.columns) if gdf is None: gdf = df else: gdf = gdf.append(df) nan_columns = gdf.columns[gdf.isnull().values.sum(axis=0) > 0] print("filling nans in following column with 0:", nan_columns) gdf = gdf.fillna(value= 0) gdf = exclude_rows(gdf,'wds',{'four-one','four.one'}) return gdf def row_splitter(row): if row["test_file"] in split_files: unq, unq_file, amb_file = split_files[row["test_file"]] row_unq = copy.deepcopy(row) row_unq["test_file"] = unq_file row_unq["test_acc"] = 1 - float(row["1_sol_error"])/unq row_amb = copy.deepcopy(row) row_amb["test_file"] = amb_file row_amb["test_acc"] = (row["test_acc"]*10000 - (unq-float(row["1_sol_error"])))/(10000-unq) return [row,row_unq,row_amb] else: return [row] def load_errors(error_dir): errors = [] error_files = [os.path.join(error_dir, x) for x in os.listdir( error_dir) if x.find("errors") > -1] for f in error_files: errors.extend(pickle.load(open(f, 'rb'))) retval = OrderedDict(Counter(errors)) retval = OrderedDict([(str(k)+"_sol_errors", v) for k, v in retval.items()]) return retval def read_summary_table(exp_dir): if not os.path.exists(os.path.join(exp_dir, "summary.json")): print(exp_dir, "missing summary.json file!") return None with open(os.path.join(exp_dir, "summary.json")) as f: l = f.readlines() l = [json.loads(x) for x in l] res = pd.DataFrame(l) res.loc[res['epoch'] == -1, 'epoch'] = None res.loc[:, ['epoch']] = res.loc[:, ['epoch']].ffill() return res def is_safe_sudoku(x,query,n): mask = (query>0) if not torch.equal(x[mask],query[mask]): return False grid = x.detach().cpu().numpy().astype(int) grid = grid.reshape(n,n) b_size = int(np.sqrt(n)) for i in range(n): if len(set(grid[i]))<n: return False if len(set(grid[:,i]))<n: return False b_row = i//b_size b_col = i%b_size if len(set(grid[b_size*b_row:b_size*(b_row+1),b_size*b_col:b_size*(b_col+1)].flatten()))<n: return False return True def pointwise_accuracy_stats(query, target_set, count, raw_pred, prefix=''): pred = raw_pred.argmax(dim=1).int() #Pdb().set_trace() non_zero_ind = (query > 0) copy_accuracy = (query[non_zero_ind] == pred[non_zero_ind]).sum().float()/non_zero_ind.sum() copy_point_total = non_zero_ind.sum().item() unique_point_ind = (target_set[:, 0, :] == target_set[:, 1, :]) unique_point_ind = unique_point_ind*(~non_zero_ind) unique_point_accuracy = (target_set[:, 0, :][unique_point_ind] == pred[unique_point_ind]).sum().float()/unique_point_ind.sum() unique_point_total = unique_point_ind.sum().item() ambiguous_point_ind = ~(target_set[:, 0, :] == target_set[:, 1, :]) ambiguous_point_accuracy = ( target_set[:, 0, :][ambiguous_point_ind] == pred[ambiguous_point_ind]).sum() ambiguous_point_accuracy += (target_set[:, 1, :] [ambiguous_point_ind] == pred[ambiguous_point_ind]).sum() ambiguous_point_accuracy = ambiguous_point_accuracy.float() / \ ambiguous_point_ind.sum() ambiguous_point_total = ambiguous_point_ind.sum().item() total_points = query.numel() #Pdb().set_trace() strict_acc_count = float((target_set[:, 0, :] == pred).all(dim=1).sum( ) + (((target_set[:, 1, :] == pred).all(dim=1).int())*(count-1)).sum()) strict_accuracy = strict_acc_count / float(pred.size(0)) lac = ((target_set[:,0,:] == pred) | (target_set[:,1,:] == pred)).all(dim=1).sum().float().item() la = lac / float(pred.size(0)) lousy_accuracy = (target_set[:,0,:]==pred).int()+(target_set[:,1,:]==pred).int()*(count-1).unsqueeze(1).expand_as(target_set[:,0,:]) lousy_accuracy = ((lousy_accuracy>0).sum(dim=1)==81) lousy_acc_count = lousy_accuracy.sum().float() lousy_accuracy = (lousy_acc_count/pred.shape[0]).item() corrected_accuracy = [] for i,x in enumerate(pred): corrected_accuracy.append(is_safe_sudoku(x,query[i],9)) corrected_accuracy = torch.tensor(corrected_accuracy).float().mean() if lac != lousy_acc_count: Pdb().set_trace() rv = OrderedDict() rv[prefix+'copy_acc'] = copy_accuracy.item() rv[prefix+'unique_pt_acc'] = unique_point_accuracy.item() rv[prefix+'amb_pt_acc'] = ambiguous_point_accuracy.item() rv[prefix+'lousy_acc'] = lousy_accuracy rv[prefix+'strict_acc'] = strict_accuracy rv[prefix+'total_pts'] = total_points rv[prefix+'copy_pts'] = copy_point_total rv[prefix+'unique_pts'] = unique_point_total rv[prefix+'amb_pts'] = ambiguous_point_total rv[prefix+'strict_count'] = strict_acc_count rv[prefix+'lousy_count'] = lac rv[prefix+'corrected_acc'] = corrected_accuracy.item() return rv # return copy_accuracy.item(), unique_point_accuracy.item(), ambiguous_point_accuracy.item(), lousy_accuracy.item(), total_points, copy_point_total, unique_point_total, ambiguous_point_total, lousy_acc_count def extract_data_from_dump(exp_dir, analyze=False): if not analyze: return [] if not os.path.exists(os.path.join(exp_dir, "pred_dump.pkl")): print(exp_dir, "pred dump doesn't exist") return [] with open(os.path.join(exp_dir, "pred_dump.pkl"), "rb") as f: dump = pickle.load(f) query = [] target_set = [] count = [] raw_pred = [] for z in dump: q, t, c, r = z["feed_dict"]["query"], z["feed_dict"]["target_set"], z["feed_dict"]["count"], z["output_dict"]["pred"] query.append(q) target_set.append(t) count.append(c) raw_pred.append(r) count_arr = torch.cat(count).int() unique_ind = count_arr == 1 amb_ind = count_arr > 1 all_stats = pointwise_accuracy_stats(torch.cat(query).int(), torch.cat( target_set).int(), torch.cat(count).int(), torch.cat(raw_pred).float(), 'ALL ') unique_stats = pointwise_accuracy_stats(torch.cat(query).int()[unique_ind], torch.cat( target_set).int()[unique_ind], count_arr[unique_ind], torch.cat(raw_pred).float()[unique_ind], 'UN ') amb_stats = pointwise_accuracy_stats(torch.cat(query).int()[amb_ind], torch.cat( target_set).int()[amb_ind], count_arr[amb_ind], torch.cat(raw_pred).float()[amb_ind], 'AMB ') return [all_stats, unique_stats, amb_stats] def read_summary_file(exp_dir, analyze=False, acc_type= "corrected accuracy"): if not os.path.exists(os.path.join(exp_dir, "summary.json")): print(exp_dir, "missing summary.json file!") return [] with open(os.path.join(exp_dir, "summary.json")) as f: l = f.readlines() l = [json.loads(x) for x in l[::-1]] test_files = set() test_stats = [] best_train = 0 last_train = -1 best_train_epoch = 0 best_dev = 0 last_dev = -1 best_dev_epoch = 0 current_epoch = 0 total_epochs = 0 accuracy_type = acc_type for stat in l: if (stat["mode"]) != "test": current_epoch = stat['epoch'] if total_epochs == 0: total_epochs = current_epoch if last_train < 0: last_train = stat[accuracy_type] if best_train <= stat[accuracy_type]: best_train_epoch = stat['epoch'] best_train = stat[accuracy_type] continue if (stat["data_file"].find("dev")) > 0: if last_dev < 0: last_dev = stat[accuracy_type] if (best_dev <= stat[accuracy_type]) and (stat['lr'] != 0): best_dev_epoch = current_epoch best_dev = stat[accuracy_type] tf = os.path.basename(stat["data_file"]) if tf in test_files: continue test_files.add(tf) test_stats.append(OrderedDict( {"test_file": tf, "test_acc": stat['corrected accuracy'] if stat['data_file'].find('test') > 0 else stat[accuracy_type]})) if "error distribution" in stat: test_stats[-1].update({(str(k+1)+"_sol_error", v) for k, v in enumerate(stat["error distribution"].split("-"))}) if len(test_stats) == 0: print(exp_dir, "missing test results in summary.json file!") #copy_accuracy, unique_point_accuracy, ambiguous_point_accuracy, lousy_accuracy = extract_data_from_dump( # exp_dir, analyze) #Pdb().set_trace() addn_stats = extract_data_from_dump(exp_dir, analyze) split_test_stats = [] for row in test_stats: row["best_train"] = best_train row["last_train"] = last_train row["best_train_epoch"] = best_train_epoch row["best_dev"] = best_dev row["last_dev"] = last_dev row["best_dev_epoch"] = best_dev_epoch row['total_epochs'] = total_epochs for this_dict in addn_stats: for k in this_dict: row[k] = this_dict[k] split_test_stats.extend(row_splitter(row)) #row['copy_acc'] = copy_accuracy #row['unique_point_acc'] = unique_point_accuracy #row['ambiguous_point_acc'] = ambiguous_point_accuracy #row['lousy_acc'] = lousy_accuracy return split_test_stats def get_params(exp_dir): all_params = exp_dir.split('_') all_params = dict([(x.split('-')[0], '.'.join(x.split('-')[1:])) for x in all_params]) return all_params def collate(parent_dir, analyze=False,acc_type='corrected accuracy'): exp_dirs = os.listdir(parent_dir) df = [] for exp_dir in tqdm(exp_dirs): dir_name = os.path.join(parent_dir, exp_dir) for expt_dict in read_summary_file(dir_name, analyze,acc_type): expt_dict["config"] = exp_dir expt_dict.update(get_params(exp_dir)) df.append(expt_dict) return
pd.DataFrame(df)
pandas.DataFrame
import pandas as pd from functools import reduce def load(): print("Cargando datos") datos ={} """ Seguridad y convivencia """ datos['Convivencia'] = data_convivencia = pd.read_excel('./data/datos separados.xlsx', 'Indicadores de convivencia decr') datos['Seguridad'] = data_seguridad = pd.read_excel('./data/datos separados.xlsx', 'Indicadores de seguridad') """ Tránsito """ datos['Metrolinea'] = data_metrolinea = pd.read_excel('./data/datos separados.xlsx', 'Metrolínea') datos['ComparendosMetrolinea'] = data_comparendos_metrolinea = pd.read_excel('./data/datos separados.xlsx', 'Comparendos Metrolinea') datos['AccidentesTransito'] = data_accidentes_transito = pd.read_excel('./data/datos separados.xlsx', 'Accidentes Transito') """ Agua """ datos['ReinstalacionAgua'] = data_reinstalacion_agua = pd.read_excel('./data/datos separados.xlsx', 'Reinstalación reconexión AGUA') datos['Fuentes'] = data_fuentes = pd.read_excel('./data/datos separados.xlsx', 'Fuentes de agua') datos['Produccion'] = data_produccion =
pd.read_excel('./data/datos separados.xlsx', 'Producción de agua')
pandas.read_excel
import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from itertools import product from sklearn.model_selection import TimeSeriesSplit import vectorbt as vbt from vectorbt.generic import nb seed = 42 day_dt = np.timedelta64(86400000000000) df = pd.DataFrame({ 'a': [1, 2, 3, 4, np.nan], 'b': [np.nan, 4, 3, 2, 1], 'c': [1, 2, np.nan, 2, 1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1), datetime(2018, 1, 2), datetime(2018, 1, 3), datetime(2018, 1, 4), datetime(2018, 1, 5) ])) group_by = np.array(['g1', 'g1', 'g2']) @njit def i_or_col_pow_nb(i_or_col, x, pow): return np.power(x, pow) @njit def pow_nb(x, pow): return np.power(x, pow) @njit def nanmean_nb(x): return np.nanmean(x) @njit def i_col_nanmean_nb(i, col, x): return np.nanmean(x) @njit def i_nanmean_nb(i, x): return np.nanmean(x) @njit def col_nanmean_nb(col, x): return np.nanmean(x) # ############# accessors.py ############# # class TestAccessors: def test_shuffle(self): pd.testing.assert_series_equal( df['a'].vbt.shuffle(seed=seed), pd.Series( np.array([2.0, np.nan, 3.0, 1.0, 4.0]), index=df['a'].index, name=df['a'].name ) ) np.testing.assert_array_equal( df['a'].vbt.shuffle(seed=seed).values, nb.shuffle_1d_nb(df['a'].values, seed=seed) ) pd.testing.assert_frame_equal( df.vbt.shuffle(seed=seed), pd.DataFrame( np.array([ [2., 2., 2.], [np.nan, 4., 1.], [3., 3., 2.], [1., np.nan, 1.], [4., 1., np.nan] ]), index=df.index, columns=df.columns ) ) @pytest.mark.parametrize( "test_value", [-1, 0., np.nan], ) def test_fillna(self, test_value): pd.testing.assert_series_equal(df['a'].vbt.fillna(test_value), df['a'].fillna(test_value)) pd.testing.assert_frame_equal(df.vbt.fillna(test_value), df.fillna(test_value)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal(df['a'].vbt.bshift(test_n), df['a'].shift(-test_n)) np.testing.assert_array_equal( df['a'].vbt.bshift(test_n).values, nb.bshift_nb(df['a'].values, test_n) ) pd.testing.assert_frame_equal(df.vbt.bshift(test_n), df.shift(-test_n)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(df['a'].vbt.fshift(test_n), df['a'].shift(test_n)) np.testing.assert_array_equal( df['a'].vbt.fshift(test_n).values, nb.fshift_1d_nb(df['a'].values, test_n) ) pd.testing.assert_frame_equal(df.vbt.fshift(test_n), df.shift(test_n)) def test_diff(self): pd.testing.assert_series_equal(df['a'].vbt.diff(), df['a'].diff()) np.testing.assert_array_equal(df['a'].vbt.diff().values, nb.diff_1d_nb(df['a'].values)) pd.testing.assert_frame_equal(df.vbt.diff(), df.diff()) def test_pct_change(self): pd.testing.assert_series_equal(df['a'].vbt.pct_change(), df['a'].pct_change(fill_method=None)) np.testing.assert_array_equal(df['a'].vbt.pct_change().values, nb.pct_change_1d_nb(df['a'].values)) pd.testing.assert_frame_equal(df.vbt.pct_change(), df.pct_change(fill_method=None)) def test_ffill(self): pd.testing.assert_series_equal(df['a'].vbt.ffill(), df['a'].ffill()) pd.testing.assert_frame_equal(df.vbt.ffill(), df.ffill()) def test_product(self): assert df['a'].vbt.product() == df['a'].product() np.testing.assert_array_equal(df.vbt.product(), df.product()) def test_cumsum(self): pd.testing.assert_series_equal(df['a'].vbt.cumsum(), df['a'].cumsum()) pd.testing.assert_frame_equal(df.vbt.cumsum(), df.cumsum()) def test_cumprod(self): pd.testing.assert_series_equal(df['a'].vbt.cumprod(), df['a'].cumprod()) pd.testing.assert_frame_equal(df.vbt.cumprod(), df.cumprod()) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_min(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_min(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.rolling_min(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.rolling_min(test_window), df.rolling(test_window).min() ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_max(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_max(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.rolling_max(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.rolling_max(test_window), df.rolling(test_window).max() ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_mean(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_mean(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.rolling_mean(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.rolling_mean(test_window), df.rolling(test_window).mean() ) @pytest.mark.parametrize( "test_window,test_minp,test_ddof", list(product([1, 2, 3, 4, 5], [1, None], [0, 1])) ) def test_rolling_std(self, test_window, test_minp, test_ddof): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_std(test_window, minp=test_minp, ddof=test_ddof), df['a'].rolling(test_window, min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.rolling_std(test_window, minp=test_minp, ddof=test_ddof), df.rolling(test_window, min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.rolling_std(test_window), df.rolling(test_window).std() ) @pytest.mark.parametrize( "test_window,test_minp,test_adjust", list(product([1, 2, 3, 4, 5], [1, None], [False, True])) ) def test_ewm_mean(self, test_window, test_minp, test_adjust): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.ewm_mean(test_window, minp=test_minp, adjust=test_adjust), df['a'].ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).mean() ) pd.testing.assert_frame_equal( df.vbt.ewm_mean(test_window, minp=test_minp, adjust=test_adjust), df.ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).mean() ) pd.testing.assert_frame_equal( df.vbt.ewm_mean(test_window), df.ewm(span=test_window).mean() ) @pytest.mark.parametrize( "test_window,test_minp,test_adjust,test_ddof", list(product([1, 2, 3, 4, 5], [1, None], [False, True], [0, 1])) ) def test_ewm_std(self, test_window, test_minp, test_adjust, test_ddof): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.ewm_std(test_window, minp=test_minp, adjust=test_adjust, ddof=test_ddof), df['a'].ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.ewm_std(test_window, minp=test_minp, adjust=test_adjust, ddof=test_ddof), df.ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.ewm_std(test_window), df.ewm(span=test_window).std() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_min(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_min(minp=test_minp), df['a'].expanding(min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.expanding_min(minp=test_minp), df.expanding(min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.expanding_min(), df.expanding().min() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_max(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_max(minp=test_minp), df['a'].expanding(min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.expanding_max(minp=test_minp), df.expanding(min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.expanding_max(), df.expanding().max() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_mean(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_mean(minp=test_minp), df['a'].expanding(min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.expanding_mean(minp=test_minp), df.expanding(min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.expanding_mean(), df.expanding().mean() ) @pytest.mark.parametrize( "test_minp,test_ddof", list(product([1, 3], [0, 1])) ) def test_expanding_std(self, test_minp, test_ddof): pd.testing.assert_series_equal( df['a'].vbt.expanding_std(minp=test_minp, ddof=test_ddof), df['a'].expanding(min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.expanding_std(minp=test_minp, ddof=test_ddof), df.expanding(min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.expanding_std(), df.expanding().std() ) def test_apply_along_axis(self): pd.testing.assert_frame_equal( df.vbt.apply_along_axis(i_or_col_pow_nb, 2, axis=0), df.apply(pow_nb, args=(2,), axis=0, raw=True) ) pd.testing.assert_frame_equal( df.vbt.apply_along_axis(i_or_col_pow_nb, 2, axis=1), df.apply(pow_nb, args=(2,), axis=1, raw=True) ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_apply(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_apply(test_window, i_col_nanmean_nb, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(test_window, i_col_nanmean_nb, minp=test_minp), df.rolling(test_window, min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(test_window, i_col_nanmean_nb), df.rolling(test_window).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(3, i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [2.75, 2.75, 2.75], [np.nan, np.nan, np.nan] ]), index=df.index, columns=df.columns ) ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_apply(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_apply(i_col_nanmean_nb, minp=test_minp), df['a'].expanding(min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_col_nanmean_nb, minp=test_minp), df.expanding(min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_col_nanmean_nb), df.expanding().apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan], [2.0, 2.0, 2.0], [2.2857142857142856, 2.2857142857142856, 2.2857142857142856], [2.4, 2.4, 2.4], [2.1666666666666665, 2.1666666666666665, 2.1666666666666665] ]), index=df.index, columns=df.columns ) ) def test_groupby_apply(self): pd.testing.assert_series_equal( df['a'].vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_col_nanmean_nb), df['a'].groupby(np.asarray([1, 1, 2, 2, 3])).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_col_nanmean_nb), df.groupby(np.asarray([1, 1, 2, 2, 3])).agg({ 'a': lambda x: nanmean_nb(x.values), 'b': lambda x: nanmean_nb(x.values), 'c': lambda x: nanmean_nb(x.values) }), # any clean way to do column-wise grouping in pandas? ) def test_groupby_apply_on_matrix(self): pd.testing.assert_frame_equal( df.vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [2., 2., 2.], [2.8, 2.8, 2.8], [1., 1., 1.] ]), index=pd.Int64Index([1, 2, 3], dtype='int64'), columns=df.columns ) ) @pytest.mark.parametrize( "test_freq", ['1h', '3d', '1w'], ) def test_resample_apply(self, test_freq): pd.testing.assert_series_equal( df['a'].vbt.resample_apply(test_freq, i_col_nanmean_nb), df['a'].resample(test_freq).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.resample_apply(test_freq, i_col_nanmean_nb), df.resample(test_freq).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.resample_apply('3d', i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [2.28571429, 2.28571429, 2.28571429], [2., 2., 2.] ]), index=pd.DatetimeIndex(['2018-01-01', '2018-01-04'], dtype='datetime64[ns]', freq='3D'), columns=df.columns ) ) def test_applymap(self): @njit def mult_nb(i, col, x): return x * 2 pd.testing.assert_series_equal( df['a'].vbt.applymap(mult_nb), df['a'].map(lambda x: x * 2) ) pd.testing.assert_frame_equal( df.vbt.applymap(mult_nb), df.applymap(lambda x: x * 2) ) def test_filter(self): @njit def greater_nb(i, col, x): return x > 2 pd.testing.assert_series_equal( df['a'].vbt.filter(greater_nb), df['a'].map(lambda x: x if x > 2 else np.nan) ) pd.testing.assert_frame_equal( df.vbt.filter(greater_nb), df.applymap(lambda x: x if x > 2 else np.nan) ) def test_apply_and_reduce(self): @njit def every_nth_nb(col, a, n): return a[::n] @njit def sum_nb(col, a, b): return np.nansum(a) + b assert df['a'].vbt.apply_and_reduce(every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,)) == \ df['a'].iloc[::2].sum() + 3 pd.testing.assert_series_equal( df.vbt.apply_and_reduce(every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,)), df.iloc[::2].sum().rename('apply_and_reduce') + 3 ) pd.testing.assert_series_equal( df.vbt.apply_and_reduce( every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,), wrap_kwargs=dict(time_units=True)), (df.iloc[::2].sum().rename('apply_and_reduce') + 3) * day_dt ) def test_reduce(self): @njit def sum_nb(col, a): return np.nansum(a) assert df['a'].vbt.reduce(sum_nb) == df['a'].sum() pd.testing.assert_series_equal( df.vbt.reduce(sum_nb), df.sum().rename('reduce') ) pd.testing.assert_series_equal( df.vbt.reduce(sum_nb, wrap_kwargs=dict(time_units=True)), df.sum().rename('reduce') * day_dt ) pd.testing.assert_series_equal( df.vbt.reduce(sum_nb, group_by=group_by), pd.Series([20.0, 6.0], index=['g1', 'g2']).rename('reduce') ) @njit def argmax_nb(col, a): a = a.copy() a[np.isnan(a)] = -np.inf return np.argmax(a) assert df['a'].vbt.reduce(argmax_nb, to_idx=True) == df['a'].idxmax() pd.testing.assert_series_equal( df.vbt.reduce(argmax_nb, to_idx=True), df.idxmax().rename('reduce') ) pd.testing.assert_series_equal( df.vbt.reduce(argmax_nb, to_idx=True, flatten=True, group_by=group_by), pd.Series(['2018-01-02', '2018-01-02'], dtype='datetime64[ns]', index=['g1', 'g2']).rename('reduce') ) @njit def min_and_max_nb(col, a): out = np.empty(2) out[0] = np.nanmin(a) out[1] = np.nanmax(a) return out pd.testing.assert_series_equal( df['a'].vbt.reduce( min_and_max_nb, to_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([np.nanmin(df['a']), np.nanmax(df['a'])], index=['min', 'max'], name='a') ) pd.testing.assert_frame_equal( df.vbt.reduce( min_and_max_nb, to_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), df.apply(lambda x: pd.Series(np.asarray([np.nanmin(x), np.nanmax(x)]), index=['min', 'max']), axis=0) ) pd.testing.assert_frame_equal( df.vbt.reduce( min_and_max_nb, to_array=True, group_by=group_by, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame([[1.0, 1.0], [4.0, 2.0]], index=['min', 'max'], columns=['g1', 'g2']) ) @njit def argmin_and_argmax_nb(col, a): # nanargmin and nanargmax out = np.empty(2) _a = a.copy() _a[np.isnan(_a)] = np.inf out[0] = np.argmin(_a) _a = a.copy() _a[np.isnan(_a)] = -np.inf out[1] = np.argmax(_a) return out pd.testing.assert_series_equal( df['a'].vbt.reduce( argmin_and_argmax_nb, to_idx=True, to_array=True, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), pd.Series([df['a'].idxmin(), df['a'].idxmax()], index=['idxmin', 'idxmax'], name='a') ) pd.testing.assert_frame_equal( df.vbt.reduce( argmin_and_argmax_nb, to_idx=True, to_array=True, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), df.apply(lambda x: pd.Series(np.asarray([x.idxmin(), x.idxmax()]), index=['idxmin', 'idxmax']), axis=0) ) pd.testing.assert_frame_equal( df.vbt.reduce(argmin_and_argmax_nb, to_idx=True, to_array=True, flatten=True, order='C', group_by=group_by, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), pd.DataFrame([['2018-01-01', '2018-01-01'], ['2018-01-02', '2018-01-02']], dtype='datetime64[ns]', index=['idxmin', 'idxmax'], columns=['g1', 'g2']) ) pd.testing.assert_frame_equal( df.vbt.reduce(argmin_and_argmax_nb, to_idx=True, to_array=True, flatten=True, order='F', group_by=group_by, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), pd.DataFrame([['2018-01-01', '2018-01-01'], ['2018-01-04', '2018-01-02']], dtype='datetime64[ns]', index=['idxmin', 'idxmax'], columns=['g1', 'g2']) ) def test_squeeze_grouped(self): pd.testing.assert_frame_equal( df.vbt.squeeze_grouped(i_col_nanmean_nb, group_by=group_by), pd.DataFrame([ [1.0, 1.0], [3.0, 2.0], [3.0, np.nan], [3.0, 2.0], [1.0, 1.0] ], index=df.index, columns=['g1', 'g2']) ) def test_flatten_grouped(self): pd.testing.assert_frame_equal( df.vbt.flatten_grouped(group_by=group_by, order='C'), pd.DataFrame([ [1.0, 1.0], [np.nan, np.nan], [2.0, 2.0], [4.0, np.nan], [3.0, np.nan], [3.0, np.nan], [4.0, 2.0], [2.0, np.nan], [np.nan, 1.0], [1.0, np.nan] ], index=np.repeat(df.index, 2), columns=['g1', 'g2']) ) pd.testing.assert_frame_equal( df.vbt.flatten_grouped(group_by=group_by, order='F'), pd.DataFrame([ [1.0, 1.0], [2.0, 2.0], [3.0, np.nan], [4.0, 2.0], [np.nan, 1.0], [np.nan, np.nan], [4.0, np.nan], [3.0, np.nan], [2.0, np.nan], [1.0, np.nan] ], index=np.tile(df.index, 2), columns=['g1', 'g2']) ) @pytest.mark.parametrize( "test_name,test_func,test_func_nb", [ ('min', lambda x, **kwargs: x.min(**kwargs), nb.nanmin_nb), ('max', lambda x, **kwargs: x.max(**kwargs), nb.nanmax_nb), ('mean', lambda x, **kwargs: x.mean(**kwargs), nb.nanmean_nb), ('median', lambda x, **kwargs: x.median(**kwargs), nb.nanmedian_nb), ('std', lambda x, **kwargs: x.std(**kwargs, ddof=0), nb.nanstd_nb), ('count', lambda x, **kwargs: x.count(**kwargs), nb.nancnt_nb), ('sum', lambda x, **kwargs: x.sum(**kwargs), nb.nansum_nb) ], ) def test_funcs(self, test_name, test_func, test_func_nb): # numeric assert test_func(df['a'].vbt) == test_func(df['a']) pd.testing.assert_series_equal( test_func(df.vbt), test_func(df).rename(test_name) ) pd.testing.assert_series_equal( test_func(df.vbt, group_by=group_by), pd.Series([ test_func(df[['a', 'b']].stack()), test_func(df['c']) ], index=['g1', 'g2']).rename(test_name) ) np.testing.assert_array_equal(test_func(df).values, test_func_nb(df.values)) pd.testing.assert_series_equal( test_func(df.vbt, wrap_kwargs=dict(time_units=True)), test_func(df).rename(test_name) * day_dt ) # boolean bool_ts = df == df assert test_func(bool_ts['a'].vbt) == test_func(bool_ts['a']) pd.testing.assert_series_equal( test_func(bool_ts.vbt), test_func(bool_ts).rename(test_name) ) pd.testing.assert_series_equal( test_func(bool_ts.vbt, wrap_kwargs=dict(time_units=True)), test_func(bool_ts).rename(test_name) * day_dt ) @pytest.mark.parametrize( "test_name,test_func", [ ('idxmin', lambda x, **kwargs: x.idxmin(**kwargs)), ('idxmax', lambda x, **kwargs: x.idxmax(**kwargs)) ], ) def test_arg_funcs(self, test_name, test_func): assert test_func(df['a'].vbt) == test_func(df['a']) pd.testing.assert_series_equal( test_func(df.vbt), test_func(df).rename(test_name) ) pd.testing.assert_series_equal( test_func(df.vbt, group_by=group_by), pd.Series([ test_func(df[['a', 'b']].stack())[0], test_func(df['c']) ], index=['g1', 'g2'], dtype='datetime64[ns]').rename(test_name) ) def test_describe(self): pd.testing.assert_series_equal( df['a'].vbt.describe(), df['a'].describe() ) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=None), df.describe(percentiles=None) ) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=[]), df.describe(percentiles=[]) ) test_against = df.describe(percentiles=np.arange(0, 1, 0.1)) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=np.arange(0, 1, 0.1)), test_against ) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=np.arange(0, 1, 0.1), group_by=group_by), pd.DataFrame({ 'g1': df[['a', 'b']].stack().describe(percentiles=np.arange(0, 1, 0.1)).values, 'g2': df['c'].describe(percentiles=np.arange(0, 1, 0.1)).values }, index=test_against.index) ) def test_drawdown(self): pd.testing.assert_series_equal( df['a'].vbt.drawdown(), df['a'] / df['a'].expanding().max() - 1 ) pd.testing.assert_frame_equal( df.vbt.drawdown(), df / df.expanding().max() - 1 ) def test_drawdowns(self): assert type(df['a'].vbt.drawdowns) is vbt.Drawdowns assert df['a'].vbt.drawdowns.wrapper.freq == df['a'].vbt.wrapper.freq assert df['a'].vbt.drawdowns.wrapper.ndim == df['a'].ndim assert df.vbt.drawdowns.wrapper.ndim == df.ndim def test_to_mapped_array(self): np.testing.assert_array_equal( df.vbt.to_mapped_array().values, np.array([1., 2., 3., 4., 4., 3., 2., 1., 1., 2., 2., 1.]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array().col_arr, np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array().idx_arr, np.array([0, 1, 2, 3, 1, 2, 3, 4, 0, 1, 3, 4]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array(dropna=False).values, np.array([1., 2., 3., 4., np.nan, np.nan, 4., 3., 2., 1., 1., 2., np.nan, 2., 1.]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array(dropna=False).col_arr, np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array(dropna=False).idx_arr, np.array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4]) ) def test_zscore(self): pd.testing.assert_series_equal( df['a'].vbt.zscore(), (df['a'] - df['a'].mean()) / df['a'].std(ddof=0) ) pd.testing.assert_frame_equal( df.vbt.zscore(), (df - df.mean()) / df.std(ddof=0) ) def test_split(self): splitter = TimeSeriesSplit(n_splits=2) (train_df, train_indexes), (test_df, test_indexes) = df['a'].vbt.split(splitter) pd.testing.assert_frame_equal( train_df, pd.DataFrame( np.array([ [1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [np.nan, 4.0] ]), index=
pd.RangeIndex(start=0, stop=4, step=1)
pandas.RangeIndex
import numpy as np import pandas as pd from datetime import datetime import random as rd from pandas import DataFrame from math import sqrt from scipy.stats import norm from pandas import DataFrame from functools import wraps class create_data(): '''create data e.g. s = pd.to_datetime('01-01-2019') create_data('S', date = [s, datetime.now()]).gendateseries() create_data('S', date = datetime.now(), direction='Backwards').create_brownian_motion() pandas freq options: Alias, Description B, business day frequency C, custom business day frequency D, calendar day frequency W, weekly frequency M, month end frequency SM, semi-month end frequency (15th and end of month) BM, business month end frequency CBM, custom business month end frequency MS, month start frequency SMS, semi-month start frequency (1st and 15th) BMS, business month start frequency CBMS, custom business month start frequency Q, quarter end frequency BQ, business quarter end frequency QS, quarter start frequency BQS, business quarter start frequency A, Y, year end frequency BA, BY, business year end frequency AS, YS, year start frequency BAS, BYS, business year start frequency BH, business hour frequency H, hourly frequency T, min, minutely frequency S, secondly frequency L, ms, milliseconds U, us, microseconds N, nanoseconds ''' def __init__(self, frequency, date=datetime.now(), num_periods: 'int' = 100, direction=None): self.freq = frequency self.date = date self.num_periods = num_periods self.direction = direction if isinstance(date, list): self.start = date[0] self.end = date[1] if self.end < self.start: self.end = date[0] self.start = date[1] self.dates = self.gendateseries() def gendateseries(self): try: dates = pd.date_range( start=self.start, end=self.end, freq=self.freq) except: if self.direction == 'Backwards' or self.direction == 1: dates = pd.date_range( end=self.date, periods=self.num_periods, freq=self.freq) elif self.direction == 'Forwards' or self.direction == -1: dates = pd.date_range( start=self.date, periods=self.num_periods, freq=self.freq) # else: # raise AttributeError return
DataFrame(dates, columns=['Date'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Main module, contains the base object that host all the different analysis Authors: B.G. 18/11/2018 """ # This module manages raster I/O operations, based on rasterio (which itself depends on GDAL) from lsdtopytools import raster_loader as rl from lsdtopytools import lsdtopytools_utilities as ut from lsdtopytools import geoconvtools as gcv # This module is the low-level interface with the c++ code: it controls the c++ LSDDEM_xtensor object from lsdtt_xtensor_python import LSDDEM_cpp # Numpy provides efficient numerical arrays and shitload of useful operations with it import numpy as np # Pandas manages dataset as tables and provides quite a lot of fast operations import pandas as pd # Deals with OS operations (check folders, path and stuff aye) import os import time as clock class LSDDEM(object): """ LSDEM is the main object controlling the module. It relies on loading a georeferenced encironmont from a raster (or eventually a csv file) and manage everything you need out of that. This object follows a strategy of accesser/setter with the property argument from python. The advantage of such a method is to make easy it's use for End user. For example, one might want to totally control all the algorithms parameter himself and extract all the metrics step by step but others might only want a quick overview of their field. With this approach we can make sure to conditionalize the access to each component. It will also help memory management by dropping to the disk data and only load it when required. """ def __init__(self, path = "./", file_name = "test.tif", already_preprocessed = False, verbose = True, prefix_supp = "", remove_seas = False, sea_level = 0): """ Description: Constructor for the DEM object: initiate the program and the talk with LSDTopoTools. Arguments: path (str): Path to the file. Example on Windows: "C:/Users/s1675537/Desktop/"; on linux: "/home/Boris/Desktop/"; on Mac: No idea. file_name (str): The name of the file with the extension, for example "cairgons.tif" already_preprocessed (bool): If your Raster already is ready for flow routines (ie does not need any filling, carving or filtering), turn it to True. Return: A LSDDEM object Authors: <NAME> Date: 14/12/2018 """ # Saving the path and file name timer = clock.time() self.path = path self.file_name = file_name # Getting the prefix for saving all your files: self.prefix = str("".join(self.file_name.split(".")[:-1])) # -> prefix = base name without extention self.prefix += prefix_supp # Do you want me to talk? TODO: find a solution to catch and maybe stop the cout statements self.verbose = verbose #Alright getting the dem: print("Loading the raster from file: %s%s"%(self.path,self.file_name) ) if(self.verbose) else 0 temp_loaded = rl.load_raster(path+file_name) ## DEM extents and dimensions self.extent = temp_loaded["extent"] self.x_min = temp_loaded["x_min"] self.x_max = temp_loaded["x_max"] self.y_min = temp_loaded["y_min"] self.y_max = temp_loaded["y_max"] self.resolution = temp_loaded["res"] self.crs = temp_loaded["crs"] ## Redirecting no data values to a single one ndt_ls_temp = temp_loaded["nodata"] print("LOADING TOOK", clock.time() - timer) timer = clock.time() # Recasting No Data to -9999. LSDTopoTools cannot deal with multiple no data. Although it would be simple, it would add useless complexity. We are not software developers. print("I am recasting your nodata values to -9999 (standard LSDTT)") if(self.verbose) else 0 temp_loaded["array"][np.isin(temp_loaded["array"],ndt_ls_temp)] = -9999 # Recasting self.nodata = -9999 # Saving # nrows and ncols are the raster indexes dimensions self.nrows = temp_loaded["nrows"] self.ncols = temp_loaded["ncols"] # Removing the seas if(remove_seas): temp_loaded["array"][temp_loaded["array"]<sea_level] = -9999 # Other check self.check_if_preprocessed = False self.ready_for_flow_routines = False self.check_catchment_defined = False self.check_river_readiness = False self.check_flow_routines = False self.ksn_extracted = False self.check_chi_gen = False self.knickpoint_extracted = False self.has_been_carved_by_me = False self.has_been_filled_by_me = False # Initialaising empty DF self.df_ksn = None self.df_knickpoint = None print("PREPROC TOOK", clock.time() - timer) timer = clock.time() print("Alright, let me summon control upon the c++ code ...") if(self.verbose) else 0 self.cppdem = LSDDEM_cpp(self.nrows, self.ncols, self.x_min, self.y_min, self.resolution, self.nodata, temp_loaded["array"]) del temp_loaded # realising memory (I hope at least ahah) print("Got it.") if(self.verbose) else 0 print("INGESTINGINTO CPP TOOK", clock.time() - timer) timer = clock.time() if(already_preprocessed): print("WARNING: you are telling me that the raster is already preprocessed. You mean either you don't need flow routine (e.g., slope, curvature, roughness,... calculations) or you already made sure you got rid of your depressions.") if(self.verbose) else 0 self.cppdem.is_already_preprocessed() self.ready_for_flow_routines = True self.check_if_preprocessed = True print("TELLINGCPP IT IS PP TOOK", clock.time() - timer) timer = clock.time() if not os.path.exists(path+self.prefix+"/"): os.makedirs(path+self.prefix+"/") self.save_dir = path+self.prefix+"/" self.hdf_name = self.save_dir+self.prefix+"_dataset.hdf" exists = os.path.isfile(self.save_dir+self.prefix+"_dataset.hdf") if not exists: df = pd.DataFrame({"created": [True]}) ut.save_to_database(self.hdf_name,"Init", df) print("FINALISATION TOOK", clock.time() - timer) timer = clock.time() print("lsdtopytools is now ready to roll!") if(self.verbose) else 0 def PreProcessing(self, filling = True, carving = True, minimum_slope_for_filling = 0.0001): """ Description: Any dem is noisy at a certain extent. To process flow routines, this function proposes algorithm to preprocess dem cells and ensure there is no vicious pit blocking fow path. Filling is currently using Wang et al., 2006 and carving is using Lindsay et al., 2016. Filling makes sure that a minimum slope is induxed to each cells, carving breaches the pit to let the flow go. Arguments: filling (bool): do you want to fill? carving (bool): Wanna carve mate? minimum_slope_for_filling (float): Minimum gradient to induce between each cells when filling your dem. Return: Nothing, calculate the PPRaster in the cpp object Authors: <NAME> Date: 14/12/2018 """ # Calling the cpp interface: print("Carving: implementation of Lindsay (2016) DOI: 10.1002/hyp.10648") if(self.verbose and carving) else 0 print("Filling: implementation of Wang and Liu (2006): https://doi.org/10.1080/13658810500433453") if(self.verbose and filling) else 0 print("Processing...") if(self.verbose) else 0 self.cppdem.PreProcessing(carving, filling, minimum_slope_for_filling) print("DEM ready for flow routines!") if(self.verbose) else 0 self.check_if_preprocessed = True self.ready_for_flow_routines = True self.has_been_filled_by_me = True if(filling) else False self.has_been_carved_by_me = True if(carving) else False def CommonFlowRoutines(self, discharge = False, ingest_precipitation_raster = None, precipitation_raster_multiplier = 1): """ Description: Most of the algorithms need a common base of flow routines to be preprocessed: flow accumulation, drainage area, ... as well as hidden LSDTT required to run analysis. This takes care of that for you. Arguments: ingest_precipitation_raster (str): path + full name of the precipitation raster to ingest. It HAS to be in the same coordinate system than the main raster precipitation_raster_multiplier (flaot): multiplier. Useful to change units for example if your raster is in mm, *0,001 would put it in metres. Returns: Nothing but initiate a bunch of attributes in the c++ object Authors: <NAME> Date: 14/12/2018 """ if(self.check_if_preprocessed != True): print("WARNING!! You did not preprocessed the dem, I am defaulting it. Read the doc about preprocessing for more information.") self.PreProcessing() self.check_flow_routines = True print("Processing common flow routines...") if(self.verbose) else 0 self.cppdem.calculate_FlowInfo() if(discharge): print("DEBUGDEBUGDEBUGDEBUG") print("EXPERIMENTAL WARNING: you are ingesting a precipitation raster, I will recalculate the drainage area into discharge. This will affect all the routines using DA obviously") if(self.verbose) else 0 temp_loaded = rl.load_raster(ingest_precipitation_raster) temp_loaded["array"] = temp_loaded["array"] * precipitation_raster_multiplier if(temp_loaded["nodata"][0] is None): temp_loaded["nodata"] = list(temp_loaded["nodata"]) temp_loaded["nodata"][0] = -9999 self.cppdem.calculate_discharge_from_precipitation(temp_loaded["nrows"], temp_loaded["ncols"],temp_loaded["x_min"], temp_loaded["y_min"], temp_loaded["res"], temp_loaded["nodata"][0],temp_loaded["array"], True) print("Done!") if(self.verbose) else 0 def ExtractRiverNetwork(self, method = "area_threshold", area_threshold_min = 1000, source_nodes = None): """ Description: Extract river network from sources. Several methods are available to detect source locations that are then used to create the rivers. Available agorithms: minimum area threshold: If the exact location of the channel heads is not important or if you are working in relatively low precision raster (e.g.SRTM), this method really quickly initiate channels where a minimum of flow accumulation is reached. TODO: wiener and DREICH Arguments: method (str): Name of the method to use. Can be area_threshold, wiener or dreicht area_threshold_min (int): in case you chose the area_threshold method, it determines the minimum number of pixels for extracting Returns: Nothing, generates the channel network Authors: <NAME> Date: 14/12/2018 """ if(self.check_if_preprocessed != True): print("WARNING!! You did not preprocessed the dem, I am defaulting it. Read the doc about preprocessing for more information.") self.PreProcessing() if(self.check_flow_routines != True): print("WARNING!! You did not calculate the flow routines, let me do it first as this is required for extracting the river network.") self.CommonFlowRoutines() self.check_river_readiness = True if(method=="area_threshold"): self.cppdem.calculate_channel_heads("min_contributing_pixels", int(area_threshold_min)) elif(method == "source_nodes"): # Ingest source nodes calculated from another method, e.g. using lsdtt self.cppdem.ingest_channel_head(source_nodes) else: print("Not Implemented yet! sns.") self.cppdem.calculate_juctionnetwork() def DefineCatchment(self, method="min_area_pixels", test_edges = False, min_area = 1e6,max_area = 1e9, X_coords = [], Y_coords = [], coord_search_radius_nodes = 30, coord_threshold_stream_order = 3, coordinates_system = "UTM", UTM_zone = -1): """ Description: Define the catchments of interest from conditions. DISCLAIMER: work in progress, can be buggy. Safest option (if possible) is a list of lat-lon or XY. Arguments: method(str): name of the method to use. Can be: "min_area_pixels": keep all watersheds made of min_area_pixels or more. "from_XY": snap location to XY coordinates TODO: the rest of the methods test_edges (bool): Ignore uncomplete catchment min_area_pixels (int): number of pixels to define catchments with the min_area_pixels method. X_coord (list or numpy array): X coordinates for method "from_XY" Y_coord (list or numpy array): Y coordinates for method "from_XY" coord_search_radius_nodes (int): radius of search around the given coordinate; coord_threshold_stream_order (int): minimum or maximum stream order (e.g., do you want to snap to large or small river. or even moderate, let's go crazy.) Returns: Nothing but defines a set of catchment required for some analysis (e.g., movern, knickpoints or ksn) Authors: <NAME> Date: 14/12/2018 """ # I am first proceeding to routines check: Have you processed everything required? output = {} if(self.check_if_preprocessed != True): print("WARNING!! You did not preprocessed the dem, I am defaulting it. Read the doc about preprocessing for more information.") self.PreProcessing() if(self.check_flow_routines != True): print("WARNING!! You did not calculate the flow routines, let me do it first as this is required for extracting the river network.") self.CommonFlowRoutines() if(self.check_river_readiness != True): print("WARNING!! You did not processed the river network, let me do it first as this is required for defining the catchment.") self.ExtractRiverNetwork() self.check_catchment_defined = True if(method == "min_area"): output = self.cppdem.calculate_outlets_locations_from_minimum_size(float(min_area), test_edges, False) elif(method == "from_XY_old"): X_coords = np.array(X_coords) Y_coords = np.array(Y_coords) if(coordinates_system == "WGS84"): # Then convert X_coords, Y_coords, zone_number = gcv.from_latlon(X_coords, Y_coords, force_zone_number= UTM_zone) self.cppdem.calculate_outlets_locations_from_xy(np.array(X_coords), np.array(Y_coords), coord_search_radius_nodes, coord_threshold_stream_order, test_edges, False) output["X"] = X_coords; output["Y"] = Y_coords; elif(method == "from_XY"): X_coords = np.array(X_coords) Y_coords = np.array(Y_coords) if(coordinates_system == "WGS84"): # Then convert X_coords, Y_coords, zone_number = gcv.from_latlon(X_coords, Y_coords, force_zone_number= UTM_zone) self.cppdem.calculate_outlets_locations_from_xy_v2(np.array(X_coords), np.array(Y_coords), coord_search_radius_nodes,test_edges) output["X"] = X_coords; output["Y"] = Y_coords; elif(method == "force_all"): self.cppdem.force_all_outlets(test_edges) elif(method == "main_basin"): output = self.cppdem.calculate_outlet_location_of_main_basin(test_edges) elif(method == "from_range"): output = self.cppdem.calculate_outlets_locations_from_range_of_DA(min_area,max_area,test_edges); else: print("Not done yet, work in progress on that") quit() return self.cppdem.get_baselevels_XY(); def GenerateChi(self, theta=0.45,A_0 = 1): """ Generates Chi coordinates. This is needed for quite a lot of routines, and effectively also calculates quite a lot of element in the river network (node ordering and other similar thing). Chi coordinates is details in Perron and Royden (2013) -> DOI: 10.1002/esp.3302 It needs preprocessing, flow routines, Extraction of river network and the definition of catchment of interest. Arguments: theta(float): concavity of profiles (m/n in Stream power like laws, theta in Flint's law). This is a really important parameter to constrain!! -> Mudd et al., 2018 A_0(float): Reference concavity area. It is important to set it to 1 if you want to get ksn from chi coordinate (see. Mudd et al., 2014 for details) -> 10.1002/2013JF002981 returns: Nothing, but calculates chi ccoordinate. Authors: B.G Date: 12/2018 """ # pre-checkings if(self.check_if_preprocessed != True): print("WARNING!! You did not preprocessed the dem, I am defaulting it. Read the doc about preprocessing for more information.") self.PreProcessing() if(self.check_flow_routines != True): print("WARNING!! You did not calculate the flow routines, let me do it first as this is required generating chi.") self.CommonFlowRoutines() if(self.check_river_readiness != True): print("WARNING!! You did not processed the river network, let me do it first as this is required for generating chi.") self.ExtractRiverNetwork() if(self.check_catchment_defined != True): print("WARNING!! You did not defined any catchment, let me do it first as this is required for generating chi.") self.DefineCatchment() self.check_chi_gen = True self.m_over_n = theta # Idk but we might need that at some point eventually self.cppdem.generate_chi(theta, A_0) # Trying to get the chi coordinate out of that D1 = self.cppdem.get_int_ksn_data() D2 = self.cppdem.get_float_ksn_data() Dict_of_ksn = {}; Dict_of_ksn.update(D1); Dict_of_ksn.update(D2); del D1; del D2; self.df_base_river = pd.DataFrame( { "basin_key": Dict_of_ksn["basin_key"], "col": Dict_of_ksn["col"], "nodeID": Dict_of_ksn["nodeID"], "row": Dict_of_ksn["row"], "source_key": Dict_of_ksn["source_key"], "chi": Dict_of_ksn["chi"], "drainage_area": Dict_of_ksn["drainage_area"], "elevation": Dict_of_ksn["elevation"], "flow_distance": Dict_of_ksn["flow_distance"], "x": Dict_of_ksn["x"], "y": Dict_of_ksn["y"] } ) def ksn_MuddEtAl2014(self, target_nodes=70, n_iterations=60, skip=1, minimum_segment_length=10, sigma=2, nthreads = 1, reload_if_same = False): """ Calculates ksn with Mudd et al., 2014 algorithm. Design to calculate ksn with a strong statistical method. More robust than SA plots or basic chi-z linear regression Arguments: target_nodes(int): Full details in paper, basically low values creates shorter segments (fine grain calculation) and higher values larger segments (large-scale trends). Values higher than 100 will be extremely slow down the algorithm. n_iterations(int): Full details in paper, the algorithm sample random node combinations and this parameters controls the number of iterations to get that. More iterations = less noise sensitive. skip(int): Full details in paper, recommended between 1-4. Higher values sample less adjacent nodes. minimum_segment_length(int): Do not change (debugging purposes, I shall remove that actually). sigma(int): Full details in paper, recommended not to change. nthreads (int): Experimental, leave to 1. Not ready for multithreading, will segfault. reload_if_same (bool): Experimental, the logic will probably change, but it uses pandas and pytables habilities to very efficiently save and reload what has already been calculated. It checks if is safe to reload or not Retuns: Returns a string stating "generated" if recalculated or "reloaded" if data has simply been reloaded """ if(self.check_if_preprocessed != True): print("WARNING!! You did not preprocessed the dem, I am defaulting it. Read the doc about preprocessing for more information.") self.PreProcessing() if(self.check_flow_routines != True): print("WARNING!! You did not calculate the flow routines, let me do it first as this is required generating chi.") self.CommonFlowRoutines() if(self.check_river_readiness != True): print("WARNING!! You did not processed the river network, let me do it first as this is required for generating chi.") self.ExtractRiverNetwork() if(self.check_catchment_defined != True): print("WARNING!! You did not defined any catchment, let me do it first as this is required for generating chi.") self.DefineCatchment() if(self.check_chi_gen != True): print("WARNING!! You did not generated chi, I am defaulting it AND THAT'S BAD! I AM ASSUMING A DEFAUT CONCAVITY TO 0.45 WHICH IS NOT NECESSARILY THE CASE!!!.") self.GenerateChi() # First checking if you just want to reload if(reload_if_same): print("I am just checking if I can reload data safely") test_dict = {"target_nodes":target_nodes, "n_iterations":n_iterations, "skip":skip, "minimum_segment_length":minimum_segment_length, "sigma":sigma} tdf, met = ut.load_from_database(self.hdf_name,"ksn_MuddEtAl2014") is_same = True for key,val in test_dict.items(): if(val != met[key]): is_same = False if(is_same): self.df_ksn = tdf print("Successfuly reloaded the file") self.ksn_extracted = True ## This return statment end the function and will not recalculate ksn return "reloaded" else: print("Failed to safely reload, one of your paramter has changed from the calculation.") self.ksn_extracted = True if(nthreads>1): print("WARNING: Experimental multithreading on ksn extraction. Can (i) crash (works 99/100 of the time on Linux and 50/100 of the time on windows, because windows hates developers, seriously) or (ii) produce weird source/basin numbering (e.g. not always constant).") self.cppdem.generate_ksn(target_nodes, n_iterations, skip, minimum_segment_length, sigma, nthreads) D1 = self.cppdem.get_int_ksn_data() D2 = self.cppdem.get_float_ksn_data() Dict_of_ksn = {}; Dict_of_ksn.update(D1); Dict_of_ksn.update(D2); del D1; del D2; self.df_ksn =
pd.DataFrame(Dict_of_ksn)
pandas.DataFrame
# coding=utf-8 # Author: <NAME> # Date: Sept 11, 2019 # # Description: Indexes meta-genes to select core meiotic genes. # Pipeline: Only mammal (HS & MM) conserved genes that Up/Down Regulated. # # import math import numpy as np import pandas as pd
pd.set_option('display.max_rows', 100)
pandas.set_option
import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import numpy as np import pandas as pd from adjustText import adjust_text from pylab import cm from matplotlib import colors def PCA_var_explained_plots(adata): n_rows = 1 n_cols = 2 fig = plt.figure(figsize=(n_cols*4.5, n_rows*3)) # variance explained ax1 = fig.add_subplot(n_rows, n_cols, 1) x1 = range(len(adata.uns['pca']['variance_ratio'])) y1 = adata.uns['pca']['variance_ratio'] ax1.scatter(x1, y1, s=3) ax1.set_xlabel('PC'); ax1.set_ylabel('Fraction of variance explained') ax1.set_title('Fraction of variance explained per PC') # cum variance explainend ax2 = fig.add_subplot(n_rows, n_cols, 2) cml_var_explained = np.cumsum(adata.uns['pca']['variance_ratio']) x2 = range(len(adata.uns['pca']['variance_ratio'])) y2 = cml_var_explained ax2.scatter(x2, y2, s=4) ax2.set_xlabel('PC') ax2.set_ylabel('Cumulative fraction of variance explained') ax2.set_title('Cumulative fraction of variance explained by PCs') plt.tight_layout() plt.show() def assign_to_red_or_black_group(x, y, x_cutoff, y_cutoff): """xcoord is coefficient (MAST already took log2). ycoord is -log10(pval). label is gene name.""" if abs(x) > x_cutoff and y > y_cutoff: color = "red" # x coordinate (coef) is set to 0 if one of the two groups has zero counts (in that case, # a fold change cannot be calculated). We'll color these points with 'salmon' (similar to red) elif abs(x) == 0 and y > y_cutoff: color = "salmon" else: color = "black" return color def plot_volcano_plot( dea_results, x_cutoff, y_cutoff, title, use_zscores=False, plot_labels=True, min_red_dots=None, figsize=(15, 7.5), show_plot=False, ): """makes volcano plot. title is title of plot. path is path to MAST output csv. cutoffs will determine which dots will be colored red. plot_labels can be set to False if no labels are wanted, otherwise all red dots will be labeled with their gene name. If min_red_dots is set to a number, the x_cutoff will be decreased (with factor .9 every time) until at least min_red_dots are red. figsize is a tuple of size 2, and determines size of the figure. Returns the figure.""" coefs = dea_results.loc[:, "coef"].copy() xcoords = coefs.fillna(0) if use_zscores: pvals = dea_results.loc[:, "coef_Z"] ycoords = pvals else: pvals = dea_results.loc[:, "pval_adj"].copy() # NOTE: SETTING PVALS TAHT ARE 0 (DUE TO ROUNDING) TO MINIMUM NON ZERO VALUE HERE pvals[pvals == 0] = np.min(pvals[pvals != 0]) # np.nextafter(0, 1) ycoords = -np.log10(pvals) gene_names = dea_results.index.tolist() colors = [ assign_to_red_or_black_group(x, y, x_cutoff, y_cutoff) for x, y in zip(xcoords, ycoords) ] # if min_red_dots is set (i.e. not None), check if enough points are labeled red. If not, adjust x cutoff: if min_red_dots != None: n_red_points = sum([x == "red" for x in colors]) while n_red_points < min_red_dots: x_cutoff = 0.9 * x_cutoff # make x cutoff less stringent # reevaluate color of points using new cutoff: colors = [ assign_to_red_or_black_group(x, y, x_cutoff, y_cutoff) for x, y in zip(xcoords, ycoords) ] n_red_points = sum([x == "red" for x in colors]) # extract coordinates separately for red and black black_coords = [ (x, y) for x, y, color in zip(xcoords, ycoords, colors) if color == "black" ] red_coords = [ (x, y) for x, y, color in zip(xcoords, ycoords, colors) if color == "red" ] salmon_coords = [ (x, y) for x, y, color in zip(xcoords, ycoords, colors) if color == "salmon" ] fig, ax = plt.subplots(figsize=figsize) plt.plot( [x for x, y in black_coords], [y for x, y in black_coords], marker=".", linestyle="", color="royalblue", ) plt.plot( [x for x, y in salmon_coords], [y for x, y in salmon_coords], marker=".", linestyle="", color="salmon", ) plt.plot( [x for x, y in red_coords], [y for x, y in red_coords], marker=".", linestyle="", color="red", ) if plot_labels == True: ten_lowest_salmon_pvals_gene_names = [ gene_name for _, gene_name, color in sorted(zip(pvals, gene_names, colors)) if color == "salmon" ][:10] # label if color is set to red, or if color is set to salmon and the salmon color is one of the ten salmon genes with lowest pval labels = [ plt.text(x, y, label, ha="center", va="center") for x, y, color, label in zip(xcoords, ycoords, colors, gene_names) if ( color in ["red"] or (color == "salmon" and label in ten_lowest_salmon_pvals_gene_names) ) ] adjust_text(labels) plt.xlabel( "coef (=log(fold chagne))", fontsize=13, ) if use_zscores: plt.ylabel("Z-score based on stdev") else: plt.ylabel("-log10 adjusted p-value", fontsize=14) plt.title( title + " (n genes: " + str(len(gene_names)) + ") \n x-cutoff=" + str(round(x_cutoff, 2)) + ", y-cutoff=" + str(round(y_cutoff, 2)), fontsize=16, ) if show_plot == False: plt.close() return fig def plot_bar_chart( adata, x_var, y_var, x_names=None, y_names=None, y_min=0, return_fig=False, cmap="tab20", ): """plots stacked bar chart. Arguments adata - anndata object x_var - name of obs variable to use for x-axis y_var - name of obs variable to use for y-axis x_names - names of x groups to include, exclude all other groups y_names - names of y groups to include, exclude all other groups y_min - minimum percentage of group to be labeled in plots. If percentage of a y_group is lower than this minimum in all x_groups, then the y_group will be pooled under "other". return_fig - (Boolean) whether to return matplotlib figure cmap - name of matplotlib colormap Returns: matplotlib figure of barchart if return_fig is True. Otherwise nothing. """ bar_chart_df_abs = adata.obs.groupby([x_var, y_var]).agg( {x_var: "count"} ) # calculate count of each y_var for each x_var bar_chart_df = ( bar_chart_df_abs.groupby(level=0) .apply(lambda x: x / float(x.sum()) * 100) .unstack() ) # convert to percentages # clean up columns/index bar_chart_df.columns = bar_chart_df.columns.droplevel(0) bar_chart_df.index.name = None bar_chart_df.columns.name = None # if y_min > 0, re-map y categories: if y_min > 0: # check which y variables never have a fraction above y_min y_var_to_remove = (bar_chart_df >= y_min).sum(axis=0) == 0 y_var_remapping = dict() for y_name, to_remove in zip(y_var_to_remove.index, y_var_to_remove.values): if to_remove: y_var_remapping[y_name] = "other" else: y_var_remapping[y_name] = y_name adata.obs["y_temp"] = adata.obs[y_var].map(y_var_remapping) # recalculate bar_chart_df, now using re-mapped y_var bar_chart_df_abs = adata.obs.groupby([x_var, "y_temp"]).agg( {x_var: "count"} ) # calculate count of each y_var for each x_var bar_chart_df = ( bar_chart_df_abs.groupby(level=0) .apply(lambda x: x / float(x.sum()) * 100) .unstack() ) # convert to percentages # clean up columns/index bar_chart_df.columns = bar_chart_df.columns.droplevel(0) bar_chart_df.index.name = None bar_chart_df.columns.name = None # prepare x and y variables for bar chart: if x_names is None: x_names = bar_chart_df.index else: if not set(x_names).issubset(adata.obs[x_var]): raise ValueError("x_names should be a subset of adata.obs[x_var]!") if y_names is None: y_names = bar_chart_df.columns else: if not set(y_names).issubset(adata.obs[y_var]): raise ValueError( "y_names should be a subset of adata.obs[y_var]! (Note that this can be affected by your y_min setting.)" ) # subset bar_chart_df based on x and y names: bar_chart_df = bar_chart_df.loc[x_names, y_names] x_len = len(x_names) y_names = bar_chart_df.columns y_len = len(y_names) # setup colors colormap = cm.get_cmap(cmap) cols = [colors.rgb2hex(colormap(i)) for i in range(colormap.N)] # set bar width barWidth = 0.85 # plot figure fig = plt.figure(figsize=(12, 3)) axs = [] # plot the bottom bars of the stacked bar chart axs.append( plt.bar( range(len(x_names)), bar_chart_df.loc[:, y_names[0]], color=cols[0], # edgecolor="white", width=barWidth, label=y_names[0], ) ) # store the bars as bars_added, to know where next stack of bars should start # in y-axis bars_added = [bar_chart_df.loc[:, y_names[0]]] # now loop through the remainder of the y categories and plot for i, y in enumerate(y_names[1:]): axs.append( plt.bar( x=range(len(x_names)), # numbers of bars [1, ..., n_bars] height=bar_chart_df.loc[:, y], # height of current stack bottom=[ sum(idx_list) for idx_list in zip(*bars_added) ], # where to start current stack color=cols[i + 1], # edgecolor="white", width=barWidth, label=y, ) ) # append plottend bars to bars_added variable bars_added.append(bar_chart_df.loc[:, y]) # Custom x axis plt.xticks(range(len(x_names)), x_names, rotation=90) plt.xlabel(x_var) # Add a legend plt.legend( axs[::-1], [ax.get_label() for ax in axs][::-1], loc="upper left", bbox_to_anchor=(1, 1), ncol=1, ) # add y label: plt.ylabel("percentage of cells") # add title: plt.title(f"{y_var} fractions per {x_var} group") # Show graphic: plt.show() # return figure: if return_fig: return fig def plot_dataset_statistics( adata, return_fig=False, show=True, fontsize=10, figwidthscale=3, figheightscale=4 ): data_by_subject = adata.obs.groupby("subject_ID").agg( { "study": "first", } ) data_by_sample = adata.obs.groupby("sample").agg({"study": "first"}) n_figures = 3 n_cols = 3 n_rows = int(np.ceil(n_figures / n_cols)) fig = plt.figure(figsize=(figwidthscale * n_cols, figheightscale * n_rows)) fig_count = 0 # FIGURE fig_count += 1 ax = fig.add_subplot(n_rows, n_cols, fig_count) dataset_subj_freqs = data_by_subject.study.value_counts() datasets_ordered = dataset_subj_freqs.index ax.bar(dataset_subj_freqs.index, dataset_subj_freqs.values) ax.set_title("subjects per study", fontsize=fontsize) ax.set_ylabel("n subjects", fontsize=fontsize) ax.tick_params(axis="x", rotation=90, labelsize=fontsize) ax.tick_params(axis="y", labelsize=fontsize) ax.grid(False) # FIGURE fig_count += 1 ax = fig.add_subplot(n_rows, n_cols, fig_count) dataset_sample_freqs = data_by_sample.study.value_counts() ax.bar(datasets_ordered, dataset_sample_freqs[datasets_ordered].values) ax.set_title("samples per study", fontsize=fontsize) ax.set_ylabel("n samples", fontsize=fontsize) ax.tick_params(axis="x", rotation=90, labelsize=fontsize) ax.tick_params(axis="y", labelsize=fontsize) ax.grid(False) # FIGURE fig_count += 1 ax = fig.add_subplot(n_rows, n_cols, fig_count) dataset_cell_freqs = adata.obs.study.value_counts() ax.bar(datasets_ordered, dataset_cell_freqs[datasets_ordered].values) ax.set_title("cells per study", fontsize=fontsize) ax.set_ylabel("n cells", fontsize=fontsize) ax.tick_params(axis="x", rotation=90, labelsize=fontsize) ax.tick_params(axis="y", labelsize=fontsize) ax.grid(False) plt.tight_layout() plt.grid(False) if show: plt.show() plt.close() if return_fig: return fig def plot_subject_statistics( adata, return_fig=False, show=True, fontsize=12, figheight=5, figwidth=5, barwidth=0.10, ): data_by_subject = adata.obs.groupby("subject_ID").agg( { "age": "first", "BMI": "first", "ethnicity": "first", "sex": "first", "smoking_status": "first", } ) fig = plt.figure( figsize=(figwidth, figheight), constrained_layout=True, ) gs = GridSpec(12, 12, figure=fig) fig_count = 0 # FIGURE 1 AGE fig_count += 1 ax = fig.add_subplot(gs[:6, :6]) bins = np.arange(0, max(adata.obs.age), 5) tick_idc = np.arange(0, len(bins), 4) perc_annotated = int( np.round( 100 - (data_by_subject.age.isnull().sum() / data_by_subject.shape[0] * 100), 0, ) ) ax.hist(data_by_subject.age, bins=bins, rwidth=0.9) print(f"age: {perc_annotated}% annotated") ax.set_xlabel("age", fontsize=fontsize) ax.set_xticks(bins[tick_idc]) ax.tick_params(labelsize=fontsize, bottom=True, left=True) ax.set_ylabel("n subjects", fontsize=fontsize) ax.grid(False) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) # FIGURE 2 BMI fig_count += 1 ax = fig.add_subplot(gs[:6, -6:]) BMIs = data_by_subject.BMI.copy() perc_annotated = int(round(100 - (BMIs.isna().sum() / len(BMIs) * 100))) BMIs = BMIs[~BMIs.isna()] bins = np.arange(np.floor(BMIs.min() / 2) * 2, BMIs.max(), 2) tick_idc = np.arange(0, len(bins), 3) ax.hist(data_by_subject.BMI, bins=bins, rwidth=0.9) print(f"BMI: {perc_annotated}% annotated") ax.set_xlabel("BMI", fontsize=fontsize) ax.set_ylabel("n subjects", fontsize=fontsize) ax.set_xticks(bins[tick_idc]) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.tick_params(labelsize=fontsize, bottom=True, left=True) ax.grid(False) # FIGURE 3 SEX fig_count += 1 ax = fig.add_subplot(gs[-6:, :3]) x_man = np.sum(data_by_subject.sex == "male") x_woman = np.sum(data_by_subject.sex == "female") perc_annotated = int( np.round( 100 - sum([s == "nan" or pd.isnull(s) for s in data_by_subject.sex]) / data_by_subject.shape[1] * 100, 0, ) ) ax.bar( x=[0.25, 0.75], tick_label=["male", "female"], height=[x_man, x_woman], width=barwidth * 5 / 3, ) ax.set_xlim(left=0, right=1) print(f"sex: {perc_annotated}% annotated)") ax.tick_params("x", rotation=90, labelsize=fontsize, bottom=True, left=True) ax.tick_params("y", labelsize=fontsize, bottom=True, left=True) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.set_ylabel("n subjects", fontsize=fontsize) ax.set_xlabel("sex", fontsize=fontsize) ax.grid(False) # FIGURE 4 ETHNICITY fig_count += 1 ax = fig.add_subplot(gs[-6:, 3:-4]) ethns = data_by_subject.ethnicity.copy() perc_annotated = int( np.round( 100 - sum([e == "nan" or pd.isnull(e) for e in ethns]) / len(ethns) * 100, 0 ) ) ethns = ethns[ethns != "nan"] ethn_freqs = ethns.value_counts() n_bars = len(ethn_freqs) ax.bar( x=np.linspace(0 + 0.75 / n_bars, 1 - 0.75 / n_bars, n_bars), tick_label=ethn_freqs.index, height=ethn_freqs.values, width=barwidth, ) ax.set_xlim(left=0, right=1) print(f"ethnicity {perc_annotated}% annotated") # ax.set_xlabel("ethnicity") ax.set_ylabel("n subjects", fontsize=fontsize) ax.set_xlabel("ethnicity", fontsize=fontsize) ax.tick_params("x", rotation=90, labelsize=fontsize, bottom=True) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.tick_params("y", labelsize=fontsize, left=True) ax.grid(False) # FIGURE SMOKING STATUS fig_count += 1 ax = fig.add_subplot(gs[-6:, -4:]) smoks = data_by_subject["smoking_status"].copy() perc_annotated = int( np.round( 100 - sum([s == "nan" or
pd.isnull(s)
pandas.isnull
""" Name : c9_44_equal_weighted_vs_value_weighted.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : <NAME> Date : 6/6/2017 email : <EMAIL> <EMAIL> """ import pandas as pd import scipy as sp x=pd.read_pickle("c:/temp/yanMonthly.pkl") def ret_f(ticker): a=x[x.index==ticker] p=sp.array(a['VALUE']) ddate=a['DATE'][1:] ret=p[1:]/p[:-1]-1 out1=
pd.DataFrame(p[1:],index=ddate)
pandas.DataFrame
from __future__ import print_function import collections import os import re import sys import numpy as np import pandas as pd from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', 'utils')) sys.path.append(lib_path) from data_utils import get_file global_cache = {} SEED = 2017 P1B3_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B3/' def impute_and_scale(df, scaling='std'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ df = df.dropna(axis=1, how='all') imputer = Imputer(strategy='mean', axis=0) mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df def describe_response_data(df, cells=['all'], drugs=['A'], doses=[-5, -4]): if 'all' in cells or cells == 'all': cells = all_cells() if 'all' in drugs or drugs == 'all': drugs = all_drugs() elif len(drugs) == 1 and re.match("^[ABC]$", drugs[0].upper()): drugs = drugs_in_set('Jason:' + drugs[0].upper()) print('cells:', cells) print('drugs:', drugs) lconc = -4 for cell in cells: d = df[(df['CELLNAME'] == cell) & (df['LOG_CONCENTRATION'] == lconc)] print(cell) print(d.describe()) break def load_dose_response(min_logconc=-4., max_logconc=-4., subsample=None, fraction=False): """Load cell line response to different drug compounds, sub-select response for a specific drug log concentration range and return a pandas dataframe. Parameters ---------- min_logconc : -3, -4, -5, -6, -7, optional (default -4) min log concentration of drug to return cell line growth max_logconc : -3, -4, -5, -6, -7, optional (default -4) max log concentration of drug to return cell line growth subsample: None, 'naive_balancing' (default None) subsampling strategy to use to balance the data based on growth fraction: bool (default False) divide growth percentage by 100 """ path = get_file(P1B3_URL + 'NCI60_dose_response_with_missing_z5_avg.csv') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep=',', engine='c', na_values=['na', '-', ''], dtype={'NSC':object, 'CELLNAME':str, 'LOG_CONCENTRATION':np.float32, 'GROWTH':np.float32}) global_cache[path] = df df = df[(df['LOG_CONCENTRATION'] >= min_logconc) & (df['LOG_CONCENTRATION'] <= max_logconc)] df = df[['NSC', 'CELLNAME', 'GROWTH', 'LOG_CONCENTRATION']] if subsample and subsample == 'naive_balancing': df1 = df[df['GROWTH'] <= 0] df2 = df[(df['GROWTH'] > 0) & (df['GROWTH'] < 50)].sample(frac=0.7, random_state=SEED) df3 = df[(df['GROWTH'] >= 50) & (df['GROWTH'] <= 100)].sample(frac=0.18, random_state=SEED) df4 = df[df['GROWTH'] > 100].sample(frac=0.01, random_state=SEED) df = pd.concat([df1, df2, df3, df4]) if fraction: df['GROWTH'] /= 100 df = df.set_index(['NSC']) return df def load_drug_descriptors(ncols=None, scaling='std', add_prefix=True): """Load drug descriptor data, sub-select columns of drugs descriptors randomly if specificed, impute and scale the selected data, and return a pandas dataframe. Parameters ---------- ncols : int or None number of columns (drugs descriptors) to randomly subselect (default None : use all data) scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply add_prefix: True or False add feature namespace prefix """ path = get_file(P1B3_URL + 'descriptors.2D-NSC.5dose.filtered.txt') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep='\t', engine='c', na_values=['na','-',''], dtype=np.float32) global_cache[path] = df df1 = pd.DataFrame(df.loc[:,'NAME'].astype(int).astype(str)) df1.rename(columns={'NAME': 'NSC'}, inplace=True) df2 = df.drop('NAME', 1) if add_prefix: df2 = df2.add_prefix('dragon7.') total = df2.shape[1] if ncols and ncols < total: usecols = np.random.choice(total, size=ncols, replace=False) df2 = df2.iloc[:,usecols] df2 = impute_and_scale(df2, scaling) df2 = df2.astype(np.float32) df_dg = pd.concat([df1, df2], axis=1) return df_dg def load_cell_expression_u133p2(ncols=None, scaling='std', add_prefix=True): """Load U133_Plus2 cell line expression data prepared by Judith, sub-select columns of gene expression randomly if specificed, scale the selected data and return a pandas dataframe. Parameters ---------- ncols : int or None number of columns (gene expression) to randomly subselect (default None : use all data) scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply add_prefix: True or False add feature namespace prefix """ path = get_file('http://bioseed.mcs.anl.gov/~fangfang/p1h/GSE32474_U133Plus2_GCRMA_gene_median.txt') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep='\t', engine='c') global_cache[path] = df df1 = df['CELLNAME'] df2 = df.drop('CELLNAME', 1) if add_prefix: df2 = df2.add_prefix('expr.') total = df.shape[1] if ncols and ncols < total: usecols = np.random.choice(total, size=ncols, replace=False) df2 = df2.iloc[:, usecols] df2 = impute_and_scale(df2, scaling) df2 = df2.astype(np.float32) df = pd.concat([df1, df2], axis=1) return df def load_cell_expression_5platform(ncols=None, scaling='std', add_prefix=True): """Load 5-platform averaged cell line expression data, sub-select columns of gene expression randomly if specificed, scale the selected data and return a pandas dataframe. Parameters ---------- ncols : int or None number of columns (gene expression) to randomly subselect (default None : use all data) scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply add_prefix: True or False add feature namespace prefix """ path = get_file(P1B3_URL + 'RNA_5_Platform_Gene_Transcript_Averaged_intensities.transposed.txt') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep='\t', engine='c', na_values=['na','-','']) global_cache[path] = df df1 = df['CellLine'] df1 = df1.map(lambda x: x.replace('.', ':')) df1.name = 'CELLNAME' df2 = df.drop('CellLine', 1) if add_prefix: df2 = df2.add_prefix('expr_5p.') total = df2.shape[1] if ncols and ncols < total: usecols = np.random.choice(total, size=ncols, replace=False) df2 = df2.iloc[:, usecols] df2 = impute_and_scale(df2, scaling) df2 = df2.astype(np.float32) df = pd.concat([df1, df2], axis=1) return df def load_cell_mirna(ncols=None, scaling='std', add_prefix=True): """Load cell line microRNA data, sub-select columns randomly if specificed, scale the selected data and return a pandas dataframe. Parameters ---------- ncols : int or None number of columns to randomly subselect (default None : use all data) scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply add_prefix: True or False add feature namespace prefix """ path = get_file(P1B3_URL + 'RNA__microRNA_OSU_V3_chip_log2.transposed.txt') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep='\t', engine='c', na_values=['na','-','']) global_cache[path] = df df1 = df['CellLine'] df1 = df1.map(lambda x: x.replace('.', ':')) df1.name = 'CELLNAME' df2 = df.drop('CellLine', 1) if add_prefix: df2 = df2.add_prefix('mRNA.') total = df2.shape[1] if ncols and ncols < total: usecols = np.random.choice(total, size=ncols, replace=False) df2 = df2.iloc[:, usecols] df2 = impute_and_scale(df2, scaling) df2 = df2.astype(np.float32) df = pd.concat([df1, df2], axis=1) return df def load_cell_proteome(ncols=None, scaling='std', add_prefix=True): """Load cell line microRNA data, sub-select columns randomly if specificed, scale the selected data and return a pandas dataframe. Parameters ---------- ncols : int or None number of columns to randomly subselect (default None : use all data) scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply add_prefix: True or False add feature namespace prefix """ path1 = get_file(P1B3_URL + 'nci60_proteome_log2.transposed.tsv') path2 = get_file(P1B3_URL + 'nci60_kinome_log2.transposed.tsv') df = global_cache.get(path1) if df is None: df = pd.read_csv(path1, sep='\t', engine='c') global_cache[path1] = df df_k = global_cache.get(path2) if df_k is None: df_k = pd.read_csv(path2, sep='\t', engine='c') global_cache[path2] = df_k df = df.set_index('CellLine') df_k = df_k.set_index('CellLine') if add_prefix: df = df.add_prefix('prot.') df_k = df_k.add_prefix('kino.') else: df_k = df_k.add_suffix('.K') df = df.merge(df_k, left_index=True, right_index=True) index = df.index.map(lambda x: x.replace('.', ':')) total = df.shape[1] if ncols and ncols < total: usecols = np.random.choice(total, size=ncols, replace=False) df = df.iloc[:, usecols] df = impute_and_scale(df, scaling) df = df.astype(np.float32) df.index = index df.index.names = ['CELLNAME'] df = df.reset_index() return df def load_drug_autoencoded_AG(ncols=None, scaling='std', add_prefix=True): """Load drug latent representation from Aspuru-Guzik's variational autoencoder, sub-select columns of drugs randomly if specificed, impute and scale the selected data, and return a pandas dataframe Parameters ---------- ncols : int or None number of columns (drug latent representations) to randomly subselect (default None : use all data) scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply add_prefix: True or False add feature namespace prefix """ path = get_file(P1B3_URL + 'Aspuru-Guzik_NSC_latent_representation_292D.csv') df = global_cache.get(path) if df is None: df =
pd.read_csv(path, engine='c', dtype=np.float32)
pandas.read_csv
# -*- coding: utf-8 -*- import unittest import platform import pandas as pd import numpy as np import pyarrow.parquet as pq import hpat from hpat.tests.test_utils import ( count_array_REPs, count_parfor_REPs, count_array_OneDs, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba import types from numba.config import IS_32BITS from numba.errors import TypingError _cov_corr_series = [(pd.Series(x), pd.Series(y)) for x, y in [ ( [np.nan, -2., 3., 9.1], [np.nan, -2., 3., 5.0], ), # TODO(quasilyte): more intricate data for complex-typed series. # Some arguments make assert_almost_equal fail. # Functions that yield mismaching results: # _column_corr_impl and _column_cov_impl. ( [complex(-2., 1.0), complex(3.0, 1.0)], [complex(-3., 1.0), complex(2.0, 1.0)], ), ( [complex(-2.0, 1.0), complex(3.0, 1.0)], [1.0, -2.0], ), ( [1.0, -4.5], [complex(-4.5, 1.0), complex(3.0, 1.0)], ), ]] min_float64 = np.finfo('float64').min max_float64 = np.finfo('float64').max test_global_input_data_float64 = [ [1., np.nan, -1., 0., min_float64, max_float64], [np.nan, np.inf, np.NINF, np.NZERO] ] min_int64 = np.iinfo('int64').min max_int64 = np.iinfo('int64').max max_uint64 = np.iinfo('uint64').max test_global_input_data_integer64 = [ [1, -1, 0], [min_int64, max_int64], [max_uint64] ] test_global_input_data_numeric = test_global_input_data_integer64 + test_global_input_data_float64 test_global_input_data_unicode_kind4 = [ 'ascii', '12345', '1234567890', '¡Y tú quién te crees?', '🐍⚡', '大处着眼,小处着手。', ] test_global_input_data_unicode_kind1 = [ 'ascii', '12345', '1234567890', ] def _make_func_from_text(func_text, func_name='test_impl'): loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars[func_name] return test_impl def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) GLOBAL_VAL = 2 class TestSeries(unittest.TestCase): def test_create1(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3]}) return (df.A == 1).sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_unicode(self): def test_impl(): S = pd.Series([ ['abc', 'defg', 'ijk'], ['lmn', 'opq', 'rstuvwxyz'] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_integer(self): def test_impl(): S = pd.Series([ [123, 456, -789], [-112233, 445566, 778899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_float(self): def test_impl(): S = pd.Series([ [1.23, -4.56, 7.89], [11.2233, 44.5566, -778.899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) def test_create2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_create_series1(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index1(self): # create and box an indexed Series def test_impl(): A = pd.Series([1, 2, 3], ['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index2(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index3(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name='A') return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index4(self): def test_impl(name): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name=name) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func('A'), test_impl('A')) def test_create_str(self): def test_impl(): df = pd.DataFrame({'A': ['a', 'b', 'c']}) return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_pass_df1(self): def test_impl(df): return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_df_str(self): def test_impl(df): return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_series1(self): # TODO: check to make sure it is series type def test_impl(A): return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series2(self): # test creating dataframe from passed series def test_impl(A): df = pd.DataFrame({'A': A}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_str(self): def test_impl(A): return (A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_index1(self): def test_impl(A): return A hpat_func = hpat.jit(test_impl) S = pd.Series([3, 5, 6], ['a', 'b', 'c'], name='A') pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_size(self): def test_impl(S): return S.size hpat_func = hpat.jit(test_impl) n = 11 for S, expected in [ (pd.Series(), 0), (pd.Series([]), 0), (pd.Series(np.arange(n)), n), (pd.Series([np.nan, 1, 2]), 3), (pd.Series(['1', '2', '3']), 3), ]: with self.subTest(S=S, expected=expected): self.assertEqual(hpat_func(S), expected) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_attr2(self): def test_impl(A): return A.copy().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr3(self): def test_impl(A): return A.min() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_series_attr4(self): def test_impl(A): return A.cumsum().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_argsort1(self): def test_impl(A): return A.argsort() hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.random.ranf(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_attr6(self): def test_impl(A): return A.take([2, 3]).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr7(self): def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_getattr_ndim(self): '''Verifies getting Series attribute ndim is supported''' def test_impl(S): return S.ndim hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_getattr_T(self): '''Verifies getting Series attribute T is supported''' def test_impl(S): return S.T hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_str1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_copy_int1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series([1, 2, 3]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_deep(self): def test_impl(A, deep): return A.copy(deep=deep) hpat_func = hpat.jit(test_impl) for S in [ pd.Series([1, 2]), pd.Series([1, 2], index=["a", "b"]), ]: with self.subTest(S=S): for deep in (True, False): with self.subTest(deep=deep): actual = hpat_func(S, deep) expected = test_impl(S, deep) pd.testing.assert_series_equal(actual, expected) self.assertEqual(actual.values is S.values, expected.values is S.values) self.assertEqual(actual.values is S.values, not deep) # Shallow copy of index is not supported yet if deep: self.assertEqual(actual.index is S.index, expected.index is S.index) self.assertEqual(actual.index is S.index, not deep) def test_series_astype_int_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts integer series to series of strings ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument converts integer series to series of strings ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument handles string series not changing it ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['d', 'e', 'f']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[1, 2, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: requires str(datetime64) support in Numba') def test_series_astype_dt_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts datetime series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series([pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03') ]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('AssertionError: Series are different' '[left]: [0.000000, 1.000000, 2.000000, 3.000000, ...' '[right]: [0.0, 1.0, 2.0, 3.0, ...' 'TODO: needs alignment to NumPy on Numba side') def test_series_astype_float_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts float series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int32_to_int64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series with dtype=int32 to series with dtype=int64 ''' def test_impl(A): return A.astype(np.int64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n), dtype=np.int32) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts integer series to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_float_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support string literal as dtype arg') def test_series_astype_literal_dtype1(self): '''Verifies Series.astype implementation with a string literal dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype('int32') hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to int') def test_series_astype_str_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of integers ''' import numba def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series([str(x) for x in np.arange(n) - n // 2]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to float') def test_series_astype_str_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) S = pd.Series(['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['a', 'b', 'c']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[2, 3, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_np_call_on_series1(self): def test_impl(A): return np.min(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values(self): def test_impl(A): return A.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values1(self): def test_impl(A): return (A == 2).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_shape1(self): def test_impl(A): return A.shape hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_static_setitem_series1(self): def test_impl(A): A[0] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_setitem_series1(self): def test_impl(A, i): A[i] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A.copy(), 0), test_impl(df.A.copy(), 0)) def test_setitem_series2(self): def test_impl(A, i): A[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1, 0) test_impl(A2, 0) pd.testing.assert_series_equal(A1, A2) @unittest.skip("enable after remove dead in hiframes is removed") def test_setitem_series3(self): def test_impl(A, i): S = pd.Series(A) S[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n) A1 = A.copy() A2 = A hpat_func(A1, 0) test_impl(A2, 0) np.testing.assert_array_equal(A1, A2) def test_setitem_series_bool1(self): def test_impl(A): A[A > 3] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1) test_impl(A2) pd.testing.assert_series_equal(A1, A2) def test_setitem_series_bool2(self): def test_impl(A, B): A[A > 3] = B[A > 3] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) A1 = df.A.copy() A2 = df.A hpat_func(A1, df.B) test_impl(A2, df.B) pd.testing.assert_series_equal(A1, A2) def test_static_getitem_series1(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) self.assertEqual(hpat_func(A), test_impl(A)) def test_getitem_series1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_getitem_series_str1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_iat1(self): def test_impl(A): return A.iat[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iat2(self): def test_impl(A): A.iat[3] = 1 return A hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_iloc1(self): def test_impl(A): return A.iloc[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iloc2(self): def test_impl(A): return A.iloc[3:8] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal( hpat_func(S), test_impl(S).reset_index(drop=True)) def test_series_op1(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op2(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: df = pd.DataFrame({'A': np.arange(1, n, dtype=np.int64)}) else: df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op3(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op4(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op5(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', 'Series values are different (20.0 %)' '[left]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]' '[right]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, -808182895, 1410065408]') def test_series_op5_integer_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: operand_series = pd.Series(np.arange(1, n, dtype=np.int64)) else: operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op5_float_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op6(self): def test_impl(A): return -A hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_op7(self): comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) def test_series_op8(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'ne', 'eq') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', "Attribute dtype are different: int64, int32") def test_series_op8_integer_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op8_float_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_inplace_binop_array(self): def test_impl(A, B): A += B return A hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 1) def test_series_fusion2(self): # make sure getting data var avoids incorrect single def assumption def test_impl(A, B): S = B + 2 if A[0] == 0: S = A + 1 return S + B hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 3) def test_series_len(self): def test_impl(A, i): return len(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_box(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_box2(self): def test_impl(): A = pd.Series(['1', '2', '3']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_list_str_unbox1(self): def test_impl(A): return A.iloc[0] hpat_func = hpat.jit(test_impl) S = pd.Series([['aa', 'b'], ['ccc'], []]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) # call twice to test potential refcount errors np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_np_typ_call_replace(self): # calltype replacement is tricky for np.typ() calls since variable # type can't provide calltype def test_impl(i): return np.int32(i) hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(1), test_impl(1)) def test_series_ufunc1(self): def test_impl(A, i): return np.isinf(A).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A, 1), test_impl(df.A, 1)) def test_list_convert(self): def test_impl(): df = pd.DataFrame({'one': np.array([-1, np.nan, 2.5]), 'two': ['foo', 'bar', 'baz'], 'three': [True, False, True]}) return df.one.values, df.two.values, df.three.values hpat_func = hpat.jit(test_impl) one, two, three = hpat_func() self.assertTrue(isinstance(one, np.ndarray)) self.assertTrue(isinstance(two, np.ndarray)) self.assertTrue(isinstance(three, np.ndarray)) @unittest.skip("needs empty_like typing fix in npydecl.py") def test_series_empty_like(self): def test_impl(A): return np.empty_like(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertTrue(isinstance(hpat_func(df.A), np.ndarray)) def test_series_fillna1(self): def test_impl(A): return A.fillna(5.0) hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) # test inplace fillna for named numeric series (obtained from DataFrame) def test_series_fillna_inplace1(self): def test_impl(A): A.fillna(5.0, inplace=True) return A hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str1(self): def test_impl(A): return A.fillna("dd") hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str_inplace1(self): def test_impl(A): A.fillna("dd", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) # TODO: handle string array reflection # hpat_func(S1) # test_impl(S2) # np.testing.assert_array_equal(S1, S2) def test_series_fillna_str_inplace_empty1(self): def test_impl(A): A.fillna("", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_str(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=['a', 'b', 'c', 'd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_int(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=[2, 3, 4, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis1(self): '''Verifies Series.dropna() implementation handles 'index' as axis argument''' def test_impl(S): return S.dropna(axis='index') hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis2(self): '''Verifies Series.dropna() implementation handles 0 as axis argument''' def test_impl(S): return S.dropna(axis=0) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis3(self): '''Verifies Series.dropna() implementation handles correct non-literal axis argument''' def test_impl(S, axis): return S.dropna(axis=axis) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() axis_values = [0, 'index'] for value in axis_values: pd.testing.assert_series_equal(hpat_func(S1, value), test_impl(S2, value)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index1(self): '''Verifies Series.dropna() implementation for float series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) for data in test_global_input_data_float64: S1 = pd.Series(data) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index2(self): '''Verifies Series.dropna() implementation for float series with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index2(self): '''Verifies Series.dropna() implementation for series of strings with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index3(self): def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], index=[1, 2, 5, 7, 10]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_float_inplace_no_index1(self): '''Verifies Series.dropna() implementation for float series with default index and inplace argument True''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_float_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original float series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_str_inplace_no_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index and inplace argument True ''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_str_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original string series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) def test_series_dropna_str_parallel1(self): '''Verifies Series.dropna() distributed work for series of strings with default index''' def test_impl(A): B = A.dropna() return (B == 'gg').sum() hpat_func = hpat.jit(distributed=['A'])(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc', 'dd', 'gg']) start, end = get_start_end(len(S1)) # TODO: gatherv self.assertEqual(hpat_func(S1[start:end]), test_impl(S1)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(count_array_OneDs() > 0) @unittest.skip('AssertionError: Series are different\n' 'Series length are different\n' '[left]: 3, Int64Index([0, 1, 2], dtype=\'int64\')\n' '[right]: 2, Int64Index([1, 2], dtype=\'int64\')') def test_series_dropna_dt_no_index1(self): '''Verifies Series.dropna() implementation for datetime series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([pd.NaT, pd.Timestamp('1970-12-01'), pd.Timestamp('2012-07-25')]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) def test_series_dropna_bool_no_index1(self): '''Verifies Series.dropna() implementation for bool series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([True, False, False, True]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_int_no_index1(self): '''Verifies Series.dropna() implementation for integer series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) n = 11 S1 = pd.Series(np.arange(n, dtype=np.int64)) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('numba.errors.TypingError - fix needed\n' 'Failed in hpat mode pipeline' '(step: convert to distributed)\n' 'Invalid use of Function(<built-in function len>)' 'with argument(s) of type(s): (none)\n') def test_series_rename1(self): def test_impl(A): return A.rename('B') hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A)) def test_series_sum_default(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) S = pd.Series([1., 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_sum_nan(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) # column with NA S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) # all NA case should produce 0 S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Old style Series.sum() does not support parameters") def test_series_sum_skipna_false(self): def test_impl(S): return S.sum(skipna=False) hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(np.isnan(hpat_func(S)), np.isnan(test_impl(S))) @unittest.skipIf(not hpat.config.config_pipeline_hpat_default, "Series.sum() operator + is not implemented yet for Numba") def test_series_sum2(self): def test_impl(S): return (S + S).sum() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_prod(self): def test_impl(S, skipna): return S.prod(skipna=skipna) hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for data in data_samples: S = pd.Series(data) for skipna_var in [True, False]: actual = hpat_func(S, skipna=skipna_var) expected = test_impl(S, skipna=skipna_var) if np.isnan(actual) or np.isnan(expected): # con not compare Nan != Nan directly self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) def test_series_prod_skipna_default(self): def test_impl(S): return S.prod() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2, 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_count1(self): def test_impl(S): return S.count() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series(['aa', 'bb', np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_mean(self): def test_impl(S): return S.mean() hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for data in data_samples: with self.subTest(data=data): S = pd.Series(data) actual = hpat_func(S) expected = test_impl(S) if np.isnan(actual) or np.isnan(expected): self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.mean() any parameters unsupported") def test_series_mean_skipna(self): def test_impl(S, skipna): return S.mean(skipna=skipna) hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for skipna in [True, False]: for data in data_samples: S = pd.Series(data) actual = hpat_func(S, skipna) expected = test_impl(S, skipna) if np.isnan(actual) or np.isnan(expected): self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) def test_series_var1(self): def test_impl(S): return S.var() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_min(self): def test_impl(S): return S.min() hpat_func = hpat.jit(test_impl) # TODO type_min/type_max for input_data in [[np.nan, 2., np.nan, 3., np.inf, 1, -1000], [8, 31, 1123, -1024], [2., 3., 1, -1000, np.inf]]: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.min() any parameters unsupported") def test_series_min_param(self): def test_impl(S, param_skipna): return S.min(skipna=param_skipna) hpat_func = hpat.jit(test_impl) for input_data, param_skipna in [([np.nan, 2., np.nan, 3., 1, -1000, np.inf], True), ([2., 3., 1, np.inf, -1000], False)]: S = pd.Series(input_data) result_ref = test_impl(S, param_skipna) result = hpat_func(S, param_skipna) self.assertEqual(result, result_ref) def test_series_max(self): def test_impl(S): return S.max() hpat_func = hpat.jit(test_impl) # TODO type_min/type_max for input_data in [[np.nan, 2., np.nan, 3., np.inf, 1, -1000], [8, 31, 1123, -1024], [2., 3., 1, -1000, np.inf]]: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.max() any parameters unsupported") def test_series_max_param(self): def test_impl(S, param_skipna): return S.max(skipna=param_skipna) hpat_func = hpat.jit(test_impl) for input_data, param_skipna in [([np.nan, 2., np.nan, 3., 1, -1000, np.inf], True), ([2., 3., 1, np.inf, -1000], False)]: S = pd.Series(input_data) result_ref = test_impl(S, param_skipna) result = hpat_func(S, param_skipna) self.assertEqual(result, result_ref) def test_series_value_counts(self): def test_impl(S): return S.value_counts() hpat_func = hpat.jit(test_impl) S = pd.Series(['AA', 'BB', 'C', 'AA', 'C', 'AA']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_dist_input1(self): '''Verify distribution of a Series without index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n)) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_series_dist_input2(self): '''Verify distribution of a Series with integer index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n), 1 + np.arange(n)) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip("Passed if run single") def test_series_dist_input3(self): '''Verify distribution of a Series with string index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n), ['abc{}'.format(id) for id in range(n)]) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_series_tuple_input1(self): def test_impl(s_tup): return s_tup[0].max() hpat_func = hpat.jit(test_impl) n = 111 S = pd.Series(np.arange(n)) S2 = pd.Series(np.arange(n) + 1.0) s_tup = (S, 1, S2) self.assertEqual(hpat_func(s_tup), test_impl(s_tup)) @unittest.skip("pending handling of build_tuple in dist pass") def test_series_tuple_input_dist1(self): def test_impl(s_tup): return s_tup[0].max() hpat_func = hpat.jit(locals={'s_tup:input': 'distributed'})(test_impl) n = 111 S = pd.Series(np.arange(n)) S2 = pd.Series(np.arange(n) + 1.0) start, end = get_start_end(n) s_tup = (S, 1, S2) h_s_tup = (S[start:end], 1, S2[start:end]) self.assertEqual(hpat_func(h_s_tup), test_impl(s_tup)) def test_series_rolling1(self): def test_impl(S): return S.rolling(3).sum() hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_concat1(self): def test_impl(S1, S2): return pd.concat([S1, S2]).values hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2., 3., 4., 5.]) S2 = pd.Series([6., 7.]) np.testing.assert_array_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_map1(self): def test_impl(S): return S.map(lambda a: 2 * a) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_map_global1(self): def test_impl(S): return S.map(lambda a: a + GLOBAL_VAL) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_map_tup1(self): def test_impl(S): return S.map(lambda a: (a, 2 * a)) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_map_tup_map1(self): def test_impl(S): A = S.map(lambda a: (a, 2 * a)) return A.map(lambda a: a[1]) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_combine(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2., 3., 4., 5.]) S2 = pd.Series([6.0, 21., 3.6, 5.]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_float3264(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([np.float64(1), np.float64(2), np.float64(3), np.float64(4), np.float64(5)]) S2 = pd.Series([np.float32(1), np.float32(2), np.float32(3), np.float32(4), np.float32(5)]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_assert1(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1, 2, 3]) S2 = pd.Series([6., 21., 3., 5.]) with self.assertRaises(AssertionError): hpat_func(S1, S2) def test_series_combine_assert2(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([6., 21., 3., 5.]) S2 = pd.Series([1, 2, 3]) with self.assertRaises(AssertionError): hpat_func(S1, S2) def test_series_combine_integer(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b, 16) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1, 2, 3, 4, 5]) S2 = pd.Series([6, 21, 3, 5]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_different_types(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([6.1, 21.2, 3.3, 5.4, 6.7]) S2 = pd.Series([1, 2, 3, 4, 5]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_integer_samelen(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1, 2, 3, 4, 5]) S2 = pd.Series([6, 21, 17, -5, 4]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_samelen(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2., 3., 4., 5.]) S2 = pd.Series([6.0, 21., 3.6, 5., 0.0]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_value(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b, 1237.56) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2., 3., 4., 5.]) S2 = pd.Series([6.0, 21., 3.6, 5.]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_value_samelen(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b, 1237.56) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2., 3., 4., 5.]) S2 = pd.Series([6.0, 21., 3.6, 5., 0.0]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_apply1(self): def test_impl(S): return S.apply(lambda a: 2 * a) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_abs1(self): def test_impl(S): return S.abs() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, -2., 3., 0.5E-01, 0xFF, 0o7, 0b101]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_cov1(self): def test_impl(S1, S2): return S1.cov(S2) hpat_func = hpat.jit(test_impl) for pair in _cov_corr_series: S1, S2 = pair np.testing.assert_almost_equal( hpat_func(S1, S2), test_impl(S1, S2), err_msg='S1={}\nS2={}'.format(S1, S2)) def test_series_corr1(self): def test_impl(S1, S2): return S1.corr(S2) hpat_func = hpat.jit(test_impl) for pair in _cov_corr_series: S1, S2 = pair np.testing.assert_almost_equal( hpat_func(S1, S2), test_impl(S1, S2), err_msg='S1={}\nS2={}'.format(S1, S2)) def test_series_str_len1(self): def test_impl(S): return S.str.len() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'abc', 'c', 'cccd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_str2str(self): str2str_methods = ('capitalize', 'lower', 'lstrip', 'rstrip', 'strip', 'swapcase', 'title', 'upper') for method in str2str_methods: func_text = "def test_impl(S):\n" func_text += " return S.str.{}()\n".format(method) test_impl = _make_func_from_text(func_text) hpat_func = hpat.jit(test_impl) S = pd.Series([' \tbbCD\t ', 'ABC', ' mCDm\t', 'abc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_append1(self): def test_impl(S, other): return S.append(other).values hpat_func = hpat.jit(test_impl) S1 = pd.Series([-2., 3., 9.1]) S2 = pd.Series([-2., 5.0]) # Test single series np.testing.assert_array_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_append2(self): def test_impl(S1, S2, S3): return S1.append([S2, S3]).values hpat_func = hpat.jit(test_impl) S1 = pd.Series([-2., 3., 9.1]) S2 = pd.Series([-2., 5.0]) S3 = pd.Series([1.0]) # Test series tuple np.testing.assert_array_equal(hpat_func(S1, S2, S3), test_impl(S1, S2, S3)) def test_series_isin_list1(self): def test_impl(S, values): return S.isin(values) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) values = [1, 2, 5, 7, 8] pd.testing.assert_series_equal(hpat_func(S, values), test_impl(S, values)) def test_series_isin_list2(self): def test_impl(S, values): return S.isin(values) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) values = [1., 2., 5., 7., 8.] pd.testing.assert_series_equal(hpat_func(S, values), test_impl(S, values)) def test_series_isin_list3(self): def test_impl(S, values): return S.isin(values) hpat_func = hpat.jit(test_impl) S = pd.Series(['a', 'b', 'q', 'w', 'c', 'd', 'e', 'r']) values = ['a', 'q', 'c', 'd', 'e'] pd.testing.assert_series_equal(hpat_func(S, values), test_impl(S, values)) def test_series_isin_set1(self): def test_impl(S, values): return S.isin(values) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) values = {1, 2, 5, 7, 8} pd.testing.assert_series_equal(hpat_func(S, values), test_impl(S, values)) def test_series_isin_set2(self): def test_impl(S, values): return S.isin(values) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) values = {1., 2., 5., 7., 8.} pd.testing.assert_series_equal(hpat_func(S, values), test_impl(S, values)) @unittest.skip('TODO: requires hashable unicode strings in Numba') def test_series_isin_set3(self): def test_impl(S, values): return S.isin(values) hpat_func = hpat.jit(test_impl) S = pd.Series(['a', 'b', 'c', 'd', 'e'] * 2) values = {'b', 'c', 'e'} pd.testing.assert_series_equal(hpat_func(S, values), test_impl(S, values)) def test_series_isna1(self): def test_impl(S): return S.isna() hpat_func = hpat.jit(test_impl) # column with NA S = pd.Series([np.nan, 2., 3., np.inf]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_isnull1(self): def test_impl(S): return S.isnull() hpat_func = hpat.jit(test_impl) # column with NA S = pd.Series([np.nan, 2., 3.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_isnull_full(self): def test_impl(series): return series.isnull() hpat_func = hpat.jit(test_impl) for data in test_global_input_data_numeric + [test_global_input_data_unicode_kind4]: series = pd.Series(data * 3) ref_result = test_impl(series) jit_result = hpat_func(series) pd.testing.assert_series_equal(ref_result, jit_result) def test_series_notna1(self): def test_impl(S): return S.notna() hpat_func = hpat.jit(test_impl) # column with NA S = pd.Series([np.nan, 2., 3.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_notna_noidx_float(self): def test_impl(S): return S.notna() hpat_func = hpat.jit(test_impl) for input_data in test_global_input_data_float64: S = pd.Series(input_data) result_ref = test_impl(S) result_jit = hpat_func(S) pd.testing.assert_series_equal(result_jit, result_ref) @unittest.skip("Need fix test_global_input_data_integer64") def test_series_notna_noidx_int(self): def test_impl(S): return S.notna() hpat_func = hpat.jit(test_impl) for input_data in test_global_input_data_integer64: S = pd.Series(input_data) result_ref = test_impl(S) result_jit = hpat_func(S) pd.testing.assert_series_equal(result_jit, result_ref) @unittest.skip("Need fix test_global_input_data_integer64") def test_series_notna_noidx_num(self): def test_impl(S): return S.notna() hpat_func = hpat.jit(test_impl) for input_data in test_global_input_data_numeric: S = pd.Series(input_data) result_ref = test_impl(S) result_jit = hpat_func(S) pd.testing.assert_series_equal(result_jit, result_ref) def test_series_notna_noidx_str(self): def test_impl(S): return S.notna() hpat_func = hpat.jit(test_impl) input_data = test_global_input_data_unicode_kind4 S = pd.Series(input_data) result_ref = test_impl(S) result_jit = hpat_func(S) pd.testing.assert_series_equal(result_jit, result_ref) def test_series_str_notna(self): def test_impl(S): return S.notna() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', None, 'c', 'cccd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_str_isna1(self): def test_impl(S): return S.isna() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', None, 'c', 'cccd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('AssertionError: Series are different') def test_series_dt_isna1(self): def test_impl(S): return S.isna() hpat_func = hpat.jit(test_impl) S = pd.Series([pd.NaT, pd.Timestamp('1970-12-01'), pd.Timestamp('2012-07-25')]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_nlargest1(self): def test_impl(S): return S.nlargest(4) hpat_func = hpat.jit(test_impl) m = 100 np.random.seed(0) S = pd.Series(np.random.randint(-30, 30, m)) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_nlargest_default1(self): def test_impl(S): return S.nlargest() hpat_func = hpat.jit(test_impl) m = 100 np.random.seed(0) S = pd.Series(np.random.randint(-30, 30, m)) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_nlargest_nan1(self): def test_impl(S): return S.nlargest(4) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, np.nan, 3.0, 2.0, np.nan, 4.0]) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_nlargest_parallel1(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() def test_impl(): df = pq.read_table('kde.parquet').to_pandas() S = df.points return S.nlargest(4) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func().values, test_impl().values) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_nlargest_index_str(self): def test_impl(S): return S.nlargest(4) hpat_func = hpat.jit(test_impl) S = pd.Series([73, 21, 10005, 5, 1], index=['a', 'b', 'c', 'd', 'e']) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_nlargest_index_int(self): def test_impl(S): return S.nlargest(4) hpat_func = hpat.jit(test_impl) S = pd.Series([73, 21, 10005, 5, 1], index=[2, 3, 4, 5, 6]) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_nsmallest1(self): def test_impl(S): return S.nsmallest(4) hpat_func = hpat.jit(test_impl) m = 100 np.random.seed(0) S = pd.Series(np.random.randint(-30, 30, m)) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_nsmallest_default1(self): def test_impl(S): return S.nsmallest() hpat_func = hpat.jit(test_impl) m = 100 np.random.seed(0) S = pd.Series(np.random.randint(-30, 30, m)) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_nsmallest_nan1(self): def test_impl(S): return S.nsmallest(4) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, np.nan, 3.0, 2.0, np.nan, 4.0]) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_nsmallest_parallel1(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() def test_impl(): df = pq.read_table('kde.parquet').to_pandas() S = df.points return S.nsmallest(4) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func().values, test_impl().values) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_nsmallest_index_str(self): def test_impl(S): return S.nsmallest(3) hpat_func = hpat.jit(test_impl) S = pd.Series([41, 32, 33, 4, 5], index=['a', 'b', 'c', 'd', 'e']) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_nsmallest_index_int(self): def test_impl(S): return S.nsmallest(3) hpat_func = hpat.jit(test_impl) S = pd.Series([41, 32, 33, 4, 5], index=[1, 2, 3, 4, 5]) np.testing.assert_array_equal(hpat_func(S).values, test_impl(S).values) def test_series_head1(self): def test_impl(S): return S.head(4) hpat_func = hpat.jit(test_impl) m = 100 np.random.seed(0) S = pd.Series(np.random.randint(-30, 30, m)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_head_default1(self): '''Verifies default head method for non-distributed pass of Series with no index''' def test_impl(S): return S.head() hpat_func = hpat.jit(test_impl) m = 100 np.random.seed(0) S = pd.Series(np.random.randint(-30, 30, m)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_head_index1(self): '''Verifies head method for Series with integer index created inside jitted function''' def test_impl(): S = pd.Series([6, 9, 2, 3, 6, 4, 5], [8, 1, 6, 0, 9, 1, 3]) return S.head(3) hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_head_index2(self): '''Verifies head method for Series with string index created inside jitted function''' def test_impl(): S = pd.Series([6, 9, 2, 3, 6, 4, 5], ['a', 'ab', 'abc', 'c', 'f', 'hh', '']) return S.head(3) hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_head_index3(self): '''Verifies head method for non-distributed pass of Series with integer index''' def test_impl(S): return S.head(3) hpat_func = hpat.jit(test_impl) S = pd.Series([6, 9, 2, 3, 6, 4, 5], [8, 1, 6, 0, 9, 1, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip("Passed if run single") def test_series_head_index4(self): '''Verifies head method for non-distributed pass of Series with string index''' def test_impl(S): return S.head(3) hpat_func = hpat.jit(test_impl) S = pd.Series([6, 9, 2, 4, 6, 4, 5], ['a', 'ab', 'abc', 'c', 'f', 'hh', '']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_head_parallel1(self): '''Verifies head method for distributed Series with string data and no index''' def test_impl(S): return S.head(7) hpat_func = hpat.jit(distributed={'S'})(test_impl) # need to test different lenghts, as head's size is fixed and implementation # depends on relation of size of the data per processor to output data size for n in range(1, 5): S = pd.Series(['a', 'ab', 'abc', 'c', 'f', 'hh', ''] * n) start, end = get_start_end(len(S)) pd.testing.assert_series_equal(hpat_func(S[start:end]), test_impl(S)) self.assertTrue(count_array_OneDs() > 0) def test_series_head_index_parallel1(self): '''Verifies head method for distributed Series with integer index''' def test_impl(S): return S.head(3) hpat_func = hpat.jit(distributed={'S'})(test_impl) S = pd.Series([6, 9, 2, 3, 6, 4, 5], [8, 1, 6, 0, 9, 1, 3]) start, end = get_start_end(len(S)) pd.testing.assert_series_equal(hpat_func(S[start:end]), test_impl(S)) self.assertTrue(count_array_OneDs() > 0) @unittest.skip("Passed if run single") def test_series_head_index_parallel2(self): '''Verifies head method for distributed Series with string index''' def test_impl(S): return S.head(3) hpat_func = hpat.jit(distributed={'S'})(test_impl) S = pd.Series([6, 9, 2, 3, 6, 4, 5], ['a', 'ab', 'abc', 'c', 'f', 'hh', '']) start, end = get_start_end(len(S)) pd.testing.assert_series_equal(hpat_func(S[start:end]), test_impl(S)) self.assertTrue(count_array_OneDs() > 0) def test_series_head_noidx_float(self): def test_impl(S, n): return S.head(n) hpat_func = hpat.jit(test_impl) for input_data in test_global_input_data_float64: S = pd.Series(input_data) for n in [-1, 0, 2, 3]: result_ref = test_impl(S, n) result_jit = hpat_func(S, n) pd.testing.assert_series_equal(result_jit, result_ref) @unittest.skip("Need fix test_global_input_data_integer64") def test_series_head_noidx_int(self): def test_impl(S, n): return S.head(n) hpat_func = hpat.jit(test_impl) for input_data in test_global_input_data_integer64: S = pd.Series(input_data) for n in [-1, 0, 2, 3]: result_ref = test_impl(S, n) result_jit = hpat_func(S, n) pd.testing.assert_series_equal(result_jit, result_ref) @unittest.skip("Need fix test_global_input_data_integer64") def test_series_head_noidx_num(self): def test_impl(S, n): return S.head(n) hpat_func = hpat.jit(test_impl) for input_data in test_global_input_data_numeric: S = pd.Series(input_data) for n in [-1, 0, 2, 3]: result_ref = test_impl(S, n) result_jit = hpat_func(S, n) pd.testing.assert_series_equal(result_jit, result_ref) @unittest.skip("Old implementation not work with n negative and data str") def test_series_head_noidx_str(self): def test_impl(S, n): return S.head(n) hpat_func = hpat.jit(test_impl) input_data = test_global_input_data_unicode_kind4 S = pd.Series(input_data) for n in [-1, 0, 2, 3]: result_ref = test_impl(S, n) result_jit = hpat_func(S, n) pd.testing.assert_series_equal(result_jit, result_ref) @unittest.skip("Broke another three tests") def test_series_head_idx(self): def test_impl(S): return S.head() def test_impl_param(S, n): return S.head(n) hpat_func = hpat.jit(test_impl) data_test = [[6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 0, 2.2, 1, 2], ['as', 'b', 'abb', 'sss', 'ytr65', '', 'qw', 'a', 'b'], [6, 6, 2, 1, 3, np.inf, np.nan, np.nan, np.nan], [3., 5.3, np.nan, np.nan, np.inf, np.inf, 4.4, 3.7, 8.9] ] for input_data in data_test: for index_data in data_test: S = pd.Series(input_data, index_data) result_ref = test_impl(S) result = hpat_func(S) pd.testing.assert_series_equal(result, result_ref) hpat_func_param1 = hpat.jit(test_impl_param) for param1 in [1, 3, 7]: result_param1_ref = test_impl_param(S, param1) result_param1 = hpat_func_param1(S, param1) pd.testing.assert_series_equal(result_param1, result_param1_ref) def test_series_median1(self): '''Verifies median implementation for float and integer series of random data''' def test_impl(S): return S.median() hpat_func = hpat.jit(test_impl) m = 100 np.random.seed(0) S = pd.Series(np.random.randint(-30, 30, m)) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series(np.random.ranf(m)) self.assertEqual(hpat_func(S), test_impl(S)) # odd size m = 101 S = pd.Series(np.random.randint(-30, 30, m)) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series(np.random.ranf(m)) self.assertEqual(hpat_func(S), test_impl(S)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "BUG: old-style median implementation doesn't filter NaNs") def test_series_median_skipna_default1(self): '''Verifies median implementation with default skipna=True argument on a series with NA values''' def test_impl(S): return S.median() hpat_func = hpat.jit(test_impl) S = pd.Series([2., 3., 5., np.nan, 5., 6., 7.]) self.assertEqual(hpat_func(S), test_impl(S)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Skipna argument is not supported in old-style") def test_series_median_skipna_false1(self): '''Verifies median implementation with skipna=False on a series with NA values''' def test_impl(S): return S.median(skipna=False) hpat_func = hpat.jit(test_impl) # np.inf is not NaN, so verify that a correct number is returned S1 = pd.Series([2., 3., 5., np.inf, 5., 6., 7.]) self.assertEqual(hpat_func(S1), test_impl(S1)) # TODO: both return values are 'nan', but HPAT's is not np.nan, hence checking with # assertIs() doesn't work - check if it's Numba relatated S2 = pd.Series([2., 3., 5., np.nan, 5., 6., 7.]) self.assertEqual(np.isnan(hpat_func(S2)), np.isnan(test_impl(S2))) def test_series_median_parallel1(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() def test_impl(): df = pq.read_table('kde.parquet').to_pandas() S = df.points return S.median() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(count_array_OneDs() > 0) def test_series_argsort_parallel(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() def test_impl(): df = pq.read_table('kde.parquet').to_pandas() S = df.points return S.argsort().values hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(), test_impl()) def test_series_idxmin1(self): def test_impl(A): return A.idxmin() hpat_func = hpat.jit(test_impl) n = 11 np.random.seed(0) S = pd.Series(np.random.ranf(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_idxmin_str(self): def test_impl(S): return S.idxmin() hpat_func = hpat.jit(test_impl) S = pd.Series([8, 6, 34, np.nan], ['a', 'ab', 'abc', 'c']) self.assertEqual(hpat_func(S), test_impl(S)) @unittest.skip("Skipna is not implemented") def test_series_idxmin_str_idx(self): def test_impl(S): return S.idxmin(skipna=False) hpat_func = hpat.jit(test_impl) S = pd.Series([8, 6, 34, np.nan], ['a', 'ab', 'abc', 'c']) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_idxmin_no(self): def test_impl(S): return S.idxmin() hpat_func = hpat.jit(test_impl) S = pd.Series([8, 6, 34, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_idxmin_int(self): def test_impl(S): return S.idxmin() hpat_func = hpat.jit(test_impl) S = pd.Series([1, 2, 3], [4, 45, 14]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_idxmin_noidx(self): def test_impl(S): return S.idxmin() hpat_func = hpat.jit(test_impl) data_test = [[6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 0, 2.2, 1, 2], [6, 6, 2, 1, 3, np.inf, np.nan, np.nan, np.nan], [3., 5.3, np.nan, np.nan, np.inf, np.inf, 4.4, 3.7, 8.9] ] for input_data in data_test: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) def test_series_idxmin_idx(self): def test_impl(S): return S.idxmin() hpat_func = hpat.jit(test_impl) data_test = [[6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 0, 2.2, 1, 2], [6, 6, 2, 1, 3, -np.inf, np.nan, np.inf, np.nan], [3., 5.3, np.nan, np.nan, np.inf, np.inf, 4.4, 3.7, 8.9] ] for input_data in data_test: for index_data in data_test: S = pd.Series(input_data, index_data) result_ref = test_impl(S) result = hpat_func(S) if np.isnan(result) or np.isnan(result_ref): self.assertEqual(np.isnan(result), np.isnan(result_ref)) else: self.assertEqual(result, result_ref) def test_series_idxmax1(self): def test_impl(A): return A.idxmax() hpat_func = hpat.jit(test_impl) n = 11 np.random.seed(0) S = pd.Series(np.random.ranf(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) @unittest.skip("Skipna is not implemented") def test_series_idxmax_str_idx(self): def test_impl(S): return S.idxmax(skipna=False) hpat_func = hpat.jit(test_impl) S = pd.Series([8, 6, 34, np.nan], ['a', 'ab', 'abc', 'c']) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_idxmax_noidx(self): def test_impl(S): return S.idxmax() hpat_func = hpat.jit(test_impl) data_test = [[6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 0, 2.2, 1, 2], [6, 6, 2, 1, 3, np.inf, np.nan, np.inf, np.nan], [3., 5.3, np.nan, np.nan, np.inf, np.inf, 4.4, 3.7, 8.9] ] for input_data in data_test: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) def test_series_idxmax_idx(self): def test_impl(S): return S.idxmax() hpat_func = hpat.jit(test_impl) data_test = [[6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 0, 2.2, 1, 2], [6, 6, 2, 1, 3, np.nan, np.nan, np.nan, np.nan], [3., 5.3, np.nan, np.nan, np.inf, np.inf, 4.4, 3.7, 8.9] ] for input_data in data_test: for index_data in data_test: S = pd.Series(input_data, index_data) result_ref = test_impl(S) result = hpat_func(S) if np.isnan(result) or np.isnan(result_ref): self.assertEqual(np.isnan(result), np.isnan(result_ref)) else: self.assertEqual(result, result_ref) def test_series_sort_values1(self): def test_impl(A): return A.sort_values() hpat_func = hpat.jit(test_impl) n = 11 np.random.seed(0) S = pd.Series(np.random.ranf(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_sort_values_index1(self): def test_impl(A, B): S = pd.Series(A, B) return S.sort_values() hpat_func = hpat.jit(test_impl) n = 11 np.random.seed(0) # TODO: support passing Series with Index # S = pd.Series(np.random.ranf(n), np.random.randint(0, 100, n)) A = np.random.ranf(n) B = np.random.ranf(n) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_sort_values_parallel1(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() def test_impl(): df = pq.read_table('kde.parquet').to_pandas() S = df.points return S.sort_values() hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(), test_impl()) def test_series_shift(self): def pyfunc(): series = pd.Series([1.0, np.nan, -1.0, 0.0, 5e-324]) return series.shift() cfunc = hpat.jit(pyfunc) pd.testing.assert_series_equal(cfunc(), pyfunc()) def test_series_shift_unboxing(self): def pyfunc(series): return series.shift() cfunc = hpat.jit(pyfunc) for data in test_global_input_data_float64: series = pd.Series(data) pd.testing.assert_series_equal(cfunc(series), pyfunc(series)) def test_series_shift_full(self): def pyfunc(series, periods, freq, axis, fill_value): return series.shift(periods=periods, freq=freq, axis=axis, fill_value=fill_value) cfunc = hpat.jit(pyfunc) freq = None axis = 0 for data in test_global_input_data_float64: series = pd.Series(data) for periods in [-2, 0, 3]: for fill_value in [9.1, np.nan, -3.3, None]: jit_result = cfunc(series, periods, freq, axis, fill_value) ref_result = pyfunc(series, periods, freq, axis, fill_value) pd.testing.assert_series_equal(jit_result, ref_result) def test_series_shift_str(self): def pyfunc(series): return series.shift() cfunc = hpat.jit(pyfunc) series = pd.Series(test_global_input_data_unicode_kind4) with self.assertRaises(TypingError) as raises: cfunc(series) msg = 'Method shift(). The object must be a number. Given self.data.dtype: {}' self.assertIn(msg.format(types.unicode_type), str(raises.exception)) def test_series_shift_fill_str(self): def pyfunc(series, fill_value): return series.shift(fill_value=fill_value) cfunc = hpat.jit(pyfunc) series = pd.Series(test_global_input_data_float64[0]) with self.assertRaises(TypingError) as raises: cfunc(series, fill_value='unicode') msg = 'Method shift(). The object must be a number. Given fill_value: {}' self.assertIn(msg.format(types.unicode_type), str(raises.exception)) def test_series_shift_unsupported_params(self): def pyfunc(series, freq, axis): return series.shift(freq=freq, axis=axis) cfunc = hpat.jit(pyfunc) series = pd.Series(test_global_input_data_float64[0]) with self.assertRaises(TypingError) as raises: cfunc(series, freq='12H', axis=0) msg = 'Method shift(). Unsupported parameters. Given freq: {}' self.assertIn(msg.format(types.unicode_type), str(raises.exception)) with self.assertRaises(TypingError) as raises: cfunc(series, freq=None, axis=1) msg = 'Method shift(). Unsupported parameters. Given axis != 0' self.assertIn(msg, str(raises.exception)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_shift_index_str(self): def test_impl(S): return S.shift() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3., 5., np.nan, 6., 7.], index=['a', 'b', 'c', 'd', 'e', 'f', 'g']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_shift_index_int(self): def test_impl(S): return S.shift() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3., 5., np.nan, 6., 7.], index=[1, 2, 3, 4, 5, 6, 7]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_index1(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B']) return A.index hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(), test_impl()) def test_series_index2(self): def test_impl(): A = pd.Series([1, 2, 3], index=[0, 1, 2]) return A.index hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(), test_impl()) def test_series_index3(self): def test_impl(): A = pd.Series([1, 2, 3]) return A.index hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(), test_impl()) def test_series_take_index_default(self): def pyfunc(): series = pd.Series([1.0, 13.0, 9.0, -1.0, 7.0]) indices = [1, 3] return series.take(indices) cfunc = hpat.jit(pyfunc) ref_result = pyfunc() result = cfunc() pd.testing.assert_series_equal(ref_result, result) def test_series_take_index_default_unboxing(self): def pyfunc(series, indices): return series.take(indices) cfunc = hpat.jit(pyfunc) series = pd.Series([1.0, 13.0, 9.0, -1.0, 7.0]) indices = [1, 3] ref_result = pyfunc(series, indices) result = cfunc(series, indices) pd.testing.assert_series_equal(ref_result, result) def test_series_take_index_int(self): def pyfunc(): series = pd.Series([1.0, 13.0, 9.0, -1.0, 7.0], index=[3, 0, 4, 2, 1]) indices = [1, 3] return series.take(indices) cfunc = hpat.jit(pyfunc) ref_result = pyfunc() result = cfunc() pd.testing.assert_series_equal(ref_result, result) def test_series_take_index_int_unboxing(self): def pyfunc(series, indices): return series.take(indices) cfunc = hpat.jit(pyfunc) series = pd.Series([1.0, 13.0, 9.0, -1.0, 7.0], index=[3, 0, 4, 2, 1]) indices = [1, 3] ref_result = pyfunc(series, indices) result = cfunc(series, indices) pd.testing.assert_series_equal(ref_result, result) def test_series_take_index_str(self): def pyfunc(): series = pd.Series([1.0, 13.0, 9.0, -1.0, 7.0], index=['test', 'series', 'take', 'str', 'index']) indices = [1, 3] return series.take(indices) cfunc = hpat.jit(pyfunc) ref_result = pyfunc() result = cfunc() pd.testing.assert_series_equal(ref_result, result) def test_series_take_index_str_unboxing(self): def pyfunc(series, indices): return series.take(indices) cfunc = hpat.jit(pyfunc) series = pd.Series([1.0, 13.0, 9.0, -1.0, 7.0], index=['test', 'series', 'take', 'str', 'index']) indices = [1, 3] ref_result = pyfunc(series, indices) result = cfunc(series, indices) pd.testing.assert_series_equal(ref_result, result) def test_series_iterator_int(self): def test_impl(A): return [i for i in A] A = pd.Series([3, 2, 1, 5, 4]) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_series_iterator_float(self): def test_impl(A): return [i for i in A] A = pd.Series([0.3, 0.2222, 0.1756, 0.005, 0.4]) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_series_iterator_boolean(self): def test_impl(A): return [i for i in A] A = pd.Series([True, False]) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_series_iterator_string(self): def test_impl(A): return [i for i in A] A = pd.Series(['a', 'ab', 'abc', '', 'dddd']) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_series_iterator_one_value(self): def test_impl(A): return [i for i in A] A = pd.Series([5]) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(A), test_impl(A)) @unittest.skip("Fails when NUMA_PES>=2 due to unimplemented sync of such construction after distribution") def test_series_iterator_no_param(self): def test_impl(): A = pd.Series([3, 2, 1, 5, 4]) return [i for i in A] hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(), test_impl()) def test_series_iterator_empty(self): def test_impl(A): return [i for i in A] A = pd.Series([np.int64(x) for x in range(0)]) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_series_default_index(self): def test_impl(): A = pd.Series([3, 2, 1, 5, 4]) return A.index hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(), test_impl()) @unittest.skip("Implement drop_duplicates for Series") def test_series_drop_duplicates(self): def test_impl(): A = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) return A.drop_duplicates() hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_quantile(self): def test_impl(): A = pd.Series([1, 2.5, .5, 3, 5]) return A.quantile() hpat_func = hpat.jit(test_impl) np.testing.assert_equal(hpat_func(), test_impl()) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.quantile() parameter as a list unsupported") def test_series_quantile_q_vector(self): def test_series_quantile_q_vector_impl(S, param1): return S.quantile(param1) S = pd.Series(np.random.ranf(100)) hpat_func = hpat.jit(test_series_quantile_q_vector_impl) param1 = [0.0, 0.25, 0.5, 0.75, 1.0] result_ref = test_series_quantile_q_vector_impl(S, param1) result = hpat_func(S, param1) np.testing.assert_equal(result, result_ref) @unittest.skip("Implement unique without sorting like in pandas") def test_unique(self): def test_impl(S): return S.unique() hpat_func = hpat.jit(test_impl) S = pd.Series([2, 1, 3, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_unique_sorted(self): def test_impl(S): return S.unique() hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) S[2] = 0 np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_unique_str(self): def test_impl(): data = pd.Series(['aa', 'aa', 'b', 'b', 'cccc', 'dd', 'ddd', 'dd']) return data.unique() hpat_func = hpat.jit(test_impl) # since the orider of the elements are diffrent - check count of elements only ref_result = test_impl().size result = hpat_func().size np.testing.assert_array_equal(ref_result, result) def test_series_groupby_count(self): def test_impl(): A = pd.Series([13, 11, 21, 13, 13, 51, 42, 21]) grouped = A.groupby(A, sort=False) return grouped.count() hpat_func = hpat.jit(test_impl) ref_result = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, ref_result) @unittest.skip("getiter for this type is not implemented yet") def test_series_groupby_iterator_int(self): def test_impl(): A = pd.Series([13, 11, 21, 13, 13, 51, 42, 21]) grouped = A.groupby(A) return [i for i in grouped] hpat_func = hpat.jit(test_impl) ref_result = test_impl() result = hpat_func() np.testing.assert_array_equal(result, ref_result) def test_series_std(self): def pyfunc(): series = pd.Series([1.0, np.nan, -1.0, 0.0, 5e-324]) return series.std() cfunc = hpat.jit(pyfunc) ref_result = pyfunc() result = cfunc() np.testing.assert_equal(ref_result, result) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'Series.std() parameters "skipna" and "ddof" unsupported') def test_series_std_unboxing(self): def pyfunc(series, skipna, ddof): return series.std(skipna=skipna, ddof=ddof) cfunc = hpat.jit(pyfunc) for data in test_global_input_data_numeric + [[]]: series = pd.Series(data) for ddof in [0, 1]: for skipna in [True, False]: ref_result = pyfunc(series, skipna=skipna, ddof=ddof) result = cfunc(series, skipna=skipna, ddof=ddof) np.testing.assert_equal(ref_result, result) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'Series.std() strings as input data unsupported') def test_series_std_str(self): def pyfunc(series): return series.std() cfunc = hpat.jit(pyfunc) series = pd.Series(test_global_input_data_unicode_kind4) with self.assertRaises(TypingError) as raises: cfunc(series) msg = 'Method std(). The object must be a number. Given self.data.dtype: {}' self.assertIn(msg.format(types.unicode_type), str(raises.exception)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'Series.std() parameters "axis", "level", "numeric_only" unsupported') def test_series_std_unsupported_params(self): def pyfunc(series, axis, level, numeric_only): return series.std(axis=axis, level=level, numeric_only=numeric_only) cfunc = hpat.jit(pyfunc) series = pd.Series(test_global_input_data_float64[0]) msg = 'Method std(). Unsupported parameters. Given {}: {}' with self.assertRaises(TypingError) as raises: cfunc(series, axis=1, level=None, numeric_only=None) self.assertIn(msg.format('axis', 'int'), str(raises.exception)) with self.assertRaises(TypingError) as raises: cfunc(series, axis=None, level=1, numeric_only=None) self.assertIn(msg.format('level', 'int'), str(raises.exception)) with self.assertRaises(TypingError) as raises: cfunc(series, axis=None, level=None, numeric_only=True) self.assertIn(msg.format('numeric_only', 'bool'), str(raises.exception)) def test_series_nunique(self): def test_series_nunique_impl(S): return S.nunique() def test_series_nunique_param1_impl(S, dropna): return S.nunique(dropna) hpat_func = hpat.jit(test_series_nunique_impl) the_same_string = "the same string" test_input_data = [] data_simple = [[6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], ['aa', 'aa', 'b', 'b', 'cccc', 'dd', 'ddd', 'dd'], ['aa', 'copy aa', the_same_string, 'b', 'b', 'cccc', the_same_string, 'dd', 'ddd', 'dd', 'copy aa', 'copy aa'], [] ] data_extra = [[6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], # unsupported ['aa', np.nan, 'b', 'b', 'cccc', np.nan, 'ddd', 'dd'], # unsupported [np.nan, 'copy aa', the_same_string, 'b', 'b', 'cccc', the_same_string, 'dd', 'ddd', 'dd', 'copy aa', 'copy aa'], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] if hpat.config.config_pipeline_hpat_default: """ HPAT pipeline Series.nunique() does not support numpy.nan """ test_input_data = data_simple else: test_input_data = data_simple + data_extra for input_data in test_input_data: S = pd.Series(input_data) result_ref = test_series_nunique_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) if not hpat.config.config_pipeline_hpat_default: """ HPAT pipeline does not support parameter to Series.nunique(dropna=True) """ hpat_func_param1 = hpat.jit(test_series_nunique_param1_impl) for param1 in [True, False]: result_param1_ref = test_series_nunique_param1_impl(S, param1) result_param1 = hpat_func_param1(S, param1) self.assertEqual(result_param1, result_param1_ref) def test_series_var(self): def pyfunc(): series = pd.Series([1.0, np.nan, -1.0, 0.0, 5e-324]) return series.var() cfunc = hpat.jit(pyfunc) np.testing.assert_equal(pyfunc(), cfunc()) def test_series_var_unboxing(self): def pyfunc(series): return series.var() cfunc = hpat.jit(pyfunc) for data in test_global_input_data_numeric + [[]]: series =
pd.Series(data)
pandas.Series
from matplotlib import cm, rcParams import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib as matplotlib import numpy as np import math as math import random as rand import os, sys, csv import pandas as pd #matplotlib.pyplot.xkcd(scale=.5, length=100, randomness=2) c = ['#aa3863', '#d97020', '#ef9f07', '#449775', '#3b7d86', '#5443a3'] # red, orange, yellow, green, blue, purple dW1, dW2, dW3 = 0, 0 ,0 np.random.seed() #42 def lif_euler(dt, v1, v2, I1, I2): return [v1 + dt*(-v1 + gamma*(v2-v1) + I1) , v2 + dt*(-v2 + gamma*(v1-v2) + I2) ] def lif_euler_stoch(dt, v1, v2, I1, I2, s1, s2, s3): global dW1, dW2, dW3 dW1 = s1*math.sqrt(dt)*np.random.randn() dW2 = s2*math.sqrt(dt)*np.random.randn() dW3 = s3*math.sqrt(dt)*np.random.randn() return [v1 + dt*(-v1 + gamma*(v2-v1) + I1) + dW1 + dW3, v2 + dt*(-v2 + gamma*(v1-v2) + I2) + dW2 + dW3] def correlations(sigma1, sigma2, sigma3, nb_iterations=1000) : phis = [] for k in range(nb_iterations) : #v1_0, v2_0 = 0.7611728117817528, 0.1654125684129333 # Used XPPAUT to find ideal initial conditions s.t. we begin in antiphase with I = 1.4 v1_0, v2_0 = 0.3764002759711251, 0.8546679415731656 x1, x2 = [v1_0], [v2_0] t = [0] nb_spikes = 0 I_baseline = 1.5 I1, I2 = [I_baseline], [I_baseline] pulse_start, pulse_duration = 0, 0.2 begin_pulse = True while t[-1] < maxtime : t.append(t[-1]+dt) if nb_spikes == 10 and begin_pulse : pulse_start = t[-1] begin_pulse = False if nb_spikes >= 10 and t[-1] < pulse_start + pulse_duration : next_values= lif_euler_stoch(dt, x1[-1], x2[-1], I1[-1], I2[-1], sigma1, sigma2, sigma3) I1.append(I_baseline + (dW1+dW3)/dt) I2.append(I_baseline + (dW2+dW3)/dt) else : I1.append(I_baseline) I2.append(I_baseline) next_values = lif_euler(dt, x1[-1], x2[-1], I1[-1], I2[-1]) if next_values[0] > 1 : x1.append(0) nb_spikes += 1 if next_values[1] + gamma*beta > 1 : x2.append(0) else : x2.append(next_values[1]+gamma*beta) elif next_values[1] > 1 : x2.append(0) if next_values[0] + gamma*beta > 1 : x1.append(0) else : x1.append(next_values[0]+gamma*beta) else : x1.append(next_values[0]) x2.append(next_values[1]) # Spike times spike_times, k = [], 0 for i in range(1, len(t)) : if abs(x1[i]-x1[i-1]) > (Vth-Vr)/2 and t[i] >= Dtime : spike_times.append(t[i]) k = i break for i in range(k, len(t)) : if abs(x2[i]-x2[i-1]) > (Vth-Vr)/2 : spike_times.append(t[i]) k = i break for i in range(k, len(t)) : if abs(x1[i+1]-x1[i]) > (Vth-Vr)/2 : spike_times.append(t[i]) break phis.append((spike_times[2] - spike_times[1])/(spike_times[2] - spike_times[0])) """ # Plot trials fig, ax = plt.subplots(2, 1, figsize=(12,5), sharey='row') ax[1].plot(t, x1, label='$V_{1}$', color='#aa3863') ax[1].plot(t, x2, label='$V_{2}$', color='#3b7d86') ax[0].plot(t, I1, label='$I_1$') ax[0].plot(t, I2, label='$I_2$') ax[0].legend(loc='upper right') ax[1].legend(loc='upper right') ax[0].set_title('Noisy input current trial, $\sigma=0.0025, I_{base}=1.5, \gamma=0.4, \\beta=0.1$') #plt.savefig('trial_example_.png', dpi=600) plt.show() """ phis = np.array(phis) % 1 print("phis ", phis) return phis gamma, beta = 0.4, 0.1 Vth, Vr = 1, 0 dt = 0.001 Dtime = 75 maxtime = 80 # CORRELATED sigma_corr = [[0., 0., 0.1], [0., 0., 0.15], [0., 0., 0.2], [0., 0., 0.25], [0., 0., 0.3], [0., 0., 0.4]] phis1_corr = correlations(sigma_corr[0][0], sigma_corr[0][1], sigma_corr[0][2]) phis2_corr = correlations(sigma_corr[1][0], sigma_corr[1][1], sigma_corr[1][2]) phis3_corr = correlations(sigma_corr[2][0], sigma_corr[2][1], sigma_corr[2][2]) phis4_corr = correlations(sigma_corr[3][0], sigma_corr[3][1], sigma_corr[3][2]) phis5_corr = correlations(sigma_corr[4][0], sigma_corr[4][1], sigma_corr[4][2]) phis6_corr = correlations(sigma_corr[5][0], sigma_corr[5][1], sigma_corr[5][2]) # Generate data on phase differences phis1_corr = pd.Series(phis1_corr) phis2_corr = pd.Series(phis2_corr) phis3_corr = pd.Series(phis3_corr) phis4_corr = pd.Series(phis4_corr) phis5_corr = pd.Series(phis5_corr) phi65_corr = pd.Series(phis6_corr) # UNCORRELATED sigma_uncorr = [[0.1, 0.1, 0.], [0.15, 0.15, 0.], [0.2, 0.2, 0.], [0.25, 0.25, 0.], [0.3, 0.3, 0.], [0.4, 0.4, 0.]] phis1_uncorr = correlations(sigma_uncorr[0][0], sigma_uncorr[0][1], sigma_uncorr[0][2]) phis2_uncorr = correlations(sigma_uncorr[1][0], sigma_uncorr[1][1], sigma_uncorr[1][2]) phis3_uncorr = correlations(sigma_uncorr[2][0], sigma_uncorr[2][1], sigma_uncorr[2][2]) phis4_uncorr = correlations(sigma_uncorr[3][0], sigma_uncorr[3][1], sigma_uncorr[3][2]) phis5_uncorr = correlations(sigma_uncorr[4][0], sigma_uncorr[4][1], sigma_uncorr[4][2]) phis6_uncorr = correlations(sigma_uncorr[5][0], sigma_uncorr[5][1], sigma_uncorr[5][2]) # Generate data on phase differences phis1_uncorr = pd.Series(phis1_uncorr) phis2_uncorr = pd.Series(phis2_uncorr) phis3_uncorr = pd.Series(phis3_uncorr) phis4_uncorr =
pd.Series(phis4_uncorr)
pandas.Series
from typing import Iterable, Optional import pandas as pd import numpy as np from scipy.special import expit def get_expanded_df(df, event_type_col='J', duration_col='X', pid_col='pid'): """ This function gets a dataframe describing each sample the time of the observed events, and returns an expanded dataframe as explained in TODO add reference Right censoring is allowed and must be marked as event type 0. :param df: original dataframe (pd.DataFrame) :param event_type_col: event type column name (str) :param duration_col: time column name (str) :param pid_col: patient id column name (str) :return: result_df: expanded dataframe """ # todo: consider dealing with highly not continues cases unique_times = df[duration_col].sort_values().unique() result_df = df.reindex(df.index.repeat(df[duration_col])) result_df[duration_col] = result_df.groupby(pid_col).cumcount() + 1 # drop times that didn't happen result_df.drop(index=result_df.loc[~result_df[duration_col].isin(unique_times)].index, inplace=True) result_df.reset_index(drop=True, inplace=True) last_idx = result_df.drop_duplicates(subset=[pid_col], keep='last').index events = sorted(df[event_type_col].unique()) result_df.loc[last_idx, [f'j_{e}' for e in events]] = pd.get_dummies( result_df.loc[last_idx, event_type_col]).values result_df[[f'j_{e}' for e in events]] = result_df[[f'j_{e}' for e in events]].fillna(0) result_df[f'j_0'] = 1 - result_df[[f'j_{e}' for e in events if e > 0]].sum(axis=1) return result_df def compare_models_coef_per_event(first_model: pd.Series, second_model: pd.Series, real_values: np.array, event: int, first_model_label:str = "first", second_model_label:str = "second" ) -> pd.DataFrame: """ Args: first_model: second_model: real_values: event: first_model_label: second_model_label: Returns: """ event_suffix = f"_{event}" assert (first_model.index == second_model.index).all(), "All index should be the same" models = pd.concat([first_model.to_frame(first_model_label), second_model.to_frame(second_model_label)], axis=1) models.index += event_suffix real_values_s = pd.Series(real_values, index=models.index) return pd.concat([models, real_values_s.to_frame("real")], axis=1) #todo: move from here def present_coefs(res_dict): from IPython.display import display for coef_type, events_dict in res_dict.items(): print(f"for coef: {coef_type.capitalize()}") df = pd.concat([temp_df for temp_df in events_dict.values()]) display(df) def get_real_hazard(df, real_coef_dict, times, events): """ Args: df: real_coef_dict: times: events: Returns: """ # todo docstrings # todo assertions # todo move to utils? a_t = {event: {t: real_coef_dict['alpha'][event](t) for t in times} for event in events} b = pd.concat([df.dot(real_coef_dict['beta'][j]) for j in events], axis=1, keys=events) for j in events: df[[f'hazard_j{j}_t{t}' for t in times]] = pd.concat([expit(a_t[j][t] + b[j]) for t in times], axis=1).values return df def assert_fit(event_df, times, event_type_col='J', duration_col='X'): # todo: split to 2: one generic, one for new model if not event_df['success'].all(): problematic_times = event_df.loc[~event_df['success'], duration_col].tolist() event = event_df[event_type_col].max() # all the events in the dataframe are the same raise RuntimeError(f"Number of observed events at some time points are too small. Consider collapsing neighbor time points." f"\n See https://tomer1812.github.io/pydts/UsageExample-RegroupingData/ for more details.") if event_df.shape[0] != len(times): event = event_df[event_type_col].max() # all the events in the dataframe are the same problematic_times = pd.Index(event_df[duration_col]).symmetric_difference(times).tolist() raise RuntimeError(f"Number of observed events at some time points are too small. Consider collapsing neighbor time points." f"\n See https://tomer1812.github.io/pydts/UsageExample-RegroupingData/ for more details.") def create_df_for_cif_plots(df: pd.DataFrame, field: str, covariates: Iterable, vals: Optional[Iterable] = None, quantiles: Optional[Iterable] = None, zero_others: Optional[bool] = False ) -> pd.DataFrame: """ This method creates df for cif plot, where it zeros Args: df (pd.DataFrame): Dataframe which we yield the statiscal propetrics (means, quantiles, etc) and stacture field (str): The field which will represent the change covariates (Iterable): The covariates of the given model vals (Optional[Iterable]): The values to use for the field quantiles (Optional[Iterable]): The quantiles to use as values for the field zero_others (bool): Whether to zero the other covarites or to zero them Returns: df (pd.DataFrame): A dataframe that contains records per value for cif ploting """ cov_not_fitted = [cov for cov in covariates if cov not in df.columns] assert len(cov_not_fitted) == 0, \ f"Required covariates are missing from df: {cov_not_fitted}" # todo add assertions df_for_ploting = df.copy() # todo make sure .copy() is required if vals is not None: pass elif quantiles is not None: vals = df_for_ploting[field].quantile(quantiles).values else: raise NotImplemented("Only Quantiles or specific values is supported") temp_series = [] template_s = df_for_ploting.iloc[0][covariates].copy() if zero_others: impute_val = 0 else: impute_val = df_for_ploting[covariates].mean().values for val in vals: temp_s = template_s.copy() temp_s[covariates] = impute_val temp_s[field] = val temp_series.append(temp_s) return
pd.concat(temp_series, axis=1)
pandas.concat
# coding: utf-8 # In[69]: import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import random get_ipython().magic('matplotlib inline') # In[70]: PokemonDf=pd.read_csv('pokemon/Pokemon.csv') # In[71]: PokemonDf.head(200000) # In[72]: PokemonDf.describe() PokemonDf.Name.value_counts() # In[73]: gx=PokemonDf['Generation'].value_counts().plot.bar(width=0.5) for b in gx.patches: gx.annotate(b.get_height()+1,(b.get_x(),b.get_height()+1)) # In[74]: import plotly.offline as py import plotly.graph_objs as go import plotly.tools as tls # In[75]: Pokemon_all=pd.concat([PokemonDf['Attack'],PokemonDf['HP']]) Pokemon_all # In[76]: Pokemon_all=
pd.concat([PokemonDf['Attack'],PokemonDf['HP']])
pandas.concat
import jieba import pandas as pd import wordcloud # 读取弹幕 txt 文件 with open("dan_mu.txt", encoding="utf-8") as f: txt = f.read() danmu_list = txt.split("\n") # jieba 分词 danmu_cut = [jieba.lcut(item) for item in danmu_list] # 获取停用词 with open("baidu_stopwords.txt",encoding="utf-8") as f: stop = f.read() stop_words = stop.split() # 去掉停用词后的最终词 s_data_cut = pd.Series(danmu_cut) all_words_after = s_data_cut.apply(lambda x:[i for i in x if i not in stop]) # 词频统计 all_words = [] for i in all_words_after: all_words.extend(i) word_count =
pd.Series(all_words)
pandas.Series
from typing import Union, Optional, List, Dict import faiss import pickle import torch.distributed # noqa: WPS301 import numpy as np import pandas as pd from time import time from pathlib import Path from catalyst.dl import IRunner, CallbackOrder, Callback from catalyst.utils.torch import get_activation_fn from sklearn.metrics import accuracy_score from src.utils.knn import build_benchmark_index, build_index, knn from src.datasets.cico import \ INPUT_FILENAME_KEY, INPUT_TARGET_KEY, INPUT_LABEL_KEY, \ OUTPUT_TARGET_KEY, OUTPUT_EMBEDDINGS_KEY ALL_KEYS = [ INPUT_FILENAME_KEY, INPUT_TARGET_KEY, INPUT_LABEL_KEY, OUTPUT_TARGET_KEY, OUTPUT_EMBEDDINGS_KEY, ] XLS_KEYS = [ INPUT_FILENAME_KEY, INPUT_TARGET_KEY, INPUT_LABEL_KEY, ] PKL_KEYS = [ INPUT_FILENAME_KEY, INPUT_TARGET_KEY, INPUT_LABEL_KEY, OUTPUT_EMBEDDINGS_KEY ] class BenchmarkingCallback(Callback): def __init__( self, target_key: str, label_key: str, filename_key: str, embedding_key: str, logit_key: str = None, class_names: List[str] = None, activation: Optional[str] = None, enable_benchmark: bool = False, benchmark_train_loader: str = None, benchmark_test_loader: str = None, benchmark_xlsx: Union[str, Path] = None, enable_doev1: bool = False, doev1_train_loaders: Union[str, List[str]] = None, doev1_test_loaders: Union[str, List[str]] = None, enable_doev2: bool = False, doev2_train_loaders: Union[str, List[str]] = None, doev2_test_loaders: Union[str, List[str]] = None, doev2_xlsx: str = None, save_dir: str = None, save_loaders: Union[str, List[str]] = None, ): super().__init__(CallbackOrder.Metric) self.filename_key = filename_key self.embedding_key = embedding_key self.labels_key = label_key self.target_key = target_key self.logit_key = logit_key self.save_dir = save_dir self.class_names = {i: name for i, name in enumerate(class_names)} self.class_ids = {name: i for i, name in enumerate(class_names)} self.activation_fn = get_activation_fn(activation) self.enable_benchmark = enable_benchmark if enable_benchmark: self.benchmark_train_loader = benchmark_train_loader self.benchmark_test_loader = benchmark_test_loader self.benchmark_index: Dict = build_benchmark_index(benchmark_xlsx) self.enable_doev1 = enable_doev1 if enable_doev1: self.doev1_train_loaders = doev1_train_loaders self.doev1_test_loaders = doev1_test_loaders self.enable_doev2 = enable_doev2 if enable_doev2: self.doev2_train_loaders = doev2_train_loaders self.doev2_test_loaders = doev2_test_loaders self.doev2_dfs: Dict[str, pd.DataFrame] = \
pd.read_excel(doev2_xlsx, sheet_name=None)
pandas.read_excel
from ioUtils import getFile, saveFile from timeUtils import clock, elapsed from numpy import isnan from pandas import DataFrame, Series def testManualEntries(fast=False, saveit=False): if fast: start, cmt = clock("Testing Manual Entries Pickle File") else: start, cmt = clock("Testing Manual Entries YAML File") dbNames = {k: True for k in ['Discogs', 'AllMusic', 'MusicBrainz', 'LastFM', 'RateYourMusic', 'Deezer', 'AlbumOfTheYear', 'Genius', 'KWorbSpotify', 'KWorbiTunes']} ############################################################################################################################## # # Load Manual/Update Entries # ############################################################################################################################## manualEntries = getManualEntriesData(fast=fast, local=False) print("Saved Size = {0}".format(len(manualEntries))) ############################################################################################################################## # # Save Global Artistmerge Map # ############################################################################################################################## globalArtistMap = {} for key,value in manualEntries.items(): if value is None: raise ValueError("Key is empty: {0}".format(key)) if value.get("ArtistName") is not None: artistName = tuple(["ArtistName", value["ArtistName"]]) else: raise ValueError("No ArtistName for Key: {0}".format(key)) for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue db,dbID = val assert dbNames[db] == True, "DB [{0}] for Key [{1}] is unknown!".format(db,key) try: int(dbID) except: raise ValueError("Error with {0}/{1}".format(key,val)) if globalArtistMap.get(val) is not None: if globalArtistMap[val] != artistName: raise ValueError("Multiple people are calling artist from the permanent file: {0}/{1}".format(artistName, val)) globalArtistMap[val] = artistName ############################################################################################################################## # # Load Values -> Keys Data # ############################################################################################################################## dbTuplesToKey = {} for key,value in manualEntries.items(): for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue if dbTuplesToKey.get(val) is None: dbTuplesToKey[val] = key else: saveManualEntriesData(manualEntries, fast=False, local=False) raise ValueError("Multiple Manual Matches For {0}/{1}".format(key,val)) print("\t\tNo Multiple Values In Manual Entries") elapsed(start, cmt) if fast is False and saveit is True: saveManualEntriesData(manualEntries, fast=True) def updateManualEntries(recreate=False, fast=False): if fast: start, cmt = clock("Updating Manual Entries Pickle File") else: start, cmt = clock("Updating Manual Entries YAML File") from uuid import uuid4 ############################################################################################################################## # # Recreate Manual Entries # ############################################################################################################################## if recreate is True: manualEntries = getFile("mergers/manualEntries.yaml") newManualEntries = {uuid4().hex: v for k,v in manualEntries.items()} saveFile(idata=newManualEntries, ifile="mergers/manualEntries.yaml", debug=True) ############################################################################################################################## # # Load Manual/Update Entries # ############################################################################################################################## manualEntries = getManualEntriesData(fast=fast, local=False) updates = getManualEntriesData(fast=fast, local=True) print("Saved Size = {0}".format(len(manualEntries))) print("Update Size = {0}".format(len(updates))) ############################################################################################################################## # # Save Global Artist Map # ############################################################################################################################## globalArtistMap = {} err = False for key,value in manualEntries.items(): if value.get("ArtistName") is not None: artistName = tuple(["ArtistName", value["ArtistName"]]) for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue if globalArtistMap.get(val) is not None: if globalArtistMap[val] != artistName: print("-"*100) print("Multiple people are calling artist from the permanent file: {0}/{1}".format(artistName, val)) print("-"*100) err = True globalArtistMap[val] = artistName if err is True: raise ValueError("ERROR!!!") ############################################################################################################################## # # Load Values -> Keys Data # ############################################################################################################################## dbTuplesToKey = {} err = False for key,value in manualEntries.items(): for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue if dbTuplesToKey.get(val) is None: dbTuplesToKey[val] = key else: print("-"*100) print("Multiple Manual Matches For {0}/{1}".format(key,val)) print("-"*100) err = True if err is True: raise ValueError("ERROR!!!") print("\t\tNo Multiple Values In Manual Entries") ############################################################################################################################## # # Save Global Artist Map # ############################################################################################################################## err = False for key,value in updates.items(): if value.get("ArtistName") is not None: artistName = tuple(["ArtistName", value["ArtistName"]]) for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue if globalArtistMap.get(val) is not None: if globalArtistMap[val] != artistName: print("-"*100) print("Multiple people are calling artist from the updates file: {0}/{1}".format(artistName, val)) print("-"*100) err = True globalArtistMap[val] = artistName if err is True: raise ValueError("ERROR!!!") ############################################################################################################################## # # Load Values -> Keys Data # ############################################################################################################################## preSize = len(dbTuplesToKey) print("Pre Size = {0}".format(preSize)) err = False for key,value in updates.items(): isKnown = [] for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue if dbTuplesToKey.get(val) is not None: isKnown.append(dbTuplesToKey[val]) isKnown = list(set(isKnown)) if len(isKnown) == 0: #key = uuid4().hex for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue dbTuplesToKey[val] = key elif len(isKnown) == 1: key = isKnown[0] for val in [tuple([db,dbID]) for db,dbID in value.items()]: if val[0] == "ArtistName": continue if dbTuplesToKey.get(val) is None: dbTuplesToKey[val] = key else: print("-"*100) print("Not sure what to do with multiple key/values for {0}/{1}".format(key,value)) print("-"*100) print("") err = True if err is True: saveManualEntriesData(manualEntries, fast=False, local=False) saveManualEntriesData(updates, fast=False, local=True) raise ValueError("ERROR (Updates)!!!") postSize = len(dbTuplesToKey) print("Post Size = {0}".format(postSize)) if preSize == postSize: print("Nothing changed after checking the updates. Returning...") elapsed(start, cmt) return saveFile(idata=dbTuplesToKey, ifile='tmp.p', debug=True) ############################################################################################################################## # # Set Final Key,Values Data # ############################################################################################################################## newManualEntries = {} err = False for i,(val,key) in enumerate(dbTuplesToKey.items()): if newManualEntries.get(key) is None: newManualEntries[key] = {} db,dbID = val[0],val[1] if newManualEntries[key].get(db) is None: newManualEntries[key][db] = dbID else: if dbID == newManualEntries[key][db]: continue print("New Key: {0}".format(key)) print("New Val: {0}".format(val)) print("Old Val: {0}".format(newManualEntries[key][db])) print("") print('-'*50) print("Stored") for val2,key2 in dbTuplesToKey.items(): if key2 == key: print(val2) print("-"*50) try: print("Perm: {0}".format(manualEntries[key])) except: pass try: print("Update: {0}".format(updates[key])) except: pass print("-"*100) print(i,'/',len(dbTuplesToKey)) print("Multiple db/dbID for Key: {0}, [{1}/{2}]".format(key,db,dbID)) print("-"*100) print("") err = True if err is True: saveManualEntriesData(manualEntries, fast=False, local=False) saveManualEntriesData(updates, fast=False, local=True) raise ValueError("ERROR!!!") finalSize = len(newManualEntries) print("Final Size = {0}".format(finalSize)) ############################################################################################################################## # # Set Artist Name # ############################################################################################################################## for key in newManualEntries.keys(): vals = newManualEntries[key] artistName = None for val in [tuple([db,dbID]) for db,dbID in vals.items()]: if artistName is None: artistName = globalArtistMap[val] elif globalArtistMap[val] != artistName: saveManualEntriesData(manualEntries, fast=False, local=False) saveManualEntriesData(updates, fast=False, local=True) raise ValueError("Error with artist name {0}".format(artistName)) vals[artistName[0]] = artistName[1] print("All is good. Saving {0} manual entries.".format(len(newManualEntries))) saveManualEntriesData(newManualEntries, fast=fast, local=False) #saveFile(idata=newManualEntries, ifile="mergers/manualEntries.yaml", debug=True) elapsed(start, cmt) def keepVal(k2,v2): if k2 in ["NumAlbums", "NumMatches", "DBMatches", 'AvgAlbums', 'MaxAlbums']: return False elif k2 == "ArtistName": return True else: if v2 is None: return False #print(k2,v2) if isnan(float(v2)) == True: return False return True def saveTempManualEntries(tmp): idata = tmp.T.to_dict() idata2 = {k: {k2: v2 for k2,v2 in v.items() if keepVal(k2,v2) is True} for k,v in idata.items()} if len(idata) > 0: saveManualEntriesData(idata2, fast=True, local=True) print("Size = {0}".format(len(idata2))) def getManualEntries(fast=False): raise ValueError("Do we really need to call this function!") start, cmt = clock("Updating Manual Entries YAML File") manualEntries = getManualEntriesData(fast=fast) manualEntriesByDB = {} for key,keyData in manualEntries.items(): for db,dbID in keyData.items(): if db in ["ArtistName"]: continue if manualEntriesByDB.get(db) is None: manualEntriesByDB[db] = {} if manualEntriesByDB[db].get(dbID) is None: manualEntriesByDB[db][dbID] = {db2: dbID2 for db2,dbID2 in keyData.items() if db2 not in [""]} for db,dbVals in manualEntriesByDB.items(): print("{0: <15}{1}".format(db,len(dbVals))) mdbmaps = {} for db,dbVals in manualEntriesByDB.items(): mdbmaps[db] = musicDBMap(db, init=True, copy=False) if mdbmaps.get(db) is None: continue for dbID,dbIDMatches in dbVals.items(): try: artistName = dbIDMatches["ArtistName"] except: raise ValueError("No ArtistName for {0}/{1}".format(db,dbVals)) primaryKey = mdbmaps[db].getPrimaryKey(artistName=artistName, artistID=dbID) if mdbmaps[db].isKnownByKey(primaryKey) is False: mdbmaps[db].addArtistByKey(primaryKey, artistName=artistName, artistID=dbID) #print("Added Artist ({0}): {1}".format(db,artistName)) update = True for db2,dbID2 in dbIDMatches.items(): if db2 == "ArtistName": continue try: int(dbID2) except: raise ValueError("Problem with {0}/{1}/{2}".format(primaryKey, db2, dbID2)) mdbmaps[db].addArtistDataByKey(primaryKey, db=db2, dbID=dbID2) update = True return mdbmaps def getFilename(fast, test, local, counts="multi"): basename="manualEntries" if test: basename = "manualEntries.test" if counts == "single" or counts == "singles": basename = "manualEntries.singles" if local is False: fname = "mergers/{0}".format(basename) else: fname = basename if fast: fname = "{0}.p".format(fname) else: fname = "{0}.yaml".format(fname) return fname def getManualEntriesData(fast=False, test=False, local=False, counts="multi"): if fast: start, cmt = clock("Getting Manual Entries Pickle File Data") else: start, cmt = clock("Getting Manual Entries YAML File Data") fname = getFilename(fast=fast, test=test, local=local, counts=counts) print("Loading data from {0}".format(fname)) manualEntries = getFile(fname) elapsed(start, cmt) return manualEntries def createManualEntriesDataFrame(manualEntries): start, cmt = clock("Getting Manual Entries DataFrame") meDF =
DataFrame(manualEntries)
pandas.DataFrame
# Copyright (c) 2019-2020, NVIDIA CORPORATION. import datetime as dt import re import cupy as cp import numpy as np import pandas as pd import pyarrow as pa import pytest from pandas.util.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) import cudf from cudf.core import DataFrame, Series from cudf.core.index import DatetimeIndex from cudf.tests.utils import NUMERIC_TYPES, assert_eq def data1(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def data2(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def timeseries_us_data(): return pd.date_range( "2019-07-16 00:00:00", "2019-07-16 00:00:01", freq="5555us", name="times", ) def timestamp_ms_data(): return pd.Series( [ "2019-07-16 00:00:00.333", "2019-07-16 00:00:00.666", "2019-07-16 00:00:00.888", ] ) def timestamp_us_data(): return pd.Series( [ "2019-07-16 00:00:00.333333", "2019-07-16 00:00:00.666666", "2019-07-16 00:00:00.888888", ] ) def timestamp_ns_data(): return pd.Series( [ "2019-07-16 00:00:00.333333333", "2019-07-16 00:00:00.666666666", "2019-07-16 00:00:00.888888888", ] ) def numerical_data(): return np.arange(1, 10) fields = ["year", "month", "day", "hour", "minute", "second", "weekday"] @pytest.mark.parametrize("data", [data1(), data2()]) def test_series(data): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) assert_eq(pd_data, gdf_data) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_pandas(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) assert_eq(pd_data_1, gdf_data_1.astype("datetime64[ns]")) assert_eq(pd_data_2, gdf_data_2.astype("datetime64[ns]")) assert_eq(pd_data_1 < pd_data_2, gdf_data_1 < gdf_data_2) assert_eq(pd_data_1 > pd_data_2, gdf_data_1 > gdf_data_2) assert_eq(pd_data_1 == pd_data_2, gdf_data_1 == gdf_data_2) assert_eq(pd_data_1 <= pd_data_2, gdf_data_1 <= gdf_data_2) assert_eq(pd_data_1 >= pd_data_2, gdf_data_1 >= gdf_data_2) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_numpy(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) np_data_1 = np.array(pd_data_1).astype(lhs_dtype) np_data_2 = np.array(pd_data_2).astype(rhs_dtype) np.testing.assert_equal(np_data_1, gdf_data_1.to_array()) np.testing.assert_equal(np_data_2, gdf_data_2.to_array()) np.testing.assert_equal( np.less(np_data_1, np_data_2), (gdf_data_1 < gdf_data_2).to_array() ) np.testing.assert_equal( np.greater(np_data_1, np_data_2), (gdf_data_1 > gdf_data_2).to_array() ) np.testing.assert_equal( np.equal(np_data_1, np_data_2), (gdf_data_1 == gdf_data_2).to_array() ) np.testing.assert_equal( np.less_equal(np_data_1, np_data_2), (gdf_data_1 <= gdf_data_2).to_array(), ) np.testing.assert_equal( np.greater_equal(np_data_1, np_data_2), (gdf_data_1 >= gdf_data_2).to_array(), ) @pytest.mark.parametrize("data", [data1(), data2()]) def test_dt_ops(data): pd_data = pd.Series(data.copy()) gdf_data = Series(data.copy()) assert_eq(pd_data == pd_data, gdf_data == gdf_data) assert_eq(pd_data < pd_data, gdf_data < gdf_data) assert_eq(pd_data > pd_data, gdf_data > gdf_data) # libgdf doesn't respect timezones @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_series(data, field): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) base = getattr(pd_data.dt, field) test = getattr(gdf_data.dt, field).to_pandas().astype("int64") assert_series_equal(base, test) @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_index(data, field): pd_data = data.copy() gdf_data = DatetimeIndex(pd_data) assert_index_equal( getattr(gdf_data, field).to_pandas(), getattr(pd_data, field) ) def test_setitem_datetime(): df = DataFrame() df["date"] = pd.date_range("20010101", "20010105").values assert np.issubdtype(df.date.dtype, np.datetime64) def test_sort_datetime(): df = pd.DataFrame() df["date"] = np.array( [ np.datetime64("2016-11-20"), np.datetime64("2020-11-20"), np.datetime64("2019-11-20"), np.datetime64("1918-11-20"), np.datetime64("2118-11-20"), ] ) df["vals"] = np.random.sample(len(df["date"])) gdf = cudf.from_pandas(df) s_df = df.sort_values(by="date") s_gdf = gdf.sort_values(by="date") assert_eq(s_df, s_gdf) def test_issue_165(): df_pandas = pd.DataFrame() start_date = dt.datetime.strptime("2000-10-21", "%Y-%m-%d") data = [(start_date + dt.timedelta(days=x)) for x in range(6)] df_pandas["dates"] = data df_pandas["num"] = [1, 2, 3, 4, 5, 6] df_cudf = DataFrame.from_pandas(df_pandas) base = df_pandas.query("dates==@start_date") test = df_cudf.query("dates==@start_date") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date base_mask = df_pandas.dates == start_date assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_ts = pd.Timestamp(start_date) test = df_cudf.query("dates==@start_date_ts") base = df_pandas.query("dates==@start_date_ts") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_ts base_mask = df_pandas.dates == start_date_ts assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_np = np.datetime64(start_date_ts, "ns") test = df_cudf.query("dates==@start_date_np") base = df_pandas.query("dates==@start_date_np") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_np base_mask = df_pandas.dates == start_date_np assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) def test_typecast_from_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(dtype) gdf_casted = gdf_data.astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_int64_to_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(np.int64).astype(dtype) gdf_casted = gdf_data.astype(np.int64).astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [timeseries_us_data()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_different_datetime_resolutions(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data).astype(dtype) gdf_series = Series(pd_data).astype(dtype) np.testing.assert_equal(np_data, gdf_series.to_array()) @pytest.mark.parametrize( "data", [timestamp_ms_data(), timestamp_us_data(), timestamp_ns_data()] ) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_string_timstamp_typecast_to_different_datetime_resolutions( data, dtype ): pd_sr = data gdf_sr = cudf.Series.from_pandas(pd_sr) expect = pd_sr.values.astype(dtype) got = gdf_sr.astype(dtype).values_host np.testing.assert_equal(expect, got) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype) gdf_casted = gdf_data.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_from_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype).astype(from_dtype) gdf_casted = gdf_data.astype(to_dtype).astype(from_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize( "from_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_col = Series(np_data)._column np_casted = np_data.astype(to_dtype) gdf_casted = gdf_col.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("nulls", ["some", "all"]) def test_to_from_pandas_nulls(data, nulls): pd_data = pd.Series(data.copy().astype("datetime64[ns]")) if nulls == "some": # Fill half the values with NaT pd_data[list(range(0, len(pd_data), 2))] = np.datetime64("nat", "ns") elif nulls == "all": # Fill all the values with NaT pd_data[:] = np.datetime64("nat", "ns") gdf_data = Series.from_pandas(pd_data) expect = pd_data got = gdf_data.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_to_arrow(dtype): timestamp = ( cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={} ) .reset_index()["timestamp"] .reset_index(drop=True) ) gdf = DataFrame({"timestamp": timestamp.astype(dtype)}) assert_eq(gdf, DataFrame.from_arrow(gdf.to_arrow(preserve_index=False))) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")), pd.Series([None, None], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize( "nulls", ["none", pytest.param("some", marks=pytest.mark.xfail)] ) def test_datetime_unique(data, nulls): psr = pd.Series(data) print(data) print(nulls) if len(data) > 0: if nulls == "some": p = np.random.randint(0, len(data), 2) psr[p] = None gsr = cudf.from_pandas(psr) expected = psr.unique() got = gsr.unique() assert_eq(pd.Series(expected), got.to_pandas()) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")),
pd.Series([None, None], dtype="datetime64[ns]")
pandas.Series
import numpy as np import pytest import pandas as pd from pandas.core.sorting import nargsort import pandas.util.testing as tm from .base import BaseExtensionTests class BaseMethodsTests(BaseExtensionTests): """Various Series and DataFrame methods.""" @pytest.mark.parametrize('dropna', [True, False]) def test_value_counts(self, all_data, dropna): all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Series(all_data).value_counts(dropna=dropna).sort_index() expected = pd.Series(other).value_counts( dropna=dropna).sort_index() self.assert_series_equal(result, expected) def test_count(self, data_missing): df = pd.DataFrame({"A": data_missing}) result = df.count(axis='columns') expected = pd.Series([0, 1]) self.assert_series_equal(result, expected) def test_series_count(self, data_missing): # GH#26835 ser = pd.Series(data_missing) result = ser.count() expected = 1 assert result == expected def test_apply_simple_series(self, data): result = pd.Series(data).apply(id) assert isinstance(result, pd.Series) def test_argsort(self, data_for_sorting): result = pd.Series(data_for_sorting).argsort() expected = pd.Series(np.array([2, 0, 1], dtype=np.int64)) self.assert_series_equal(result, expected) def test_argsort_missing(self, data_missing_for_sorting): result = pd.Series(data_missing_for_sorting).argsort() expected = pd.Series(np.array([1, -1, 0], dtype=np.int64)) self.assert_series_equal(result, expected) @pytest.mark.parametrize('na_position, expected', [ ('last', np.array([2, 0, 1], dtype=np.dtype('intp'))), ('first', np.array([1, 2, 0], dtype=np.dtype('intp'))) ]) def test_nargsort(self, data_missing_for_sorting, na_position, expected): # GH 25439 result = nargsort(data_missing_for_sorting, na_position=na_position) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('ascending', [True, False]) def test_sort_values(self, data_for_sorting, ascending): ser = pd.Series(data_for_sorting) result = ser.sort_values(ascending=ascending) expected = ser.iloc[[2, 0, 1]] if not ascending: expected = expected[::-1] self.assert_series_equal(result, expected) @pytest.mark.parametrize('ascending', [True, False]) def test_sort_values_missing(self, data_missing_for_sorting, ascending): ser = pd.Series(data_missing_for_sorting) result = ser.sort_values(ascending=ascending) if ascending: expected = ser.iloc[[2, 0, 1]] else: expected = ser.iloc[[0, 2, 1]] self.assert_series_equal(result, expected) @pytest.mark.parametrize('ascending', [True, False]) def test_sort_values_frame(self, data_for_sorting, ascending): df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting}) result = df.sort_values(['A', 'B']) expected = pd.DataFrame({"A": [1, 1, 2], 'B': data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1]) self.assert_frame_equal(result, expected) @pytest.mark.parametrize('box', [pd.Series, lambda x: x]) @pytest.mark.parametrize('method', [lambda x: x.unique(), pd.unique]) def test_unique(self, data, box, method): duplicated = box(data._from_sequence([data[0], data[0]])) result = method(duplicated) assert len(result) == 1 assert isinstance(result, type(data)) assert result[0] == duplicated[0] @pytest.mark.parametrize('na_sentinel', [-1, -2]) def test_factorize(self, data_for_grouping, na_sentinel): labels, uniques = pd.factorize(data_for_grouping, na_sentinel=na_sentinel) expected_labels = np.array([0, 0, na_sentinel, na_sentinel, 1, 1, 0, 2], dtype=np.intp) expected_uniques = data_for_grouping.take([0, 4, 7]) tm.assert_numpy_array_equal(labels, expected_labels) self.assert_extension_array_equal(uniques, expected_uniques) @pytest.mark.parametrize('na_sentinel', [-1, -2]) def test_factorize_equivalence(self, data_for_grouping, na_sentinel): l1, u1 = pd.factorize(data_for_grouping, na_sentinel=na_sentinel) l2, u2 = data_for_grouping.factorize(na_sentinel=na_sentinel) tm.assert_numpy_array_equal(l1, l2) self.assert_extension_array_equal(u1, u2) def test_factorize_empty(self, data): labels, uniques = pd.factorize(data[:0]) expected_labels = np.array([], dtype=np.intp) expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype) tm.assert_numpy_array_equal(labels, expected_labels) self.assert_extension_array_equal(uniques, expected_uniques) def test_fillna_copy_frame(self, data_missing): arr = data_missing.take([1, 1]) df = pd.DataFrame({"A": arr}) filled_val = df.iloc[0, 0] result = df.fillna(filled_val) assert df.A.values is not result.A.values def test_fillna_copy_series(self, data_missing): arr = data_missing.take([1, 1]) ser = pd.Series(arr) filled_val = ser[0] result = ser.fillna(filled_val) assert ser._values is not result._values assert ser._values is arr def test_fillna_length_mismatch(self, data_missing): msg = "Length of 'value' does not match." with pytest.raises(ValueError, match=msg): data_missing.fillna(data_missing.take([1])) def test_combine_le(self, data_repeated): # GH 20825 # Test that combine works when doing a <= (le) comparison orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 =
pd.Series(orig_data2)
pandas.Series
""" Getting most discussed stocks from r/wallstreetbets hot """ import json import os import re import time from collections import ChainMap, Counter from datetime import datetime import pandas as pd import requests from dotenv import load_dotenv load_dotenv() CLIENT_ID = os.getenv("CLIENT_ID") SECRET = os.getenv("SECRET") data = { "grant_type": "password", "username": os.getenv("username"), "password": os.getenv("password"), } headers = {"User-Agent": "wsb_API/0.0.1"} auth = requests.auth.HTTPBasicAuth(CLIENT_ID, SECRET) def get_data(auth, data, headers): """ Create access to Reddit API and load data from recent threads in r/wsb/hot auth: HTTP Authentication with Client_ID and Secret data: Access to Reddit via username and password headers: Extra information about the request return: GET response """ res = requests.post( "https://www.reddit.com/api/v1/access_token", auth=auth, data=data, headers=headers, ) TOKEN = res.json()["access_token"] headers["Authorization"] = f"bearer {TOKEN}" response = requests.get( "https://oauth.reddit.com/r/wallstreetbets/hot", headers=headers ) return response def extract_sym(series): # Should work also with 2 Character stock symbols """ Extracts all word with 3 or more capital letters params :series: pd.Series return: list of stock symbols """ symbols = [] for i in series: symbols.append(re.findall("[A-Z]{3,}", i)) return symbols def get_stocks_with_count(series): """ Count all mentioned stocks params: Series p.Series return: dict with stock symbol and total count """ j = 0 counter_list = [] dict_counter = [] for i in series: counter_list.append(Counter(series.loc[j]).items()) for i in counter_list: dict_counter.append(dict(counter_list[j])) j += 1 return dict_counter # this json is from stocks_with_symbol.py with open("data/stocks_symbol.json") as json_file: stocks_dict = json.load(json_file) def data_wrangling(dict_stock): """ Prep for final df params: dict_stock dictionary with symbols and count return: final df """ df_stocks = dict(ChainMap(*dict_stock)) df_stocks = pd.Series(df_stocks).to_frame() df_stocks["Stocks_Name"] = df_stocks.index.map(stocks_dict) df_stocks.dropna(inplace=True) df_stocks = df_stocks.rename(columns={0: "Count"}) df_stocks.sort_values(by=["Count"], ascending=False, inplace=True) print(df_stocks) return df_stocks if __name__ == "__main__": while True: print(datetime.now()) wsb_hot = get_data(auth, data, headers) df =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right) tm.assert_series_equal(result, expected) result = left | Index(right)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
""" Extracts path data for a user or a set of users and analyses with pathpy. """ import csv import json import os import numpy as np import matplotlib.pyplot as plt import igraph import pathpy as pp from scipy.stats import chi2 from collections import Counter from pandas import DataFrame import seaborn as sns from scipy.stats import pearsonr sns.set(style='white', font_scale=1.2) PATH = os.path.expanduser("~/git/network_games_analysis/sql_data/") SAVE_PATH = os.path.expanduser("~/git/network_games_analysis/scaffold/") FILENAME = 'scaffold_data_mysql.csv' users = ["darigan17", "Fandy", "heptone", "khana", "badhanddoek", "sittaford", "Krab", "tamas", "skillz25", "meezocool", "ThatOneGuy", "BirdEyeView", "Mursuka"] users_short = ["darigan17", "Fandy", "heptone"] def listrun(pattern, values): """Find runs in a pattern containing elements from given values""" runs = list() run = list() for i in pattern: if i in values: run.append(i) else: if len(run) > 1: runs.append(run) run = list() elif len(run) == 1: run = list() if len(run) > 1: runs.append(run) return runs def get_users(): users = list() ##PATH COLLECTION filename = PATH + FILENAME with open(filename, 'r', encoding='utf-8') as csvfile: csv_reader = csv.reader(csvfile, delimiter='\t') print(f"Parsed file: {FILENAME}") line_count = 0 user_count = 0 for row in csv_reader: # Ignoring header row if line_count == 0: print(f'Columns: {", ".join(row)}') line_count += 1 # Ignoring data from other users else: line_count += 1 user = row[2] if user not in users: users.append(user) return users def estimate_user_kopt(user, top_nodes): USER = user ##PATH COLLECTION paths = list() path = list() filename = PATH + FILENAME with open(filename, 'r', encoding='utf-8') as csvfile: csv_reader = csv.reader(csvfile, delimiter='\t') print(f"Parsed file: {FILENAME}") line_count = 0 user_count = 0 user_last_clicks = {} for row in csv_reader: # Ignoring header row if line_count == 0: print(f'Columns: {", ".join(row)}') line_count += 1 # Ignoring data from other users elif USER == "all": line_count += 1 user = row[2] article = row[3] game = row[4] if user_last_clicks.get('game', "") == game: if user_last_clicks['article'] != article: path.append(article) else: if len(path) != 0: paths.append(path) path = list() path.append(article) user_last_clicks = {"article": article, "game": game} elif row[2] == USER: line_count += 1 user = row[2] article = row[3] game = row[4] if user_last_clicks.get('game', "") == game: if user_last_clicks['article'] != article: path.append(article) else: if len(path) != 0: paths.append(path) path = list() path.append(article) user_last_clicks = {"article": article, "game": game} else: continue ##PATH FILTERING top_node_number=top_nodes flat_list=Counter([item for path in paths for item in path]) #print(flat_list) sorted_nodes=[ x[0] for x in sorted( flat_list.items() , key=lambda x: x[1], reverse=True)] top_sorted_nodes=sorted_nodes[0:top_node_number] #print(top_sorted_nodes, end="\n\n") paths_reduced = list() for path in paths: runs = listrun(path, top_sorted_nodes) for run in runs: paths_reduced.append(run) #print(paths_reduced) ## Add paths to pathpy p = pp.Paths() for path in paths_reduced: p.add_path(path) print(p) mog = pp.MultiOrderModel(p, max_order=2) #print('Optimal order = ', mog.estimate_order()) return (len(paths_reduced), mog.estimate_order()) user_list = get_users() kopts = list() pathnums = list() for user in user_list: pathnum,kopt = estimate_user_kopt(user, 25) kopts.append(kopt) pathnums.append(pathnum) print('Optimal orders = ', kopts) print(len(kopts)) # plt.plot(kopts) # plt.plot(pathnums) # plt.show() eval_list = (pathnums,kopts) df =
DataFrame(eval_list)
pandas.DataFrame
import matplotlib matplotlib.use('Agg') import re import argparse from datetime import datetime, timedelta, time import matplotlib.pyplot as plt import matplotlib.lines as mlines import matplotlib.patches as mpatches import numpy as np import pandas as pd from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() import itertools from sklearn.metrics import confusion_matrix ANNO_LABEL_DICT = 'annotation-label-dictionary.csv' DOHERTY2018_DICT_COL = 'label:Doherty2018' DOHERTY2018_COLOURS = {'sleep':'blue', 'sedentary': 'red', 'tasks-light': 'darkorange', 'walking': 'lightgreen', 'moderate': 'green'} DOHERTY2018_LABELS = list(DOHERTY2018_COLOURS.keys()) WILLETTS2018_DICT_COL = 'label:Willetts2018' WILLETTS2018_COLOURS = {'sleep':'blue', 'sit-stand': 'red', 'vehicle': 'darkorange', 'walking': 'lightgreen', 'mixed': 'green', 'bicycling': 'purple'} WILLETTS2018_LABELS = list(WILLETTS2018_COLOURS.keys()) WALMSLEY2020_DICT_COL = 'label:Walmsley2020' WALMSLEY2020_COLOURS = {'sleep':'blue', 'sedentary': 'red', 'light': 'darkorange', 'moderate-vigorous': 'green'} WALMSLEY2020_LABELS = list(WALMSLEY2020_COLOURS.keys()) IMPUTED_COLOR = '#fafc6f' # yellow UNCODEABLE_COLOR = '#d3d3d3' # lightgray BACKGROUND_COLOR = '#d3d3d3' # lightgray def annotationSimilarity(anno1, anno2): ''' Naive sentence similarity ''' DELIMITERS = ";|, | " words1 = re.split(DELIMITERS, anno1) words2 = re.split(DELIMITERS, anno2) shared_words = set(set(words1) & set(words2)) similarity = len(shared_words) / len(words1) # why words1 and not words2? how about averaging? return similarity def nearestAnnotation(annoList, annoTarget, threshold=.8): similarities = [annotationSimilarity(annoTarget, _) for _ in annoList] if np.max(similarities) < threshold: print(f"No similar annotation found in dictionary for: '{annoTarget}'") return None return annoList[np.argmax(similarities)] def buildLabelDict(labelDictCSV, labelDictCol): df =
pd.read_csv(labelDictCSV, usecols=['annotation', labelDictCol])
pandas.read_csv
from mpl_toolkits import mplot3d import sys, os import numpy as np import matplotlib.pyplot as plt import pandas as pd from plotnine import * import copy, math dist = 10 def find_min_discm_each_hyperparam(df): x = df.sort_values(by=['Discm_percent', 'Points-Removed']).groupby("Model-count", as_index=False).first() assert len(x) == 240 return x def process_rows(row, batches): # global batches model_count = 0 for perm in range(20): for h1units in [16, 24, 32]: for h2units in [8, 12]: for batch in batches: # different batch sizes for this dataset if perm == row['Dataperm'] and h1units == row['H1Units'] and h2units == row['H2Units'] and batch == row['Batch']: return model_count else: model_count += 1 def process_dfs(name, batches, df): # import ipdb; ipdb.set_trace() if 'Model-count' in df.columns: df['Model-count2'] = df.apply(process_rows, axis=1, args=((batches,))) assert (df['Model-count'] == df['Model-count2']).all() df.drop(columns=['Model-count2'], inplace=True) else: df['Model-count'] = df.apply(process_rows, axis=1, args=((batches,))) assert len(df['Model-count'].unique()) == 240 and df['Model-count'].max() == 239 and df['Model-count'].min() == 0 df = df.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines # df = df[['Model-count','Discm_percent','Test_acc']] df = df[['Model-count','Discm_percent','Test_acc', 'Class0_Pos', 'Class1_Pos']] df['diff'] = abs(df['Class0_Pos'] - df['Class1_Pos']) * 100 df['Test_acc'] = df['Test_acc'].apply(lambda x: x * 100) df['Techniques'] = name if len(name.split()) > 1: words = name.split() letters = [word[0] for word in words] x = "".join(letters) df['Baseline'] = x else: df['Baseline'] = name[:2] return df def boxplots_datasets(dataset, plot): df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1.csv") batches = sorted(list(df1.Batch.unique())) # sorting is important assert(len(batches) == 2) df_our = find_min_discm_each_hyperparam(df1) df_our = df_our[['Model-count','Discm_percent', 'Test_acc', 'Class0_Pos', 'Class1_Pos']] df_our['diff'] = abs(df_our['Class0_Pos'] - df_our['Class1_Pos'])*100 df_our['Test_acc'] = df_our['Test_acc'].apply(lambda x: x*100) df_our['Techniques'] = "Our Technique" df_our['Baseline'] = "Our" # Massaging df_massaging = process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}.csv")) # Preferential Sampling df_ps = process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}.csv")) # Learning Fair representations df_lfr = process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}.csv")) # Disparate Impact Removed df_DIR = process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}.csv")) # Adversarial Sampling df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}.csv") df_adver['Model-count'] = df_adver['Dataperm']*12 df_adver = df_adver.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df_adver = df_adver[['Model-count','Discm_percent','Test_acc','diff']] df_adver['diff'] = df_adver['diff']*100 df_adver['Test_acc'] = df_adver['Test_acc'].apply(lambda x: x*100) df_adver['Techniques'] = "Adversa. debias" df_adver['Baseline'] = "AD" # # Sensitive Attribute removed, therefore no discrimination df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv") df_nosensitive = df_nosensitive[['Model-count','Test_acc', 'Class0_Pos', 'Class1_Pos']] df_nosensitive['diff'] = abs(df_nosensitive['Class0_Pos'] - df_nosensitive['Class1_Pos'])*100 df_nosensitive['Discm_percent'] = 0.0 df_nosensitive['Test_acc'] = df_nosensitive['Test_acc'].apply(lambda x: x*100) df_nosensitive['Techniques'] = "Sens. Removed" df_nosensitive['Baseline'] = "SR" # df_nosensitive = process_dfs("Sensitive Removed", batches, pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv")) # No technique used df_noremoval = process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval.csv")) df_main = pd.concat([df_noremoval, df_nosensitive, df_massaging, df_ps, df_lfr, df_DIR, df_adver, df_our]) try: assert(len(df_main) == 7*240 + 20) except: import ipdb; ipdb.set_trace() if dataset == "compas-score": dataset = "Recidivism-score" elif dataset == "compas-ground": dataset = "Recidivism-ground" # df_main['Dataset'] = dataset.capitalize() if dataset == "adult": sizeofPSI = 4522200 id_ = "D1" elif dataset == "adult_race": sizeofPSI = 4313100 id_ = "D2" elif dataset == "german": sizeofPSI = 100000 id_ = "D3" elif dataset == "student": sizeofPSI = 64900 id_ = "D4" elif dataset == "Recidivism-ground": sizeofPSI = 615000 id_ = "D5" elif dataset == "Recidivism-score": sizeofPSI = 615000 id_ = "D6" elif dataset == "default": sizeofPSI = 3000000 id_ = "D7" elif dataset == "salary": sizeofPSI = 5200 id_ = "D8" else: raise NotImplementedError df_main['Dataset'] = id_ precision = 1 if plot == 0: min_discm = True test_accuracy_for_min_discm = True max_accuracy = True discm_for_max_accuracy = True median_discm = False mean_accuracy = False median_accuracy = False if min_discm: x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].min():.{precision}e}", '0.0' ,f"{df_DIR['Discm_percent'].min():.{precision}e}", f"{df_ps['Discm_percent'].min():.{precision}e}", f"{df_massaging['Discm_percent'].min():.{precision}e}", f"{df_lfr['Discm_percent'].min():.{precision}e}", f"{df_adver['Discm_percent'].min():.{precision}e}", f"{df_our['Discm_percent'].min():.{precision}e}"]) print_to_tex(x, 'min-discm.tex', dataset) if max_accuracy: y = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR['Test_acc'].max():.{precision}e}", f"{df_ps['Test_acc'].max():.{precision}e}", f"{df_massaging['Test_acc'].max():.{precision}e}", f"{df_lfr['Test_acc'].max():.{precision}e}", f"{df_adver['Test_acc'].max():.{precision}e}", f"{df_our['Test_acc'].max():.{precision}e}"]) print_to_tex(y, 'max-test-accuracy.tex', dataset) if test_accuracy_for_min_discm: # for sensitive there is always 0 discrimination. z = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Discm_percent'] == df_noremoval['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR.loc[df_DIR['Discm_percent'] == df_DIR['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_ps.loc[df_ps['Discm_percent'] == df_ps['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_massaging.loc[df_massaging['Discm_percent'] == df_massaging['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_lfr.loc[df_lfr['Discm_percent'] == df_lfr['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_adver.loc[df_adver['Discm_percent'] == df_adver['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['Test_acc'].max():.{precision}e}"]) print_to_tex(z, 'test_accuracy_for_min_discm.tex', dataset) if median_discm: x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(0.0) ,f"{df_DIR['Discm_percent'].median():.{precision}e}", f"{df_ps['Discm_percent'].median():.{precision}e}", f"{df_massaging['Discm_percent'].median():.{precision}e}", f"{df_lfr['Discm_percent'].median():.{precision}e}", f"{df_adver['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Discm_percent'].median():.{precision}e}")]) print_to_tex(x, 'median-discm.tex', dataset) if mean_accuracy: a = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].mean():.{precision}e}", f"{df_nosensitive['Test_acc'].mean():.{precision}e}", f"{df_DIR['Test_acc'].mean():.{precision}e}", f"{df_ps['Test_acc'].mean():.{precision}e}", f"{df_massaging['Test_acc'].mean():.{precision}e}", f"{df_lfr['Test_acc'].mean():.{precision}e}", f"{df_adver['Test_acc'].mean():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].mean():.{precision}e}")]) print_to_tex(a, 'mean-test-accuracy.tex', dataset) if median_accuracy: b = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].median():.{precision}e}", f"{df_nosensitive['Test_acc'].median():.{precision}e}", f"{df_DIR['Test_acc'].median():.{precision}e}", f"{df_ps['Test_acc'].median():.{precision}e}", f"{df_massaging['Test_acc'].median():.{precision}e}", f"{df_lfr['Test_acc'].median():.{precision}e}", f"{df_adver['Test_acc'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].median():.{precision}e}")]) print_to_tex(b, 'median-test-accuracy.tex', dataset) if discm_for_max_accuracy: k = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Test_acc'] == df_noremoval['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", "0.0", f"{df_DIR.loc[df_DIR['Test_acc'] == df_DIR['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_ps.loc[df_ps['Test_acc'] == df_ps['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_massaging.loc[df_massaging['Test_acc'] == df_massaging['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_lfr.loc[df_lfr['Test_acc'] == df_lfr['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_adver.loc[df_adver['Test_acc'] == df_adver['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_our.loc[df_our['Test_acc'] == df_our['Test_acc'].max()]['Discm_percent'].min():.{precision}e}"]) print_to_tex(k, 'discm_for_max_accuracy.tex', dataset) return df_main def boxplots_datasets_dist(dataset, plot): df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1_dist{dist}.csv") batches = sorted(list(df1.Batch.unique())) # sorting is important assert(len(batches) == 2) df_our = find_min_discm_each_hyperparam(df1) df_our = df_our[['Model-count', 'Discm_percent', 'Test_acc', 'Class0_Pos', 'Class1_Pos']] df_our['diff'] = abs(df_our['Class0_Pos'] - df_our['Class1_Pos']) * 100 # Statistical parity diff df_our['Test_acc'] = df_our['Test_acc'].apply(lambda x: x * 100) df_our['Techniques'] = "Our Technique" df_our['Baseline'] = "Our" # Massaging df_massaging = process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_dist{dist}.csv")) # Preferential Sampling df_ps = process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_dist{dist}.csv")) # Learning Fair representations df_lfr = process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_dist{dist}.csv")) # Disparate Impact Removed df_DIR = process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_dist{dist}.csv")) # Adversarial Sampling df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_dist{dist}.csv") df_adver['Model-count'] = df_adver['Dataperm'] * 12 df_adver = df_adver.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df_adver = df_adver[['Model-count','Discm_percent','Test_acc','diff']] df_adver['diff'] = df_adver['diff'] * 100 df_adver['Test_acc'] = df_adver['Test_acc'].apply(lambda x: x*100) df_adver['Techniques'] = "Adversa. debias" df_adver['Baseline'] = "AD" # # Sensitive Attribute removed, therefore no discrimination # df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv") df_nosensitive = process_dfs("Sens. Removed", batches, pd.read_csv(f"{dataset}/results_{dataset}_nosensitive_dist{dist}.csv")) # df_nosensitive = df_nosensitive[['Model-count','Test_acc', 'Class0_Pos', 'Class1_Pos']] # df_nosensitive['diff'] = abs(df_nosensitive['Class0_Pos'] - df_nosensitive['Class1_Pos'])*100 # df_nosensitive['Discm_percent'] = 0.0 # df_nosensitive['Test_acc'] = df_nosensitive['Test_acc'].apply(lambda x: x*100) # df_nosensitive['Techniques'] = "Sens. Removed" # df_nosensitive['Baseline'] = "SR" # No technique used df_noremoval = process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval_dist{dist}.csv")) df_main = pd.concat([df_noremoval, df_nosensitive, df_massaging, df_ps, df_lfr, df_DIR, df_adver, df_our], sort=True) try: assert(len(df_main) == 7*240 + 20) except: import ipdb; ipdb.set_trace() if dataset == "compas-score": dataset = "Recidivism-score" elif dataset == "compas-ground": dataset = "Recidivism-ground" # df_main['Dataset'] = dataset.capitalize() if dataset == "adult": sizeofPSI = 4522200 id_ = "D1" elif dataset == "adult_race": sizeofPSI = 4313100 id_ = "D2" elif dataset == "german": sizeofPSI = 100000 id_ = "D3" elif dataset == "student": sizeofPSI = 64900 id_ = "D4" elif dataset == "Recidivism-ground": sizeofPSI = 615000 id_ = "D5" elif dataset == "Recidivism-score": sizeofPSI = 615000 id_ = "D6" elif dataset == "default": sizeofPSI = 3000000 id_ = "D7" elif dataset == "salary": sizeofPSI = 5200 id_ = "D8" else: raise NotImplementedError df_main['Dataset'] = id_ precision = 1 if plot == 0: min_discm = True test_accuracy_for_min_discm = True max_accuracy = True discm_for_max_accuracy = True median_discm = False mean_accuracy = False median_accuracy = False if min_discm: x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].min():.{precision}e}", f"{df_nosensitive['Discm_percent'].min():.{precision}e}" ,f"{df_DIR['Discm_percent'].min():.{precision}e}", f"{df_ps['Discm_percent'].min():.{precision}e}", f"{df_massaging['Discm_percent'].min():.{precision}e}", f"{df_lfr['Discm_percent'].min():.{precision}e}", f"{df_adver['Discm_percent'].min():.{precision}e}", f"{df_our['Discm_percent'].min():.{precision}e}"]) print_to_tex(x, f'min-discm_dist{dist}.tex', dataset) if max_accuracy: y = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR['Test_acc'].max():.{precision}e}", f"{df_ps['Test_acc'].max():.{precision}e}", f"{df_massaging['Test_acc'].max():.{precision}e}", f"{df_lfr['Test_acc'].max():.{precision}e}", f"{df_adver['Test_acc'].max():.{precision}e}", f"{df_our['Test_acc'].max():.{precision}e}"]) print_to_tex(y, f'max-test-accuracy_dist{dist}.tex', dataset) if test_accuracy_for_min_discm: z = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Discm_percent'] == df_noremoval['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_nosensitive.loc[df_nosensitive['Discm_percent'] == df_nosensitive['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_DIR.loc[df_DIR['Discm_percent'] == df_DIR['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_ps.loc[df_ps['Discm_percent'] == df_ps['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_massaging.loc[df_massaging['Discm_percent'] == df_massaging['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_lfr.loc[df_lfr['Discm_percent'] == df_lfr['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_adver.loc[df_adver['Discm_percent'] == df_adver['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['Test_acc'].max():.{precision}e}"]) print_to_tex(z, f'test_accuracy_for_min_discm_dist{dist}.tex', dataset) if median_discm: raise NotImplementedError x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(0.0) ,f"{df_DIR['Discm_percent'].median():.{precision}e}", f"{df_ps['Discm_percent'].median():.{precision}e}", f"{df_massaging['Discm_percent'].median():.{precision}e}", f"{df_lfr['Discm_percent'].median():.{precision}e}", f"{df_adver['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Discm_percent'].median():.{precision}e}")]) print_to_tex(x, 'median-discm.tex', dataset) if mean_accuracy: raise NotImplementedError a = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].mean():.{precision}e}", f"{df_nosensitive['Test_acc'].mean():.{precision}e}", f"{df_DIR['Test_acc'].mean():.{precision}e}", f"{df_ps['Test_acc'].mean():.{precision}e}", f"{df_massaging['Test_acc'].mean():.{precision}e}", f"{df_lfr['Test_acc'].mean():.{precision}e}", f"{df_adver['Test_acc'].mean():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].mean():.{precision}e}")]) print_to_tex(a, 'mean-test-accuracy.tex', dataset) if median_accuracy: raise NotImplementedError b = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].median():.{precision}e}", f"{df_nosensitive['Test_acc'].median():.{precision}e}", f"{df_DIR['Test_acc'].median():.{precision}e}", f"{df_ps['Test_acc'].median():.{precision}e}", f"{df_massaging['Test_acc'].median():.{precision}e}", f"{df_lfr['Test_acc'].median():.{precision}e}", f"{df_adver['Test_acc'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].median():.{precision}e}")]) print_to_tex(b, 'median-test-accuracy.tex', dataset) if discm_for_max_accuracy: k = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Test_acc'] == df_noremoval['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_DIR.loc[df_DIR['Test_acc'] == df_DIR['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_ps.loc[df_ps['Test_acc'] == df_ps['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_massaging.loc[df_massaging['Test_acc'] == df_massaging['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_lfr.loc[df_lfr['Test_acc'] == df_lfr['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_adver.loc[df_adver['Test_acc'] == df_adver['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_our.loc[df_our['Test_acc'] == df_our['Test_acc'].max()]['Discm_percent'].min():.{precision}e}"]) print_to_tex(k, f'discm_for_max_accuracy_dist{dist}.tex', dataset) return df_main def print_to_tex(string, file, dataset, mode=None): if mode == None: if dataset == "adult": mode = "w" else: mode = "a" # with open(f"../../neurips_fairness_paper/tables/{file}", mode) as f: with open(f"tables/{file}", mode) as f: if dataset == "salary": string += " \\\ \midrule" else: string += " \\\\ " print(string, file=f) # print(dataset) # print("Min discm: ", df_DIR['Discm_percent'].min()) # print("Min discm: ", df_ps['Discm_percent'].min()) # print("Min discm: ", df_massaging['Discm_percent'].min()) # print("Min discm: ", df_lfr['Discm_percent'].min()) # print("Min discm: ", df_adver['Discm_percent'].min()) # print("Min discm: ", df_our['Discm_percent'].min()) def main(plot): df_main = None benchmarks = ["adult", "adult_race", "german", "student", "compas-ground", "compas-score", "default", "salary"] for dataset in benchmarks: # df_onedataset = boxplots_datasets(dataset, plot) df_onedataset = boxplots_datasets_dist(dataset, plot) if not df_main is None: df_main = pd.concat([df_main, df_onedataset]) else: df_main = copy.deepcopy(df_onedataset) print(f"Done {dataset}") if plot == 0: return labels = ['FU', 'SR', 'DIR', 'PS', 'MA', 'LFR', 'AD', 'Our'] tech_cat = pd.Categorical(df_main['Baseline'], categories=labels) df_main = df_main.assign(Technique_x = tech_cat) dataset_order = ["D1", "D2", "D3", "D4", "D5", "D6", "D7", "D8"] data_cat = pd.Categorical(df_main['Dataset'], categories=dataset_order) df_main = df_main.assign(Dataset_x = data_cat) # x = (ggplot(aes(x='Technique_x', y='Discm_percent', color='Techniques'), data=df_main) +\ # geom_boxplot() +\ # facet_wrap(['Dataset'], scales = 'free', nrow=2, labeller='label_both', shrink=False) + \ # ylab("Remaining Individual Discrimination") + \ # xlab("Discrimination reducing techniques") + \ # # ylim(0, 20) + \ # # ggtitle("Box plot showing remaining discrimination for each technique in each dataset") +\ # theme(axis_text_x = element_text(size=6), dpi=151) + \ # theme_seaborn() # ) # This is responsible for the legend - remove color='Techniques' x = (ggplot(aes(x='Technique_x', y='Discm_percent'), data=df_main) +\ geom_boxplot() +\ facet_wrap(['Dataset_x'], scales = 'free', nrow=2, labeller='label_value', shrink=True) + \ ylab("Remaining Individual Discrimination") + \ xlab("Discrimination reducing techniques") + \ # ylim(0, 20) + \ # ggtitle("Box plot showing remaining discrimination for each technique in each dataset") +\ theme(axis_text_x = element_text(size=6), dpi=151) + \ theme_seaborn() ) x = x.draw() x.set_figwidth(20) x.set_figheight(12) for ax in range(len(benchmarks)): low_limit = -0.05 top_limit = df_main[df_main['Dataset'] == f'D{ax+1}']['Discm_percent'].max() if df_main[df_main['Dataset'] == f'D{ax+1}']['Discm_percent'].max() > 20: top_limit = 20 if top_limit > 13: # These hacks are for aligning the 0 at the bottom of the plots. low_limit = -0.3 x.axes[ax].set_ylim(low_limit, top_limit) # x.tight_layout() # This didn't work x.savefig(f"boxplots/boxplot_discm_freeaxis_matplotlib_dist{dist}.eps", format='eps', bbox_inches='tight') x.savefig(f"boxplots/boxplot_discm_freeaxis_matplotlib_dist{dist}.png", bbox_inches='tight') # x.save(f"boxplot_discm_freeaxis_matplotlib.png", height=8, width=18) # x.save(f"boxplot_discm_freeaxis_withoutfull.png", height=12, width=15) # x.save(f"boxplot_discm_fixedaxis.png", height=5, width=12) y = (ggplot(aes(x='Technique_x', y='Test_acc'), data=df_main) +\ geom_boxplot() +\ facet_wrap(['Dataset_x'], scales = 'free', nrow=2, labeller='label_value', shrink=True) + \ ylab("Test Accuracy") + \ xlab("Discrimination reducing techniques") + \ # ylim(0, 100) + \ # ggtitle("Box plot showing remaining discrimination for each technique in each dataset") +\ theme(axis_text_x = element_text(size=6), dpi=151) + \ theme_seaborn() ) # y.save(f"boxplot_accuracy_freeaxis.png", height=8, width=18) y = y.draw() y.set_figwidth(20) y.set_figheight(12) for ax in range(len(benchmarks)): bot_limit = df_main[df_main['Dataset'] == f'D{ax+1}']['Test_acc'].min() top_limit = df_main[df_main['Dataset'] == f'D{ax+1}']['Test_acc'].max() y.axes[ax].set_ylim(bot_limit - 1, top_limit + 2) # y.tight_layout() y.savefig(f"boxplots/boxplot_accuracy_freeaxis_matplotlib_dist{dist}.eps", format='eps', bbox_inches='tight') y.savefig(f"boxplots/boxplot_accuracy_freeaxis_matplotlib_dist{dist}.png", bbox_inches='tight') def real_accuracy_tables(debiased): dataset = "compas-score" if debiased: deb = "debiased" else: deb = "full" df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1.csv") batches = sorted(list(df1.Batch.unique())) assert(len(batches) == 2) df_our = find_min_discm_each_hyperparam(df1) df_our = df_our[['Model-count','Discm_percent']] df_our_2 = pd.read_csv(f"{dataset}/results_our_real_accuracy_{deb}.csv") df_our_final = pd.merge(df_our, df_our_2, on=['Model-count']) df_our_final['Test_acc'] = df_our_final['Test_acc'].apply(lambda x: x*100) df_our_final['Techniques'] = "Our Technique" df_our_final['Baseline'] = "Our" # import ipdb; ipdb.set_trace() # Massaging df_massaging = process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}.csv")) df_massaging.drop(columns=['Test_acc'], inplace=True) df_massaging_2 = pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_real_accuracy_{deb}.csv") df_massaging_final = pd.merge(df_massaging, df_massaging_2, on=['Model-count']) df_massaging_final['Test_acc'] = df_massaging_final['Test_acc'].apply(lambda x: x*100) # Preferential Sampling df_ps = process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}.csv")) df_ps.drop(columns=['Test_acc'], inplace=True) df_ps_2 = pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_real_accuracy_{deb}.csv") df_ps_final = pd.merge(df_ps, df_ps_2, on=['Model-count']) df_ps_final['Test_acc'] = df_ps_final['Test_acc'].apply(lambda x: x*100) # Learning Fair representations df_lfr = process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}.csv")) df_lfr.drop(columns=['Test_acc'], inplace=True) df_lfr_2 = pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_real_accuracy_{deb}.csv") df_lfr_final = pd.merge(df_lfr, df_lfr_2, on=['Model-count']) df_lfr_final['Test_acc'] = df_lfr_final['Test_acc'].apply(lambda x: x*100) # Disparate Impact Removed df_DIR = process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}.csv")) df_DIR.drop(columns=['Test_acc'], inplace=True) df_DIR_2 = pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_real_accuracy_{deb}.csv") df_DIR_final = pd.merge(df_DIR, df_DIR_2, on=['Model-count']) df_DIR_final['Test_acc'] = df_DIR_final['Test_acc'].apply(lambda x: x*100) # Adversarial Sampling df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}.csv") df_adver['Model-count'] = df_adver['Dataperm']*12 df_adver = df_adver.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df_adver = df_adver[['Model-count','Discm_percent']] df_adver_2 = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_real_accuracy_{deb}.csv") df_adver_2['Model-count'] = df_adver_2['Dataperm']*12 df_adver_final = pd.merge(df_adver, df_adver_2, on=['Model-count']) df_adver_final['Test_acc'] = df_adver_final['Test_acc'].apply(lambda x: x*100) df_adver_final['Techniques'] = "Adversa. debias" df_adver_final['Baseline'] = "AD" # # Sensitive Attribute removed, therefore no discrimination df_nosensitive = pd.read_csv(f"{dataset}/results_nosensitive_real_accuracy_{deb}.csv") df_nosensitive = df_nosensitive[['Model-count','Test_acc']] df_nosensitive['Test_acc'] = df_nosensitive['Test_acc'].apply(lambda x: x*100) df_nosensitive['Techniques'] = "Sens. Removed" df_nosensitive['Baseline'] = "SR" # df_nosensitive = process_dfs("Sensitive Removed", batches, pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv")) # No technique used df_noremoval = process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval.csv")) df_noremoval.drop(columns=['Test_acc'], inplace=True) df_noremoval_2 = pd.read_csv(f"{dataset}/results_noremoval_real_accuracy_{deb}.csv") df_noremoval_final = pd.merge(df_noremoval, df_noremoval_2, on=['Model-count']) df_noremoval_final['Test_acc'] = df_noremoval_final['Test_acc'].apply(lambda x: x*100) max_accuracy = True corresponding_max_accuracy = True mean_accuracy = False median_accuracy = False id_ = "D5" precision = 1 if corresponding_max_accuracy: # for sensitive there is always 0 discrimination. z = ' & '.join([f"{id_}", f"{df_noremoval_final.loc[df_noremoval_final['Discm_percent'] == df_noremoval_final['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR_final.loc[df_DIR_final['Discm_percent'] == df_DIR_final['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_ps_final.loc[df_ps_final['Discm_percent'] == df_ps_final['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_massaging_final.loc[df_massaging_final['Discm_percent'] == df_massaging_final['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_lfr_final.loc[df_lfr_final['Discm_percent'] == df_lfr_final['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_adver_final.loc[df_adver_final['Discm_percent'] == df_adver_final['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_our_final.loc[df_our_final['Discm_percent'] == df_our_final['Discm_percent'].min()]['Test_acc'].max():.{precision}e}"]) a = ' & '.join([f"{id_}", f"{df_noremoval_final['Discm_percent'].min():.{precision}e}", "0.0", f"{df_DIR_final['Discm_percent'].min():.{precision}e}", f"{df_ps_final['Discm_percent'].min():.{precision}e}", f"{df_massaging_final['Discm_percent'].min():.{precision}e}", f"{df_lfr_final['Discm_percent'].min():.{precision}e}", f"{df_adver_final['Discm_percent'].min():.{precision}e}", f"{df_our_final['Discm_percent'].min():.{precision}e}"]) print_to_tex(z, f'correspond-real-accuracy_{deb}.tex', dataset, "w") print_to_tex(a, f'correspond-real-accuracy_{deb}.tex', dataset, "a") if max_accuracy: y = ' & '.join([f"{id_}", f"{df_noremoval_final['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR_final['Test_acc'].max():.{precision}e}", f"{df_ps_final['Test_acc'].max():.{precision}e}", f"{df_massaging_final['Test_acc'].max():.{precision}e}", f"{df_lfr_final['Test_acc'].max():.{precision}e}", f"{df_adver_final['Test_acc'].max():.{precision}e}", f"{df_our_final['Test_acc'].max():.{precision}e}"]) print_to_tex(y, f'max-real-accuracy_{deb}.tex', dataset, "w") print("Done real accuracy") def fpr_fnr_process_dfs(name, batches, df): if 'Model-count'in df.columns: df['Model-count2'] = df.apply(process_rows, axis=1, args=((batches,))) assert (df['Model-count'] == df['Model-count2']).all() df.drop(columns=['Model-count2'], inplace=True) else: df['Model-count'] = df.apply(process_rows, axis=1, args=((batches,))) assert len(df['Model-count'].unique()) == 240 and df['Model-count'].max() == 239 and df['Model-count'].min() == 0 df = df.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df = df[['Model-count','Discm_percent', 'Test_acc', 'Class0_FPR', 'Class0_FNR', 'Class1_FPR', 'Class1_FNR']] df['FPR_diff'] = abs(df['Class0_FPR'] - df['Class1_FPR'])*100 # df_our['FPR_sum'] = df_our['Class0_FPR'] + df_our['Class1_FPR'] df['FPR_ratio'] = df['Class0_FPR'] / df['Class1_FPR'] df['FNR_diff'] = abs(df['Class0_FNR'] - df['Class1_FNR'])*100 # df_our['FNR_sum'] = df_our['Class0_FNR'] + df_our['Class1_FNR'] df['FNR_ratio'] = df['Class0_FNR'] / df['Class1_FNR'] # df['diff'] = abs(df['Class0_Pos'] - df['Class1_Pos'])*100 df['Test_acc'] = df['Test_acc'].apply(lambda x: x*100) df['Techniques'] = name return df def fpr_fnr_rates(): def fpr_fnr_print(dataset, id_, kind): if kind: df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1.csv") else: df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1_fulltest.csv") batches = sorted(list(df1.Batch.unique())) assert(len(batches) == 2) # import ipdb; ipdb.set_trace() df_our = find_min_discm_each_hyperparam(df1) df_our = df_our[['Model-count','Discm_percent', 'Test_acc', 'Class0_FPR', 'Class0_FNR', 'Class1_FPR', 'Class1_FNR']] df_our['FPR_diff'] = abs(df_our['Class0_FPR'] - df_our['Class1_FPR'])*100 # df_our['FPR_sum'] = df_our['Class0_FPR'] + df_our['Class1_FPR'] df_our['FPR_ratio'] = df_our['Class0_FPR'] / df_our['Class1_FPR'] df_our['FNR_diff'] = abs(df_our['Class0_FNR'] - df_our['Class1_FNR'])*100 # df_our['FNR_sum'] = df_our['Class0_FNR'] + df_our['Class1_FNR'] df_our['FNR_ratio'] = df_our['Class0_FNR'] / df_our['Class1_FNR'] df_our['Techniques'] = "Our Technique" df_our['Baseline'] = "Our" if kind: df_massaging = fpr_fnr_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_fulltest.csv")) else: df_massaging = fpr_fnr_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}.csv")) # Preferential Sampling if kind: df_ps = fpr_fnr_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_fulltest.csv")) else: df_ps = fpr_fnr_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}.csv")) # Learning Fair representations if kind: df_lfr = fpr_fnr_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_fulltest.csv")) else: df_lfr = fpr_fnr_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}.csv")) # Disparate Impact Removed if kind: df_DIR = fpr_fnr_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_fulltest.csv")) else: df_DIR = fpr_fnr_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}.csv")) # Adversarial Sampling if kind: df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_fulltest.csv") else: df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}.csv") df_adver['Model-count'] = df_adver['Dataperm']*12 df_adver = df_adver.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines # df_adver = df_adver[['Model-count','Discm_percent', 'Test_acc', 'Class0_FPR', 'Class0_FNR', 'Class1_FPR', 'Class1_FNR']] # df_adver['FPR_diff'] = abs(df_adver['Class0_FPR'] - df_adver['Class1_FPR'])*100 # # df_our['FPR_sum'] = df_our['Class0_FPR'] + df_our['Class1_FPR'] # df_adver['FPR_ratio'] = df_adver['Class0_FPR'] / df_adver['Class1_FPR'] # df_adver['FNR_diff'] = abs(df_adver['Class0_FNR'] - df_adver['Class1_FNR'])*100 # # df_our['FNR_sum'] = df_our['Class0_FNR'] + df_our['Class1_FNR'] # df_adver['FNR_ratio'] = df_adver['Class0_FNR'] / df_adver['Class1_FNR'] df_adver['FPR_diff'] = df_adver['FPR_ratio'] = df_adver['FNR_diff'] = df_adver['FNR_ratio'] = 1000.0 # df_adver['diff'] = df_adver['diff']*100 df_adver['Test_acc'] = df_adver['Test_acc'].apply(lambda x: x*100) df_adver['Techniques'] = "Adversa. debias" df_adver['Baseline'] = "AD" df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv") df_nosensitive = df_nosensitive[['Model-count', 'Test_acc', 'Class0_FPR', 'Class0_FNR', 'Class1_FPR', 'Class1_FNR']] df_nosensitive['FPR_diff'] = abs(df_nosensitive['Class0_FPR'] - df_nosensitive['Class1_FPR'])*100 # df_nosensitive['FPR_sum'] = df_nosensitive['Class0_FPR'] + df_nosensitive['Class1_FPR'] df_nosensitive['FPR_ratio'] = df_nosensitive['Class0_FPR'] / df_nosensitive['Class1_FPR'] df_nosensitive['FNR_diff'] = abs(df_nosensitive['Class0_FNR'] - df_nosensitive['Class1_FNR'])*100 # df_nosensitive['FNR_sum'] = df_nosensitive['Class0_FNR'] + df_nosensitive['Class1_FNR'] df_nosensitive['FNR_ratio'] = df_nosensitive['Class0_FNR'] / df_nosensitive['Class1_FNR'] df_nosensitive['Techniques'] = "Sens. Removed" df_nosensitive['Baseline'] = "SR" if kind: df_noremoval = fpr_fnr_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval_fulltest.csv")) else: df_noremoval = fpr_fnr_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval.csv")) min_rate_difference = True rate_difference_for_min_discm = True rate_difference_for_max_accuracy = True precision = 1 if min_rate_difference: a = ' & '.join([f"{id_}", str(float(f"{df_noremoval['FPR_diff'].min():.{precision}e}")), str(float(f"{df_nosensitive['FPR_diff'].min():.{precision}e}")), str(float(f"{df_DIR['FPR_diff'].min():.{precision}e}")), str(float(f"{df_ps['FPR_diff'].min():.{precision}e}")), str(float(f"{df_massaging['FPR_diff'].min():.{precision}e}")), str(float(f"{df_lfr['FPR_diff'].min():.{precision}e}")), str(float(f"{df_adver['FPR_diff'].min():.{precision}e}")), str(float(f"{df_our['FPR_diff'].min():.{precision}e}"))]) b = ' & '.join([f"{id_}", str(float(f"{df_noremoval['FNR_diff'].min():.{precision}e}")), str(float(f"{df_nosensitive['FNR_diff'].min():.{precision}e}")), str(float(f"{df_DIR['FNR_diff'].min():.{precision}e}")), str(float(f"{df_ps['FNR_diff'].min():.{precision}e}")), str(float(f"{df_massaging['FNR_diff'].min():.{precision}e}")), str(float(f"{df_lfr['FNR_diff'].min():.{precision}e}")), str(float(f"{df_adver['FNR_diff'].min():.{precision}e}")), str(float(f"{df_our['FNR_diff'].min():.{precision}e}"))]) # b = ' & '.join([f"{id_}", f"{df_nosensitive['FNR_diff'].min():.{precision}e}", "\\textbf{%s}"%(f"{df_our['FNR_diff'].min():.{precision}e}")]) # c = ' & '.join([f"{id_}", f"{df_nosensitive['FPR_ratio'].min():.{precision}e}", "\\textbf{%s}"%(f"{df_our['FPR_ratio'].min():.{precision}e}")]) # d = ' & '.join([f"{id_}", f"{df_nosensitive['FNR_ratio'].min():.{precision}e}", "\\textbf{%s}"%(f"{df_our['FNR_ratio'].min():.{precision}e}")]) # e = ' & '.join([f"{id_}", f"{df_nosensitive['Class0_FPR'].min():.{precision}e}", f"{df_nosensitive['Class1_FPR'].min():.{precision}e}", f"{df_our['Class0_FNR'].min():.{precision}e}", f"{df_our['Class1_FNR'].min():.{precision}e}"]) if kind: print_to_tex(a, 'min-fpr_rate_fulltest.tex', dataset) print_to_tex(b, 'min-fnr_rate_fulltest.tex', dataset) else: print_to_tex(a, 'min-fpr_rate_debiasedtest.tex', dataset) print_to_tex(b, 'min-fnr_rate_debiasedtest.tex', dataset) if rate_difference_for_min_discm: x = ' & '.join([f"{id_}", str(float(f"{df_noremoval.loc[df_noremoval['Discm_percent'] == df_noremoval['Discm_percent'].min()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_DIR.loc[df_DIR['Discm_percent'] == df_DIR['Discm_percent'].min()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_ps.loc[df_ps['Discm_percent'] == df_ps['Discm_percent'].min()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_massaging.loc[df_massaging['Discm_percent'] == df_massaging['Discm_percent'].min()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_lfr.loc[df_lfr['Discm_percent'] == df_lfr['Discm_percent'].min()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_adver.loc[df_adver['Discm_percent'] == df_adver['Discm_percent'].min()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FPR_diff'].min():.{precision}e}"))]) y = ' & '.join([f"{id_}", str(float(f"{df_noremoval.loc[df_noremoval['Discm_percent'] == df_noremoval['Discm_percent'].min()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_DIR.loc[df_DIR['Discm_percent'] == df_DIR['Discm_percent'].min()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_ps.loc[df_ps['Discm_percent'] == df_ps['Discm_percent'].min()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_massaging.loc[df_massaging['Discm_percent'] == df_massaging['Discm_percent'].min()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_lfr.loc[df_lfr['Discm_percent'] == df_lfr['Discm_percent'].min()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_adver.loc[df_adver['Discm_percent'] == df_adver['Discm_percent'].min()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FNR_diff'].min():.{precision}e}"))]) # l = ' & '.join([f"{id_}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FPR_sum'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FPR_sum'].min():.{precision}e}"]) # m = ' & '.join([f"{id_}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FNR_sum'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FNR_sum'].min():.{precision}e}"]) # q = ' & '.join([f"{id_}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FPR_ratio'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FPR_ratio'].min():.{precision}e}"]) # r = ' & '.join([f"{id_}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FNR_ratio'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FNR_ratio'].min():.{precision}e}"]) # z = ' & '.join([f"{id_}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FPR_ratio'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FPR_ratio'].min():.{precision}e}"]) # z1 = ' & '.join([f"{id_}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FNR_ratio'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['FNR_ratio'].min():.{precision}e}"]) # z2 = ' & '.join([f"{id_}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['Class0_FPR'].min():.{precision}e}", # f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['Class1_FPR'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['Class0_FNR'].min():.{precision}e}", # f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['Class1_FNR'].min():.{precision}e}"]) if kind: print_to_tex(x, 'fpr_rate-min-discm_fulltest.tex', dataset) print_to_tex(y, 'fnr_rate-min-discm_fulltest.tex', dataset) else: print_to_tex(x, 'fpr_rate-min-discm_debiasedtest.tex', dataset) print_to_tex(y, 'fnr_rate-min-discm_debiasedtest.tex', dataset) if rate_difference_for_max_accuracy: l = ' & '.join([f"{id_}", str(float(f"{df_noremoval.loc[df_noremoval['Test_acc'] == df_noremoval['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_DIR.loc[df_DIR['Test_acc'] == df_DIR['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_ps.loc[df_ps['Test_acc'] == df_ps['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_massaging.loc[df_massaging['Test_acc'] == df_massaging['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_lfr.loc[df_lfr['Test_acc'] == df_lfr['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_adver.loc[df_adver['Test_acc'] == df_adver['Test_acc'].max()]['FPR_diff'].min():.{precision}e}")), str(float(f"{df_our.loc[df_our['Test_acc'] == df_our['Test_acc'].max()]['FPR_diff'].min():.{precision}e}"))]) m = ' & '.join([f"{id_}", str(float(f"{df_noremoval.loc[df_noremoval['Test_acc'] == df_noremoval['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_DIR.loc[df_DIR['Test_acc'] == df_DIR['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_ps.loc[df_ps['Test_acc'] == df_ps['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_massaging.loc[df_massaging['Test_acc'] == df_massaging['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_lfr.loc[df_lfr['Test_acc'] == df_lfr['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_adver.loc[df_adver['Test_acc'] == df_adver['Test_acc'].max()]['FNR_diff'].min():.{precision}e}")), str(float(f"{df_our.loc[df_our['Test_acc'] == df_our['Test_acc'].max()]['FNR_diff'].min():.{precision}e}"))]) if kind: print_to_tex(l, 'fpr_rate-max-accuracy_fulltest.tex', dataset) print_to_tex(m, 'fnr_rate-max-accuracy_fulltest.tex', dataset) else: print_to_tex(l, 'fpr_rate-max-accuracy_debiasedtest.tex', dataset) print_to_tex(m, 'fnr_rate-max-accuracy_debiasedtest.tex', dataset) # df_main = None benchmarks = ["adult", "adult_race", "german", "student", "compas-ground", "compas-score", "default", "salary"] # benchmarks = ["adult", "german", "student", "compas-ground", "compas-score", "default"] kind = "debiased" # kind = "full" for dataset in benchmarks: if dataset == "adult": id_ = "D1" elif dataset == "adult_race": id_ = "D2" elif dataset == "german": id_ = "D3" elif dataset == "student": id_ = "D4" elif dataset == "compas-ground": id_ = "D5" elif dataset == "compas-score": id_ = "D6" elif dataset == "default": id_ = "D7" elif dataset == "salary": id_ = "D8" else: raise NotImplementedError if kind == "full": fpr_fnr_print(dataset, id_, kind=True) elif kind == "debiased": fpr_fnr_print(dataset, id_, kind=False) print(f"Done {dataset}") def parity_process_dfs(name, batches, df): if 'Model-count'in df.columns: df['Model-count2'] = df.apply(process_rows, axis=1, args=((batches,))) assert (df['Model-count'] == df['Model-count2']).all() df.drop(columns=['Model-count2'], inplace=True) else: df['Model-count'] = df.apply(process_rows, axis=1, args=((batches,))) assert len(df['Model-count'].unique()) == 240 and df['Model-count'].max() == 239 and df['Model-count'].min() == 0 df = df.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df = df[['Model-count','Discm_percent','Test_acc', 'Class0_Pos', 'Class1_Pos']] df['diff'] = abs(df['Class0_Pos'] - df['Class1_Pos'])*100 df['Test_acc'] = df['Test_acc'].apply(lambda x: x*100) df['Techniques'] = name if len(name.split()) > 1: words = name.split() letters = [word[0] for word in words] x = "".join(letters) df['Baseline'] = x else: df['Baseline'] = name[:2] return df def statistical_parity(dist_metric): def parity_print(dataset, id_, kind, plot=False): if kind: if dist_metric: df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1_fulltest_dist{dist}.csv") df2 = pd.read_csv(f"{dataset}/results_{dataset}_method1_dist{dist}.csv") else: df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1_fulltest.csv") df2 = pd.read_csv(f"{dataset}/results_{dataset}_method1.csv") else: if dist_metric: df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1_dist{dist}.csv") else: df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1.csv") batches = sorted(list(df1.Batch.unique())) assert(len(batches) == 2) df_our = find_min_discm_each_hyperparam(df1) df_our = df_our[['Model-count','Discm_percent', 'Test_acc', 'Class0_Pos', 'Class1_Pos']] df_our['diff'] = abs(df_our['Class0_Pos'] - df_our['Class1_Pos']) * 100 if kind: df_our2 = find_min_discm_each_hyperparam(df2) # since the sorting is on the basis of discm, it remains same df_our2['Test_acc'] = df_our2['Test_acc'].apply(lambda x: x * 100) df_our['Techniques'] = "Our Technique" df_our['Baseline'] = "Our" # import ipdb; ipdb.set_trace() if kind: if dist_metric: df_massaging = parity_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_fulltest_dist{dist}.csv")) df_massaging2 = parity_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_dist{dist}.csv")) else: df_massaging = parity_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_fulltest.csv")) df_massaging2 = parity_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}.csv")) else: if dist_metric: df_massaging = parity_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_dist{dist}.csv")) else: df_massaging = parity_process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}.csv")) # Preferential Sampling if kind: if dist_metric: df_ps = parity_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_fulltest_dist{dist}.csv")) df_ps2 = parity_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_dist{dist}.csv")) else: df_ps = parity_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_fulltest.csv")) df_ps2 = parity_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}.csv")) else: if dist_metric: df_ps = parity_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_dist{dist}.csv")) else: df_ps = parity_process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}.csv")) # Learning Fair representations if kind: if dist_metric: df_lfr = parity_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_fulltest_dist{dist}.csv")) df_lfr2 = parity_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_dist{dist}.csv")) else: df_lfr = parity_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_fulltest.csv")) df_lfr2 = parity_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}.csv")) else: if dist_metric: df_lfr = parity_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_dist{dist}.csv")) else: df_lfr = parity_process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}.csv")) # Disparate Impact Removed if kind: if dist_metric: df_DIR = parity_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_fulltest_dist{dist}.csv")) df_DIR2 = parity_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_dist{dist}.csv")) else: df_DIR = parity_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_fulltest.csv")) df_DIR2 = parity_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}.csv")) else: if dist_metric: df_DIR = parity_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_dist{dist}.csv")) else: df_DIR = parity_process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}.csv")) # Adversarial Sampling if kind: if dist_metric: df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_fulltest_dist{dist}.csv") df_adver2 = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_dist{dist}.csv") else: df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_fulltest.csv") df_adver2 = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}.csv") else: if dist_metric: df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_dist{dist}.csv") else: df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}.csv") df_adver['Model-count'] = df_adver['Dataperm'] * 12 df_adver = df_adver.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df_adver['diff'] = df_adver['diff'] * 100 df_adver['Test_acc'] = df_adver['Test_acc'].apply(lambda x: x * 100) if kind: df_adver2['Model-count'] = df_adver2['Dataperm'] * 12 df_adver2 = df_adver2.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() df_adver2['Test_acc'] = df_adver2['Test_acc'].apply(lambda x: x * 100) df_adver['Techniques'] = "Adversa. debias" df_adver['Baseline'] = "AD" if kind: if dist_metric: df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive_fulltest_dist{dist}.csv") df_nosensitive2 = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive_dist{dist}.csv") else: df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive_fulltest.csv") df_nosensitive2 = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv") else: if dist_metric: df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive_dist{dist}.csv") else: df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv") # import ipdb; ipdb.set_trace() if dist_metric: df_nosensitive = df_nosensitive[['Model-count', 'Test_acc', 'Class0_Pos', 'Class1_Pos', 'Discm_percent']] else: df_nosensitive = df_nosensitive[['Model-count', 'Test_acc', 'Class0_Pos', 'Class1_Pos']] df_nosensitive['diff'] = abs(df_nosensitive['Class0_Pos'] - df_nosensitive['Class1_Pos']) * 100 if kind: df_nosensitive2['Test_acc'] = df_nosensitive2['Test_acc'].apply(lambda x: x * 100) df_nosensitive['Techniques'] = "Sens. Removed" df_nosensitive['Baseline'] = "SR" if kind: if dist_metric: df_noremoval = parity_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval_fulltest_dist{dist}.csv")) df_noremoval2 = parity_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval_dist{dist}.csv")) else: df_noremoval = parity_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval_fulltest.csv")) df_noremoval2 = parity_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval.csv")) else: if dist_metric: df_noremoval = parity_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval_dist{dist}.csv")) else: df_noremoval = parity_process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval.csv")) df_main =
pd.concat([df_noremoval, df_nosensitive, df_massaging, df_ps, df_lfr, df_DIR, df_adver, df_our], sort=True)
pandas.concat