prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from datetime import datetime from sktime.transformations.panel.rocket import MiniRocket as MiniRKT from sktime.classification.shapelet_based import MrSEQLClassifier from convst.utils import load_sktime_arff_file_resample_id, return_all_dataset_names, UCR_stratified_resample from convst.transformers import ConvolutionalShapeletTransformer from sklearn.linear_model import RidgeClassifierCV from sklearn.pipeline import make_pipeline from sklearn.model_selection import cross_validate from sklearn.metrics import f1_score, make_scorer from sklearn.metrics import accuracy_score from wildboar.ensemble import ShapeletForestClassifier from numba import set_num_threads #Can use this to resume to last dataset if a problem occured resume = False #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # Modify this to your path to the UCR resamples, check README for how to get them. # Another splitter is also provided in dataset_utils to make random resamples base_UCR_resamples_path = r"/home/prof/guillaume/Shapelets/resamples/" #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! print("Imports OK") #n_cv = 1 to test on original train test split. n_cv=30 n_trees=200 max_ft=1.0 P=80 n_bins=11 random_state = None run_RKT = True run_CST = True run_MrSEQL = True run_SFC = True #Machine parameters, to change with yours. available_memory_bytes = 60 * 1e9 n_cores = 32 def get_n_jobs_n_threads(nbytes, size_mult=3000): nbytes *= size_mult n_jobs = min(max(available_memory_bytes//nbytes,1),n_cv//2) n_threads = min(max(n_cores//n_jobs,1),n_cores//2) return int(n_jobs), int(n_threads) csv_name = 'CV_{}_results_({},{})_{}_{}.csv'.format( n_cv, n_trees, max_ft, n_bins, P) dataset_names = return_all_dataset_names() if resume: df = pd.read_csv(csv_name) df = df.set_index('Unnamed: 0') df = df.drop(df.index[np.where(~df.index.isin(dataset_names))[0]], axis=0) df.to_csv(csv_name) else: df = pd.DataFrame(index=dataset_names) df['CST_f1_mean'] = pd.Series(0, index=df.index) df['CST_f1_std'] = pd.Series(0, index=df.index) df['CST_acc_mean'] = pd.Series(0, index=df.index) df['CST_acc_std'] = pd.Series(0, index=df.index) df['CST_runtime'] = pd.Series(0, index=df.index) df['MiniRKT_f1_mean'] =
pd.Series(0, index=df.index)
pandas.Series
from os import listdir from os.path import isfile, join import Orange import pandas as pd import numpy as np import matplotlib.pyplot as plt from parameters import order, alphas, regression_measures, datasets, rank_dir, output_dir, graphics_dir, result_dir from regression_algorithms import regression_list results_dir = './../results/' class Performance: def __init__(self): pass def average_results(self, rfile, release): ''' Calculates average results :param rfile: filename with results :param kind: biclass or multiclass :return: avarege_results in another file ''' df = pd.read_csv(rfile) t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame(columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'R2score', 'MAE', 'MSE', 'MAX'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'R2score'] = group['R2score'].mean() dfr.at[i, 'MAE'] = group['MAE'].mean() dfr.at[i, 'MSE'] = group['MSE'].mean() dfr.at[i, 'MAX'] = group['MAX'].mean() i = i + 1 print('Total lines in a file: ', i) dfr.to_csv(results_dir + 'regression_average_results_' + str(release) + '.csv', index=False) def run_rank_choose_parameters(self, filename, release): df_best_dto = pd.read_csv(filename) df_B1 = df_best_dto[df_best_dto['PREPROC'] == '_Borderline1'].copy() df_B2 = df_best_dto[df_best_dto['PREPROC'] == '_Borderline2'].copy() df_GEO = df_best_dto[df_best_dto['PREPROC'] == '_Geometric_SMOTE'].copy() df_SMOTE = df_best_dto[df_best_dto['PREPROC'] == '_SMOTE'].copy() df_SMOTEsvm = df_best_dto[df_best_dto['PREPROC'] == '_smoteSVM'].copy() df_original = df_best_dto[df_best_dto['PREPROC'] == '_train'].copy() for o in order: for a in alphas: GEOMETRY = '_dto_smoter_' + o + '_' + str(a) df_dto = df_best_dto[df_best_dto['PREPROC'] == GEOMETRY].copy() df = pd.concat([df_B1, df_B2, df_GEO, df_SMOTE, df_SMOTEsvm, df_original, df_dto]) self.rank_by_algorithm(df, o, str(a), release) self.rank_dto_by(o + '_' + str(a), release) def rank_by_algorithm(self, df, order, alpha, release, smote=False): ''' Calcula rank :param df: :param tipo: :param wd: :param GEOMETRY: :return: ''' df_table = pd.DataFrame( columns=['DATASET', 'ALGORITHM', 'ORIGINAL', 'RANK_ORIGINAL', 'SMOTE', 'RANK_SMOTE', 'SMOTE_SVM', 'RANK_SMOTE_SVM', 'BORDERLINE1', 'RANK_BORDERLINE1', 'BORDERLINE2', 'RANK_BORDERLINE2', 'GEOMETRIC_SMOTE', 'RANK_GEOMETRIC_SMOTE', 'DTO', 'RANK_DTO', 'GEOMETRY', 'ALPHA', 'unit']) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) if smote == False: df.to_csv(rank_dir + release + '_' + order + '_' + str(alpha) + '.csv', index=False) else: df.to_csv(rank_dir + release + '_smote_' + order + '_' + str(alpha) + '.csv', index=False) j = 0 measures = regression_measures for d in datasets: for m in measures: aux = group[group['DATASET'] == d] aux = aux.reset_index() df_table.at[j, 'DATASET'] = d df_table.at[j, 'ALGORITHM'] = name indice = aux.PREPROC[aux.PREPROC == '_train'].index.tolist()[0] df_table.at[j, 'ORIGINAL'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_SMOTE'].index.tolist()[0] df_table.at[j, 'SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_smoteSVM'].index.tolist()[0] df_table.at[j, 'SMOTE_SVM'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline1'].index.tolist()[0] df_table.at[j, 'BORDERLINE1'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline2'].index.tolist()[0] df_table.at[j, 'BORDERLINE2'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Geometric_SMOTE'].index.tolist()[0] df_table.at[j, 'GEOMETRIC_SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.ORDER == order].index.tolist()[0] df_table.at[j, 'DTO'] = aux.at[indice, m] df_table.at[j, 'GEOMETRY'] = order df_table.at[j, 'ALPHA'] = alpha df_table.at[j, 'unit'] = m j += 1 df_r2 = df_table[df_table['unit'] == 'R2score'] df_mae = df_table[df_table['unit'] == 'MAE'] df_mse = df_table[df_table['unit'] == 'MSE'] df_max = df_table[df_table['unit'] == 'MAX'] r2 = df_r2[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DTO']] mae = df_mae[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DTO']] mse = df_mse[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DTO']] max = df_max[['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DTO']] r2 = r2.reset_index() r2.drop('index', axis=1, inplace=True) mae = mae.reset_index() mae.drop('index', axis=1, inplace=True) mse = mse.reset_index() mse.drop('index', axis=1, inplace=True) max = max.reset_index() max.drop('index', axis=1, inplace=True) # calcula rank linha a linha r2_rank = r2.rank(axis=1, ascending=False) mae_rank = mae.rank(axis=1, ascending=True) mse_rank = mse.rank(axis=1, ascending=True) max_rank = max.rank(axis=1, ascending=True) df_r2 = df_r2.reset_index() df_r2.drop('index', axis=1, inplace=True) df_r2['RANK_ORIGINAL'] = r2_rank['ORIGINAL'] df_r2['RANK_SMOTE'] = r2_rank['SMOTE'] df_r2['RANK_SMOTE_SVM'] = r2_rank['SMOTE_SVM'] df_r2['RANK_BORDERLINE1'] = r2_rank['BORDERLINE1'] df_r2['RANK_BORDERLINE2'] = r2_rank['BORDERLINE2'] df_r2['RANK_GEOMETRIC_SMOTE'] = r2_rank['GEOMETRIC_SMOTE'] df_r2['RANK_DTO'] = r2_rank['DTO'] df_mae = df_mae.reset_index() df_mae.drop('index', axis=1, inplace=True) df_mae['RANK_ORIGINAL'] = mae_rank['ORIGINAL'] df_mae['RANK_SMOTE'] = mae_rank['SMOTE'] df_mae['RANK_SMOTE_SVM'] = mae_rank['SMOTE_SVM'] df_mae['RANK_BORDERLINE1'] = mae_rank['BORDERLINE1'] df_mae['RANK_BORDERLINE2'] = mae_rank['BORDERLINE2'] df_mae['RANK_GEOMETRIC_SMOTE'] = mae_rank['GEOMETRIC_SMOTE'] df_mae['RANK_DTO'] = mae_rank['DTO'] df_mse = df_mse.reset_index() df_mse.drop('index', axis=1, inplace=True) df_mse['RANK_ORIGINAL'] = mse_rank['ORIGINAL'] df_mse['RANK_SMOTE'] = mse_rank['SMOTE'] df_mse['RANK_SMOTE_SVM'] = mse_rank['SMOTE_SVM'] df_mse['RANK_BORDERLINE1'] = mse_rank['BORDERLINE1'] df_mse['RANK_BORDERLINE2'] = mse_rank['BORDERLINE2'] df_mse['RANK_GEOMETRIC_SMOTE'] = mse_rank['GEOMETRIC_SMOTE'] df_mse['RANK_DTO'] = mse_rank['DTO'] df_max = df_max.reset_index() df_max.drop('index', axis=1, inplace=True) df_max['RANK_ORIGINAL'] = max_rank['ORIGINAL'] df_max['RANK_SMOTE'] = max_rank['SMOTE'] df_max['RANK_SMOTE_SVM'] = max_rank['SMOTE_SVM'] df_max['RANK_BORDERLINE1'] = max_rank['BORDERLINE1'] df_max['RANK_BORDERLINE2'] = max_rank['BORDERLINE2'] df_max['RANK_GEOMETRIC_SMOTE'] = max_rank['GEOMETRIC_SMOTE'] df_max['RANK_DTO'] = max_rank['DTO'] # avarege rank media_r2_rank = r2_rank.mean(axis=0) media_mae_rank = mae_rank.mean(axis=0) media_mse_rank = mse_rank.mean(axis=0) media_max_rank = max_rank.mean(axis=0) media_r2_rank_file = media_r2_rank.reset_index() media_r2_rank_file = media_r2_rank_file.sort_values(by=0) media_mae_rank_file = media_mae_rank.reset_index() media_mae_rank_file = media_mae_rank_file.sort_values(by=0) media_mse_rank_file = media_mse_rank.reset_index() media_mse_rank_file = media_mse_rank_file.sort_values(by=0) media_max_rank_file = media_max_rank.reset_index() media_max_rank_file = media_max_rank_file.sort_values(by=0) if smote == False: # Grava arquivos importantes df_r2.to_csv( rank_dir + release + '_total_rank_' + order + '_' + str( alpha) + '_' + name + '_r2.csv', index=False) df_mae.to_csv( rank_dir + release + '_total_rank_' + order + '_' + str( alpha) + '_' + name + '_mae.csv', index=False) df_mse.to_csv( rank_dir + release + '_total_rank_' + order + '_' + str( alpha) + '_' + name + '_mse.csv', index=False) df_max.to_csv( rank_dir + release + '_total_rank_' + order + '_' + str( alpha) + '_' + name + '_max.csv', index=False) media_r2_rank_file.to_csv( rank_dir + release + '_' + 'media_rank_' + order + '_' + str( alpha) + '_' + name + '_r2.csv', index=False) media_mae_rank_file.to_csv( rank_dir + release + '_media_rank_' + order + '_' + str( alpha) + '_' + name + '_mae.csv', index=False) media_mse_rank_file.to_csv( rank_dir + release + '_media_rank_' + order + '_' + str( alpha) + '_' + name + '_mse.csv', index=False) media_max_rank_file.to_csv( rank_dir + release + '_media_rank_' + order + '_' + str( alpha) + '_' + name + '_max.csv', index=False) GEOMETRY = order + '_' + str(alpha) # grafico CD identificadores = ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DTO'] avranks = list(media_r2_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( rank_dir + release + 'cd_' + '_' + GEOMETRY + '_' + name + '_r2.pdf') plt.close() avranks = list(media_mae_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( rank_dir + release + 'cd_' + '_' + GEOMETRY + '_' + name + '_mae.pdf') plt.close() avranks = list(media_mse_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( rank_dir + release + 'cd_' + '_' + GEOMETRY + '_' + name + '_mse.pdf') plt.close() avranks = list(media_max_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig(rank_dir + release + 'cd_' + '_' + GEOMETRY + '_' + name + '_max.pdf') plt.close() print('Delaunay Type= ', GEOMETRY) print('Algorithm= ', name) else: # Grava arquivos importantes df_r2.to_csv( rank_dir + release + '_smote_total_rank_' + order + '_' + str( alpha) + '_' + name + '_r2.csv', index=False) df_mae.to_csv( rank_dir + release + '_smote_total_rank_' + order + '_' + str( alpha) + '_' + name + '_mae.csv', index=False) df_mse.to_csv( rank_dir + release + '_smote_total_rank_' + order + '_' + str( alpha) + '_' + name + '_mse.csv', index=False) df_max.to_csv( rank_dir + release + '_smote_total_rank_' + order + '_' + str( alpha) + '_' + name + '_max.csv', index=False) media_r2_rank_file.to_csv( rank_dir + release + '_smote_media_rank_' + order + '_' + str( alpha) + '_' + name + '_r2.csv', index=False) media_mae_rank_file.to_csv( rank_dir + release + '_smote__media_rank_' + order + '_' + str( alpha) + '_' + name + '_mae.csv', index=False) media_mse_rank_file.to_csv( rank_dir + release + 'smote__media_rank_' + order + '_' + str( alpha) + '_' + name + '_mse.csv', index=False) media_max_rank_file.to_csv( rank_dir + release + 'smote__media_rank_' + order + '_' + str( alpha) + '_' + name + '_max.csv', index=False) GEOMETRY = order + '_' + str(alpha) # grafico CD identificadores = ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', GEOMETRY] avranks = list(media_r2_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( rank_dir + release + 'cd_smote' + '_' + GEOMETRY + '_' + name + '_pre.pdf') plt.close() avranks = list(media_mae_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( rank_dir + release + 'cd_smote' + '_' + GEOMETRY + '_' + name + '_rec.pdf') plt.close() avranks = list(media_mse_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( rank_dir + release + 'cd_smote' + '_' + GEOMETRY + '_' + name + '_spe.pdf') plt.close() avranks = list(media_max_rank) cd = Orange.evaluation.compute_CD(avranks, len(datasets)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig(rank_dir + release + 'cd_smote' + '_' + GEOMETRY + '_' + name + '_f1.pdf') plt.close() print('SMOTE Delaunay Type= ', GEOMETRY) print('SMOTE Algorithm= ', name) def rank_dto_by(self, geometry, release, smote=False): M = ['_r2.csv', '_mae.csv', '_mse.csv', '_max.csv'] df_media_rank = pd.DataFrame(columns=['ALGORITHM', 'RANK_ORIGINAL', 'RANK_SMOTE', 'RANK_SMOTE_SVM', 'RANK_BORDERLINE1', 'RANK_BORDERLINE2', 'RANK_GEOMETRIC_SMOTE', 'RANK_DTO', 'unit']) if smote == False: name = rank_dir + release + '_total_rank_' + geometry + '_' else: name = rank_dir + release + '_smote_total_rank_' + geometry + '_' for m in M: i = 0 for c in regression_list: df = pd.read_csv(name + c + m) rank_original = df.RANK_ORIGINAL.mean() rank_smote = df.RANK_SMOTE.mean() rank_smote_svm = df.RANK_SMOTE_SVM.mean() rank_b1 = df.RANK_BORDERLINE1.mean() rank_b2 = df.RANK_BORDERLINE2.mean() rank_geo_smote = df.RANK_GEOMETRIC_SMOTE.mean() rank_dto = df.RANK_DTO.mean() df_media_rank.loc[i, 'ALGORITHM'] = df.loc[0, 'ALGORITHM'] df_media_rank.loc[i, 'RANK_ORIGINAL'] = rank_original df_media_rank.loc[i, 'RANK_SMOTE'] = rank_smote df_media_rank.loc[i, 'RANK_SMOTE_SVM'] = rank_smote_svm df_media_rank.loc[i, 'RANK_BORDERLINE1'] = rank_b1 df_media_rank.loc[i, 'RANK_BORDERLINE2'] = rank_b2 df_media_rank.loc[i, 'RANK_GEOMETRIC_SMOTE'] = rank_geo_smote df_media_rank.loc[i, 'RANK_DTO'] = rank_dto df_media_rank.loc[i, 'unit'] = df.loc[0, 'unit'] i += 1 dfmediarank = df_media_rank.copy() dfmediarank = dfmediarank.sort_values('RANK_DTO') dfmediarank.loc[i, 'ALGORITHM'] = 'avarage' dfmediarank.loc[i, 'RANK_ORIGINAL'] = df_media_rank['RANK_ORIGINAL'].mean() dfmediarank.loc[i, 'RANK_SMOTE'] = df_media_rank['RANK_SMOTE'].mean() dfmediarank.loc[i, 'RANK_SMOTE_SVM'] = df_media_rank['RANK_SMOTE_SVM'].mean() dfmediarank.loc[i, 'RANK_BORDERLINE1'] = df_media_rank['RANK_BORDERLINE1'].mean() dfmediarank.loc[i, 'RANK_BORDERLINE2'] = df_media_rank['RANK_BORDERLINE2'].mean() dfmediarank.loc[i, 'RANK_GEOMETRIC_SMOTE'] = df_media_rank['RANK_GEOMETRIC_SMOTE'].mean() dfmediarank.loc[i, 'RANK_DTO'] = df_media_rank['RANK_DTO'].mean() dfmediarank.loc[i, 'unit'] = df.loc[0, 'unit'] i += 1 dfmediarank.loc[i, 'ALGORITHM'] = 'std' dfmediarank.loc[i, 'RANK_ORIGINAL'] = df_media_rank['RANK_ORIGINAL'].std() dfmediarank.loc[i, 'RANK_SMOTE'] = df_media_rank['RANK_SMOTE'].std() dfmediarank.loc[i, 'RANK_SMOTE_SVM'] = df_media_rank['RANK_SMOTE_SVM'].std() dfmediarank.loc[i, 'RANK_BORDERLINE1'] = df_media_rank['RANK_BORDERLINE1'].std() dfmediarank.loc[i, 'RANK_BORDERLINE2'] = df_media_rank['RANK_BORDERLINE2'].std() dfmediarank.loc[i, 'RANK_GEOMETRIC_SMOTE'] = df_media_rank['RANK_GEOMETRIC_SMOTE'].std() dfmediarank.loc[i, 'RANK_DTO'] = df_media_rank['RANK_DTO'].std() dfmediarank.loc[i, 'unit'] = df.loc[0, 'unit'] dfmediarank['RANK_ORIGINAL'] = pd.to_numeric(dfmediarank['RANK_ORIGINAL'], downcast="float").round(2) dfmediarank['RANK_SMOTE'] = pd.to_numeric(dfmediarank['RANK_SMOTE'], downcast="float").round(2) dfmediarank['RANK_SMOTE_SVM'] = pd.to_numeric(dfmediarank['RANK_SMOTE_SVM'], downcast="float").round(2) dfmediarank['RANK_BORDERLINE1'] = pd.to_numeric(dfmediarank['RANK_BORDERLINE1'], downcast="float").round(2) dfmediarank['RANK_BORDERLINE2'] = pd.to_numeric(dfmediarank['RANK_BORDERLINE2'], downcast="float").round(2) dfmediarank['RANK_GEOMETRIC_SMOTE'] = pd.to_numeric(dfmediarank['RANK_GEOMETRIC_SMOTE'], downcast="float").round(2) dfmediarank['RANK_DTO'] = pd.to_numeric(dfmediarank['RANK_DTO'], downcast="float").round(2) if smote == False: dfmediarank.to_csv(output_dir + release + '_results_media_rank_' + geometry + m, index=False) else: dfmediarank.to_csv(output_dir + release + '_smote_results_media_rank_' + geometry + m, index=False) def grafico_variacao_alpha(self, release): M = ['_r2', '_mae', '_mse', '_max'] df_alpha_variations_rank = pd.DataFrame() df_alpha_variations_rank['alphas'] = alphas df_alpha_variations_rank.index = alphas df_alpha_all = pd.DataFrame() df_alpha_all['alphas'] = alphas df_alpha_all.index = alphas for m in M: for o in order: for a in alphas: filename = output_dir + release + '_results_media_rank_' + o + '_' + str( a) + m + '.csv' print(filename) df = pd.read_csv(filename) mean = df.loc[8, 'RANK_DTO'] df_alpha_variations_rank.loc[a, 'AVARAGE_RANK'] = mean if m == '_r2': measure = 'R2' if m == '_mae': measure = 'MAE' if m == '_mse': measure = 'MSE' if m == '_max': measure = 'MAX' df_alpha_all[o + '_' + measure] = df_alpha_variations_rank['AVARAGE_RANK'].copy() fig, ax = plt.subplots() ax.set_title('DTO AVARAGE RANK\n ' + 'GEOMETRY = ' + o + '\nMEASURE = ' + measure, fontsize=10) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') ax.plot(df_alpha_variations_rank['AVARAGE_RANK'], marker='d', label='Avarage Rank') ax.legend(loc="upper right") plt.xticks(range(11)) fig.savefig(graphics_dir + release + '_pic_' + o + '_' + measure + '.png', dpi=125) plt.show() plt.close() # figure(num=None, figsize=(10, 10), dpi=800, facecolor='w', edgecolor='k') fig, ax = plt.subplots(figsize=(10, 7)) ax.set_title('DTO AVARAGE RANK\n ' + '\nMEASURE = R2', fontsize=5) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') t1 = df_alpha_all['alphas'] t2 = df_alpha_all['alphas'] t3 = df_alpha_all['alphas'] ft1 = df_alpha_all['max_solid_angle_R2'] ft2 = df_alpha_all['min_solid_angle_R2'] ft3 = df_alpha_all['solid_angle_R2'] ax.plot(t1, ft1, color='tab:brown', marker='o', label='max_solid_angle') ax.plot(t2, ft2, color='tab:pink', marker='o', label='min_solid_angle') ax.plot(t3, ft3, color='tab:gray', marker='o', label='solid_angle') leg = ax.legend(loc='upper right') leg.get_frame().set_alpha(0.5) plt.xticks(range(12)) plt.savefig(graphics_dir + release + '_pic_all_r2.png', dpi=800) plt.show() plt.close() df_alpha_all.to_csv(graphics_dir + release + '_pic_all_r2.csv', index=False) ################### fig, ax = plt.subplots(figsize=(10, 7)) ax.set_title('DTO AVARAGE RANK\n ' + '\nMEASURE = MAE', fontsize=5) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') t1 = df_alpha_all['alphas'] t2 = df_alpha_all['alphas'] t3 = df_alpha_all['alphas'] ft1 = df_alpha_all['max_solid_angle_MAE'] ft2 = df_alpha_all['min_solid_angle_MAE'] ft3 = df_alpha_all['solid_angle_MAE'] ax.plot(t1, ft1, color='tab:brown', marker='o', label='max_solid_angle') ax.plot(t2, ft2, color='tab:pink', marker='o', label='min_solid_angle') ax.plot(t3, ft3, color='tab:gray', marker='o', label='solid_angle') leg = ax.legend(loc='upper right') leg.get_frame().set_alpha(0.5) plt.xticks(range(12)) plt.savefig(graphics_dir + release + '_pic_all_mae.png', dpi=800) plt.show() plt.close() df_alpha_all.to_csv(graphics_dir + release + '_pic_all_mae.csv', index=False) fig, ax = plt.subplots(figsize=(10, 7)) ax.set_title('DTO AVARAGE RANK\n ' + '\nMEASURE = MSE', fontsize=5) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') t1 = df_alpha_all['alphas'] t2 = df_alpha_all['alphas'] t3 = df_alpha_all['alphas'] ft1 = df_alpha_all['max_solid_angle_MSE'] ft2 = df_alpha_all['min_solid_angle_MSE'] ft3 = df_alpha_all['solid_angle_MSE'] ax.plot(t1, ft1, color='tab:brown', marker='o', label='max_solid_angle') ax.plot(t2, ft2, color='tab:pink', marker='o', label='min_solid_angle') ax.plot(t3, ft3, color='tab:gray', marker='o', label='solid_angle') leg = ax.legend(loc='upper right') leg.get_frame().set_alpha(0.5) plt.xticks(range(12)) plt.savefig(graphics_dir + release + '_pic_all_mse.png', dpi=800) plt.show() plt.close() df_alpha_all.to_csv(graphics_dir + release + '_pic_all_mse.csv', index=False) fig, ax = plt.subplots(figsize=(10, 7)) ax.set_title('DTO AVARAGE RANK\n ' + '\nMEASURE = MAX', fontsize=5) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') t1 = df_alpha_all['alphas'] t2 = df_alpha_all['alphas'] t3 = df_alpha_all['alphas'] ft1 = df_alpha_all['max_solid_angle_MAX'] ft2 = df_alpha_all['min_solid_angle_MAX'] ft3 = df_alpha_all['solid_angle_MAX'] ax.plot(t1, ft1, color='tab:brown', marker='o', label='max_solid_angle') ax.plot(t2, ft2, color='tab:pink', marker='o', label='min_solid_angle') ax.plot(t3, ft3, color='tab:gray', marker='o', label='solid_angle') leg = ax.legend(loc='upper right') leg.get_frame().set_alpha(0.5) plt.xticks(range(12)) plt.savefig(graphics_dir + release + '_pic_all_max.png', dpi=800) plt.show() plt.close() df_alpha_all.to_csv(graphics_dir + release + '_pic_all_max.csv', index=False) def best_alpha(self, kind): # Best alpha calculation # GEO df1 = pd.read_csv(output_dir + 'v1' + '_pic_all_geo.csv') df2 = pd.read_csv(output_dir + 'v2' + '_pic_all_geo.csv') df3 = pd.read_csv(output_dir + 'v3' + '_pic_all_geo.csv') if kind == 'biclass': col = ['area_GEO', 'volume_GEO', 'area_volume_ratio_GEO', 'edge_ratio_GEO', 'radius_ratio_GEO', 'aspect_ratio_GEO', 'max_solid_angle_GEO', 'min_solid_angle_GEO', 'solid_angle_GEO', 'area_IBA', 'volume_IBA', 'area_volume_ratio_IBA', 'edge_ratio_IBA', 'radius_ratio_IBA', 'aspect_ratio_IBA', 'max_solid_angle_IBA', 'min_solid_angle_IBA', 'solid_angle_IBA', 'area_AUC', 'volume_AUC', 'area_volume_ratio_AUC', 'edge_ratio_AUC', 'radius_ratio_AUC', 'aspect_ratio_AUC', 'max_solid_angle_AUC', 'min_solid_angle_AUC', 'solid_angle_AUC'] else: col = ['area_GEO', 'volume_GEO', 'area_volume_ratio_GEO', 'edge_ratio_GEO', 'radius_ratio_GEO', 'aspect_ratio_GEO', 'max_solid_angle_GEO', 'min_solid_angle_GEO', 'solid_angle_GEO', 'area_IBA', 'volume_IBA', 'area_volume_ratio_IBA', 'edge_ratio_IBA', 'radius_ratio_IBA', 'aspect_ratio_IBA', 'max_solid_angle_IBA', 'min_solid_angle_IBA', 'solid_angle_IBA'] df_mean = pd.DataFrame() df_mean['alphas'] = df1.alphas for c in col: for i in np.arange(0, df1.shape[0]): df_mean.loc[i, c] = (df1.loc[i, c] + df2.loc[i, c] + df3.loc[i, c]) / 3.0 fig, ax = plt.subplots(figsize=(10, 7)) ax.set_title('DTO AVARAGE RANK\n ' + '\nMEASURE = GEO', fontsize=5) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') t1 = df_mean['alphas'] t2 = df_mean['alphas'] t3 = df_mean['alphas'] t4 = df_mean['alphas'] t5 = df_mean['alphas'] t6 = df_mean['alphas'] t7 = df_mean['alphas'] t8 = df_mean['alphas'] t9 = df_mean['alphas'] ft1 = df_mean['area_GEO'] ft2 = df_mean['volume_GEO'] ft3 = df_mean['area_volume_ratio_GEO'] ft4 = df_mean['edge_ratio_GEO'] ft5 = df_mean['radius_ratio_GEO'] ft6 = df_mean['aspect_ratio_GEO'] ft7 = df_mean['max_solid_angle_GEO'] ft8 = df_mean['min_solid_angle_GEO'] ft9 = df_mean['solid_angle_GEO'] ax.plot(t1, ft1, color='tab:blue', marker='o', label='area') ax.plot(t2, ft2, color='tab:red', marker='o', label='volume') ax.plot(t3, ft3, color='tab:green', marker='o', label='area_volume_ratio') ax.plot(t4, ft4, color='tab:orange', marker='o', label='edge_ratio') ax.plot(t5, ft5, color='tab:olive', marker='o', label='radius_ratio') ax.plot(t6, ft6, color='tab:purple', marker='o', label='aspect_ratio') ax.plot(t7, ft7, color='tab:brown', marker='o', label='max_solid_angle') ax.plot(t8, ft8, color='tab:pink', marker='o', label='min_solid_angle') ax.plot(t9, ft9, color='tab:gray', marker='o', label='solid_angle') leg = ax.legend(loc='upper right') leg.get_frame().set_alpha(0.5) plt.xticks(range(12)) plt.savefig(output_dir + kind + '_pic_average_geo.png', dpi=800) plt.show() plt.close() df_mean.to_csv(output_dir + kind + '_pic_average_geo.csv', index=False) ################### fig, ax = plt.subplots(figsize=(10, 7)) ax.set_title('DTO AVARAGE RANK\n ' + '\nMEASURE = IBA', fontsize=5) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') t1 = df_mean['alphas'] t2 = df_mean['alphas'] t3 = df_mean['alphas'] t4 = df_mean['alphas'] t5 = df_mean['alphas'] t6 = df_mean['alphas'] t7 = df_mean['alphas'] t8 = df_mean['alphas'] t9 = df_mean['alphas'] ft1 = df_mean['area_IBA'] ft2 = df_mean['volume_IBA'] ft3 = df_mean['area_volume_ratio_IBA'] ft4 = df_mean['edge_ratio_IBA'] ft5 = df_mean['radius_ratio_IBA'] ft6 = df_mean['aspect_ratio_IBA'] ft7 = df_mean['max_solid_angle_IBA'] ft8 = df_mean['min_solid_angle_IBA'] ft9 = df_mean['solid_angle_IBA'] ax.plot(t1, ft1, color='tab:blue', marker='o', label='area') ax.plot(t2, ft2, color='tab:red', marker='o', label='volume') ax.plot(t3, ft3, color='tab:green', marker='o', label='area_volume_ratio') ax.plot(t4, ft4, color='tab:orange', marker='o', label='edge_ratio') ax.plot(t5, ft5, color='tab:olive', marker='o', label='radius_ratio') ax.plot(t6, ft6, color='tab:purple', marker='o', label='aspect_ratio') ax.plot(t7, ft7, color='tab:brown', marker='o', label='max_solid_angle') ax.plot(t8, ft8, color='tab:pink', marker='o', label='min_solid_angle') ax.plot(t9, ft9, color='tab:gray', marker='o', label='solid_angle') leg = ax.legend(loc='upper right') leg.get_frame().set_alpha(0.5) plt.xticks(range(12)) plt.savefig(output_dir + kind + '_pic_average_iba.png', dpi=800) plt.show() plt.close() df_mean.to_csv(output_dir + kind + '_pic_average_iba.csv', index=False) if kind == 'biclass': fig, ax = plt.subplots(figsize=(10, 7)) ax.set_title('DTO AVARAGE RANK\n ' + '\nMEASURE = AUC', fontsize=5) ax.set_xlabel('Alpha') ax.set_ylabel('Rank') t1 = df_mean['alphas'] t2 = df_mean['alphas'] t3 = df_mean['alphas'] t4 = df_mean['alphas'] t5 = df_mean['alphas'] t6 = df_mean['alphas'] t7 = df_mean['alphas'] t8 = df_mean['alphas'] t9 = df_mean['alphas'] ft1 = df_mean['area_AUC'] ft2 = df_mean['volume_AUC'] ft3 = df_mean['area_volume_ratio_AUC'] ft4 = df_mean['edge_ratio_AUC'] ft5 = df_mean['radius_ratio_AUC'] ft6 = df_mean['aspect_ratio_AUC'] ft7 = df_mean['max_solid_angle_AUC'] ft8 = df_mean['min_solid_angle_AUC'] ft9 = df_mean['solid_angle_AUC'] ax.plot(t1, ft1, color='tab:blue', marker='o', label='area') ax.plot(t2, ft2, color='tab:red', marker='o', label='volume') ax.plot(t3, ft3, color='tab:green', marker='o', label='area_volume_ratio') ax.plot(t4, ft4, color='tab:orange', marker='o', label='edge_ratio') ax.plot(t5, ft5, color='tab:olive', marker='o', label='radius_ratio') ax.plot(t6, ft6, color='tab:purple', marker='o', label='aspect_ratio') ax.plot(t7, ft7, color='tab:brown', marker='o', label='max_solid_angle') ax.plot(t8, ft8, color='tab:pink', marker='o', label='min_solid_angle') ax.plot(t9, ft9, color='tab:gray', marker='o', label='solid_angle') leg = ax.legend(loc='upper right') leg.get_frame().set_alpha(0.5) plt.xticks(range(12)) plt.savefig(output_dir + kind + '_pic_average_auc.png', dpi=800) plt.show() plt.close() df_mean.to_csv(output_dir + kind + '_pic_average_auc.csv', index=False) def run_global_rank(self, filename, kind, release): df_best_dto = pd.read_csv(filename) df_B1 = df_best_dto[df_best_dto['PREPROC'] == '_Borderline1'].copy() df_B2 = df_best_dto[df_best_dto['PREPROC'] == '_Borderline2'].copy() df_GEO = df_best_dto[df_best_dto['PREPROC'] == '_Geometric_SMOTE'].copy() df_SMOTE = df_best_dto[df_best_dto['PREPROC'] == '_SMOTE'].copy() df_SMOTEsvm = df_best_dto[df_best_dto['PREPROC'] == '_smoteSVM'].copy() df_original = df_best_dto[df_best_dto['PREPROC'] == '_train'].copy() o = 'solid_angle' if kind == 'biclass': a = 7.0 else: a = 7.5 GEOMETRY = '_delaunay_' + o + '_' + str(a) df_dto = df_best_dto[df_best_dto['PREPROC'] == GEOMETRY].copy() df = pd.concat([df_B1, df_B2, df_GEO, df_SMOTE, df_SMOTEsvm, df_original, df_dto]) self.rank_by_algorithm(df, kind, o, str(a), release, smote=True) self.rank_dto_by(o + '_' + str(a), kind, release, smote=True) def overall_rank(self, ext, kind, alpha): df1 = pd.read_csv( output_dir + 'v1_smote_' + kind + '_results_media_rank_solid_angle_' + str(alpha) + '_' + ext + '.csv') df2 = pd.read_csv( output_dir + 'v2_smote_' + kind + '_results_media_rank_solid_angle_' + str(alpha) + '_' + ext + '.csv') df3 = pd.read_csv( output_dir + 'v3_smote_' + kind + '_results_media_rank_solid_angle_' + str(alpha) + '_' + ext + '.csv') col = ['RANK_ORIGINAL', 'RANK_SMOTE', 'RANK_SMOTE_SVM', 'RANK_BORDERLINE1' , 'RANK_BORDERLINE2', 'RANK_GEOMETRIC_SMOTE', 'RANK_DELAUNAY'] df_mean = pd.DataFrame() df_mean['ALGORITHM'] = df1.ALGORITHM df_mean['unit'] = df1.unit for c in col: for i in np.arange(0, df1.shape[0]): df_mean.loc[i, c] = (df1.loc[i, c] + df2.loc[i, c] + df3.loc[i, c]) / 3.0 df_mean['RANK_ORIGINAL'] = pd.to_numeric(df_mean['RANK_ORIGINAL'], downcast="float").round(2) df_mean['RANK_SMOTE'] = pd.to_numeric(df_mean['RANK_SMOTE'], downcast="float").round(2) df_mean['RANK_SMOTE_SVM'] = pd.to_numeric(df_mean['RANK_SMOTE_SVM'], downcast="float").round(2) df_mean['RANK_BORDERLINE1'] =
pd.to_numeric(df_mean['RANK_BORDERLINE1'], downcast="float")
pandas.to_numeric
# -*- coding: utf-8 -*- from lxml import objectify import pandas as pd from pandas import DataFrame from datetime import datetime import sys from logging import getLogger import logging.config def main(args): log = getLogger() logging.config.fileConfig("config/logging.conf") log.debug('Parse開始') parsed = objectify.parse(open('書き出したデータ.xml')) # parsed = objectify.parse(open('sample.xml')) log.debug('Parse完了') log.debug('Data配列作成開始') dict_array = create_dict_array(parsed) log.debug('Data配列作成完了') log.debug('DataFrame作成開始') df = DataFrame(dict_array) log.debug('DataFrame作成完了') log.debug('Index作成開始') df.index = df['startDate'] # df.index = pd.to_datetime(df.index, utc=True).tz_convert('Asia/Tokyo') df.index = pd.to_datetime(df.index).tz_localize('UTC').tz_convert('Asia/Tokyo') log.debug('Index作成完了') print(df.head(100)) body_mass = df[(df['type'] == 'HKQuantityTypeIdentifierBodyMass') & (~ df['sourceName'].str.contains('SmartBand 2'))].copy() # 体重 bfp = df[df['type'] == 'HKQuantityTypeIdentifierBodyFatPercentage'].copy() # 体脂肪率 bmi = df[df['type'] == 'HKQuantityTypeIdentifierBodyMassIndex'].copy() # BMI # cycling = df[ # (df['type'] == 'HKQuantityTypeIdentifierDistanceCycling') & ( # (df['sourceName'] == 'Apple Watch') | (df['sourceName'] == 'Apple Watch 4'))].copy() # Cycling cycling = df[ (df['type'] == 'HKQuantityTypeIdentifierDistanceCycling') & (df['sourceName'].str.contains('Apple Watch'))].copy() # Cycling log.debug('各種DataFrame完了') body_mass = body_mass.astype({'value': float}) bfp = bfp.astype({'value': float}) bmi = bmi.astype({'value': float}) cycling = cycling.astype({'value': float}) cycling_sum = cycling.groupby(pd.Grouper(freq='D')).sum() body_mass_mean = body_mass.groupby(pd.Grouper(freq='D')).mean() bmi_mean = bmi.groupby(pd.Grouper(freq='D')).mean() bfp_mean = bfp.groupby(
pd.Grouper(freq='D')
pandas.Grouper
from collections import defaultdict from sklearn import preprocessing import signal import influxdb_client from influxdb_client import InfluxDBClient from datetime import datetime from sklearn.preprocessing import KBinsDiscretizer import argparse import ntopng_constants as ntopng_c import numpy as np import pandas as pd import pathlib import logging import pyfluxc.pyfluxc as flux from pyts.approximation import SymbolicAggregateApproximation as SAX import re import requests import sys import time import importlib importlib.reload(flux) # ----- ----- PREPROCESSING ----- ----- # # ----- ----- ------------- ----- ----- # MORNING = np.array([1, 0, 0, 0]) AFTERNOON = np.array([0, 1, 0, 0]) EVENING = np.array([0, 0, 1, 0]) NIGHT = np.array([0, 0, 0, 1]) hour2ts = [(MORNING, range(6, 12)), (AFTERNOON, range(12, 17)), (EVENING, range(17, 22)), (NIGHT, list(range(22, 24))+list(range(0, 6)))] hour2ts = { h: t for t, hrange in hour2ts for h in hrange } class Preprocessor(): def __init__(self, deltas=True, discretize=True, flevel="NF_BLMISC"): self.flevel = flevel self.compute_deltas = deltas self.compute_discrtz = discretize self.discretizer = KBinsDiscretizer(n_bins=15, encode="ordinal") @staticmethod def date_as_feature(df): time_indx = df.index.get_level_values("_time") weekend_map = defaultdict(lambda: 0, { 5: 1, 6: 1 }) df["time:is_weekend"] = time_indx.dayofweek.map(weekend_map) mapped_hours = time_indx.hour.map(hour2ts).values.tolist() hours_df = pd.DataFrame(mapped_hours, columns=["time:morning", "time:afternoon", "time:evening", "time:night"], index=df.index) df = pd.concat([df, hours_df], axis=1) return df @staticmethod def fillzero(df): """Replace zero traffic holes with rolling window mean """ missing_traffic = (df == 0).all(axis=1) df[missing_traffic].replace(0, np.NaN) r_mean = df.rolling(min_periods=1, window=3, center=True).sum().shift(-1) / 2 df.loc[missing_traffic] = r_mean[missing_traffic] return df def discretize(self, df, fit=False): tc = [c for c in df.columns if (("ndpi_flows:num_flows" not in c) and ("time:" not in c))] values = df[tc].values if fit: df[tc] = self.discretizer.fit_transform(values) else: df[tc] = self.discretizer.transform(values) return df def preprocessing(self, df): smart_features = set(ntopng_c.FEATURE_LEVELS[self.flevel]) available_features = set(df.columns) available_cols = available_features.intersection(smart_features) if available_cols != smart_features: missing_c = smart_features - available_cols logging.warning(f"Missing columns: {missing_c}") df = df[available_cols].copy(deep=True) df[df<0] = 0 df = df.fillna(0) df = Preprocessor.fillzero(df) # DPI unit length normalization ..... # ndpi_num_flows_c = [c for c in df.columns if "ndpi_flows:num_flows" in c] ndpi = df[ndpi_num_flows_c] ndpi_sum = ndpi.sum(axis=1) df.loc[:, ndpi_num_flows_c] = ndpi.divide(ndpi_sum + 1e-3, axis=0) # Non decreasing delta discretization ..... # if self.compute_deltas: # Filter selected non-stationary features non_decreasing = [c for c in df.columns if c in ntopng_c.NON_DECREASING] df[non_decreasing] = df[non_decreasing].groupby(level=["device_category", "host"], group_keys=False).apply(lambda group: group.diff()) df = df.fillna(0) # Feature discretization ..... # # Note: we avoided using pandas qcut/cut due to the decoupling between fit and transform # offered by scikit. In the future {KBinsDiscretizer} will be fitted once a week or so # with weekly data and used multiple times while the model is running # if self.compute_discrtz: # df = self.discretize(df, fit) # Date/hour as a feature ..... # df = Preprocessor.date_as_feature(df) return df # ----- ----- HOST DATA GENERATOR ----- ----- # # ----- ----- ------------------- ----- ----- # class FluxDataGenerator(): def __init__(self, bucket, windowsize, fluxclient, start, ntopng_conf): self.last_timestamp = start self.samples = None self.fluxclient = fluxclient self.bucket = bucket self.ntopng_conf = ntopng_conf self.host_map = {} self.windowsize = windowsize wndsize_val, wndsize_unit = re.match(r'([0-9]+)([a-zA-Z]+)', self.windowsize).groups() self.window_timedelta = np.timedelta64(wndsize_val, wndsize_unit) def to_pandas(self): if self.samples is None: raise ValueError('No samples available') return self.samples.copy(deep=True) def pull(self, start=None, stop=None): if not start: start = self.last_timestamp utcnow = pd.Timestamp.utcnow() q = self.query(start, stop) client = InfluxDBClient(url="http://localhost:8086", token="<PASSWORD>", org="my-org") query_api = client.query_api() try: query_reply = query_api.query_data_frame(str(q)) except influxdb_client.rest.ApiException as e: if e != b'{"error":"failed to initialize execute state: no database"}\n': logging.warning(e) self.last_timestamp = utcnow if stop is None else stop return self.last_timestamp, None except Exception as e: logging.warning("Exception: probably database not ready") return self.last_timestamp, None new_samples = pd.concat(query_reply) if type(query_reply)==list else query_reply if new_samples.empty: self.last_timestamp = utcnow if stop is None else stop return self.last_timestamp, None new_samples = new_samples.drop(columns=["result", "table"]) # Transforming existing ndpi flows to measurements ..... # host_ndpi_flows_measurements = new_samples["_measurement"]=="host:ndpi_flows" host_ndpi_flows = new_samples.loc[host_ndpi_flows_measurements] host_ndpi_flows_cat = host_ndpi_flows["protocol"].str.lower().map(ntopng_c.NDPI_VALUE2CAT) new_samples.loc[host_ndpi_flows_measurements, "_field"] += ("__" + host_ndpi_flows_cat) # Transforming existing ndpi bytes to measurements ..... # host_ndpi_bytes_measurements = new_samples["_measurement"]=="host:ndpi" host_ndpi_bytes = new_samples.loc[host_ndpi_bytes_measurements] host_ndpi_bytes_cat = host_ndpi_bytes["protocol"].str.lower().map(ntopng_c.NDPI_VALUE2CAT) new_samples.loc[host_ndpi_bytes_measurements, "_field"] += ("__" + host_ndpi_bytes_cat) # Device category ..... # new_samples['device_category'] = self.category_map(new_samples) # Building dframe ..... # new_samples['_key'] = new_samples['_measurement'].str.replace('host:', '') + ':' + new_samples['_field'] new_samples = new_samples.pivot_table(index=["device_category", "host", "_time"], columns="_key", values="_value", aggfunc=np.sum) new_samples.columns = new_samples.columns.rename(None) # Drop cutted samples. E.g. range(start=13:46:58, stop:13:49:00) have almost for sure NaN in the first 2 seconds) # Thus we drop NaN values from bytes_rcvd which should never be NaN new_samples.dropna(subset=["traffic:bytes_rcvd"]) # Adding missing columns ..... # missing_columns = [] available_columns = set(new_samples.columns) missing_columns += ntopng_c.NDPI_FLOWS_COMPLETE - available_columns missing_columns += ntopng_c.NDPI_BYTES_RCVD_COMPLETE - available_columns missing_columns += ntopng_c.NDPI_BYTES_SENT_COMPLETE - available_columns new_samples = new_samples.reindex(columns=new_samples.columns.tolist() + missing_columns, fill_value=0) # Updating ..... # # Checking to have only valid columns new_samples = new_samples[ntopng_c.FEATURES_COMPLETE] # Removing duplicate timestamps if self.samples is not None: max_old_samples = self.samples.groupby(level=["device_category", "host"]).apply(lambda x: x.index.max()) min_new_samples = new_samples.groupby(level=["device_category", "host"]).apply(lambda x: x.index.min()) dup_samples = np.intersect1d(max_old_samples, min_new_samples) new_samples = new_samples.drop(dup_samples) # Merging and updating time self.samples = pd.concat([self.samples, new_samples]) self.last_timestamp = new_samples.index.get_level_values("_time").max() return self.last_timestamp, new_samples def save(self, datapath:pathlib.Path = None): if not datapath: datapath = datetime.now().strftime("%m.%d.%Y_%H.%M.%S_data") datapath = pathlib.Path(datapath) # Storing a generic query with open(datapath / 'query.txt', 'w+') as f: f.write(self.query(12345)) self.samples.to_pickle(datapath / 'timeseries.pkl') def load(self, dname:pathlib.Path): with open(dname / 'query.txt') as f: if f.read() != self.query(12345): raise ValueError('Trying to load from different query') self.samples =
pd.read_pickle(dname / 'timeseries.pkl')
pandas.read_pickle
from distutils.version import LooseVersion from warnings import catch_warnings import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, MultiIndex, Series, _testing as tm, bdate_range, concat, date_range, isna, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io.pytables import Term pytestmark = pytest.mark.single def test_select_columns_in_where(setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_select_with_dups(setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_select(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( { "ts":
bdate_range("2012-01-01", periods=300)
pandas.bdate_range
''' EVENT DETECTION (FIXATIONS & SACCADES)''' import os import itertools import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from helper import * # Categorize fixations and saccades based on their order: for i,k in itertools.product(sub_id, img_id): file='Sub_'+str(i)+'_Image_'+str(k)+'.csv' dataset=pd.read_csv(os.path.join(TRIALS_PATH,file),low_memory=False) category = dataset['Fix_or_Sac'] watch_next = category != category.shift() rank_order = watch_next.cumsum().groupby(category).rank(method='dense') dataset['Group'] = category +"_"+ rank_order.astype(int).astype(str) dataset.to_csv(os.path.join(TRIALS_PATH,file), index=False) #Create separate files for each participant's fixations: for i,k in itertools.product(sub_id, img_id): file='Sub_'+str(i)+'_Image_'+str(k)+'.csv' trials=pd.read_csv(os.path.join(TRIALS_PATH,file),low_memory=False) events=pd.DataFrame() events['Fixation_Start']=trials.groupby('Group')['TIME'].min() events['Event_ID']= trials.groupby('Group')['Group'].first() only_fixations=trials.query("Group.str.startswith('F').values") time_fix_max=only_fixations.groupby('Group')['TIME'].max() time_fix_min=only_fixations.groupby('Group')['TIME'].min() events['FPOG_DUR']=time_fix_max-time_fix_min events['FPOG_X']=only_fixations.groupby('Group')['BPOGX'].mean() events['FPOG_Y']=only_fixations.groupby('Group')['BPOGY'].mean() #events['event'] = events['Event_ID'].str.rsplit("_").str[0] events['Idx'] = events['Event_ID'].str.rsplit("_").str[-1].astype(int) events.sort_values('Idx',inplace=True) events.drop('Idx', axis = 1,inplace=True) #final=events[(events['FPOG_DUR']> 0.050) | (events['SAC_DUR'] > 0.010)] to_write=events[events['FPOG_DUR']> 0.050] to_write.loc[to_write.index[0], 'Trial_Start'] = trials['TIME'].iloc[0] to_write.loc[to_write.index[0], 'Clutter'] = trials['CLUTTER'].iloc[0] to_write.to_csv(os.path.join(EVENTS_PATH,file), index=False) #Add columns about saccades to the files created above: for i,k in itertools.product(sub_id, img_id): file='Sub_'+str(i)+'_Image_'+str(k)+'.csv' events=pd.read_csv(os.path.join(EVENTS_PATH,file),low_memory=False) trial_start=events.iloc[0,5] first_fixation_start=events.iloc[0,0] first_fixation_dur=events.iloc[0,2] events.loc[events.index[0],'SAC_LATENCY']=first_fixation_dur \ if trial_start==first_fixation_start \ else (first_fixation_start-trial_start) + first_fixation_dur x=events['FPOG_X'].diff() y=events['FPOG_Y'].diff() events['SAC_AMPLITUDE']=(x ** 2 + y ** 2) ** 0.5 fix_dur_wo_last=events.iloc[:-1,2].reset_index(drop=True) fix_start_dif=events['Fixation_Start'].diff().dropna().reset_index(drop=True) events['SAC_DUR']=fix_start_dif-fix_dur_wo_last events.to_csv(os.path.join(EVENTS_PATH,file), index=False) '''sac_dur_min=dataset['SAC_DUR'].min() *1000 if sac_dur_min<10: print(f'subject: {str(i)}, Image: {str(k)}')''' #Visualize scanpath for all participants based on I-VT fixations: for h,j in itertools.product(sub_id,img_id): file='Sub_'+str(h)+'_Image_'+str(j)+'.csv' events=pd.read_csv(os.path.join(EVENTS_PATH,file),low_memory=False) x=events['FPOG_X'] y=events['FPOG_Y'] fix_dur=events['FPOG_DUR'] fig, ax = plt.subplots(figsize=(20, 11)) ax.scatter(x, y, zorder=1 ,marker='o', s=fix_dur*10000, color='lime', alpha=0.5) ax.plot(x, y, '-o', linewidth=3, color='blue') img = plt.imread(IMG_PATH+"\S"+str(j)+".jpg") plt.imshow(img, zorder=0, extent=[-960, 960, -540, 540], aspect='auto') for i in range(len(fix_dur)): ax.annotate(str(i+1), xy=(fix_dur.iloc[i], fix_dur.iloc[i]), xytext=(x.iloc[i], y.iloc[i]), fontsize=30, color='black', ha='center', va='center') plt.xlabel('X coordinates (in pixels)', size=20) plt.ylabel('Y coordinates (in pixels)', size=20) plt.title('Scanpath for Subject '+str(h)+' , Image '+str(j), size=30) #draw a rectangle around the location of the star target_coords=
pd.read_csv(BEHAVIORAL_FILE)
pandas.read_csv
import pandas as pd import numpy as np from pathlib import Path from scipy.spatial import distance from math import factorial, atan2, degrees, acos, sqrt, pi from lizardanalysis.utils import auxiliaryfunctions #TODO: check why files only contain species names but no measurements!! analyze_again = True # utility functions def calc_distance_between_points_two_vectors_2d(v1, v2): '''calc_distance_between_points_two_vectors_2d [pairwise distance between vectors points] Arguments: v1 {[np.array]} -- [description] v2 {[type]} -- [description] Raises: ValueError -- [description] ValueError -- [description] ValueError -- [description] Returns: [type] -- [description] testing: >>> v1 = np.zeros((2, 5)) >>> v2 = np.zeros((2, 5)) >>> v2[1, :] = [0, 10, 25, 50, 100] >>> d = calc_distance_between_points_two_vectors_2d(v1.T, v2.T) ''' # Check dataformats if not isinstance(v1, np.ndarray) or not isinstance(v2, np.ndarray): raise ValueError('Invalid argument data format') if not v1.shape[1] == 2 or not v2.shape[1] == 2: raise ValueError('Invalid shape for input arrays') if not v1.shape[0] == v2.shape[0]: raise ValueError('Error: input arrays should have the same length') # Calculate distance dist = [distance.euclidean(p1, p2) for p1, p2 in zip(v1, v2)] return dist def angle_between_points_2d_anticlockwise(p1, p2): '''angle_between_points_2d_clockwise [Determines the angle of a straight line drawn between point one and two. The number returned, which is a double in degrees, tells us how much we have to rotate a horizontal line anti-clockwise for it to match the line between the two points.] Arguments: p1 {[np.ndarray, list]} -- np.array or list [ with the X and Y coordinates of the point] p2 {[np.ndarray, list]} -- np.array or list [ with the X and Y coordinates of the point] Returns: [int] -- [clockwise angle between p1, p2 using the inner product and the deterinant of the two vectors] Testing: - to check: print(zero, ninety, oneeighty, twoseventy) >>> zero = angle_between_points_2d_clockwise([0, 1], [0, 1]) >>> ninety = angle_between_points_2d_clockwise([1, 0], [0, 1]) >>> oneeighty = angle_between_points_2d_clockwise([0, -1], [0, 1]) >>> twoseventy = angle_between_points_2d_clockwise([-1, 0], [0, 1]) >>> ninety2 = angle_between_points_2d_clockwise([10, 0], [10, 1]) >>> print(ninety2) ''' """ Determines the angle of a straight line drawn between point one and two. The number returned, which is a double in degrees, tells us how much we have to rotate a horizontal line anit-clockwise for it to match the line between the two points. """ xDiff = p2[0] - p1[0] yDiff = p2[1] - p1[1] ang = degrees(atan2(yDiff, xDiff)) if ang < 0: ang += 360 # if not 0 <= ang <+ 360: raise ValueError('Ang was not computed correctly') return ang def calc_angle_between_vectors_of_points_2d(v1, v2): '''calc_angle_between_vectors_of_points_2d [calculates the clockwise angle between each set of point for two 2d arrays of points] Arguments: v1 {[np.ndarray]} -- [2d array with X,Y position at each timepoint] v2 {[np.ndarray]} -- [2d array with X,Y position at each timepoint] Returns: [np.ndarray] -- [1d array with clockwise angle between pairwise points in v1,v2] Testing: >>> v1 = np.zeros((2, 4)) >>> v1[1, :] = [1, 1, 1, 1, ] >>> v2 = np.zeros((2, 4)) >>> v2[0, :] = [0, 1, 0, -1] >>> v2[1, :] = [1, 0, -1, 0] >>> a = calc_angle_between_vectors_of_points_2d(v2, v1) ''' # Check data format if v1 is None or v2 is None or not isinstance(v1, np.ndarray) or not isinstance(v2, np.ndarray): raise ValueError('Invalid format for input arguments') if len(v1) != len(v2): raise ValueError('Input arrays should have the same length, instead: ', len(v1), len(v2)) if not v1.shape[0] == 2 or not v2.shape[0] == 2: raise ValueError('Invalid shape for input arrays: ', v1.shape, v2.shape) # Calculate n_points = v1.shape[1] angs = np.zeros(n_points) for i in range(v1.shape[1]): p1, p2 = v1[:, i], v2[:, i] angs[i] = angle_between_points_2d_anticlockwise(p1, p2) return angs # Process single bone def analyzebone(bp1, bp2): """[Computes length and orientation of the bone at each frame] Arguments: bp1 {[type]} -- [description] bp2 {[type]} -- [description] """ print("bone: ", bp1, bp2) bp1_pos = np.vstack([bp1.x.values, bp1.y.values]).T bp2_pos = np.vstack([bp2.x.values, bp2.y.values]).T # get bone length and orientation bone_length = calc_distance_between_points_two_vectors_2d(bp1_pos, bp2_pos) bone_orientation = calc_angle_between_vectors_of_points_2d(bp1_pos.T, bp2_pos.T) # keep the smallest of the two likelihoods likelihoods = np.vstack([bp2.likelihood.values, bp2.likelihood.values]).T likelihood = np.min(likelihoods, 1) # Create dataframe and return df = pd.DataFrame.from_dict(dict( length=bone_length, orientation=bone_orientation, likelihood=likelihood, )) # df.index.name=name print(df) return df # MAIN FUNC def calc_morphometrics(config, save_as_csv=True, **kwargs): """ Extracts length and orientation of each "bone" of the skeleton as defined in the config file. Parameter ---------- config : string Full path of the config.yaml file as a string. save_as_csv: bool, optional Saves the predictions in a .csv file. The default is ``False``; if provided it must be either ``True`` or ``False`` destfolder: string, optional Specifies the destination folder for analysis data (default is the analysis results -> morphometrics folder). """ import errno import os import tqdm import re from glob import glob current_path = os.getcwd() destfolder = None # Load config file, scorer and videos config_file = Path(config).resolve() cfg = auxiliaryfunctions.read_config(config_file) project_dir = f"{cfg['task']}-{cfg['scorer']}-{cfg['species']}-{cfg['date']}" # try to make folder for storing results if destfolder is None: destfolder = os.path.join(str(config_file).rsplit(os.path.sep, 1)[0], "analysis-results", "lizard_morphometrics") try: os.makedirs(destfolder) # print("folder for curve_fitting plots created") except OSError as e: if e.errno != errno.EEXIST: raise # create filelist of all files: files = cfg['file_sets'].keys() # object type ('CommentedMapKeysView' object), does not support indexing filelist = [] # store filepaths as list for file in files: filelist.append(file) # get data and filename: individuals = [] for i in range(1, len(filelist)+1): print("file in progress: {} of TOTAL: {} --- Progress: {}%".format(i, len(filelist), np.round(i/(len(filelist))*100))) filename = filelist[i-1].rsplit(os.sep, 1)[1] filename = filename.rsplit(".", 1)[0] temp = re.compile("([a-zA-Z]+)([0-9]+)") res = temp.match(filename).groups() individual = str(res[0]+res[1]) #print(individual) if individual not in individuals: individuals.append(individual) file_path_2 = os.path.join(project_dir, "files", os.path.basename(filelist[i-1])) file_path = os.path.join(current_path, file_path_2) if analyze_again: data = pd.read_csv(file_path, delimiter=",", header=[0, 1, 2]) # reads in first csv file in filelist to extract all available labels data_rows_count = data.shape[0] # number of rows already excluded the 3 headers scorer = data.columns[1][0] # Process skeleton if cfg['skeleton'] is None: print('no skeleton defined in config. Copy skeleton from DLC config file to lizardanalysis config file.') break bones = {} for bp1, bp2 in cfg['skeleton']: name = "{}_{}".format(bp1, bp2) bones[name] = analyzebone(data[scorer][bp1], data[scorer][bp2]) skeleton = pd.concat(bones, axis=1) # save if save_as_csv: skeleton.to_csv(os.path.join(destfolder, '{}_morph.csv'.format(filename))) # calculate the means for each individual: individual_filelists = {} print('\nnumber of individuals in group: ', len(individuals)) filelist_morph = glob(os.path.join(destfolder, '*_morph.csv')) #print("{" + "\n".join("{!r}: {!r},".format(k, v) for k, v in filelist_morph.items()) + "}") for individual in individuals: individual_filelists[individual] = [file for file in filelist_morph if individual in file] mean_of_individuals = {} for individual, list_of_runs in individual_filelists.items(): print("\nINDIVIDUAL: ", individual) means_of_run = {} i = 0 for run in list_of_runs: print("progress: {}/{}".format(i, len(list_of_runs))) data_morph = pd.read_csv(run, delimiter=",", header=[0, 1]) # first two rows as header data_morph = data_morph.drop(data_morph.columns[[0]], axis=1) data_morph_rows_count = data_morph.shape[0] # number of rows already excluded the 2 headers #print("number of rows: ", data_morph_rows_count) data_morph.rename(columns=lambda x: x.strip(), inplace=True) # remove whitespaces from column names scorer = data_morph.columns[1][0] if i == 0: bones = get_bone_names(data_morph) i += 1 for bone in bones: list_for_mean_bone = [] for row in range(data_morph_rows_count-1): list_for_mean_bone.append(data_morph.loc[row, (bone, 'length')]) means_of_run[bone] = np.mean(list_for_mean_bone) mean_of_individuals[individual] = [(k, np.mean(v)) for k,v in means_of_run.items()] #print("mean_of_individuals: ", mean_of_individuals) # save means of individuals in summary file: morph_csv_columns = ['individual'] individual = individuals[0] for bone_tuple in mean_of_individuals[individual]: morph_csv_columns.append(bone_tuple[0]) print("morph_columns: ", morph_csv_columns) print("length of columns: ", len(morph_csv_columns)) df_morph_means =
pd.DataFrame(columns=morph_csv_columns)
pandas.DataFrame
import pandas as pd import ast import sys import os.path from pandas.core.algorithms import isin sys.path.insert(1, os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) import dateutil.parser as parser from utils.mysql_utils import separator from utils.io import read_json from utils.scraping_utils import remove_html_tags from utils.user_utils import infer_role from graph.arango_utils import * import pgeocode def cast_to_float(v): try: return float(v) except ValueError: return v def convert_to_iso8601(text): date = parser.parse(text) return date.isoformat() def load_member_summaries( source_dir="data_for_graph/members", filename="company_check", # concat_uk_sector=False ): ''' LOAD FLAT FILES OF MEMBER DATA ''' dfs = [] for membership_level in ("Patron", "Platinum", "Gold", "Silver", "Bronze", "Digital", "Freemium"): summary_filename = os.path.join(source_dir, membership_level, f"{membership_level}_{filename}.csv") print ("reading summary from", summary_filename) dfs.append(pd.read_csv(summary_filename, index_col=0).rename(columns={"database_id": "id"})) summaries = pd.concat(dfs) # if concat_uk_sector: # member_uk_sectors = pd.read_csv(f"{source_dir}/members_to_sector.csv", index_col=0) # # for col in ("sectors", "divisions", "groups", "classes"): # # member_uk_sectors[f"UK_{col}"] = member_uk_sectors[f"UK_{col}"].map(ast.literal_eval) # summaries = summaries.join(member_uk_sectors, on="member_name", how="left") return summaries def populate_sectors( source_dir="data_for_graph", db=None): ''' CREATE AND ADD SECTOR(AS DEFINED IN MIM DB) NODES TO GRAPH ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Sectors", db) sectors = pd.read_csv(f"{source_dir}/all_sectors.csv", index_col=0) i = 0 for _, row in sectors.iterrows(): sector_name = row["sector_name"] print ("creating document for sector", sector_name) document = { "_key": str(i), "name": sector_name, "sector_name": sector_name, "id": row["id"] } insert_document(db, collection, document) i += 1 def populate_commerces( data_dir="data_for_graph", db=None): ''' CREATE AND ADD COMMERCE(AS DEFINED IN MIM DB) NODES TO GRAPH ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Commerces", db) commerces = pd.read_csv(f"{data_dir}/all_commerces_with_categories.csv", index_col=0) commerces = commerces.drop_duplicates("commerce_name") i = 0 for _, row in commerces.iterrows(): commerce = row["commerce_name"] category = row["commerce_category"] print ("creating document for commerce", commerce) document = { "_key": str(i), "name": commerce, "commerce": commerce, "category": category, "id": row["id"] } insert_document(db, collection, document) i += 1 def populate_members( cols_of_interest=[ "id", "member_name", "website", "about_company", "membership_level", "tenancies", "badges", "accreditations", "sectors", # add to member as list "buys", "sells", "sic_codes", "directors", "Cash_figure", "NetWorth_figure", "TotalCurrentAssets_figure", "TotalCurrentLiabilities_figure", ], db=None): ''' CREATE AND POPULATE MEMBER NODES ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Members", db, ) members = load_member_summaries(concat_uk_sector=False) members = members[cols_of_interest] members = members.drop_duplicates("member_name") # ensure no accidental duplicates members = members.loc[~pd.isnull(members["tenancies"])] members["about_company"] = members["about_company"].map(remove_html_tags, na_action="ignore") members = members.sort_values("member_name") i = 0 for _, row in members.iterrows(): member_name = row["member_name"] if pd.isnull(member_name): continue document = { "_key" : str(i), "name": member_name, **{ k: (row[k].split(separator) if not pd.isnull(row[k]) and k in {"sectors", "buys", "sells"} else ast.literal_eval(row[k]) if not pd.isnull(row[k]) and k in { "UK_sectors", "UK_divisions", "UK_groups", "UK_classes", "sic_codes", "directors", } else cast_to_float(row[k]) if k in {"Cash_figure","NetWorth_figure","TotalCurrentAssets_figure","TotalCurrentLiabilities_figure"} else row[k] if not pd.isnull(row[k]) else None) for k in cols_of_interest }, } if not pd.isnull(row["directors"]): directors_ = ast.literal_eval(row["directors"]) directors = [] for director in directors_: if pd.isnull(director["director_name"]): continue if not pd.isnull(director["director_date_of_birth"]): director["director_date_of_birth"] = insert_space(director["director_date_of_birth"], 3) directors.append(director) else: directors = [] document["directors"] = directors assert not pd.isnull(row["tenancies"]) tenancies = [] regions = [] for tenancy in row["tenancies"].split(separator): tenancies.append(tenancy) if tenancy == "Made in the Midlands": regions.append("midlands") else: assert tenancy == "Made in Yorkshire", tenancy regions.append("yorkshire") document["tenancies"] = tenancies document["regions"] = regions for award in ("badge", "accreditation"): award_name = f"{award}s" if not pd.isnull(row[award_name]): awards = [] for a in row[award_name].split(separator): awards.append(a) document[award_name] = awards insert_document(db, collection, document) i += 1 def add_SIC_hierarchy_to_members(db=None): ''' USE SIC CODES TO MAP TO SECTOR USING FILE: data/class_to_sector.json ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Members", db, ) get_sic_codes_query = f''' FOR m IN Members FILTER m.sic_codes != NULL RETURN {{ _key: m._key, sic_codes: m.sic_codes, }} ''' members = aql_query(db, get_sic_codes_query) class_to_sector_map = read_json("data/class_to_sector.json") for member in members: sic_codes = member["sic_codes"] sic_codes = [sic_code.split(" - ")[1] for sic_code in sic_codes] classes = set() groups = set() divisions = set() sectors = set() for sic_code in sic_codes: if sic_code not in class_to_sector_map: continue classes.add(sic_code) groups.add(class_to_sector_map[sic_code]["group"]) divisions.add(class_to_sector_map[sic_code]["division"]) sectors.add(class_to_sector_map[sic_code]["sector"]) document = { "_key" : member["_key"], "UK_classes": sorted(classes), "UK_groups": sorted(groups), "UK_divisions": sorted(divisions), "UK_sectors": sorted(sectors), } insert_document(db, collection, document, verbose=True) def populate_users( data_dir="data_for_graph", cols_of_interest=[ "id", "full_name", "email", "company_name", "company_position", "company_role", ], db=None): ''' CREATE AND ADD USER NODES ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Users", db, ) user_filename = f"{data_dir}/all_users.csv" users = pd.read_csv(user_filename, index_col=0) users["company_role"] = users.apply( infer_role, axis=1 ) i = 0 for _, row in users.iterrows(): user_name = row["full_name"] if pd.isnull(user_name): continue document = { "_key" : str(i), "name": user_name, **{ k: (row[k] if not pd.isnull(row[k]) else None) for k in cols_of_interest } } print ("inserting data", document) insert_document(db, collection, document) i += 1 def populate_user_works_at( data_dir="data_for_graph", db=None): if db is None: db = connect_to_mim_database() collection = connect_to_collection("UserWorksAt", db, className="Edges") user_filename = f"{data_dir}/all_users.csv" users = pd.read_csv(user_filename, index_col=0) users["company_role"] = users.apply( infer_role, axis=1 ) member_name_to_id = name_to_id(db, "Members", "id") user_name_to_id = name_to_id(db, "Users", "id") i = 0 for _, row in users.iterrows(): user_id = row["id"] company_id = row["company_id"] if user_id not in user_name_to_id: continue if company_id not in member_name_to_id: continue document = { "_key" : str(i), "name": "works_at", "_from": user_name_to_id[user_id], "_to": member_name_to_id[company_id], "company_position": row["company_position"] } print ("inserting data", document) insert_document(db, collection, document) i += 1 def populate_user_follows( data_dir="data_for_graph", db=None): if db is None: db = connect_to_mim_database() user_follows_collection = connect_to_collection("UserFollows", db, className="Edges") user_follows_members_collection = connect_to_collection("MemberMemberFollows", db, className="Edges") user_follows_filename = os.path.join(data_dir, "all_user_follows.csv") users = pd.read_csv(user_follows_filename, index_col=0) member_name_to_id = name_to_id(db, "Members", "id") user_name_to_id = name_to_id(db, "Users", "id") i = 0 for _, row in users.iterrows(): user_id = row["id"] if user_id not in user_name_to_id: continue user_name = row["full_name"] employer_id = row["employer_id"] followed_member_id = row["followed_member_id"] if followed_member_id not in member_name_to_id: continue # user -> member document = { "_key" : str(i), "name": "follows", "_from": user_name_to_id[user_id], "_to": member_name_to_id[followed_member_id] } print ("inserting data", document) insert_document(db, user_follows_collection, document) # member -> member if employer_id in member_name_to_id: document = { "_key" : str(i), "name": "follows", "_from": member_name_to_id[employer_id], "_to": member_name_to_id[followed_member_id], "followed_by": user_name, } print ("inserting data", document) insert_document(db, user_follows_members_collection, document) i += 1 def populate_member_sectors( db=None): if db is None: db = connect_to_mim_database() collection = connect_to_collection("InSector", db, className="Edges") members = load_member_summaries() i = 0 member_name_to_id = name_to_id(db, "Members", "id") sector_name_to_id = name_to_id(db, "Sectors", "sector_name") for _, row in members.iterrows(): member_id = row["id"] if member_id not in member_name_to_id: continue sectors = row["sectors"] if pd.isnull(sectors): continue sectors = sectors.split(separator) for sector in sectors: document = { "_key" : str(i), "name": "in_sector", "_from": member_name_to_id[member_id], "_to": sector_name_to_id[sector], } print ("inserting data", document) insert_document(db, collection, document) i += 1 def populate_member_commerces( db=None): if db is None: db = connect_to_mim_database() collection = connect_to_collection("PerformsCommerce", db, className="Edges") members = load_member_summaries() i = 0 member_name_to_id = name_to_id(db, "Members", "id") commerce_name_to_id = name_to_id(db, "Commerces", "commerce") for _, row in members.iterrows(): member_id = row["id"] if member_id not in member_name_to_id: continue for commerce_type in ("buys", "sells"): commerce = row[commerce_type] if not pd.isnull(commerce): commerce = commerce.split(separator) for c in commerce: if c=="": assert False continue document = { "_key" : str(i), "name": commerce_type, "_from": member_name_to_id[member_id], "_to": commerce_name_to_id[c], "commerce_type": commerce_type } print ("inserting data", document) insert_document(db, collection, document) i += 1 def populate_messages( data_dir="data_for_graph", db=None): if db is None: db = connect_to_mim_database() collection = connect_to_collection("Messages", db, className="Edges") message_filename = os.path.join(data_dir, "all_messages.csv") messages = pd.read_csv(message_filename, index_col=0) messages = messages.drop_duplicates() i = 0 user_name_to_id = name_to_id(db, "Users", "id") for _, row in messages.iterrows(): sender_id = row["sender_id"] if sender_id not in user_name_to_id: continue subject = row["subject"] message = row["message"] message = remove_html_tags(message) timestamp = str(row["created_at"]) # TODO characterise messages # recipients = json.loads(row["all_recipients"]) # for recipient in recipients: # receiver = recipient["name"] receiver_id = row["recipient_id"] # receiver_member = row["recipient_member_name"] if receiver_id not in user_name_to_id: continue if sender_id == receiver_id: continue document = { "_key": str(i), "name": "messages", "_from": user_name_to_id[sender_id], "_to": user_name_to_id[receiver_id], "subject": subject, "message": message, "sent_at": convert_to_iso8601(timestamp), } insert_document(db, collection, document) i += 1 def populate_member_member_business( db=None): if db is None: db = connect_to_mim_database() collection = connect_to_collection("MemberMemberBusiness", db, className="Edges") member_name_to_id = name_to_id(db, "Members", "member_name") i = 0 # articles for region in ("yorkshire", "midlands"): filename = os.path.join("members", f"member_member_partnerships - {region}_matched.csv") member_member_business = pd.read_csv(filename, index_col=None) for _, row in member_member_business.iterrows(): member_1 = row["member_1_best_matching_member"] member_2 = row["member_2_best_matching_member"] if member_1 not in member_name_to_id: continue if member_2 not in member_name_to_id: continue article_title = row["article_title"] document = { # "_key": sanitise_key(f"{member_1}_{member_2}_article"), "_key": str(i), "name": "does_business", # "_from": f"Members/{sanitise_key(member_1)}", "_from": member_name_to_id[member_1], # "_to": f"Members/{sanitise_key(member_2)}", "_to": member_name_to_id[member_2], "source": "article", "article_title": article_title, "region": region } insert_document(db, collection, document) i += 1 # survey connections connections_filename="survey/final_processed_connections.csv" survey_connections = pd.read_csv(connections_filename, index_col=0) for _, row in survey_connections.iterrows(): member_1 = row["best_matching_member_name"] member_2 = row["submitted_partner_best_matching_member_name"] if member_1 not in member_name_to_id: continue if member_2 not in member_name_to_id: continue document = { # "_key": sanitise_key(f"{member_1}_{member_2}_survey"), "_key": str(i), "name": "does_business", # "_from": f"Members/{sanitise_key(member_1)}", "_from": member_name_to_id[member_1], "_to": f"Members/{sanitise_key(member_2)}", "_to": member_name_to_id[member_2], "source": "survey", } insert_document(db, collection, document) i += 1 def populate_events( data_dir="data_for_graph", cols_of_interest = [ "id", "event_name", "event_type", "tenants", "members", "description", "status", "venue", "starts_at", "ends_at", ], db=None): if db is None: db = connect_to_mim_database() collection = connect_to_collection("Events", db,) events_df_filename = os.path.join(data_dir, "all_events.csv") events_df = pd.read_csv(events_df_filename, index_col=0) # events_df = events_df.drop_duplicates(["event_name", "starts_at"]) i = 0 for _, row in events_df.iterrows(): event_name = row["event_name"] document = { "_key" : str(i), "name": event_name, **{ k: (convert_to_iso8601(row[k]) if not pd.isnull(row[k]) and k in ("starts_at", "ends_at", ) else row[k].split(separator) if not pd.isnull(row[k]) and k in ("tenants", "distinct_event_tags", "members") else row[k] if not
pd.isnull(row[k])
pandas.isnull
import pandas as pd import os import re #add one column with the name of the df aka condition print(snakemake.input["whippet_mapping_dc"]) def retrieve_mapping_stats(list_of_paths, key1, key2, key3): mapping_summary={} sample_name_list=[] Mapped_Percent_list=[] Multimap_Percent_list=[] Novel_Junc_Percent_list=[] for i in list_of_paths: #read in as csv print(i) sample_name=os.path.basename(i) print(sample_name) sample_name=re.sub("\.map$", "", sample_name) print(sample_name) sample_name_list.append(sample_name) #f"{sample_name}"={} with open(f"./{i}", 'r') as file: text = file.read() text=re.sub(r'\n', ' ', text) text=re.sub(r'\t', ' ', text) hit_key1=re.search(rf'{key1} (\S+)', text) hit_key1=hit_key1.group(1) hit_key2=re.search(rf'{key2} (\S+)', text) hit_key2=hit_key2.group(1) hit_key3=re.search(rf'{key3} (\S+)', text) hit_key3=hit_key3.group(1) Mapped_Percent_list.append(hit_key1) Multimap_Percent_list.append(hit_key2) Novel_Junc_Percent_list.append(hit_key3) #mapping_summary[sample_name]={} #mapping_summary[sample_name]={"Multimap_Percent":after_key2} #f"{sample_name}"[f"key1"]=after_key1 #f"{sample_name}"[f"key2"]=after_key2 #f"{sample_name}"[f"key3"]=after_key3 #mapping_summary.append(f"{sample_name}") #this needs to be a dictionary print(mapping_summary) mapping_summary={"Run": sample_name_list, "Mapped_Percent":Mapped_Percent_list, "Multimap_Percent":Multimap_Percent_list, "Novel_Junc_Percent":Novel_Junc_Percent_list} mapping_summary=
pd.DataFrame.from_records(mapping_summary)
pandas.DataFrame.from_records
from datetime import datetime import time import pandas as pd import typer import subprocess import numpy as np import random import os.path import noise_mechanism as nm DEFAULT_DATA_DIRECTORY = "./tests/data" DEFAULT_NOISE_DATA_DIRECTORY = "./data/mob-dp" DEFAULT_FIPS = "36" # New York DEFAULT_ITERATIONS = 1000 DEFAULT_MECHANISM = "laplace" DEFAULT_EPSILON = 0.1 DEFAULT_DELTA = 1 app = typer.Typer() def load( data_dir: str, fips: str, start_date: datetime, end_date: datetime ) -> pd.DataFrame: """ Reads data from the data directory, assuming that the format is a bunch of subdirectories in the form `activity_day=%Y-%m-%d` which will be converted to a Python date in the resulting data frame. """ typer.echo(f"Reading data from {data_dir}") df = pd.read_parquet(data_dir) # Filter first, then convert to save some compute. # This cases activity_day to string, but it *may* be faster to convert to a list of # categories that match the dates. if start_date: str_start_date = start_date.strftime("%Y-%m-%d") typer.echo(f"Filtering start date after {str_start_date}") df.drop(df[df["activity_day"].astype(str) < str_start_date].index, inplace=True) if end_date: str_end_date = end_date.strftime("%Y-%m-%d") typer.echo(f"Filtering start date strictly before {str_end_date}") df.drop(df[df["activity_day"].astype(str) >= str_end_date].index, inplace=True) typer.echo("Filtering by state") df.drop( df[(df["from_state_fips"] != fips) | (df["to_state_fips"] != fips)].index, inplace=True, ) df["activity_day"] = df["activity_day"].apply( lambda str_day: datetime.strptime(str_day, "%Y-%m-%d").date() ) return df def noisy_df(df: pd.DataFrame, iterations: int = DEFAULT_ITERATIONS, mechanism: str = DEFAULT_MECHANISM, epsilon: int = DEFAULT_EPSILON, delta: int = DEFAULT_DELTA): dlen = len(df) n = [] if mechanism == "laplace": typer.echo(f"Applying DP noise on columns over {iterations} iterations") with typer.progressbar(range(iterations)) as steps: for _ in steps: noisy_val = df['transitions'].apply(nm.laplaceMechanism, args=(epsilon,)) n.append(noisy_val) m = np.average(n, axis=0) df['transitions']=
pd.Series(m)
pandas.Series
from flask import Flask, render_template, request, redirect, make_response, url_for app_onc = Flask(__name__) import astrodbkit from astrodbkit import astrodb from SEDkit import sed from SEDkit import utilities as u import os import sys import re from io import StringIO from bokeh.plotting import figure from bokeh.embed import components from bokeh.models import ColumnDataSource, HoverTool, OpenURL, TapTool, Range1d from bokeh.models.widgets import Panel, Tabs from astropy import units as q from astropy.coordinates import SkyCoord import astropy.constants as ac from scipy.ndimage.interpolation import zoom import pandas as pd import numpy as np TABLE_CLASSES = 'display no-wrap hover table' app_onc.vars = dict() app_onc.vars['query'] = '' app_onc.vars['search'] = '' app_onc.vars['specid'] = '' app_onc.vars['source_id'] = '' db_file = os.environ['ONC_database'] db = astrodb.Database(db_file) pd.set_option('max_colwidth', -1) # Redirect to the main page @app_onc.route('/') @app_onc.route('/index') # Page with a text box to take the SQL query @app_onc.route('/index', methods=['GET', 'POST']) def onc_query(): defquery = 'SELECT * FROM sources' if app_onc.vars['query']=='': app_onc.vars['query'] = defquery # Get list of the catalogs source_count, = db.list("SELECT Count(*) FROM sources").fetchone() catalogs = db.query("SELECT * FROM publications", fmt='table') cat_names = ''.join(['<li><a href="https://ui.adsabs.harvard.edu/?#abs/{}/abstract">{}</a></li>'.format(cat['bibcode'],cat['description'].replace('VizieR Online Data Catalog: ','')) for cat in catalogs]) table_names = db.query("select * from sqlite_master where type='table' or type='view'")['name'] tables = '\n'.join(['<option value="{0}" {1}> {0}</option>'.format(t,'selected=selected' if t=='browse' else '') for t in table_names]) columns_html = [] columns_js = [] for tab in table_names: cols = list(db.query("pragma table_info('{}')".format(tab))['name']) col_html = ''.join(['<input type="checkbox" value="{0}" name="selections"> {0}<br>'.format(c) for c in cols]) columns_html.append('<div id="{}" class="columns" style="display:none">{}</div>'.format(tab,col_html)) col_js = ','.join(["{id:'"+c+"',label:'"+c+"',type:'string'}" for c in cols]) columns_js.append(col_js) column_select = ''.join(columns_html) column_script = ''.join(columns_js) return render_template('index.html', cat_names=cat_names, source_count=source_count, defsearch=app_onc.vars['search'], specid=app_onc.vars['specid'], source_id=app_onc.vars['source_id'], version=astrodbkit.__version__, tables=tables, column_select=column_select, column_script=col_js) # Grab results of query and display them @app_onc.route('/runquery', methods=['POST','GET']) def onc_runquery(): # db = astrodb.Database(db_file) app_onc.vars['query'] = request.form['query_to_run'] htmltxt = app_onc.vars['query'].replace('<', '&lt;') # Only SELECT commands are allowed if not app_onc.vars['query'].lower().startswith('select'): return render_template('error.html', headermessage='Error in Query', errmess='<p>Only SELECT queries are allowed. You typed:</p><p>'+htmltxt+'</p>') # Run the query stdout = sys.stdout # Keep a handle on the real standard output sys.stdout = mystdout = StringIO() # Choose a file-like object to write to try: t = db.query(app_onc.vars['query'], fmt='table', use_converters=False) except ValueError: t = db.query(app_onc.vars['query'], fmt='array', use_converters=False) except: return render_template('error.html', headermessage='Error in Query', errmess='<p>Error in query:</p><p>'+htmltxt+'</p>') sys.stdout = stdout # Check for any errors from mystdout if mystdout.getvalue().lower().startswith('could not execute'): return render_template('error.html', headermessage='Error in Query', errmess='<p>Error in query:</p><p>'+mystdout.getvalue().replace('<', '&lt;')+'</p>') # Check how many results were found if type(t)==type(None): return render_template('error.html', headermessage='No Results Found', errmess='<p>No entries found for query:</p><p>' + htmltxt + '</p><p>'+mystdout.getvalue().replace('<', '&lt;')+'</p>') # Remane RA and Dec columns for idx,name in enumerate(t.colnames): if name.endswith('.ra'): t[name].name = 'ra' if name.endswith('.dec'): t[name].name = 'dec' if name.endswith('.id'): t[name].name = 'id' if name.endswith('.source_id'): t[name].name = 'source_id' # Convert to Pandas data frame try: data = t.to_pandas() except AttributeError: return render_template('error.html', headermessage='Error in Query', errmess='<p>Error for query:</p><p>'+htmltxt+'</p>') try: sources = data[['ra','dec','source_id']].values.tolist() sources = [[i[0], i[1], 'Source {}'.format(int(i[2])), int(i[2])] for i in sources] except: try: sources = data[['ra','dec','id']].values.tolist() sources = [[i[0], i[1], 'Source {}'.format(int(i[2])), int(i[2])] for i in sources] except: sources = '' # Create checkbox first column data = add_checkboxes(data) # Toggle columns cols = 'Toggle Column: '+' - '.join(['<a class="toggle-vis" />{}</a>'.format(name) for i,name in enumerate(t.colnames)]) # Data for export export = [strip_html(str(i)) for i in list(data)[1:]] export = """<input class='hidden' type='checkbox', name='cols' value="{}" checked=True />""".format(export) # Add links to columns data = link_columns(data, db, ['id','source_id','spectrum','image']) # Get numerical x and y axes for plotting columns = [c for c in t.colnames if any([isinstance(i, (int, float)) for i in t[c]])] axes = '\n'.join(['<option value="{}"> {}</option>'.format(repr(b)+","+repr(list(t[b])), b) for b in columns]) table_html = data.to_html(classes='display', index=False).replace('&lt;','<').replace('&gt;','>') print(table_html) return render_template('results.html', table=table_html, query=app_onc.vars['query'], cols=cols, sources=sources, axes=axes, export=export) # Grab results of query and display them @app_onc.route('/buildquery', methods=['POST', 'GET']) def onc_buildquery(): # Build the query from all the input entries = request.form print(entries) selections, builder_rules = [], [] for key in entries.keys(): for value in entries.getlist(key): if key=='selections': selections.append(value) if key.startswith('builder_rule'): builder_rules.append((key,value)) # Translate the builder rules into a SQL WHERE clause where_clause = '' for k,v in builder_rules: pass if where_clause: where_clause = ' WHERE {}'.format(where_clause) build_query = "SELECT {} FROM {}{}".format(','.join(selections), entries['table'], where_clause) # db = astrodb.Database(db_file) app_onc.vars['query'] = build_query htmltxt = app_onc.vars['query'].replace('<', '&lt;') # Only SELECT commands are allowed if not app_onc.vars['query'].lower().startswith('select'): return render_template('error.html', headermessage='Error in Query', errmess='<p>Only SELECT queries are allowed. You typed:</p><p>' + htmltxt + '</p>') # Run the query stdout = sys.stdout # Keep a handle on the real standard output sys.stdout = mystdout = StringIO() # Choose a file-like object to write to try: t = db.query(app_onc.vars['query'], fmt='table', use_converters=False) except ValueError: t = db.query(app_onc.vars['query'], fmt='array', use_converters=False) except: return render_template('error.html', headermessage='Error in Query', errmess='<p>Error in query:</p><p>' + htmltxt + '</p>') sys.stdout = stdout # Check for any errors from mystdout if mystdout.getvalue().lower().startswith('could not execute'): return render_template('error.html', headermessage='Error in Query', errmess='<p>Error in query:</p><p>' + mystdout.getvalue().replace('<', '&lt;') + '</p>') # Check how many results were found if type(t) == type(None): return render_template('error.html', headermessage='No Results Found', errmess='<p>No entries found for query:</p><p>' + htmltxt + '</p><p>' + mystdout.getvalue().replace('<', '&lt;') + '</p>') # Remane RA and Dec columns for idx, name in enumerate(t.colnames): if name.endswith('.ra'): t[name].name = 'ra' if name.endswith('.dec'): t[name].name = 'dec' if name.endswith('.id'): t[name].name = 'id' # Convert to Pandas data frame try: data = t.to_pandas() except AttributeError: return render_template('error.html', headermessage='Error in Query', errmess='<p>Error for query:</p><p>' + htmltxt + '</p>') # Create checkbox first column data = add_checkboxes(data) try: script, div, warning_message = onc_skyplot(t) except: script = div = warning_message = '' # Add links to columns data = link_columns(data, db, ['id', 'source_id', 'spectrum', 'image']) # Get numerical x and y axes for plotting columns = [c for c in t.colnames if isinstance(t[c][0], (int, float))] axes = '\n'.join(['<option value="{}"> {}</option>'.format(repr(b) + "," + repr(list(t[b])), b) for b in columns]) # Data for export export = [strip_html(str(i)) for i in list(data)[1:]] export = """<input class='hidden' type='checkbox', name='cols' value="{}" checked=True />""".format(export) # Generate HTML table_html = data.to_html(classes='display', index=False).replace('&lt;', '<').replace('&gt;', '>') return render_template('results.html', table=table_html, query=app_onc.vars['query'], script=script, plot=div, warning=warning_message, axes=axes, export=export) # Grab results of query and display them @app_onc.route('/plot', methods=['POST','GET']) def onc_plot(): # Get the axes to plot xaxis, xdata = eval(request.form['xaxis']) yaxis, ydata = eval(request.form['yaxis']) # Make the plot tools = "resize,crosshair,pan,wheel_zoom,box_zoom,reset" p = figure(tools=tools, x_axis_label=xaxis, y_axis_label=yaxis, plot_width=800) p.circle(xdata, ydata) title = '{} v. {}'.format(xaxis,yaxis) script, div = components(p) # Also make a table table = pd.DataFrame(np.array([xdata,ydata]).T, columns=[xaxis,yaxis]) table = table.to_html(classes='display', index=False).replace('&lt;','<').replace('&gt;','>') return render_template('plot.html', title=title, script=script, plot=div, table=table) # Grab selected inventory and plot SED @app_onc.route('/sed', methods=['POST']) @app_onc.route('/inventory/sed', methods=['POST']) def onc_sed(): # Get the ids of all the data to use entries = request.form age = (float(entries['age_min'])*q.Myr, float(entries['age_max'])*q.Myr) radius = (float(entries['radius'])*ac.R_sun,float(entries['radius_unc'])*ac.R_sun) source_id = int(entries['sources']) spt_id = int(entries.get('spectral_types', 0)) plx_id = int(entries.get('parallaxes', 0)) # Collect all spec_ids and phot_ids phot_ids, spec_ids = [], [] for key in entries.keys(): for value in entries.getlist(key): if key=='photometry': phot_ids.append(int(value)) elif key=='spectra': spec_ids.append(int(value)) # Make the astropy tables sed_dict = {} sed_dict['sources'] = source_id if spt_id: sed_dict['spectral_types'] = spt_id if plx_id: sed_dict['parallaxes'] = plx_id if spec_ids: sed_dict['spectra'] = spec_ids if phot_ids: sed_dict['photometry'] = phot_ids # Include ONC distance as default if no parallax dist, warning = '', '' if 'parallaxes' not in sed_dict: dist = (388*q.pc,20*q.pc) warning = "No distance given for this source. Using \(388\pm 20 pc\) from Kounkel et al. (2016)" # Make the SED try: SED = sed.MakeSED(source_id, db, from_dict=sed_dict, dist=dist, age=age, radius=radius, phot_aliases='') p = SED.plot(output=True) except IOError: return render_template('error.html', headermessage='SED Error', errmess='<p>At least one spectrum or photometric point is required to construct an SED.</p>') # Generate the HTML script, div = components(p) # Get params to print fbol, mbol, teff, Lbol, radius = ['NaN']*5 try: fbol = '\({:.3e} \pm {:.3e}\)'.format(SED.fbol.value,SED.fbol_unc.value) except: pass try: mbol = '\({} \pm {}\)'.format(SED.mbol,SED.mbol_unc) except: pass try: teff = '\({} \pm {}\)'.format(int(SED.Teff.value),SED.Teff_unc.value if np.isnan(SED.Teff_unc.value) else int(SED.Teff_unc.value)) if SED.distance else '-' except: pass try: Lbol = '\({:.3f} \pm {:.3f}\)'.format(SED.Lbol_sun,SED.Lbol_sun_unc) if SED.distance else '-' except: pass try: radius = '\({:.3f} \pm {:.3f}\)'.format(SED.radius.to(ac.R_sun).value,SED.radius_unc.to(ac.R_sun).value) if SED.radius else '-' except: pass results = [[title,tbl2html(tab, roles='grid', classes='dataframe display no_pagination dataTable no-footer')] for tab,title in zip([SED.sources,SED.spectral_types,SED.parallaxes,SED.photometry,SED.spectra],['sources','spectral_types','parallaxes','photometry','spectra']) if len(tab)>0] return render_template('sed.html', script=script, plot=div, spt=SED.SpT or '-', mbol=mbol, fbol=fbol, teff=teff, Lbol=Lbol, radius=radius, title=SED.name, warning=warning, results=results) def error_bars(xs, ys, zs): """ Generate errorbars for the photometry since Bokeh doesn't do it """ # Create the coordinates for the errorbars err_xs, err_ys = [], [] for x, y, yerr in zip(xs, ys, zs): if not np.isnan(yerr): err_xs.append((x, x)) err_ys.append((y-yerr, y+yerr)) return (err_xs, err_ys) def link_columns(data, db, columns): view = 'View' #<img class="view" src="{{url_for("static", filename="images/view.png")}}" /> # Change id to a link if 'id' in columns and 'id' in data and 'source_id' not in data: linklist = [] for i, elem in enumerate(data['id']): link = '<a href="inventory/{0}">{1}</a>'.format(data.iloc[i]['id'], elem) linklist.append(link) data['id'] = linklist # Change source_id column to a link if 'source_id' in columns and 'source_id' in data: linklist = [] for i, elem in enumerate(data['source_id']): link = '<a href="inventory/{}">{}</a>'.format(data.iloc[i]['source_id'], elem) linklist.append(link) data['source_id'] = linklist # Change spectrum column to a link if 'spectrum' in columns and 'spectrum' in data: speclist = [] for index, row in data.iterrows(): spec = '<a href="../spectrum/{}">{}</a>'.format(row['id'],view) speclist.append(spec) data['spectrum'] = speclist # Change image column to a link if 'image' in columns and 'image' in data: imglist = [] for index, row in data.iterrows(): img = '<a href="../image/{}">{}</a>'.format(row['id'],view) imglist.append(img) data['image'] = imglist # Change vizier URL to a link if 'record' in columns and 'record' in data: reclist = [] for index, row in data.iterrows(): if row['record'] is None: rec = None else: rec = '<a href="{}">{}</a>'.format(row['record'],view) reclist.append(rec) data['record'] = reclist return data @app_onc.route('/export', methods=['POST']) def onc_export(): # Get all the checked rows checked = request.form # Get column names print(checked.get('cols')) results = [list(eval(checked.get('cols')))] for k in sorted(checked): if k.isdigit(): # Convert string to list and strip HTML vals = eval(checked[k]) for i,v in enumerate(vals): try: vals[i] = str(v).split('>')[1].split('<')[0] except: pass results.append(vals) # Make an array to export results = np.array(results, dtype=str) filename = 'ONCdb_results.txt' np.savetxt(filename, results, delimiter='|', fmt='%s') with open(filename, 'r') as f: file_as_string = f.read() os.remove(filename) # Delete the file after it's read response = make_response(str(file_as_string)) response.headers["Content-type"] = 'text; charset=utf-8' response.headers["Content-Disposition"] = "attachment; filename={}".format(filename) return response def add_checkboxes(data, type='checkbox', id_only=False, table_name='', all_checked=False): """ Create checkbox first column in Pandas dataframe """ buttonlist = [] for index, row in data.iterrows(): val = strip_html(repr(list(row))) if id_only: val = val.split(',')[0].replace('[','') tab = table_name or str(index) button = '<input type="{}" name="{}" value="{}"{}>'.format(type,tab,val,' checked' if (index==0 and type=='radio') or (all_checked and type=='checkbox') else ' checked') buttonlist.append(button) data['Select'] = buttonlist cols = data.columns.tolist() cols.pop(cols.index('Select')) data = data[['Select']+cols] return data # Perform a search @app_onc.route('/search', methods=['POST']) def onc_search(): # db = astrodb.Database(db_file) app_onc.vars['search'] = request.form['search_to_run'] search_table = request.form['table'] search_value = app_onc.vars['search'] search_radius = 1/60. # Process search search_value = search_value.replace(',', ' ').split() if len(search_value) == 1: search_value = search_value[0] else: try: search_value = [float(s) for s in search_value] search_radius = float(request.form['radius'])/60. except: return render_template('error.html', headermessage='Error in Search', errmess='<p>Could not process search input:</p>' + '<p>' + app_onc.vars['search'] + '</p>') # Run the search stdout = sys.stdout # Keep a handle on the real standard output sys.stdout = mystdout = StringIO() # Choose a file-like object to write to # Get table of results t = db.search(search_value, search_table, radius=search_radius, fetch=True) sys.stdout = stdout try: data = t.to_pandas() except AttributeError: return render_template('error.html', headermessage='Error in Search', errmess=mystdout.getvalue().replace('<', '&lt;')) try: sources = data[['ra','dec','source_id']].values.tolist() sources = [[i[0], i[1], 'Source {}'.format(int(i[2])), int(i[2])] for i in sources] except: try: sources = data[['ra','dec','id']].values.tolist() sources = [[i[0], i[1], 'Source {}'.format(int(i[2])), int(i[2])] for i in sources] except: sources = '' if not data.empty: # Create checkbox first column data = add_checkboxes(data) # Toggle columns cols = 'Toggle Column: '+' - '.join(['<a class="toggle-vis" />{}</a>'.format(name) for i,name in enumerate(t.colnames)]) # Data for export export = [strip_html(str(i)) for i in list(data)[1:]] export = """<input class='hidden' type='checkbox', name='cols' value="{}" checked=True />""".format(export) # Add links to columns data = link_columns(data, db, ['id', 'source_id', 'image','spectrum','record']) # Get numerical x and y axes for plotting columns = [c for c in t.colnames if isinstance(t[c][0], (int, float))] axes = '\n'.join(['<option value="{}"> {}</option>'.format(repr(b)+","+repr(list(t[b])), b) for b in columns]) return render_template('results.html', table=data.to_html(classes='display', index=False).replace('&lt;','<').replace('&gt;','>'), query=search_value, sources=sources, cols=cols, axes=axes, export=export) else: return render_template('error.html', headermessage='Error in Search', errmess='<p>This input returns no results:</p>' + '<p>' + app_onc.vars['search'] + '</p>') # Plot a spectrum @app_onc.route('/spectrum', methods=['POST']) @app_onc.route('/spectrum/<int:specid>') def onc_spectrum(specid=None): # db = astrodb.Database(db_file) if specid is None: app_onc.vars['specid'] = request.form['spectrum_to_plot'] path = '' else: app_onc.vars['specid'] = specid path = '../' # If not a number, error if not str(app_onc.vars['specid']).isdigit(): return render_template('error.html', headermessage='Error in Input', errmess='<p>Input was not a number.</p>') # Grab the spectrum stdout = sys.stdout # Keep a handle on the real standard output sys.stdout = mystdout = StringIO() # Choose a file-like object to write to query = 'SELECT * FROM spectra WHERE id={}'.format(app_onc.vars['specid']) t = db.query(query, fmt='table') sys.stdout = stdout # Check for errors first if mystdout.getvalue().lower().startswith('could not execute'): return render_template('error.html', headermessage='Error in Query', errmess='<p>Error in query:</p><p>'+mystdout.getvalue().replace('<', '&lt;')+'</p>') # Check if found anything if isinstance(t, type(None)): return render_template('error.html', headermessage='No Result', errmess='<p>No spectrum found.</p>') # Get data wav = 'Wavelength ('+t[0]['wavelength_units']+')' flux = 'Flux ('+t[0]['flux_units']+')' spec = t[0]['spectrum'] filepath = spec.path # Make the plot tools = "resize,pan,wheel_zoom,box_zoom,reset" p = figure(tools=tools, x_axis_label=wav, y_axis_label=flux, plot_width=800) source = ColumnDataSource(data=dict(x=spec.data[0], y=spec.data[1])) hover = HoverTool(tooltips=[( 'wavelength', '$x'),( 'flux', '$y')], mode='vline') p.add_tools(hover) p.line('x', 'y', source=source) script, div = components(p) t['spectrum'] = [sp.path for sp in t['spectrum']] meta = t.to_pandas().to_html(classes='display', index=False) return render_template('spectrum.html', script=script, plot=div, meta=meta, download=filepath) # Display an image @app_onc.route('/image', methods=['POST']) @app_onc.route('/image/<int:imgid>') def onc_image(imgid=None): # db = astrodb.Database(db_file) if imgid is None: app_onc.vars['imgid'] = request.form['image_to_plot'] path = '' else: app_onc.vars['imgid'] = imgid path = '../' # If not a number, error if not str(app_onc.vars['imgid']).isdigit(): return render_template('error.html', headermessage='Error in Input', errmess='<p>Input was not a number.</p>') # Grab the spectrum stdout = sys.stdout # Keep a handle on the real standard output sys.stdout = mystdout = StringIO() # Choose a file-like object to write to query = 'SELECT * FROM images WHERE id={}'.format(app_onc.vars['imgid']) t = db.query(query, fmt='table') sys.stdout = stdout # Check for errors first if mystdout.getvalue().lower().startswith('could not execute'): return render_template('error.html', headermessage='Error in Query', errmess='<p>Error in query:</p><p>'+mystdout.getvalue().replace('<', '&lt;')+'</p>') # Check if found anything if isinstance(t, type(None)): return render_template('error.html', headermessage='No Result', errmess='<p>No image found.</p>') try: img = t[0]['image'].data # Down sample so the figure displays faster img = zoom(img, 0.05, prefilter=False) filepath = t[0]['image'].path # Make the plot tools = "resize,crosshair,pan,wheel_zoom,box_zoom,reset" # create a new plot p = figure(tools=tools, plot_width=800) # Make the plot p.image(image=[img], x=[0], y=[0], dw=[img.shape[0]], dh=[img.shape[1]]) p.x_range = Range1d(0, img.shape[0]) p.y_range = Range1d(0, img.shape[1]) script, div = components(p) t['image'] = [sp.path for sp in t['image']] meta = t.to_pandas().to_html(classes='display', index=False) except IOError: script, div, filepath = '', '', '' return render_template('image.html', script=script, plot=div, meta=meta, download=filepath) # Check inventory @app_onc.route('/inventory', methods=['POST']) @app_onc.route('/inventory/<int:source_id>') def onc_inventory(source_id=None): # db = astrodb.Database(db_file) if source_id is None: app_onc.vars['source_id'] = request.form['id_to_check'] path = '' else: app_onc.vars['source_id'] = source_id path = '../' # Grab inventory stdout = sys.stdout sys.stdout = mystdout = StringIO() t = db.inventory(app_onc.vars['source_id'], fetch=True, fmt='table') sys.stdout = stdout t = {name:t[name][[col for col in t[name].colnames if col!='source_id']] for name in t.keys()} # Check for errors (no results) if mystdout.getvalue().lower().startswith('no source'): return render_template('error.html', headermessage='No Results Found', errmess='<p>'+mystdout.getvalue().replace('<', '&lt;')+'</p>') # Empty because of invalid input if len(t) == 0: return render_template('error.html', headermessage='Error', errmess="<p>You typed: "+app_onc.vars['source_id']+"</p>") # Grab object information allnames = t['sources']['names'][0] altname = None if allnames is not None: altname = allnames.split(',')[0] objname = t['sources']['designation'][0] or altname or 'Source {}'.format(app_onc.vars['source_id']) ra = t['sources']['ra'][0] dec = t['sources']['dec'][0] c = SkyCoord(ra=ra*q.degree, dec=dec*q.degree) coords = c.to_string('hmsdms', sep=':', precision=2) # Grab distance try: distance = 1000./t['parallaxes']['parallax'] dist_string = ', '.join(['{0:.2f}'.format(i) for i in distance]) dist_string += ' pc' except: dist_string = 'N/A' # Grab spectral type try: sptype_txt = [] for row in t['spectral_types'][['spectral_type','spectral_type_unc','suffix','gravity','luminosity_class']]: spt = u.specType(list(row)) sptype_txt.append(spt.replace('None','')) sptype_txt = ' / '.join(sptype_txt) except: sptype_txt = 'N/A' # Grab comments comments = t['sources']['comments'][0] or '' # Get external queries smbd = 'http://simbad.u-strasbg.fr/simbad/sim-coo?Coord={}+%2B{}&CooFrame=ICRS&CooEpoch=2000&CooEqui=2000&CooDefinedFrames=none&Radius=10&Radius.unit=arcsec&submit=submit+query'.format(ra,dec) vzr = 'http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=&-out.add=_r&-out.add=_RAJ%2C_DEJ&-sort=_r&-to=&-out.max=20&-meta.ucd=2&-meta.foot=1&-c.rs=20&-c={}+{}'.format(ra,dec) # Add order to names for consistent printing ordered_names = ['sources','spectral_types','parallaxes','photometry','spectra','images'] # Make the HTML html_tables = [] for name in ordered_names: if name in t: # Convert to pandas table = t[name].to_pandas() # Add checkboxes for SED creation type = 'radio' if name in ['sources','spectral_types','parallaxes'] else 'checkbox' table = add_checkboxes(table, type=type, id_only=True, table_name=name) # Add links to the columns table = link_columns(table, db, ['source_id', 'image','spectrum', 'record']) # Convert to HTML table = table.to_html(classes='display no_pagination no_wrap', index=False).replace('&lt;', '<').replace('&gt;', '>') else: table = '<p style="padding-top:25px;">No records in the <code>{}</code> table for this source.</p>'.format(name) table = '<h2 style="position:relative; bottom:-25px">{}</h2>'.format(name)+table html_tables.append(table) if 'photometry' in t: phots = [[p['ra'],p['dec'],p['band'],'{}, {}'.format(p['ra'],p['dec']), '{} ({})'.format(p['magnitude'],p['magnitude_unc'])] for p in t['photometry']] else: phots = [] delta_ra = delta_dec = 0.025 sources = db.query("SELECT id,ra,dec,names FROM sources WHERE (ra BETWEEN {1}-{0} AND {1}+{0}) AND (dec BETWEEN {3}-{2} AND {3}+{2}) AND (ra<>{1} AND dec<>{3})".format(delta_ra, ra, delta_dec, dec), fmt='array') if sources is None: sources = [] warning = '' if any(['d{}'.format(i) in comments for i in range(20)]): warning = "Warning: This source is confused with its neighbors and the data listed below may not be trustworthy." print(html_tables) return render_template('inventory.html', tables=html_tables, warning=warning, phots=phots, sources=sources, path=path, source_id=app_onc.vars['source_id'], name=objname, coords=coords, allnames=allnames, distance=dist_string, comments=comments, sptypes=sptype_txt, ra=ra, dec=dec, simbad=smbd, vizier=vzr) # Check Schema # @app_onc.route('/schema.html', methods=['GET', 'POST']) @app_onc.route('/schema', methods=['GET', 'POST']) def onc_schema(): # db = astrodb.Database(db_file) # Get table names and their structure try: table_names = db.query("SELECT name FROM sqlite_sequence", unpack=True)[0] except: table_names = db.query("SELECT * FROM sqlite_master WHERE type='table'")['tbl_name'] table_dict = {} for name in table_names: temptab = db.query('PRAGMA table_info('+name+')', fmt='table') table_dict[name] = temptab table_html = [[db.query("select count(id) from {}".format(x))[0][0], table_dict[x].to_pandas().to_html(classes=TABLE_CLASSES, index=False)] for x in sorted(table_dict.keys())] titles = ['na']+sorted(table_dict.keys()) return render_template('schema.html', tables=table_html, titles=titles) @app_onc.route('/browse', methods=['GET', 'POST']) def onc_browse(): """Examine the full source list with clickable links to object summaries""" table = request.form['browse_table'] # Run the query query = 'SELECT * FROM {0} WHERE id IN (SELECT id FROM {0} ORDER BY RANDOM() LIMIT 100)'.format(table) t = db.query(query, fmt='table') try: script, div, warning_message = onc_skyplot(t) except IOError: script = div = warning_message = '' # Convert to Pandas data frame data = t.to_pandas() data.index = data['id'] try: sources = data[['ra','dec','source_id']].values.tolist() sources = [[i[0], i[1], 'Source {}'.format(int(i[2])), int(i[2])] for i in sources] except: try: sources = data[['ra','dec','id']].values.tolist() sources = [[i[0], i[1], 'Source {}'.format(int(i[2])), int(i[2])] for i in sources] except: sources = '' # Change column to a link data = link_columns(data, db, ['id','source_id','spectrum','image', 'record']) # Create checkbox first column data = add_checkboxes(data) cols = [strip_html(str(i)) for i in data.columns.tolist()[1:]] cols = """<input class='hidden' type='checkbox', name='cols' value="{}" checked=True />""".format(cols) # Get numerical x and y axes for plotting columns = [c for c in t.colnames if isinstance(t[c][0], (int, float))] axes = '\n'.join(['<option value="{}"> {}</option>'.format(repr(b)+","+repr(list(t[b])), b) for b in columns]) return render_template('results.html', table=data.to_html(classes='display', index=False).replace('&lt;','<').replace('&gt;','>'), query=query, sources=sources, cols=cols, axes=axes) def strip_html(s): return re.sub(r'<[^<]*?/?>','',s) def tbl2html(table, classes='', ids='', roles=''): """ Sloppily converts an astropy table to html (when mixin columns won't let you do table.) """ # Get header columns = ''.join(['<th>{}</th>'.format(col) for col in table.colnames]) # Build table and header out = "<table class='table {}' id='{}' role='{}'><thead>{}</thead><tbody>".format(classes,ids,roles,columns) # Add rows for row in np.array(table): out += '<tr><td>'+'</td><td>'.join(list(map(str,row)))+'</td></tr>' out += "</tbody></table>" return out def onc_skyplot(t): """ Create a sky plot of the database objects """ # Convert to Pandas data frame data = t.to_pandas() data.index = data['id'] script, div, warning_message = '', '', '' if 'ra' in data and 'dec' in data: # Remove objects without RA/Dec num_missing = np.sum(pd.isnull(data.get('ra'))) if num_missing > 0: warning_message = 'Note: {} objects had missing coordinate information and were removed.'.format(num_missing) data = data[pd.notnull(data.get('ra'))] else: warning_message = '' # Coerce to numeric data['ra'] =
pd.to_numeric(data['ra'])
pandas.to_numeric
import collections.abc from pathlib import Path import pandas as pd import xml.etree.ElementTree as ET from io import BytesIO from typing import List, Union, Dict, Iterator from pandas import DataFrame from .types import UploadException, UploadedFile from .config import column_names import logging logger = logging.getLogger(__name__) class _BufferedUploadedFile(collections.abc.Mapping): def __init__(self, file, name, description): self.name = name self.description = description self.file = Path(file) if not self.file.is_file(): raise FileNotFoundError(f"{self.file} not found.") def __getitem__(self, k): if k == "name": return self.name elif k == "description": return self.description elif k == "fileText": with open(self.file, 'rb') as file: return file.read() else: raise AttributeError(f'{k} not found') def __len__(self) -> int: return 3 def __iter__(self) -> Iterator: pass def read_from_text(raw_files: List[UploadedFile]) -> Dict[str, DataFrame]: """ Reads from a raw list of files passed from javascript. These files are of the form e.g. [ {name: 'filename.csv', fileText: <file contents>, description: <upload metadata>} ] This function will try to catch most basic upload errors, and dispatch other errors to either the csv or xml reader based on the file extension. """ if len(raw_files) == 0: raise UploadException('No files uploaded!') extensions = list(set([f["name"][-3:].lower() for f in raw_files])) if len(extensions) != 1: raise UploadException(f'Mix of CSV and XML files found ({extensions})! Please reupload.') else: if extensions[0] == 'csv': return read_csvs_from_text(raw_files) elif extensions[0] == 'xml': return read_xml_from_text(raw_files[0]['fileText']) else: raise UploadException(f'Unknown file type {extensions[0]} found.') def read_files(files: Union[str, Path]) -> List[UploadedFile]: uploaded_files: List[_BufferedUploadedFile] = [] for filename in files: uploaded_files.append(_BufferedUploadedFile(file=filename, name=filename, description="This year")) return uploaded_files def read_csvs_from_text(raw_files: List[UploadedFile]) -> Dict[str, DataFrame]: def _get_file_type(df) -> str: for table_name, expected_columns in column_names.items(): if set(df.columns) == set(expected_columns): logger.info(f'Loaded {table_name} from CSV. ({len(df)} rows)') return table_name else: raise UploadException(f'Failed to match provided data ({list(df.columns)}) to known column names!') files = {} for file_data in raw_files: csv_file = BytesIO(file_data["fileText"]) df = pd.read_csv(csv_file) file_name = _get_file_type(df) if 'This year' in file_data['description']: name = file_name elif 'Prev year' in file_data['description']: name = file_name + '_last' else: raise UploadException(f'Unrecognized file description {file_data["description"]}') files[name] = df return files def read_xml_from_text(xml_string) -> Dict[str, DataFrame]: header_df = [] episodes_df = [] uasc_df = [] oc2_df = [] oc3_df = [] ad1_df = [] reviews_df = [] sbpfa_df = [] prev_perm_df = [] missing_df = [] def read_data(table): # The CHILDID tag needs to be renamed to CHILD to match the CSV # The PL tag needs to be renamed to PLACE to match the CSV conversions = { 'CHILDID': 'CHILD', 'PL': 'PLACE', } return { conversions.get(node.tag, node.tag): node.text for node in table.iter() if len(node) == 0 } def get_fields_for_table(all_data, table_name): def read_value(k): val = all_data.get(k, None) try: val = int(val) except: pass return val return pd.Series({k: read_value(k) for k in column_names[table_name]}) for child in ET.fromstring(xml_string): all_data = read_data(child) header_df.append(get_fields_for_table(all_data, 'Header')) if all_data.get('UASC', None) is not None: uasc_df.append(get_fields_for_table(all_data, 'UASC')) if all_data.get('IN_TOUCH', None) is not None: oc3_df.append(get_fields_for_table(all_data, 'OC3')) if all_data.get('DATE_INT', None) is not None: ad1_df.append(get_fields_for_table(all_data, 'AD1')) for table in child: if table.tag == 'EPISODE': data = read_data(table) episodes_df.append(get_fields_for_table({**all_data, **data}, 'Episodes')) elif table.tag == 'HEADER': for child_table in table: if child_table.tag == 'AREVIEW': data = read_data(child_table) reviews_df.append(get_fields_for_table({**all_data, **data}, 'Reviews')) elif child_table.tag == 'AMISSING': data = read_data(child_table) missing_df.append(get_fields_for_table({**all_data, **data}, 'Missing')) elif child_table.tag == 'OC2': data = read_data(child_table) oc2_df.append(get_fields_for_table({**all_data, **data}, 'OC2')) elif child_table.tag == 'PERMANENCE': data = read_data(child_table) prev_perm_df.append(get_fields_for_table({**all_data, **data}, 'PrevPerm')) elif child_table.tag == 'AD_PLACED': data = read_data(child_table) sbpfa_df.append(get_fields_for_table({**all_data, **data}, 'PlacedAdoption')) data = { 'Header': pd.DataFrame(header_df), 'Episodes': pd.DataFrame(episodes_df), 'UASC': pd.DataFrame(uasc_df), 'Reviews': pd.DataFrame(reviews_df), 'OC2': pd.DataFrame(oc2_df), 'OC3':
pd.DataFrame(oc3_df)
pandas.DataFrame
# Created by MeaningCloud Support Team # Copyright 2020 MeaningCloud LLC # Date: 23/02/2020 import sys import os import meaningcloud import pandas as pd # @param license_key - Your license key (found in the subscription section in https://www.meaningcloud.com/developer/) license_key = '<<<your license key>>>' # @param text_column - Name of the column where the texts will be text_column = 'Review' # auxiliary variables to follow progress of the process index_count = 1 # Analyzes the text passed as a parameter def analyzeText(text): global index_count print("Analyzing text " + str(index_count)) # this is where we are going to store our results polarity = '' entities = '' concepts = '' iab2 = '' try: # We are going to make a request to the Sentiment Analysis API print("\tGetting sentiment analysis...") sentiment_response = meaningcloud.SentimentResponse(meaningcloud.SentimentRequest(license_key, lang='en', txt=text, txtf='markup').sendReq()) if sentiment_response.isSuccessful(): polarity = sentiment_response.getGlobalScoreTag() else: print('Request to sentiment was not succesful: ' + sentiment_response.getStatusMsg()) # We are going to make a request to the Topics Extraction API print("\tGetting entities and concepts...") topics_req = meaningcloud.TopicsRequest(license_key, txt=text, lang='en', topicType='ec', otherparams={'txtf':'markup'}) topics_response = meaningcloud.TopicsResponse(topics_req.sendReq()) # If there are no errors in the request, we extract the entities and concepts if topics_response.isSuccessful(): entities_list = topics_response.getEntities() formatted_entities = [] if entities_list: for entity in entities_list: if int(topics_response.getTopicRelevance(entity)) >= 100: #we limit the entities to those with relevance higher than 100 formatted_entities.append(topics_response.getTopicForm(entity) + ' (' + topics_response.getTypeLastNode(topics_response.getOntoType(entity)) + ')') entities = ', '.join(formatted_entities) concepts_list = topics_response.getConcepts() formatted_concepts = [] if concepts_list: for concept in concepts_list: if int(topics_response.getTopicRelevance(concept)) >= 100: #we limit the entities to those with relevance higher than 100 formatted_concepts.append(topics_response.getTopicForm(concept)) concepts = ', '.join(list(dict.fromkeys(formatted_concepts))) else: print('Request to topics was not succesful: ' + topics_response.getStatusMsg()) # We are going to make a request to the Deep Categorization API print("\tGetting IAB 2.0 classification...") deepcat_response = meaningcloud.DeepCategorizationResponse(meaningcloud.DeepCategorizationRequest(license_key, model='IAB_2.0_en', txt=text, otherparams={'txtf':'markup'}).sendReq()) if deepcat_response.isSuccessful(): categories = deepcat_response.getCategories() iab2 = (', '.join(deepcat_response.getCategoryCode(cat) for cat in categories[:1])) if categories else '' else: print('Request to Deep Categorization was not succesful: ' + deepcat_response.getStatusMsg()) except ValueError: e = sys.exc_info()[0] print("\nException: " + str(e)) index_count += 1 return
pd.Series([polarity, entities, concepts, iab2])
pandas.Series
#__________________________________________________________________________________________________________________________________________________________ """Working Code, Do Not Change""" #__________________________________________________________________________________________________________________________________________________________ """ This script reads the raw data from the RaDeCC text (.txt) files and the performs corrections and uncertainty propagations described by Garcia-Solsona et al. (2008) (Marine Chemistry, 109, pp. 198-219) in order to quantify 223Ra and 224Ra. It also calculates the slope of total counts per minute for later estimation of 226Ra via 222Rn ingrowth (Geibert et al. (2013), Limnol. Oceanogr. Methods, 11). The input is a RaDeCC read file. The output is a list of numbers, strings and lists including final CPMs and associated metadata. """ import os import scipy.stats as sci import numpy as np import pandas as pd import datetime import matplotlib.pyplot as plt from pathlib import Path from get_digits import get_digits from collections import Counter def interval_calculator (list_, runtime): #This finds the counts within each interval. The range is length of list -1 as the last list1 = [] #value of each list is the summary value. if len(list_) >2: for i in range (len(list_)-1): if i == 0: list1.append(list_[i]/(runtime[i]-0)) else: list1.append(list_[i]/(runtime[i]-runtime[i-1])) list1.append((list_[-1]-np.sum(list_[:-1]))/(runtime[-1]-runtime[-2])) else: list1.append(-999) # print((list_[-1]-np.sum(list_[:-1]))/(runtime[-1]-runtime[-2])) return (list1) def cc_calculator (list1, list2, list3, cc_value): #calculates channel corrections listx = [] for i in range (len(list1)): listx.append((((list1[i] - list2[i] - list3[i])**2)*cc_value)/(1-((list1[i] - list2[i] - list3[i])*cc_value))) return (listx) def add_on_summary_line(cnt_list): cnt_list_with_summary_values = cnt_list[:-1] cnt_list_with_summary_values.append(cnt_list[-1]-np.sum(cnt_list[:-1])) #print(cnt_list[-1], cnt_list_with_summary_values[-1]) return(cnt_list_with_summary_values) def slope_calculator (output_directory, detector_dict, arg_file, spike_sensitivity, equilibration_time_variable, DDMMYYY_DateFormat, thstd = 'thstd', acstd = 'acstd', blank = 'blank'): runtimecopy = [] CPM219copy = [] cnt219copy = [] CPM220copy = [] cnt220copy = [] CPMTotcopy = [] cntTotcopy = [] runtime = [] CPM219 = [] cnt219 = [] CPM220 = [] cnt220 = [] CPMTot = [] cntTot = [] spike_list = [] error_list = [] file_name = arg_file spike = 0 #print (file_name) #Open txt file f = open(file_name, 'r') print (file_name) with open (file_name) as f: #_________________________________________________________________________________________________________________________________________________ #RAW [RUNTIME, CPM219, cnt219, CPM220, cnt220, CPMTot, cntTot]____________________________________________________________________________________ for line in f: line = line.replace('"','') if line[0].isnumeric(): #Find lines containing data rather than titles x = line.split() #Split data within each line#Split data within each line#Split data within each line runtimecopy.append(float(x[0].replace(",", "."))) #Append data to appropriate variable lists CPM219copy.append(float(x[1].replace(",", "."))) cnt219copy.append(int(x[2].replace(",", "."))) CPM220copy.append(float(x[3].replace(",", "."))) cnt220copy.append(int(x[4].replace(",", "."))) CPMTotcopy.append(float(x[5].replace(",", "."))) cntTotcopy.append(float(x[6].replace(",", "."))) #_______________________________________________________________________________________________________________________________________________ #START DATETIME_________________________________________________________________________________________________________________________________ # Find and extract the start date and time of the read from the radecc read file if line[0:5] == 'Start': date_time = pd.to_datetime(line [10:], dayfirst = DDMMYYY_DateFormat) if len(runtimecopy)>1: interval_length_mins = int(runtimecopy[1]) else: interval_length_mins = -999 #Find and remove spikes in counts (here a spike is defined by a count that is more than 100 counts higher than the last count period as default) spike_dict = {} spike_list_219 = [] spike_list_220 = [] spike_list_tot = [] for i in range (len(cntTotcopy)): if i != len(runtimecopy) - 1: if (cnt219copy[i]-cnt219copy[i-1])>spike_sensitivity or (cnt220copy[i]-cnt220copy[i-1])>spike_sensitivity or (cntTotcopy[i]-cntTotcopy[i-1])>spike_sensitivity: # print ('Spike detected and removed in file:',arg_file,'\ncnt219 cnts',cnt219copy[i],'\ncnt220 cnts',cnt220copy[i],'\ntot cnts :', cntTotcopy[i]) spike_dict.update({runtimecopy[i]:cntTotcopy[i]}) error_list.append('S1') spike_list_219.append(cnt219copy[i]) spike_list_220.append(cnt220copy[i]) spike_list_tot.append(cntTotcopy[i]) else: runtime.append(runtimecopy[i]) CPM219.append(CPM219copy[i]) cnt219.append(cnt219copy[i]) CPM220.append(CPM220copy[i]) cnt220.append(cnt220copy[i]) CPMTot.append(CPMTotcopy[i]) cntTot.append(cntTotcopy[i]) if i == len(runtimecopy) - 1: runtime.append(runtimecopy[i]) CPM219.append(CPM219copy[i]) cnt219.append(cnt219copy[i]) CPM220.append(CPM220copy[i]) cnt220.append(cnt220copy[i]) CPMTot.append(CPMTotcopy[i]) cntTot.append(cntTotcopy[i]) f.close() interval_length = round(runtime[1]-runtime[0]) # print(interval_length) equilibration_number_of_intervals = int(equilibration_time_variable/interval_length) #________________________________________________________________________________________________________________________________________________ #Data_quality_checks_(DIEGO-FELIU et al. 2020)____________________________________________________________________________________________________________ CR220219 = np.array(CPM220)/np.array(CPM219) if acstd not in str(file_name) and thstd not in str(file_name): for i in range(len(CPMTot)): if CPMTot[i] < 200: if CPMTot[i] > 100: error_list.append('Err224_Tot100') if CR220219[i] > 10: error_list.append('Err223_CR10') # print ('CR10') if CR220219[i] < 10 and CR220219[i]>4: if CPM220[i] > 5: error_list.append('Err223_CPM220_5') # print ('Err223_CPM220_5') if CR220219[i] < 8 and CR220219[i] > 2: if CPM219[i] > 1: error_list.append('Err224_CPM219_1') # print ('Err224_CPM219_1') if CR220219[i] < 2: error_list.append('Err224_CR2') else: error_list.append('Err223_Tot200') error_list = dict(Counter(error_list)) for key in error_list.keys(): if key != 'S1': error_list[key] = str(int(error_list[key]/len(CPMTot)*100))+'%' # error_list = list(set(error_list)) #________________________________________________________________________________________________________________________________________________ #END DATETIME____________________________________________________________________________________________________________________________________ #calculate the end date and time of the read by adding the read-time to the start datetime end_date_time = date_time + datetime.timedelta(minutes = runtime[-1]) #________________________________________________________________________________________________________________________________________________ #CPM220,CPM219,CPMTot for each 10 min time interval______________________________________________________________________________________________ #Calculate the counts per minute (CPM) for each time period (interval) for each channel, using interval_calculator CPM219_interval = interval_calculator(cnt219, runtime) CPM220_interval = interval_calculator(cnt220, runtime) CPMTot_interval = interval_calculator(cntTot, runtime) # #________________________________________________________________________________________________________________________________________________ # #CHANNEL CORRECTIONS ON EACH INTERVAL____________________________________________________________________________________________________________ y_220_cc = cc_calculator(CPMTot_interval, CPM220_interval, CPM219_interval, 0.01) #220 channel correction (value = 0.01) CMP220_corr = [] for i in range (len(CPM220_interval)): #Find corrected 220 cpm CMP220_corr.append(CPM220_interval[i] -y_220_cc[i]) #print (y_220_cc[i], CMP220_corr[i]) y_219_cc = cc_calculator(CPMTot_interval, CMP220_corr, CPM219_interval, 0.0000935) #219 channel correction (value = 0.0000935) CPM219_corr = [] for i in range (len(CPM219_interval)): CPM219_corr.append(CPM219_interval[i]-y_219_cc[i]) #Find corrected 219 cpm CPM220_final = [] for i in range (len(CPM219_corr)): CPM220_final.append(CMP220_corr[i] - ((((1.65*CPM219_corr[i])**2)*0.01)/(1-((1.65*CPM219_corr[i])*0.01)))) #Find Final 220 cpm CPM219_final = [] for i in range(len(CPM219_corr)): CPM219_final.append(CPM219_corr[i] - (CMP220_corr[i] * 0.0255)) #Find final 219CPM (corrected 219 cpm - (CMP220_corr[i] * 0.0255)) #print (np.average(y_219_cc)) CPMTot_corr = [] for i in range(len (CPMTot_interval)): CPMTot_corr.append(CPMTot_interval[i] - 2*CPM220_final[i] - 2*CPM219_final[i]) #Find corrected Total CPM #print (arg_file) #________________________________________________________________________________________________________________________________________________ #CALCULATE LINEAR REGRESSION OF CPMTot_corr______________________________________________________________________________________________________ if thstd in str(file_name) or acstd in str(file_name) or blank in str(file_name): # if len(runtime[:]) == len(CPMTot_interval[:]): # slope = sci.linregress(runtime[:], CPMTot_interval[:]) # error_list['Standard_read'] = True # # slope_220 = sci.linregress(runtime[:], CPM220_interval[:]) # # if slope_220[0]<-0.0001: # # print ('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@',slope_220[0]) # else: # print ('\n***ERROR***\nThe read file ',arg_file,'does not contain enough data points to perform a linear regression: 222Rn ingrowth slope set to 999\n') error_list['Standard_read'] = True slope = [-999,-999,-999,-999,-999] else: if len(runtime[equilibration_number_of_intervals:-1]) == len(CPMTot_interval[equilibration_number_of_intervals:-1]) and float(runtime[-1]) > 590: slope = sci.linregress(runtime[equilibration_number_of_intervals:-1], CPMTot_interval[equilibration_number_of_intervals:-1]) # slope_220 = sci.linregress(runtime[:], CPM220_interval[:]) # if slope_220[0]<-0.0001: # print ('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@',slope_220[0]) else: # print ('\n***ERROR***\nThe read file ',arg_file,'does not contain enough data points to perform a linear regression: 222Rn ingrowth slope set to 999\n') error_list['Err226_short_read'] = True slope = [-999,-999,-999,-999,-999] #________________________________________________________________________________________________________________________________________________ #Propagation of Uncertainties___________________________________________________________________________________________ cntTot = add_on_summary_line(cntTot) cntTot[-1] = cntTot[-1] - np.sum(spike_list_tot) cnt219 = add_on_summary_line(cnt219) cnt219[-1] = cnt219[-1] - np.sum(spike_list_219) cnt220 = add_on_summary_line(cnt220) cnt220[-1] = cnt220[-1] - np.sum(spike_list_220) # runtime = add_on_summary_line(runtime) if np.sum(cnt219) == 0: err_219 = 0 if np.sum(cnt219) != 0: err_219 = np.sqrt(np.sum(cnt219))/np.sum(cnt219) #[-1] index is the final list value which is the summary line in the txt file if np.sum(cnt220) == 0: err_220 = 0 if np.sum(cnt220) != 0: err_220 = np.sqrt(np.sum(cnt220))/np.sum(cnt220) err_Tot = np.sqrt(np.sum(cnt220))/np.sum(cnt220) cpm_219 = np.sum(cnt219)/(runtime[-1]-(interval_length_mins*len(spike_dict.keys()))) cnt219_abserr = err_219*cpm_219 cpm_220 = np.sum(cnt220)/(runtime[-1]-(interval_length_mins*len(spike_dict.keys()))) cnt220_abserr = err_220*cpm_220 cpm_Tot = np.sum(cntTot)/(runtime[-1]-(interval_length_mins*len(spike_dict.keys()))) cntTot_abserr = err_Tot*cpm_Tot y_220 = (cpm_Tot-cpm_220-cpm_219) y_220_err = (np.sqrt((cntTot_abserr)**2+(cnt220_abserr)**2+(cnt219_abserr)**2)) y220cc = ((y_220**2)*0.01)/(1-(y_220*0.01)) y220cc_err = y_220_err*(((2*0.01*y_220)-(0.01*y_220)**2)/(1-0.01*y_220)**2) corr220 = cpm_220 - y220cc corr220_err = np.sqrt(cnt220_abserr**2 +y220cc_err**2) y_219 = (cpm_Tot-corr220-cpm_219) y_219_err = (np.sqrt((cntTot_abserr)**2+(corr220_err)**2+(cnt219_abserr)**2)) y219cc = ((y_219**2)*0.000093)/(1-(y_219*0.000093)) y219cc_err = y_219_err*(((2*0.000093*y_219)-(0.000093*y_219)**2)/(1-0.000093*y_219)**2) corr219 = cpm_219 - y219cc corr219_err = np.sqrt(cnt219_abserr**2 +y219cc_err**2) final219 = corr219 - (corr220*0.0255) final219_err = np.sqrt(corr219_err**2 + (0.0255*corr220_err)**2) final220 = corr220 - ((1.6*corr219)**2 * 0.01)/(1 + ((1.6*corr219)*0.01)) final220_err = np.sqrt(corr220_err**2 + ((((2*1.6)**2 *0.01*corr219-(1.6**3 * 0.01**2 * corr219**2))/(1-(1.6*0.01*corr219))**2)*corr219_err)**2) # #________________________________________________________________________________________________________________________________________________ # #cnttotnet____(= cntTot - 2*cnt219 - 2*cnt220)___________________________________________________________________________________________________ # cnttotnet = cntTot[-1] - 2*cnt219[-1] - 2*cnt220[-1] #________________________________________________________________________________________________________________________________________________ #erslope_abs__________________________________________________________________________________________________ errslope_rel = slope[4] errslope_abs = slope[4]/slope[0] # print (slope[0], slope[4]/slope[0], errslope_rel) #________________________________________________________________________________________________________________________________________________ #Detector Name (detname), Cartridge type, Read Number_________________________________________________________________________________________________ try: tempname=arg_file.parts tempname2 = tempname[-1].split('-') cart_type = tempname2[-3][-1].lower() except: cart_type = None #find detector name detname_checklist = [] for key in detector_dict.keys(): if key.lower() in tempname[-1].lower(): detname_checklist.append(key) # print(detname_checklist) if len(detname_checklist)>1: detname = 'Err_MultipleDetectorNames' if len(detname_checklist)==1: detname = detname_checklist[0] else: detname = 'Err_DetectorNotFound' # tempname3=tempname2[-1].split('.') # detname=tempname3[0].lower() #find read number read_number = get_digits(tempname2[0]) base_dir = output_directory/'Read_Plots' #print (base_dir) sample_dir = Path(os.path.join(*arg_file.parts[-4:-1])) if sample_dir.parts[-1].split('_')[-1] == 'folder': sample_dir = Path('Standards_and_Blanks')/sample_dir.parts[-1] read_name = arg_file.parts[-1].split('.')[0] #print (sample_dir) if (base_dir/(str(sample_dir)+'_plots')).exists() == False: os.makedirs(base_dir/(str(sample_dir)+'_plots')) if (base_dir/sample_dir/read_name).exists() == False: if len(runtime)>3: #fig = plt.figure() # CPMTot_interval[-1] = CPMTot_interval[-1]-np.sum(CPMTot_interval[:-1]) ax = plt.subplot(111) CPMTot_lineplot = ax.plot(runtime[:-1], CPMTot_interval[:-1], '-', label = 'Total CPM line') CPMTot_scatter = ax.scatter(runtime[:-1], CPMTot_interval[:-1], label = 'Total CPM') # if len(runtime[equilibration_number_of_intervals:]) == len(CPMTotcopy[equilibration_number_of_intervals:]) and len(CPMTot_corr[equilibration_number_of_intervals:])>3: # ax.plot(runtime[0:equilibration_number_of_intervals], CPMTotcopy[0:equilibration_number_of_intervals], '-') # ax.scatter(runtime[0:equilibration_number_of_intervals], CPMTotcopy[0:equilibration_number_of_intervals], label = 'Total CPM (Equilibration Time)') CPM220_line_plot = ax.plot(runtime[:-1], CPM220_interval[:-1], '-', label = '220 CPM line') CPM220_scatter = ax.scatter(runtime[:-1], CPM220_interval[:-1], label = '220 CPM') CPM219_line_plot = ax.plot(runtime[:-1], CPM219_interval[:-1], '-', label = '219 CPM line') CPM219_scatter = ax.scatter(runtime[:-1], CPM219_interval[:-1], label = '219 CPM') ax.legend((CPMTot_scatter,CPM220_scatter, CPM219_scatter),('Total CPM', '220 CPM', '219 CPM'), loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=2) plt.title(read_name) plt.xlabel('Read Time (mins)') plt.ylabel('Counts per minute (cpm)') plt.savefig(base_dir/(str(sample_dir)+'_plots')/read_name, dpi = 250, bbox_inches = 'tight') # plt.show() plt.clf() if len(spike_dict.keys())>0: ax1 = plt.subplot(111) total_counts_line = ax1.plot(runtimecopy[:-1], cntTotcopy[:-1], '-', label = 'Total Counts line') total_counts_scatter = ax1.scatter(runtimecopy[:-1], cntTotcopy[:-1], label = 'Total Counts') spike_scatter = ax1.scatter(spike_dict.keys(), spike_dict.values(), label = 'Removed Spike') ax1.legend((total_counts_scatter, spike_scatter),('Total Counts line', 'Removed Spike'),loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=2) plt.title('Spike_Plot_'+read_name) plt.xlabel('Read Time (mins)') plt.ylabel('Counts') plt.savefig(base_dir/(str(sample_dir)+'_plots')/('Spike_Plot_'+str(read_name)), dpi = 250, bbox_inches = 'tight') plt.clf() if cpm_Tot > 10: error_list['Err226_cpm<10'] = True if runtime[-1] > 10.0: return (date_time, end_date_time, slope[0], slope[4], sum(cnt219), cnt219_abserr, sum(cnt220), cnt220_abserr, cpm_219, err_219, cpm_220, err_220, cpm_Tot, err_Tot, y219cc, y219cc_err, y220cc, y220cc_err, corr219, corr219_err, corr220, corr220_err, final219, final220, runtime[-1], final219_err, final220_err, cntTot_abserr, errslope_abs, detname, cart_type, read_number, spike_dict, error_list) else: # return (pd.to_datetime('01/01/1900 00:00:00'), pd.to_datetime('01/01/1900 00:00:00'), -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, 'no_read', 'no_read', -999, -999, ['no read']) return (pd.to_datetime('01/01/1900 00:00:00'),
pd.to_datetime('01/01/1900 00:00:00')
pandas.to_datetime
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- __all__ = [ 'getNumCols', 'convertToMatrixBlock', 'convert_caffemodel', 'convert_lmdb_to_jpeg', 'convertToNumPyArr', 'convertToPandasDF', 'SUPPORTED_TYPES' , 'convertToLabeledDF', 'convertImageToNumPyArr', 'getDatasetMean'] import numpy as np import pandas as pd import os import math from pyspark.context import SparkContext from scipy.sparse import coo_matrix, spmatrix, csr_matrix from .classloader import * SUPPORTED_TYPES = (np.ndarray, pd.DataFrame, spmatrix) DATASET_MEAN = {'VGG_ILSVRC_19_2014':[103.939, 116.779, 123.68]} def getNumCols(numPyArr): if numPyArr.ndim == 1: return 1 else: return numPyArr.shape[1] def get_pretty_str(key, value): return '\t"' + key + '": ' + str(value) + ',\n' def save_tensor_csv(tensor, file_path, shouldTranspose): w = w.reshape(w.shape[0], -1) if shouldTranspose: w = w.T np.savetxt(file_path, w, delimiter=',') with open(file_path + '.mtd', 'w') as file: file.write('{\n\t"data_type": "matrix",\n\t"value_type": "double",\n') file.write(get_pretty_str('rows', w.shape[0])) file.write(get_pretty_str('cols', w.shape[1])) file.write(get_pretty_str('nnz', np.count_nonzero(w))) file.write('\t"format": "csv",\n\t"description": {\n\t\t"author": "SystemML"\n\t}\n}\n') def convert_caffemodel(sc, deploy_file, caffemodel_file, output_dir, format="binary", is_caffe_installed=False): """ Saves the weights and bias in the caffemodel file to output_dir in the specified format. This method does not requires caffe to be installed. Parameters ---------- sc: SparkContext SparkContext deploy_file: string Path to the input network file caffemodel_file: string Path to the input caffemodel file output_dir: string Path to the output directory format: string Format of the weights and bias (can be binary, csv or text) is_caffe_installed: bool True if caffe is installed """ if is_caffe_installed: if format != 'csv': raise ValueError('The format ' + str(format) + ' is not supported when caffe is installed. Hint: Please specify format=csv') import caffe net = caffe.Net(deploy_file, caffemodel_file, caffe.TEST) for layerName in net.params.keys(): num_parameters = len(net.params[layerName]) if num_parameters == 0: continue elif num_parameters == 2: # Weights and Biases layerType = net.layers[list(net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv(net.params[layerName][0].data, os.path.join(output_dir, layerName + '_weight.mtx'), shouldTranspose) save_tensor_csv(net.params[layerName][1].data, os.path.join(output_dir, layerName + '_bias.mtx'), shouldTranspose) elif num_parameters == 1: # Only Weight layerType = net.layers[list(net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv(net.params[layerName][0].data, os.path.join(output_dir, layerName + '_weight.mtx'), shouldTranspose) else: raise ValueError('Unsupported number of parameters:' + str(num_parameters)) else: createJavaObject(sc, 'dummy') utilObj = sc._jvm.org.apache.sysml.api.dl.Utils() utilObj.saveCaffeModelFile(sc._jsc, deploy_file, caffemodel_file, output_dir, format) def convert_lmdb_to_jpeg(lmdb_img_file, output_dir): """ Saves the images in the lmdb file as jpeg in the output_dir. This method requires caffe to be installed along with lmdb and cv2 package. To install cv2 package, do `pip install opencv-python`. Parameters ---------- lmdb_img_file: string Path to the input lmdb file output_dir: string Output directory for images (local filesystem) """ import lmdb, caffe, cv2 lmdb_cursor = lmdb.open(lmdb_file, readonly=True).begin().cursor() datum = caffe.proto.caffe_pb2.Datum() i = 1 for _, value in lmdb_cursor: datum.ParseFromString(value) data = caffe.io.datum_to_array(datum) output_file_path = os.path.join(output_dir, 'file_' + str(i) + '.jpg') image = np.transpose(data, (1,2,0)) # CxHxW to HxWxC in cv2 cv2.imwrite(output_file_path, image) i = i + 1 def convertToLabeledDF(sparkSession, X, y=None): from pyspark.ml.feature import VectorAssembler if y is not None: pd1 = pd.DataFrame(X) pd2 = pd.DataFrame(y, columns=['label']) pdf =
pd.concat([pd1, pd2], axis=1)
pandas.concat
''' permit.py --------- This file collects raw building permit data, and summarizes the information for each census tract. It is called by make_zone_facts.py The resulting dataset from this file looks like: zone_type | zone | construction_permits | total_permits ----------|---------|----------------------|-------------- tract | 000100 | 231 | 575 tract | 000201 | 2 | 6 tract | 000202 | 145 | 363 tract | 000300 | 102 | 351 tract | 000400 | 77 | 204 ''' from . import utils import pandas as pd def get_permit_for_year(path): df = pd.read_csv(path) df.columns = df.columns.str.lower() df['construction_permits'] = df['permit_type_name'].apply( lambda x: 1 if x == 'CONSTRUCTION' else 0) df['total_permits'] = 1 # filter out permits from more than a year ago. df = utils.filter_date(df, 'issue_date') # Get census tract df = utils.get_census_tract_for_data(df, 'longitude', 'latitude') df = df[['tract', 'ward', 'neighborhoodcluster', 'construction_permits', 'total_permits']] df = df.rename(columns={'neighborhoodcluster': 'neighborhood_cluster'}) df['neighborhood_cluster'] = utils.just_digits(df['neighborhood_cluster']) return df def get_permit_data(): paths = utils.get_paths_for_data('permits', years=utils.get_years()) df = pd.concat([get_permit_for_year(path) for path in paths]) data = [] for geo in ['tract', 'neighborhood_cluster', 'ward']: temp = df.groupby(geo)[['construction_permits', 'total_permits']].sum() temp['zone_type'] = geo temp['zone'] = temp.index data.append(temp) return
pd.concat(data)
pandas.concat
import numpy as np import pandas as pd attribute_dict = {} a_file = open("attribute_names.txt") for line in a_file: key, value = line.strip('\n').split(":") key = key.strip() attribute_dict[key] = value df_german_data =
pd.read_csv('german_data.csv', index_col=0)
pandas.read_csv
from packaging.version import Version from scprep.plot.histogram import _symlog_bins from scprep.plot.jitter import _JitterParams from scprep.plot.scatter import _ScatterParams from tools import data from tools import utils import matplotlib import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import scprep import sys import unittest def try_remove(filename): try: os.remove(filename) except FileNotFoundError: pass def test_default_matplotlibrc(): for key in [ "axes.labelsize", "axes.titlesize", "figure.titlesize", "legend.fontsize", "legend.title_fontsize", "xtick.labelsize", "ytick.labelsize", ]: assert scprep.plot.utils._is_default_matplotlibrc() is True default = plt.rcParams[key] plt.rcParams[key] = "xx-large" assert scprep.plot.utils._is_default_matplotlibrc() is False plt.rcParams[key] = default assert scprep.plot.utils._is_default_matplotlibrc() is True def test_parse_fontsize(): for key in [ "axes.labelsize", "axes.titlesize", "figure.titlesize", "legend.fontsize", "legend.title_fontsize", "xtick.labelsize", "ytick.labelsize", ]: assert scprep.plot.utils.parse_fontsize("x-large", "large") == "x-large" assert scprep.plot.utils.parse_fontsize(None, "large") == "large" default = plt.rcParams[key] plt.rcParams[key] = "xx-large" assert scprep.plot.utils.parse_fontsize("x-large", "large") == "x-large" assert scprep.plot.utils.parse_fontsize(None, "large") is None plt.rcParams[key] = default assert scprep.plot.utils.parse_fontsize("x-large", "large") == "x-large" assert scprep.plot.utils.parse_fontsize(None, "large") == "large" def test_generate_colorbar_str(): cb = scprep.plot.tools.generate_colorbar(cmap="viridis") assert cb.cmap.name == "viridis" def test_generate_colorbar_colormap(): cb = scprep.plot.tools.generate_colorbar(cmap=plt.cm.viridis) assert cb.cmap.name == "viridis" def test_generate_colorbar_list(): cb = scprep.plot.tools.generate_colorbar(cmap=["red", "blue"]) assert cb.cmap.name == "scprep_custom_cmap" def test_generate_colorbar_dict(): if Version(matplotlib.__version__) >= Version("3.2"): errtype = ValueError msg = "is not a valid value for name; supported values are" else: errtype = TypeError msg = "unhashable type: 'dict'" utils.assert_raises_message( errtype, msg, scprep.plot.tools.generate_colorbar, cmap={"+": "r", "-": "b"}, ) def test_tab30(): cmap = scprep.plot.colors.tab30() np.testing.assert_array_equal( cmap.colors[:15], np.array(matplotlib.cm.tab20c.colors)[ [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18] ], ) np.testing.assert_array_equal( cmap.colors[15:], np.array(matplotlib.cm.tab20b.colors)[ [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18] ], ) def test_tab40(): cmap = scprep.plot.colors.tab40() np.testing.assert_array_equal(cmap.colors[:20], matplotlib.cm.tab20c.colors) np.testing.assert_array_equal(cmap.colors[20:], matplotlib.cm.tab20b.colors) def test_tab10_continuous(): cmap = scprep.plot.colors.tab10_continuous(n_colors=10, n_step=2, reverse=True) np.testing.assert_allclose( cmap.colors, np.hstack([matplotlib.cm.tab20.colors, np.ones((20, 1))]), atol=0.06, ) def test_tab10_continuous_no_reverse(): cmap = scprep.plot.colors.tab10_continuous(n_colors=10, n_step=2, reverse=False) colors = np.array(cmap.colors) for i in range(len(colors) // 2): tmp = np.array(colors[2 * i]) colors[2 * i] = colors[2 * i + 1] colors[2 * i + 1] = tmp np.testing.assert_allclose( colors, np.hstack([matplotlib.cm.tab20.colors, np.ones((20, 1))]), atol=0.06 ) def test_tab10_continuous_invalid_n_colors(): utils.assert_raises_message( ValueError, "Expected 0 < n_colors <= 10. Got 0", scprep.plot.colors.tab10_continuous, n_colors=0, ) utils.assert_raises_message( ValueError, "Expected 0 < n_colors <= 10. Got 11", scprep.plot.colors.tab10_continuous, n_colors=11, ) utils.assert_raises_message( ValueError, "Expected n_step >= 2. Got 1", scprep.plot.colors.tab10_continuous, n_step=1, ) def test_tab_exact(): assert scprep.plot.colors.tab(1) is plt.cm.tab10 np.testing.assert_array_equal( scprep.plot.colors.tab(10).colors, plt.cm.tab10.colors ) np.testing.assert_array_equal( scprep.plot.colors.tab(20).colors, plt.cm.tab20.colors ) np.testing.assert_array_equal( scprep.plot.colors.tab(30).colors, scprep.plot.colors.tab30().colors ) np.testing.assert_array_equal( scprep.plot.colors.tab(40).colors, scprep.plot.colors.tab40().colors ) np.testing.assert_array_equal( scprep.plot.colors.tab(50).colors, scprep.plot.colors.tab10_continuous(n_colors=10, n_step=5).colors, ) def test_tab_first10(): np.testing.assert_array_equal( scprep.plot.colors.tab(19).colors[:10], plt.cm.tab10.colors ) np.testing.assert_array_equal( scprep.plot.colors.tab(29).colors[:10], scprep.plot.colors.tab30().colors[::3] ) np.testing.assert_array_equal( scprep.plot.colors.tab(39).colors[:10], scprep.plot.colors.tab40().colors[::4] ) np.testing.assert_array_equal( scprep.plot.colors.tab(49).colors[:10], scprep.plot.colors.tab10_continuous(n_colors=10, n_step=5).colors[::5], ) def test_tab_first20(): np.testing.assert_array_equal( scprep.plot.colors.tab(29).colors[10:20], scprep.plot.colors.tab30().colors[1::3], ) np.testing.assert_array_equal( scprep.plot.colors.tab(39).colors[10:20], scprep.plot.colors.tab40().colors[1::4], ) def test_tab_first30(): np.testing.assert_array_equal( scprep.plot.colors.tab(39).colors[20:30], scprep.plot.colors.tab40().colors[2::4], ) def test_tab_overhang(): np.testing.assert_array_equal( scprep.plot.colors.tab(9).colors, plt.cm.tab10.colors[:9] ) np.testing.assert_array_equal( scprep.plot.colors.tab(19).colors[10:], plt.cm.tab20.colors[1:-1:2] ) np.testing.assert_array_equal( scprep.plot.colors.tab(29).colors[20:], scprep.plot.colors.tab30().colors[2:-1:3], ) np.testing.assert_array_equal( scprep.plot.colors.tab(39).colors[30:], scprep.plot.colors.tab40().colors[3:-1:4], ) np.testing.assert_array_equal( scprep.plot.colors.tab(49).colors[40:], scprep.plot.colors.tab10_continuous(n_colors=10, n_step=5).colors[4:-1:5], ) def test_tab_invalid(): utils.assert_raises_message( ValueError, "Expected n >= 1. Got 0", scprep.plot.colors.tab, n=0 ) def test_is_color_array_none(): assert not scprep.plot.utils._is_color_array(None) def test_symlog_bins(): # all negative assert np.all(_symlog_bins(-10, -1, 1, 10) < 0) # all positive assert np.all(_symlog_bins(1, 10, 1, 10) > 0) # ends at zero assert np.all(_symlog_bins(-10, 0, 1, 10) <= 0) assert _symlog_bins(-10, 0, 1, 10)[-1] == 0 # starts at zero assert np.all(_symlog_bins(0, 10, 1, 10) >= 0) assert _symlog_bins(0, 10, 1, 10)[0] == 0 # identically zero assert np.all(_symlog_bins(0, 0, 0.1, 10) == [-1, -0.1, 0.1, 1]) class TestScatterParams(unittest.TestCase): @classmethod def setUpClass(self): self.X = np.random.normal(0, 1, [500, 4]) self.x = self.X[:, 0] self.y = self.X[:, 1] self.z = self.X[:, 2] self.c = self.X[:, 3] self.array_c = np.vstack([self.c, self.c, self.c, self.c]).T self.array_c = self.array_c - np.min(self.array_c) self.array_c = self.array_c / np.max(self.array_c) def test_size(self): params = _ScatterParams(x=self.x, y=self.y) assert params.size == len(self.x) def test_plot_idx_shuffle(self): params = _ScatterParams( x=self.x, y=self.y, z=self.z, c=self.c, s=np.abs(self.x) ) assert not np.all(params.plot_idx == np.arange(params.size)) np.testing.assert_equal(params.x, self.x[params.plot_idx]) np.testing.assert_equal(params.y, self.y[params.plot_idx]) np.testing.assert_equal(params.z, self.z[params.plot_idx]) np.testing.assert_equal(params.c, self.c[params.plot_idx]) np.testing.assert_equal(params.s, np.abs(self.x)[params.plot_idx]) def test_plot_idx_no_shuffle(self): params = _ScatterParams( x=self.x, y=self.y, z=self.z, c=self.c, s=np.abs(self.x), shuffle=False ) np.testing.assert_equal(params.plot_idx, np.arange(params.size)) np.testing.assert_equal(params.x, self.x) np.testing.assert_equal(params.y, self.y) np.testing.assert_equal(params.z, self.z) np.testing.assert_equal(params.c, self.c) np.testing.assert_equal(params.s, np.abs(self.x)) def test_plot_idx_mask(self): params = _ScatterParams( x=self.x, y=self.y, z=self.z, c=self.c, mask=self.x > 0, shuffle=False ) np.testing.assert_equal(params.plot_idx, np.arange(params.size)[self.x > 0]) np.testing.assert_equal(params.x, self.x[self.x > 0]) np.testing.assert_equal(params.y, self.y[self.x > 0]) np.testing.assert_equal(params.z, self.z[self.x > 0]) np.testing.assert_equal(params.c, self.c[self.x > 0]) def test_plot_idx_mask_shuffle(self): params = _ScatterParams(x=self.x, y=self.y, mask=self.x > 0, shuffle=True) np.testing.assert_equal( np.sort(params.plot_idx), np.arange(params.size)[self.x > 0] ) assert np.all(params.x > 0) def test_data_int(self): params = _ScatterParams(x=1, y=2) np.testing.assert_equal(params._data, [np.array([1]), np.array([2])]) assert params.subplot_kw == {} def test_data_2d(self): params = _ScatterParams(x=self.x, y=self.y) np.testing.assert_equal(params._data, [self.x, self.y]) np.testing.assert_equal( params.data, [self.x[params.plot_idx], self.y[params.plot_idx]] ) assert params.subplot_kw == {} def test_data_3d(self): params = _ScatterParams(x=self.x, y=self.y, z=self.z) np.testing.assert_equal(params._data, [self.x, self.y, self.z]) np.testing.assert_equal( params.data, [self.x[params.plot_idx], self.y[params.plot_idx], self.z[params.plot_idx]], ) assert params.subplot_kw == {"projection": "3d"} def test_s_default(self): params = _ScatterParams(x=self.x, y=self.y) assert params.s == 200 / np.sqrt(params.size) def test_s_given(self): params = _ScatterParams(x=self.x, y=self.y, s=3) assert params.s == 3 def test_c_none(self): params = _ScatterParams(x=self.x, y=self.y) assert params.constant_c() assert not params.array_c() assert params.discrete is None assert params.legend is False assert params.vmin is None assert params.vmax is None assert params.cmap is None assert params.cmap_scale is None assert params.extend is None def test_constant_c(self): params = _ScatterParams(x=self.x, y=self.y, c="blue") assert params.constant_c() assert not params.array_c() assert params.discrete is None assert params.legend is False assert params.vmin is None assert params.vmax is None assert params.cmap is None assert params.cmap_scale is None assert params.extend is None assert params.labels is None def test_array_c(self): params = _ScatterParams(x=self.x, y=self.y, c=self.array_c) assert params.array_c() assert not params.constant_c() np.testing.assert_array_equal(params.x, params._x[params.plot_idx]) np.testing.assert_array_equal(params.y, params._y[params.plot_idx]) np.testing.assert_array_equal(params.c, params._c[params.plot_idx]) assert params.discrete is None assert params.legend is False assert params.vmin is None assert params.vmax is None assert params.cmap is None assert params.cmap_scale is None assert params.extend is None assert params.labels is None def test_continuous(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c) assert not params.array_c() assert not params.constant_c() np.testing.assert_array_equal(params.x, params._x[params.plot_idx]) np.testing.assert_array_equal(params.y, params._y[params.plot_idx]) np.testing.assert_array_equal(params.c, params._c[params.plot_idx]) assert params.discrete is False assert params.legend is True assert params.cmap_scale == "linear" assert params.cmap is plt.cm.inferno params = _ScatterParams( x=self.x, y=self.y, discrete=False, c=np.round(self.c % 1, 1) ) assert not params.array_c() assert not params.constant_c() np.testing.assert_array_equal(params.x, params._x[params.plot_idx]) np.testing.assert_array_equal(params.y, params._y[params.plot_idx]) np.testing.assert_array_equal(params.c, params._c[params.plot_idx]) assert params.discrete is False assert params.legend is True assert params.labels is None assert params.cmap_scale == "linear" assert params.cmap is plt.cm.inferno def test_discrete_tab10(self): params = _ScatterParams(x=self.x, y=self.y, c=np.where(self.c > 0, "+", "-")) assert not params.array_c() assert not params.constant_c() np.testing.assert_array_equal(params.x, params._x[params.plot_idx]) np.testing.assert_array_equal(params.y, params._y[params.plot_idx]) np.testing.assert_array_equal(params.c, params.c_discrete[params.plot_idx]) assert params.discrete is True assert params.legend is True assert params.vmin is None assert params.vmax is None assert params.cmap_scale is None np.testing.assert_equal(params.cmap.colors, plt.cm.tab10.colors[:2]) def test_discrete_tab20(self): params = _ScatterParams(x=self.x, y=self.y, c=10 * np.round(self.c % 1, 1)) assert not params.array_c() assert not params.constant_c() assert params.discrete is True assert params.legend is True assert params.vmin is None assert params.vmax is None assert params.cmap_scale is None assert params.extend is None assert isinstance(params.cmap, matplotlib.colors.ListedColormap) np.testing.assert_equal(params.cmap.colors[:10], plt.cm.tab10.colors) np.testing.assert_equal( params.cmap.colors[10:], plt.cm.tab20.colors[1 : 1 + (len(params.cmap.colors) - 10) * 2 : 2], ) def test_continuous_less_than_20(self): params = _ScatterParams(x=self.x, y=self.y, c=np.round(self.c % 1, 1)) assert not params.array_c() assert not params.constant_c() assert params.discrete is False assert params.legend is True assert params.vmin == 0 assert params.vmax == 1 assert params.cmap_scale == "linear" assert params.extend == "neither" assert params.cmap is matplotlib.cm.inferno def test_continuous_tab20_str(self): params = _ScatterParams( x=self.x, y=self.y, discrete=False, cmap="tab20", c=np.round(self.c % 1, 1) ) assert params.cmap is plt.cm.tab20 def test_continuous_tab20_obj(self): params = _ScatterParams( x=self.x, y=self.y, discrete=False, cmap=plt.get_cmap("tab20"), c=np.round(self.c % 1, 1), ) assert params.cmap is plt.cm.tab20 def test_discrete_dark2(self): params = _ScatterParams( x=self.x, y=self.y, discrete=True, cmap="Dark2", c=np.where(self.c > 0, "+", "-"), ) assert not params.array_c() assert not params.constant_c() assert params.discrete is True assert params.legend is True assert params.vmin is None assert params.vmax is None assert params.cmap_scale is None assert params.extend is None assert isinstance(params.cmap, matplotlib.colors.ListedColormap) np.testing.assert_equal(params.cmap.colors, plt.cm.Dark2.colors[:2]) def test_c_discrete(self): c = np.where(self.c > 0, "a", "b") params = _ScatterParams(x=self.x, y=self.y, c=c) np.testing.assert_equal(params.c_discrete, np.where(c == "a", 0, 1)) np.testing.assert_equal(params.labels, ["a", "b"]) def test_legend(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, legend=False) assert params.legend is False params = _ScatterParams(x=self.x, y=self.y, c=self.c, colorbar=False) assert params.legend is False def test_vmin_given(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, vmin=0) assert params.vmin == 0 def test_vmin_default(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c) assert params.vmin == np.min(self.c) def test_vmax_given(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, vmax=0) assert params.vmax == 0 def test_vmax_default(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c) assert params.vmax == np.max(self.c) def test_list_cmap(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, cmap=["red", "black"]) assert params.list_cmap() np.testing.assert_equal(params.cmap([0, 255]), [[1, 0, 0, 1], [0, 0, 0, 1]]) def test_dict_cmap_fwd(self): params = _ScatterParams( x=self.x, y=self.y, c=np.where(self.c > 0, "+", "-"), cmap={"+": "k", "-": "r"}, ) assert not params.list_cmap() if sys.version_info[1] > 5: np.testing.assert_equal(params.cmap.colors, [[0, 0, 0, 1], [1, 0, 0, 1]]) assert np.all(params._labels == np.array(["+", "-"])) else: try: np.testing.assert_equal( params.cmap.colors, [[0, 0, 0, 1], [1, 0, 0, 1]] ) assert np.all(params._labels == np.array(["+", "-"])) except AssertionError: np.testing.assert_equal( params.cmap.colors, [[1, 0, 0, 1], [0, 0, 0, 1]] ) assert np.all(params._labels == np.array(["-", "+"])) def test_dict_cmap_rev(self): params = _ScatterParams( x=self.x, y=self.y, c=np.where(self.c > 0, "+", "-"), cmap={"-": "k", "+": "r"}, ) if sys.version_info[1] > 5: np.testing.assert_equal(params.cmap.colors, [[0, 0, 0, 1], [1, 0, 0, 1]]) assert np.all(params._labels == np.array(["-", "+"])) else: try: np.testing.assert_equal( params.cmap.colors, [[0, 0, 0, 1], [1, 0, 0, 1]] ) assert np.all(params._labels == np.array(["-", "+"])) except AssertionError: np.testing.assert_equal( params.cmap.colors, [[1, 0, 0, 1], [0, 0, 0, 1]] ) assert np.all(params._labels == np.array(["+", "-"])) def test_dict_cmap_constant(self): params = _ScatterParams( x=self.x, y=self.y, c=np.full_like(self.c, "+", dtype=str), cmap={"-": "k", "+": "r"}, ) np.testing.assert_equal(params.cmap.colors, [[1, 0, 0, 1]]) assert np.all(params._labels == np.array(["+"])) def test_cmap_given(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, cmap="viridis") assert params.cmap is matplotlib.cm.viridis assert not params.list_cmap() def test_cmap_scale_symlog(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, cmap_scale="symlog") assert params.cmap_scale == "symlog" assert isinstance(params.norm, matplotlib.colors.SymLogNorm), params.norm def test_cmap_scale_log(self): params = _ScatterParams( x=self.x, y=self.y, c=np.abs(self.c) + 1, cmap_scale="log" ) assert params.cmap_scale == "log" assert isinstance(params.norm, matplotlib.colors.LogNorm), params.norm def test_cmap_scale_sqrt(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, cmap_scale="sqrt") assert params.cmap_scale == "sqrt" assert isinstance(params.norm, matplotlib.colors.PowerNorm), params.norm assert params.norm.gamma == 0.5 def test_extend(self): params = _ScatterParams(x=self.x, y=self.y, c=self.c, vmin=np.mean(self.c)) assert params.extend == "min" params = _ScatterParams(x=self.x, y=self.y, c=self.c, vmax=np.mean(self.c)) assert params.extend == "max" params = _ScatterParams( x=self.x, y=self.y, c=self.c, vmin=(np.min(self.c) + np.mean(self.c)) / 2, vmax=(np.max(self.c) + np.mean(self.c)) / 2, ) assert params.extend == "both" params = _ScatterParams(x=self.x, y=self.y, c=self.c) assert params.extend == "neither" def test_check_vmin_vmax(self): utils.assert_warns_message( UserWarning, "Cannot set `vmin` or `vmax` with constant `c=None`. " "Setting `vmin = vmax = None`.", _ScatterParams, x=self.x, y=self.y, vmin=0, ) utils.assert_warns_message( UserWarning, "Cannot set `vmin` or `vmax` with discrete data. " "Setting to `None`.", _ScatterParams, x=self.x, y=self.y, c=np.where(self.c > 0, "+", "-"), vmin=0, ) def test_check_legend(self): utils.assert_raises_message( ValueError, "Received conflicting values for synonyms " "`legend=True` and `colorbar=False`", _ScatterParams, x=self.x, y=self.y, legend=True, colorbar=False, ) utils.assert_warns_message( UserWarning, "`c` is a color array and cannot be used to create a " "legend. To interpret these values as labels instead, " "provide a `cmap` dictionary with label-color pairs.", _ScatterParams, x=self.x, y=self.y, c=self.array_c, legend=True, ) utils.assert_warns_message( UserWarning, "Cannot create a legend with constant `c=None`", _ScatterParams, x=self.x, y=self.y, c=None, legend=True, ) def test_check_size(self): utils.assert_raises_message( ValueError, "Expected all axes of data to have the same length" ". Got [500, 100]", _ScatterParams, x=self.x, y=self.y[:100], ) utils.assert_raises_message( ValueError, "Expected all axes of data to have the same length" ". Got [500, 500, 100]", _ScatterParams, x=self.x, y=self.y, z=self.z[:100], ) def test_check_c(self): utils.assert_raises_message( ValueError, "Expected c of length 500 or 1. Got 100", _ScatterParams, x=self.x, y=self.y, c=self.c[:100], ) def test_check_discrete(self): utils.assert_raises_message( ValueError, "Cannot treat non-numeric data as continuous.", _ScatterParams, x=self.x, y=self.y, c=np.where(self.c > 0, "+", "-"), discrete=False, ) def test_check_cmap(self): utils.assert_raises_message( ValueError, "Expected list-like `c` with dictionary cmap." " Got <class 'str'>", _ScatterParams, x=self.x, y=self.y, c="black", cmap={"+": "k", "-": "r"}, ) utils.assert_raises_message( ValueError, "Cannot use dictionary cmap with " "continuous data.", _ScatterParams, x=self.x, y=self.y, c=self.c, discrete=False, cmap={"+": "k", "-": "r"}, ) utils.assert_raises_message( ValueError, "Dictionary cmap requires a color " "for every unique entry in `c`. " "Missing colors for [+]", _ScatterParams, x=self.x, y=self.y, c=np.where(self.c > 0, "+", "-"), cmap={"-": "r"}, ) utils.assert_raises_message( ValueError, "Expected list-like `c` with list cmap. " "Got <class 'str'>", _ScatterParams, x=self.x, y=self.y, c="black", cmap=["k", "r"], ) def test_check_cmap_scale(self): utils.assert_warns_message( UserWarning, "Cannot use non-linear `cmap_scale` with " "`c` as a color array.", _ScatterParams, x=self.x, y=self.y, c=self.array_c, cmap_scale="log", ) utils.assert_warns_message( UserWarning, "Cannot use non-linear `cmap_scale` with constant " "`c=black`.", _ScatterParams, x=self.x, y=self.y, c="black", cmap_scale="log", ) utils.assert_warns_message( UserWarning, "Cannot use non-linear `cmap_scale` with discrete data.", _ScatterParams, x=self.x, y=self.y, cmap_scale="log", c=np.where(self.c > 0, "+", "-"), ) def test_series_labels(self): params = _ScatterParams(x=pd.Series(self.x, name="x"), y=self.y, c=self.c) assert params.xlabel == "x" assert params.ylabel is None assert params.zlabel is None params = _ScatterParams(x=self.x, y=pd.Series(self.y, name="y"), c=self.c) assert params.xlabel is None assert params.ylabel == "y" assert params.zlabel is None params = _ScatterParams( x=self.x, y=self.y, z=pd.Series(self.y, name="z"), c=self.c ) assert params.xlabel is None assert params.ylabel is None assert params.zlabel == "z" # xlabel overrides series params = _ScatterParams( x=pd.Series(self.x, name="x"), y=self.y, c=self.c, xlabel="y" ) assert params.xlabel == "y" assert params.ylabel is None assert params.zlabel is None # label_prefix overrides series params = _ScatterParams( x=pd.Series(self.x, name="x"), y=self.y, c=self.c, label_prefix="y" ) assert params.xlabel == "y1" assert params.ylabel == "y2" assert params.zlabel is None # xlabel overrides label_prefix params = _ScatterParams( x=pd.Series(self.x, name="x"), y=self.y, z=self.y, c=self.c, label_prefix="y", xlabel="test", ) assert params.xlabel == "test" assert params.ylabel == "y2" assert params.zlabel == "y3" def test_jitter_x(self): params = _JitterParams(x=np.where(self.x > 0, "+", "-"), y=self.y) np.testing.assert_array_equal(params.x_labels, ["+", "-"]) np.testing.assert_array_equal( params.x_coords, np.where(self.x > 0, 0, 1)[params.plot_idx] ) class Test10X(unittest.TestCase): @classmethod def setUpClass(self): self.X = data.load_10X(sparse=False) self.X_filt = scprep.filter.filter_empty_cells(self.X) self.X_pca, self.S = scprep.reduce.pca( scprep.utils.toarray(self.X), n_components=10, return_singular_values=True ) @classmethod def tearDownClass(self): try_remove("test.png") try_remove("test.gif") try_remove("test.mp4") try_remove("test_jitter.png") try_remove("test_histogram.png") try_remove("test_library_size.png") try_remove("test_variable_genes.png") try_remove("test_gene_expression.png") try_remove("test_scree.png") def tearDown(self): plt.close("all") def test_histogram(self): scprep.plot.plot_library_size(self.X_filt, cutoff=1000, log=True) scprep.plot.plot_library_size( self.X_filt, cutoff=1000, log=True, xlabel="x label", ylabel="y label" ) def test_histogram_list_of_lists(self): scprep.plot.plot_library_size(scprep.utils.toarray(self.X_filt).tolist()) def test_histogram_array(self): scprep.plot.plot_library_size(scprep.utils.toarray(self.X_filt)) def test_histogram_multiple(self): scprep.plot.histogram( [scprep.select.select_rows(self.X, idx=0), [1, 2, 2, 2, 3]], color=["r", "b"], label=["one", "two"], ) def test_histogram_multiple_cutoff(self): scprep.plot.plot_library_size(self.X_filt, cutoff=[500, 1000], log=True) def test_histogram_multiple_percentile(self): scprep.plot.plot_library_size(self.X_filt, percentile=[10, 90], log=True) def test_histogram_log_negative_min(self): scprep.plot.histogram([-1, 1, 1, 1], log="x") scprep.plot.histogram([-1, 1, 1, 1], log=True) scprep.plot.histogram([-1, -0.1, -0.1, 1], log="x") scprep.plot.histogram([-1, -0.1, -0.1, 1], log=True) def test_histogram_log_negative_max(self): scprep.plot.histogram([-1, -1, -1, -1], log="x") scprep.plot.histogram([-1, -1, -1, -1], log=True) scprep.plot.histogram([-1, -1, -1, -2], log="x") scprep.plot.histogram([-1, -1, -1, -2], log=True) def test_histogram_log_zero_min(self): scprep.plot.histogram([0, 1, 1, 1], log="x") scprep.plot.histogram([0, 1, 1, 1], log=True) scprep.plot.histogram([0, 0, -0.1, 1], log="x") scprep.plot.histogram([0, 0, -0.1, 1], log=True) def test_histogram_log_zero_max(self): scprep.plot.histogram([-1, -1, 0, -1], log="x") scprep.plot.histogram([-1, -1, 0, -1], log=True) scprep.plot.histogram([-1, -1, 0, -2], log="x") scprep.plot.histogram([-1, -1, 0, -2], log=True) def test_plot_library_size_multiple(self): scprep.plot.plot_library_size( [ self.X_filt, scprep.select.select_rows( self.X_filt, idx=np.arange(self.X_filt.shape[0] // 2) ), ], color=["r", "b"], filename="test_library_size.png", ) assert os.path.exists("test_library_size.png") def test_plot_gene_set_expression_multiple(self): scprep.plot.plot_gene_set_expression( [ self.X, scprep.select.select_rows(self.X, idx=np.arange(self.X.shape[0] // 2)), ], starts_with="D", color=["r", "b"], ) def test_gene_set_expression_list_of_lists(self): scprep.plot.plot_gene_set_expression( scprep.utils.toarray(self.X).tolist(), genes=[0, 1] ) def test_gene_set_expression_array(self): scprep.plot.plot_gene_set_expression(scprep.utils.toarray(self.X), genes=[0, 1]) def test_plot_gene_set_expression_single_gene(self): scprep.plot.plot_gene_set_expression( self.X, color=["red"], genes="Arl8b", filename="test_gene_expression.png" ) assert os.path.exists("test_gene_expression.png") def test_plot_variable_genes(self): scprep.plot.plot_gene_variability(self.X, filename="test_variable_genes.png") assert os.path.exists("test_variable_genes.png") def test_variable_genes_list_of_lists(self): scprep.plot.plot_gene_variability(scprep.utils.toarray(self.X).tolist()) def test_histogram_single_gene_dataframe(self): scprep.plot.histogram( scprep.select.select_cols(self.X, idx=["Arl8b"]), color=["red"] ) def test_histogram_single_gene_series(self): scprep.plot.histogram( scprep.select.select_cols(self.X, idx="Arl8b"), color=["red"] ) def test_histogram_custom_axis(self): fig, ax = plt.subplots() scprep.plot.plot_gene_set_expression( self.X, genes=scprep.select.get_gene_set(self.X, starts_with="D"), percentile=90, log="y", ax=ax, title="histogram", filename="test_histogram.png", ) assert os.path.exists("test_histogram.png") assert ax.get_title() == "histogram" def test_histogram_invalid_axis(self): utils.assert_raises_message( TypeError, "Expected ax as a matplotlib.axes.Axes. Got ", scprep.plot.plot_library_size, self.X, ax="invalid", ) def test_scree(self): ax = scprep.plot.scree_plot(self.S) assert all([t == int(t) for t in ax.get_xticks()]), ax.get_xticks() ax = scprep.plot.scree_plot( self.S, cumulative=True, xlabel="x label", ylabel="y label", filename="test_scree.png", ) assert all([t == int(t) for t in ax.get_xticks()]), ax.get_xticks() assert os.path.isfile("test_scree.png") def test_scree_custom_axis(self): fig, ax = plt.subplots() scprep.plot.scree_plot(self.S, ax=ax) assert all([t == int(t) for t in ax.get_xticks()]), ax.get_xticks() def test_scree_invalid_axis(self): utils.assert_raises_message( TypeError, "Expected ax as a matplotlib.axes.Axes. Got ", scprep.plot.scree_plot, self.S, ax="invalid", ) def test_scatter_continuous(self): scprep.plot.scatter2d( self.X_pca, c=self.X_pca[:, 0], legend_title="test", title="title test" ) def test_scatter2d_one_point(self): scprep.plot.scatter2d(self.X_pca[0], c=["red"]) def test_scatter3d_one_point(self): scprep.plot.scatter3d(self.X_pca[0], c=["red"]) def test_scatter_discrete(self): ax = scprep.plot.scatter2d( self.X_pca, c=np.random.choice(["hello", "world"], self.X_pca.shape[0], replace=True), legend_title="test", legend_loc="center left", legend_anchor=(1.02, 0.5), ) assert ax.get_legend().get_title().get_text() == "test" def test_scatter_discrete_str_int(self): ax = scprep.plot.scatter2d( self.X_pca, c=np.random.choice(["1", "2", "3"], self.X_pca.shape[0], replace=True), legend_title="test", legend_loc="center left", legend_anchor=(1.02, 0.5), ) assert ax.get_legend().get_title().get_text() == "test" def test_jitter_discrete(self): ax = scprep.plot.jitter( np.where(self.X_pca[:, 0] > 0, "+", "-"), self.X_pca[:, 1], c=np.random.choice(["hello", "world"], self.X_pca.shape[0], replace=True), legend_title="test", title="jitter", filename="test_jitter.png", ) assert os.path.exists("test_jitter.png") assert ax.get_legend().get_title().get_text() == "test" assert ax.get_title() == "jitter" assert ax.get_xlim() == (-0.5, 1.5) assert [t.get_text() for t in ax.get_xticklabels()] == ["+", "-"] def test_jitter_continuous(self): ax = scprep.plot.jitter( np.where(self.X_pca[:, 0] > 0, "+", "-"), self.X_pca[:, 1], c=self.X_pca[:, 1], title="jitter", legend_title="test", ) assert ax.get_figure().get_axes()[1].get_ylabel() == "test" assert ax.get_title() == "jitter" assert ax.get_xlim() == (-0.5, 1.5) assert [t.get_text() for t in ax.get_xticklabels()] == ["+", "-"] def test_jitter_axis_labels(self): ax = scprep.plot.jitter( np.where(self.X_pca[:, 0] > 0, "+", "-"), self.X_pca[:, 1], xlabel="test" ) assert ax.get_xlabel() == "test" assert ax.get_ylabel() == "" ax = scprep.plot.jitter( pd.Series(np.where(self.X_pca[:, 0] > 0, "+", "-"), name="x"), pd.Series(self.X_pca[:, 1], name="y"), ylabel="override", ) assert ax.get_xlabel() == "x" assert ax.get_ylabel() == "override" def test_scatter_dict(self): scprep.plot.scatter2d( self.X_pca, c=np.random.choice(["hello", "world"], self.X_pca.shape[0], replace=True), cmap={"hello": "red", "world": "green"}, ) def test_scatter_dict_c_none(self): utils.assert_raises_message( ValueError, "Expected list-like `c` with dictionary cmap. Got <class 'NoneType'>", scprep.plot.scatter2d, self.X_pca, c=None, cmap={"hello": "red", "world": "green"}, ) def test_scatter_dict_continuous(self): utils.assert_raises_message( ValueError, "Cannot use dictionary cmap with continuous data", scprep.plot.scatter2d, self.X_pca, c=self.X_pca[:, 0], discrete=False, cmap={"hello": "red", "world": "green"}, ) def test_scatter_dict_missing(self): utils.assert_raises_message( ValueError, "Dictionary cmap requires a color for every unique entry in `c`. " "Missing colors for [world]", scprep.plot.scatter2d, self.X_pca, c=np.random.choice(["hello", "world"], self.X_pca.shape[0], replace=True), cmap={"hello": "red"}, ) def test_scatter_list_discrete(self): scprep.plot.scatter2d( self.X_pca, c=np.random.choice(["hello", "world"], self.X_pca.shape[0], replace=True), cmap=["red", "green"], ) def test_scatter_list_discrete_missing(self): scprep.plot.scatter2d( self.X_pca, c=np.random.choice( ["hello", "great", "world"], self.X_pca.shape[0], replace=True ), cmap=["red", "green"], ) def test_scatter_list_continuous(self): scprep.plot.scatter2d(self.X_pca, c=self.X_pca[:, 0], cmap=["red", "green"]) def test_scatter_list_single(self): scprep.plot.scatter2d(self.X_pca, c=self.X_pca[:, 0], cmap=["red"]) def test_scatter_list_c_none(self): utils.assert_raises_message( ValueError, "Expected list-like `c` with list cmap. Got <class 'NoneType'>", scprep.plot.scatter2d, self.X_pca, c=None, cmap=["red", "green"], ) def test_scatter_discrete_greater_than_10(self): scprep.plot.scatter2d(self.X_pca, c=np.arange(self.X_pca.shape[0]) % 11) def test_scatter_solid(self): scprep.plot.scatter3d(self.X_pca, c="green") def test_scatter_none(self): scprep.plot.scatter2d(self.X_pca, c=None) def test_scatter_no_ticks(self): ax = scprep.plot.scatter3d(self.X_pca, zticks=False) assert len(ax.get_zticks()) == 0 def test_scatter_no_ticklabels(self): ax = scprep.plot.scatter3d(self.X_pca, zticklabels=False) assert np.all([lab.get_text() == "" for lab in ax.get_zticklabels()]) def test_scatter_custom_ticks(self): ax = scprep.plot.scatter2d(self.X_pca, xticks=[0, 1, 2]) assert np.all(ax.get_xticks() == np.array([0, 1, 2])) ax = scprep.plot.scatter3d(self.X_pca, zticks=False) assert np.all(ax.get_zticks() == np.array([])) def test_scatter_custom_ticklabels(self): ax = scprep.plot.scatter2d( self.X_pca, xticks=[0, 1, 2], xticklabels=["a", "b", "c"] ) assert np.all(ax.get_xticks() == np.array([0, 1, 2])) xticklabels = np.array([lab.get_text() for lab in ax.get_xticklabels()]) assert np.all(xticklabels == np.array(["a", "b", "c"])) def test_scatter_axis_labels(self): ax = scprep.plot.scatter2d(self.X_pca.tolist(), label_prefix="test") assert ax.get_xlabel() == "test1" assert ax.get_ylabel() == "test2" ax = scprep.plot.scatter3d(self.X_pca.tolist(), label_prefix="test") assert ax.get_xlabel() == "test1" assert ax.get_ylabel() == "test2" assert ax.get_zlabel() == "test3" ax = scprep.plot.scatter2d(self.X_pca, label_prefix="test", xlabel="override") assert ax.get_xlabel() == "override" assert ax.get_ylabel() == "test2" ax = scprep.plot.scatter( x=self.X_pca[:, 0], y=pd.Series(self.X_pca[:, 1], name="y"), z=
pd.Series(self.X_pca[:, 2], name="z")
pandas.Series
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assertIs(union, first) union = first.union([]) self.assertIs(union, first) union = Index([]).union(first) self.assertIs(union, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.union, 0.5) # preserve names first.name = 'A' second.name = 'A' union = first.union(second) self.assertEqual(union.name, 'A') second.name = 'B' union = first.union(second) self.assertIsNone(union.name) def test_add(self): # - API change GH 8226 with tm.assert_produces_warning(): self.strIndex + self.strIndex firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) self.assertTrue(tm.equalContents(firstCat, appended)) self.assertTrue(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(index)) # empty result = index.append([]) self.assertTrue(result.equals(index)) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) self.assertEqual(result.name, 'foo') left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) self.assertIsNone(result.name) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assertNotIn('a', index2) self.assertIn('afoo', index2) def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` self.assertIn('a', index) index += '_x' self.assertIn('a_x', index) def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) self.assertTrue(tm.equalContents(result, answer)) self.assertEqual(result.name, None) # same names second.name = 'name' result = first.difference(second) self.assertEqual(result.name, 'name') # with empty result = first.difference([]) self.assertTrue(tm.equalContents(result, first)) self.assertEqual(result.name, first.name) # with everythin result = first.difference(first) self.assertEqual(len(result), 0) self.assertEqual(result.name, first.name) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.diff, 0.5) def test_symmetric_diff(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.sym_diff(idx2) expected = Index([1, 5]) self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # __xor__ syntax expected = idx1 ^ idx2 self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.sym_diff(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) self.assertTrue(tm.equalContents(result, expected)) # nans: # GH #6444, sorting of nans. Make sure the number of nans is right # and the correct non-nan values are there. punt on sorting. idx1 = Index([1, 2, 3, np.nan]) idx2 = Index([0, 1, np.nan]) result = idx1.sym_diff(idx2) # expected = Index([0.0, np.nan, 2.0, 3.0, np.nan]) nans = pd.isnull(result) self.assertEqual(nans.sum(), 2) self.assertEqual((~nans).sum(), 3) [self.assertIn(x, result) for x in [0.0, 2.0, 3.0]] # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.sym_diff(idx2) self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'idx1') result = idx1.sym_diff(idx2, result_name='new_name') self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'new_name') # other isn't iterable with tm.assertRaises(TypeError): Index(idx1,dtype='object') - 1 def test_pickle(self): self.verify_pickle(self.strIndex) self.strIndex.name = 'foo' self.verify_pickle(self.strIndex) self.verify_pickle(self.dateIndex) def test_is_numeric(self): self.assertFalse(self.dateIndex.is_numeric()) self.assertFalse(self.strIndex.is_numeric()) self.assertTrue(self.intIndex.is_numeric()) self.assertTrue(self.floatIndex.is_numeric()) def test_is_object(self): self.assertTrue(self.strIndex.is_object()) self.assertTrue(self.boolIndex.is_object()) self.assertFalse(self.intIndex.is_object()) self.assertFalse(self.dateIndex.is_object()) self.assertFalse(self.floatIndex.is_object()) def test_is_all_dates(self): self.assertTrue(self.dateIndex.is_all_dates) self.assertFalse(self.strIndex.is_all_dates) self.assertFalse(self.intIndex.is_all_dates) def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. self.assertIn('~:{range}:0', result) self.assertIn('{other}%s', result) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = [str(index[0])] self.assertEqual(formatted, expected) # 2845 index = Index([1, 2.0+3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) # is this really allowed? index = Index([1, 2.0+3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) self.assertEqual(formatted[0], 'something') def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] self.assertEqual(len(result), 2) self.assertEqual(result, expected) def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() self.assertIsNone(idx[3]) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assertTrue(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) self.assertEqual(idx.slice_locs(start=2), (2, n)) self.assertEqual(idx.slice_locs(start=3), (3, n)) self.assertEqual(idx.slice_locs(3, 8), (3, 6)) self.assertEqual(idx.slice_locs(5, 10), (3, n)) self.assertEqual(idx.slice_locs(5.0, 10.0), (3, n)) self.assertEqual(idx.slice_locs(4.5, 10.5), (3, 8)) self.assertEqual(idx.slice_locs(end=8), (0, 6)) self.assertEqual(idx.slice_locs(end=9), (0, 7)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(8, 2), (2, 6)) self.assertEqual(idx2.slice_locs(8.5, 1.5), (2, 6)) self.assertEqual(idx2.slice_locs(7, 3), (2, 5)) self.assertEqual(idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) self.assertEqual(idx.slice_locs('a', 'd'), (0, 6)) self.assertEqual(idx.slice_locs(end='d'), (0, 6)) self.assertEqual(idx.slice_locs('a', 'c'), (0, 4)) self.assertEqual(idx.slice_locs('b', 'd'), (2, 6)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs('d', 'a'), (0, 6)) self.assertEqual(idx2.slice_locs(end='a'), (0, 6)) self.assertEqual(idx2.slice_locs('d', 'b'), (0, 4)) self.assertEqual(idx2.slice_locs('c', 'a'), (2, 6)) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) self.assertEqual(idx.slice_locs(12, 12), (1, 3)) self.assertEqual(idx.slice_locs(11, 13), (1, 3)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(12, 12), (1, 3)) self.assertEqual(idx2.slice_locs(13, 11), (1, 3)) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, start=1.5) self.assertRaises(KeyError, idx.slice_locs, end=1.5) self.assertEqual(idx.slice_locs(1), (1, 3)) self.assertEqual(idx.slice_locs(np.nan), (0, 3)) idx = Index([np.nan, np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_drop(self): n = len(self.strIndex) dropped = self.strIndex.drop(self.strIndex[lrange(5, 10)]) expected = self.strIndex[lrange(5) + lrange(10, n)] self.assertTrue(dropped.equals(expected)) self.assertRaises(ValueError, self.strIndex.drop, ['foo', 'bar']) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] self.assertTrue(dropped.equals(expected)) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) self.assertTrue(dropped.equals(expected)) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) self.assertEqual(int_idx.ndim, 1) self.assertTrue(int_idx.equals(expected)) # union broken union_idx = idx1.union(idx2) expected = idx2 self.assertEqual(union_idx.ndim, 1) self.assertTrue(union_idx.equals(expected)) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) self.assertFalse(index.is_monotonic) self.assertFalse(index.is_monotonic_decreasing) def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) self.assertEqual(values[67], 10) def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) self.assertEqual(len(result), 0) self.assertEqual(result.dtype, np.bool_) def test_isin_nan(self): self.assert_numpy_array_equal( Index(['a', np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Index(['a', pd.NaT]).isin([pd.NaT]), [False, True]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([float('nan')]), [False, False]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([pd.NaT]), [False, False]) # Float64Index overrides isin, so must be checked separately self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([float('nan')]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([pd.NaT]), [False, True]) def test_isin_level_kwarg(self): def check_idx(idx): values = idx.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(expected, idx.isin(values, level=0)) self.assert_numpy_array_equal(expected, idx.isin(values, level=-1)) self.assertRaises(IndexError, idx.isin, values, level=1) self.assertRaises(IndexError, idx.isin, values, level=10) self.assertRaises(IndexError, idx.isin, values, level=-2) self.assertRaises(KeyError, idx.isin, values, level=1.0) self.assertRaises(KeyError, idx.isin, values, level='foobar') idx.name = 'foobar' self.assert_numpy_array_equal(expected, idx.isin(values, level='foobar')) self.assertRaises(KeyError, idx.isin, values, level='xyzzy') self.assertRaises(KeyError, idx.isin, values, level=np.nan) check_idx(Index(['qux', 'baz', 'foo', 'bar'])) # Float64Index overrides isin, so must be checked separately check_idx(Float64Index([1.0, 2.0, 3.0, 4.0])) def test_boolean_cmp(self): values = [1, 2, 3, 4] idx = Index(values) res = (idx == values) self.assert_numpy_array_equal(res,np.array([True,True,True,True],dtype=bool)) def test_get_level_values(self): result = self.strIndex.get_level_values(0) self.assertTrue(result.equals(self.strIndex)) def test_slice_keep_name(self): idx = Index(['a', 'b'], name='asdf') self.assertEqual(idx.name, idx[1:].name) def test_join_self(self): # instance attributes of the form self.<name>Index indices = 'unicode', 'str', 'date', 'int', 'float' kinds = 'outer', 'inner', 'left', 'right' for index_kind in indices: res = getattr(self, '{0}Index'.format(index_kind)) for kind in kinds: joined = res.join(res, how=kind) self.assertIs(res, joined) def test_indexing_doesnt_change_class(self): idx = Index([1, 2, 3, 'a', 'b', 'c']) self.assertTrue(idx[1:3].identical( pd.Index([2, 3], dtype=np.object_))) self.assertTrue(idx[[0,1]].identical( pd.Index([1, 2], dtype=np.object_))) def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected) def test_nan_first_take_datetime(self): idx = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) res = idx.take([-1, 0, 1]) exp = Index([idx[-1], idx[0], idx[1]]) tm.assert_index_equal(res, exp) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self): # GH6552 idx = pd.Index([0, 1, 2]) dt_idx = pd.date_range('20130101', periods=3) idx.name = None self.assertEqual(idx.reindex([])[0].name, None) self.assertEqual(idx.reindex(np.array([]))[0].name, None) self.assertEqual(idx.reindex(idx.tolist())[0].name, None) self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, None) self.assertEqual(idx.reindex(idx.values)[0].name, None) self.assertEqual(idx.reindex(idx.values[:-1])[0].name, None) # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, None) self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, None) idx.name = 'foobar' self.assertEqual(idx.reindex([])[0].name, 'foobar') self.assertEqual(idx.reindex(np.array([]))[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist())[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values[:-1])[0].name, 'foobar') # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, 'foobar') def test_reindex_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type([]), np.object_) self.assertEqual(get_reindex_type(np.array([])), np.object_) self.assertEqual(get_reindex_type(np.array([], dtype=np.int64)), np.object_) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type(pd.Int64Index([])), np.int64) self.assertEqual(get_reindex_type(pd.Float64Index([])), np.float64) self.assertEqual(get_reindex_type(pd.DatetimeIndex([])), np.datetime64) reindexed = idx.reindex(pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] self.assertEqual(reindexed.levels[0].dtype.type, np.int64) self.assertEqual(reindexed.levels[1].dtype.type, np.float64) class Numeric(Base): def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx * idx tm.assert_index_equal(result, didx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * date_range('20130101',periods=5)) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_explicit_conversions(self): # GH 8608 # add/sub are overriden explicity for Float/Int Index idx = self._holder(np.arange(5,dtype='int64')) # float conversions arr = np.arange(5,dtype='int64')*3.2 expected = Float64Index(arr) fidx = idx * 3.2 tm.assert_index_equal(fidx,expected) fidx = 3.2 * idx tm.assert_index_equal(fidx,expected) # interops with numpy arrays expected = Float64Index(arr) a = np.zeros(5,dtype='float64') result = fidx - a tm.assert_index_equal(result,expected) expected = Float64Index(-arr) a = np.zeros(5,dtype='float64') result = a - fidx tm.assert_index_equal(result,expected) def test_ufunc_compat(self): idx = self._holder(np.arange(5,dtype='int64')) result = np.sin(idx) expected = Float64Index(np.sin(np.arange(5,dtype='int64'))) tm.assert_index_equal(result, expected) class TestFloat64Index(Numeric, tm.TestCase): _holder = Float64Index _multiprocess_can_split_ = True def setUp(self): self.mixed = Float64Index([1.5, 2, 3, 4, 5]) self.float = Float64Index(np.arange(5) * 2.5) def create_index(self): return Float64Index(np.arange(5,dtype='float64')) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.float).__name__): hash(self.float) def test_repr_roundtrip(self): for ind in (self.mixed, self.float): tm.assert_index_equal(eval(repr(ind)), ind) def check_is_index(self, i): self.assertIsInstance(i, Index) self.assertNotIsInstance(i, Float64Index) def check_coerce(self, a, b, is_float_index=True): self.assertTrue(a.equals(b)) if is_float_index: self.assertIsInstance(b, Float64Index) else: self.check_is_index(b) def test_constructor(self): # explicit construction index = Float64Index([1,2,3,4,5]) self.assertIsInstance(index, Float64Index) self.assertTrue((index.values == np.array([1,2,3,4,5],dtype='float64')).all()) index = Float64Index(np.array([1,2,3,4,5])) self.assertIsInstance(index, Float64Index) index = Float64Index([1.,2,3,4,5]) self.assertIsInstance(index, Float64Index) index = Float64Index(np.array([1.,2,3,4,5])) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, float) index = Float64Index(np.array([1.,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) index = Float64Index(np.array([1,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) # nan handling result = Float64Index([np.nan, np.nan]) self.assertTrue(pd.isnull(result.values).all()) result = Float64Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) result = Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) def test_constructor_invalid(self): # invalid self.assertRaises(TypeError, Float64Index, 0.) self.assertRaises(TypeError, Float64Index, ['a','b',0.]) self.assertRaises(TypeError, Float64Index, [Timestamp('20130101')]) def test_constructor_coerce(self): self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5])) self.check_coerce(self.float,Index(np.arange(5) * 2.5)) self.check_coerce(self.float,Index(np.array(np.arange(5) * 2.5, dtype=object))) def test_constructor_explicit(self): # these don't auto convert self.check_coerce(self.float,Index((np.arange(5) * 2.5), dtype=object), is_float_index=False) self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5],dtype=object), is_float_index=False) def test_astype(self): result = self.float.astype(object) self.assertTrue(result.equals(self.float)) self.assertTrue(self.float.equals(result)) self.check_is_index(result) i = self.mixed.copy() i.name = 'foo' result = i.astype(object) self.assertTrue(result.equals(i)) self.assertTrue(i.equals(result)) self.check_is_index(result) def test_equals(self): i = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i2)) i = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i2)) def test_get_loc_na(self): idx = Float64Index([np.nan, 1, 2]) self.assertEqual(idx.get_loc(1), 1) self.assertEqual(idx.get_loc(np.nan), 0) idx = Float64Index([np.nan, 1, np.nan]) self.assertEqual(idx.get_loc(1), 1) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_contains_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(np.nan in i) def test_contains_not_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(1.0 in i) def test_doesnt_contain_all_the_things(self): i = Float64Index([np.nan]) self.assertFalse(i.isin([0]).item()) self.assertFalse(i.isin([1]).item()) self.assertTrue(i.isin([np.nan]).item()) def test_nan_multiple_containment(self): i = Float64Index([1.0, np.nan]) np.testing.assert_array_equal(i.isin([1.0]), np.array([True, False])) np.testing.assert_array_equal(i.isin([2.0, np.pi]), np.array([False, False])) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, True])) np.testing.assert_array_equal(i.isin([1.0, np.nan]), np.array([True, True])) i = Float64Index([1.0, 2.0]) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, False])) def test_astype_from_object(self): index = Index([1.0, np.nan, 0.2], dtype='object') result = index.astype(float) expected = Float64Index([1.0, np.nan, 0.2]) tm.assert_equal(result.dtype, expected.dtype) tm.assert_index_equal(result, expected) class TestInt64Index(Numeric, tm.TestCase): _holder = Int64Index _multiprocess_can_split_ = True def setUp(self): self.index = Int64Index(np.arange(0, 20, 2)) def create_index(self): return Int64Index(np.arange(5,dtype='int64')) def test_too_many_names(self): def testit(): self.index.names = ["roger", "harold"] assertRaisesRegexp(ValueError, "^Length", testit) def test_constructor(self): # pass list, coerce fine index = Int64Index([-5, 0, 1, 2]) expected = np.array([-5, 0, 1, 2], dtype=np.int64) self.assert_numpy_array_equal(index, expected) # from iterable index = Int64Index(iter([-5, 0, 1, 2])) self.assert_numpy_array_equal(index, expected) # scalar raise Exception self.assertRaises(TypeError, Int64Index, 5) # copy arr = self.index.values new_index = Int64Index(arr, copy=True) self.assert_numpy_array_equal(new_index, self.index) val = arr[0] + 3000 # this should not change index arr[0] = val self.assertNotEqual(new_index[0], val) def test_constructor_corner(self): arr = np.array([1, 2, 3, 4], dtype=object) index = Int64Index(arr) self.assertEqual(index.values.dtype, np.int64) self.assertTrue(index.equals(arr)) # preventing casting arr = np.array([1, '2', 3, '4'], dtype=object) with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr) arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1] with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr_with_floats) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_copy(self): i = Int64Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Int64Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_coerce_list(self): # coerce things arr = Index([1, 2, 3, 4]) tm.assert_isinstance(arr, Int64Index) # but not if explicit dtype passed arr = Index([1, 2, 3, 4], dtype=object)
tm.assert_isinstance(arr, Index)
pandas.util.testing.assert_isinstance
import os import sys # ----------------------------------------------------------------------------- from datetime import datetime import dateutil.parser this_folder = os.path.dirname(os.path.abspath(__file__)) root_folder = os.path.dirname(os.path.dirname(this_folder)) sys.path.append(root_folder + '/python') sys.path.append(this_folder) # ----------------------------------------------------------------------------- import ccxt # noqa: E402 # ----------------------------------------------------------------------------- exchange = ccxt.kraken() symbol = 'ETH/USD' # each ohlcv candle is a list of [ timestamp, open, high, low, close, volume ] index = 4 # use close price from each ohlcv candle # length = 80 # height = 15 from backtesting import Backtest, Strategy from backtesting.lib import crossover from backtesting.test import SMA, GOOG import pandas as pd pd.options.mode.chained_assignment = None import numpy as np # ----------------------------------------------------------------------------# # Controllers. # ----------------------------------------------------------------------------# class SmaCross(Strategy): def __init__(self, broker, data, params): super().__init__(broker, data, params) self.signals = [ {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 1.34, "profit": -10.44776119402986, "ticker": "ETHUSD", "time": "2015-09-02T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 1.2, "profit": 49.166666666666664, "ticker": "ETHUSD", "time": "2015-09-11T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 0.61, "profit": 45.9016393442623, "ticker": "ETHUSD", "time": "2015-10-26T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 0.89, "profit": -7.865168539325837, "ticker": "ETHUSD", "time": "2015-11-07T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 0.96, "profit": -8.33333333333333, "ticker": "ETHUSD", "time": "2015-11-09T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 0.88, "profit": -9.090909090909086, "ticker": "ETHUSD", "time": "2015-11-12T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 0.96, "profit": -7.291666666666662, "ticker": "ETHUSD", "time": "2015-11-19T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 0.89, "profit": -2.247191011235957, "ticker": "ETHUSD", "time": "2015-11-26T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 0.91, "profit": -3.2967032967032996, "ticker": "ETHUSD", "time": "2015-12-13T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 0.88, "profit": -5.681818181818187, "ticker": "ETHUSD", "time": "2015-12-24T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 0.93, "profit": 365.59139784946234, "ticker": "ETHUSD", "time": "2016-01-01T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 4.33, "profit": -15.704387990762116, "ticker": "ETHUSD", "time": "2016-02-19T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 5.01, "profit": 107.18562874251501, "ticker": "ETHUSD", "time": "2016-02-23T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 10.38, "profit": -12.8131021194605, "ticker": "ETHUSD", "time": "2016-03-19T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 11.71, "profit": -6.575576430401378, "ticker": "ETHUSD", "time": "2016-03-24T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 10.94, "profit": -5.575868372943338, "ticker": "ETHUSD", "time": "2016-03-26T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 11.55, "profit": -3.549783549783551, "ticker": "ETHUSD", "time": "2016-03-30T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 11.14, "profit": 18.850987432675055, "ticker": "ETHUSD", "time": "2016-04-05T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 9.04, "profit": -5.97345132743362, "ticker": "ETHUSD", "time": "2016-04-19T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 8.5, "profit": -0.8235294117647093, "ticker": "ETHUSD", "time": "2016-04-22T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 8.57, "profit": 44.34072345390897, "ticker": "ETHUSD", "time": "2016-05-02T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 12.37, "profit": -8.569118835893295, "ticker": "ETHUSD", "time": "2016-05-27T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 13.43, "profit": -3.2762472077438534, "ticker": "ETHUSD", "time": "2016-06-01T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 12.99, "profit": -8.468052347959967, "ticker": "ETHUSD", "time": "2016-06-19T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 14.09, "profit": -5.2519517388218615, "ticker": "ETHUSD", "time": "2016-06-27T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 13.35, "profit": 14.007490636704114, "ticker": "ETHUSD", "time": "2016-06-29T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 11.48, "profit": 10.975609756097558, "ticker": "ETHUSD", "time": "2016-07-15T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 12.74, "profit": 8.39874411302983, "ticker": "ETHUSD", "time": "2016-07-30T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 11.67, "profit": -3.856041131105392, "ticker": "ETHUSD", "time": "2016-08-10T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 11.22, "profit": -0.17825311942958622, "ticker": "ETHUSD", "time": "2016-08-16T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 11.24, "profit": -1.7793594306049918, "ticker": "ETHUSD", "time": "2016-08-26T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 11.04, "profit": -2.445652173913056, "ticker": "ETHUSD", "time": "2016-08-30T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 11.31, "profit": 1.8567639257294346, "ticker": "ETHUSD", "time": "2016-09-01T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 11.52, "profit": -2.256944444444443, "ticker": "ETHUSD", "time": "2016-09-09T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 11.78, "profit": 10.016977928692713, "ticker": "ETHUSD", "time": "2016-09-11T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 12.96, "profit": 3.8580246913580245, "ticker": "ETHUSD", "time": "2016-10-07T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 12.46, "profit": -3.4510433386838, "ticker": "ETHUSD", "time": "2016-10-19T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 12.03, "profit": 30.75644222776392, "ticker": "ETHUSD", "time": "2016-10-25T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 8.33, "profit": -5.40216086434574, "ticker": "ETHUSD", "time": "2016-12-10T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 7.88, "profit": -1.52284263959391, "ticker": "ETHUSD", "time": "2016-12-17T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 8, "profit": 21.625000000000007, "ticker": "ETHUSD", "time": "2016-12-30T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 9.73, "profit": -4.4193216855087325, "ticker": "ETHUSD", "time": "2017-01-14T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 10.16, "profit": 3.2480314960629926, "ticker": "ETHUSD", "time": "2017-01-18T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 10.49, "profit": -1.620591039084842, "ticker": "ETHUSD", "time": "2017-01-30T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 10.66, "profit": 320.8255159474672, "ticker": "ETHUSD", "time": "2017-02-01T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 44.86, "profit": -6.107891217119933, "ticker": "ETHUSD", "time": "2017-04-04T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 47.6, "profit": 587.8991596638655, "ticker": "ETHUSD", "time": "2017-04-14T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 327.44, "profit": 33.13889567554361, "ticker": "ETHUSD", "time": "2017-06-22T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 218.93, "profit": -6.846937377243872, "ticker": "ETHUSD", "time": "2017-07-21T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 203.94, "profit": -6.972639011473962, "ticker": "ETHUSD", "time": "2017-07-27T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 218.16, "profit": 48.76237623762377, "ticker": "ETHUSD", "time": "2017-08-02T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 324.54, "profit": 12.192641893141058, "ticker": "ETHUSD", "time": "2017-09-05T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 284.97, "profit": -5.779555742709768, "ticker": "ETHUSD", "time": "2017-09-21T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 268.5, "profit": -4.517690875232773, "ticker": "ETHUSD", "time": "2017-09-23T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 280.63, "profit": 4.397249046787596, "ticker": "ETHUSD", "time": "2017-09-24T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 292.97, "profit": -2.3927364576577776, "ticker": "ETHUSD", "time": "2017-10-06T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 299.98, "profit": 3.250216681112074, "ticker": "ETHUSD", "time": "2017-10-07T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 309.73, "profit": 1.4851644981112655, "ticker": "ETHUSD", "time": "2017-10-20T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 305.13, "profit": -5.040474551830366, "ticker": "ETHUSD", "time": "2017-10-31T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 289.75, "profit": -3.8239861949956806, "ticker": "ETHUSD", "time": "2017-11-03T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 300.83, "profit": 41.02316923179205, "ticker": "ETHUSD", "time": "2017-11-09T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 424.24, "profit": -5.407316613237789, "ticker": "ETHUSD", "time": "2017-12-08T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 447.18, "profit": 47.464108412719696, "ticker": "ETHUSD", "time": "2017-12-11T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 659.43, "profit": -12.372806818009499, "ticker": "ETHUSD", "time": "2017-12-25T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 741.02, "profit": 35.992280910096895, "ticker": "ETHUSD", "time": "2017-12-27T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 1007.73, "profit": -10.48495132624811, "ticker": "ETHUSD", "time": "2018-01-18T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 1113.39, "profit": -10.807533748282285, "ticker": "ETHUSD", "time": "2018-01-28T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 993.06, "profit": 12.041568485287891, "ticker": "ETHUSD", "time": "2018-02-02T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 873.48, "profit": -4.2233365389018624, "ticker": "ETHUSD", "time": "2018-02-15T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 836.59, "profit": 51.200707634564125, "ticker": "ETHUSD", "time": "2018-02-23T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 408.25, "profit": 71.69381506429885, "ticker": "ETHUSD", "time": "2018-04-11T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 700.94, "profit": 13.140925043512997, "ticker": "ETHUSD", "time": "2018-05-12T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 608.83, "profit": -7.21876385854837, "ticker": "ETHUSD", "time": "2018-06-04T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 564.88, "profit": 5.762285795213135, "ticker": "ETHUSD", "time": "2018-06-11T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 532.33, "profit": -9.648150583284806, "ticker": "ETHUSD", "time": "2018-06-21T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 480.97, "profit": 3.0105827806308123, "ticker": "ETHUSD", "time": "2018-06-23T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 466.49, "profit": -4.844691204527432, "ticker": "ETHUSD", "time": "2018-07-04T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 443.89, "profit": -5.564441640947079, "ticker": "ETHUSD", "time": "2018-07-11T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 468.59, "profit": -2.2983845152478675, "ticker": "ETHUSD", "time": "2018-07-17T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 457.82, "profit": -3.0448647940238516, "ticker": "ETHUSD", "time": "2018-07-24T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 471.76, "profit": -2.327454637951505, "ticker": "ETHUSD", "time": "2018-07-25T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 460.78, "profit": 36.85055774990233, "ticker": "ETHUSD", "time": "2018-07-31T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 290.98, "profit": -4.642930785621002, "ticker": "ETHUSD", "time": "2018-08-30T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 277.47, "profit": 21.425739719609332, "ticker": "ETHUSD", "time": "2018-09-05T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 218.02, "profit": -5.2839189065223415, "ticker": "ETHUSD", "time": "2018-09-17T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 206.5, "profit": -3.2687651331719128, "ticker": "ETHUSD", "time": "2018-09-20T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 213.25, "profit": 1.1629542790152354, "ticker": "ETHUSD", "time": "2018-09-21T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 215.73, "profit": -6.712093820979938, "ticker": "ETHUSD", "time": "2018-09-27T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 230.21, "profit": -3.9268493983754054, "ticker": "ETHUSD", "time": "2018-09-30T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 221.17, "profit": -2.233575982276089, "ticker": "ETHUSD", "time": "2018-10-04T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 226.11, "profit": -4.281102118437931, "ticker": "ETHUSD", "time": "2018-10-09T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 216.43, "profit": 6.154414822344403, "ticker": "ETHUSD", "time": "2018-10-11T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 203.11, "profit": 1.654276008074435, "ticker": "ETHUSD", "time": "2018-11-05T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 206.47, "profit": 52.5403206276941, "ticker": "ETHUSD", "time": "2018-11-14T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 97.99, "profit": 33.69731605265843, "ticker": "ETHUSD", "time": "2018-12-19T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 131.01, "profit": 13.31959392412792, "ticker": "ETHUSD", "time": "2019-01-11T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 113.56, "profit": 19.41704825642833, "ticker": "ETHUSD", "time": "2019-02-09T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 135.61, "profit": -0.29496349826707263, "ticker": "ETHUSD", "time": "2019-02-28T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 136.01, "profit": -2.705683405631923, "ticker": "ETHUSD", "time": "2019-03-08T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 132.33, "profit": -4.60968790145847, "ticker": "ETHUSD", "time": "2019-03-12T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 138.43, "profit": -1.9215487972260323, "ticker": "ETHUSD", "time": "2019-03-17T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 135.77, "profit": -1.1269057965677256, "ticker": "ETHUSD", "time": "2019-03-25T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 137.3, "profit": 19.235251274581206, "ticker": "ETHUSD", "time": "2019-03-29T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 163.71, "profit": -4.746197544438325, "ticker": "ETHUSD", "time": "2019-04-14T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 171.48, "profit": -3.364823886167473, "ticker": "ETHUSD", "time": "2019-04-19T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 165.71, "profit": 1.5750407338120893, "ticker": "ETHUSD", "time": "2019-04-25T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 163.1, "profit": 52.02942979767015, "ticker": "ETHUSD", "time": "2019-05-04T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 247.96, "profit": -3.4360380706565614, "ticker": "ETHUSD", "time": "2019-06-05T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 256.48, "profit": 14.683406113537103, "ticker": "ETHUSD", "time": "2019-06-14T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 294.14, "profit": -4.004895627932288, "ticker": "ETHUSD", "time": "2019-07-02T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 305.92, "profit": -8.358394351464431, "ticker": "ETHUSD", "time": "2019-07-09T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 280.35, "profit": 22.38273586588194, "ticker": "ETHUSD", "time": "2019-07-12T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 217.6, "profit": -3.074448529411764, "ticker": "ETHUSD", "time": "2019-08-03T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 210.91, "profit": 15.17708975392347, "ticker": "ETHUSD", "time": "2019-08-10T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 178.9, "profit": 0.19564002235885652, "ticker": "ETHUSD", "time": "2019-09-09T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 179.25, "profit": -0.1059972105997198, "ticker": "ETHUSD", "time": "2019-09-25T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 179.44, "profit": -1.0309852875612986, "ticker": "ETHUSD", "time": "2019-10-09T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 177.59, "profit": -1.0867729038797267, "ticker": "ETHUSD", "time": "2019-10-17T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 179.52, "profit": 2.785204991087344, "ticker": "ETHUSD", "time": "2019-10-27T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 184.52, "profit": 28.490136570561468, "ticker": "ETHUSD", "time": "2019-11-15T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 131.95, "profit": 21.629405077680957, "ticker": "ETHUSD", "time": "2019-12-30T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 160.49, "profit": -4.2619477849087195, "ticker": "ETHUSD", "time": "2020-01-26T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 167.33, "profit": 49.81174923803262, "ticker": "ETHUSD", "time": "2020-01-28T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 250.68, "profit": 3.949258018190524, "ticker": "ETHUSD", "time": "2020-02-26T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 240.78, "profit": -11.238474956391729, "ticker": "ETHUSD", "time": "2020-03-07T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 213.72, "profit": 35.97230020587684, "ticker": "ETHUSD", "time": "2020-03-09T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 136.84, "profit": -5.999707687810588, "ticker": "ETHUSD", "time": "2020-03-25T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 128.63, "profit": -5.053253517841872, "ticker": "ETHUSD", "time": "2020-03-30T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 135.13, "profit": 15.866202915710796, "ticker": "ETHUSD", "time": "2020-04-02T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 156.57, "profit": -5.492750846266842, "ticker": "ETHUSD", "time": "2020-04-16T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 165.17, "profit": 18.556638614760555, "ticker": "ETHUSD", "time": "2020-04-17T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 195.82, "profit": -3.390869165560216, "ticker": "ETHUSD", "time": "2020-05-11T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 202.46, "profit": 0.42477526424972106, "ticker": "ETHUSD", "time": "2020-05-18T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 203.32, "profit": -3.3395632500491934, "ticker": "ETHUSD", "time": "2020-05-26T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 210.11, "profit": 12.65527580791013, "ticker": "ETHUSD", "time": "2020-05-29T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 236.7, "profit": -1.1280101394169901, "ticker": "ETHUSD", "time": "2020-06-13T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 239.37, "profit": -3.776580189664533, "ticker": "ETHUSD", "time": "2020-06-23T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 230.33, "profit": -1.5542916684756583, "ticker": "ETHUSD", "time": "2020-06-27T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 233.91, "profit": 0.3975888162113662, "ticker": "ETHUSD", "time": "2020-07-07T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 234.84, "profit": -2.840231647078857, "ticker": "ETHUSD", "time": "2020-07-17T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 241.51, "profit": 67.42992008612481, "ticker": "ETHUSD", "time": "2020-07-22T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 404.36, "profit": -1.0559897121376944, "ticker": "ETHUSD", "time": "2020-08-22T02:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 408.63, "profit": -6.277072167975914, "ticker": "ETHUSD", "time": "2020-08-31T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 382.98, "profit": 2.9818789492923954, "ticker": "ETHUSD", "time": "2020-09-05T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 371.56, "profit": -6.171277855528046, "ticker": "ETHUSD", "time": "2020-09-14T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 348.63, "profit": -2.303301494421028, "ticker": "ETHUSD", "time": "2020-09-22T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 356.66, "profit": -2.716873212583412, "ticker": "ETHUSD", "time": "2020-09-30T02:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 346.97, "profit": -4.668991555465887, "ticker": "ETHUSD", "time": "2020-10-03T14:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 363.17, "profit": 6.925131481124536, "ticker": "ETHUSD", "time": "2020-10-10T14:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 388.32, "profit": -3.8164400494437563, "ticker": "ETHUSD", "time": "2020-10-30T01:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 403.14, "profit": 32.527161780026795, "ticker": "ETHUSD", "time": "2020-11-06T01:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 534.27, "profit": -5.852845939319068, "ticker": "ETHUSD", "time": "2020-11-29T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 565.54, "profit": -0.16444460161968208, "ticker": "ETHUSD", "time": "2020-11-30T13:00:00"}, {"action": "sell", "exchange": "KRAKEN", "interval": "720", "price": 564.61, "profit": -3.4501691433024595, "ticker": "ETHUSD", "time": "2020-12-09T13:00:00"}, {"action": "buy", "exchange": "KRAKEN", "interval": "720", "price": 584.09, "profit": 0, "ticker": "ETHUSD", "time": "2020-12-15T13:00:00"}] def init(self): price = self.data.Close def next(self): for s in self.signals: if s['time'] == self.data.index and s['action'] == "buy": self.buy() if s['time'] == self.data.index and s['action'] == "sell": self.sell() def print_chart(exchange, symbol, timeframe): # get a list of ohlcv candles ohlcv = exchange.fetch_ohlcv(symbol, timeframe, since=10000000001) print("\n" + exchange.name + ' ' + symbol + ' ' + timeframe + ' chart:') df = pd.DataFrame(np.row_stack(ohlcv)).rename( columns={0: "Date", 1: "Open", 2: "High", 3: "Low", 4: "Close", 5: "Volume"}) df['Date'] = df['Date'].apply(lambda x: datetime.fromtimestamp(float(x) / 1000.0).strftime('%Y-%m-%d %H:%M:%S.%f')) df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt # read Excel df =
pd.read_excel('xacts.xlsx', sheetname='All Transactions')
pandas.read_excel
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 23 11:06:22 2021 @author: madeline """ ''' This script converts VCF files that have been annotated by snpEFF into GVF files, including the functional annotation. Note that the strain is obtained by parsing the file name, expected to contain the substring "/strainnamehere_ids". Required user input is either a single VCF file or a directory containing VCF files. Eg: python vcf2gvf.py --vcfdir ./22_07_2021/ To also output tsvs of the unmatched mutation names: python vcf2gvf.py --vcfdir ./22_07_2021/ --names ''' import argparse import pandas as pd import re import glob import os import numpy as np from cyvcf2 import VCF, Writer def parse_args(): parser = argparse.ArgumentParser( description='Converts snpEFF-annotated VCF files to GVF files with functional annotation') #make --file or --directory options mutually exclusive group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--vcfdir', type=str, default=None, help='Path to folder containing snpEFF-annotated VCF files') group.add_argument('--vcffile', type=str, default=None, help='Path to a snpEFF-annotated VCF file') #filepath can be absolute (~/Desktop/test/22_07_2021/) or relative (./22_07_2021/) parser.add_argument('--pokay', type=str, default='functional_annotation_V.0.2.tsv', help='Anoosha\'s parsed pokay .tsv file') parser.add_argument('--clades', type=str, default='clade_defining_mutations.tsv', help='.tsv of clade-defining mutations') parser.add_argument('--outdir', type=str, default='./gvf_files/', help='Output directory for finished GVF files: folder will be created if it doesn\'t already exist') parser.add_argument("--names", help="Save unmatched mutation names to .tsvs for troubleshooting naming formats", action="store_true") return parser.parse_args() gvf_columns = ['#seqid','#source','#type','#start','#end','#score','#strand','#phase','#attributes'] vcf_colnames = ['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'unknown'] def vcftogvf(var_data, strain): df = pd.read_csv(var_data, sep='\t', names=vcf_colnames) df = df[~df['#CHROM'].str.contains("#")] #remove pragmas df = df.reset_index(drop=True) #restart index from 0 new_df = pd.DataFrame(index=range(0,len(df)),columns=gvf_columns) #parse EFF column eff_info = df['INFO'].str.findall('\((.*?)\)') #series: extract everything between parentheses as elements of a list eff_info = eff_info.apply(pd.Series)[0] #take first element of list eff_info = eff_info.str.split(pat='|').apply(pd.Series) #split at pipe, form dataframe #hgvs names hgvs = eff_info[3].str.rsplit(pat='c.').apply(pd.Series) hgvs_protein = hgvs[0].str[:-1] hgvs_protein.replace(r'^\s+$', np.nan, regex=True) hgvs_nucleotide = 'c.' + hgvs[1] new_df['#attributes'] = new_df['#attributes'].astype(str) + 'Name=' + hgvs_protein + ';' new_df['#attributes'] = new_df['#attributes'].astype(str) + 'nt_name=' + hgvs_nucleotide + ';' new_df['#attributes'] = new_df['#attributes'].astype(str) + 'nt_name=' + hgvs_nucleotide + ';' new_df['#attributes'] = new_df['#attributes'].astype(str) + 'gene=' + eff_info[5] + ';' #gene names new_df['#attributes'] = new_df['#attributes'].astype(str) + 'mutation_type=' + eff_info[1] + ';' #mutation type #columns copied straight from Zohaib's file for column in ['REF','ALT']: key = column.lower() if key=='ref': key = 'Reference_seq' elif key=='alt': key = 'Variant_seq' new_df['#attributes'] = new_df['#attributes'].astype(str) + key + '=' + df[column].astype(str) + ';' #add ao, dp, ro info = df['INFO'].str.split(pat=';').apply(pd.Series) #split at ;, form dataframe new_df['#attributes'] = new_df['#attributes'] + info[5].str.lower() + ';' #ao new_df['#attributes'] = new_df['#attributes'] + info[7].str.lower() + ';' #dp new_df['#attributes'] = new_df['#attributes'] + info[28].str.lower() + ';' #ro #add strain name new_df['#attributes'] = new_df['#attributes'] + 'viral_lineage=' + strain + ';' #add WHO strain name alt_strain_names = {'B.1.1.7': 'Alpha', 'B.1.351': 'Beta', 'P.1': 'Gamma', 'B.1.617.2': 'Delta', 'B.1.427': 'Epsilon', 'B.1.429': 'Epsilon', 'P.2': 'Zeta', 'B.1.525': 'Eta', 'P.3': 'Theta', 'B.1.526': 'Iota', 'B.1.617.1': 'Kappa'} new_df['#attributes'] = new_df['#attributes'] + 'who_label=' + alt_strain_names.get(strain) + ';' #add VOC/VOI designation if strain in {'Alpha', 'Beta', 'Gamma', 'Delta'}: new_df['#attributes'] = new_df['#attributes'] + 'status=VOC;' else: new_df['#attributes'] = new_df['#attributes'] + 'status=VOI;' #remove starting NaN; leave trailing ';' new_df['#attributes'] = new_df['#attributes'].str[3:] #fill in other GVF columns new_df['#seqid'] = df['#CHROM'] new_df['#source'] = '.' new_df['#type'] = info[40].str.split(pat='=').apply(pd.Series)[1] new_df['#start'] = df['POS'] new_df['#end'] = (df['POS'].astype(int) + df['ALT'].str.len() - 1).astype(str) #this needs fixing new_df['#score'] = '.' new_df['#strand'] = '+' new_df['#phase'] = '.' new_df = new_df[gvf_columns] #only keep the columns needed for a gvf file return new_df #takes 3 arguments: an output file of vcftogvf.py, Anoosha's annotation file from Pokay, and the clade defining mutations tsv. def add_functions(gvf, annotation_file, clade_file, strain): #load files into Pandas dataframes df = pd.read_csv(annotation_file, sep='\t', header=0) #load functional annotations spreadsheet clades = pd.read_csv(clade_file, sep='\t', header=0, usecols=['strain', 'mutation']) #load clade-defining mutations file clades = clades.loc[clades.strain == strain] #only look at the relevant part of that file attributes = gvf["#attributes"].str.split(pat=';').apply(pd.Series) hgvs_protein = attributes[0].str.split(pat='=').apply(pd.Series)[1] hgvs_nucleotide = attributes[1].str.split(pat='=').apply(pd.Series)[1] gvf["mutation"] = hgvs_protein.str[2:] #drop the prefix #merge annotated vcf and functional annotation files by 'mutation' column in the gvf for column in df.columns: df[column] = df[column].str.lstrip() merged_df = pd.merge(df, gvf, on=['mutation'], how='right') #add functional annotations merged_df =
pd.merge(clades, merged_df, on=['mutation'], how='right')
pandas.merge
import os import pandas as pd from utilies import warn_by_qq, data_load, hyper_tuner def main(): item_dict = {'PH': 0, 'DO': 1, 'CODMN': 2, 'BOD': 3, 'AN': 4, 'TP': 5, 'CODCR': 6} item_name_list = ['PH', 'DO', 'CODMN', 'BOD', 'AN', 'TP', 'CODCR'] data_path = "ziya.csv" log_path = "alog" save_name = "a_tune.csv" main_path = "a_tune" # if not os.path.exists(main_path): # os.mkdir(main_path) train_data, valid_data, test_data = data_load(data_path) for time_steps in range(1, 13): for item, item_index in item_dict.items(): item_name = item_name_list[item_index] results =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> """Compares informal collaboration by cohort of researchers and publication year of papers. """ import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from _205_compute_centralities import p_to_stars OUTPUT_FOLDER = "./990_output/Figures/" PERSON = {"groups": [0, 1970, 1980, 1990, 2000, 2020], "labels": ["<1970", "1970-1979", "1980-1989", "1990-1999", ">=2000"], "var": "first_pub_year", "name": "person"} PAPER = {"groups": [1997, 2002, 2007, 2020], "labels": ["1997-2001", "2002-2006", "2007-2011"], "var": "year", "name": "paper"} DEP_VARS = {'num_com_n': {"title": "Average number of commenters per author", "ylabel": "No. of commenters per author"}, 'num_con_n': {"title": "Average number of conferences per author", "ylabel": "No. of conferences per author"}, 'num_sem_n': {"title": "Average number of seminars per author", "ylabel": "No. of seminars per author"}, 'num_auth': {"title": "Average number of co-authors", "ylabel": "No. of co-authors"}} def add_plot(data, mat, var, ax, scale, ylabel=None, title=None, lw=1.5, arrowheight=0.05): """Add plot with bars and t-test indicators to a specific ax.""" # Start plot showing means and error bars sns.barplot(y=var, x='cohort', data=data, ax=ax) # Aesthetics ax.set(ylabel=ylabel, xlabel="") ax.set_title(title, pad=15) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Parameters distance = ax.patches[1].get_bbox().x1 - ax.patches[0].get_bbox().x0 arrow = {"arrowstyle": f'-[, widthB={distance*scale[0]}, lengthB={scale[1]}', "lw": lw, "color": 'black'} # Draw bracket spanning neighboring bars with significance stars for idx in range(mat.shape[0]-1): stars = mat.iloc[idx][idx+1] if stars: x0 = ax.patches[idx].get_bbox().x0 x1 = ax.patches[idx+1].get_bbox().x1 y = max([ax.lines[idx].get_ydata()[-1], ax.lines[idx+1].get_ydata()[-1]]) height = y*(1 + arrowheight) ax.annotate(stars, xytext=((x0+x1)/2, height), arrowprops=arrow, xy=((x0+x1)/2, height), va='bottom', ha='center') def compare_means(group_1_years, group_2_years, year_column, var, df): """Compares means in y for two cohorts defined by year ranges via Welch's t-test. """ from scipy.stats import ttest_ind group1 = df[(df[year_column].isin(group_1_years))] group2 = df[(df[year_column].isin(group_2_years))] ttest = ttest_ind(group1[var], group2[var], equal_var=False) return ttest def compute_tstats(data, ranges, var, by_var, verbose=True): """Compute lower triangular matrix of significance levels of pairwise t-tests. """ if verbose: print(f"...{var}:") mat = pd.DataFrame(columns=ranges, index=ranges) for idx1, r1 in enumerate(ranges): for idx2 in range(idx1+1, len(ranges)): r2 = ranges[idx2] ttest = compare_means(r1, r2, by_var, var, data) stars = p_to_stars(ttest[1]) if verbose and stars: print(f"...{r1} vs. {r2}: {ttest[1]:.2}") mat.iloc[idx1][idx2] = mat.iloc[idx2][idx1] = stars return mat def read_paper_file(): """Read file with paper-specific information.""" PAPER_FILE = "./580_paper_sample/master.csv" columns = ["year", "with", "num_auth", "num_coms", "num_con", "num_sem"] df =
pd.read_csv(PAPER_FILE, usecols=columns, encoding="utf8")
pandas.read_csv
from __future__ import print_function # from builtins import str # from builtins import object import pandas as pd from openpyxl import load_workbook import numpy as np import os from .data_utils import make_dir class XlsxRecorder(object): """ xlsx recorder for results including two recorder: one for current experiments, record details of results changed by iteration the other is for record the summary of different expreiments, which is saved by summary_path 1. detailed results: saved in fig_save_path/results.xlsx ** Sheet1: #total_filename x #metrics, along each row direction, are the records by iteraton ** batch_0: #batch_filename x #metric_by_label , along each column direction, are the records by iteration ** batch_1: same as batch_0 ** ...... 2. task results: saved in ../data/summary.xlsx ** Sheet1: task_name * #metrics recorded by iteration """ def __init__(self, expr_name, saving_path='', folder_name=''): self.expr_name = expr_name if not len(saving_path): self.saving_path = '../data/'+expr_name #saving_path else: self.saving_path = saving_path self.saving_path = os.path.abspath(self.saving_path) self.folder_name = folder_name if len(folder_name): self.saving_path = os.path.join(self.saving_path, folder_name) """path of saving excel, default is the same as the path of saving figures""" self.writer_path = None self.xlsx_writer = None self.summary_path = '../data/summary.xlsx' """the path for summary, which can record results from different experiments""" self.measures = ['iou', 'precision', 'recall', 'dice'] """measures to record""" self.batch_count = {} self.row_space = 50 self.column_space = 10 self.start_row = 0 self.summary = None self.avg_buffer = {} self.iter_info_buffer = [] self.name_list_buffer = [] self.init_summary() print("the update space in detailed files is {}".format(self.row_space)) def init_summary(self): """ init two recorders, initilzation would create a new recorder for this experiment, recording all details at the same time it would load the data from summary recorder, then it would append the new experiment summary to summary recorder """ if not os.path.exists(self.saving_path ): os.makedirs(self.saving_path ) self.writer_path = os.path.join(self.saving_path, 'results.xlsx') writer = pd.ExcelWriter(self.writer_path, engine='xlsxwriter') df = pd.DataFrame([]) df.to_excel(writer) worksheet = writer.sheets['Sheet1'] worksheet.set_column(1, 1000, 30) writer.save() writer.close() self.writer_book = load_workbook(self.writer_path) self.xlsx_writer =
pd.ExcelWriter(self.writer_path, engine='openpyxl')
pandas.ExcelWriter
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(
pd.Categorical([1, 2, 3])
pandas.Categorical
import pickle import pandas as pd import matplotlib.pyplot as plt import torch from pytorch_forecasting.metrics import QuantileLoss from pytorch_forecasting import TemporalFusionTransformer, TimeSeriesDataSet from pytorch_forecasting.data import GroupNormalizer from config import load_config from load_data import LoadData spec = load_config("config.yaml") MODEL_PATH_NBEATS = spec["general"]["model_path_nbeats"] SCALER_PATH_NBEATS = spec["general"]["scaler_path_nbeats"] DATA_PATH = spec["general"]["data_path"] FOLDER_LIST = spec["general"]["folder_list"] MODEL_PATH = spec["model"]["model_path"] BATCH_SIZE = spec["model"]["batch_size"] MAX_EPOCHS = spec["model"]["max_epochs"] GPUS = spec["model"]["gpus"] LEARNING_RATE = spec["model"]["learning_rate"] HIDDEN_SIZE = spec["model"]["hidden_size"] DROPOUT = spec["model"]["dropout"] HIDDEN_CONTINUOUS_SIZE = spec["model"]["hidden_continuous_size"] GRADIENT_CLIP_VAL = spec["model"]["gradient_clip_val"] ATTENTION_HEAD_SIZE = spec["model"]["attention_head_size"] LSTM_LAYERS = spec["model"]["lstm_layers"] lags = spec["model"]["lags"] sma = spec["model"]["sma"] time_varying_known_reals = spec["model"]["time_varying_known_reals"] if lags: lags_columns = [f"lag_{lag}" for lag in range(lags, 0, -1)] time_varying_known_reals = time_varying_known_reals + lags_columns if sma: sma_columns = [f"sma_{sma}" for sma in sma] time_varying_known_reals = time_varying_known_reals + sma_columns time_varying_known_categoricals = spec["model"]["time_varying_known_categoricals"] max_prediction_length = spec["model"]["max_prediction_length"] max_encoder_length = spec["model"]["max_encoder_length"] sample = spec["model"]["sample"] cutoff = spec["model"]["cutoff"] # _________________________________________________________________________________________________________________ # Load Data for PyTorch Models: train_data, test_data = LoadData( data_path=DATA_PATH, folder_list=FOLDER_LIST, cutoff=cutoff, sample="60min", date_features=True, sma=sma, lags=lags, time_idx=True, ).load_data( min_obs=700, reduce_memory=["cat", "float", "int"] ) # _________________________________________________________________________________________________________________ # Load Temporal Fusion Transformer Model: training = TimeSeriesDataSet( train_data, time_idx="time_idx", target="value", group_ids=["id"], min_encoder_length=max_encoder_length // 2, max_encoder_length=max_encoder_length, min_prediction_length=1, max_prediction_length=max_prediction_length, static_categoricals=["id"], time_varying_known_reals=time_varying_known_reals, time_varying_known_categoricals=time_varying_known_categoricals, time_varying_unknown_categoricals=[], time_varying_unknown_reals=["value"], target_normalizer=GroupNormalizer( groups=["id"], transformation="softplus" ), add_relative_time_idx=True, add_target_scales=True, add_encoder_length=True, ) model = TemporalFusionTransformer.from_dataset( training, learning_rate=LEARNING_RATE, hidden_size=HIDDEN_SIZE, lstm_layers=LSTM_LAYERS, attention_head_size=ATTENTION_HEAD_SIZE, dropout=DROPOUT, hidden_continuous_size=HIDDEN_CONTINUOUS_SIZE, output_size=7, loss=QuantileLoss(), log_interval=10, reduce_on_plateau_patience=4, ) model.load_state_dict(torch.load("/Volumes/GoogleDrive/My Drive/Colab_Notebooks/model/tft.pt")) errors = pd.DataFrame() for data_name in train_data.id.unique().tolist(): # _________________________________________________________________________________________________________________ # Load Exponential Smoothing Model: with open(f"model/exponential_smoothing/{data_name}.pickle", "rb") as f: model_es = pickle.load(f) # _________________________________________________________________________________________________________________ # Exponential Smoothing Data: test_data_es = test_data[ test_data["id"] == data_name ][["date", "value"]].set_index("date", drop=True)["value"] test_data_es.index.freq = pd.infer_freq(test_data_es.index) # _________________________________________________________________________________________________________________ # Temporal Fusion Transformer Data: test_data_tft = test_data[ (test_data["id"] == data_name) ].reset_index(drop=True) # _________________________________________________________________________________________________________________ # Forecast: errors_data_name = pd.DataFrame() for start in range(0, 107, 1): try: # Update ES with new Data. model_es.update( test_data_es[start:(start + max_encoder_length)], update_params=False, ) # Make forecast for es & tft: y_hat_es = model_es.predict(list(range(1, max_prediction_length + 1))) y_hat_tft = pd.Series( index=y_hat_es.index, data=model.predict( test_data_tft[start:(start + max_encoder_length)], mode="prediction", return_x=True)[0][0].tolist() ) y_hat_nbeats = pd.read_csv( f"/Volumes/GoogleDrive/My Drive/Colab_Notebooks/data_nbeats/{data_name}_{start}.csv" ) y_hat_nbeats = y_hat_nbeats.set_index(pd.to_datetime(y_hat_nbeats.time)) y_hat_nbeats = y_hat_nbeats.drop(columns="time") y_obs = test_data_es[start + max_encoder_length: start + max_encoder_length + max_prediction_length] # Plot forecasts and observed values ax = test_data_es[start: start + max_encoder_length + max_prediction_length].plot( figsize=(10, 6), marker="o", color="black", label="observed" ) y_hat_es.plot(ax=ax, style="--", marker="o", color="red", label="exponential_smoothing") y_hat_tft.plot(ax=ax, style="--", marker="o", color="blue", label="temporal_fusion_transformer") # y_hat_nbeats.plot(ax=ax, style="--", marker="o", color="green", # label="N=BEATS") df_errors = pd.concat([y_obs, y_hat_tft, y_hat_es, y_hat_nbeats], axis=1).reset_index(drop=True) df_errors.columns = ["observed", "tft", "ets", "nbeats"] df_errors["step"] = [step for step in range(1, max_prediction_length + 1, 1)] errors = pd.concat([errors, df_errors], axis=0) errors_data_name =
pd.concat([errors_data_name, df_errors], axis=0)
pandas.concat
# -*- coding: utf-8 -*- # @author: Elie #%% ========================================================== # Import libraries set library params # ============================================================ import pandas as pd import numpy as np import os pd.options.mode.chained_assignment = None #Pandas warnings off #plotting import seaborn as sns from matplotlib import pyplot as plt import matplotlib.lines as mlines import matplotlib as mpl # stats from scipy import stats #set matplotlib rcparams mpl.rcParams['savefig.transparent'] = "False" mpl.rcParams['axes.facecolor'] = "white" mpl.rcParams['figure.facecolor'] = "white" mpl.rcParams['font.size'] = "5" plt.rcParams['savefig.transparent'] = "False" plt.rcParams['axes.facecolor'] = "white" plt.rcParams['figure.facecolor'] = "white" plt.rcParams['font.size'] = "5" #%% ========================================================== # define these feature/headers here in case the headers # are out of order in input files (often the case) # ============================================================ snv_categories = ["sample", "A[C>A]A", "A[C>A]C", "A[C>A]G", "A[C>A]T", "C[C>A]A", "C[C>A]C", "C[C>A]G", "C[C>A]T", "G[C>A]A", "G[C>A]C", "G[C>A]G", "G[C>A]T", "T[C>A]A", "T[C>A]C", "T[C>A]G", "T[C>A]T", "A[C>G]A", "A[C>G]C", "A[C>G]G", "A[C>G]T", "C[C>G]A", "C[C>G]C", "C[C>G]G", "C[C>G]T", "G[C>G]A", "G[C>G]C", "G[C>G]G", "G[C>G]T", "T[C>G]A", "T[C>G]C", "T[C>G]G", "T[C>G]T", "A[C>T]A", "A[C>T]C", "A[C>T]G", "A[C>T]T", "C[C>T]A", "C[C>T]C", "C[C>T]G", "C[C>T]T", "G[C>T]A", "G[C>T]C", "G[C>T]G", "G[C>T]T", "T[C>T]A", "T[C>T]C", "T[C>T]G", "T[C>T]T", "A[T>A]A", "A[T>A]C", "A[T>A]G", "A[T>A]T", "C[T>A]A", "C[T>A]C", "C[T>A]G", "C[T>A]T", "G[T>A]A", "G[T>A]C", "G[T>A]G", "G[T>A]T", "T[T>A]A", "T[T>A]C", "T[T>A]G", "T[T>A]T", "A[T>C]A", "A[T>C]C", "A[T>C]G", "A[T>C]T", "C[T>C]A", "C[T>C]C", "C[T>C]G", "C[T>C]T", "G[T>C]A", "G[T>C]C", "G[T>C]G", "G[T>C]T", "T[T>C]A", "T[T>C]C", "T[T>C]G", "T[T>C]T", "A[T>G]A", "A[T>G]C", "A[T>G]G", "A[T>G]T", "C[T>G]A", "C[T>G]C", "C[T>G]G", "C[T>G]T", "G[T>G]A", "G[T>G]C", "G[T>G]G", "G[T>G]T", "T[T>G]A", "T[T>G]C", "T[T>G]G", "T[T>G]T"] indel_categories = ["sample", "1:Del:C:0", "1:Del:C:1", "1:Del:C:2", "1:Del:C:3", "1:Del:C:4", "1:Del:C:5", "1:Del:T:0", "1:Del:T:1", "1:Del:T:2", "1:Del:T:3", "1:Del:T:4", "1:Del:T:5", "1:Ins:C:0", "1:Ins:C:1", "1:Ins:C:2", "1:Ins:C:3", "1:Ins:C:4", "1:Ins:C:5", "1:Ins:T:0", "1:Ins:T:1", "1:Ins:T:2", "1:Ins:T:3", "1:Ins:T:4", "1:Ins:T:5", "2:Del:R:0", "2:Del:R:1", "2:Del:R:2", "2:Del:R:3", "2:Del:R:4", "2:Del:R:5", "3:Del:R:0", "3:Del:R:1", "3:Del:R:2", "3:Del:R:3", "3:Del:R:4", "3:Del:R:5", "4:Del:R:0", "4:Del:R:1", "4:Del:R:2", "4:Del:R:3", "4:Del:R:4", "4:Del:R:5", "5:Del:R:0", "5:Del:R:1", "5:Del:R:2", "5:Del:R:3", "5:Del:R:4", "5:Del:R:5", "2:Ins:R:0", "2:Ins:R:1", "2:Ins:R:2", "2:Ins:R:3", "2:Ins:R:4", "2:Ins:R:5", "3:Ins:R:0", "3:Ins:R:1", "3:Ins:R:2", "3:Ins:R:3", "3:Ins:R:4", "3:Ins:R:5", "4:Ins:R:0", "4:Ins:R:1", "4:Ins:R:2", "4:Ins:R:3", "4:Ins:R:4", "4:Ins:R:5", "5:Ins:R:0", "5:Ins:R:1", "5:Ins:R:2", "5:Ins:R:3", "5:Ins:R:4", "5:Ins:R:5", "2:Del:M:1", "3:Del:M:1", "3:Del:M:2", "4:Del:M:1", "4:Del:M:2", "4:Del:M:3", "5:Del:M:1", "5:Del:M:2", "5:Del:M:3", "5:Del:M:4", "5:Del:M:5"] cnv_categories = ["sample", "BCper10mb_0", "BCper10mb_1", "BCper10mb_2", "BCper10mb_3", "CN_0", "CN_1", "CN_2", "CN_3", "CN_4", "CN_5", "CN_6", "CN_7", "CN_8", "CNCP_0", "CNCP_1", "CNCP_2", "CNCP_3", "CNCP_4", "CNCP_5", "CNCP_6", "CNCP_7", "BCperCA_0", "BCperCA_1", "BCperCA_2", "BCperCA_3", "BCperCA_4", "BCperCA_5", "SegSize_0", "SegSize_1", "SegSize_2", "SegSize_3", "SegSize_4", "SegSize_5", "SegSize_6", "SegSize_7", "SegSize_8", "SegSize_9", "SegSize_10", "CopyFraction_0", "CopyFraction_1", "CopyFraction_2", "CopyFraction_3", "CopyFraction_4", "CopyFraction_5", "CopyFraction_6"] #%% ========================================================== # make concat sig dataframe # ============================================================ def load_data(snv_counts_path, indel_counts_path, cnv_counts_path): df_snv = pd.read_csv(snv_counts_path, sep='\t', low_memory=False) df_snv = df_snv[snv_categories] df_snv["sample"] = df_snv["sample"].astype(str) df_indel = pd.read_csv(indel_counts_path, sep='\t', low_memory=False) df_indel = df_indel[indel_categories] df_indel["sample"] = df_indel["sample"].astype(str) df_cnv = pd.read_csv(cnv_counts_path, sep='\t', low_memory=False) df_cnv = df_cnv[cnv_categories] df_cnv["sample"] = df_cnv["sample"].astype(str) df_sigs = pd.merge(df_snv, df_indel, on="sample", how='left').fillna(0) df_sigs = pd.merge(df_sigs, df_cnv, on="sample", how='left').reset_index(drop=True) return df_sigs #%% ========================================================== # get paths, load data and make df with each file merged # ============================================================ #file from paths relative to this script rootdir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) figdir = os.path.join(rootdir, "figures", "sup_fig1") datadir = os.path.join(rootdir, "data") cohort_data = os.path.join(datadir, "cohort.tsv") snv_features = os.path.join(datadir, "tns_features.tsv") ndl_features = os.path.join(datadir, "ndl_features.tsv") cnv_features = os.path.join(datadir, "cnv_features.tsv") sigs = load_data(snv_features, ndl_features, cnv_features) sample_labels = pd.read_csv(cohort_data, sep='\t', low_memory=False).query('(cancer != "BC")').reset_index(drop=True) df =
pd.merge(sample_labels, sigs, how='left', on='sample')
pandas.merge
from load_dataset import load_dataset from load_dataset import split_data from load_dataset import accuracy_metric import numpy as np import pandas as pd import pandasql as ps if __name__ == "__main__": Y_full = pd.read_csv('emittance_labels.csv') X_full =
pd.read_csv('unit_cell_data_16.csv')
pandas.read_csv
from sklearn.cluster import MeanShift, estimate_bandwidth import pandas as pd import glob from pathlib import Path from spatiotemporal.util import sampling def load_data_nrel(path, resampling=None): ## some resampling options: 'H' - hourly, '15min' - 15 minutes, 'M' - montlhy ## more options at: ## http://benalexkeen.com/resampling-time-series-data-with-pandas/ allFiles = glob.iglob(path + "/**/*.txt", recursive=True) frame = pd.DataFrame() list_ = [] for file_ in allFiles: #print("Reading: ",file_) df = pd.read_csv(file_,index_col="datetime",parse_dates=['datetime'], header=0, sep=",") if frame.columns is None : frame.columns = df.columns list_.append(df) frame = pd.concat(list_) if resampling is not None: frame = frame.resample(resampling).mean() frame = frame.fillna(method='ffill') frame.columns = ['DHHL_3', 'DHHL_4', 'DHHL_5', 'DHHL_10', 'DHHL_11', 'DHHL_9', 'DHHL_2', 'DHHL_1', 'DHHL_1_Tilt', 'AP_6', 'AP_6_Tilt', 'AP_1', 'AP_3', 'AP_5', 'AP_4', 'AP_7', 'DHHL_6', 'DHHL_7', 'DHHL_8'] return frame def create_spatio_temporal_data_oahu(oahu_df): lat = [21.31236,21.31303,21.31357,21.31183,21.31042,21.31268,21.31451,21.31533,21.30812,21.31276,21.31281,21.30983,21.31141,21.31478,21.31179,21.31418,21.31034] lon = [-158.08463,-158.08505,-158.08424,-158.08554,-158.0853,-158.08688,-158.08534,-158.087,-158.07935,-158.08389,-158.08163,-158.08249,-158.07947,-158.07785,-158.08678,-158.08685,-158.08675] additional_info = pd.DataFrame({'station': oahu_df.columns, 'latitude': lat, 'longitude': lon }) ll = [] for ind, row in oahu_df.iterrows(): for col in oahu_df.columns: lat = additional_info[(additional_info.station == col)].latitude.values[0] lon = additional_info[(additional_info.station == col)].longitude.values[0] irradiance = row[col] ll.append([lat, lon, irradiance]) return pd.DataFrame(columns=['latitude','longitude','irradiance'], data=ll) def load_oahu_dataset(start_date = "2010-04-01", end_date = "2011-10-31"): """ Dataset used in "Impact of network layout and time resolution on spatio-temporal solar forecasting" - <NAME>, <NAME>. - Solar Energy 2018 :param start_date: time series start date in dd-mm-yyyy :param end_date: time series end date in dd-mm-yyyy :return: dataset in dataframe """ # read raw dataset df = pd.read_csv('https://query.data.world/s/76ohtd4zd6a6fhiwwe742y23fiplgk') # drop unused columns df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) df.drop(['Time', 'Ioh', 'DH1T', 'AP6T', 'AP3', 'AP2.dif', 'AP2.dir'], axis=1, inplace=True) # create corrected index ind = pd.date_range(start='2010-03-18 00:00:00', end='2011-11-01 00:00:00', closed='left', freq='10s') ts = pd.DataFrame(index=ind) df['Time'] = ts.between_time("05:00:00", "20:00:00").index df.set_index('Time', inplace=True) # filter range of interest df = df[start_date:end_date] return df # create clear sky index dataframe def get_clear_sky_index(cs,irr): csi = [] for c,i in zip(cs,irr): if c: csi.append(i/c) else: csi.append(0) return csi def load_oahu_dataset_clear_sky(start_date = "2010-04-01", end_date = "2011-10-31"): raw_df = load_oahu_dataset(start_date, end_date) cs_index_df =
pd.DataFrame(index=raw_df.index)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/3/21 0021 # @Author : justin.郑 <EMAIL> # @File : index_baidu.py # @Desc : 获取百度指数 import json import urllib.parse import pandas as pd import requests def decrypt(t: str, e: str) -> str: """ 解密函数 :param t: :type t: :param e: :type e: :return: :rtype: """ n, i, a, result = list(t), list(e), {}, [] ln = int(len(n) / 2) start, end = n[ln:], n[:ln] a = dict(zip(end, start)) return "".join([a[j] for j in e]) def get_ptbk(uniqid: str, cookie: str) -> str: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Connection": "keep-alive", "Cookie": cookie, "Host": "index.baidu.com", "Referer": "http://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) with session.get( url=f"http://index.baidu.com/Interface/ptbk?uniqid={uniqid}" ) as response: ptbk = response.json()["data"] return ptbk def baidu_interest_index(word, cookie): """ 百度指数 人群画像兴趣分布 :param word: 关键词 :param cookie: :return: desc 兴趣分类 tgi TGI指数 word_rate 关键词分布比率 all_rate 全网分布比率 period 周期范围 """ try: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cookie": cookie, "DNT": "1", "Host": "zhishu.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "zhishu.baidu.com", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } url = "http://index.baidu.com/api/SocialApi/interest?wordlist[]=%s" % word r = requests.get(url=url, headers=headers) data = json.loads(r.text)['data'] period = "%s|%s" % (data['startDate'], data['endDate']) age_list = data['result'][0]['interest'] age_df = pd.DataFrame(age_list) all_list = data['result'][1]['interest'] all_df = pd.DataFrame(all_list) all_df.drop(["tgi", "typeId"], axis=1, inplace=True) res_df = pd.merge(age_df, all_df, on='desc') res_df['period'] = period res_df.drop(["typeId"], axis=1, inplace=True) res_df.rename(columns={'rate_x': 'word_rate', 'rate_y': 'all_rate'}, inplace=True) return res_df except: return None def baidu_gender_index(word, cookie): """ 百度指数 人群画像性别分布 :param word: 关键词 :param cookie: :return: desc 性别 tgi TGI指数 word_rate 关键词分布比率 all_rate 全网分布比率 period 周期范围 """ try: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cookie": cookie, "DNT": "1", "Host": "zhishu.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "zhishu.baidu.com", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } url = "http://index.baidu.com/api/SocialApi/baseAttributes?wordlist[]=%s" % word r = requests.get(url=url, headers=headers) data = json.loads(r.text)['data'] period = "%s|%s" % (data['startDate'], data['endDate']) age_list = data['result'][0]['gender'] age_df = pd.DataFrame(age_list) all_list = data['result'][1]['gender'] all_df = pd.DataFrame(all_list) all_df.drop(["tgi", "typeId"], axis=1, inplace=True) res_df = pd.merge(age_df, all_df, on='desc') res_df['period'] = period res_df.drop(["typeId"], axis=1, inplace=True) res_df.rename(columns={'rate_x': 'word_rate', 'rate_y': 'all_rate'}, inplace=True) return res_df except: return None def baidu_age_index(word, cookie): """ 百度指数 人群画像年龄分布 :param word: 关键词 :param cookie: :return: desc 年龄范围 tgi TGI指数 word_rate 关键词分布比率 all_rate 全网分布比率 period 周期范围 """ try: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cookie": cookie, "DNT": "1", "Host": "zhishu.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "zhishu.baidu.com", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } url = "http://index.baidu.com/api/SocialApi/baseAttributes?wordlist[]=%s" % word r = requests.get(url=url, headers=headers) data = json.loads(r.text)['data'] period = "%s|%s" % (data['startDate'], data['endDate']) age_list = data['result'][0]['age'] age_df = pd.DataFrame(age_list) all_list = data['result'][1]['age'] all_df = pd.DataFrame(all_list) all_df.drop(["tgi", "typeId"], axis=1, inplace=True) res_df = pd.merge(age_df, all_df, on='desc') res_df['period'] = period res_df.drop(["typeId"], axis=1, inplace=True) res_df.rename(columns={'rate_x': 'word_rate', 'rate_y': 'all_rate'}, inplace=True) return res_df except: return None def baidu_atlas_index(word, cookie, date=None): """ 百度指数 需求图谱 :param word: 关键词 :param cookie: :param date: 周期 :return: period 周期范围 word 相关词 pv 搜索热度 ratio 搜索变化率 """ try: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cookie": cookie, "DNT": "1", "Host": "zhishu.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "zhishu.baidu.com", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } if date == None: date = "" url = "http://index.baidu.com/api/WordGraph/multi?wordlist[]=%s&datelist=%s" % (word, date) r = requests.get(url=url, headers=headers) data = json.loads(r.text)['data'] wordlist = data['wordlist'][0]['wordGraph'] res_list = [] for word in wordlist: tmp = { "word": word['word'], "pv": word['pv'], "ratio": word['ratio'], "period": data['period'] # "sim": word['sim'] } res_list.append(tmp) df = pd.DataFrame(res_list) return df except: return None def baidu_search_index(word, start_date, end_date, cookie, type="all"): # 百度搜索数据 try: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Connection": "keep-alive", "Cookie": cookie, "Host": "index.baidu.com", "Referer": "http://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36" } w = '{"name":"%s","wordType":1}' % word url = 'http://index.baidu.com/api/SearchApi/index?area=0&word=[[%s]]&startDate=%s&endDate=%s' % (w, start_date, end_date) r = requests.get(url=url, headers=headers) data = r.json()["data"] all_data = data["userIndexes"][0][type]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = [int(item) if item != "" else 0 for item in result] temp_df_7 = pd.DataFrame( [pd.date_range(start=start_date, end=end_date), result], index=["date", word], ).T temp_df_7.index = pd.to_datetime(temp_df_7["date"]) del temp_df_7["date"] return temp_df_7 except Exception as e: return None def baidu_info_index(word, start_date, end_date, cookie): # 百度资讯指数 try: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Connection": "keep-alive", "Cookie": cookie, "Host": "index.baidu.com", "Referer": "http://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36" } w = '{"name":"%s","wordType":1}' % word url = 'http://index.baidu.com/api/FeedSearchApi/getFeedIndex?area=0&word=[[%s]]&startDate=%s&endDate=%s' % ( w, start_date, end_date) r = requests.get(url=url, headers=headers) data = r.json()["data"] all_data = data["index"][0]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = [int(item) if item != "" else 0 for item in result] temp_df_7 = pd.DataFrame( [pd.date_range(start=start_date, end=end_date), result], index=["date", word], ).T temp_df_7.index =
pd.to_datetime(temp_df_7["date"])
pandas.to_datetime
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ Open Page Rank Provider. Input can be a single IoC observable or a pandas DataFrame containing multiple observables. Processing may require a an API key and processing performance may be limited to a specific number of requests per minute for the account type that you have. """ from json import JSONDecodeError from typing import Any, Tuple, Union, Iterable, Dict, List import attr import pandas as pd from .ti_provider_base import LookupResult, TISeverity, generate_items, TILookupStatus from .http_base import HttpProvider, IoCLookupParams from ...common.utility import export from ..._version import VERSION __version__ = VERSION __author__ = "<NAME>" @export class OPR(HttpProvider): """Open PageRank Lookup.""" _BASE_URL = "https://openpagerank.com" _IOC_QUERIES = { "dns": IoCLookupParams( path="/api/v1.0/getPageRank", params={"domains[0]": "{observable}"}, headers={"API-OPR": "{API_KEY}"}, ) } _REQUIRED_PARAMS = ["API_KEY"] def __init__(self, **kwargs): """Initialize a new instance of the class.""" super().__init__(**kwargs) self._provider_name = self.__class__.__name__ print( "Using Open PageRank.", "See https://www.domcop.com/openpagerank/what-is-openpagerank", ) # pylint: disable=duplicate-code def lookup_iocs( self, data: Union[pd.DataFrame, Dict[str, str], Iterable[str]], obs_col: str = None, ioc_type_col: str = None, query_type: str = None, **kwargs, ) -> pd.DataFrame: """ Lookup collection of IoC observables. Parameters ---------- data : Union[pd.DataFrame, Dict[str, str], Iterable[str]] Data input in one of three formats: 1. Pandas dataframe (you must supply the column name in `obs_col` parameter) 2. Dict of observable, IoCType 3. Iterable of observables - IoCTypes will be inferred obs_col : str, optional DataFrame column to use for observables, by default None ioc_type_col : str, optional DataFrame column to use for IoCTypes, by default None query_type : str, optional Specify the data subtype to be queried, by default None. If not specified the default record type for the IoC type will be returned. Returns ------- pd.DataFrame DataFrame of results. """ kwargs.get("provider_name", self.__class__.__name__) domain_list = set() bad_requests: List[pd.Series] = [] for ioc, ioc_type in generate_items(data, obs_col, ioc_type_col): if not ioc: continue result = self._check_ioc_type( ioc=ioc, ioc_type=ioc_type, query_subtype=query_type ) if result.status == TILookupStatus.ok.value: domain_list.add(result.ioc) else: bad_requests.append(pd.Series(attr.asdict(result))) results: List[pd.Series] = [] if not domain_list: return pd.DataFrame(columns=LookupResult.column_map()) for item_result in self._lookup_bulk_request(domain_list): # type: ignore results.append(pd.Series(attr.asdict(item_result))) all_results = results + bad_requests return
pd.DataFrame(data=all_results)
pandas.DataFrame
""" Code for the dynamical system component of the Baselining work. @author: <NAME> @date Jan 6, 2016 """ import numpy as np import pandas as pd from scipy.signal import cont2discrete from patsy import dmatrices from gurobipy import quicksum, GRB, LinExpr class DynamicalSystem(object): """ Abstract base class for dynamical system optimization objects. """ def __init__(self, model): """ Construct an abstract dynamical system object based on the gurobipy Model object 'model'. """ self._model = model def set_window(self, index): """ Set the window for the optimization. Here index is a pandas DatetimeIndex. """ self._index = index def get_consumption(self): """ Returns power consumption (kW) and energy consumpiton (kWh) as gurobi LinExpr or QuadExpr """ raise NotImplementedError('Function not implemented in base class.') def set_opts(self, **kwargs): """ Set options (kwargs) to their respective values. """ raise NotImplementedError('Function not implemented in base class.') def populate_model(self): """ Add system dynamics and constraints as constraints to the gurobipy optimization model 'model'. """ raise NotImplementedError('Function not implemented in base class.') class LinearSystem(DynamicalSystem): """ Linear Dynamical System class. """ def __init__(self, model, A, B, **kwargs): """ Constructor for a Linear Dynamical System. Here 'model' is a gurobipy Model object. The dynamics are x_{t+1} = A * x_t + B * u_t + E * v_t y_t = C * x_t + D * u_t where x and u are vectors of the system state, respecively, and v is a vector of exogenous disturbances. If not specified, the matrices C defaults to the identity matrix and the matrices D and E default to zero matrix. """ super(LinearSystem, self).__init__(model) self._opts = {} self._mats = {'A': np.asarray(A), 'B': np.asarray(B)} if 'C' in kwargs: self._mats['C'] = np.asarray(kwargs['C']) else: self._mats['C'] = np.eye(self._mats['A'].shape[1]) self._dims = {'x': self._mats['A'].shape[1], 'u': self._mats['B'].shape[1], 'y': self._mats['C'].shape[0]} if 'D' in kwargs: self._mats['D'] = np.asarray(kwargs['D']) else: self._mats['D'] = np.zeros((self._dims['y'], self._dims['u'])) if 'E' in kwargs: self._mats['E'] = np.asarray(kwargs['E']) self._dims['v'] = self._mats['E'].shape[1] if 'x0' in kwargs: self.x0 = kwargs['x0'] self._changed = {'T': True} def set_opts(self, **kwargs): """ Set options (kwargs) to their respective values. For example, to set the initial state 'x0' of the system to the value [2, 1], call self.set_opts(x0=[2, 1]) """ self._opts.update(kwargs) for kwarg in kwargs: if kwarg == 'x0': self.x0 = kwargs[kwarg] self._changed[kwarg] = True def set_window(self, index): """ Set the window for the optimization. Here index is a pandas DatetimeIndex. """ try: if not np.any(self._index == index): self._opts['T'] = len(index) self._changed['T'] = True self._index = index except (ValueError, AttributeError): self._opts['T'] = len(index) self._changed['T'] = True self._index = index def simulate(self, u, **kwargs): """ Computes system evolution x and output y for the given control sequence u. If at least one of the matrices E or F has been specified, a disturbance sequence w of the same length must be provided as keyword argument. """ T = u.shape[0] A, B, C = self._mats['A'], self._mats['B'], self._mats['C'] hasD, hasE = ('D' in self._mats), ('E' in self._mats) x = np.zeros((T+1, self._dims['x'])) y = np.zeros((T, self._dims['y'])) x[0, :] = self._opts['x0'] y[0, :] = np.inner(C, x[0, :]) if hasD: D = self._mats['D'] y[0, :] += np.inner(D, u[0, :]) if hasE: E = self._mats['E'] v = kwargs['v'] for t in range(T): x[t+1, :] = np.inner(A, x[t, :]) + np.inner(B, u[t, :]) if hasE: x[t+1, :] += np.inner(E, v[t, :]) y[t, :] = np.inner(C, x[t, :]) if hasD: y[t, :] += np.inner(D, u[t, :]) # not sure what to do with the last time step, so leave it be for now # y[T, :] = np.inner(C, x[T, :]) return x, y def populate_model(self, v=None, **kwargs): """ Add system dynamics and constraints to the gurobipy optimization model. Overwrites any previous assignment. """ T = self._opts['T'] nu, nx = self._dims['u'], self._dims['x'] if self._changed['T']: # first time def or change of horizon # make sure to delete old optimization variables if they exist self._removeOld() # define optimization variables for input and state u, x = {}, {} for i in range(nu): for t in range(T): u[t, i] = self._model.addVar(vtype=GRB.CONTINUOUS, name='u[{},{}]'.format(t, i)) for i in range(nx): for t in range(T+1): x[t, i] = self._model.addVar(vtype=GRB.CONTINUOUS, name='x[{},{}]'.format(t, i)) # update the model so it knows the variables self._model.update() # add control constraints umin, umax = self._opts['umin'], self._opts['umax'] has_umin, has_umax = ~np.isnan(umin), ~np.isnan(umax) for i in range(nu): for t in np.arange(has_umin.shape[0])[has_umin[:, i]]: u[t, i].setAttr(GRB.Attr.LB, umin[t, i]) for t in np.arange(has_umax.shape[0])[has_umax[:, i]]: u[t, i].setAttr(GRB.Attr.UB, umax[t, i]) # update intitial state, if provided if 'x0' in kwargs: self.x0 = kwargs['x0'] # add constraint on initial state self.x0con = {} for i in range(nx): self.x0con[0, i] = self._model.addConstr( lhs=x[0, i], sense=GRB.EQUAL, rhs=self.x0[i], name='dyn[0,{}]'.format(i)) # add system dynamics A, B = self._mats['A'], self._mats['B'] if ('E' in self._mats): w = np.inner(v, self._mats['E']) else: w = np.zeros((T, nx)) # dynamic evolution of state and output self.dyncon = {} for t in range(T): for i in range(nx): # put w on RHS to speed up constraint updates self.dyncon[t, i] = self._model.addConstr( lhs=(x[t+1, i] - quicksum([A[i, k] * x[t, k] for k in range(nx)]) - quicksum([B[i, k] * u[t, k] for k in range(nu)])), sense=GRB.EQUAL, rhs=w[t, i], name='dyn[{},{}]'.format(t+1, i)) self._model.update() # add state constraints xmin, xmax = self._opts['xmin'], self._opts['xmax'] has_xmin, has_xmax = ~np.isnan(xmin), ~np.isnan(xmax) for i in range(nx): for t in np.arange(has_xmin.shape[0])[has_xmin[:, i]]: x[t+1, i].setAttr(GRB.Attr.LB, xmin[t, i]) for t in np.arange(has_xmax.shape[0])[has_xmax[:, i]]: x[t+1, i].setAttr(GRB.Attr.UB, xmax[t, i]) self._model.update() # indicate that model is up to date for name in ['T', 'x0', 'umin', 'umax', 'xmin', 'xmax', 'v']: self._changed[name] = False # make variables accessible as object variables self.u, self.x, self.v = u, x, v else: # change input constraints if self._changed['umin']: umin = self._opts['umin'] for i in range(nu): for t in range(T): self.u[t, i].setAttr(GRB.Attr.LB, umin[t, i]) self._changed['umin'] = False if self._changed['umax']: umax = self._opts['umax'] for i in range(nu): for t in range(T): self.u[t, i].setAttr(GRB.Attr.UB, umax[t, i]) self._changed['umax'] = False # change state constraints if self._changed['xmin']: xmin = self._opts['xmin'] # xmin[np.isnan(xmin)] = - np.Inf for i in range(nx): for t in range(T): self.x[t+1, i].setAttr(GRB.Attr.LB, xmin[t, i]) self._changed['xmin'] = False if self._changed['xmax']: xmax = self._opts['xmax'] # xmax[np.isnan(xmax)] = np.Inf for i in range(nx): for t in range(T): self.x[t+1, i].setAttr(GRB.Attr.UB, xmax[t, i]) self._changed['xmax'] = False # change initial state if self._changed['x0']: for i in range(nx): self._model.getConstrByName('dyn[0,{}]'.format(i)).setAttr( GRB.Attr.RHS, self.x0[i]) self._changed['x0'] = False # change effect of disturbance vector on dynamics (if any) if v is not None: if not np.all(v == self.v): self.v = v w = np.inner(v, self._mats['E']) for i in range(nx): for t in range(T): self._model.getConstrByName( 'dyn[{},{}]'.format(t+1, i)).setAttr( GRB.Attr.RHS, w[t, i]) # finally update and include all changes self._model.update() def _removeOld(self): """ Helper function removing all optimization variables from the underlying gurobipy optimization model if the time horizon has been changed. """ if hasattr(self, 'u'): for u in self.u.values(): self._model.remove(u) del self.u if hasattr(self, 'x'): for x in self.x.values(): self._model.remove(x) del self.x if hasattr(self, 'x0con'): for x0c in self.x0con.values(): self._model.remove(x0c) del self.x0con if hasattr(self, 'dyncon'): for dc in self.dyncon.values(): self._model.remove(dc) del self.dyncon self._model.update() def get_optvals(self): """ Return the optimal values of state and control. """ xopt = np.array([[self.x[t, i].X for i in range(self._dims['x'])] for t in range(self._opts['T']+1)]) uopt = np.array([[self.u[t, i].X for i in range(self._dims['u'])] for t in range(self._opts['T'])]) return xopt, uopt def get_consumption(self): """ Return power consumption (in kW) and energy consumption (in kWh) of the system during each optimization time interval as a pandas Dataframe of gurobipy LinExpr or QuadExpr. """ if self._changed['T'] | self._changed['nrg_coeffs']: nrgcoeffs = np.asarray(self._opts['nrg_coeffs']) nu = self._dims['u'] pwrcons = [LinExpr(nrgcoeffs, [self.u[t, i] for i in range(nu)]) for t in range(self._opts['T'])] # rescale to kWh (if time index resolution is different from 1h) rescale = self._index.freq.delta.total_seconds() / 3600.0 nrgcons = [pc * rescale for pc in pwrcons] self._cons = pd.DataFrame({'power': pwrcons, 'energy': nrgcons}, index=self._index) return self._cons def additional_cost_term(self, **kwargs): """ Returns an additional cost term (a Gurobipy LinExp or QuadExp) that is included into the optimization problem. In the base class this is just zero. """ return 0.0 class FraukesModel(LinearSystem): """ The linear model of the Swiss building as used by Frauke in her paper. """ def __init__(self, model, ts=15): """ Create an instance of Frauke's Model with sampling time ts (in minutes) """ from .utils import matrices_frauke A, B, E = matrices_frauke(ts) super(FraukesModel, self).__init__(model, A, B, E=E) def set_v(self, df): """ Set model data (outside temperature, solar radiation, occupancy). Here df is a pandas dataframe indexed by a (timezonez-aware) Datetimeindex with columns outside_temp, solar_rad and occupancy """ self.v = df v = df[['outside_temp', 'solar_rad', 'occupancy']].values self.set_opts(T=v.shape[0]) self.populate_model(self, v=v) class PavlaksModel(LinearSystem): """ The linear model """ def __init__(self, model, ts=15): """ Create an instance of Pavlak's Model with sampling time ts (in minutes) """ from .utils import matrices_pavlak A, B, E = matrices_pavlak(ts) super(PavlaksModel, self).__init__(model, A, B, E=E) def set_v(self, df): """ Set model data (outside temperature, solar radiation, occupancy). Here df is a pandas dataframe indexed by a (timezonez-aware) Datetimeindex with columns outside_temp, solar_rad and occupancy """ self.v = df v = df[['outside_temp', 'solar_rad', 'occupancy']].values self.set_opts(T=v.shape[0]) self.populate_model(self, v=v) class GenericBufferedProduction(LinearSystem): """ A linear model for a generic buffered production model. Here it is assumed that all production costs are sunk costs except for energy. There is a battery with charging and discharging inefficiencies, as well as leakage, which can be used to store energy. """ def __init__(self, model, eta_c=0.9, eta_d=0.9, Tleak=96, ts=15): """ Create an instance of a generic buffered production model. Here eta_c and eta_d are the charging and discharging efficiencies of the battery, respectively, Tleak is time constant (in hours) of the charge leakage, and ts is the sampling time (in minutes). """ Act = np.array([[-1.0/(Tleak*3600), 0], [0, 0]]) Bct = np.array([[eta_c, -1.0/eta_d], [0, 1]]) Cct = np.array([[0, 0]]) Dct = np.array([[0, 0]]) (A, B, C, D, dt) = cont2discrete( (Act, Bct, Cct, Dct), ts*60, method='zoh') super(GenericBufferedProduction, self).__init__(model, A, B) class QuadraticUtility(DynamicalSystem): """ A static quadratic consumption utiltiy model with time-seperable utilities. Used to benchmark the QuadraticUtilityWithBattery model. """ def __init__(self, model, **kwargs): """ Constructor for QuadraticUtility model. Here 'model' is a gurobipy Model object. """ super(QuadraticUtility, self).__init__(model) self._opts = {} self._dims = {'u': 1} self._changed = {'T': True} def set_opts(self, **kwargs): """ Set options (kwargs) to their respective values. """ self._opts.update(kwargs) for kwarg in kwargs: self._changed[kwarg] = True def set_window(self, index): """ Set the window for the optimization. Here index is a pandas DatetimeIndex. """ try: if not np.any(self._index == index): self._opts['T'] = len(index) self._changed['T'] = True self._index = index except (ValueError, AttributeError): self._opts['T'] = len(index) self._changed['T'] = True self._index = index def compute_util_params(self, load_shape, nrg_charges, eta=-0.1, fit='saturated'): """ Computes the parameters of the quadratic utility function by calibrating the consumption under the energy charges nrg_charges to the provided load shape. If fit=='saturated', then compute a single parameter for each period. If fit=='regression', use OLS to estimate a model with a single parameter for each interaction of month, weekday/weekend and hour of day. """ if fit == 'saturated': # Series of linear coefficients self._alpha = nrg_charges.loc[self._index] * (1 - 1/eta) # Series of quadratic coefficients self._beta = -1.0*nrg_charges.loc[self._index].divide( load_shape.loc[self._index]*eta, axis='index') elif fit == 'regression': df = pd.concat([nrg_charges, load_shape], axis=1) df = df.rename(columns={nrg_charges.name: 'p', load_shape.name: 'q'}) df['month'] = df.index.month df['HoD'] = df.index.hour df['wknd'] = (df.index.dayofweek >= 5).astype(int) df['a_indiv'] = df['p'] * (1 - 1 / eta) df['b_indiv'] = -1.0 * df['p'] / (df['q'] * eta) y_a, X_a = dmatrices('a_indiv ~ -1 + C(month):C(HoD):C(wknd)', data=df.loc[self._index]) y_b, X_b = dmatrices('b_indiv ~ -1 + C(month):C(HoD):C(wknd)', data=df.loc[self._index]) # Note: the following weird syntax is necessary to convert patsy # DesignMatrix objects to np arrays - o/w this creates issues # when using multiprocessing since DesignMatrix objects cannot # be pickled (hopefully to be fixed in a later patsy version) _alpha = np.dot(np.asarray(X_a), np.linalg.lstsq( np.asarray(X_a), np.asarray(y_a).flatten())[0]) self._alpha = pd.Series(_alpha, index=self._index) _beta = np.dot(np.asarray(X_b), np.linalg.lstsq( np.asarray(X_b), np.asarray(y_b).flatten())[0]) self._beta =
pd.Series(_beta, index=self._index)
pandas.Series
# -*- coding: utf-8 -*- from __future__ import unicode_literals """ Created on Fri Aug 9 14:01:22 2019 @author: cherrabi """ from P2N_Lib import GenereListeFichiers # import from P2N_Config import LoadConfig # import os # importation de la bibliothèque os qui sert à from textblob import TextBlob # importation de textblob outil liguistique from nltk.corpus import stopwords import nltk from sematch.semantic.similarity import WordNetSimilarity from nltk.corpus import wordnet as wn import pandas as pd import re import shutil import sys from nltk.corpus import stopwords import numpy as np import pandas as pd import re import umap import matplotlib.pyplot as plt import seaborn as sns from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from nltk.tokenize import word_tokenize from nltk.stem.wordnet import WordNetLemmatizer import string import gensim from gensim import corpora from gensim.corpora import Dictionary from sklearn.decomposition import TruncatedSVD import os import re import codecs import logging import time from operator import add from textblob import TextBlob # importation de textblob outil liguistique from nltk.corpus import stopwords from P2N_Lib import LoadBiblioFile from P2N_Lib import GenereListeFichiers from P2N_Config import LoadConfig ListeBrevet = [] # The patent List stop_words = set(stopwords.words('english')) configFile = LoadConfig() requete = configFile.requete GatherContent = configFile.GatherContent GatherBiblio = configFile.GatherBiblio GatherPatent = configFile.GatherPatent GatherFamilly = configFile.GatherFamilly IsEnableScript = configFile.GatherIramuteq ResultBiblioPath = configFile.ResultBiblioPath ndf = configFile.ndf temporPath = configFile.temporPath ResultAbstractPath = configFile.ResultAbstractPath #ResultClaimsPath = configFile.ResultClaimsPath #add here templateFlask directory local to the request directory normalize path for windows ResultPathContent= configFile.ResultContentsPath.replace('\\', '/' ) ResultTemplateFlask = os.path.join(ResultPathContent,'Trizifiier').replace('\\','/') bigram_measures = nltk.collocations.BigramAssocMeasures() trigram_measures = nltk.collocations.TrigramAssocMeasures() if not os.path.exists(ResultTemplateFlask): #creation des dossiers templates et dataFormat os.mkdir(ResultTemplateFlask) if not os.path.exists(ResultTemplateFlask+'/templates'): #creation des dossiers templates et dataFormat os.mkdir(ResultTemplateFlask+'/templates') if not os.path.exists(ResultTemplateFlask+'/DataFormat'): #creation des dossiers templates et dataFormat os.mkdir(ResultTemplateFlask+'/DataFormat') #add here tempo dir temporar = configFile.temporPath wns = WordNetSimilarity() i=0 # build file list #direct = os.path.normpath(ResultBiblioPath) #direct = os.path.normpath(ResultClaimsPath) direct = os.path.normpath(ResultAbstractPath) # affiche url de chaque documents txt dans le dossier de la requete inseree , EN tous les url dossier pour en ect... Fr, En, Unk = GenereListeFichiers(direct) def convert_tag(tag): tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'} try: return tag_dict[tag[0]] except KeyError: return None CountFile_R = 0 CountFile_W = 0 FichierOrg={} # compter les nombre de caractere de EN #if len(En) PSW = [] # liste de mots vide à compléter au fur et à mesure des recherches # minimalistic HTML for result file in html format dataF = """""" # va contenir tous les abstracts du dossier de la requete import codecs DejaVus = dict() f=open(ResultTemplateFlask + '/DataFormat/FileDataAnalysisTrizWiki.csv','w') entetes = [ u'i', u'Abstract Number', u'Term', u'Action', u'indiceSimAction', u'abstract', u'urlEspacenet' ] ligneEntete=",".join(entetes)+"\n" f.write(ligneEntete) d= pd.read_csv("trizOxfordData.csv",delimiter=";") listcaras = pd.DataFrame(d,columns=['Colonne3']) listcara = listcaras.drop_duplicates(['Colonne3'],keep='first') #lecture des fichiers txt en boucle et placement element dans dataF for fic in En: with codecs.open(fic, 'r', 'utf8') as File: dataF = File.readlines() #single File ne pas lire la première ligne de l'abstract # dataF = '\n'.join(dataF) # FichierOrg = dataF abstract = '\n'.join(dataF[1:]) NumberBrevet= fic.split('-')[1] #NumberBrevet=NumberBrevet.replace('*Label_','') NumberBrevet=NumberBrevet.replace('.txt','') #sys.exit(0) # tokenization abstract = re.sub("[^a-zA-Z#]", " ",str(abstract)) Blob = TextBlob(abstract) wordlist=Blob.words #should give best results@ DR # remove stop-words and words less 3 caracters filtered_sentence = [] for w in wordlist: if w not in stop_words and len(w) > 3: filtered_sentence.append(w) #Document-Term Matrix vectorizer = TfidfVectorizer(stop_words='english', max_features= 1000, # keep top 1000 terms max_df = 0.5, smooth_idf=True) X = vectorizer.fit_transform(filtered_sentence) X.shape # check shape of the document-term matrix # SVD represent documents and terms in vectors svd_model = TruncatedSVD(n_components=1, algorithm='randomized', n_iter=100, random_state=122) svd_model.fit(X) len(svd_model.components_) terms = vectorizer.get_feature_names() terms_topic_model =[] for i, comp in enumerate(svd_model.components_): terms_comp = zip(terms, comp) sorted_terms = sorted(terms_comp, key= lambda x:x[1], reverse=True)[:20] sorted_terms_list = [] for t in sorted_terms: sorted_terms_list.append (t[0]) sorted_terms_lists=sorted_terms_list urlEspacenet="https://worldwide.espacenet.com/searchResults?submitted=true&locale=fr_EP&DB=EPODOC&ST=advanced&TI=&AB=&PN="+format(NumberBrevet) matriceListe = [] matricelistePaire = [] matricelistePaireSort=[] matricelistePaireAction = [] matricelistePaireObject = [] for word in sorted_terms_lists : tokens = word for index, row in listcara.iterrows(): abstractNumber='abs'.format(str((i))) listaction = row['Colonne3'] listaction = re.sub(r'\([^)]*\)', '', listaction) #comparaison betwen tags and classe Triz indiceSimAction = wns.word_similarity(word,str(listaction)) if indiceSimAction == 0 or word.isdigit() == True: #print "rien a faire " continue else: valeurs=[] valeurs=[i,NumberBrevet,word,listaction,indiceSimAction,abstract,urlEspacenet] ligne=",".join(str(v) for v in valeurs) + "\n" f.write(ligne) print((NumberBrevet), " abstracts processed" ) f.close() #open file data semantic classification d= pd.read_csv(ResultTemplateFlask + "/DataFormat/FileDataAnalysisTrizWiki.csv") df = pd.DataFrame(d,columns=['i','Abstract Number','Term','Action','indiceSimAction','abstract','urlEspacenet']) # sorted data by id and term ascending dfmax = df.sort_values(by=['i','Term','indiceSimAction'],ascending=[True,True,False]) dfmax.to_csv(ResultTemplateFlask + '/DataFormat/tableauTri.csv') # selected just top indice similiraty for term / action dresult = dfmax.drop_duplicates(['Term'],keep='first') dresult.to_csv(ResultTemplateFlask + '/DataFormat/tableauDrop.csv') dresultmaxI=dresult.sort_values(by='indiceSimAction') # create file formated datas to use in tabulator html dresultmaxI.to_csv(ResultTemplateFlask + '/DataFormat/resultatParserV2.csv') dd=
pd.read_csv(ResultTemplateFlask + '/DataFormat/resultatParserV2.csv')
pandas.read_csv
# pylint: disable=E1101 from datetime import datetime import os import warnings import nose import numpy as np from pandas.core.frame import DataFrame, Series from pandas.io.parsers import read_csv from pandas.io.stata import read_stata, StataReader import pandas.util.testing as tm from pandas.util.misc import is_little_endian from pandas import compat class TestStata(tm.TestCase): def setUp(self): # Unit test datasets for dta7 - dta9 (old stata formats 104, 105 and 107) can be downloaded from: # http://stata-press.com/data/glmext.html self.dirpath = tm.get_data_path() self.dta1 = os.path.join(self.dirpath, 'stata1.dta') self.dta2 = os.path.join(self.dirpath, 'stata2.dta') self.dta3 = os.path.join(self.dirpath, 'stata3.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4 = os.path.join(self.dirpath, 'stata4.dta') self.dta7 = os.path.join(self.dirpath, 'cancer.dta') self.csv7 = os.path.join(self.dirpath, 'cancer.csv') self.dta8 = os.path.join(self.dirpath, 'tbl19-3.dta') self.csv8 = os.path.join(self.dirpath, 'tbl19-3.csv') self.dta9 = os.path.join(self.dirpath, 'lbw.dta') self.csv9 = os.path.join(self.dirpath, 'lbw.csv') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.dta1_13 = os.path.join(self.dirpath, 'stata1_v13.dta') self.dta2_13 = os.path.join(self.dirpath, 'stata2_v13.dta') self.dta3_13 = os.path.join(self.dirpath, 'stata3_v13.dta') self.dta4_13 = os.path.join(self.dirpath, 'stata4_v13.dta') def read_dta(self, file): return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_dta1(self): reader = StataReader(self.dta1) parsed = reader.data() reader_13 = StataReader(self.dta1_13) parsed_13 = reader_13.data() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed, expected) tm.assert_frame_equal(parsed_13, expected) def test_read_dta2(self): expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1) ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1) ), ( np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT') ) ], columns=['datetime_c', 'datetime_big_c', 'date', 'weekly_date', 'monthly_date', 'quarterly_date', 'half_yearly_date', 'yearly_date'] ) with warnings.catch_warnings(record=True) as w: parsed = self.read_dta(self.dta2) parsed_13 = self.read_dta(self.dta2_13) np.testing.assert_equal( len(w), 1) # should get a warning for that format. tm.assert_frame_equal(parsed, expected) tm.assert_frame_equal(parsed_13, expected) def test_read_dta3(self): parsed = self.read_dta(self.dta3) parsed_13 = self.read_dta(self.dta3_13) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected['year'] = expected['year'].astype(np.int32) expected['quarter'] = expected['quarter'].astype(np.int16) tm.assert_frame_equal(parsed, expected)
tm.assert_frame_equal(parsed_13, expected)
pandas.util.testing.assert_frame_equal
import json #import requests import pandas as pd import numpy as np import os from tqdm import tqdm import uuid import subprocess from datetime import datetime from bs4 import BeautifulSoup as bs import re import pysam import mysecrets import glob import tarfile from flask import Flask, request, redirect, url_for, jsonify, render_template, flash, send_file from werkzeug.utils import secure_filename from flask_sitemap import Sitemap from flask_uploads import UploadSet, configure_uploads, DATA from pymongo import MongoClient from pprint import pprint import htmltableparser #import getSimpleSumStats genomicWindowLimit = 2000000 one_sided_SS_window_size = 100000 # (100 kb on either side of the lead SNP) fileSizeLimit = 500 * 1024 * 1024 # in Bytes MYDIR = os.path.dirname(__file__) APP_STATIC = os.path.join(MYDIR, 'static') ################## # Default settings ################## default_region = "1:205500000-206000000" default_chromname = "#CHROM" default_posname = "POS" default_snpname = "ID" default_refname = "REF" default_altname = "ALT" default_pname = "P" default_betaname = "BETA" default_stderrname = "SE" default_nname = "N" default_mafname = "MAF" # Default column names for secondary datasets: CHROM = 'CHROM' BP = 'BP' SNP = 'SNP' P = 'P' coloc2colnames = ['CHR','POS','SNPID','A2','A1','BETA','SE','PVAL','MAF', 'N'] coloc2eqtlcolnames = coloc2colnames + ['ProbeID'] coloc2gwascolnames = coloc2colnames + ['type'] ################ ################ app = Flask(__name__) ext = Sitemap(app=app) app.config['UPLOAD_FOLDER'] = os.path.join(MYDIR, 'static/upload/') app.config['UPLOADED_FILES_DEST'] = os.path.join(MYDIR, 'static/upload/') app.config['MAX_CONTENT_LENGTH'] = fileSizeLimit ALLOWED_EXTENSIONS = set(['txt', 'tsv', 'ld', 'html']) app.config['UPLOADED_FILES_ALLOW'] = ALLOWED_EXTENSIONS app.secret_key = mysecrets.mysecret files = UploadSet('files', DATA) configure_uploads(app, files) collapsed_genes_df_hg19 = pd.read_csv(os.path.join(MYDIR, 'data/collapsed_gencode_v19_hg19.gz'), compression='gzip', sep='\t', encoding='utf-8') collapsed_genes_df_hg38 = pd.read_csv(os.path.join(MYDIR, 'data/collapsed_gencode_v26_hg38.gz'), compression='gzip', sep='\t', encoding='utf-8') collapsed_genes_df = collapsed_genes_df_hg19 # For now ld_mat_diag_constant = 1e-6 conn = "mongodb://localhost:27017" client = MongoClient(conn) db = client.GTEx_V7 # For now available_gtex_versions = ["V7", "V8"] valid_populations = ["EUR", "AFR","EAS", "SAS", "AMR", "ASN", "NFE"] #################################### # Helper functions #################################### def parseRegionText(regiontext, build): if build not in ['hg19', 'hg38']: raise InvalidUsage(f'Unrecognized build: {build}', status_code=410) regiontext = regiontext.strip().replace(' ','').replace(',','').replace('chr','') if not re.search("^\d+:\d+-\d+$", regiontext.replace('X','23').replace('x','23')): raise InvalidUsage(f'Invalid coordinate format. {regiontext} e.g. 1:205,000,000-206,000,000', status_code=410) chrom = regiontext.split(':')[0].lower().replace('chr','').upper() pos = regiontext.split(':')[1] startbp = pos.split('-')[0].replace(',','') endbp = pos.split('-')[1].replace(',','') chromLengths = pd.read_csv(os.path.join(MYDIR, 'data', build + '_chrom_lengths.txt'), sep="\t", encoding='utf-8') chromLengths.set_index('sequence',inplace=True) if chrom in ['X','x'] or chrom == '23': chrom = 23 maxChromLength = chromLengths.loc['chrX', 'length'] try: startbp = int(startbp) endbp = int(endbp) except: raise InvalidUsage(f"Invalid coordinates input: {regiontext}", status_code=410) else: try: chrom = int(chrom) if chrom == 23: maxChromLength = chromLengths.loc['chrX', 'length'] else: maxChromLength = chromLengths.loc['chr'+str(chrom), 'length'] startbp = int(startbp) endbp = int(endbp) except: raise InvalidUsage(f"Invalid coordinates input {regiontext}", status_code=410) if chrom < 1 or chrom > 23: raise InvalidUsage('Chromosome input must be between 1 and 23', status_code=410) elif startbp > endbp: raise InvalidUsage('Starting chromosome basepair position is greater than ending basepair position', status_code=410) elif startbp > maxChromLength or endbp > maxChromLength: raise InvalidUsage('Start or end coordinates are out of range', status_code=410) elif (endbp - startbp) > genomicWindowLimit: raise InvalidUsage(f'Entered region size is larger than {genomicWindowLimit/10**6} Mbp', status_code=410) else: return chrom, startbp, endbp def allowed_file(filenames): if type(filenames) == type('str'): return '.' in filenames and filenames.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS for filename in filenames: if not ('.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS): return False return True def writeList(alist, filename): with open(filename, 'w') as f: for item in alist: f.write("%s\n" % item) def writeMat(aMat, filename): aMat = np.matrix(aMat) with open(filename, 'w') as f: for row in np.arange(aMat.shape[0]): for col in np.arange(aMat.shape[1] - 1): f.write("%s\t" % str(aMat[row,col])) f.write("%s\n" % str(aMat[row,-1])) def genenames(genename, build): # Given either ENSG gene name or HUGO gene name, returns both HUGO and ENSG names ensg_gene = genename if build.lower() in ["hg19","grch37"]: collapsed_genes_df = collapsed_genes_df_hg19 elif build.lower() in ["hg38", "grch38"]: collapsed_genes_df = collapsed_genes_df_hg38 if genename in list(collapsed_genes_df['name']): ensg_gene = collapsed_genes_df['ENSG_name'][list(collapsed_genes_df['name']).index(genename)] if genename in list(collapsed_genes_df['ENSG_name']): genename = collapsed_genes_df['name'][list(collapsed_genes_df['ENSG_name']).index(genename)] return genename, ensg_gene def classify_files(filenames): gwas_filepath = '' ldmat_filepath = '' html_filepath = '' extensions = [] for file in filenames: filename = secure_filename(file.filename) extension = filename.split('.')[-1] if extension not in extensions: if extension in ['txt', 'tsv']: extensions.extend(['txt','tsv']) else: extensions.append(extension) else: raise InvalidUsage('Please upload up to 3 different file types as described', status_code=410) if extension in ['txt', 'tsv']: gwas_filepath = os.path.join(MYDIR, app.config['UPLOAD_FOLDER'], filename) elif extension in ['ld']: ldmat_filepath = os.path.join(MYDIR, app.config['UPLOAD_FOLDER'], filename) elif extension in ['html']: html_filepath = os.path.join(MYDIR, app.config['UPLOAD_FOLDER'], filename) return gwas_filepath, ldmat_filepath, html_filepath def isSorted(l): # l is a list # returns True if l is sorted, False otherwise return all(l[i] <= l[i+1] for i in range(len(l)-1)) def Xto23(l): newl = [] validchroms = [str(i) for i in list(np.arange(1,24))] validchroms.append('.') for x in l: if str(str(x).strip().lower().replace('chr','').upper()) == "X": newl.append(23) elif str(str(x).strip().lower().replace('chr','')) in validchroms: if x!='.': newl.append(int(str(x).strip().lower().replace('chr',''))) else: newl.append('.') else: raise InvalidUsage('Chromosome unrecognized', status_code=410) return newl def verifycol(formname, defaultname, filecolnames, error_message_): """ Checks if the user-entered column name (formname) (or the default column name if no column name was entered - defaultname) can be found in the dataset column names (ie. filecolnames list). If not, the error_message_ is output and program halted with 410 status """ theformname = formname if formname=='': theformname=str(defaultname) if theformname not in filecolnames: raise InvalidUsage(error_message_, status_code=410) return theformname def buildSNPlist(df, chromcol, poscol, refcol, altcol, build): snplist = [] if build.lower() in ["hg38","grch38"]: build = 'b38' else: build = 'b37' for i in np.arange(df.shape[0]): chrom = list(df[chromcol])[i] pos = list(df[poscol])[i] ref = list(df[refcol])[i] alt = list(df[altcol])[i] try: snplist.append(str(chrom)+"_"+str(pos)+"_"+str(ref)+"_"+str(alt)+"_"+str(build)) except: raise InvalidUsage(f'Could not convert marker at row {str(i)}') return snplist def fetchSNV(chrom, bp, ref, build): variantid = '.' if ref is None or ref=='.': ref='' # Ensure valid region: try: regiontxt = str(chrom) + ":" + str(bp) + "-" + str(int(bp)+1) except: raise InvalidUsage(f'Invalid input for {str(chrom):str(bp)}') chrom, startbp, endbp = parseRegionText(regiontxt, build) chrom = str(chrom).replace('chr','').replace('23',"X") # Load dbSNP151 SNP names from region indicated dbsnp_filepath = '' if build.lower() in ["hg38", "grch38"]: suffix = 'b38' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh38p7', 'All_20180418.vcf.gz') else: suffix = 'b37' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh37p13', 'All_20180423.vcf.gz') # Load variant info from dbSNP151 tbx = pysam.TabixFile(dbsnp_filepath) varlist = [] for row in tbx.fetch(str(chrom), bp-1, bp): rowlist = str(row).split('\t') chromi = rowlist[0].replace('chr','') posi = rowlist[1] idi = rowlist[2] refi = rowlist[3] alti = rowlist[4] varstr = '_'.join([chromi, posi, refi, alti, suffix]) varlist.append(varstr) # Check if there is a match to an SNV with the provided info if len(varlist) == 1: variantid = varstr elif len(varlist) > 1 and ref != '': for v in varlist: if v.split('_')[2] == ref: variantid = v break return variantid def standardizeSNPs(variantlist, regiontxt, build): """ Input: Variant names in any of these formats: rsid, chrom_pos_ref_alt, chrom:pos_ref_alt, chrom:pos_ref_alt_b37/b38 Output: chrom_pos_ref_alt_b37/b38 variant ID format, but looks at GTEx variant lookup table first. In the case of multi-allelic variants (e.g. rs2211330(T/A,C)), formats such as 1_205001063_T_A,C_b37 are accepted If variant ID format is chr:pos, and the chr:pos has a unique biallelic SNV, then it will be assigned that variant """ if all(x=='.' for x in variantlist): raise InvalidUsage('No variants provided') if np.nan in variantlist: raise InvalidUsage('Missing variant IDs detected in row(s): ' + str([ i+1 for i,x in enumerate(variantlist) if str(x) == 'nan' ])) # Ensure valid region: chrom, startbp, endbp = parseRegionText(regiontxt, build) chrom = str(chrom).replace('23',"X") # Load GTEx variant lookup table for region indicated db = client.GTEx_V7 rsid_colname = 'rs_id_dbSNP147_GRCh37p13' if build.lower() in ["hg38", "grch38"]: db = client.GTEx_V8 rsid_colname = 'rs_id_dbSNP151_GRCh38p7' collection = db['variant_table'] variants_query = collection.find( { '$and': [ { 'chr': int(chrom.replace('X','23')) }, { 'variant_pos': { '$gte': int(startbp), '$lte': int(endbp) } } ]} ) variants_list = list(variants_query) variants_df = pd.DataFrame(variants_list) variants_df = variants_df.drop(['_id'], axis=1) # Load dbSNP151 SNP names from region indicated dbsnp_filepath = '' suffix = 'b37' if build.lower() in ["hg38", "grch38"]: suffix = 'b38' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh38p7', 'All_20180418.vcf.gz') else: suffix = 'b37' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh37p13', 'All_20180423.vcf.gz') # Load dbSNP file #delayeddf = delayed(pd.read_csv)(dbsnp_filepath,skiprows=getNumHeaderLines(dbsnp_filepath),sep='\t') #dbsnp = dd.from_delayed(delayeddf) tbx = pysam.TabixFile(dbsnp_filepath) print('Compiling list of known variants in the region from dbSNP151') chromcol = [] poscol = [] idcol = [] refcol = [] altcol = [] variantid = [] # in chr_pos_ref_alt_build format rsids = dict({}) # a multi-allelic variant rsid (key) can be represented in several variantid formats (values) for row in tbx.fetch(str(chrom), startbp, endbp): rowlist = str(row).split('\t') chromi = rowlist[0].replace('chr','') posi = rowlist[1] idi = rowlist[2] refi = rowlist[3] alti = rowlist[4] varstr = '_'.join([chromi, posi, refi, alti, suffix]) chromcol.append(chromi) poscol.append(posi) idcol.append(idi) refcol.append(refi) altcol.append(alti) variantid.append(varstr) rsids[idi] = [varstr] altalleles = alti.split(',') # could have more than one alt allele (multi-allelic) if len(altalleles)>1: varstr = '_'.join([chromi, posi, refi, altalleles[0], suffix]) rsids[idi].append(varstr) for i in np.arange(len(altalleles)-1): varstr = '_'.join([chromi, posi, refi, altalleles[i+1], suffix]) rsids[idi].append(varstr) print('Cleaning and mapping list of variants') variantlist = [asnp.split(';')[0].replace(':','_').replace('.','') for asnp in variantlist] # cleaning up the SNP names a bit stdvariantlist = [] for variant in variantlist: if variant == '': stdvariantlist.append('.') continue variantstr = variant.replace('chr','') if re.search("^23_",variantstr): variantstr = variantstr.replace('23_','X_',1) if variantstr.startswith('rs'): try: # Here's the difference from the first function version (we look at GTEx first) if variant in list(variants_df[rsid_colname]): stdvar = variants_df['variant_id'].loc[ variants_df[rsid_colname] == variant].to_list()[0] stdvariantlist.append(stdvar) else: stdvariantlist.append(rsids[variantstr][0]) except: stdvariantlist.append('.') elif re.search("^\d+_\d+_[A,T,G,C]+_[A,T,C,G]+,*", variantstr.replace('X','23')): strlist = variantstr.split('_') strlist = list(filter(None, strlist)) # remove empty strings try: achr, astart, aend = parseRegionText(strlist[0]+":"+strlist[1]+"-"+str(int(strlist[1])+1), build) achr = str(achr).replace('23','X') if achr == str(chrom) and astart >= startbp and astart <= endbp: variantstr = variantstr.replace("_"+str(suffix),"") + "_"+str(suffix) if len(variantstr.split('_')) == 5: stdvariantlist.append(variantstr) else: raise InvalidUsage(f'Variant format not recognizable: {variant}. Is it from another coordinate build system?', status_code=410) else: stdvariantlist.append('.') except: raise InvalidUsage(f'Problem with variant {variant}', status_code=410) elif re.search("^\d+_\d+_*[A,T,G,C]*", variantstr.replace('X','23')): strlist = variantstr.split('_') strlist = list(filter(None, strlist)) # remove empty strings try: achr, astart, aend = parseRegionText(strlist[0]+":"+strlist[1]+"-"+str(int(strlist[1])+1), build) achr = str(achr).replace('23','X') if achr == str(chrom) and astart >= startbp and astart <= endbp: if len(strlist)==3: aref=strlist[2] else: aref='' stdvariantlist.append(fetchSNV(achr, astart, aref, build)) else: stdvariantlist.append('.') except: raise InvalidUsage(f'Problem with variant {variant}', status_code=410) else: raise InvalidUsage(f'Variant format not recognized: {variant}', status_code=410) return stdvariantlist def cleanSNPs(variantlist, regiontext, build): """ Parameters ---------- variantlist : list list of variant IDs in rs id or chr_pos, chr_pos_ref_alt, chr_pos_ref_alt_build, etc formats regiontext : str the region of interest in chr:start-end format build : str build.lower() in ['hg19','hg38', 'grch37', 'grch38'] must be true Returns ------- A cleaner set of SNP names rs id's are cleaned to contain only one, non-rs id formats are standardized to chr_pos_ref_alt_build format) any SNPs not in regiontext are returned as '.' """ variantlist = [asnp.split(';')[0].replace(':','_').replace('.','') for asnp in variantlist] # cleaning up the SNP names a bit std_varlist = standardizeSNPs(variantlist, regiontext, build) final_varlist = [ e if (e.startswith('rs') and std_varlist[i] != '.') else std_varlist[i] for i, e in enumerate(variantlist) ] return final_varlist def torsid(variantlist, regiontext, build): """ Parameters ---------- variantlist : list List of variants in either rs id or other chr_pos, chr_pos_ref, chr_pos_ref_alt, chr_pos_ref_alt_build format. Returns ------- rsidlist : list Corresponding rs id in the region if found. Otherwise returns '.' """ if all(x=='.' for x in variantlist): raise InvalidUsage('No variants provided') variantlist = cleanSNPs(variantlist, regiontext, build) chrom, startbp, endbp = parseRegionText(regiontext, build) chrom = str(chrom).replace('23',"X") # Load dbSNP151 SNP names from region indicated dbsnp_filepath = '' suffix = 'b37' if build.lower() in ["hg38", "grch38"]: suffix = 'b38' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh38p7', 'All_20180418.vcf.gz') else: suffix = 'b37' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh37p13', 'All_20180423.vcf.gz') # Load dbSNP file tbx = pysam.TabixFile(dbsnp_filepath) print('Compiling list of known variants in the region from dbSNP151') chromcol = [] poscol = [] idcol = [] refcol = [] altcol = [] rsid = dict({}) # chr_pos_ref_alt_build (keys) for rsid output (values) for row in tbx.fetch(str(chrom), startbp, endbp): rowlist = str(row).split('\t') chromi = rowlist[0].replace('chr','') posi = rowlist[1] idi = rowlist[2] refi = rowlist[3] alti = rowlist[4] varstr = '_'.join([chromi, posi, refi, alti, suffix]) chromcol.append(chromi) poscol.append(posi) idcol.append(idi) refcol.append(refi) altcol.append(alti) rsid[varstr] = idi altalleles = alti.split(',') # could have more than one alt allele (multi-allelic) if len(altalleles)>1: varstr = '_'.join([chromi, posi, refi, altalleles[0], suffix]) rsid[varstr] = idi for i in np.arange(len(altalleles)-1): varstr = '_'.join([chromi, posi, refi, altalleles[i+1], suffix]) rsid[varstr] = idi finalvarlist = [] for variant in variantlist: if not variant.startswith('rs'): try: finalvarlist.append(rsid[variant]) except: finalvarlist.append('.') else: finalvarlist.append(variant) return finalvarlist def decomposeVariant(variant_list): """ Parameters ---------- variantid_list : list list of str standardized variants in chr_pos_ref_alt_build format Returns ------- A pandas.dataframe with chromosome, pos, reference and alternate alleles columns """ chromlist = [x.split('_')[0] if len(x.split('_'))==5 else x for x in variant_list] chromlist = [int(x) if x not in ["X","."] else x for x in chromlist] poslist = [int(x.split('_')[1]) if len(x.split('_'))==5 else x for x in variant_list] reflist = [x.split('_')[2] if len(x.split('_'))==5 else x for x in variant_list] altlist = [x.split('_')[3] if len(x.split('_'))==5 else x for x in variant_list] df = pd.DataFrame({ default_chromname: chromlist ,default_posname: poslist ,default_refname: reflist ,default_altname: altlist }) return df def addVariantID(gwas_data, chromcol, poscol, refcol, altcol, build = "hg19"): """ Parameters ---------- gwas_data : pandas.DataFrame Has a minimum of chromosome, position, reference and alternate allele columns. chromcol : str chromosome column name in gwas_data poscol : str position column name in gwas_data refcol : str reference allele column name in gwas_data altcol : str alternate allele column name in gwas_data Returns ------- pandas.dataframe with list of standardized variant ID's in chrom_pos_ref_alt_build format added to gwas_data """ varlist = [] buildstr = 'b37' if build.lower() == 'hg38': buildstr = 'b38' chromlist = list(gwas_data[chromcol]) poslist = list(gwas_data[poscol]) reflist = [x.upper() for x in list(gwas_data[refcol])] altlist = [x.upper() for x in list(gwas_data[altcol])] for i in np.arange(gwas_data.shape[0]): chrom = chromlist[i] pos = poslist[i] ref = reflist[i] alt = altlist[i] varlist.append('_'.join([str(chrom),str(pos),ref,alt,buildstr])) gwas_data[default_snpname] = varlist return gwas_data def verifyStdSNPs(stdsnplist, regiontxt, build): # Ensure valid region: chrom, startbp, endbp = parseRegionText(regiontxt, build) chrom = str(chrom).replace('23',"X") # Load GTEx variant lookup table for region indicated db = client.GTEx_V7 if build.lower() in ["hg38", "grch38"]: db = client.GTEx_V8 collection = db['variant_table'] variants_query = collection.find( { '$and': [ { 'chr': int(chrom.replace('X','23')) }, { 'variant_pos': { '$gte': int(startbp), '$lte': int(endbp) } } ]} ) variants_list = list(variants_query) variants_df = pd.DataFrame(variants_list) variants_df = variants_df.drop(['_id'], axis=1) gtex_std_snplist = list(variants_df['variant_id']) isInGTEx = [ x for x in stdsnplist if x in gtex_std_snplist ] return len(isInGTEx) def subsetLocus(build, summaryStats, regiontext, chromcol, poscol, pcol): # regiontext format example: "1:205500000-206000000" if regiontext == "": regiontext = default_region print('Parsing region text') chrom, startbp, endbp = parseRegionText(regiontext, build) print(chrom,startbp,endbp) print('Eliminating missing rows') #summaryStats.dropna(subset=[chromcol,poscol,pcol],inplace=True) print('Subsetting GWAS data to entered region') summaryStats = summaryStats.loc[ [str(x) != '.' for x in list(summaryStats[chromcol])] ].copy() bool1 = [x == chrom for x in Xto23(list(summaryStats[chromcol]))] bool2 = [x>=startbp and x<=endbp for x in list(summaryStats[poscol])] bool3 = [not x for x in list(summaryStats.isnull().any(axis=1))] bool4 = [str(x) != '.' for x in list(summaryStats[chromcol])] gwas_indices_kept = [ ((x and y) and z) and w for x,y,z,w in zip(bool1,bool2,bool3,bool4)] summaryStats = summaryStats.loc[ gwas_indices_kept ].copy() summaryStats.sort_values(by=[ poscol ], inplace=True) chromcolnum = list(summaryStats.columns).index(chromcol) summaryStats.reset_index(drop=True, inplace=True) summaryStats.iloc[:,chromcolnum] = Xto23(list(summaryStats[chromcol])) if summaryStats.shape[0] == 0: raise InvalidUsage('No data found for entered region', status_code=410) # Check for invalid p=0 rows: zero_p = [x for x in list(summaryStats[pcol]) if x==0] if len(zero_p)>0: raise InvalidUsage('P-values of zero detected; please replace with a non-zero p-value') return summaryStats, gwas_indices_kept def getLeadSNPindex(leadsnpname, summaryStats, snpcol, pcol): lead_snp = leadsnpname snp_list = list(summaryStats.loc[:,snpcol]) snp_list = [asnp.split(';')[0] for asnp in snp_list] # cleaning up the SNP names a bit if lead_snp=='': lead_snp = list(summaryStats.loc[ summaryStats.loc[:,pcol] == min(summaryStats.loc[:,pcol]) ].loc[:,snpcol])[0].split(';')[0] if lead_snp not in snp_list: raise InvalidUsage('Lead SNP not found', status_code=410) lead_snp_position_index = snp_list.index(lead_snp) return lead_snp_position_index #################################### # LD Calculation from 1KG using PLINK (on-the-fly) #################################### def resolve_plink_filepath(build, pop, chrom): """ Returns the file path of the binary plink file """ if chrom == 'X': chrom = 23 try: chrom = int(chrom) except: raise InvalidUsage(f"Invalid chromosome {str(chrom)}", status_code=410) if chrom not in np.arange(1,24): raise InvalidUsage(f"Invalid chromosome {str(chrom)}", status_code=410) if pop not in valid_populations: raise InvalidUsage(f"{str(pop)} is not a recognized population", status_code=410) plink_filepath = "" if build.lower() in ["hg19","grch37"]: if chrom == 23: plink_filepath = os.path.join(MYDIR, "data", "1000Genomes_GRCh37", pop, "chrX") else: plink_filepath = os.path.join(MYDIR, "data", "1000Genomes_GRCh37", pop, f"chr{chrom}") elif build.lower() in ["hg38","grch38"]: if chrom == 23: plink_filepath = os.path.join(MYDIR, "data", "1000Genomes_GRCh38", "chrX") else: plink_filepath = os.path.join(MYDIR, "data", "1000Genomes_GRCh38", f"chr{chrom}") else: raise InvalidUsage(f'{str(build)} is not a recognized genome build') return plink_filepath def plink_ldmat(build, pop, chrom, snp_positions, outfilename): plink_filepath = resolve_plink_filepath(build, pop, chrom) # make snps file to extract: snps = [f"chr{str(int(chrom))}:{str(int(position))}" for position in snp_positions] writeList(snps, outfilename + "_snps.txt") #plink_path = subprocess.run(args=["which","plink"], stdout=subprocess.PIPE, universal_newlines=True).stdout.replace('\n','') if build.lower() in ["hg19","grch37"]: if os.name == 'nt': plinkrun = subprocess.run(args=[ "./plink.exe", '--bfile', plink_filepath , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--r2", "square" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) else: plinkrun = subprocess.run(args=[ "./plink", '--bfile', plink_filepath , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--r2", "square" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) elif build.lower() in ["hg38","grch38"]: popfile = os.path.join(MYDIR, 'data', '1000Genomes_GRCh38', str(pop)+'.txt') if os.name == 'nt': plinkrun = subprocess.run(args=[ "./plink.exe", '--bfile', plink_filepath , "--keep", popfile # this is the difference in running GRCh38 , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--r2", "square" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) else: plinkrun = subprocess.run(args=[ "./plink", '--bfile', plink_filepath , "--keep", popfile # this is the difference in running GRCh38 , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--r2", "square" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) else: raise InvalidUsage(f'{str(build)} is not a recognized genome build') if plinkrun.returncode != 0: raise InvalidUsage(plinkrun.stdout.decode('utf-8'), status_code=410) ld_snps = list(pd.read_csv(outfilename + ".bim", sep="\t", header=None).iloc[:,1]) ldmat = np.matrix(pd.read_csv(outfilename + ".ld", sep="\t", header=None)) return ld_snps, ldmat def plink_ld_pairwise(build, lead_snp_position, pop, chrom, snp_positions, snp_pvalues, outfilename): # positions must be in hg19 coordinates # returns NaN for SNPs not in 1KG LD file; preserves order of input snp_positions plink_filepath = resolve_plink_filepath(build, pop, chrom) # make snps file to extract: snps = [f"chr{str(int(chrom))}:{str(int(position))}" for position in snp_positions] writeList(snps, outfilename + "_snps.txt") # Ensure lead snp is also present in 1KG; if not, choose next best lead SNP lead_snp = f"chr{str(int(chrom))}:{str(int(lead_snp_position))}" the1kg_snps = list(pd.read_csv(plink_filepath + ".bim", sep="\t", header=None).iloc[:,1]) new_lead_snp = lead_snp new_lead_snp_position = int(lead_snp_position) while (new_lead_snp not in the1kg_snps) and (len(snp_positions) != 1): print(new_lead_snp + ' not in 1KG ' + str(len(snp_positions)) + ' SNPs left ') lead_snp_index = snp_positions.index(new_lead_snp_position) snp_positions.remove(new_lead_snp_position) del snp_pvalues[lead_snp_index] new_lead_snp_position = snp_positions[ snp_pvalues.index(min(snp_pvalues)) ] new_lead_snp = f"chr{str(int(chrom))}:{str(int(new_lead_snp_position))}" if len(snp_positions) == 0: raise InvalidUsage('No alternative lead SNP found in the 1000 Genomes', status_code=410) lead_snp = new_lead_snp lead_snp_position = new_lead_snp_position print('Lead SNP in use: ' + lead_snp) #plink_path = subprocess.run(args=["which","plink"], stdout=subprocess.PIPE, universal_newlines=True).stdout.replace('\n','') if build.lower() in ["hg19","grch37"]: if os.name == 'nt': plinkrun = subprocess.run(args=[ "./plink.exe", '--bfile', plink_filepath , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--ld-snp", f"chr{str(int(chrom))}:{str(int(lead_snp_position))}" , "--r2" , "--ld-window-r2", "0" , "--ld-window", "999999" , "--ld-window-kb", "200000" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) else: plinkrun = subprocess.run(args=[ "./plink", '--bfile', plink_filepath , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--ld-snp", f"chr{str(int(chrom))}:{str(int(lead_snp_position))}" , "--r2" , "--ld-window-r2", "0" , "--ld-window", "999999" , "--ld-window-kb", "200000" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) elif build.lower() in ["hg38","grch38"]: popfile = os.path.join(MYDIR, 'data', '1000Genomes_GRCh38', str(pop)+'.txt') if os.name == 'nt': plinkrun = subprocess.run(args=[ "./plink.exe", '--bfile', plink_filepath , "--keep", popfile # this is the difference in running GRCh38 , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--ld-snp", f"chr{str(int(chrom))}:{str(int(lead_snp_position))}" , "--r2" , "--ld-window-r2", "0" , "--ld-window", "999999" , "--ld-window-kb", "200000" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) else: plinkrun = subprocess.run(args=[ "./plink", '--bfile', plink_filepath , "--keep", popfile # this is the difference in running GRCh38 , "--chr", str(chrom) , "--extract", outfilename + "_snps.txt" , "--from-bp", str(min(snp_positions)) , "--to-bp", str(max(snp_positions)) , "--ld-snp", f"chr{str(int(chrom))}:{str(int(lead_snp_position))}" , "--r2" , "--ld-window-r2", "0" , "--ld-window", "999999" , "--ld-window-kb", "200000" , "--make-bed" , "--threads", "1" , "--out", outfilename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) else: raise InvalidUsage(f'{str(build)} is not a recognized genome build') if plinkrun.returncode != 0: raise InvalidUsage(plinkrun.stdout.decode('utf-8'), status_code=410) ld_results = pd.read_csv(outfilename + ".ld", delim_whitespace=True) available_r2_positions = ld_results[['BP_B', 'R2']] pos_df = pd.DataFrame({'pos': snp_positions}) merged_df = pd.merge(pos_df, available_r2_positions, how='left', left_on="pos", right_on="BP_B", sort=False)[['pos', 'R2']] merged_df.fillna(-1, inplace=True) return merged_df, new_lead_snp_position #################################### # Getting GTEx Data from Local MongoDB Database #################################### # This is the main function to extract the data for a tissue and gene_id: def get_gtex(version, tissue, gene_id): if version.upper() == "V8": db = client.GTEx_V8 collapsed_genes_df = collapsed_genes_df_hg38 elif version.upper() == "V7": db = client.GTEx_V7 collapsed_genes_df = collapsed_genes_df_hg19 tissue = tissue.replace(' ','_') #gene_id = gene_id.upper() ensg_name = "" if tissue not in db.list_collection_names(): raise InvalidUsage(f'Tissue {tissue} not found', status_code=410) collection = db[tissue] if gene_id.startswith('ENSG'): i = list(collapsed_genes_df['ENSG_name']).index(gene_id) ensg_name = list(collapsed_genes_df['ENSG_name'])[i] elif gene_id in list(collapsed_genes_df['name']): i = list(collapsed_genes_df['name']).index(gene_id) ensg_name = list(collapsed_genes_df['ENSG_name'])[i] else: raise InvalidUsage(f'Gene name {gene_id} not found', status_code=410) #t1=datetime.now() results = list(collection.find({'gene_id': ensg_name})) #t2=datetime.now() #print(f'Time to retrieve gene collection: {t2-t1}') #t1=datetime.now() response = [] try: response = results[0]['eqtl_variants'] except: return pd.DataFrame([{'error': f'No eQTL data for {gene_id} in {tissue}'}]) results_df = pd.DataFrame(response) chrom = int(list(results_df['variant_id'])[0].split('_')[0].replace('X','23')) positions = [ int(x.split('_')[1]) for x in list(results_df['variant_id']) ] #t2=datetime.now() #print(f'Reformatting time: {t2-t1}') #t1=datetime.now() variants_query = db.variant_table.find( { '$and': [ { 'chr': chrom }, { 'variant_pos': { '$gte': min(positions), '$lte': max(positions) } } ]} ) #t2=datetime.now() #print(f'Time for variant table query: {t2-t1}') #t1=datetime.now() t1=datetime.now() variants_list = list(variants_query) t2=datetime.now() print(f'Time for variant query conversion to list: {t2-t1}') t1=datetime.now() variants_df = pd.DataFrame(variants_list) t2=datetime.now() print(f'Time to convert the variant list to dataframe: {t2-t1}') #print(variants_df.shape) #t2=datetime.now() #print(f'Reformatting time: {t2-t1}') #t1=datetime.now() variants_df = variants_df.drop(['_id'], axis=1) #t2=datetime.now() #print(f'_id dropping time: {t2-t1}') #t1=datetime.now() x = pd.merge(results_df, variants_df, on='variant_id') #t2=datetime.now() #print(f'Merging time: {t2-t1}') if version.upper() == "V7": x.rename(columns={'rs_id_dbSNP147_GRCh37p13': 'rs_id'}, inplace=True) elif version.upper() == "V8": x.rename(columns={'rs_id_dbSNP151_GRCh38p7': 'rs_id'}, inplace=True) return x # Function to merge the GTEx data with a particular snp_list def get_gtex_data(version, tissue, gene, snp_list, raiseErrors = False): build = "hg19" if version.upper() == "V8": build = "hg38" gtex_data = [] rsids = True rsid_snps = [ x for x in snp_list if x.startswith('rs') ] b37_snps = [ x for x in snp_list if x.endswith('_b37') ] b38_snps = [ x for x in snp_list if x.endswith('_b38') ] if len(rsid_snps) > 0 and (len(b37_snps)>0 or len(b38_snps) > 0): raise InvalidUsage("There is a mix of rsid and other variant id formats; please use a consistent format") elif len(rsid_snps) > 0: rsids = True elif len(b37_snps) or len(b38_snps) > 0: rsids = False else: raise InvalidUsage('Variant naming format not supported; ensure all are rs ID\'s are formatted as chrom_pos_ref_alt_b37 eg. 1_205720483_G_A_b37') hugo_gene, ensg_gene = genenames(gene, build) print(f'Gathering eQTL data for {hugo_gene} ({ensg_gene}) in {tissue}') response_df = pd.DataFrame({}) if version.upper() == "V7": response_df = get_gtex("V7", tissue, gene) elif version.upper() == "V8": response_df = get_gtex("V8", tissue, gene) if 'error' not in response_df.columns: eqtl = response_df if rsids: snp_df = pd.DataFrame(snp_list, columns=['rs_id']) #idx = pd.Index(list(snp_df['rs_id'])) idx2 = pd.Index(list(eqtl['rs_id'])) #snp_df = snp_df[~idx.duplicated()] eqtl = eqtl[~idx2.duplicated()] # print('snp_df.shape' + str(snp_df.shape)) gtex_data = snp_df.reset_index().merge(eqtl, on='rs_id', how='left', sort=False).sort_values('index') # print('gtex_data.shape' + str(gtex_data.shape)) # print(gtex_data) else: snp_df = pd.DataFrame(snp_list, columns=['variant_id']) gtex_data = snp_df.reset_index().merge(eqtl, on='variant_id', how='left', sort=False).sort_values('index') else: try: error_message = list(response_df['error'])[0] gtex_data = pd.DataFrame({}) except: if raiseErrors: raise InvalidUsage("No response for tissue " + tissue.replace("_"," ") + " and gene " + hugo_gene + " ( " + ensg_gene + " )", status_code=410) return gtex_data # This function simply merges the eqtl_data extracted with the snp_list, # then returns a list of the eQTL pvalues for snp_list (if available) def get_gtex_data_pvalues(eqtl_data, snp_list): rsids = True if snp_list[0].startswith('rs'): rsids = True elif snp_list[0].endswith('_b37'): rsids = False elif snp_list[0].endswith('_b38'): rsids = False else: raise InvalidUsage('Variant naming format not supported; ensure all are rs ID\'s or formatted as chrom_pos_ref_alt_b37 eg. 1_205720483_G_A_b37') if rsids: gtex_data = pd.merge(eqtl_data, pd.DataFrame(snp_list, columns=['rs_id']), on='rs_id', how='right') else: gtex_data = pd.merge(eqtl_data, pd.DataFrame(snp_list, columns=['variant_id']), on='variant_id', how='right') return list(gtex_data['pval']) def fix_gwasfile(infile): outfile = infile.replace('.txt','_mod.txt') with open(infile) as f: with open(outfile, 'w') as fout: filestr = f.readlines() for line in filestr: if line[0:2] != "##": fout.write(line.replace('\t\t\n','\t\n')) try: gwas_data = pd.read_csv(outfile, sep="\t", encoding='utf-8') return gwas_data except: raise InvalidUsage('Failed to load primary dataset. Please check formatting is adequate.', status_code=410) ##################################### # API Routes ##################################### class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv @app.errorhandler(413) def request_entity_too_large(error): return 'File Too Large', error @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response @app.route("/populations") def get1KGPopulations(): populations = pd.read_csv(os.path.join(MYDIR, 'data/populations.tsv'), sep='\t') return jsonify(populations.to_dict(orient='list')) @app.route("/genenames/<build>") def getGeneNames(build): if build.lower() == "hg38": collapsed_genes_df = collapsed_genes_df_hg38 elif build.lower() == "hg19": collapsed_genes_df = collapsed_genes_df_hg19 return jsonify(list(collapsed_genes_df['name'])) @app.route("/genenames/<build>/<chrom>/<startbp>/<endbp>") def getGenesInRange(build, chrom, startbp, endbp): collapsed_genes_df = collapsed_genes_df_hg19 if build.lower() == "hg38": collapsed_genes_df = collapsed_genes_df_hg38 regiontext = str(chrom) + ":" + startbp + "-" + endbp chrom, startbp, endbp = parseRegionText(regiontext, build) genes_to_draw = collapsed_genes_df.loc[ (collapsed_genes_df['chrom'] == ('chr' + str(chrom).replace('23','X'))) & ( ((collapsed_genes_df['txStart'] >= startbp) & (collapsed_genes_df['txStart'] <= endbp)) | ((collapsed_genes_df['txEnd'] >= startbp ) & (collapsed_genes_df['txEnd'] <= endbp )) | ((collapsed_genes_df['txStart'] <= startbp) & (collapsed_genes_df['txEnd'] >= endbp )) )] return jsonify(list(genes_to_draw['name'])) @app.route("/gtex/<version>/tissues_list") def list_tissues(version): if version.upper() == "V8": db = client.GTEx_V8 elif version.upper() == "V7": db = client.GTEx_V7 tissues = list(db.list_collection_names()) tissues.remove('variant_table') return jsonify(tissues) @app.route("/gtex/<version>/<tissue>/<gene_id>") def get_gtex_route(version, tissue, gene_id): x = get_gtex(version, tissue, gene_id) x = x.fillna(-1) return jsonify(x.to_dict(orient='records')) @app.route("/gtex/<version>/<tissue>/<gene_id>/<variant>") def get_gtex_variant(version, tissue, gene_id, variant): x = get_gtex(version, tissue, gene_id) response_df = x result = [] if variant.startswith("rs"): result = response_df.loc[ response_df['rs_id'] == variant ] elif variant.endswith("_b37") or variant.endswith("_b38"): result = response_df.loc[ response_df['variant_id'] == variant ] else: raise InvalidUsage(f'variant name {variant} not found', status_code=410) if result.shape[0] == 0: raise InvalidUsage(f'variant name {variant} not found', status_code=410) return jsonify(result.to_dict(orient='records')) @app.route("/previous_session", methods=['GET', 'POST']) def prev_session(): if request.method == 'POST': old_session_id = request.form['session-id'] if old_session_id != '': my_session_id = old_session_id sessionfile = f'session_data/form_data-{my_session_id}.json' genes_sessionfile = f'session_data/genes_data-{my_session_id}.json' SSPvalues_file = f'session_data/SSPvalues-{my_session_id}.json' coloc2_file = f'session_data/coloc2result-{my_session_id}.json' sessionfilepath = os.path.join(MYDIR, 'static', sessionfile) genes_sessionfilepath = os.path.join(MYDIR, 'static', genes_sessionfile) SSPvalues_filepath = os.path.join(MYDIR, 'static', SSPvalues_file) coloc2_filepath = os.path.join(MYDIR, 'static', coloc2_file) else: # blank input raise InvalidUsage('Invalid input') # print(f'Session filepath: {sessionfilepath} is {str(os.path.isfile(sessionfilepath))}') # print(f'Genes filepath: {genes_sessionfilepath} is {str(os.path.isfile(genes_sessionfilepath))}') # print(f'SSPvalues filepath: {SSPvalues_filepath} is {str(os.path.isfile(SSPvalues_filepath))}') if not (os.path.isfile(sessionfilepath) and os.path.isfile(genes_sessionfilepath) and os.path.isfile(SSPvalues_filepath) and os.path.isfile(coloc2_filepath)): raise InvalidUsage(f'Could not locate session {my_session_id}') return render_template("plot.html", sessionfile = sessionfile, genesfile = genes_sessionfile, SSPvalues_file = SSPvalues_file, coloc2_file = coloc2_file, sessionid = my_session_id) return render_template('session_form.html') @app.route("/session_id/<old_session_id>") def prev_session_input(old_session_id): if old_session_id != '': my_session_id = old_session_id sessionfile = f'session_data/form_data-{my_session_id}.json' genes_sessionfile = f'session_data/genes_data-{my_session_id}.json' SSPvalues_file = f'session_data/SSPvalues-{my_session_id}.json' coloc2_file = f'session_data/coloc2result-{my_session_id}.json' sessionfilepath = os.path.join(MYDIR, 'static', sessionfile) genes_sessionfilepath = os.path.join(MYDIR, 'static', genes_sessionfile) SSPvalues_filepath = os.path.join(MYDIR, 'static', SSPvalues_file) coloc2_filepath = os.path.join(MYDIR, 'static', coloc2_file) else: # blank input raise InvalidUsage('Invalid input') # print(f'Session filepath: {sessionfilepath} is {str(os.path.isfile(sessionfilepath))}') # print(f'Genes filepath: {genes_sessionfilepath} is {str(os.path.isfile(genes_sessionfilepath))}') # print(f'SSPvalues filepath: {SSPvalues_filepath} is {str(os.path.isfile(SSPvalues_filepath))}') if not (os.path.isfile(sessionfilepath) and os.path.isfile(genes_sessionfilepath) and os.path.isfile(SSPvalues_filepath) and os.path.isfile(coloc2_filepath)): raise InvalidUsage(f'Could not locate session {my_session_id}') return render_template("plot.html", sessionfile = sessionfile, genesfile = genes_sessionfile, SSPvalues_file = SSPvalues_file, coloc2_file = coloc2_file, sessionid = my_session_id) @app.route("/update/<session_id>/<newgene>") def update_colocalizing_gene(session_id, newgene): sessionfile = f'session_data/form_data-{session_id}.json' sessionfilepath = os.path.join(APP_STATIC, sessionfile) data = json.load(open(sessionfilepath, 'r')) gtex_tissues = data['gtex_tissues'] snp_list = data['snps'] gtex_version = data['gtex_version'] if gtex_version.upper() not in available_gtex_versions: gtex_version = "V7" # gtex_data = {} for tissue in tqdm(gtex_tissues): data[tissue] = pd.DataFrame({}) eqtl_df = get_gtex_data(gtex_version, tissue, newgene, snp_list) #eqtl_filepath = os.path.join(APP_STATIC, f'session_data/eqtl_df-{tissue}-{newgene}-{session_id}.txt') # if os.path.isfile(eqtl_filepath): if len(eqtl_df) > 0: eqtl_df.fillna(-1, inplace=True) data[tissue] = eqtl_df.to_dict(orient='records') # data.update(gtex_data) # json.dump(data, open(sessionfilepath, 'w')) return jsonify(data) @app.route("/regionCheck/<build>/<regiontext>") def regionCheck(build, regiontext): message = dict({'response': "OK"}) if build not in ['hg19', 'hg38']: message['response'] = f'Unrecognized build: {build}' return jsonify(message) regiontext = regiontext.strip().replace(' ','').replace(',','').replace('chr','') if not re.search("^\d+:\d+-\d+$", regiontext.replace('X','23').replace('x','23')): message['response'] = 'Invalid coordinate format. e.g. 1:205,000,000-206,000,000' return jsonify(message) chrom = regiontext.split(':')[0].lower().replace('chr','').upper() pos = regiontext.split(':')[1] startbp = pos.split('-')[0].replace(',','') endbp = pos.split('-')[1].replace(',','') chromLengths = pd.read_csv(os.path.join(MYDIR, 'data', build + '_chrom_lengths.txt'), sep="\t", encoding='utf-8') chromLengths.set_index('sequence',inplace=True) if chrom in ['X','x'] or chrom == '23': chrom = 23 maxChromLength = chromLengths.loc['chrX', 'length'] try: startbp = int(startbp) endbp = int(endbp) except: message['response'] = "Invalid coordinate input" return jsonify(message) else: try: chrom = int(chrom) if chrom == 23: maxChromLength = chromLengths.loc['chrX', 'length'] else: maxChromLength = chromLengths.loc['chr'+str(chrom), 'length'] startbp = int(startbp) endbp = int(endbp) except: message['response'] = "Invalid coordinate input" return jsonify(message) if chrom < 1 or chrom > 23: message['response'] = 'Chromosome input must be between 1 and 23' elif startbp > endbp: message['response'] = 'Starting chromosome basepair position is greater than ending basepair position' elif startbp > maxChromLength or endbp > maxChromLength: message['response'] = 'Start or end coordinates are out of range' elif (endbp - startbp) > genomicWindowLimit: message['response'] = f'Entered region size is larger than {genomicWindowLimit/10**6} Mbp' return jsonify(message) else: return jsonify(message) return jsonify(message) @app.route('/', methods=['GET', 'POST']) def index(): data = {"success": False} # Initializing timing variables: t1_total = np.nan file_size = np.nan ldmat_file_size = np.nan upload_time = np.nan ldmat_upload_time = np.nan gwas_load_time = np.nan ld_pairwise_time = np.nan user_ld_load_time = np.nan gtex_one_gene_time = np.nan gene_list_time = np.nan SS_region_subsetting_time = np.nan gtex_all_queries_time = np.nan ldmat_time = np.nan ldmat_subsetting_time = np.nan SS_time = np.nan # coloc2-specific secondary dataset columns: BETA = 'BETA' SE = 'SE' ALT = 'A1' REF = 'A2' MAF = 'MAF' ProbeID = 'ProbeID' N = 'N' ####################################################### # Uploading files ####################################################### if request.method == 'POST': t1_total = datetime.now() if request.files.get('files[]'): t1 = datetime.now () # timer to get total upload time if 'files[]' in request.files: filenames = request.files.getlist('files[]') for file in filenames: filename = secure_filename(file.filename) filepath = os.path.join(MYDIR, app.config['UPLOAD_FOLDER'], filename) file.save(filepath) if not os.path.isfile(filepath): request_entity_too_large(413) gwas_filepath, ldmat_filepath, html_filepath = classify_files(filenames) upload_time = datetime.now() - t1 ####################################################### # Checking form input parameters ####################################################### my_session_id = uuid.uuid4() coordinate = request.form['coordinate'] gtex_version = "V7" collapsed_genes_df = collapsed_genes_df_hg19 if coordinate.lower() == "hg38": gtex_version = "V8" collapsed_genes_df = collapsed_genes_df_hg38 print(f'Session ID: {my_session_id}') print(f'Coordinate: {coordinate}') print(f'GTEx version: {gtex_version}') print('Loading file') t1 = datetime.now() # timing started for GWAS loading/subsetting/cleaning try: gwas_data = pd.read_csv(gwas_filepath, sep="\t", encoding='utf-8') except: print('File not proper. Attempt fixing') gwas_data = fix_gwasfile(gwas_filepath) inferVariant = request.form.get('markerCheckbox') chromcol, poscol, refcol, altcol = ('','','','') snpcol = '' columnnames = [] if inferVariant: print('User would like variant locations inferred') snpcol = verifycol(formname = request.form['snp-col'], defaultname = default_snpname, filecolnames = gwas_data.columns, error_message_='Variant ID column not found') columnnames = [ snpcol ] else: chromcol = verifycol(formname = request.form['chrom-col'], defaultname = default_chromname, filecolnames = gwas_data.columns, error_message_=f"Chromosome column ({request.form['chrom-col']}) not found") poscol = verifycol(formname = request.form['pos-col'], defaultname = default_posname, filecolnames = gwas_data.columns, error_message_=f"Basepair position column ({request.form['pos-col']}) not found") refcol = verifycol(formname = request.form['ref-col'], defaultname = default_refname, filecolnames = gwas_data.columns, error_message_=f"Reference allele column ({request.form['ref-col']}) not found") altcol = verifycol(formname = request.form['alt-col'], defaultname = default_altname, filecolnames = gwas_data.columns, error_message_=f"Alternate allele column ({request.form['alt-col']}) not found") snpcol = request.form['snp-col'] # optional input in this case if snpcol != '': snpcol = verifycol(formname = snpcol, defaultname = default_snpname, filecolnames = gwas_data.columns, error_message_='Variant ID column not found') columnnames = [ chromcol, poscol, snpcol, refcol, altcol ] else: columnnames = [ chromcol, poscol, refcol, altcol ] print('No SNP ID column provided') # Check whether data types are ok: if not all(isinstance(x, int) for x in Xto23(list(gwas_data[chromcol]))): raise InvalidUsage(f'Chromosome column ({chromcol}) contains unrecognizable values', status_code=410) if not all(isinstance(x, int) for x in list(gwas_data[poscol])): raise InvalidUsage(f'Position column ({poscol}) has non-integer entries', status_code=410) pcol = verifycol(formname = request.form['pval-col'], defaultname = default_pname, filecolnames = gwas_data.columns, error_message_='P-value column not found') columnnames.append(pcol) if not all(isinstance(x, float) for x in list(gwas_data[pcol])): raise InvalidUsage(f'P-value column ({pcol}) has non-numeric entries', status_code=410) runcoloc2 = request.form.get('coloc2check') if runcoloc2: print('User would like COLOC2 results') betacol = verifycol(formname = request.form['beta-col'], defaultname = default_betaname, filecolnames = gwas_data.columns, error_message_='Beta column not found') stderrcol = verifycol(formname = request.form['stderr-col'], defaultname = default_betaname, filecolnames = gwas_data.columns, error_message_='Stderr column not found') numsamplescol = verifycol(formname = request.form['numsamples-col'], defaultname = default_nname, filecolnames = gwas_data.columns, error_message_='Number of samples column not found') mafcol = verifycol(formname = request.form['maf-col'], defaultname = default_mafname, filecolnames = gwas_data.columns, error_message_='MAF column not found') columnnames.extend([ betacol, stderrcol, numsamplescol, mafcol ]) studytype = request.form['studytype'] studytypedf = pd.DataFrame({'type': np.repeat(studytype,gwas_data.shape[0]).tolist()}) if 'type' not in gwas_data.columns: gwas_data = pd.concat([gwas_data, studytypedf], axis=1) columnnames.append('type') if studytype == 'cc': coloc2gwascolnames.append('Ncases') numcases = request.form['numcases'] if not str(numcases).isdigit(): raise InvalidUsage('Number of cases entered must be an integer', status_code=410) numcasesdf = pd.DataFrame({'Ncases': np.repeat(int(numcases), gwas_data.shape[0]).tolist()}) if 'Ncases' not in gwas_data.columns: gwas_data = pd.concat([gwas_data, numcasesdf], axis=1) columnnames.append('Ncases') if not all(isinstance(x, float) for x in list(gwas_data[betacol])): raise InvalidUsage(f'Beta column ({betacol}) has non-numeric entries') if not all(isinstance(x, float) for x in list(gwas_data[stderrcol])): raise InvalidUsage(f'Standard error column ({stderrcol}) has non-numeric entries') if not all(isinstance(x, int) for x in list(gwas_data[numsamplescol])): raise InvalidUsage(f'Number of samples column ({numsamplescol}) has non-integer entries') if not all(isinstance(x, float) for x in list(gwas_data[mafcol])): raise InvalidUsage(f'MAF column ({mafcol}) has non-numeric entries') # Further check column names provided: if len(set(columnnames)) != len(columnnames): raise InvalidUsage(f'Duplicate column names provided: {columnnames}') gwas_data = gwas_data[ columnnames ] if snpcol == '': gwas_data = addVariantID(gwas_data, chromcol, poscol, refcol, altcol, coordinate) snpcol = default_snpname # LD: pops = request.form['LD-populations'] if len(pops) == 0: pops = 'EUR' print('Populations:', pops) # GTEx tissues and genes: gtex_tissues = request.form.getlist('GTEx-tissues') print('GTEx tissues:',gtex_tissues) gtex_genes = request.form.getlist('region-genes') if len(gtex_tissues) > 0 and len(gtex_genes) == 0: raise InvalidUsage('Please select one or more genes to complement your GTEx tissue(s) selection', status_code=410) elif len(gtex_genes) > 0 and len(gtex_tissues) == 0: raise InvalidUsage('Please select one or more tissues to complement your GTEx gene(s) selection', status_code=410) # old code remnant: # if gtex_version=="V7": gene='ENSG00000174502.14' # if gtex_version=="V8": gene='ENSG00000174502.18' if len(gtex_genes)>0: gene = gtex_genes[0] elif coordinate == 'hg19': gene = 'ENSG00000174502.14' elif coordinate == 'hg38': gene = 'ENSG00000174502.18' # Set-based P override: setbasedP = request.form['setbasedP'] if setbasedP=='': setbasedP = 'default' else: try: setbasedP = float(setbasedP) if setbasedP < 0 or setbasedP > 1: raise InvalidUsage('Set-based p-value threshold given is not between 0 and 1') except: raise InvalidUsage('Invalid value provided for the set-based p-value threshold. Value must be numeric between 0 and 1.') # Ensure custom LD matrix and GWAS files are sorted for accurate matching: if ldmat_filepath != '' and poscol != '' and not isSorted(list(gwas_data[poscol])): raise InvalidUsage('GWAS data input is not sorted and may not match with the LD matrix', status_code=410) regionstr = request.form['locus'] if regionstr == "": regionstr = default_region leadsnpname = request.form['leadsnp'] ####################################################### # Standardizing variant ID's to chrom_pos_ref_alt_build format ####################################################### if inferVariant: # standardize variant id's: variant_list = standardizeSNPs(list(gwas_data[snpcol]), regionstr, coordinate) if all(x=='.' for x in variant_list): raise InvalidUsage(f'None of the variants provided could be mapped to {regionstr}!', status_code=410) # get the chrom, pos, ref, alt info from the standardized variant_list vardf = decomposeVariant(variant_list) gwas_data = pd.concat([vardf, gwas_data], axis=1) chromcol = default_chromname poscol = default_posname refcol = default_refname altcol = default_altname gwas_data = gwas_data.loc[ [str(x) != '.' for x in list(gwas_data[chromcol])] ].copy() gwas_data.reset_index(drop=True, inplace=True) ####################################################### # Subsetting GWAS file ####################################################### gwas_data, gwas_indices_kept = subsetLocus(coordinate, gwas_data, regionstr, chromcol, poscol, pcol) lead_snp_position_index = getLeadSNPindex(leadsnpname, gwas_data, snpcol, pcol) lead_snp_position = gwas_data.iloc[lead_snp_position_index,:][poscol] positions = list(gwas_data[poscol]) snp_list = list(gwas_data[snpcol]) snp_list = [asnp.split(';')[0] for asnp in snp_list] # cleaning up the SNP names a bit lead_snp = snp_list[ lead_snp_position_index ] pvals = list(gwas_data[pcol]) chrom, startbp, endbp = parseRegionText(regionstr, coordinate) gwas_load_time = datetime.now() - t1 std_snp_list = [] thechr = gwas_data[chromcol].tolist() thepos = gwas_data[poscol].tolist() theref = gwas_data[refcol].tolist() thealt = gwas_data[altcol].tolist() buildstr = 'b37' if coordinate == 'hg38': buildstr = 'b38' for i in np.arange(gwas_data.shape[0]): std_snp = str(thechr[i]).replace('23','X') + "_" + str(thepos[i]) + "_" + str(theref[i]) + "_" + str(thealt[i]) + "_" + buildstr std_snp_list.append(std_snp) # Check that a good portion of these SNPs can be found thresh = 0.8 snp_warning = False numGTExMatches = verifyStdSNPs(std_snp_list, regionstr, coordinate) if numGTExMatches / len(std_snp_list) < thresh: snp_warning = True #################################################################################################### # Get LD: if ldmat_filepath == '': t1 = datetime.now() # timing started for pairwise LD print('Calculating pairwise LD using PLINK') #ld_df = queryLD(lead_snp, snp_list, pops, ld_type) ld_df, new_lead_snp_position = plink_ld_pairwise(coordinate, lead_snp_position, pops, chrom, positions, pvals, os.path.join(MYDIR, "static", "session_data", f"ld-{my_session_id}")) if new_lead_snp_position != lead_snp_position: lead_snp_position_index = list(gwas_data[poscol]).index(new_lead_snp_position) lead_snp = snp_list[ lead_snp_position_index ] lead_snp_position = new_lead_snp_position r2 = list(ld_df['R2']) ld_pairwise_time = datetime.now() - t1 else: print('---------------------------------') print('Loading user-supplied LD matrix') print('---------------------------------') t1 = datetime.now() # timer started for loading user-defined LD matrix ld_mat = pd.read_csv(ldmat_filepath, sep="\t", encoding='utf-8', header=None) ld_mat = ld_mat.loc[ gwas_indices_kept, gwas_indices_kept ] r2 = list(ld_mat.iloc[:, lead_snp_position_index]) ld_mat = np.matrix(ld_mat) if not ((ld_mat.shape[0] == ld_mat.shape[1]) and (ld_mat.shape[0] == gwas_data.shape[0])): raise InvalidUsage('GWAS and LD matrix input have different dimensions', status_code=410) user_ld_load_time = datetime.now() - t1 data = {} data['snps'] = snp_list data['inferVariant'] = inferVariant data['pvalues'] = list(gwas_data[pcol]) data['lead_snp'] = lead_snp data['ld_values'] = r2 data['positions'] = positions data['chrom'] = chrom data['startbp'] = startbp data['endbp'] = endbp data['ld_populations'] = pops data['gtex_tissues'] = gtex_tissues data['gene'] = genenames(gene, coordinate)[0] data['gtex_genes'] = [ genenames(agene, coordinate)[0] for agene in gtex_genes ] data['coordinate'] = coordinate data['gtex_version'] = gtex_version data['set_based_p'] = setbasedP SSlocustext = request.form['SSlocus'] # SSlocus defined below data['std_snp_list'] = std_snp_list data['runcoloc2'] = runcoloc2 data['snp_warning'] = snp_warning data['thresh'] = thresh data['numGTExMatches'] = numGTExMatches ####################################################### # Loading any secondary datasets uploaded ####################################################### t1 = datetime.now() secondary_datasets = {} table_titles = [] if html_filepath != '': print('Loading secondary datasets provided') with open(html_filepath, encoding='utf-8', errors='replace') as f: html = f.read() if (not html.startswith('<h3>')) and (not html.startswith('<html>')) and (not html.startswith('<table>') and (not html.startswith('<!DOCTYPE html>'))): raise InvalidUsage('Secondary dataset(s) provided are not formatted correctly. Please use the merge_and_convert_to_html.py script for formatting.', status_code=410) soup = bs(html, 'lxml') table_titles = soup.find_all('h3') table_titles = [x.text for x in table_titles] tables = soup.find_all('table') hp = htmltableparser.HTMLTableParser() for i in np.arange(len(tables)): try: table = hp.parse_html_table(tables[i]) secondary_datasets[table_titles[i]] = table.fillna(-1).to_dict(orient='records') except: secondary_datasets[table_titles[i]] = [] data['secondary_dataset_titles'] = table_titles if runcoloc2: data['secondary_dataset_colnames'] = ['CHR', 'POS', 'SNPID', 'PVAL', BETA, SE, 'N', ALT, REF, MAF, ProbeID] else: data['secondary_dataset_colnames'] = [CHROM, BP, SNP, P] data.update(secondary_datasets) sec_data_load_time = datetime.now() - t1 #################################################################################################### t1 = datetime.now() # set timer for extracting GTEx data for selected gene: # Get GTEx data for the tissues and SNPs selected: gtex_data = {} if len(gtex_tissues)>0: print('Gathering GTEx data') for tissue in tqdm(gtex_tissues): eqtl_df = get_gtex_data(gtex_version, tissue, gene, snp_list, raiseErrors=True) # for the full region (not just the SS region) if len(eqtl_df) > 0: eqtl_df.fillna(-1, inplace=True) gtex_data[tissue] = eqtl_df.to_dict(orient='records') data.update(gtex_data) gtex_one_gene_time = datetime.now() - t1 #################################################################################################### # Checking that there is at least one secondary dataset for colocalization #################################################################################################### if len(gtex_tissues)==0 and html_filepath == '': raise InvalidUsage('Please provide at least one secondary dataset or select at least one GTEx tissue for colocalization analysis') #################################################################################################### t1 = datetime.now() # timer for determining the gene list # Obtain any genes to be plotted in the region: print('Summarizing genes to be plotted in this region') genes_to_draw = collapsed_genes_df.loc[ (collapsed_genes_df['chrom'] == ('chr' + str(chrom).replace('23','X'))) & ( ((collapsed_genes_df['txStart'] >= startbp) & (collapsed_genes_df['txStart'] <= endbp)) | ((collapsed_genes_df['txEnd'] >= startbp ) & (collapsed_genes_df['txEnd'] <= endbp )) | ((collapsed_genes_df['txStart'] <= startbp) & (collapsed_genes_df['txEnd'] >= endbp )) )] genes_data = [] for i in np.arange(genes_to_draw.shape[0]): genes_data.append({ 'name': list(genes_to_draw['name'])[i] ,'txStart': list(genes_to_draw['txStart'])[i] ,'txEnd': list(genes_to_draw['txEnd'])[i] ,'exonStarts': [int(bp) for bp in list(genes_to_draw['exonStarts'])[i].split(',')] ,'exonEnds': [int(bp) for bp in list(genes_to_draw['exonEnds'])[i].split(',')] }) gene_list_time = datetime.now() - t1 #################################################################################################### # 1. Determine the region to calculate the Simple Sum (SS): if SSlocustext != '': SSchrom, SS_start, SS_end = parseRegionText(SSlocustext, coordinate) else: #SS_start = list(gwas_data.loc[ gwas_data[pcol] == min(gwas_data[pcol]) ][poscol])[0] - one_sided_SS_window_size #SS_end = list(gwas_data.loc[ gwas_data[pcol] == min(gwas_data[pcol]) ][poscol])[0] + one_sided_SS_window_size SS_start = int(lead_snp_position - one_sided_SS_window_size) SS_end = int(lead_snp_position + one_sided_SS_window_size) SSlocustext = str(chrom) + ":" + str(SS_start) + "-" + str(SS_end) data['SS_region'] = [SS_start, SS_end] # # Getting Simple Sum P-values # 2. Subset the region (step 1 was determining the region to do the SS calculation on - see above SS_start and SS_end variables): t1 = datetime.now() # timer for subsetting SS region print('SS_start: ' + str(SS_start)) print('SS_end:' + str(SS_end)) chromList = [('chr' + str(chrom).replace('23','X')), str(chrom).replace('23','X')] if 'X' in chromList: chromList.extend(['chr23','23']) gwas_chrom_col = pd.Series([str(x) for x in list(gwas_data[chromcol])]) SS_chrom_bool = [str(x).replace('23','X') for x in gwas_chrom_col.isin(chromList) if x == True] SS_indices = SS_chrom_bool & (gwas_data[poscol] >= SS_start) & (gwas_data[poscol] <= SS_end) SS_gwas_data = gwas_data.loc[ SS_indices ] if runcoloc2: coloc2_gwasdf = SS_gwas_data.rename(columns={ chromcol: 'CHR' ,poscol: 'POS' ,snpcol: 'SNPID' ,pcol: 'PVAL' ,refcol: REF ,altcol: ALT ,betacol: BETA ,stderrcol: SE ,mafcol: MAF ,numsamplescol: 'N' }) coloc2_gwasdf = coloc2_gwasdf.reindex(columns=coloc2gwascolnames) # print(coloc2_gwasdf) #print(gwas_data.shape) #print(SS_gwas_data.shape) #print(SS_gwas_data) if SS_gwas_data.shape[0] == 0: InvalidUsage('No data points found for entered Simple Sum region', status_code=410) PvaluesMat = [list(SS_gwas_data[pcol])] SS_snp_list = list(SS_gwas_data[snpcol]) SS_snp_list = cleanSNPs(SS_snp_list, regionstr, coordinate) # optimizing best match variant if given a mix of rsids and non-rsid variants # varids = SS_snp_list # if inferVariant: # rsidx = [i for i,e in enumerate(SS_snp_list) if e.startswith('rs')] # varids = standardizeSNPs(SS_snp_list, SSlocustext, coordinate) # SS_rsids = torsid(SS_std_snp_list, SSlocustext, coordinate) if SSlocustext == '': SSlocustext = str(chrom) + ":" + str(SS_start) + "-" + str(SS_end) #SS_std_snp_list = standardizeSNPs(SS_snp_list, SSlocustext, coordinate) #SS_rsids = torsid(SS_std_snp_list, SSlocustext, coordinate) SS_positions = list(SS_gwas_data[poscol]) if len(SS_positions) != len(set(SS_positions)): dups = set([x for x in SS_positions if SS_positions.count(x) > 1]) raise InvalidUsage('Duplicate chromosome basepair positions detected at: ' + str(dups)) SS_std_snp_list = [e for i,e in enumerate(std_snp_list) if SS_indices[i]] # Extra file written: gwas_df = pd.DataFrame({ 'Position': SS_positions, 'SNP': SS_snp_list, 'variant_id': SS_std_snp_list, 'P': list(SS_gwas_data[pcol]) }) gwas_df.to_csv(os.path.join(MYDIR, 'static', f'session_data/gwas_df-{my_session_id}.txt'), index=False, encoding='utf-8', sep="\t") SS_region_subsetting_time = datetime.now() - t1 data['num_SS_snps'] = gwas_df.shape[0] #################################################################################################### # 3. Determine the genes to query #query_genes = list(genes_to_draw['name']) query_genes = gtex_genes coloc2eqtl_df = pd.DataFrame({}) # 4. Query and extract the eQTL p-values for all tissues & genes from GTEx t1 = datetime.now() # timer set to check how long data extraction from Mongo takes if len(gtex_tissues)>0: print('Obtaining eQTL p-values for selected tissues and surrounding genes') for tissue in gtex_tissues: for agene in query_genes: gtex_eqtl_df = get_gtex_data(gtex_version, tissue, agene, SS_std_snp_list) # print('len(gtex_eqtl_df) '+ str(len(gtex_eqtl_df))) # print('gtex_eqtl_df.shape ' + str(gtex_eqtl_df.shape)) # print('len(SS_snp_list) ' + str(len(SS_snp_list))) #print(SS_std_snp_list) #print(gtex_eqtl_df.dropna()) if len(gtex_eqtl_df) > 0: #gtex_eqtl_df.fillna(-1, inplace=True) pvalues = list(gtex_eqtl_df['pval']) if runcoloc2: tempdf = gtex_eqtl_df.rename(columns={ 'rs_id': 'SNPID' ,'pval': 'PVAL' ,'beta': BETA ,'se': SE ,'sample_maf': MAF ,'chr': 'CHR' ,'variant_pos': 'POS' ,'ref': REF ,'alt': ALT }) tempdf.dropna(inplace=True) if len(tempdf.index) != 0: numsamples = round(tempdf['ma_count'].tolist()[0] / tempdf[MAF].tolist()[0]) numsampleslist = np.repeat(numsamples, tempdf.shape[0]).tolist() tempdf = pd.concat([tempdf,pd.Series(numsampleslist,name='N')],axis=1) probeid = str(tissue) + ':' + str(agene) probeidlist = np.repeat(probeid, tempdf.shape[0]).tolist() tempdf = pd.concat([tempdf, pd.Series(probeidlist,name='ProbeID')],axis=1) tempdf = tempdf.reindex(columns = coloc2eqtlcolnames) coloc2eqtl_df = pd.concat([coloc2eqtl_df, tempdf], axis=0) else: pvalues = np.repeat(np.nan, len(SS_snp_list)) PvaluesMat.append(pvalues) # print(f'tissue: {tissue}, gene: {gene}, len(pvalues): {len(pvalues)}') # print(f'len(SS_positions): {len(SS_positions)}, len(SS_snp_list): {len(SS_snp_list)}') # Extra files written: # eqtl_df = pd.DataFrame({ # 'Position': SS_positions, # 'SNP': SS_snp_list, # 'P': pvalues # }) # eqtl_df.to_csv(os.path.join(MYDIR, 'static', f'session_data/eqtl_df-{tissue}-{agene}-{my_session_id}.txt'), index=False, encoding='utf-8', sep="\t") # print(f'Time to extract eQTLs for {tissue} and {agene}:' + str(datetime.now()-t1)) gtex_all_queries_time = datetime.now() - t1 #################################################################################################### # 4.2 Extract user's secondary datasets' p-values #################################################################################################### if len(secondary_datasets)>0: if runcoloc2: print('Saving uploaded secondary datasets for coloc2 run') for i in np.arange(len(secondary_datasets)): secondary_dataset = pd.DataFrame(secondary_datasets[list(secondary_datasets.keys())[i]]) if secondary_dataset.shape[0] == 0: print(f'No data for table {table_titles[i]}') pvalues = np.repeat(np.nan, len(SS_snp_list)) PvaluesMat.append(pvalues) continue if not set(coloc2eqtlcolnames).issubset(secondary_dataset): raise InvalidUsage(f'You have chosen to run COLOC2. COLOC2 assumes eQTL data as secondary dataset, and you must have all of the following column names: {coloc2eqtlcolnames}') secondary_dataset['SNPID'] = cleanSNPs(secondary_dataset['SNPID'].tolist(),regionstr,coordinate) #secondary_dataset.set_index('SNPID', inplace=True) idx = pd.Index(list(secondary_dataset['SNPID'])) secondary_dataset = secondary_dataset.loc[~idx.duplicated()].reset_index().drop(columns=['index']) # merge to keep only SNPs already present in the GWAS/primary dataset (SS subset): secondary_data_std_snplist = standardizeSNPs(secondary_dataset['SNPID'].tolist(), regionstr, coordinate) secondary_dataset = pd.concat([secondary_dataset, pd.DataFrame(secondary_data_std_snplist, columns=['SNPID.tmp'])], axis=1) snp_df = pd.DataFrame(SS_std_snp_list, columns=['SNPID.tmp']) secondary_data = snp_df.reset_index().merge(secondary_dataset, on='SNPID.tmp', how='left', sort=False).sort_values('index') pvalues = list(secondary_data['PVAL']) PvaluesMat.append(pvalues) coloc2eqtl_df = pd.concat([coloc2eqtl_df, secondary_data.reindex(columns = coloc2eqtlcolnames)], axis=0) else: print('Obtaining p-values for uploaded secondary dataset(s)') for i in np.arange(len(secondary_datasets)): secondary_dataset = pd.DataFrame(secondary_datasets[list(secondary_datasets.keys())[i]]) if secondary_dataset.shape[0] == 0: print(f'No data for table {table_titles[i]}') pvalues = np.repeat(np.nan, len(SS_snp_list)) PvaluesMat.append(pvalues) continue # remove duplicate SNPs secondary_dataset[SNP] = cleanSNPs(secondary_dataset[SNP].tolist(),regionstr,coordinate) idx = pd.Index(list(secondary_dataset[SNP])) secondary_dataset = secondary_dataset.loc[~idx.duplicated()].reset_index().drop(columns=['index']) # merge to keep only SNPs already present in the GWAS/primary dataset (SS subset): secondary_data_std_snplist = standardizeSNPs(secondary_dataset[SNP].tolist(), regionstr, coordinate) std_snplist_df = pd.DataFrame(secondary_data_std_snplist, columns=[SNP+'.tmp']) secondary_dataset = pd.concat([secondary_dataset,std_snplist_df], axis=1) snp_df =
pd.DataFrame(SS_std_snp_list, columns=[SNP+'.tmp'])
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_tspecscores.ipynb (unless otherwise specified). __all__ = ['log_it', 'tsi', 'spm', 'zscore', 'tau', 'ts_func', 'calc_ts'] # Cell import pandas as pd import numpy as np # Cell def log_it(data: pd.DataFrame) -> pd.DataFrame: df = data.copy() return np.log(1 + df) # Cell def tsi(data: pd.DataFrame) -> pd.DataFrame: df = data.copy() foo = np.sum(df.values, axis=1)[:, None] return pd.DataFrame( np.divide(df.values, foo, out=df.values, where=foo != 0), index=df.index, columns=df.columns ) # Cell def spm(data: pd.DataFrame) -> pd.DataFrame: df = data.copy() foo = np.linalg.norm(df.values, axis=1)[:, None] * df.values return pd.DataFrame( np.divide(df.values ** 2, foo, out=df.values, where=foo != 0), index=df.index, columns=df.columns, ) # Cell def zscore(data: pd.DataFrame, transform=True) -> pd.DataFrame: df = data.copy() std = np.std(df.values, axis=1, ddof=1)[:, None] zs = np.divide(df.values - df.values.mean(axis=1)[:, None], std, where=std != 0) zs[np.where(std == 0)[0], :] = 0 if transform: max_zs = (df.values.shape[1] - 1) / np.sqrt(df.values.shape[1]) zs = np.divide((zs + max_zs), (2 * max_zs), where=zs != 0) return
pd.DataFrame(zs, index=df.index, columns=df.columns)
pandas.DataFrame
import math import pandas as pd from model.Enumeration import Level class BondsDao(object): def __init__(self): pass def my_filter(self, df): # c_col = df.loc[:, 'G'] std1, mean1 = df.describe().loc[['std', 'mean'], '估价收益久期'] std2, mean2 = df.describe().loc[['std', 'mean'], '估价收益率'] result = df[(df['估价收益久期'] < mean1 + 3 * std1) & (df.估价收益久期 > mean1 - 3 * std1) & (df['估价收益率'] < mean2 + 3 * std2) & (df.估价收益率 > mean2 - 3 * std2)] return result def get_credit_debt(self): # 读取 df = pd.read_csv('data/bond_real_time_data.csv').loc[0: 3560, :] df.rename(columns={df.columns[0]: '证券代码'}, inplace=True) df_aid = pd.read_csv('data/credit_bonds_quarter_data.csv')[ ['证券代码', '经营活动产生的现金流量净额/流动负债\n[报告期] 2018中报', '资产负债率\n[报告期] 2018中报\n[单位] %', '估价收益率(上清所)\n[日期] 2018-09-14', '估价修正久期(上清所)\n[日期] 2018-09-14']] df_aid.columns = ['证券代码', '现金流量比', '资产负债率', '估价收益率', '估价收益久期'] # 换列 p = pd.merge(df_aid, df[['证券代码', 'AMOUNT', 'MATURITYDATE', 'COUPONRATE', 'DIRTYPRICE']], on='证券代码').dropna( how='any') p = p[['证券代码', 'AMOUNT', 'MATURITYDATE', 'COUPONRATE', 'DIRTYPRICE', '资产负债率', '现金流量比', '估价收益率', '估价收益久期']] result = self.my_filter(p).values for rows in result: rows[2] = rows[2][: -5] return result def get_interest_bonds(self): # 读取 df = pd.read_csv('data/bond_real_time_data.csv').loc[3561:, :] df.rename(columns={df.columns[0]: '证券代码'}, inplace=True) df_aid = pd.read_csv('data/interest_bonds_quarter_data.csv')[ ['证券代码', '估价收益率(上清所)\n[日期] 2018-09-14', '估价修正久期(上清所)\n[日期] 2018-09-14']] df_aid.columns = ['证券代码', '估价收益率', '估价收益久期'] # 换列 p = pd.merge(df_aid, df[['证券代码', 'MATURITYDATE', 'COUPONRATE', 'DIRTYPRICE']], on='证券代码').dropna( how='any') p = p[['证券代码', 'MATURITYDATE', 'COUPONRATE', 'DIRTYPRICE', '估价收益率', '估价收益久期']] result = self.my_filter(p).values for rows in result: rows[1] = rows[1][: -5] return result def get_price_by_code(self, code): """ 根据债券代码找到最新收盘价 返回 收盘价 """ code = int(code.split('.')[0]) df = pd.read_csv('data/bond_real_time_data.csv') result = df.loc[df['TRADE_CODE'] == int(code)] if len(result) > 0: if int(result.index[0]) > 3560: return result['CLOSE'].values[0] else: return result['CLOSE'].values[0] return 1.0 # return 1.0 ''' 根据代码得到名字 ''' def get_name_by_code(self, code): df = pd.read_csv('data/bond_name.csv') for i in range(df.__len__()): if df.values[i][1] == code: return df.values[i][2] return 'no name' def get_start_date(self, invreq_): # todo pass def get_class(self, code): """ 根据债券代码找到类别 """ code = int(code.split('.')[0]) df = pd.read_csv('data/bond_real_time_data.csv') result = df.loc[df['TRADE_CODE'] == int(code)] if len(result) > 0: if int(result.index[0]) > 3560: return '国债' else: return '信用债' return '国债' def get_interest_quarter_data(self, mode: Level, code): df =
pd.read_csv('data/interest_bonds_quarter_data2.csv')
pandas.read_csv
import numpy as np import pytest from pandas.compat import IS64 import pandas as pd import pandas._testing as tm @pytest.mark.parametrize("ufunc", [np.abs, np.sign]) # np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127> @pytest.mark.filterwarnings("ignore:invalid value encountered in sign") def test_ufuncs_single(ufunc): a = pd.array([1, 2, -3, np.nan], dtype="Float64") result = ufunc(a) expected = pd.array(ufunc(a.astype(float)), dtype="Float64") tm.assert_extension_array_equal(result, expected) s = pd.Series(a) result = ufunc(s) expected = pd.Series(expected) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt]) def test_ufuncs_single_float(ufunc): a = pd.array([1.0, 0.2, 3.0, np.nan], dtype="Float64") with np.errstate(invalid="ignore"): result = ufunc(a) expected = pd.array(ufunc(a.astype(float)), dtype="Float64") tm.assert_extension_array_equal(result, expected) s = pd.Series(a) with np.errstate(invalid="ignore"): result = ufunc(s) expected = pd.Series(ufunc(s.astype(float)), dtype="Float64") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.add, np.subtract]) def test_ufuncs_binary_float(ufunc): # two FloatingArrays a = pd.array([1, 0.2, -3, np.nan], dtype="Float64") result = ufunc(a, a) expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Float64") tm.assert_extension_array_equal(result, expected) # FloatingArray with numpy array arr = np.array([1, 2, 3, 4]) result = ufunc(a, arr) expected = pd.array(ufunc(a.astype(float), arr), dtype="Float64") tm.assert_extension_array_equal(result, expected) result = ufunc(arr, a) expected = pd.array(ufunc(arr, a.astype(float)), dtype="Float64") tm.assert_extension_array_equal(result, expected) # FloatingArray with scalar result = ufunc(a, 1) expected = pd.array(ufunc(a.astype(float), 1), dtype="Float64") tm.assert_extension_array_equal(result, expected) result = ufunc(1, a) expected = pd.array(ufunc(1, a.astype(float)), dtype="Float64") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("values", [[0, 1], [0, None]]) def test_ufunc_reduce_raises(values): arr = pd.array(values, dtype="Float64") res = np.add.reduce(arr) expected = arr.sum(skipna=False) tm.assert_almost_equal(res, expected) @pytest.mark.skipif(not IS64, reason="GH 36579: fail on 32-bit system") @pytest.mark.parametrize( "pandasmethname, kwargs", [ ("var", {"ddof": 0}), ("var", {"ddof": 1}), ("kurtosis", {}), ("skew", {}), ("sem", {}), ], ) def test_stat_method(pandasmethname, kwargs): s = pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, np.nan, np.nan], dtype="Float64") pandasmeth = getattr(s, pandasmethname) result = pandasmeth(**kwargs) s2 =
pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype="float64")
pandas.Series
import concurrent.futures import logging import os import pathlib from pathlib import Path from typing import Dict, List import numpy as np import pandas as pd import pytz import xarray as xr from src.constants import ROOT_DIR from src.data.utils import Location from src.logger import get_logger logger = get_logger("Data Transformer") class DataTransformer: def __init__( self, variable: str, locations_csv_path: Path = ROOT_DIR / "data/external/stations.csv", output_dir: Path = ROOT_DIR / "data/processed/", observations_dir: Path = ROOT_DIR / "data/interim/observations/", forecast_dir: Path = ROOT_DIR / "data/interim/forecasts/", time_range: Dict[str, str] = None, ): self.variable = variable self.locations = pd.read_csv(locations_csv_path) self.output_dir = output_dir self.observations_dir = observations_dir self.forecast_dir = forecast_dir if time_range is None: time_range = dict(start="2019-06-01", end="2021-03-31") self.time_range = time_range def run(self) -> List[Path]: data_for_locations_paths = [] locations = [ Location( location[1]["id"], location[1]["city"], location[1]["country"], location[1]["latitude"], location[1]["longitude"], location[1]["timezone"], location[1]["elevation"], ) for location in self.locations.iterrows() ] with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: future_to_entry = { executor.submit(self._data_transform, location): location for location in locations } for future in concurrent.futures.as_completed(future_to_entry): result = future.result() if type(result) is pathlib.PosixPath: logger.info(f"Intermediary data saved to: {result}") data_for_locations_paths.append(result) else: logger.error(result) return data_for_locations_paths def _data_transform(self, loc) -> Path or Exception: try: logger.info(f"Extracting data for location: {str(loc)}") inter_loc_path = self.get_output_path(loc) if inter_loc_path.exists(): logger.info(f"Station at {loc.city} is already computed.") return inter_loc_path data_for_location = LocationTransformer( self.variable, loc, observations_dir=self.observations_dir, forecast_dir=self.forecast_dir, time_range=self.time_range, ).run() data_for_location.to_csv(str(inter_loc_path)) return inter_loc_path except Exception as ex: return ex def get_output_path(self, loc: Location) -> Path: ext = ".csv" intermediary_path = Path( self.output_dir, self.variable, f"data_{self.variable}_{loc.location_id}{ext}", ) if not intermediary_path.parent.exists(): os.makedirs(intermediary_path.parent, exist_ok=True) return intermediary_path class LocationTransformer: def __init__( self, variable: str, location: Location, observations_dir: Path = ROOT_DIR / "data/interim/observations/", forecast_dir: Path = ROOT_DIR / "data/interim/forecasts/", time_range: Dict[str, str] = None, ): self.variable = variable if time_range is None: time_range = dict(start="2019-06-01", end="2021-03-31") self.time_range = time_range self.location = location self.observations_path = location.get_observations_path( observations_dir, self.variable, "_".join(self.time_range.values()).replace("-", ""), ) self.forecast_path = location.get_forecast_path( forecast_dir, "_".join(self.time_range.values()).replace("-", "") ) def run(self) -> pd.DataFrame: """ Main workflow for the LocationTransformer class Returns: pd.DataFrame: observations and forecasts merged """ # Open forecast and observational data try: observed_data = self.opening_and_transforming_observations() except Exception as ex: raise Exception( "There is not data for this variable at the" " location of interest" ) forecast_data = self.opening_and_transforming_forecast() # Merge both xarray datasets merged = xr.merge([forecast_data, observed_data]) merged_pd = merged.to_dataframe() # Adding local_time as a coordinate merged_pd = self.adding_local_time_hour(merged_pd) # There are some stations which has 0s, which seems to be NaN, drop # them varname = f"{self.variable}_observed" merged_pd[varname] = merged_pd[varname].where(merged_pd[varname] >= 0) # There are sometimes where the observation is NaN, we drop these values merged_pd = merged_pd.dropna() # Calculation of the bias merged_pd[f"{self.variable}_bias"] = ( merged_pd[f"{self.variable}_forecast"] - merged_pd[f"{self.variable}_observed"] ) merged_pd.reset_index(inplace=True) return merged_pd def opening_and_transforming_forecast(self) -> xr.Dataset: """ Open the forecasts given the path specified in the object declaration. It also transforms the units of the air quality variables and disaggregate some variables temporally. Returns: xr.Dataset: the forecast dataset """ # Open the data forecast_data = xr.open_dataset(self.forecast_path) # Rename some of the variables forecast_data = forecast_data.rename({"pm2p5": "pm25", "go3": "o3"}) # Interpolate time axis to 1h data logger.info("Interpolating time data to hourly resolution.") hourly_times = pd.date_range( forecast_data.time.values[0], forecast_data.time.values[-1], freq="1H" ) forecast_data = forecast_data.interp(time=hourly_times, method="linear") # Transform units of concentration variables for variable in ["pm25", "o3", "no2", "so2", "pm10"]: logger.info(f"Transforming data for variable {variable}.") # The air density depends on temperature and pressure, but an # standard is known when 15K and 1 atmosphere of pressure surface_pressure = self.calculate_surface_pressure_by_msl( forecast_data["t2m"], forecast_data["msl"] ) air_density = self.calculate_air_density( surface_pressure, forecast_data["t2m"] ) # Now, we use the air density to transform to Micrograms / m³ forecast_data[variable] *= air_density.values forecast_data[variable] *= 10 ** 9 # Some forecast variables are aggregated daily, so a temporal # disaggregation is needed logger.info(f"Dissaggregate forecast variables.") forecast_data = self.forecast_accumulated_variables_disaggregation( forecast_data ) # Rename all the variables to "{variable}_forecast" in order to # distinguish them when merged for data_var in list(forecast_data.data_vars.keys()): forecast_data = forecast_data.rename({data_var: f"{data_var}_forecast"}) forecast_data = forecast_data.drop(["latitude", "longitude", "station_id"]) return forecast_data def opening_and_transforming_observations(self) -> xr.Dataset: """ Open the observations given the path specified in the object declaration. It also transforms the units of the air quality variables and filter the outliers. Returns: xr.Dataset: the observations dataset """ # Open the data observations_data = xr.open_dataset(self.observations_path) # Resample the values in order to have the same time frequency as # CAMS model forecast observations_data = observations_data.resample({"time": "1H"}).mean() # If there are more than one station associated with the location of # interest an average is performed taking into consideration the # distance to the location of interest observations_data = self.weight_average_with_distance(observations_data) # Rename all the variables to "{variable}_observed" in order to # distinguish them when merged for data_var in list(observations_data.data_vars.keys()): observations_data = observations_data.rename( {data_var: f"{data_var}_observed"} ) # Filter outliers observations_data = self.filter_observations_data(observations_data) # Resample time axis to 1H time frequency observations_data = observations_data.resample({"time": "1H"}).asfreq() # Rolling through the data to interpolate NaNs for data_var in list(observations_data.data_vars.keys()): observations_data[data_var] = observations_data[data_var].interpolate_na( dim="time", method="linear", fill_value="extrapolate", use_coordinate=True, max_gap=
pd.Timedelta(value=12, unit="h")
pandas.Timedelta
# env: py3 # Author: <NAME> import pandas as pd import datetime import urllib from urllib.request import urlopen def AirNow(): baseURL = "http://www.airnowapi.org/aq/forecast/" api_key = '###YOUR_API_KEY###' #date = '2018-08-04' # get the current date as input now = datetime.datetime.now() date = str(now) miles = 25 dfs = list() text_file = open("INPUT.txt", "r") latlong = text_file.read().split(' ') text_file.close() lat = latlong[0::2] lon = latlong[1::2] for lats, lons in zip(lat, lon): latlonURL = baseURL + "latLong/?" + urllib.parse.urlencode({ 'format': 'application/json', 'latitude': lats, 'longitude': lons, 'date': date[:10], 'distance': miles, 'API_KEY': api_key }) response = urlopen(latlonURL).read().decode('utf-8') df = pd.read_json(response) #df = df.assign(Zipcode=zipcode) dfs.append(df) results =
pd.concat(dfs)
pandas.concat
import pandas as pd import time import urllib.request, json from bs4 import BeautifulSoup import nltk from nltk.corpus import stopwords import datetime import calendar import csv import pandas as pd import os path = os.environ["heuristik_data_path"] path = os.path.abspath(path) + '/' nltk.download("punkt",path) nltk.download('stopwords',path) symbols_nyse = pd.read_csv(path+'nyse-listed_csv.csv')['ACT Symbol'].tolist() symbols_nasdaq = pd.read_csv(path+'nasdaq-listed-symbols_csv.csv')['Symbol'].tolist() def name_extraction(symbol): """ Resolve name from symbol. """ df_nyse = pd.read_csv(path+'nyse-listed_csv.csv') df_nyse = df_nyse.rename(columns={"ACT Symbol": "Symbol"}) df_nasdaq = pd.read_csv(path+'nasdaq-listed-symbols_csv.csv') dfs = df_nyse.append(df_nasdaq) results = dfs[dfs['Symbol'].str.match(symbol)] if len(results) == 0: print('No relevant symbol found.') symbol = '' elif len(results) >= 1: symbol = list(results['Company Name'])[0].partition(' ')[0] return symbol def clean_raw_text(raw, max_length = 200, remove_tags = True, remove_punctuation = True, remove_stopwords = True, remove_numbers = True, remove_name = ''): """ Clean text by removing html, tags, punctuation, company name, stopwords... """ clean = BeautifulSoup(raw, 'lxml') # remove script if remove_tags: clean = clean.text.lower() # remove tags, lower case if remove_punctuation: tokenizer = nltk.RegexpTokenizer(r"\w+") # remove punctuation clean = tokenizer.tokenize(clean) #tokenize for i, word in enumerate(clean): if word == remove_name.lower(): clean[i] = 'company' #remove clear name if remove_numbers and any(character.isdigit() for character in word): clean[i] = '' if remove_stopwords and (word in stopwords.words('english')): clean[i] = '' if len(clean)>max_length: #limit length clean = " ".join(clean[0:max_length]) else: clean = " ".join(clean) clean = " ".join(clean.split()) return clean def apply_sentiment_to_text(text, price_data): """ Labels text items according to price sentiment. """ text['sentiment'] = '' for text_time in list(text.index): nearest_index = price_data.index.get_loc(text_time, method='ffill') text['sentiment'][text_time] = price_data['sentiment'][nearest_index] return text def get_sentiment(df,start_time,timedelta,barriers): """ Extracting stock sentiment from stock price data. """ end_time = start_time + timedelta if end_time > df.index[-1]: end_time = df.index[-1] if start_time == end_time: sentiment = 0 else: nearest_start_index = df.index.get_loc(start_time, method='bfill') nearest_end_index = df.index.get_loc(end_time, method='bfill') interval_data = df._slice(slice(nearest_start_index, nearest_end_index)) start_price = interval_data['price'][0] end_price = interval_data['price'][-1] horizontal_barriers = start_price * pd.Series([1+barriers,1-barriers]) upper = (interval_data['price']>horizontal_barriers[0]) lower = (interval_data['price']<horizontal_barriers[1]) upper_any = upper.any() lower_any = lower.any() if lower_any: if upper.any(): upper_first_index = interval_data[upper].index[0] lower_first_index = interval_data[lower].index[0] if upper_first_index > lower_first_index: sentiment = -1 else: sentiment = 1 else: sentiment = -1 else: if upper.any(): sentiment = 1 else: sentiment = 0 return sentiment def apply_sentiment(df,timedelta = pd.Timedelta('7 days'),barriers = 0.05): """ Adding sentiment to a stock price dataframe """ print('Extract price sentiment. Timeframe: '+ str(timedelta)+'. Barriers : '+ str(100*barriers)+'%.') return df.index.map(lambda s: get_sentiment(df,s,timedelta,barriers)) def download_price(symbol, # name of the equity function = 'SMA', # Values: 'SMA', TIME_SERIES_INTRADAY' , TIME_SERIES_DAILY outputsize = 'compact', # Values: compact, full apikey = os.environ["heuristik_alphavantage"], # Docs https://www.alphavantage.co/documentation/ timedelta = pd.Timedelta('7 days'), # Time window for tripple barrier method barriers = 0.05, # Vertical window for tripple barrier method force_download = False # False means use cached files ): """ Downloading stock prices from AlphaVantage. Various options for different time-resolutions. """ print('Getting prices for '+symbol+'.') query = ''.join(('https://www.alphavantage.co/query?&', 'datatype=','csv','&', 'function=',function,'&', 'outputsize=',outputsize,'&', 'symbol=',symbol,'&', 'apikey=',apikey, '' )) str_timedelta = str(timedelta).replace(' ','_').replace(':','_') save_file = path+'price_data/'+function +'_'+ str_timedelta+'_'+str(barriers) + '_' +symbol + '.csv' if os.path.exists(save_file) and not force_download: print('Loading prices from file.') data = (pd.read_csv(save_file)) data['time'] = data['time'].map(lambda s: pd.to_datetime(s)) data = data.set_index('time') else: print('Downloading prices from AlphaVantage.') if function == 'TIME_SERIES_INTRADAY': query += ('&interval=' + '5min') df = pd.read_csv(query) if 'high' in df: df = df.drop(columns = ['high','low','close','volume']) df['timestamp'] = df['timestamp'].map(lambda s: pd.to_datetime(s).tz_localize('US/Eastern')) df = df.rename(columns={'open':'price','timestamp': 'time'}) df = df.set_index('time') else: print('Error: Did not retrieve data.') elif function == 'SMA': query += ('&interval=' + '60min') query += ('&time_period='+'5') query += ('&series_type='+'open') df = pd.read_csv(query) if 'time' in df: df['time'] = df['time'].map(lambda s: pd.to_datetime(s).tz_localize('US/Eastern')) df = df.rename(columns={'SMA':'price'}) df = df.set_index('time') else: print('Error: Did not retrieve data.') elif function == 'TIME_SERIES_DAILY': df = pd.read_csv(query) if 'timestamp' in df: df = df.drop(columns = ['high','low','close','volume']) df['timestamp'] = df['timestamp'].map(lambda s: pd.to_datetime(s).tz_localize('US/Eastern')) df = df.rename(columns={'open':'price','timestamp': 'time'}) df = df.set_index('time') else: print('Error: Did not retrieve data.') df = df.iloc[::-1] data = df data['sentiment'] = apply_sentiment(data,timedelta = timedelta,barriers =barriers) data.to_csv(save_file) return save_file, data def retrieve_symbols(symbol): """ Resolving company symbol from AlphaVantage keyword search """ query = 'https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords=' + symbol + '&apikey=' + os.environ["heuristik_alphavantage"] with urllib.request.urlopen(query) as url: data = json.loads(url.read().decode()) if not 'bestMatches' in data.keys(): output = [] else: output = data['bestMatches'] return output def download_stocknews_page(name = 'TSLA', page = 1,api_key = os.environ["heuristik_stocknews"], page_size = 50,print_query = False): """ Download one page from StockNews API. """ if name == 'all': query_dict = {'section': 'alltickers', 'items':str(page_size), 'token':api_key, 'page': str(page)} query = 'https://stocknewsapi.com/api/v1/category?' for key in list(query_dict.keys()): query = query + key + '=' + query_dict[key]+'&' query = query[0:-1] else: query_dict = {'tickers': name, 'items':str(page_size), 'token':api_key, 'page': str(page)} #Assemble query: query = 'https://stocknewsapi.com/api/v1?' for key in list(query_dict.keys()): query = query + key + '=' + query_dict[key]+'&' query = query[0:-1] with urllib.request.urlopen(query) as url: data = json.loads(url.read().decode()) if data['data'] ==[]: pages = 0 else: pages = data['total_pages'] if print_query: print(query) return pages, data['data'] def download_stocknews(name = 'TSLA', pages = 'all', api_key = os.environ["heuristik_stocknews"], download_path = '', save = True,print_query = False): """ Download and save multiple pages from StockNews API. """ assert pages == 'all' or (isinstance(pages,int) and pages>0), "Option pages should be 'all' or positive integer." start_time = time.time() number_of_pages, page_0 = download_stocknews_page(name = name, page = 1,api_key = api_key, print_query = print_query) if number_of_pages == 0: return [] all_pages = convert_stocknews_data(page_0,name = name) if pages == 'all': pages = number_of_pages if number_of_pages < pages: pages = number_of_pages print('Downloading '+ str(pages) +' pages from StockNews. This may take a minute...') for i in range(2,pages): if time.time() < start_time + 1/12: time.sleep(1/12) _, page_i = download_stocknews_page(name = name, page = i,api_key = api_key) current_page = convert_stocknews_data(page_i,name = name) all_pages = all_pages.append(current_page) start_time = time.time() if save: all_pages.to_csv(download_path) return all_pages def convert_stocknews_data(data,name = ''): """ Cleans text contained in a dataframe. """ df = pd.DataFrame({'time' : [],'symbol':[],'text' : [],'raw_text' : [],'url': [],'src_sentiment' : []}) if name != 'all': clear_name = name_extraction(name) length_of_page = len(data) for i in range(0,length_of_page): if data[i]['text'] == None: text_body = data[i]['title'] elif data[i]['title'] == None: text_body = data[i]['text'] else: text_body = data[i]['title']+' '+ data[i]['text'] if name != 'all': text_body = clean_raw_text(text_body,remove_name = clear_name) df = df.append({'time' : pd.to_datetime(data[i]['date']).tz_convert('US/Eastern'), 'symbol': ', '.join(data[i]['tickers']), 'source_name': data[i]['source_name'], 'text':text_body, 'raw_title':data[i]['title'], 'raw_text': data[i]['text'], 'url': data[i]['news_url'], 'src_sentiment':data[i]['sentiment']}, ignore_index=True) df = df.set_index('time') return df def process_company(asset_name,pages = 200, force_download = False, text_src = 'stocknews' ,timewindow = '3 days', barriers = 0.05, data_version = '4'): """ To process a company: downloads stock prices and news, and saves labeled dataframe to disk. """ success = False timedelta = pd.Timedelta(timewindow) _, price_data = download_price(symbol = asset_name, function = 'TIME_SERIES_DAILY', outputsize ='full',barriers = barriers,timedelta = timedelta, force_download = force_download ) text_name = name_extraction(asset_name) if text_src == 'stocknews': symbol = asset_name text_path = path+'text_data/' + 'stocknews_text_v'+data_version +'_'+ asset_name +'.csv' if os.path.exists(text_path) and force_download == False: print('Loading text from file: '+text_path) text = pd.read_csv(text_path) text['time'] = text['time'].map(lambda s: pd.to_datetime(s).tz_convert('US/Eastern')) text = text.set_index('time') text = text.iloc[::-1] else: text = download_stocknews(name = symbol, pages = pages, download_path = text_path ) if len(text) == 0: print('No news found.') return else: text.to_csv(text_path) else: print('Error. Source not found.') if len(text) != 0: text = apply_sentiment_to_text(text, price_data) print('Save data.') str_timedelta = str(timedelta).replace(' ','_').replace(':','_') text.to_csv(path+'text_data/' +'stocknews_labeled_text_v'+data_version+'_' + asset_name +'_'+str_timedelta+'_'+str(barriers)+'.csv') success = True else: success = False return success class data: def __init__(self, timeframe = '3 days', data_version = '4', barriers = '5%', binary_sentiment = True ): """ Data manager class to load data from files or initiate download. Example use: data = heuristik.data( timeframe = args.timeframe, data_version = args.data_version, barriers = args.barriers, binary_sentiment = args.binary_sentiment) df = data.retrieve(symbols = ['TWTR','AMD'],download=True) """ self.path = path self.timeframe = timeframe self.data_version = data_version self.barriers = barriers self.data_version = data_version self.binary_sentiment = binary_sentiment def percent_to_float(self,s): assert isinstance(s,str) or isinstance(s,float) or isinstance(s,int ), 'Please provide str or float as input for barrier.' assert not s.startswith("-"), 'Provide positive barrier percentage.' if isinstance(s,float)or isinstance(s,int ): barrier = float(s/ 100) else: s = str(float(s.rstrip("%"))) i = s.find(".") if i == -1: barrier = int(s) / 100 s = s.replace(".", "") i -= 2 if i < 0: barrier = float("." + "0" * abs(i) + s) else: barrier = float(s[:i] + "." + s[i:]) return barrier def to_numerical_sentiment(self,rating): if isinstance(rating,str): if rating == 'Negative': if self.binary_sentiment: return 1 else: print('nooo') return -1 elif rating == 'Positive': return 1 else: return 0 if (rating == rating) : #check for 'NaN' rating = int(rating) if rating == -1: if self.binary_sentiment: return 1 else: return -1 elif rating == 0: return 0 else: return 1 def human_format(self,num): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 # add more suffixes if you need them return '%.1f%s' % (num, ['', 'k', 'M', 'G', 'T', 'P'][magnitude]) def retrieve(self, symbols, download = False): path = self.path timeframe = self.timeframe data_version = self.data_version barriers = self.barriers data_version = self.data_version pd_timeframe = pd.Timedelta(timeframe) greater_than_zero = pd_timeframe.round('1s')>pd.Timedelta('0') assert greater_than_zero, 'Please provide valid timeframe > 1 second.' if not path[-1]=='/': path = path+'/' if isinstance(symbols,str): symbols = symbols.replace(' ','').split(',') str_timedelta = str(pd_timeframe).replace(' ','_').replace(':','_') str_barriers = str(self.percent_to_float(barriers)) file_name = 'stocknews_labeled_text_v'+data_version+'_' data_paths = [] if path[0]== '~': print('Warning: expanding ~ to home directory.') path = os.path.expanduser(path) print('Path: '+ path) for symbol in symbols: data_paths.append(path+'text_data/'+file_name+symbol+'_'+str_timedelta+'_'+str_barriers+'.csv') data_available = [] for i, data_path in enumerate(data_paths): if not os.path.exists(data_path): if download == True: print('Downloading data.') success = process_company(symbols[i],pages = 200, force_download = False, text_src = 'stocknews',timewindow = self.timeframe, barriers = float(str_barriers),data_version = self.data_version) print('Data downloaded for ', symbols[i],'.') data_available.append(success) else: print('Data unavailable for symbol '+symbols[i]+'. Skipping.') data_available.append(False) else: data_available.append(True) if not any(data_available): return '' if data_available[0]: df =
pd.read_csv(data_paths[0])
pandas.read_csv
from trading.indicators.indicators import ( bollinger, directional_movement, macd, mma, mme, parabolic_sar, rsi, stochastic ) import json import pandas as pd import math import pytest import random @pytest.mark.parametrize("nb, values, mma_column", [ (1, [0.2], [0.2]), (1, [0.2, 0.3, 0.4], [0.2, 0.3, 0.4]), (2, [0.2, 0.3, 0.4], [None, 0.25, 0.35]), (3, [0.2, 0.3, 0.4], [None, None, 0.3]), (4, [0.2, 0.3, 0.4], [None, None, None]), (20, [ 90.70, 92.90, 92.98, 91.80, 92.66, 92.68, 92.30, 92.77, 92.54, 92.95, 93.20, 91.07, 89.83, 89.74, 90.40, 90.74, 88.02, 88.09, 88.84, 90.78, 90.54, 91.39, 90.65 ], [ None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 91.25, 91.24, 91.17, 91.05 ]) ]) def test_that_mma_is_computed(nb, values, mma_column): df = pd.DataFrame(values, columns=["high"]) df = mma(df, nb) for i in range(len(mma_column)): if not mma_column[i]: assert df[f"MMA{nb}"][i] != df[f"MMA{nb}"][i] else: assert round(df[f"MMA{nb}"][i], 2) == mma_column[i] @pytest.mark.parametrize("nb, alpha, values, mme_column", [ (1, 0.5, [0.2], [0.2]), (1, 0.5, [0.2, 0.3, 0.4], [0.2, 0.3, 0.4]), (2, 0.5, [0.2, 0.3, 0.4], [None, 4/15, 11/30]), (3, 0.5, [0.2, 0.3, 0.4], [None, None, 12/35]), (3, 0.2, [0.2, 0.3, 0.4], [None, None, 96/305]), (3, 0, [0.2, 0.3, 0.4], [None, None, 0.3]), # alpha = 0 -> same as MMA (3, 1, [0.2, 0.3, 0.4], [None, None, 0.4]), # alpha = 1 -> only current value taken into account (4, 0.5, [0.2, 0.3, 0.4], [None, None, None]), ]) def test_that_mme_is_computed(nb, alpha, values, mme_column): df = pd.DataFrame(values, columns=["high"]) df = mme(df, nb, alpha=alpha) for i in range(len(mme_column)): if not mme_column[i]: assert df[f"MME{nb}-{alpha}"][i] != df[f"MME{nb}-{alpha}"][i] else: assert math.isclose(mme_column[i], df[f"MME{nb}-{alpha}"][i]) def test_that_macd_is_computed(): values = [random.uniform(0, 1) for _ in range(100)] df =
pd.DataFrame(values, columns=["high"])
pandas.DataFrame
import pandas as pd import numpy as np from scipy.stats import hmean import cirpy import datetime from matplotlib import pyplot as plt import seaborn as sns from data_loader import GraphCancerMolecules sns.set() sns.set_context('talk') def read_in_cpdb(): cpdb_lit = pd.read_csv('../data/cpdb.lit.tab.txt', sep='\t') cpdb_nci = pd.read_csv('../data/cpdb.ncintp.tab.txt', sep='\t') cpdb_df = pd.concat([cpdb_lit, cpdb_nci]) print(f"number of unique chemcodes in rats cpdb {cpdb_df[cpdb_df['species']=='r']['chemcode'].nunique()}") print(f"number of unique chemcodes in cpdb {cpdb_df['chemcode'].nunique()}") cpdb_name =
pd.read_csv('../data/cpdb_name.tsv', sep='\t')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Library with PME calculation functions, provides utility for Private Equity analysis. @author: <NAME> (<EMAIL>) """ import pandas as pd import numpy as np import scipy.optimize from datetime import date #Helper functions def nearest(series, lookup, debug = False): if debug==True: print( "lookup: " + str(lookup) + " | closest: " + str(series.iloc[(series-lookup).abs().argsort()[0]])) return series.iloc[(series-lookup).abs().argsort()[0]] def xnpv(rate, values, dates): '''Equivalent of Excel's XNPV function. >>> from datetime import date >>> dates = [date(2010, 12, 29), date(2012, 1, 25), date(2012, 3, 8)] >>> values = [-10000, 20, 10100] >>> xnpv(0.1, values, dates) -966.4345... ''' if rate <= -1.0: return float('inf') datesx = pd.to_datetime(dates).apply(lambda x: date(x.year,x.month,x.day)) # Just in case conversion to native datime date d0 = datesx[0] # or min(dates) return sum([ vi / (1.0 + rate)**((di - d0).days / 365.0) for vi, di in zip(values, datesx)]) def xirr(values, dates): '''Equivalent of Excel's XIRR function. >>> from datetime import date >>> dates = [date(2010, 12, 29), date(2012, 1, 25), date(2012, 3, 8)] >>> values = [-10000, 20, 10100] >>> xirr(values, dates) 0.0100612... ''' try: return scipy.optimize.newton(lambda r: xnpv(r, values, dates), 0.0) except RuntimeError: # Failed to converge? return scipy.optimize.brentq(lambda r: xnpv(r, values, dates), -1.0, 1e10) def TVM(value, value_date, money_date, discount_rate): ''' Calculates the discounted value of money to date money_date (i.e. either PV or FV depending on date) ''' time_delta = ((pd.to_datetime(money_date) - pd.to_datetime(value_date)) / np.timedelta64(1, 'D')).astype(int)/365 return value*(1+discount_rate)**time_delta def xirr2(values, dates): datesx = pd.to_datetime(dates).apply(lambda x: date(x.year,x.month,x.day)) # Just in case conversion to native datime date transactions = list(zip(datesx,values)) years = [(ta[0] - transactions[0][0]).days / 365.0 for ta in transactions] residual = 1 step = 0.05 guess = 0.05 epsilon = 0.0001 limit = 100000 while abs(residual) > epsilon and limit > 0: limit -= 1 residual = 0.0 for i, ta in enumerate(transactions): residual += ta[1] / pow(guess, years[i]) if abs(residual) > epsilon: if residual > 0: guess += step else: guess -= step step /= 2.0 return guess-1 ### PME Algorhitms #GENERATE DISCOUNTING TABLE def discount_table(dates_cashflows, cashflows, cashflows_type, dates_index, index, NAV_scaling = 1): ''' Automatically matches cashflow and index dates and subsequently generates discount table (which can be used to calculate Direct Alpha et al.). Also useful for debugging and exporting. Args: dates_cashflows: An ndarray the dates corresponding to cashflows. cashflows: An ndarray of the cashflow amounts (sign does not matter) cashflows_type: Accepts three types [Distribution \ Capital Call \ Value] dates_index: Ndarray of dates for the index, same logic as cashflows. index: The index levels corresponding to the dates NAV_scaling: Coefficient which can be used to scale the NAV amount (so as to counteract systemic mispricing) auto_NAV: Toggle for automatic handling of the NAV. If False, NAV is not calculated and function returns a tuple of [sum_fv_distributions, sum_fv_calls] (allows for manual completion of the PME formula using appropriate NAV value) Returns: DataFrame(Date|Amount|Type|Status|Discounted|Index|FV_Factor) ''' _dates_index =
pd.to_datetime(dates_index)
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # In[1]: # src: https://towardsdatascience.com/hands-on-predict-customer-churn-5c2a42806266 # In[2]: # Churn quantifies the number of customers who have # unsubscribed or canceled their service contract. # Steps # 1. Use Case / Business Case # Only by understanding the final objective we can build # a model that is actually of use. # 2. Data collection & cleaning # identify the right data sources, cleansing the data sets and # preparing for feature selection or engineering. # 3. Feature selection & engineering # decide which features we want to include in our model and # prepare the cleansed data to be used for the machine learning # algorithm to predict customer churn. # 4. Modelling # Find the right model (selection) and evaluate that the # algorithm actually works. # 5. Insights and Actions # Evaluate and interpret the outcomes # In our case we actually want to make them stop leaving. # In[3]: # Load libraries import matplotlib get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt matplotlib.rcParams['figure.figsize'] = [5.0, 5.0] import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pandas.set_option
import pandas as pd import numpy as np from random import randint import os.path import click from itertools import product from sklearn.metrics import ( precision_score, recall_score, confusion_matrix, accuracy_score, ) from .preprocessing import ( feature_extraction, group_feature_extraction, normalize_data, ) from .classification import ( split_data, k_fold_crossvalid, leave_one_group_out, train_model, predict_with_model, predict_top_classes, ) MODEL_NAMES = [ 'LDA', 'random_forest', 'decision_tree', 'extra_tree', 'adaboost', 'knn', 'gaussianNB', 'linear_svc', 'svm', 'logistic_regression', 'neural_network', ] NORMALIZER_NAMES = [ 'raw', 'standard_scalar', 'total_sum', 'binary' ] NOISE_VALUES = [ 0, 0.0000000001, 0.000000001, 0.00000001, 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000 ] @click.group() def main(): pass test_size = click.option('--test-size', default=0.2, help='The relative size of the test data') num_estimators = click.option('--num-estimators', default=100, help='Number of trees in our Ensemble Methods') num_neighbours = click.option('--num-neighbours', default=21, help='Number of clusters in our knn/MLknn') n_components = click.option('--n-components', default=100, help='Number of components for dimensionality reduction in Linear Discriminant Analysis') model_name = click.option('--model-name', default='random_forest', help='The model type to train') normalize_method = click.option('--normalize-method', default='standard_scalar', help='Normalization method') feature_name = click.option('--feature-name', default='city', help='The feature to predict') normalize_threshold = click.option('--normalize-threshold', default='0.0001', help='Normalization threshold for binary normalization.') @main.command('kfold') @click.option('--k-fold', default=10, help='The value of k for cross-validation') @test_size @num_estimators @num_neighbours @n_components @model_name @normalize_method @feature_name @normalize_threshold @click.option('--test-filename', default="test_sample.csv", help='Filename to save test dataset') @click.option('--model-filename', default="model_k.pkl", help='Filename to save Model') @click.argument('metadata_file', type=click.File('r')) @click.argument('data_file', type=click.File('r')) @click.argument('out_dir') def kfold_cv(k_fold, test_size, num_estimators, num_neighbours, n_components, model_name, normalize_method, feature_name, normalize_threshold, test_filename, model_filename, metadata_file, data_file, out_dir): """Train and evaluate a model with k-fold cross-validation. echo the model results to stderr.""" raw_data, microbes, feature, name_map = feature_extraction(data_file, metadata_file, feature_name=feature_name) click.echo(f'Training {model_name} using {normalize_method} to predict {feature_name}',err=True) tbl, seed = {}, randint(0, 1000) if not os.path.exists(out_dir): os.mkdir(out_dir) os.mkdir(str(out_dir + '/' + 'confusion_matrix')) else: os.mkdir(str(out_dir + '/' + 'confusion_matrix')) normalized = normalize_data(raw_data, method=normalize_method, threshold=normalize_threshold) split_train_data, split_test_data, split_train_feature, split_test_feature = split_data( normalized, feature, test_size=test_size, seed=seed ) model, mean_score, std_score = k_fold_crossvalid( split_train_data, split_train_feature, method=model_name, n_estimators=num_estimators, n_neighbours=num_neighbours, n_components=n_components, k_fold=k_fold, seed=seed ) click.echo(f'Average cross-validation score {mean_score} and standard deviation {std_score}',err=True) predictions = predict_with_model(model, split_test_data).round() file_name = str(model_name + '_' + normalize_method) model_results = [] model_results.append(accuracy_score(split_test_feature, predictions.round())) model_results.append(precision_score(split_test_feature, predictions, average="micro")) model_results.append(recall_score(split_test_feature, predictions, average="micro")) tbl[file_name] = model_results conf_matrix = pd.DataFrame(confusion_matrix(split_test_feature, predictions.round())) conf_matrix.to_csv(os.path.join(str(out_dir + '/' + 'confusion_matrix' + '/'), file_name + "." + 'csv')) col_names = [ 'Accuracy', 'Precision', 'Recall', ] out_metrics = pd.DataFrame.from_dict(tbl, columns=col_names, orient='index') out_metrics.to_csv(os.path.join(out_dir, str(model_name + '_' + normalize_method) + "." + 'csv')) @main.command('one') @test_size @num_estimators @num_neighbours @n_components @model_name @normalize_method @feature_name @normalize_threshold @click.option('--model-filename', default=None, help='Filename of previously saved model') @click.argument('metadata_file', type=click.File('r')) @click.argument('data_file', type=click.File('r')) @click.argument('out_dir') def eval_one(test_size, num_estimators, num_neighbours, n_components, model_name, normalize_method, feature_name, normalize_threshold, model_filename, metadata_file, data_file, out_dir): """Train and evaluate a model. Print the model results to stderr.""" raw_data, microbes, feature, name_map = feature_extraction(data_file, metadata_file, feature_name=feature_name) click.echo(f'Training {model_name} using {normalize_method} to predict {feature_name}',err=True) tbl, seed = {}, randint(0, 1000) if not os.path.exists(out_dir): os.mkdir(out_dir) os.mkdir(str(out_dir + '/' + 'confusion_matrix')) os.mkdir(str(out_dir + '/' + 'classification_report')) else: os.mkdir(str(out_dir + '/' + 'confusion_matrix')) os.mkdir(str(out_dir + '/' + 'classification_report')) normalized = normalize_data(raw_data, method=normalize_method, threshold=normalize_threshold) train_data, test_data, train_feature, test_feature = split_data( normalized, feature, test_size=test_size, seed=seed ) model = train_model( train_data, train_feature, method=model_name, n_estimators=num_estimators, n_neighbours=num_neighbours, n_components=n_components, seed=seed ) predictions = predict_with_model(model, test_data).round() conf_matrix = pd.DataFrame(confusion_matrix(test_feature, predictions.round())) conf_matrix.to_csv(os.path.join(str(out_dir + '/' + 'confusion_matrix' + '/'), str(model_name + '_' + normalize_method) + "." + 'csv')) model_results = [] model_results.append(accuracy_score(test_feature, predictions.round())) model_results.append(precision_score(test_feature, predictions, average="micro")) model_results.append(recall_score(test_feature, predictions, average="micro")) col_names = [ 'Accuracy', 'Precision', 'Recall', ] tbl[str(model_name + ' ' + normalize_method)] = model_results out_metrics = pd.DataFrame.from_dict(tbl, columns=col_names, orient='index') out_metrics.to_csv(os.path.join(out_dir, str(model_name + '_' + normalize_method) + "." + 'csv')) @main.command('all') @test_size @num_estimators @num_neighbours @n_components @feature_name @normalize_threshold @click.option('--noisy', default=True, help='Add noise to data') @click.argument('metadata_file', type=click.File('r')) @click.argument('data_file', type=click.File('r')) @click.argument('out_dir') def eval_all(test_size, num_estimators, num_neighbours, n_components, feature_name, normalize_threshold, noisy, metadata_file, data_file, out_dir): """Evaluate all models and all normalizers.""" raw_data, microbes, feature, name_map = feature_extraction(data_file, metadata_file, feature_name=feature_name) click.echo(f'Training all models using multiple normalization to predict {feature_name}',err=True) if not os.path.exists(out_dir): os.mkdir(out_dir) os.mkdir(str(out_dir + '/' + 'confusion_matrix')) os.mkdir(str(out_dir + '/' + 'pd_confusion_matrix')) else: os.mkdir(str(out_dir + '/' + 'confusion_matrix')) os.mkdir(str(out_dir + '/' + 'pd_confusion_matrix')) model_results = [] noise_data = [0] if noisy==True: noise_data = NOISE_VALUES tbl, seed = {}, randint(0, 1000) for model_name, norm_name in product(MODEL_NAMES, NORMALIZER_NAMES): click.echo( f'Training {model_name} using {norm_name} to predict {feature_name}', err=True ) normalized = normalize_data(raw_data, method=norm_name, threshold=normalize_threshold) train_data, test_data, train_feature, test_feature = split_data( normalized, feature, test_size=test_size, seed=seed ) for i in noise_data: click.echo(f'Gaussian noise {i} has been added',err=True) # Adding noise to train data to check for over-fitting train_noise = np.random.normal(0, i,(train_data.shape[0], train_data.shape[1])) train_data = train_data+ train_noise model = train_model( train_data, train_feature, method=model_name, n_estimators=num_estimators, n_neighbours=num_neighbours, n_components=n_components, seed=seed ) predictions = predict_with_model(model, test_data).round() model_results = predict_top_classes(model, test_data, test_feature) model_results.append(precision_score(test_feature, predictions, average="micro")) model_results.append(recall_score(test_feature, predictions, average="micro")) model_results.insert(0,i); model_results.insert(0,norm_name); model_results.insert(0,model_name); tbl[str(model_name + '_' + norm_name + '_' + str(i))] = model_results conf_matrix = pd.DataFrame(confusion_matrix(test_feature, predictions.round())) conf_matrix.to_csv(os.path.join(str(out_dir + '/' + 'confusion_matrix' + '/'), str(model_name + '_' + norm_name + '_' + str(i)) + "." + 'csv')) CV_table = pd.crosstab(name_map[test_feature], name_map[predictions], rownames=['Actual ' + feature_name], colnames=['Predicted ' + feature_name]) CV_table.to_csv(os.path.join(str(out_dir + '/' + 'pd_confusion_matrix' + '/'), str(model_name + '_' + norm_name + '_' + str(i)) + "." + 'csv')) col_names = [ 'Classifier', 'Preprocessing', 'Noise', 'Accuracy', 'Top_2_accuracy', 'Top_3_accuracy', 'Top_5_accuracy', 'Top_10_accuracy', 'Precision', 'Recall', ] out_metrics = pd.DataFrame.from_dict(tbl, columns=col_names, orient='index') out_metrics.to_csv(os.path.join(out_dir, 'output_metrics' + "." + 'csv')) @main.command('leave-one') @num_estimators @num_neighbours @n_components @model_name @normalize_method @feature_name @click.option('--group-name', default='city', help='The group to be considered') @normalize_threshold @click.option('--test-filename', default="test_sample.csv", help='Filename to save test dataset') @click.argument('metadata_file', type=click.File('r')) @click.argument('data_file', type=click.File('r')) @click.argument('out_dir') def leave_one(num_estimators, num_neighbours, n_components, model_name, normalize_method, feature_name, group_name, normalize_threshold, test_filename, metadata_file, data_file, out_dir): """Train and evaluate a model and validate using a third-party group. echo the model results to stderr.""" raw_data, microbes, feature, name_map, group_feature, group_map = group_feature_extraction(data_file, metadata_file, feature_name=feature_name, group_name=group_name) click.echo(f'Training {model_name} using {normalize_method} to predict {feature_name}',err=True) tbl, seed = {}, randint(0, 1000) if not os.path.exists(out_dir): os.mkdir(out_dir) os.mkdir(str(out_dir + '/' + 'confusion_matrix')) else: os.mkdir(str(out_dir + '/' + 'confusion_matrix')) normalized = normalize_data(raw_data, method=normalize_method, threshold=normalize_threshold) model, mean_score, std_score, test_data, test_feature = leave_one_group_out( normalized, feature, group_feature, method=model_name, n_estimators=num_estimators, n_neighbours=num_neighbours, n_components=n_components, seed=seed ) predictions = predict_with_model(model, test_data).round() conf_matrix = pd.DataFrame(confusion_matrix(test_feature, predictions.round())) conf_matrix.to_csv(os.path.join(str(out_dir + '/' + 'confusion_matrix' + '/'), str(model_name + '_' + normalize_method) + "." + 'csv')) model_results = [] model_results.append(accuracy_score(test_feature, predictions.round())) model_results.append(precision_score(test_feature, predictions, average="micro")) model_results.append(recall_score(test_feature, predictions, average="micro")) col_names = [ 'Accuracy', 'Precision', 'Recall', ] tbl[str(model_name + ' ' + normalize_method)] = model_results out_metrics =
pd.DataFrame.from_dict(tbl, columns=col_names, orient='index')
pandas.DataFrame.from_dict
import matplotlib.pyplot as pyplot from SQL import querys as sql from Diagram import hex_converting import seaborn as sb import numpy as np import pandas as ps import sqlite3 import datetime import config save_plots = 'plots/' __databaseFile = config.CONFIG['database_file_name'] sb.set(style="dark", color_codes=True) # connect the sqllite database and return connection def diagram_weekly(): connection = sqlite3.connect(__databaseFile) avarage_line_plot(connection) # converte datetime def unix_to_date(timestamp): d = datetime.datetime.fromtimestamp((timestamp)) formatted_time = d.strftime('%Y-%m-%d') return formatted_time # def weekley_epoch(start_date): date_1 = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_date = date_1 + datetime.timedelta(days=1) date_1 = date_1.strftime('%Y-%m-%d') end_date = end_date.strftime('%Y-%m-%d') return end_date def avarage(intarray): avg_weekly= sum(intarray) / len(intarray) return avg_weekly # sort dataframe by date def sort_db(dataframe): df = dataframe.sort_values(by=['tx_time']) return df # create a chart showing the use of the OP_RETURN field in relation to time def weekly_avarage_clc (connection): avarage_year2013 = [] avarage_year2014 = [] avarage_year2015 = [] avarage_year2016 = [] avarage_year2017 = [] avarage_year2018 = [] # create dataframe by using pandas with corresponding SQL statement and the connection to database read_data = ps.read_sql_query(sql.get_count_daily_op_return(), connection) data = sort_db(read_data) t1 = [tuple(x) for x in data.values] array_av = [] x=0 i = 0 while t1[i+1][0] not in t1[-1][0]: if x == 0: end = weekley_epoch(t1[0][0]) array_av.append(t1[i][1]) if str(end) in t1[i+1][0]: array_av.append(t1[i+1][1]) i = i+1 x = x+1 end = weekley_epoch(end) else: array_av.append(0) x = x+1 end = weekley_epoch(end) if (t1[-1][0] == str(end)): break if len(array_av) == 7: if "2013" in end: avarage_year2013.append(avarage(array_av)) elif "2014" in end: avarage_year2014.append(avarage(array_av)) elif "2015" in end: avarage_year2015.append(avarage(array_av)) elif "2016" in end: avarage_year2016.append(avarage(array_av)) elif "2017" in end: avarage_year2017.append(avarage(array_av)) elif "2018" in end: avarage_year2018.append(avarage(array_av)) array_av = [] array_all = [] array_all.append(avarage_year2013) array_all.append(avarage_year2014) array_all.append(avarage_year2015) array_all.append(avarage_year2016) array_all.append(avarage_year2017) array_all.append(avarage_year2018) print(len(avarage_year2015)) print(array_tup(avarage_year2013)) return array_all # plooting yearly occurences of OP_RETURN in weekly avarage def avarage_line_plot (connection): result_array = weekly_avarage_clc(connection) result_array2013 = array_tup(result_array[0]) x_val13 = [x for x,_ in result_array2013] y_val13 = [y for _,y in result_array2013] result_array2014 = array_tup(result_array[1]) x_val14 = [x for x,_ in result_array2014] y_val14 = [y for _,y in result_array2014] result_array2015 = array_tup(result_array[2]) x_val15 = [x for x,_ in result_array2015] y_val15 = [y for _,y in result_array2015] result_array2016 = array_tup(result_array[3]) x_val16 = [x for x,_ in result_array2016] y_val16 = [y for _,y in result_array2016] result_array2017 = array_tup(result_array[4]) x_val17 = [x for x,_ in result_array2017] y_val17 = [y for _,y in result_array2017] result_array2018 = array_tup(result_array[5]) x_val18 = [x for x,_ in result_array2018] y_val18 = [y for _,y in result_array2018] d13 = {'week': x_val13, 'avarage': y_val13} pdnumsqr13 = ps.DataFrame(d13) sb.lineplot(x='week', y='avarage', data=pdnumsqr13,label="2013") d14 = {'week': x_val14, 'avarage': y_val14} pdnumsqr14 = ps.DataFrame(d14) sb.lineplot(x='week', y='avarage', data=pdnumsqr14,label="2014") d15 = {'week': x_val15, 'avarage': y_val15} pdnumsqr15 = ps.DataFrame(d15) sb.lineplot(x='week', y='avarage', data=pdnumsqr15,label="2015") d16 = {'week': x_val16, 'avarage': y_val16} pdnumsqr16 =
ps.DataFrame(d16)
pandas.DataFrame
""" Match two sets of proteins based on BLAST results, using the maximum weight bipartite matching method. Parameters: 1. set1 proteins fasta 2. set2 proteins fasta 3. set1 vs. set2 blast6 result (must use -outfmt "6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore qlen slen") 4. set2 vs. set1 blast6 result (must use -outfmt "6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore qlen slen") 5. Weight parameter - e.g. bitscore or pident 6. Min weight - minnimal weight value allowed in a match * can normalize weights according to Emms, <NAME>., and <NAME>, 2015 Output: TSV file with the matches pairs and their respective weight """ from __future__ import print_function, division from networkx import bipartite, matching from networkx.algorithms.bipartite.matching import minimum_weight_full_matching import argparse import pandas as pd import numpy as np ### FUNCTIONS def assign_ids(fasta, start=0): i = start d = {} with open(fasta) as f: for line in f: if line.startswith('>'): d[i] = line.strip()[1:] i += 1 return d blast6_headers = ["qseqid", "sseqid", "pident", "length", "mismatch", "gapopen", "qstart", "qend", "sstart", "send", "evalue", "bitscore", "qlen", "slen"] def parse_blast6(blast6, weight_param): df =
pd.read_csv(blast6, sep='\t', names=blast6_headers)
pandas.read_csv
import numpy as np from sklearn import preprocessing, cross_validation, neighbors import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from sklearn import preprocessing, cross_validation, neighbors, svm from sklearn.preprocessing import StandardScaler n_components=2 t_size=0.2 df = pd.read_csv('phising data with description.txt') #print("Full data: ") #print(df) #print("df size before drop: ") #print(df.shape) #print("Column 1: ") #print(df['c1']) #print("Result data: ") #print(df['result']) X=np.array(df.drop(['result'],1)) #print("X: ") #print(X) y=np.array(df['result']) #print("y: ") #print(y) #print(y.shape) #print(X.shape) #print("df size after drop: ") #print(df.shape) true=1 while true: X_train,X_test,y_train,y_test=cross_validation.train_test_split(X,y,test_size=t_size) clf=neighbors.KNeighborsClassifier() clf.fit(X_train,y_train) #find the accuracy for Original phishing accuracy_original = clf.score(X_test,y_test) print("Accuracy for Original Phishing KNN: ") print(accuracy_original) #find null accuracy for original dataset yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=clf.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for original dataset: ",count.head(1)[1]/2211) print("Accuracy for original by confusion matrix: ",acc) print("Error rate for original KNN: ",err) print("Sensitivity for original KNN: ",sen) print("Specificity for original KNN: ",spe) print("Precision for original KNN: ",pre) print("Recall for original KNN: ",rec) print("F-Score for original KNN: ",fsc) print("TPR for original KNN: ",tpr) print("FPR for original KNN: ",fpr) print() #original SVM clf_svm=svm.SVC() clf_svm.fit(X_train,y_train) #find the accuracy for SVM accuracy_pca_svm = clf_svm.score(X_test,y_test) print("Accuracy for Original svm: ") print(accuracy_pca_svm) yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=clf_svm.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for original dataset : ",count.head(1)[1]/2211) print("Accuracy for original SVM: ",acc) print("Error rate for original SVM: ",err) print("Sensitivity for original SVM: ",sen) print("Specificity for original SVM: ",spe) print("Precision for original SVM: ",pre) print("Recall for original SVM: ",rec) print("F-Score for original SVM: ",fsc) print("TPR for original SVM: ",tpr) print("FPR for original SVM: ",fpr) print() #original + Random Forest from sklearn.ensemble import RandomForestClassifier clf_rf=RandomForestClassifier(n_estimators=100) clf_rf.fit(X_train,y_train) #find the accuracy for SVM accuracy_pca_rf = clf_rf.score(X_test,y_test) print("Accuracy for Original & RF: ") print(accuracy_pca_rf) yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=clf_rf.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for pca dataset : ",count.head(1)[1]/2211) print("Accuracy for original RF: ",acc) print("Error rate for original RF: ",err) print("Sensitivity for original RF: ",sen) print("Specificity for original RF: ",spe) print("Precision for original RF: ",pre) print("Recall for original RF: ",rec) print("F-Score for original RF: ",fsc) print("TPR for original RF: ",tpr) print("FPR for original RF: ",fpr) print() #PCA scaler = StandardScaler() scaler.fit(df.drop(['result'],1)) scaled_data = scaler.transform(df.drop(['result'],1)) from sklearn.decomposition import PCA pca = PCA(n_components) # fragmenting in components, final result is x_pca pca.fit(scaled_data) x_pca = pca.transform(scaled_data) print("Size of data for original and after pca") print(scaled_data.shape) print(x_pca.shape) #print("data after PCA: ") #print(x_pca) #plot the orthoganal components in X Y axis plt.figure(figsize=(10,10)) plt.scatter(x_pca[:,0],x_pca[:,1],c=y,cmap='plasma') plt.xlabel('First Component') plt.ylabel('Second Component') #plt.zlabel('Third Component') #plt.show() #fit to KNN X=x_pca #print("X for knn: ") #print(X) y=np.array(y) #print ("y for knn: ") #print(y) #print("changed data:") #print(type(x_pca)) #print(type(y)) # import necessary things for KNN and accuracy #print("Test") X_train,X_test,y_train,y_test=cross_validation.train_test_split(X,y,test_size=t_size) clf=neighbors.KNeighborsClassifier() clf.fit(X_train,y_train) #find the accuracy for KNN accuracy_pca = clf.score(X_test,y_test) print("Accuracy for PCA KNN: ") print(accuracy_pca) yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=clf.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for pca dataset: ",count.head(1)[1]/2211) print("Accuracy for pca by confusion matrix: ",acc) print("Error rate for pca KNN: ",err) print("Sensitivity for pca KNN: ",sen) print("Specificity for pca KNN: ",spe) print("Precision for pca KNN: ",pre) print("Recall for pca KNN: ",rec) print("F-Score for pca KNN: ",fsc) print("TPR for pca KNN: ",tpr) print("FPR for pca KNN: ",fpr) print() #PCA + SVM clf_svm=svm.SVC() clf_svm.fit(X_train,y_train) #find the accuracy for SVM accuracy_pca_svm = clf_svm.score(X_test,y_test) print("Accuracy for PCA svm: ") print(accuracy_pca_svm) yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=clf_svm.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for pca dataset : ",count.head(1)[1]/2211) print("Accuracy for pca SVM: ",acc) print("Error rate for pca SVM: ",err) print("Sensitivity for pca SVM: ",sen) print("Specificity for pca SVM: ",spe) print("Precision for pca SVM: ",pre) print("Recall for pca SVM: ",rec) print("F-Score for pca SVM: ",fsc) print("TPR for pca SVM: ",tpr) print("FPR for pca SVM: ",fpr) print() #PCA + Random Forest from sklearn.ensemble import RandomForestClassifier clf_rf=RandomForestClassifier(n_estimators=100) clf_rf.fit(X_train,y_train) #find the accuracy for SVM accuracy_pca_rf = clf_rf.score(X_test,y_test) print("Accuracy for PCA & RF: ") print(accuracy_pca_rf) yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=clf_rf.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for pca dataset : ",count.head(1)[1]/2211) print("Accuracy for pca RF: ",acc) print("Error rate for pca RF: ",err) print("Sensitivity for pca RF: ",sen) print("Specificity for pca RF: ",spe) print("Precision for pca RF: ",pre) print("Recall for pca RF: ",rec) print("F-Score for pca RF: ",fsc) print("TPR for pca RF: ",tpr) print("FPR for pca RF: ",fpr) print() #PCA + Linear regression from sklearn import linear_model print("n_components: ",n_components) linear_regression = linear_model.LinearRegression() linear_regression.fit(X_train,y_train) #find the accuracy for linear regression accuracy_pca_lr = linear_regression.score(X_test,y_test) print("Accuracy for PCA & LR: ") print(accuracy_pca_lr) #PCA + Logistic regression from sklearn.linear_model import LogisticRegression model = LogisticRegression(penalty='l2',C=1) model.fit(X_train,y_train) #find the accuracy for Logistic regression accuracy_pca_logr = model.score(X_test,y_test) print("Accuracy for PCA & Logistic R: ") print(accuracy_pca_logr) yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=model.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for pca dataset : ",count.head(1)[1]/2211) print("Accuracy for pca LogR: ",acc) print("Error rate for pca LogR: ",err) print("Sensitivity for pca LogR: ",sen) print("Specificity for pca LogR: ",spe) print("Precision for pca LogR: ",pre) print("Recall for pca LogR: ",rec) print("F-Score for pca LogR: ",fsc) print("TPR for pca LogR: ",tpr) print("FPR for pca LogR: ",fpr) print() #Random Gaussian Projection from sklearn import random_projection transformer = random_projection.GaussianRandomProjection(n_components) print("Transformer matrix: ") print(transformer) X = transformer.fit_transform(df.drop(['result'],1)) y=np.array(df['result']) #find accuracy for random gaussian Projection X_train,X_test,y_train,y_test=cross_validation.train_test_split(X,y,test_size=t_size) clf=neighbors.KNeighborsClassifier() clf.fit(X_train,y_train) #find the accuracy for RGP accuracy_gaussian = clf.score(X_test,y_test) print("Accuracy for gaussian KNN: ") print(accuracy_gaussian) #Gaussian KNN yt=pd.Series(y_test) #print(yt.value_counts()) count=yt.value_counts() #print(max(yt.mean(),1-yt.mean())) #print(count.head(1)[1]/2211) y_predict=clf.predict(X_test) conf=metrics.confusion_matrix(y_test,y_predict) print("Confusion matrix for original dataset: ") print(conf) TP=conf[1,1] TN=conf[0,0] FP=conf[0,1] FN=conf[1,0] acc=(TP+TN)/(TP+TN+FP+FN) err=(1-acc) sen=TP/(TP+FN) spe=TN/(FP+TN) pre=TP/(TP+FP) rec=TP/(TP+FN) fsc=(2*pre*rec)/(pre+rec) tpr=sen fpr=(1-spe) print() print("n_components: ",n_components) print("test size: ",t_size) print("null accuracy for original dataset: ",count.head(1)[1]/2211) print("Accuracy for Gaussian by confusion matrix: ",acc) print("Error rate for Gaussian KNN: ",err) print("Sensitivity for Gaussian KNN: ",sen) print("Specificity for Gaussian KNN: ",spe) print("Precision for Gaussian KNN: ",pre) print("Recall for Gaussian KNN: ",rec) print("F-Score for Gaussian KNN: ",fsc) print("TPR for Gaussian KNN: ",tpr) print("FPR for Gaussian KNN: ",fpr) print() #Gaussian SVM clf_svm=svm.SVC() clf_svm.fit(X_train,y_train) #find the accuracy for SVM accuracy_gau_svm = clf_svm.score(X_test,y_test) print("Accuracy for Gaussian svm: ") print(accuracy_gau_svm) yt=
pd.Series(y_test)
pandas.Series
from pandas import to_datetime from pandas.io.json import json_normalize from requests import get def chart( apiToken="demo", apiVersion="v0", host="api.fugle.tw", output="dataframe", symbolId="2884", ): outputs = ["dataframe", "raw"] if output not in outputs: raise ValueError('output must be one of ["dataframe", "raw"]') url = "https://{}/realtime/{}/intraday/chart".format(host, apiVersion) params = dict(apiToken=apiToken, symbolId=symbolId) response = get(url=url, params=params) json = response.json() if response.status_code != 200: if output == "dataframe": return
json_normalize(json)
pandas.io.json.json_normalize
''' Clase que contiene los métodos que permiten "limpiar" la información extraida por el servicio de web scrapper (Es implementada directamente por la calse analyzer) ''' import pandas as pd import re from pathlib import Path import numpy as np import unidecode class Csvcleaner: @staticmethod def FilterDataOpinautos(): base_path = Path(__file__).parent file_path = (base_path / "../extractors/opinautos_items.csv").resolve() file_path_out = (base_path / "../extractors/opinautos_items_filtered.csv").resolve() df_opinautos = pd.read_csv(file_path,encoding='utf-8', header=0, names=['Nombre', 'Marca','Modelo', 'Estrellas','Opinion','Votos','Fecha']) df_opinautos=Csvcleaner.FilterBrand(df_opinautos,'Marca')# Filtrado de marcas df_opinautos=Csvcleaner.FilterModel(df_opinautos,'Modelo')# Filtrado de modelos df_opinautos=df_opinautos.loc[df_opinautos['Fecha'].str.contains('z', flags = re.IGNORECASE)].reset_index(drop=True)# Elimirar aquellos con fecha en otro formato for index, row in df_opinautos.iterrows(): df_opinautos.iloc[index,4]=df_opinautos.iloc[index,4].replace(u"\r",u" ").replace(u"\n",u" ").strip()# Ajuste de texto en opiniones df_opinautos=df_opinautos.loc[df_opinautos['Opinion'].str.len()<3000].reset_index(drop=True) # limito numero de caracteres df_opinautos['Fecha'] = pd.to_datetime(df_opinautos['Fecha'])# Conversion de formato de fecha mask = (df_opinautos['Fecha'] > '2019-1-01') & (df_opinautos['Fecha'] <= '2021-1-1') df_opinautos=df_opinautos.loc[df_opinautos['Nombre'].str.contains('2019', flags = re.IGNORECASE) | df_opinautos['Nombre'].str.contains('2020', flags = re.IGNORECASE)] df_opinautos=df_opinautos.loc[mask] df_opinautos.to_csv(file_path_out,index=False) return df_opinautos @staticmethod def FilterDataAutotest(): base_path = Path(__file__).parent file_path = (base_path / "../extractors/autotest_items.csv").resolve() file_path_out = (base_path / "../extractors/autotest_items_filtered.csv").resolve() df_autotest = pd.read_csv(file_path,encoding='utf-8', header=0, names=['Nombre', 'Marca','Modelo', 'C_General','C_Vida','C_Diseño','C_Manejo','C_Performance','A_favor','En_contra']) df_autotest=Csvcleaner.FilterBrand(df_autotest,'Marca')# Filtrado de marcas df_autotest=Csvcleaner.FilterModel(df_autotest,'Modelo')# Filtrado de modelos df_autotest.to_csv(file_path_out,index=False) return df_autotest @staticmethod def FilterDataMotorpasion(): base_path = Path(__file__).parent file_path = (base_path / "../extractors/webextractor/motorpasion_items.csv").resolve() file_path_out = (base_path / "../extractors/motorpasion_items_filtered.csv").resolve() df_motor = pd.read_csv(file_path,encoding='utf-8', header=0, names=['Nombre', 'Version', 'C_General','C_Acabados','C_Seguridad','C_Equipamiento','C_Infotenimiento', 'C_Comportamiento', 'C_Motor', 'C_Transmision', 'C_Consumo', 'C_Espacio', 'C_Precio', 'Lo_Bueno', 'Lo_Malo']) df_motor.dropna(subset=['Nombre'], inplace=True) df_motor=Csvcleaner.FilterBrand(df_motor,'Nombre')# Filtrado de marcas df_motor=Csvcleaner.FilterModel(df_motor,'Nombre')# Filtrado de modelos df_motor.to_csv(file_path_out,index=False) return df_motor @staticmethod def FilterDataQuecoche(): base_path = Path(__file__).parent file_path = (base_path / "../extractors/webextractor/quecochemecompro_items.csv").resolve() file_path_out = (base_path / "../extractors/quecochemecompro_items_filtered.csv").resolve() df_quecoche = pd.read_csv(file_path,encoding='utf-8', header=0, names=['Nombre', 'Marca', 'Puntuacion', 'Informativo', 'C_peque_manej', 'C_deportivo', 'C_bueno_barato', 'C_practico', 'C_ecologico', 'C_atractivo', 'Lo_mejor', 'Lo_peor']) df_quecoche=Csvcleaner.FilterBrand(df_quecoche,'Nombre')# Filtrado de marcas df_quecoche=Csvcleaner.FilterModel(df_quecoche,'Nombre')# Filtrado de modelos df_quecoche.to_csv(file_path_out,index=False) return df_quecoche @staticmethod def FilterBrand(dataframe, brandField): dataframe=dataframe.loc[dataframe[brandField].str.contains('nissan', flags = re.IGNORECASE)| dataframe[brandField].str.contains('chevrolet', flags = re.IGNORECASE)| dataframe[brandField].str.contains('buick', flags = re.IGNORECASE)| dataframe[brandField].str.contains('gmc', flags = re.IGNORECASE)| dataframe[brandField].str.contains('cadillac', flags = re.IGNORECASE)| dataframe[brandField].str.contains('audi', flags = re.IGNORECASE)| dataframe[brandField].str.contains('porsche', flags = re.IGNORECASE)| dataframe[brandField].str.contains('seat', flags = re.IGNORECASE)| dataframe[brandField].str.contains('volkswagen', flags = re.IGNORECASE)| dataframe[brandField].str.contains('toyota', flags = re.IGNORECASE)| dataframe[brandField].str.contains('ram', flags = re.IGNORECASE)| dataframe[brandField].str.contains('dodge', flags = re.IGNORECASE)| dataframe[brandField].str.contains('jeep', flags = re.IGNORECASE)| dataframe[brandField].str.contains('fiat', flags = re.IGNORECASE)| dataframe[brandField].str.contains('chrysler', flags = re.IGNORECASE)| dataframe[brandField].str.contains('alfa', flags = re.IGNORECASE)| dataframe[brandField].str.contains('kia', flags = re.IGNORECASE)| dataframe[brandField].str.contains('honda', flags = re.IGNORECASE)| dataframe[brandField].str.contains('mazda', flags = re.IGNORECASE)| dataframe[brandField].str.contains('hyundai', flags = re.IGNORECASE)| dataframe[brandField].str.contains('renault', flags = re.IGNORECASE)].reset_index(drop=True) return dataframe @staticmethod def FilterModel(dataframe, ModelField): dataframe=dataframe.loc[~dataframe[ModelField].str.contains('malib', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('cabstar', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('urvan', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('express', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('silverado', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('caddy', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('crafter', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('transporter', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('hiace', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('promaster', flags = re.IGNORECASE)& ~dataframe[ModelField].str.contains('Ducato', flags = re.IGNORECASE)].reset_index(drop=True) return dataframe # TODO: generar hoja de puntuaciones @staticmethod def generateScoreSheet(): base_path = Path(__file__).parent file_autos_path = (base_path / "../data_csv/autos_data_mod_csv.csv").resolve() file_autos_path_out = (base_path / "../data_csv/scoreSheet.csv").resolve() file_quecoche_path = (base_path / "../extractors/quecochemecompro_items_filtered.csv").resolve() file_autotest_path = (base_path / "../extractors/autotest_items_filtered.csv").resolve() file_motorpasion_path = (base_path / "../extractors/motorpasion_items_filtered.csv").resolve() file_opinautos_path = (base_path / "../extractors/opinautos_items_Comprehend_parsed.csv").resolve() col_list = ["marca", "modelo", "año", "versión"] dfAutos = pd.read_csv(file_autos_path, encoding='utf-8', usecols=col_list) dfQuecoche = pd.read_csv(file_quecoche_path, encoding='utf-8') dfAutoTest = pd.read_csv(file_autotest_path, encoding='utf-8') dfMotorPasion = pd.read_csv(file_motorpasion_path, encoding='utf-8') dfOpinautos = pd.read_csv(file_opinautos_path, encoding='utf-8') columns=['general', 'confort', 'desempeño','tecnología','ostentosidad','deportividad','economía','eficiencia','seguridad','ecología','a_favor','en_contra','cP','cN'] dfAutos[columns] = pd.DataFrame([[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]], index=dfAutos.index) dfAutos['modelo'] = dfAutos['modelo'].apply(Csvcleaner.remove_accents) dfQuecoche['Nombre'] = dfQuecoche['Nombre'].apply(Csvcleaner.remove_accents) dfAutoTest['Nombre'] = dfAutoTest['Nombre'].apply(Csvcleaner.remove_accents) dfMotorPasion['Nombre'] = dfMotorPasion['Nombre'].apply(Csvcleaner.remove_accents) dfOpinautos['Modelo'] = dfOpinautos['Modelo'].apply(Csvcleaner.remove_accents) for index, row in dfAutos.iterrows(): general=[] confort=[] desempeño=[] tecnologia=[] ostentosidad=[] deportividad=[] economia=[] eficiencia=[] seguridad=[] ecologia=[] cp=[] cn=[] afavor='' encontra='' dfAux=dfQuecoche.loc[dfQuecoche['Nombre'].str.contains(row['marca']+' ', flags = re.IGNORECASE) & dfQuecoche['Nombre'].str.contains(' '+row['modelo'], flags = re.IGNORECASE)] if not dfAux.empty: idxVersion=Csvcleaner.getVersionIndex(dfAux,' '+row['versión'],'Puntuacion') if not pd.isnull(dfAux.at[idxVersion, 'Puntuacion']): general.append(float(dfAux.at[idxVersion, 'Puntuacion'].replace(",", "."))) if not pd.isnull(dfAux.at[idxVersion, 'C_peque_manej']): confort.append(dfAux.at[idxVersion, 'C_peque_manej']) if not pd.isnull(dfAux.at[idxVersion, 'C_atractivo']): confort.append(dfAux.at[idxVersion, 'C_atractivo']) if not pd.isnull(dfAux.at[idxVersion, 'C_deportivo']): deportividad.append(dfAux.at[idxVersion, 'C_deportivo']) if not pd.isnull(dfAux.at[idxVersion, 'C_bueno_barato']): economia.append(dfAux.at[idxVersion, 'C_bueno_barato']) if not pd.isnull(dfAux.at[idxVersion, 'C_peque_manej']): economia.append(dfAux.at[idxVersion, 'C_peque_manej']) if not pd.isnull(dfAux.at[idxVersion, 'C_peque_manej']): eficiencia.append(dfAux.at[idxVersion, 'C_peque_manej']) if not pd.isnull(dfAux.at[idxVersion, 'C_ecologico']): eficiencia.append(dfAux.at[idxVersion, 'C_ecologico']) if not pd.isnull(dfAux.at[idxVersion, 'C_ecologico']): ecologia.append(dfAux.at[idxVersion, 'C_ecologico']) if not pd.isnull(dfAux.at[idxVersion, 'Lo_mejor']): if len(afavor)<2: afavor+=dfAux.at[idxVersion, 'Lo_mejor'] else: afavor+=' '+dfAux.at[idxVersion, 'Lo_mejor'] if not pd.isnull(dfAux.at[idxVersion, 'Lo_peor']): if len(encontra)<2: encontra+=dfAux.at[idxVersion, 'Lo_peor'] else: encontra+=' '+dfAux.at[idxVersion, 'Lo_peor'] dfAux=dfAutoTest.loc[dfAutoTest['Nombre'].str.contains(row['marca']+' ', flags = re.IGNORECASE) & dfAutoTest['Nombre'].str.contains(' '+row['modelo'], flags = re.IGNORECASE)] if not dfAux.empty: idxVersion=Csvcleaner.getVersionIndex(dfAux,' '+row['versión'],'C_General') if not pd.isnull(dfAux.at[idxVersion, 'C_General']): general.append(dfAux.at[idxVersion, 'C_General']) if not pd.isnull(dfAux.at[idxVersion, 'C_Vida']): confort.append(dfAux.at[idxVersion, 'C_Vida']) if not pd.isnull(dfAux.at[idxVersion, 'C_Diseño']): confort.append(dfAux.at[idxVersion, 'C_Diseño']) if not pd.isnull(dfAux.at[idxVersion, 'C_Manejo']): confort.append(dfAux.at[idxVersion, 'C_Manejo']) if not pd.isnull(dfAux.at[idxVersion, 'C_Manejo']): desempeño.append(dfAux.at[idxVersion, 'C_Manejo']) if not pd.isnull(dfAux.at[idxVersion, 'C_Performance']): desempeño.append(dfAux.at[idxVersion, 'C_Performance']) if not pd.isnull(dfAux.at[idxVersion, 'C_Vida']): tecnologia.append(dfAux.at[idxVersion, 'C_Vida']) if not pd.isnull(dfAux.at[idxVersion, 'C_Manejo']): deportividad.append(dfAux.at[idxVersion, 'C_Manejo']) if not pd.isnull(dfAux.at[idxVersion, 'C_Performance']): eficiencia.append(dfAux.at[idxVersion, 'C_Performance']) if not pd.isnull(dfAux.at[idxVersion, 'C_Diseño']): seguridad.append(dfAux.at[idxVersion, 'C_Diseño']) if not
pd.isnull(dfAux.at[idxVersion, 'A_favor'])
pandas.isnull
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """DataAdapter tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.data.experimental.ops import cardinality from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.keras.engine import data_adapter from tensorflow.python.keras.utils import data_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import test from tensorflow.python.util import nest class DummyArrayLike(object): """Dummy array-like object.""" def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, key): return self.data[key] @property def shape(self): return self.data.shape @property def dtype(self): return self.data.dtype def fail_on_convert(x, **kwargs): _ = x _ = kwargs raise TypeError('Cannot convert DummyArrayLike to a tensor') ops.register_tensor_conversion_function(DummyArrayLike, fail_on_convert) class DataAdapterTestBase(keras_parameterized.TestCase): def setUp(self): super(DataAdapterTestBase, self).setUp() self.batch_size = 5 self.numpy_input = np.zeros((50, 10)) self.numpy_target = np.ones(50) self.tensor_input = constant_op.constant(2.0, shape=(50, 10)) self.tensor_target = array_ops.ones((50,)) self.arraylike_input = DummyArrayLike(self.numpy_input) self.arraylike_target = DummyArrayLike(self.numpy_target) self.dataset_input = dataset_ops.DatasetV2.from_tensor_slices( (self.numpy_input, self.numpy_target)).shuffle(50).batch( self.batch_size) def generator(): while True: yield (np.zeros((self.batch_size, 10)), np.ones(self.batch_size)) self.generator_input = generator() self.iterator_input = data_utils.threadsafe_generator(generator)() self.sequence_input = TestSequence(batch_size=self.batch_size, feature_shape=10) self.model = keras.models.Sequential( [keras.layers.Dense(8, input_shape=(10,), activation='softmax')]) class TestSequence(data_utils.Sequence): def __init__(self, batch_size, feature_shape): self.batch_size = batch_size self.feature_shape = feature_shape def __getitem__(self, item): return (np.zeros((self.batch_size, self.feature_shape)), np.ones((self.batch_size,))) def __len__(self): return 10 class TensorLikeDataAdapterTest(DataAdapterTestBase): def setUp(self): super(TensorLikeDataAdapterTest, self).setUp() self.adapter_cls = data_adapter.TensorLikeDataAdapter def test_can_handle_numpy(self): self.assertTrue(self.adapter_cls.can_handle(self.numpy_input)) self.assertTrue( self.adapter_cls.can_handle(self.numpy_input, self.numpy_target)) self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) def test_size_numpy(self): adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=5) self.assertEqual(adapter.get_size(), 10) self.assertFalse(adapter.has_partial_batch()) def test_batch_size_numpy(self): adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=5) self.assertEqual(adapter.batch_size(), 5) def test_partial_batch_numpy(self): adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=4) self.assertEqual(adapter.get_size(), 13) # 50/4 self.assertTrue(adapter.has_partial_batch()) self.assertEqual(adapter.partial_batch_size(), 2) def test_epochs(self): num_epochs = 3 adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=5, epochs=num_epochs) ds_iter = iter(adapter.get_dataset()) num_batches_per_epoch = self.numpy_input.shape[0] // 5 for _ in range(num_batches_per_epoch * num_epochs): next(ds_iter) with self.assertRaises(StopIteration): next(ds_iter) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_training_numpy(self): self.model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', run_eagerly=testing_utils.should_run_eagerly()) self.model.fit(self.numpy_input, self.numpy_target, batch_size=5) def test_can_handle_pandas(self): try: import pandas as pd # pylint: disable=g-import-not-at-top except ImportError: self.skipTest('Skipping test because pandas is not installed.') self.assertTrue(self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input))) self.assertTrue( self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input)[0])) self.assertTrue( self.adapter_cls.can_handle(
pd.DataFrame(self.numpy_input)
pandas.DataFrame
import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as plt import os import math #import utm import shapefile as shp import seaborn as sns from collections import OrderedDict import geopandas as gpd from geopy.distance import distance import argparse # PRIMARY DATA SOURCE # https://s3.amazonaws.com/capitalbikeshare-data/index.html # - - - - - - - - - - - - - - - - # - - CHECK OUT MY DOCSTRINGS!!! # - - NumPy/SciPy Docstring Format # - - - - - - - - - - - - - - - - def pd_csv_group(data_folder,num=-1): """Read many csv data files from a specified directory into a single data frame. Parameters ---------- data_folder : str path to directory containing ONLY csv data files. num (int), optional number of csv files to read and integrate into the primary dataframe. Returns ------- DataFrame() dataframe built from csv files in given directory. """ if num == -1: file_count = len(os.listdir(data_folder)) else: file_count = num df_list = [] #print('files to be included: ', files) print("stacking dataframes....") #print('(Please be patient for ~ 30 seconds)') for file_num,file in enumerate(os.listdir(data_folder)): f = pd.read_csv(data_folder+file) print(f'appending df #{file_num+1}...') df_list.append(f) # if there is a file number limit, stop here. if file_num == file_count-1: data = pd.concat(df_list, axis=0, ignore_index=True, sort=False) print(f'{len(data)/1e6:0.2}M rows of data with {len(data.columns)} features/columns derived from {file_num+1} CSV files. ') return data data = pd.concat(df_list, axis=0, ignore_index=True, sort=False) print(f'{len(data)/1e6:0.2}M rows of data with {len(data.columns)} features/columns derived from {file_num+1} CSV files. ') return data def lifetime(duration): """Returns a dictionary that converts a number of seconds into a dictionary object with keys of 'days', 'hours', 'minutes', and 'seconds'. Parameters ---------- duration (int): The duration (in seconds) to be transformed into a dictionary. Returns ------- dict a dictionary in the form of dict('days':int(), 'hours':int(), 'minutes':int(),'seconds':int()) """ dct = {} dct['days'] = duration//86400 dct['hours']= duration%86400//3600 dct['minutes'] = (duration%86400)%3600//60 dct['seconds'] = (duration%86400)%3600%60 return dct def freq_dict(lst): """Returns a dictionary with keys of unique values in the given list and values representing the count of occurances. Parameters ---------- lst (list) a list of items to determine number of occurances for. Returns ------- dict a dictionary of the format dict('unique_value_n': int(), 'unique_value_(n+1)': int(), ... ) """ dct = dict() for item in lst: if item not in dct: dct[item]=0 else: dct[item]+=1 return dct def series_freq_dict(df, column_name): """Performs the function "freq_dict()" for df["column_name"] after extracting the "datetime.hour" value from each element. Parameters ---------- df (DataFrame) the dataframe object column_name (str) name of column in dataframe. *** Must contain ONLY datetime() objects. Returns ------- dict() a frequency dictionary from freq_dict() """ lst = [x.hour for x in df[column_name].values] return freq_dict(lst) class BikeReport(object): """Creates an instance of the BikeReport object. Attributes ---------- bike_number (str) bike-specific identification number. Example, "W32432". duration (dict) dictionary representation of the duration of bike service life as determined from the data given Parameters ---------- df (DataFrame) dataframe that contains the bike of interest. bike_number (str) bike-specific identification number. Example, "W32432". """ def __init__(self, df, bike_number): self.bike_number = bike_number self.duration = lifetime(df[df['Bike number'] ==bike_number].agg({'Duration':'sum'}).Duration ) self.trips = df[df['Bike number'] ==bike_number].count()[0] def __repr__(self): return f'<BikeReport.obj>\n\tBikeNumber:{self.bike_number}\n\tServiceLifetime:{self.duration}\n\tTotalTrips:{self.trips}' def lifetime(self): dct = {} dct['days'] = self.duration//86400 dct['hours']= self.duration%86400//3600 dct['minutes'] = (self.duration%86400)%3600//60 dct['seconds'] = (self.duration%86400)%3600%60 return dct def time_filter(df, colname, start_time, end_time): """Returns a filtered dataframe at a specified column for time occurances between a start and end time. Parameters ---------- df (dataframe) dataframe object to apply filter to. colname (str) name of column in given dataframe to filter through. start_time (datetime) datetime object representing the lower bound of the filter. end_time (datetime) datetime object representing the upper bound of the filter. Returns ------- copy a filtered copy of the given dataframe """ if type(start_time) != type(dt.time(0,0,0)): print('Error: Given start time must be datetime.time() obj.') return None mask_low = df[colname] >= start_time mask_hi = df[colname] <= end_time mask = mask_low & mask_hi return df[mask].copy() def station_super_dict(df,popular_stations_df): """Given a primary dataframe and a dataframe representing bike stations of interest, performs the series_freq_dict function for each value in popular_stations_df to get the 'by hour' frequency of each station. Parameters ---------- df (dataframe) primary dataframe of all bikeshare transactions. popular_stations_df (dataframe) dataframe representing bike stations of interest. Returns ------- dict() a dictionary with keys representing the values from the popular_stations_df, and values are dictionaries of the output for the series_freq_dict() function for each station. """ station_time_hist=dict() station_groups = df.groupby('ADDRESS') pass # - - - build the super dict for station in popular_stations_df.ADDRESS.values: try: station_by_hour = station_groups.get_group(station) except: # sometimes there is a space at the end of the station name as found in the address column's values for station names. station_by_hour = station_groups.get_group(station+' ') # - - - The super-dict's keys are the station names, and the super-dict's values for each key are the time this station station_time_hist[station] = series_freq_dict(station_by_hour, 'Start time') return station_time_hist def read_shapefile(sf): """Read a shape file into a padas dataframe object. Parameters ---------- sf (shapefile object) a shape file Returns ------- dataframe the loaded dataframe from the given shapefile. """ fields = [x[0] for x in sf.fields][1:] records = sf.records() shps = [s.points for s in sf.shapes()] df =
pd.DataFrame(columns=fields, data=records)
pandas.DataFrame
import os, sys import numpy as np from pyhdf.SD import SD, SDC from scipy import ndimage import glob import pandas as pd import xarray as xr from joblib import Parallel, delayed ''' # Basic parameters lat_0 = 60 lon_0 = -180 res_x = 0.01 # 0.02 for the 2km grid res_y = 0.01 # 0.02 for the 2km grid tile_xdim = 600 # 300 for the 2km grid tile_ydim = 600 # 300 for the 2km grid # Input information hid = 14 # 0 - 59 vid = 5 # 0 - 19 x = 0 # column/sample, 0-(tile_xdim-1) y = 0 # row/line, 0-(tile_ydim-1) # Output formula lat_ulcnr = lat_0 - (vid*tile_ydim + y)*res_y # upper-left corner latitude lon_ulcnr = lon_0 + (hid*tile_xdim + x)*res_y # upper-left corner longitude lat_cntr = lat_ulcnr - 0.5*res_y # center latitude lon_cntr = lon_ulcnr + 0.5*res_x # center longitude ''' def get_tile_coords(tile, resolution_km=1.): hid = int(tile[1:3]) vid = int(tile[4:6]) lat_0 = 60 lon_0 = -180 res_x = 0.01 * resolution_km res_y = 0.01 * resolution_km tile_xdim = int(600 / resolution_km) tile_ydim = int(600 / resolution_km) lat_ulcnr = lat_0 - vid*tile_ydim*res_y # upper-left corner latitude lon_ulcnr = lon_0 + hid*tile_xdim*res_y # upper-left corner longitude lat_cntr = lat_ulcnr - 0.5*res_y # center latitude lon_cntr = lon_ulcnr + 0.5*res_x lats = np.linspace(lat_0 - vid*tile_ydim*res_y, lat_0 - (vid+1)*tile_ydim*res_y+res_y, tile_ydim, endpoint=True) lons = np.linspace(lon_0 + hid*tile_xdim*res_x, lon_0 + (hid+1)*tile_xdim*res_x-res_x, tile_xdim, endpoint=True) return lats, lons class L1GFile(object): ''' Reads a single L1B file at a common resolution. Channels are bilinearly interpolated to the defined resolution. Args: file: Filepath to L1b bands (optional): List of bands, default=list(range(1,17)) resolution_km (optional): Resolution in km for common grid, default=2 ''' def __init__(self, file, bands=list((range(1,17))), resolution_km=2.): self.file = file self.bands = bands self.resolution_km = resolution_km self.resolution_size = int(600. / resolution_km) self.reflective_bands = list(range(1,7)) self.emissive_bands = list(range(7,17)) def load(self): fp = SD(self.file, SDC.READ) data_array = np.zeros((self.resolution_size, self.resolution_size, len(self.bands))) for i, b in enumerate(self.bands): b_obj = fp.select('BAND%02i' % b) attrs = b_obj.attributes() scale_factor = attrs['Scale_Factor'] #fill_value = attrs['_FillValue'] ## this fill value seems to be wrong in l1g fill_value = 32768. arr = b_obj.get()[:].astype(np.float32) offset = attrs['Offset_Constant'] arr[arr == fill_value] = np.nan arr *= scale_factor arr += offset if arr.shape[0] != self.resolution_size: arr = ndimage.interpolation.zoom(arr, self.resolution_size/arr.shape[0], order=1) data_array[:,:,i] = arr #self.data_array = data_array return data_array def solar(self): fp = SD(self.file, SDC.READ) sa = fp.select('Solar_Azimuth').get()[:] sz = fp.select('Solar_Zenith').get()[:] sa = ndimage.interpolation.zoom(sa, self.resolution_size/sa.shape[0], order=1) sz = ndimage.interpolation.zoom(sz, self.resolution_size/sz.shape[0], order=1) return sa*0.01, sz*0.01 def load_xarray(self): data = self.load() fp = SD(self.file, SDC.READ) tile_path = os.path.join("/".join(self.file.split("/")[:-3]), 'constant') tile_file = glob.glob(tile_path + '/*.hdf')[0] sat, sensor, date, time, _, tile, _ = os.path.basename(self.file).replace(".hdf","").split("_") lats, lons = get_tile_coords(tile, self.resolution_km) sa, sz = self.solar() #print(tile, 'lats', len(lats)) da = xr.DataArray(data, dims=('lat', 'lon', 'band'), coords=dict(lat=lats, lon=lons, band=self.bands)) zenith = xr.DataArray(sz, dims=('lat', 'lon'), coords=dict(lat=lats, lon=lons)) azimuth = xr.DataArray(sa, dims=('lat', 'lon'), coords=dict(lat=lats, lon=lons)) return xr.Dataset({'data': da, 'zenith': zenith, 'azimuth': azimuth}) class GeoNEXL1G(object): ''' Get information on L1G data directory, available tiles, years, and files file lists are locally cached to future reading as retrieving file lists can be time consuming. Args: data_directory: directory of the L1G product sensor: (G16,G17,H8) /nex/datapool/geonex/public/ ''' def __init__(self, data_directory, sensor): self.data_directory = data_directory self.sensor = sensor self.sat = os.path.basename(os.path.dirname(os.path.dirname(data_directory))) def tiles(self): tile_pattern = os.path.join(self.data_directory, 'h*v*') tile_folders = glob.glob(tile_pattern) tiles = [os.path.basename(t) for t in tile_folders] return tiles def years(self): tile = self.tiles()[0] years = os.listdir(os.path.join(self.data_directory, tile)) years = [int(y) for y in years if y[0] == '2'] return years def hours(self): return list(range(0,24)) def files(self, tile=None, year=None, dayofyear=None, cachedir='.tmp'): ''' Args: tile (optional): Tile from GeoNEX grid year (optional): Year of files to get dayofyear (optional): Day of year cachedir (optional): Cache filelist in directory Returns: pd.DataFrame of filelist with year, dayofyear, hour, minute, tile, file, h, and v ''' if tile == None: tile = '*' if year == None: year = '*' else: year = str(year) if dayofyear == None: dayofyear = '*' else: dayofyear = '%03i' % dayofyear cache_file = f'{cachedir}/filelist/{self.sat}_{self.sensor}_{tile}_{year}_{dayofyear}.pkl' if os.path.exists(cache_file): return
pd.read_pickle(cache_file)
pandas.read_pickle
"""DataFrame loaders from different sources for the AccountStatements init.""" import pandas as pd import openpyxl as excel def _prepare_df(transactions_df): """Cast the string columns into the right type Parameters ---------- transactions_df : DataFrame The DataFrame where doing the casting Returns --------- DataFrame """ # Converte le date in datetime transactions_df['Data valuta'] = pd.to_datetime(transactions_df['Data valuta'],format='%d/%m/%Y') transactions_df['Data contabile'] = pd.to_datetime(transactions_df['Data contabile'],format='%d/%m/%Y') # Converte l'importo in numero importo_series = transactions_df['Importo'].str.replace('.','') importo_series = importo_series.str.extract('([-]*\d+,\d+)')[0] importo_series = importo_series.str.replace(',','.') transactions_df['Importo'] =
pd.to_numeric(importo_series)
pandas.to_numeric
#!/usr/bin/env python # coding: utf-8 # # Machine Learning Engineer Nano Degree - Capstone Project # ## Student: <NAME> # ## January 08, 2017 # # ## Overview # # This project started as a work project that I performed for my professional career. The original project was used to identify false/positive readings from web sources that were marked as external attack points against our public web site. After completing the project successfully, my thoughts were that it would be perfect Capstone project for the Machine Learning Engineer Nanodegree program. It encompassed everything I had learned in the course and was applied in an actual environment with very accurate results. However, my employer is very wary of data (even anonymized data) from being used outside the company. My solution to this was to utilize the same process, however change the data source and goal of the project. For this I turned to a Kaggle dataset. # # After searching the Kaggle available datasets, I decided to use one focused on lower back pain symptoms. This dataset offered me a real-world problem that needed solving, with enough information to exercise the process I used for my current job. I have always felt the medical community could benefit from either machine learning technologies or expert systems. This project will offer me the capability to see how accurate I can build a lower back diagnostic classifier, if all I had available to me were the data attributes. # # The medical field is comprised of individual doctors and physicians that are tasked with diagnosing patient’s illnesses based on patient symptoms and test results. By using machine learning, these healthcare professionals can be assisted in their diagnosis by using patient data to predict the causes of the patient's symptoms. # This project is designed to provide a methodology of taking raw data and transforming it into a classification tool that can be used to diagnose patients with normal or abnormal spinal conditions. The purpose of this project is to assume raw unclassified data is available and, through the process laid out here, derive classification for each data set through data grouping and random sampling. # # A Kaggle dataset will be used for the feature and classification data. Although the data contains a classification attribute, this will only be used to identify clusters of data groups taken from random samples. # The goal of this project is to generate a training data set using clustering techniques to separate records into Normal and Abnormal classes. Once the training data is created, a classification model is built and then scored against how well the classifier predicts the original classification of each record. # My goal is simple, determine how close to some of the Kaggle reports I can get a classifier to predict. The biggest difference is that I will not use the dataset directly, but will use unsupervised learning to determine classification attribute. In the end, I will use an accuracy score to compare my classifier against the actual dataset classification. # # For reference, here are some Kaggle entries and their scores: # # # __Kaggle Reference | Score Method | Score__ # *** # - [Discriminating Normal-vs-Abnormal Spines](https://www.kaggle.com/antonio00/d/sammy123/lower-back-pain-symptoms-dataset/discriminating-normal-vs-abnormal-spines/discussion) | Specificity | 54% # - [Using k-NN to Predict Abnormal Spines](https://www.kaggle.com/sammy123/lower-back-pain-symptoms-dataset/discussion/24230) | Accuracy | 93% # ## Process # # The process used for this project is pretty straigt forward. It will take on the following steps: # # - Load and display the original dataset # - Remove and segregate classification information # - Remove less important features # - Scale and Transform the feature data # - Use Unsupervised Learning to classify the data # - Peform PCA to display UL classification information # - Simulate cluster sample evaluation to identify cluster types (Normal/Abnormal) # - Generate training dataset by classifying data using cluster analysis # - Determine a suitable classification model to be used # - Generate model using final training dataset # - Evaluate model classification against original classification attribute for accuracy # ## Data source # # The data for this project has been downloaded from Kaggle and is named the "Lower Back Pain Symptoms Dataset" (https://www.kaggle.com/sammy123/lower-back-pain-symptoms-dataset) # # The information is layed out with 12 different featurs, labeld Col1-Col12 (Attribute1-12) and a classification attribute of "Abnormal" or "Normal". The descriptions for each attribute are as follows: # # - Attribute1 = pelvic_incidence (numeric) # - Attribute2 = pelvic_tilt (numeric) # - Attribute3 = lumbar_lordosis_angle (numeric) # - Attribute4 = sacral_slope (numeric) # - Attribute5 = pelvic_radius (numeric) # - Attribute6 = degree_spondylolisthesis (numeric) # - Attribute7 = pelvic_slope(numeric) # - Attribute8 = direct_tilt(numeric) # - Attribute9 = thoracic_slope(numeric) # - Attribute10 = cervical_tilt(numeric) # - Attribute11 = sacrum_angle(numeric) # - Attribute12 = scoliosis_slope(numeric) # # Although not necessary, for this project the feature names will be replaced with their descriptions to allow for easier feature analsyis. # # The classification attribute will be used to classify clusters or groups of data items with similar features and will not be directly used in constructing a classifier for the dataset. The origninal classificatin attribute will be used to evaluate the final classification model. # ## Data Gathering # ### Data Import and Display # In[ ]: # Import libraries necessary for this project import numpy as np import pandas as pd from IPython.display import display # Allows the use of display() for DataFrames # Show matplotlib plots inline (nicely formatted in the notebook) input_file = "../../../input/sammy123_lower-back-pain-symptoms-dataset/Dataset_spine.csv" input_data =
pd.read_csv(input_file)
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 =
DataFrame(data_timedelta64)
pandas.DataFrame
# -*- coding: utf-8 -*- from .._utils import color_digits, color_background from ..data import Data, DataSamples #from ..woe import WOE import pandas as pd #import math as m import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from matplotlib.colors import LinearSegmentedColormap import seaborn as sns from sklearn.model_selection import cross_val_score, StratifiedKFold, train_test_split, GridSearchCV, PredefinedSplit from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score, roc_curve, auc #rom scipy.stats import chi2, chisquare, ks_2samp, ttest_ind #import statsmodels.formula.api as sm import warnings from abc import ABCMeta, abstractmethod #from sklearn.feature_selection import GenericUnivariateSelect, f_classif from patsy import dmatrices from statsmodels.stats.outliers_influence import variance_inflation_factor import re import ast import os import xlsxwriter from PIL import Image import datetime from dateutil.relativedelta import * import gc #import weakref import copy import itertools import calendar #from ..cross import DecisionTree, Crosses import networkx as nx from operator import itemgetter import matplotlib.ticker as mtick try: import fastcluster except Exception: print('For fullness analysis using hierarchical clustering please install fastcluster package.') from scipy.cluster.hierarchy import fcluster try: import hdbscan except Exception: print('For fullness analysis using HDBSCAN clustering please install hdbscan package.') from sklearn.cluster import KMeans from sklearn.tree import export_graphviz from os import system from IPython.display import Image as Display_Image #from joblib import Parallel, delayed # Created by <NAME> and <NAME> warnings.simplefilter('ignore') plt.rc('font', family='Verdana') plt.style.use('seaborn-darkgrid') pd.set_option('display.precision', 3) class Processor(metaclass = ABCMeta): """ Base class for processing objects of Data class """ @abstractmethod def __init__(self): ''' self.stats is a DataFrame with statistics about self.work() ''' self.stats = pd.DataFrame() @abstractmethod def work(self, data, parameters): pass def param_dict_to_stats(self, data, d): ''' TECH Transforms a dict of parameters to self.stats Parameters ----------- data: Data object being processed d: dictionary {action : list_of_features} where action is a string with action description and list_of_features is a list of features' names to apply the action to ''' col1 = [] col2 = [] for (how, features) in d.items(): col1 = col1 + [how + ' (' + str(round(data.dataframe[features[i]].mean(), 3)) + ')' if how == 'mean' else how for i in range(len(features))] col2 = col2 + features self.stats = pd.DataFrame({'action' : col1, 'features': col2}) #--------------------------------------------------------------- class MissingProcessor(Processor): ''' Class for missing values processing ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, parameters, quantiles=100, precision=4): ''' Deals with missing values Parameters: ----------- data: an object of Data type that should be processed inplace: whether to change the data or to create a new Data object parameters: {how_to_process : features_to_process} how_to_process takes: 'delete' - to delete samples where the value of any feature from features_to_process is missing 'mean' - for each feature from features_to_process to fill missings with the mean value 'distribution' - for each feature from features_to_process to fill missings according to non-missing distribution a value - for each feature from features_to_process to fill missings with this value features_to_process takes list of features from data quantiles: number of quantiles for 'distribution' type of missing process - all values are divided into quantiles, then missing values are filled with average values of quantiles. If number of unique values is less then number of quantiles or field type is not int, float, etc, then no quantiles are calculated - missings are filled with existing values according to their frequency precision: precision for quantile edges and average quantile values Returns: ---------- A copy of data with missings processed for features mentioned in parameters ''' for how in parameters: if isinstance(parameters[how], str): parameters[how] = [parameters[how]] result = data.dataframe.copy() for how in parameters: if how == 'delete': for feature in parameters[how]: result = result[result[feature].isnull() == False] if data.features != None and feature in data.features: data.features.remove(feature) elif how == 'mean': for feature in parameters[how]: result[feature].fillna(result[feature].mean(), inplace = True) elif how == 'distribution': for feature in parameters[how]: if data.dataframe[feature].dtype not in (float, np.float32, np.float64, int, np.int32, np.int64) or data.dataframe[feature].unique().shape[0]<quantiles: summarized=data.dataframe[[feature]].dropna().groupby(feature).size() summarized=summarized.reset_index().rename({feature:'mean', 0:'size'}, axis=1) else: summarized=data.dataframe[[feature]].rename({feature:'value'}, axis=1).join(pd.qcut(data.dataframe[feature].dropna(), q=quantiles, precision=4, duplicates='drop')).groupby(feature).agg(['mean', 'size']) summarized.columns=summarized.columns.droplevel() summarized=summarized.reset_index(drop=True) #summarized=summarized.reset_index() summarized['p']=summarized['size']/summarized['size'].sum() result[feature]=result[feature].apply(lambda x: np.random.choice(summarized['mean'].round(precision), p=summarized['p']) if pd.isnull(x) else x) else: result[parameters[how]] = result[parameters[how]].fillna(how) # statistics added on Dec-04-2018 self.param_dict_to_stats(data, parameters) return Data(result, data.target, data.features, data.weights, data.name) #--------------------------------------------------------------- class StabilityAnalyzer(Processor): ''' For stability analysis ''' def __init__(self): self.stats = pd.DataFrame({'sample_name' : [], 'parameter' : [], 'meaning': []}) def work(self, data, time_column, sample_name = None, psi = None, event_rate=None, normalized=True, date_format = "%d.%m.%Y", time_func = (lambda x: 100*x.year + x.month), yellow_zone = 0.1, red_zone = 0.25, figsize = None, out = True, out_images = 'StabilityAnalyzer/', sep=';', base_period_index=0): ''' Calculates the dynamic of feature (or groups of values) changes over time so it should be used only for discrete or WOE-transformed features. There are 2 types of analysis: PSI. Represents a heatmap (Stability Table) of features stability that contains 3 main zones: green (the feature is stable), yellow (the feature is not very stable) and red (the feature is unstable). StabilityIndex (PSI) is calculated for each time period relatively to the first period. Stability index algorithm: For each feature value and time period number of samples is calculated: e.g., N[i, t] is number of samples for value i and time period t. StabilityIndex[t] = (N[i, t]/sum_i(N[i, t]) - (N[i, 0]/sum_i(N[i, 0])))* log(N[i, t]/sum_i(N[i, t])/(N[i, 0]/sum_i(N[i, 0]))) ER (event rate). Calculates average event rate and number of observations for each feature's value over time. After calculation displays the Stability Table (a heatmap with stability indexes for each feature value and time period) and Event rate graphs Parameters: ----------- data: data to analyze (type Data) time_column: name of a column with time values to calculate time periods sample_name: name of sample for report psi: list of features for PSI analysis (if None then all features from the input Data object will be used) event_rate: list of features for event rate and distribution in time analysis (if None then all features from the input Data object will be used) date_format: format of time values in time_column. Codes for format: %a Weekday as locale’s abbreviated name. Sun, Mon, …, Sat (en_US) %A Weekday as locale’s full name. Sunday, Monday, …, Saturday (en_US) %w Weekday as a decimal number, where 0 is Sunday and 6 is Saturday. 0, 1, …, 6 %d Day of the month as a zero-padded decimal number. 01, 02, …, 31 %b Month as locale’s abbreviated name. Jan, Feb, …, Dec (en_US) %B Month as locale’s full name. January, February, …, December (en_US) %m Month as a zero-padded decimal number. 01, 02, …, 12 %y Year without century as a zero-padded decimal number. 00, 01, …, 99 %Y Year with century as a decimal number. 1970, 1988, 2001, 2013 %H Hour (24-hour clock) as a zero-padded decimal number. 00, 01, …, 23 %I Hour (12-hour clock) as a zero-padded decimal number. 01, 02, …, 12 %p Locale’s equivalent of either AM or PM. AM, PM (en_US) %M Minute as a zero-padded decimal number. 00, 01, …, 59 %S Second as a zero-padded decimal number. 00, 01, …, 59 %f Microsecond as a decimal number, zero-padded on the left. 000000, 000001, …, 999999 %z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). (empty), +0000, -0400, +1030 %Z Time zone name (empty string if the object is naive). (empty), UTC, EST, CST %j Day of the year as a zero-padded decimal number. 001, 002, …, 366 %U Week number of the year (Sunday as the first day of the week) as a zero padded decimal number. All days in a new year preceding the first Sunday are considered to be in week 0. 00, 01, …, 53 (6) %W Week number of the year (Monday as the first day of the week) as a decimal number. All days in a new year preceding the first Monday are considered to be in week 0. 00, 01, …, 53 (6) %c Locale’s appropriate date and time representation. Tue Aug 16 21:30:00 1988 (en_US) %x Locale’s appropriate date representation. 08/16/88 (None); 08/16/1988 (en_US) %X Locale’s appropriate time representation. 21:30:00 (en_US) time_func: function for time_column parsing (changes date to some value, representing time period) or a period type for dt.to_period() function. Codes for available periods: B business day frequency C custom business day frequency (experimental) D calendar day frequency W weekly frequency M month end frequency BM business month end frequency CBM custom business month end frequency MS month start frequency BMS business month start frequency CBMS custom business month start frequency Q quarter end frequency BQ business quarter endfrequency QS quarter start frequency BQS business quarter start frequency A year end frequency BA business year end frequency AS year start frequency BAS business year start frequency BH business hour frequency H hourly frequency T, min minutely frequency S secondly frequency L, ms milliseconds U, us microseconds N nanoseconds yellow_zone: the lower border for the yellow stability zone ('not very stable') in percents of derivation red_zone: the lower border for the red stability zone ('unstable') in percents of derivation figsize: matplotlib figsize of the Stability Table out: a boolean for image output or a path for xlsx output file to export the Stability Tables out_images: a path for image output (default - StabilityAnalyzer/) sep: the separator to be used in case of csv export base_period_index: index of period (starting from 0) for other periods to compare with (0 for the first, -1 for the last) ''' print('Warning: only for discrete features!!!') if sample_name is None: if pd.isnull(data.name): sample_name = 'sample' else: sample_name = data.name out_images = out_images + sample_name + '/' self.stats = self.stats.append(pd.DataFrame({'sample_name' : [sample_name], 'parameter' : ['out'], 'meaning' : [out]})) self.stats = self.stats.append(pd.DataFrame({'sample_name' : [sample_name], 'parameter' : ['out_images'], 'meaning' : [out_images]})) psi = data.features.copy() if psi is None else [x for x in psi if x in data.features] event_rate = data.features.copy() if event_rate is None else [x for x in event_rate if x in data.features] all_features=list(set(psi+event_rate)) if figsize is None: figsize=(12, max(1,round(len(psi)/2,0))) if out==True or isinstance(out, str): directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) if isinstance(out, str): writer = pd.ExcelWriter(out, engine='openpyxl') tmp_dataset = data.dataframe[all_features + [time_column, data.target] + ([] if data.weights is None else [data.weights])].copy() tmp_dataset[time_column] = pd.to_datetime(tmp_dataset[time_column], format=date_format, errors='coerce') if callable(time_func): tmp_dataset['tt'] = tmp_dataset[time_column].map(time_func) elif isinstance(time_func, str): try: tmp_dataset['tt'] = tmp_dataset[time_column].dt.to_period(time_func).astype(str) except Exception: print('No function or correct period code was provided. Return None.') return None c = 0 for feature in sorted(all_features): print (feature) if data.weights is not None: feature_stats=tmp_dataset[[feature, 'tt', data.target, data.weights]] feature_stats['---weight---']=feature_stats[data.weights] else: feature_stats=tmp_dataset[[feature, 'tt', data.target]] feature_stats['---weight---']=1 feature_stats[data.target]=feature_stats[data.target]*feature_stats['---weight---'] feature_stats=feature_stats[[feature, 'tt', data.target, '---weight---']].groupby([feature, 'tt'], as_index=False).\ agg({'---weight---':'size', data.target:'mean'}).rename({feature:'value', '---weight---':'size', data.target:'mean'}, axis=1) feature_stats['feature']=feature if c == 0: all_stats = feature_stats c = c+1 else: all_stats = all_stats.append(feature_stats, ignore_index=True) all_stats['size']=all_stats['size'].astype(float) all_stats['mean']=all_stats['mean'].astype(float) if len(psi)>0: stability1=all_stats[all_stats.feature.isin(psi)][['feature', 'value', 'tt', 'size']].pivot_table(values='size', columns='tt', index=['feature', 'value']).reset_index().fillna(0) stability1.columns.name=None #display(stability1) dates = stability1.drop(['feature', 'value'], 1).columns.copy() stability2 = stability1[['feature', 'value']].copy() for date in dates: stability2[date] = list(stability1[date]/list(stability1.drop(['value'], 1).groupby(by = 'feature').sum()[date][:1])[0]) #display(stability2) start_date = dates[base_period_index] stability3 = stability2[['feature', 'value']] for date in dates: stability3[date] = round(((stability2[date]-stability2[start_date])*np.log(stability2[date]/stability2[start_date])).fillna(0), 2).replace([]) #display(stability3) stability4 = stability3.drop(['value'], 1).groupby(by = 'feature').sum() #display(stability4) fig, ax = plt.subplots(figsize = figsize) ax.set_facecolor("red") sns.heatmap(stability4, ax=ax, yticklabels=stability4.index, annot = True, cmap = 'RdYlGn_r', center = yellow_zone, vmax = red_zone, linewidths = .05, xticklabels = True) if out==True or isinstance(out, str): plt.savefig(out_images+"stability.png", dpi=100, bbox_inches='tight') plt.show() if isinstance(out, str): if out[-4:]=='.xls' or out[-5:]=='.xlsx': stability4.style.apply(color_background, mn=0, mx=red_zone, cntr=yellow_zone).to_excel(writer, engine='openpyxl', sheet_name='PSI') worksheet = writer.sheets['PSI'] for x in worksheet.columns: if x[0].column=='A': worksheet.column_dimensions[x[0].column].width = 40 else: worksheet.column_dimensions[x[0].column].width = 12 worksheet.freeze_panes = worksheet['B2'] else: print('Unknown or unacceptable format for export several tables. Use .xlsx. Skipping export.') if len(event_rate)>0: for_event_rate=all_stats[all_stats['feature'].isin(event_rate)] date_base=pd.DataFrame(all_stats['tt'].unique(), columns=['tt']).sort_values('tt') for feature in sorted(for_event_rate['feature'].unique()): cur_feature_data=for_event_rate[for_event_rate['feature']==feature].copy() #display(cur_feature_data) if normalized: for tt in sorted(cur_feature_data['tt'].unique(), reverse=True): cur_feature_data.loc[cur_feature_data['tt']==tt, 'percent']=cur_feature_data[cur_feature_data['tt']==tt]['size']/cur_feature_data[cur_feature_data['tt']==tt]['size'].sum() #display(cur_feature_data) fig, ax = plt.subplots(1,1, figsize=(15, 5)) ax2 = ax.twinx() ax.grid(False) ax2.grid(False) sorted_values=sorted(cur_feature_data['value'].unique(), reverse=True) for value in sorted_values: to_visualize='percent' if normalized else 'size' value_filter = (cur_feature_data['value']==value) er=date_base.merge(cur_feature_data[value_filter], on='tt', how='left')['mean'] height=date_base.merge(cur_feature_data[value_filter], on='tt', how='left')[to_visualize].fillna(0) bottom=date_base.merge(cur_feature_data[['tt',to_visualize]][cur_feature_data['value']>value].groupby('tt', as_index=False).sum(), on='tt', how='left')[to_visualize].fillna(0) ax.bar(range(date_base.shape[0]), height, bottom=bottom if value!=sorted_values[0] else None, edgecolor='white', alpha=0.3) ax2.plot(range(date_base.shape[0]), er, label=str(round(value,3)), linewidth=2) plt.xticks(range(date_base.shape[0]), date_base['tt']) fig.autofmt_xdate() ax2.set_ylabel('Event Rate') ax2.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '{:.2%}'.format(y))) if normalized: ax.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '{:.2%}'.format(y))) ax2.annotate('Obs:', xy=(0, 1), xycoords=('axes fraction', 'axes fraction'), xytext=(-25, 5), textcoords='offset pixels', color='blue', size=11) for i in range(date_base.shape[0]): ax2.annotate(str(int(cur_feature_data[cur_feature_data['tt']==date_base['tt'][i]]['size'].sum())), xy=(i, 1), xycoords=('data', 'axes fraction'), xytext=(0, 5), textcoords='offset pixels', #rotation=60, ha='center', #va='bottom', color='blue', size=11) ax.set_ylabel('Total obs') plt.xlabel(time_column) plt.suptitle(feature + ' event rate in time' if callable(time_func) else feature + ' event rate in time, period = '+time_func) handles, labels = ax2.get_legend_handles_labels() ax2.legend(handles[::-1], labels[::-1], loc=0, fancybox=True, framealpha=0.3) if out==True or isinstance(out, str): plt.savefig(out_images+feature+".png", dpi=100, bbox_inches='tight') plt.show() if isinstance(out, str): if out[-4:]=='.xls' or out[-5:]=='.xlsx': event_rate_df=all_stats[['feature', 'value', 'tt', 'mean']].pivot_table(values='mean', columns='tt', index=['feature', 'value']).reset_index().fillna(0) event_rate_df.columns.name=None event_rate_df.style.apply(color_background, mn=0, mx=all_stats['mean'].mean()+2*all_stats['mean'].std(), cntr=None, cmap=matplotlib.cm.RdYlGn_r, subset=pd.IndexSlice[:, [x for x in event_rate_df.columns if x not in ['value','feature']]]).to_excel(writer, engine='openpyxl', sheet_name='Event Rate', index=False) worksheet = writer.sheets['Event Rate'] for x in worksheet.columns: if x[0].column=='A': worksheet.column_dimensions[x[0].column].width = 40 else: worksheet.column_dimensions[x[0].column].width = 12 if x[0].column!='B': for cell in worksheet[x[0].column]: if cell.row!=1: cell.number_format = '0.000%' worksheet.freeze_panes = worksheet['C2'] size_df=all_stats[['feature', 'value', 'tt', 'size']].pivot_table(values='size', columns='tt', index=['feature', 'value']).reset_index().fillna(0) size_df.columns.name=None size_df.style.apply(color_background, mn=0, mx=all_stats['size'].mean()+2*all_stats['size'].std(), cntr=None, cmap=matplotlib.cm.RdYlGn, subset=pd.IndexSlice[:, [x for x in size_df.columns if x not in ['value','feature']]]).to_excel(writer, engine='openpyxl', sheet_name='Observations', index=False) worksheet = writer.sheets['Observations'] for x in worksheet.columns: if x[0].column=='A': worksheet.column_dimensions[x[0].column].width = 40 else: worksheet.column_dimensions[x[0].column].width = 12 worksheet.freeze_panes = worksheet['C2'] else: print('Unknown or unacceptable format for export several tables. Use .xlsx. Skipping export.') if isinstance(out, str): writer.close() #--------------------------------------------------------------- class DataVisualizer(Processor): ''' Supports different types of data visualization ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, distribution = True, factorplot = True, factorplot_separate = False, pairplot = None, out=False, out_images='DataVisualizer/', plot_cells=20, categorical=None): ''' Produces distribution plot, factorplot, pairplot Parameters: ----------- data: data to visualize distribution: parameter for a distribution plot, if True - plot for data.features, if list - plot for features from the list, if False - do not use distribution plot factorplot: parameter for a factorplot, if True - plot for data.features, if list - plot for features from the list, if False - do not use factorplot factorplot_separate: if True then separate plots for each target value pairplot: list of features to make a pairplot for out: a boolean for images output or a path for xlsx output file out_images: a path for images output (default - DataVisualizer/) plot_cells: how many cells would plots get in output excel categorical: a list of features to be treated as categorical (countplots will be produced instead of distplots) ''' if pairplot is None: pairplot=[] if categorical is None: categorical=[] dataframe_t = data.dataframe[data.features + [data.target]].copy() data = Data(dataframe_t, features = data.features, target = data.target) if out is not None: if out==True or isinstance(out, str): directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) if isinstance(out, str): # Create an new Excel file and add a worksheet. workbook = xlsxwriter.Workbook(out) worksheet = workbook.add_worksheet('Data Visualization') # Widen the first column to make the text clearer. worksheet.set_column('A:A', 100) current_plot_number=0 if distribution: print ('Distributions of features: ') if type(distribution) == type([1, 1]): features = distribution else: if data.features == None: print ('No features claimed. Please set data.features = ') return None features = data.features for feature in features: current_plot_number=current_plot_number+1 if data.dataframe[feature].dtype==object or feature in categorical: f, axes = plt.subplots() sns.countplot(data.dataframe[feature].dropna()) f.autofmt_xdate() else: sns.distplot(data.dataframe[feature].dropna()) if data.dataframe[feature].isnull().any(): plt.title(feature+' (miss = ' + str(round(data.dataframe[feature].isnull().value_counts()[True]/data.dataframe.shape[0],3))+')') else: plt.title(feature+' (miss = 0)') if out==True or isinstance(out, str): plt.savefig(out_images+feature+"_d.png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+feature+"_d.png").size[1] worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Distribution plot for '+feature+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+feature+"_d.png", {'x_scale': scale, 'y_scale': scale}) plt.show() print ('---------------------------------------\n') if factorplot: print ('Factorplot: ') if type(factorplot) == type([1, 1]): features = factorplot else: if data.features == None: print ('No features claimed. Please set data.features = ') return None features = data.features if factorplot_separate: for feature in features: current_plot_number=current_plot_number+1 # edited 21-Jun-2018 by <NAME> f, axes = plt.subplots(data.dataframe[data.target].drop_duplicates().shape[0], 1, figsize=(4, 4), sharex=True) f.autofmt_xdate() #for target_v in data.dataframe[data.target].drop_duplicates(): targets = list(data.dataframe[data.target].drop_duplicates()) for target_i in range(len(targets)): if data.dataframe[data.dataframe[data.target]==targets[target_i]][feature].isnull().any(): x_label=feature + ': ' + data.target + ' = ' + str(targets[target_i]) + ', miss = ' + str(round(data.dataframe[data.dataframe[data.target]==targets[target_i]][feature].isnull().value_counts()[True]/data.dataframe[data.dataframe[data.target]==targets[target_i]].shape[0],3)) else: x_label=feature + ': ' + data.target + ' = ' + str(targets[target_i]) + ', miss = 0' if data.dataframe[feature].dtype==object or feature in categorical: ax=sns.countplot(data.dataframe[data.dataframe[data.target] == targets[target_i]][feature].dropna(), ax=axes[target_i], color = 'm') ax.set(xlabel=x_label) else: sns.distplot(data.dataframe[data.dataframe[data.target] == targets[target_i]][feature].dropna(), ax=axes[target_i], axlabel=x_label, color = 'm') if out==True or isinstance(out, str): plt.savefig(out_images+feature+"_f.png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+feature+"_f.png").size[1] worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Factor plot for '+feature+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+feature+"_f.png", {'x_scale': scale, 'y_scale': scale}) plt.show() else: for feature in features: current_plot_number=current_plot_number+1 sns.factorplot(x=feature, hue = data.target, data = data.dataframe, kind='count', palette = 'Set1') if out==True or isinstance(out, str): plt.savefig(out_images+feature+"_f.png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+feature+"_f.png").size[1] worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Factor plot for '+feature+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+feature+"_f.png", {'x_scale': scale, 'y_scale': scale}) plt.show() print ('---------------------------------------\n') if pairplot != []: current_plot_number=current_plot_number+1 print ('Pairplot') sns.pairplot(data.dataframe[pairplot].dropna()) if out==True or isinstance(out, str): plt.savefig(out_images+"pairplot.png", dpi=100, bbox_inches='tight') if isinstance(out, str): worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Pair plot for '+str(pairplot)+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+"pairplot.png") plt.show() if isinstance(out, str): workbook.close() #--------------------------------------------------------------- class TargetTrendVisualizer(Processor): ''' Supports target trend visualization ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, features=None, quantiles=100, magnify_trend=False, magnify_std_number=2, hide_every_even_tick_from=50, min_size=10, out=False, out_images='TargetTrendVisualizer/', plot_cells=20): ''' Calculates specified quantiles/takes categories, calculates target rates and sizes, then draws target trends Parameters: ----------- data: an object of Data type features: the list of features to visualize, can be omitted quantiles: number of quantiles to cut feature values on magnify_trend: if True, then axis scale for target rate will be corrected to exclude outliers magnify_std_number: how many standard deviations should be included in magnified scale hide_every_even_tick_from: if there is too many quantiles then every second tick on x axis will be hidden out: a boolean for images output or a path for xlsx output file out_images: a path for images output (default - TargetTrendVisualizer/) plot_cells: how many cells would plots get in output excel ''' if features is None: cycle_features=data.features.copy() else: cycle_features=features.copy() if out is not None: if out==True or isinstance(out, str): directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) if isinstance(out, str): # Create an new Excel file and add a worksheet. workbook = xlsxwriter.Workbook(out) worksheet = workbook.add_worksheet('Target Trend Visualization') # Widen the first column to make the text clearer. worksheet.set_column('A:A', 100) current_feature_number=0 for f in cycle_features: if f not in data.dataframe: print('Feature', f, 'not in input dataframe. Skipping..') else: print('Processing', f,'..') current_feature_number=current_feature_number+1 if data.dataframe[f].dtype not in (float, np.float32, np.float64, int, np.int32, np.int64) or data.dataframe[f].unique().shape[0]<quantiles: summarized=data.dataframe[[f, data.target]].groupby([f]).agg(['mean', 'size']) else: if data.dataframe[f].dropna().shape[0]<min_size*quantiles: current_quantiles=int(data.dataframe[f].dropna().shape[0]/min_size) if current_quantiles==0: print('The number of non-missing observations is less then', min_size,'. No trend to visualize.') if isinstance(out, str): worksheet.write((current_feature_number-1)*(plot_cells+1), 0, 'Target trend for '+f+":") worksheet.write((current_feature_number-1)*(plot_cells+1)+1, 0, 'The number of non-missing observations is less then '+str(min_size)+'. No trend to visualize.') continue else: print('Too few non-missing observations for', quantiles, 'quantiles. Calculating', current_quantiles, 'quantiles..') else: current_quantiles=quantiles summarized=data.dataframe[[data.target]].join(pd.qcut(data.dataframe[f], q=current_quantiles, precision=4, duplicates='drop')).groupby([f]).agg(['mean', 'size']) small_quantiles=summarized[data.target][summarized[data.target]['size']<min_size]['size'] #display(small_quantiles) if small_quantiles.shape[0]>0: current_quantiles=int(small_quantiles.sum()/min_size)+summarized[data.target][summarized[data.target]['size']>=min_size].shape[0] print('There are quantiles with size less then', min_size,'. Attempting', current_quantiles, 'quantiles..') summarized=data.dataframe[[data.target]].join(pd.qcut(data.dataframe[f], q=current_quantiles, precision=4, duplicates='drop')).groupby([f]).agg(['mean', 'size']) summarized.columns=summarized.columns.droplevel() summarized=summarized.reset_index() if pd.isnull(data.dataframe[f]).any(): with_na=data.dataframe[[f,data.target]][pd.isnull(data.dataframe[f])] summarized.loc[-1]=[np.nan, with_na[data.target].mean(), with_na.shape[0]] summarized=summarized.sort_index().reset_index(drop=True) if summarized.shape[0]==1: print('Too many observations in one value, so only 1 quantile was created. Increasing quantile number is recommended. No trend to visualize.') if isinstance(out, str): worksheet.write((current_feature_number-1)*(plot_cells+1), 0, 'Target trend for '+f+":") worksheet.write((current_feature_number-1)*(plot_cells+1)+1, 0, 'Too many observations in one value, so only 1 quantile was created. Increasing quantile number is recommended. No trend to visualize.') continue fig = plt.figure(figsize=(15,5)) ax = fig.add_subplot(111) ax.set_ylabel('Observations') # blue is for the distribution if summarized.shape[0]>hide_every_even_tick_from: plt.xticks(range(summarized.shape[0]), summarized[f].astype(str), rotation=60, ha="right") xticks = ax.xaxis.get_major_ticks() for i in range(len(xticks)): if i%2==0: xticks[i].label1.set_visible(False) else: plt.xticks(range(summarized.shape[0]), summarized[f].astype(str), rotation=45, ha="right") ax.bar(range(summarized.shape[0]), summarized['size'], zorder=0, alpha=0.3) ax.grid(False) ax.grid(axis='y', zorder=1, alpha=0.6) ax2 = ax.twinx() ax2.set_ylabel('Target Rate') ax2.grid(False) #display(summarized) if magnify_trend: ax2.set_ylim([0, np.average(summarized['mean'], weights=summarized['size'])+magnify_std_number*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size']))]) for i in range(len(summarized['mean'])): if summarized['mean'][i]>np.average(summarized['mean'], weights=summarized['size'])+magnify_std_number*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size'])): ax2.annotate(str(round(summarized['mean'][i],4)), xy=(i, np.average(summarized['mean'], weights=summarized['size'])+magnify_std_number*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size']))), xytext=(i, np.average(summarized['mean'], weights=summarized['size'])+(magnify_std_number+0.05)*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size']))), rotation=60, ha='left', va='bottom', color='red', size=8.5 ) # red is for the target rate values ax2.plot(range(summarized.shape[0]), summarized['mean'], 'ro-', linewidth=2.0, zorder=4) if out==True or isinstance(out, str): plt.savefig(out_images+f+".png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+f+".png").size[1] worksheet.write((current_feature_number-1)*(plot_cells+1), 0, 'Target trend for '+f+":") worksheet.insert_image((current_feature_number-1)*(plot_cells+1)+1, 0, out_images+f+".png", {'x_scale': scale, 'y_scale': scale}) plt.show() if isinstance(out, str): workbook.close() class CorrelationAnalyzer(Processor): ''' Produces correlation analysis ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, drop_features = True, features = None, features_to_leave = None, threshold=0.6, method = 'spearman', drop_with_most_correlations=True, verbose=False, out_before=None, out_after=None, sep=';', cdict = None): ''' Calculates the covariance matrix and correlation coefficients for each pair of features. For each highly correlated pair the algorithm chooses the less significant feature and adds it to the delete list. Parameters ----------- data: a Data or DataSamples object to check (in case of DataSamples, train sample will be checked) drop_features: permission to delete correlated features and return a Data object without them features: a list of features to analyze; by default - all the features features_to_leave: a list of features that must not be deleted from the feature list threshold: the lowest value of a correlation coefficient for two features to be considered correlated method: method for correlation calculation drop_with_most_correlations: should the features with the highest number of correlations be excluded first (otherwise just with any number of correlations and the lowest gini) verbose: flag for detailed output out_before: file name for export of correlation table before feature exclusion (.csv and .xlsx types are supported) out_after: file name for export of correlation table after feature exclusion (.csv and .xlsx types are supported) sep: the separator in case of .csv export Returns -------- Resulting Data or DataSamples object and the correlation table ''' if features is None: features=[] if features_to_leave is None: features_to_leave=[] self.stats = pd.DataFrame({'drop_features' : [drop_features], 'threshold' : [threshold], 'method' : [method], 'out_before' : out_before, 'out_after' : out_after}) if type(data)==DataSamples: sample=data.train else: sample=data if len(sample.ginis)==0: print('No calculated ginis in datasamples.train/data object. Set calc_gini=True while using WOE.transform or use Data.calc_gini. Return None') return None if features == [] or features is None: candidates = sample.features.copy() else: candidates = features.copy() features_to_drop = [] correlations = sample.dataframe[candidates].corr(method = method) cor_out=correlations.copy() if cdict is None: cdict = {'red' : ((0.0, 0.9, 0.9), (0.5, 0.05, 0.05), (1.0, 0.9, 0.9)), 'green': ((0.0, 0.0, 0.0), (0.5, 0.8, 0.8), (1.0, 0.0, 0.0)), 'blue' : ((0.0, 0.1, 0.1), (0.5, 0.1, 0.1), (1.0, 0.1, 0.1))} #edited 21.08.2018 by <NAME> - added verbose variant, optimized feature dropping # edited on Dec-06-18 by <NAME>: added png draw_corr=correlations.copy() draw_corr.index=[x+' (%i)' % i for i,x in enumerate(draw_corr.index)] draw_corr.columns=range(len(draw_corr.columns)) if out_before is not None: out_before_png = 'corr_before.png' if out_before[-4:]=='.csv': draw_corr.round(2).to_csv(out_before, sep = sep) out_before_png = out_before[:-4] + '.png' elif out_before[-5:]=='.xlsx' or out_before[-4:]=='.xls': draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2).to_excel(out_before, engine='openpyxl', sheet_name='Correlation (before)') out_before_png = out_before[:-5] + '.png' if out_before[-5:]=='.xlsx' else out_before[:-4] + '.png' elif out_before[-4:]=='.png': out_before_png = out_before else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') fig_before = sns.heatmap(draw_corr.round(2), annot = True, cmap = LinearSegmentedColormap('mycmap', cdict), cbar = False, center = 0, yticklabels = True, xticklabels = True).figure fig_before.set_size_inches(draw_corr.shape[0]/2, draw_corr.shape[0]/2) fig_before.savefig(out_before_png, bbox_inches='tight') plt.close() self.stats['out_before'] = out_before_png if verbose: display(draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2)) to_check_correlation=True while to_check_correlation: to_check_correlation=False corr_number={} significantly_correlated={} for var in correlations: var_corr=correlations[var].apply(lambda x: abs(x)) var_corr=var_corr[(var_corr.index!=var) & (var_corr>threshold)].sort_values(ascending=False).copy() corr_number[var]=var_corr.shape[0] significantly_correlated[var]=str(var_corr.index.tolist()) if drop_with_most_correlations: with_correlation={x:sample.ginis[x] for x in corr_number if corr_number[x]==max({x:corr_number[x] for x in corr_number if x not in features_to_leave}.values()) and corr_number[x]>0 and x not in features_to_leave} else: with_correlation={x:sample.ginis[x] for x in corr_number if corr_number[x]>0 and x not in features_to_leave} if len(with_correlation)>0: feature_to_drop=min(with_correlation, key=with_correlation.get) features_to_drop.append(feature_to_drop) if verbose: print('Dropping %(v)s because of high correlation with features: %(f)s (Gini=%(g)0.2f)' % {'v':feature_to_drop, 'f':significantly_correlated[feature_to_drop], 'g':with_correlation[feature_to_drop]}) correlations=correlations.drop(feature_to_drop,axis=1).drop(feature_to_drop,axis=0).copy() to_check_correlation=True draw_corr=correlations.copy() draw_corr.index=[x+' (%i)' % i for i,x in enumerate(draw_corr.index)] draw_corr.columns=range(len(draw_corr.columns)) out_after_png = 'corr_after.png' if out_after is not None: if out_after[-4:]=='.csv': draw_corr.round(2).to_csv(out_after, sep = sep) out_after_png = out_after[:-4] + '.png' elif out_after[-5:]=='.xlsx' or out_after[-4:]=='.xls': draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2).to_excel(out_after, engine='openpyxl', sheet_name='Correlation (after)') out_after_png = out_after[:-5] + '.png' if out_after[-5:]=='.xlsx' else out_after[:-4] + '.png' elif out_after[-4:]=='.png': out_after_png = out_after else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') #sns.heatmap(draw_corr.round(2), annot = True, cmap = 'RdBu_r', cbar = False, center = 0).figure.savefig(out_after_png, bbox_inches='tight') fig_after = sns.heatmap(draw_corr.round(2), annot = True, cmap = LinearSegmentedColormap('mycmap', cdict), cbar = False, center = 0, yticklabels = True, xticklabels = True).figure fig_after.set_size_inches(draw_corr.shape[0]/2, draw_corr.shape[0]/2) fig_after.savefig(out_after_png, bbox_inches='tight') plt.close() if verbose: display(draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2)) self.stats['out_after'] = out_after_png result_data = copy.deepcopy(data) if drop_features: result_data.features_exclude(features_to_drop, verbose=False) if verbose: print('Dropped (if drop_features=True):', features_to_drop) return result_data, cor_out def find_correlated_groups(self, data, features = None, features_to_leave = None, threshold=0.6, method = 'spearman', verbose=False, figsize=(12,12), corr_graph_type='connected'): ''' Calculates the covariance matrix and correlation coefficients for each pair of features and returns groups of significantly correlated features Parameters ----------- data: a Data or DataSamples object to check (in case of DataSamples it's train sample will be checked) features: a list of features to analyze; by default - all the features features_to_leave: a list of features that must not be included in analysis threshold: the lowest value of a correlation coefficient for two features to be considered correlated method: method for correlation calculation verbose: flag for detailed output figsize: the size of correlation connections graph (printed if verbose) corr_graph_type: type of connectivity to persue in finding groups of correlated features 'connected' - groups are formed from features directly or indirectly connected by singnificant correlation 'complete' - groups are formed from features that are directly connected to each other by significant correlation (each pair of features from a group will have a significant connection) Returns -------- a list of lists representing correlated group ''' if features is None: features=[] if features_to_leave is None: features_to_leave=[] if type(data)==DataSamples: sample=data.train else: sample=data if features == [] or features is None: candidates = [x for x in sample.features if x not in features_to_leave] else: candidates = [x for x in features if x not in features_to_leave] correlations = sample.dataframe[candidates].corr(method = method) if verbose: draw_corr=correlations.copy() draw_corr.index=[x+' (%i)' % i for i,x in enumerate(draw_corr.index)] draw_corr.columns=range(len(draw_corr.columns)) display(draw_corr.round(2).style.applymap(color_digits,threshold_red=threshold)) G=nx.Graph() for i in range(correlations.shape[0]): for j in range(i+1, correlations.shape[0]): if correlations.loc[correlations.columns[i], correlations.columns[j]]>threshold: G.add_nodes_from([correlations.columns[i], correlations.columns[j]]) G.add_edge(correlations.columns[i], correlations.columns[j], label=str(round(correlations.loc[correlations.columns[i], correlations.columns[j]],3))) if verbose: plt.figure(figsize=(figsize[0]*1.2, figsize[1])) pos = nx.spring_layout(G, k=100) edge_labels = nx.get_edge_attributes(G,'label') nx.draw(G, pos, with_labels=True) nx.draw_networkx_edge_labels(G, pos, edge_labels = edge_labels) plt.margins(x=0.2) plt.show() correlated_groups=[] if corr_graph_type=='connected': for x in nx.connected_components(G): correlated_groups.append(sorted(list(x))) elif corr_graph_type=='complete': for x in nx.find_cliques(G): correlated_groups.append(sorted(x)) else: print('Unknown correlation graph type. Please use "connected" or "complete". Return None.') return None return correlated_groups #--------------------------------------------------------------- class VIF(Processor): ''' Calculates variance inflation factor for each feature ''' def __init__(self): self.stats =
pd.DataFrame()
pandas.DataFrame
""" database.py Routines for managing a spectral line database. TODO - set up routines for a persistent database """ import os import warnings try: import tables from tables import IsDescription, open_file from tables import StringCol, Int64Col, Float64Col except ImportError: warnings.warn(f"PyTables is not installed correctly!") import tinydb from tinydb.middlewares import CachingMiddleware from tinydb.storages import JSONStorage import pandas as pd from pyspectools import parsers from pyspectools import spectra class SpectralCatalog(tinydb.TinyDB): """ Grand unified experimental catalog. Stores assignment and uline information across the board. """ def __init__(self, dbpath=None): if dbpath is None: dbpath = os.path.expanduser("~/.pyspectools/pyspec_experiment.db") super().__init__( dbpath, sort_keys=True, indent=4, separators=(",", ": "), storage=CachingMiddleware(JSONStorage), ) def __exit__(self, exc_type, exc_value, traceback): """ Dunder method that should be called when the object is destroyed. This will make sure the database is saved properly. """ self.close() def add_entry(self, assignment, dup_check=True): """ This function adds an Transition object to an existing database. The method will check for duplicates before adding. Parameters ---------- assignment - Transition object Reference to an Transition object dup_check - bool, optional If True (default), will check to make sure the Transition object doesn't already exist in the database. """ add = False if type(assignment) != dict: new_entry = assignment.__dict__ else: new_entry = assignment if dup_check is True: if any([new_entry == entry for entry in self.all()]) is False: add = True else: warnings.warn("Entry already exists in database.") else: add = True if add is True: self.insert(new_entry) def add_catalog(self, catalog_path, name, formula, **kwargs): """ Load a SPCAT catalog file into the database. Creates independent Transition objects from each line of the catalog file. Kwargs are passed into the Transition object, which will allow additional settings for the Transition object to be accessed. :param catalog_path: :param name: :param formula: :param kwargs: :return: """ # check if the name and formula exists already exist_df = self.search_molecule(name) cat_df = parsers.parse_cat(catalog_path) if exist_df is not None: # drop all of the entries that are already in the catalog exist_freqs = exist_df["frequency"].values cat_df = cat_df.loc[~cat_df["Frequency"].isin(list(exist_freqs)),] assign_dict = {"name": name, "formula": formula} assign_dict.update(**kwargs) # slice out only the relevant information from the dataframe select_df = cat_df[["Frequency", "Intensity", "Lower state energy"]] select_df.columns = ["catalog_frequency", "catalog_intensity", "ustate_energy"] select_dict = select_df.to_dict(orient="records") # update each line with the common data entries assignments = [ spectra.assignment.Transition(**line, **assign_dict).__dict__ for line in select_dict ] # Insert all of the documents en masse self.insert_multiple(assignments) def search_frequency(self, frequency, freq_prox=0.1, freq_abs=True, dataframe=True): """\ :param frequency: float, center frequency to search for in the database :param freq_prox: float, search range tolerance. If freq_abs is True, the absolute value is used (in MHz). Otherwise, freq_prox is a decimal percentage of the frequency. :param freq_abs: bool, dictates whether the absolute value of freq_prox is used. :return: """ frequency = float(frequency) if freq_abs is True: min_freq = frequency - freq_prox max_freq = frequency + freq_prox else: min_freq = frequency * (1 - freq_prox) max_freq = frequency * (1 + freq_prox) Entry = tinydb.Query() matches = self.search( (Entry["frequency"] <= max_freq) & (min_freq <= Entry["frequency"]) | (Entry["catalog_frequency"] <= max_freq) & (min_freq <= Entry["catalog_frequency"]) ) if len(matches) != 0: if dataframe is True: return
pd.DataFrame(matches)
pandas.DataFrame
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' import pandas as pd import argparse import glob from scipy.stats import ttest_ind # %% if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( 'problem', help='MILP instance type to process.', choices=['setcover', 'cauctions', 'facilities', 'indset'], default="facilities" ) parser.add_argument( '--samplingStrategies', help='List of sampling strategies by python representation', choices=['uniform5', 'depthK'], default="['uniform5', 'depthK']" ) args = parser.parse_args() # %% resultDir = 'results' problem = args.problem targets = eval(args.samplingStrategies) metric_columns = ['acc@1','acc@3','acc@5','acc@10'] # %% samplingStragety1 = targets[0] samplingStragety2 = targets[1] targetfiles_strategy1 = glob.glob(f'{resultDir}/{problem}_{samplingStragety1}_*') targetfile1 = targetfiles_strategy1[-1] target_df1 = pd.read_csv(targetfile1) mean1 = target_df1[metric_columns].mean() std1 = target_df1[metric_columns].std() targetfiles_strategy2 = glob.glob(f'{resultDir}/{problem}_{samplingStragety2}_*') targetfile2 = targetfiles_strategy2[-1] target_df2 =
pd.read_csv(targetfile2)
pandas.read_csv
# Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys # for time measurement from datetime import datetime import re import os import pickle import urllib.request import xml.etree.ElementTree as ET # OAI-PMH client library from sickle import Sickle # data science imports, the usual suspects import numpy as np import scipy as sp import pandas as pd import matplotlib as mpl import matplotlib.cm as cm import matplotlib.pyplot as plt # general configuration # enables verbose output during processing verbose = True # override locally stored temporary files, re-download files etc.; should be True during first run forceOverride = True # static URL pattern for Stabi's digitized collection downloads metaDataDownloadURLPrefix = "https://content.staatsbibliothek-berlin.de/dc/" # Berlin State Library internal setting runningFromWithinStabi = False # error log file name errorLogFileName = "oai-analyzer_error.log" # analysis path prefix analysisPrefix = "analysis/" # temporary downloads prefix tempDownloadPrefix = "oai-analyzer_downloads/" # file where all retrieved PPNs will be saved to ppnFileName = analysisPrefix + "ppn_list.log" # file where all retrieved *ambiguous* PPNs will be saved to ambiguousPPNFileName = analysisPrefix + "ppn_ambiguous_list.csv" # True if downloaded METS/MODS documents have to be kept after processing keepMETSMODS=False # file path for metadata record pickle metadataRecordPicklePath = "save_120k_dc_all.pickle" # path to the DB file sqlDBPath=analysisPrefix+"oai-analyzer.db" # do not change the following values # XML namespace of MODS modsNamespace = "{http://www.loc.gov/mods/v3}" def printLog(text): now = str(datetime.now()) print("[" + now + "]\t" + text) # forces to output the result of the print command immediately, see: http://stackoverflow.com/questions/230751/how-to-flush-output-of-python-print sys.stdout.flush() def isValidPPN(ppn): rePattern = "^PPN\d+[0-9X]?" p = re.compile(rePattern, re.IGNORECASE) if p.match(ppn): return True else: return False def downloadMETSMODS(currentPPN): """ Tries to download a METS/MODS file associated with a given PPN. ATTENTION! Should be surrounded by a try-catch statement as it does not handle network errors etc. :param currentPPN: The PPN for which the METS/MODS file shall be retrieved. :return: The path to the downloaded file. """ # download the METS/MODS file first in order to find the associated documents currentDownloadURL = metaDataDownloadURLPrefix + currentPPN + ".mets.xml" metsModsPath = tempDownloadPrefix + currentPPN + ".xml" if runningFromWithinStabi: proxy = urllib.request.ProxyHandler({}) opener = urllib.request.build_opener(proxy) urllib.request.install_opener(opener) urllib.request.urlretrieve(currentDownloadURL, metsModsPath) return metsModsPath def parseOriginInfo(child): """ Parses an originInfo node and its children :param child: The originInfo child in the element tree. :return: A dict with the parsed information or None if the originInfo is invalid. """ discardNode = True result = dict() result["publisher"] = "" # check if we can directly process the node if "eventType" in child.attrib: if child.attrib["eventType"] == "publication": discardNode = False else: # we have to check if the originInfo contains and edition node with "[Electronic ed.]" to discard the node children = child.getchildren() hasEdition = False for c in children: if c.tag == modsNamespace + "edition": hasEdition = True if c.text == "[Electronic ed.]": discardNode = True else: discardNode = False if not hasEdition: discardNode = False if discardNode: return None else: for c in child.getchildren(): cleanedTag = c.tag.replace(modsNamespace, "") if cleanedTag == "place": result["place"] = c.find("{http://www.loc.gov/mods/v3}placeTerm").text.strip() if cleanedTag == "publisher": result["publisher"] = c.text.strip() # check for the most important date (see https://www.loc.gov/standards/mods/userguide/origininfo.html) if "keyDate" in c.attrib: result["date"] = c.text.strip() return result def parseTitleInfo(child): result = dict() result["title"]="" result["subTitle"]="" for c in child.getchildren(): cleanedTag = c.tag.replace(modsNamespace, "") result[cleanedTag]=c.text.strip() return result def parseLanguage(child): result = dict() result["language"]="" for c in child.getchildren(): cleanedTag = c.tag.replace(modsNamespace, "") if cleanedTag=="languageTerm": result["language"]=c.text.strip() return result def parseName(child): result=dict() role="" name="" for c in child.getchildren(): cleanedTag = c.tag.replace(modsNamespace, "") if cleanedTag=="role": for c2 in c.getchildren(): ct=c2.tag.replace(modsNamespace, "") if ct=="roleTerm": role=c2.text.strip() elif cleanedTag=="displayForm": name=c.text.strip() result[role]=name return result def parseAccessCondition(child): result = dict() result["access"]=child.text.strip() return result def processMETSMODS(currentPPN, metsModsPath): """ Processes a given METS/MODS file. :param currentPPN: the current PPN :param metsModsPath: path to the METS/MODS file :return: A dataframe with the parsing results. """ # parse the METS/MODS file tree = ET.parse(metsModsPath) root = tree.getroot() # only process possibly interesting nodes, i.e., nodesOfInterest = ["originInfo", "titleInfo", "language", "name", "accessCondition"] # stores result dicts created by various parsing function (see below) resultDicts=[] # master dictionary, later used for the creation of a dataframe masterDict={'publisher':"",'place':"",'date':"",'title':"",'subTitle':"",'language':"",'aut':"",'rcp':"",'fnd':"",'access':"",'altoPaths':""} # find all mods:mods nodes for modsNode in root.iter(modsNamespace + 'mods'): for child in modsNode: # strip the namespace cleanedTag = child.tag.replace(modsNamespace, "") #print(cleanedTag) #print(child) if cleanedTag in nodesOfInterest: if cleanedTag == "originInfo": r = parseOriginInfo(child) if r: resultDicts.append(r) elif cleanedTag=="titleInfo": r = parseTitleInfo(child) if r: resultDicts.append(r) elif cleanedTag=="language": r = parseLanguage(child) if r: resultDicts.append(r) elif cleanedTag=="name": r = parseName(child) if r: resultDicts.append(r) elif cleanedTag=="accessCondition": r = parseAccessCondition(child) if r: resultDicts.append(r) # we are only interested in the first occuring mods:mods node break # get all ALTO file references altoHrefs=[] for fileSec in root.iter('{http://www.loc.gov/METS/}fileSec'): for child in fileSec.iter('{http://www.loc.gov/METS/}fileGrp'): currentUse=child.attrib['USE'] for fileNode in child.iter('{http://www.loc.gov/METS/}file'): if currentUse == 'FULLTEXT': for fLocat in fileNode.iter('{http://www.loc.gov/METS/}FLocat'): if (fLocat.attrib['LOCTYPE'] == 'URL'): href = fLocat.attrib['{http://www.w3.org/1999/xlink}href'] altoHrefs.append(href) r["altoPaths"]=";".join(altoHrefs) resultDicts.append(r) # copy results to the master dictionary for result in resultDicts: for key in result: masterDict[key]=[result[key]] masterDict["ppn"]=[currentPPN] return pd.DataFrame(data=masterDict) def convertSickleRecordsToDataFrame(sickleRecords): availableKeys = dict() # check for all keys present in the previously downloaded dataset for i, r in enumerate(sickleRecords): for k in r.keys(): if not k in availableKeys: availableKeys[k] = 1 else: availableKeys[k] = availableKeys[k] + 1 # print(availableKeys) # create a dictionary for the records values = dict() # take the keys as they have found within the downloaded OAI records keys = availableKeys.keys() # for every metadata field, create an empty array as the content of the dictionary filed under the key 'k' for k in keys: values[k] = [] # in addition, store the PPN (the SBB's unique identifier for digitized content) values["PPN"] = [] # under circumstances the identifier field of the DC records might be ambiguous, these records are listed here ambiguousPPNRecords = [] # iterate over all saved records for record in sickleRecords: # we cannot iterate over the keys of record.metadata directly because not all records cotain the same fields,... for k in keys: # thus we check if the metadata field 'k' has been created above if k in values: # append the metadata fields to the dictionary created above # if the metadata field 'k' is not available input "None" instead if k in record: value = record.get(k)[0] if value: if value.isdigit(): value = int(value) else: # p27 value=value.encode('ISO-8859-1') # value = value.encode('ISO-8859-1').decode("utf-8", "backslashreplace") pass values[k].append(value) # get the PPN and fix issues with it if k == "identifier": if len(record["identifier"]) > 1: # sometimes there is more than one identifier provided # check if it is a valid PPN candidates = [str(record.get(k)[0]), str(record.get(k)[1])] candidateIndex = 0 candidateCount = 0 i = 0 for c in candidates: if c.startswith("PPN"): candidateIndex = i candidateCount += 1 else: i += 1 ppn = str(record.get(k)[1]) if candidateCount >= 1: # print("\tCANDIDATE CONFLICT SOLVED AS: " + candidates[candidateIndex]) # print("\t\t" + str(record.get(k)[0])) # print("\t\t" + str(record.get(k)[1])) ambiguousPPNRecords.append(candidates) ppn = candidates[0] else: ppn = str(record.get(k)[0]) values["PPN"].append(ppn) else: values[k].append(np.nan) # create a data frame df = pd.DataFrame(values) df['date'] = pd.to_numeric(df['date'], errors='ignore', downcast='integer') return (df, ambiguousPPNRecords) def createSupplementaryDirectories(): if not os.path.exists(analysisPrefix): if verbose: print("Creating " + analysisPrefix) os.mkdir(analysisPrefix) if not os.path.exists(tempDownloadPrefix): if verbose: print("Creating " + tempDownloadPrefix) os.mkdir(tempDownloadPrefix) if __name__ == "__main__": # connect to a metadata repository sickle = Sickle('https://oai.sbb.berlin/oai') records = sickle.ListRecords(metadataPrefix='oai_dc', set='all') createSupplementaryDirectories() errorFile = open(errorLogFileName, "w") savedRecords = [] # maximum number of downloaded records # 2:15 h for 100k maxDocs = 1000 # 100 is just for testing, for more interesting results increase this value to 1000. ATTENTION! this will also take more time for reading data. if forceOverride: printLog("Starting OAI record download...") # initialize some variables for counting and saving the metadata records savedDocs = 0 # save the records locally as we don't want to have to rely on a connection to the OAI-PMH server all the time # iterate over all records until maxDocs is reached # ATTENTION! if you re-run this cell, the contents of the savedRecords array will be altered! try: for record in records: # check if we reach the maximum document value if savedDocs < maxDocs: savedDocs = savedDocs + 1 # save the current record to the "savedRecords" array savedRecords.append(record.metadata) if savedDocs % 1000 == 0: printLog("Downloaded %d of %d records." % (savedDocs, maxDocs)) # if so, end the processing of the for-loop else: break # break ends the processing of the loop except Exception as ex: template = "An exception of type {0} occurred. Arguments: {1!r}" message = template.format(type(ex).__name__, ex.args) errorFile.write(message + "\n") printLog("Finished OAI download of " + str(len(savedRecords)) + " records.") pickle.dump(savedRecords, open(metadataRecordPicklePath, "wb")) # if savedRecords is empty, we have to load the data from the file system if not savedRecords: if os.path.exists(metadataRecordPicklePath): printLog("Restoring metadata records from " + metadataRecordPicklePath) savedRecords = pickle.load(open(metadataRecordPicklePath, "rb")) printLog("Done.") else: printLog("Could not depickle metadata records. Re-run with forceOverride option.") results = convertSickleRecordsToDataFrame(savedRecords) df = results[0] ambiguousPPNs = results[1] # save PPN list df["PPN"].to_csv(ppnFileName, sep=';', index=False) # test ambiguous PPNs and save results to a separate file printLog("Testing ambiguous PPNs.") ambigPPNFile = open(ambiguousPPNFileName, "w") ambigPPNFile.write("PPN_1;RESULT_1;PPN_2;RESULT_2;COMMENTS\n") for testPPNs in ambiguousPPNs: line = "" for ppn in testPPNs: # could it be a PPN? # if ppn.startswith("PPN"): # line+=ppn+";"+"OK;" # else: # line += ppn + ";" + "NO!;" line += ppn + ";" + str(isValidPPN(ppn)) + ";" line += "\n" ambigPPNFile.write(line) ambigPPNFile.close() # process all retrieved PPNs ppns = df["PPN"].values.tolist() #debug #ppns = df["PPN"].values.tolist()[0:1000] forceOverridePossible=False if os.path.exists(analysisPrefix + "analyticaldf.xlsx"): forceOverridePossible=True if forceOverride:#and forceOverridePossible: #if True: printLog("Processing METS/MODS documents.") resultDFs=[] processedDocs=0 maxDocs=len(ppns) for ppn in ppns: currentMETSMODS = None processedDocs+=1 if processedDocs % 1000 == 0: printLog("\tProcessed %d of %d METS/MODS documents." % (processedDocs, maxDocs)) # debug #tempDF=pd.concat(resultDFs, sort=False) #tempDF.to_excel(analysisPrefix + "analyticaldf_TEMP.xlsx", index=False) try: # debug #ppn="PPN74616453X" currentMETSMODS = downloadMETSMODS(ppn) except Exception as ex: template = "An exception of type {0} occurred. Arguments: {1!r}" message = template.format(type(ex).__name__, ex.args) errorFile.write(ppn + "\t" + message + "\n") if currentMETSMODS: currentDF=processMETSMODS(ppn, currentMETSMODS) #debug #currentDF.to_csv(analysisPrefix + "debug.csv",sep=';',index=False) resultDFs.append(currentDF) #raise (SystemExit) if not keepMETSMODS: os.remove(currentMETSMODS) analyticalDF=pd.concat(resultDFs,sort=False) # store the results permanently analyticalDF.to_csv(analysisPrefix + "analyticaldf.csv",sep=';',index=False) analyticalDF.to_excel(analysisPrefix + "analyticaldf.xlsx", index=False) else: printLog("Read METS/MODS analysis table from: "+analysisPrefix + "analyticaldf.xlsx") analyticalDF=pd.read_excel(analysisPrefix + "analyticaldf.xlsx") print(analyticalDF.columns) ocrPPNs=[] # read in OCR'ed PPNs with open('../ppn_lists/media_with_ocr.csv') as f: lines = f.readlines() for line in lines: line_split = line.split(' ') ppn_cleaned = line_split[len(line_split) - 1].rstrip() ocrPPNs.append(ppn_cleaned) f.close() # create a dataframe from the OCR PPN list ocrDF=pd.DataFrame({"ppn":ocrPPNs}) # join the two dataframes to discover all documents that got OCR'ed joinedDF=
pd.merge(analyticalDF,ocrDF,on='ppn')
pandas.merge
import pull_mdsplus as pull import pandas as pd import numpy as np import meas_locations as geo import MDSplus as mds import itertools from scipy import interpolate def load_gfile_mds(shot, time, tree="EFIT01", exact=False, connection=None, tunnel=True): """ This is scavenged from the load_gfile_d3d script on the EFIT repository, except updated to run on python3. shot: Shot to get gfile for. time: Time of the shot to load gfile for, in ms. tree: One of the EFIT trees to get the data from. exact: If True will raise error if time does not exactly match any gfile times. False will grab the closest time. connection: An MDSplus connection to atlas. tunnel: Set to True if accessing outside DIII-D network. returns: The requested gfile as a dictionary. """ # Connect to server, open tree and go to g-file if connection is None: if tunnel is True: connection = mds.Connection("localhost") else: connection = mds.Connection('atlas.gat.com') connection.openTree(tree, shot) base = 'RESULTS:GEQDSK:' # get time slice print("\nLoading gfile:") print(" Shot: " + str(shot)) print(" Tree: " + tree) print(" Time: " + str(time)) signal = 'GTIME' k = np.argmin(np.abs(connection.get(base + signal).data() - time)) time0 = int(connection.get(base + signal).data()[k]) if (time != time0): if exact: raise RuntimeError(tree + ' does not exactly contain time %.2f' %time + ' -> Abort') else: print('Warning: ' + tree + ' does not exactly contain time %.2f' %time + ' the closest time is ' + str(time0)) print('Fetching time slice ' + str(time0)) time = time0 # store data in dictionary g = {'shot': shot, 'time': time} # get header line header = connection.get(base + 'ECASE').data()[k] # get all signals, use same names as in read_g_file translate = {'MW': 'NR', 'MH': 'NZ', 'XDIM': 'Xdim', 'ZDIM': 'Zdim', 'RZERO': 'R0', 'RMAXIS': 'RmAxis', 'ZMAXIS': 'ZmAxis', 'SSIMAG': 'psiAxis', 'SSIBRY': 'psiSep', 'BCENTR': 'Bt0', 'CPASMA': 'Ip', 'FPOL': 'Fpol', 'PRES': 'Pres', 'FFPRIM': 'FFprime', 'PPRIME': 'Pprime', 'PSIRZ': 'psiRZ', 'QPSI': 'qpsi', 'NBBBS': 'Nlcfs', 'LIMITR': 'Nwall'} for signal in translate: g[translate[signal]] = connection.get(base + signal).data()[k] g['R1'] = connection.get(base + 'RGRID').data()[0] g['Zmid'] = 0.0 RLIM = connection.get(base + 'LIM').data()[:, 0] ZLIM = connection.get(base + 'LIM').data()[:, 1] g['wall'] = np.vstack((RLIM, ZLIM)).T RBBBS = connection.get(base + 'RBBBS').data()[k][:int(g['Nlcfs'])] ZBBBS = connection.get(base + 'ZBBBS').data()[k][:int(g['Nlcfs'])] g['lcfs'] = np.vstack((RBBBS, ZBBBS)).T KVTOR = 0 RVTOR = 1.7 NMASS = 0 RHOVN = connection.get(base + 'RHOVN').data()[k] # convert floats to integers for item in ['NR', 'NZ', 'Nlcfs', 'Nwall']: g[item] = int(g[item]) # convert single (float32) to double (float64) and round for item in ['Xdim', 'Zdim', 'R0', 'R1', 'RmAxis', 'ZmAxis', 'psiAxis', 'psiSep', 'Bt0', 'Ip']: g[item] = np.round(np.float64(g[item]), 7) # convert single arrays (float32) to double arrays (float64) for item in ['Fpol', 'Pres', 'FFprime', 'Pprime', 'psiRZ', 'qpsi', 'lcfs', 'wall']: g[item] = np.array(g[item], dtype=np.float64) # Construct (R,Z) grid for psiRZ g['dR'] = g['Xdim']/(g['NR'] - 1) g['R'] = g['R1'] + np.arange(g['NR'])*g['dR'] g['dZ'] = g['Zdim']/(g['NZ'] - 1) NZ2 = int(np.floor(0.5*g['NZ'])) g['Z'] = g['Zmid'] + np.arange(-NZ2, NZ2+1)*g['dZ'] # normalize psiRZ g['psiRZn'] = (g['psiRZ'] - g['psiAxis']) / (g['psiSep'] - g['psiAxis']) return g def rbs_into_df(number, probe, conn, start=2500, end=5000, step=500, verbal=False): """ Pulls RBS data from the MDSplus tree 'dp_probes' and puts it into a DataFrame ready for analysis. Require ssh to r2d2 if remote. number: Probe number. probe: One of A, B or C. conn: An MDSplus Connection returned via the pull.thin_connect function. start: Start of time that will be analyzed (i.e. the first gfile loaded). end: End of time for analysis (i.e. the last gfile loaded). step: Time step for the above. returns: A DataFrame formatted and ready to be filled with data (R-Rsep, R-Rsep_omp, etc.) """ # Create array of times to be sampled. times = np.arange(start, end, step) # Get shots probe was in for and Rprobe. Same for U and D sides, obviously. shots = pull.pull_shots(conn, probe + 'U', verbal=verbal) rprobe = pull.pull_rprobe(conn, probe + 'U', probe_corr=True, verbal=verbal) print("Shots to be analyzed: " + str(shots)) # Then pull the RBS data. print('\nLoading ' + probe + 'U' + str(number) + ' data...') rbs_dict_U = pull.pull_all_rbs(conn, number, probe + 'U', verbal=verbal) print('\nLoading ' + probe + 'D' + str(number) + ' data...') rbs_dict_D = pull.pull_all_rbs(conn, number, probe + 'D', verbal=verbal) # Now prepare the DataFrame. Will have set of data at each time, at each # shot. So essentially len(times)*len(shots) DataFrames stacked together. rbs_df_U = pd.DataFrame(rbs_dict_U) rbs_df_D = pd.DataFrame(rbs_dict_D) # Want 'locs' as an index. rbs_df_U.set_index('locs', inplace=True) rbs_df_D.set_index('locs', inplace=True) # Create set of DataFrames, len(times) of them, to be 'stacked' on top of each other. rbs_df_U = pd.concat(list(itertools.repeat(rbs_df_U, len(times))), keys=times, names=['times']) rbs_df_D = pd.concat(list(itertools.repeat(rbs_df_D, len(times))), keys=times, names=['times']) # Now do it again, except with shots. rbs_df_U = pd.concat(list(itertools.repeat(rbs_df_U, len(shots))), keys=shots, names=['shots']) rbs_df_D = pd.concat(list(itertools.repeat(rbs_df_D, len(shots))), keys=shots, names=['shots']) return rbs_df_U, rbs_df_D, rprobe def fill_in_rbs_df(rbs_df_U, rbs_df_D, probe, rprobe, conn, verbal=False): """ Takes the rbs_df from above and fill it in with R-Rsep, R-Rsep_omp, etc. It returns all if it, so that it may then be averaged and get the std. dev. of after all the data colloction has taken place. Requires ssh to atlas if remote. rbs_df_U: The DataFrame returned from rbs_into_df. Likewise for D. probe: One of A, B or C. rprobe: Radial position of probe tip returned from rbs_into_df. conn: An MDSplus Connection object from the mds.Connection function (different procedure compared to connecting to r2d2). returns: Filled in rbs_df. """ if verbal: print("Analyzing atlas relevant data...") # Get the shots, times and locs from the rbs_df index. np.unique will sort # the locs (don't want), so returning the indices and reordering will fix this. shots = np.unique(rbs_df_U.index.get_level_values('shots').values) times = np.unique(rbs_df_U.index.get_level_values('times').values) locs_U, order_U = np.unique(rbs_df_U.index.get_level_values('locs').values, return_index=True) locs_D, order_D = np.unique(rbs_df_D.index.get_level_values('locs').values, return_index=True) locs_U = locs_U[order_U] locs_D = locs_D[order_D] # Extra columns to be filled out. rbs_df_U['R-Rsep (cm)'] = pd.Series(); rbs_df_D['R-Rsep (cm)'] =
pd.Series()
pandas.Series
# cvworkflow/kkcalcfunctions.py import kkcalc from kkcalc import data from kkcalc import kk import numpy as np import pandas as pd import matplotlib from matplotlib.pyplot import * import matplotlib.pyplot as plt import matplotlib.cm as cm def kkcalc_convert(file_path, *, chemical_formula, density, min_ev, max_ev, load_options=None,input_data_type='Beta',add_background=False,fix_distortions=False,curve_tolerance=None,curve_recursion=50): """ This file is part of the Kramers-Kronig Calculator software package. Copyright (c) 2013 <NAME>, <NAME> The software is licensed under the terms of the zlib/libpng license. For details see LICENSE.txt <NAME> "Calculation of the Kramers-Kronig transform of X-ray spectra by a piecewise Laurent polynomial method" Opt. Express 22, (2014) 23628-23639. DOI:10.1364/OE.22.023628 Pip page for kkcalc: https://pypi.org/project/kkcalc/ <NAME> github: https://github.com/benajamin/kkcalc Cloned repository from <NAME>ick with an easy to follow along example: https://github.com/dschick/kkcalc Parameters ---------- file_path : pathlib.WindowsPath File path to NEXAFS beta spreadsheet, csv or txt. 2 columns: energy and intensity. chemical_formula : string The chemical formula of the component, i.e. 'C8H8' for polystyrene. density : float Density of the component in grams/cc. Typically around 1 grams/cc. Returns ------- delta : numpy.ndarray Real (dispersive) components of the complex index of refraction. Two columns, energy and delta values. beta : numpy.ndarray Imaginary (absorptive) components of the complex index of refraction. Two columns, energy and beta values. Examples -------- Calculate the complex index of refraction of polystrene (PS) from the NEXAFS of PS given from a txt file. >>> kkcalc_convert(file_path, *, chemical_formula= 'C8H8', density = 1.05, min_ev=270, max_ev=325) """ merge_points=[min_ev, max_ev] output = kk.kk_calculate_real(file_path, chemical_formula, load_options, input_data_type, merge_points, add_background, fix_distortions, curve_tolerance, curve_recursion) stoichiometry = kk.data.ParseChemicalFormula(chemical_formula) formula_mass = data.calculate_FormulaMass(stoichiometry) ASF_E, ASF_Data = kk.data.calculate_asf(stoichiometry) ASF_Data2 = kk.data.coeffs_to_ASF(ASF_E, np.vstack((ASF_Data, ASF_Data[-1]))) delta = data.convert_data(output[:,[0,1]],'ASF','refractive_index', Density=density, Formula_Mass=formula_mass) beta = data.convert_data(output[:,[0,2]],'ASF','refractive_index', Density=density, Formula_Mass=formula_mass) return delta, beta def kkcalc_plot(delta, beta, *, label, min_ev, max_ev, delta_ylim=[-0.006,0.004], beta_ylim=[0,0.008]): plt.figure() plt.plot(delta[:, 0], delta[:, 1], label=label, color = 'r') plt.legend() plt.xlim(min_ev, max_ev) plt.ylim(delta_ylim) plt.title('{:d} eV - {:d} eV'.format(min_ev, max_ev),fontsize=16) plt.xlabel('Energy [eV]',fontsize=16) plt.ylabel(r'$\delta$',fontsize=16) plt.show() plt.figure() plt.plot(beta[:, 0], beta[:, 1], label=label, color = 'b') plt.legend() plt.xlim(min_ev, max_ev) plt.ylim(beta_ylim) plt.title('{:d} eV - {:d} eV'.format(min_ev, max_ev),fontsize=16) plt.xlabel('Energy [eV]',fontsize=16) plt.ylabel(r'$\beta$',fontsize=16) plt.show() def component_df(delta, beta, new_q_index, label): delta_df = pd.DataFrame(delta[:, 1], columns=['delta_'+label]) delta_df = delta_df.set_axis(delta[:, 0], axis=0) delta_df_new = (delta_df.reindex(delta_df.index.union(new_q_index)).interpolate(method='linear').reindex(new_q_index)) beta_df = pd.DataFrame(beta[:, 1], columns=['beta_'+label]) beta_df = beta_df.set_axis(beta[:, 0], axis=0) beta_df_new = (beta_df.reindex(beta_df.index.union(new_q_index)).interpolate(method='linear').reindex(new_q_index)) return delta_df_new, beta_df_new def make_contrast_M_3(delta1, beta1, label1, delta2, beta2, label2, delta3, beta3, label3, new_q_index): delta_label1 = 'delta_'+label1 delta_label2 = 'delta_'+label2 delta_label3 = 'delta_'+label3 beta_label1 = 'beta_'+label1 beta_label2 = 'beta_'+label2 beta_label3 = 'beta_'+label3 delta1_df, beta1_df = component_df(delta1, beta1, new_q_index, label1) delta2_df, beta2_df = component_df(delta2, beta2, new_q_index, label2) delta3_df, beta3_df = component_df(delta3, beta3, new_q_index, label3) index_df =
pd.DataFrame(delta1_df, columns=[delta_label1])
pandas.DataFrame
from __future__ import print_function import collections import json import logging import os import pickle import sys import numpy as np import pandas as pd import keras from itertools import cycle, islice from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler from sklearn.model_selection import ShuffleSplit, KFold import file_utils file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) # import candle import file_utils global_cache = {} SEED = 2018 P1B3_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B3/' DATA_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot1/combo/' logger = logging.getLogger(__name__) def set_up_logger(verbose=False): sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if verbose else logging.INFO) logger.setLevel(logging.DEBUG) logger.addHandler(sh) def set_seed(seed=SEED): os.environ['PYTHONHASHSEED'] = '0' np.random.seed(seed) random.seed(seed) def get_file(url): fname = os.path.basename(url) return file_utils.get_file(fname, origin=url, cache_subdir='Pilot1') def impute_and_scale(df, scaling='std', imputing='mean', dropna='all'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ if dropna: df = df.dropna(axis=1, how=dropna) else: empty_cols = df.columns[df.notnull().sum() == 0] df[empty_cols] = 0 if imputing is None or imputing.lower() == 'none': mat = df.values else: imputer = Imputer(strategy=imputing, axis=0) mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df def discretize(df, col, bins=2, cutoffs=None): y = df[col] thresholds = cutoffs if thresholds is None: percentiles = [100 / bins * (i + 1) for i in range(bins - 1)] thresholds = [np.percentile(y, x) for x in percentiles] classes = np.digitize(y, thresholds) df[col] = classes return df def save_combined_dose_response(): df1 = load_single_dose_response(combo_format=True, fraction=False) df2 = load_combo_dose_response(fraction=False) df = pd.concat([df1, df2]) df.to_csv('combined_drug_growth', index=False, sep='\t') def load_combined_dose_response(rename=True): df1 = load_single_dose_response(combo_format=True) logger.info('Loaded {} single drug dose response measurements'.format(df1.shape[0])) df2 = load_combo_dose_response() logger.info('Loaded {} drug pair dose response measurements'.format(df2.shape[0])) df = pd.concat([df1, df2]) logger.info('Combined dose response data contains sources: {}'.format(df['SOURCE'].unique())) if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG1': 'Drug1', 'DRUG2': 'Drug2', 'DOSE1': 'Dose1', 'DOSE2': 'Dose2', 'GROWTH': 'Growth', 'STUDY': 'Study'}) return df def load_single_dose_response(combo_format=False, fraction=True): # path = get_file(DATA_URL + 'combined_single_drug_growth') path = get_file(DATA_URL + 'rescaled_combined_single_drug_growth') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep='\t', engine='c', na_values=['na', '-', ''], # nrows=10, dtype={'SOURCE': str, 'DRUG_ID': str, 'CELLNAME': str, 'CONCUNIT': str, 'LOG_CONCENTRATION': np.float32, 'EXPID': str, 'GROWTH': np.float32}) global_cache[path] = df df['DOSE'] = -df['LOG_CONCENTRATION'] df = df.rename(columns={'CELLNAME': 'CELL', 'DRUG_ID': 'DRUG', 'EXPID': 'STUDY'}) df = df[['SOURCE', 'CELL', 'DRUG', 'DOSE', 'GROWTH', 'STUDY']] if fraction: df['GROWTH'] /= 100 if combo_format: df = df.rename(columns={'DRUG': 'DRUG1', 'DOSE': 'DOSE1'}) df['DRUG2'] = np.nan df['DOSE2'] = np.nan df['DRUG2'] = df['DRUG2'].astype(object) df['DOSE2'] = df['DOSE2'].astype(np.float32) df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']] return df def load_combo_dose_response(fraction=True): path = get_file(DATA_URL + 'ComboDrugGrowth_Nov2017.csv') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep=',', engine='c', na_values=['na', '-', ''], usecols=['CELLNAME', 'NSC1', 'CONC1', 'NSC2', 'CONC2', 'PERCENTGROWTH', 'VALID', 'SCREENER', 'STUDY'], # nrows=10000, dtype={'CELLNAME': str, 'NSC1': str, 'NSC2': str, 'CONC1': np.float32, 'CONC2': np.float32, 'PERCENTGROWTH': np.float32, 'VALID': str, 'SCREENER': str, 'STUDY': str}, error_bad_lines=False, warn_bad_lines=True) global_cache[path] = df df = df[df['VALID'] == 'Y'] df['SOURCE'] = 'ALMANAC.' + df['SCREENER'] cellmap_path = get_file(DATA_URL + 'NCI60_CELLNAME_to_Combo.txt') df_cellmap = pd.read_csv(cellmap_path, sep='\t') df_cellmap.set_index('Name', inplace=True) cellmap = df_cellmap[['NCI60.ID']].to_dict()['NCI60.ID'] df['CELL'] = df['CELLNAME'].map(lambda x: cellmap[x]) df['DOSE1'] = -np.log10(df['CONC1']) df['DOSE2'] = -np.log10(df['CONC2']) df['DRUG1'] = 'NSC.' + df['NSC1'] df['DRUG2'] = 'NSC.' + df['NSC2'] if fraction: df['GROWTH'] = df['PERCENTGROWTH'] / 100 else: df['GROWTH'] = df['PERCENTGROWTH'] df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']] return df def load_aggregated_single_response(target='AUC', min_r2_fit=0.3, max_ec50_se=3, combo_format=False, rename=True): path = get_file(DATA_URL + 'combined_single_response_agg') df = global_cache.get(path) if df is None: df = pd.read_csv(path, engine='c', sep='\t', dtype={'SOURCE': str, 'CELL': str, 'DRUG': str, 'STUDY': str, 'AUC': np.float32, 'IC50': np.float32, 'EC50': np.float32, 'EC50se': np.float32, 'R2fit': np.float32, 'Einf': np.float32, 'HS': np.float32, 'AAC1': np.float32, 'AUC1': np.float32, 'DSS1': np.float32}) global_cache[path] = df total = len(df) df = df[(df['R2fit'] >= min_r2_fit) & (df['EC50se'] <= max_ec50_se)] df = df[['SOURCE', 'CELL', 'DRUG', target, 'STUDY']] df = df[~df[target].isnull()] logger.info('Loaded %d dose indepdendent response samples (filtered by EC50se <= %f & R2fit >=%f from a total of %d).', len(df), max_ec50_se, min_r2_fit, total) if combo_format: df = df.rename(columns={'DRUG': 'DRUG1'}) df['DRUG2'] = np.nan df['DRUG2'] = df['DRUG2'].astype(object) df = df[['SOURCE', 'CELL', 'DRUG1', 'DRUG2', target, 'STUDY']] if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG1': 'Drug1', 'DRUG2': 'Drug2', 'STUDY': 'Study'}) else: if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG': 'Drug', 'STUDY': 'Study'}) return df def load_drug_data(ncols=None, scaling='std', imputing='mean', dropna=None, add_prefix=True): df_info = load_drug_info() df_info['Drug'] = df_info['PUBCHEM'] df_desc = load_drug_set_descriptors(drug_set='Combined_PubChem', ncols=ncols) df_fp = load_drug_set_fingerprints(drug_set='Combined_PubChem', ncols=ncols) df_desc = pd.merge(df_info[['ID', 'Drug']], df_desc, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_fp = pd.merge(df_info[['ID', 'Drug']], df_fp, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_desc2 = load_drug_set_descriptors(drug_set='NCI60', usecols=df_desc.columns.tolist() if ncols else None) df_fp2 = load_drug_set_fingerprints(drug_set='NCI60', usecols=df_fp.columns.tolist() if ncols else None) df_desc = pd.concat([df_desc, df_desc2]).reset_index(drop=True) df1 = pd.DataFrame(df_desc.loc[:, 'Drug']) df2 = df_desc.drop('Drug', 1) df2 = impute_and_scale(df2, scaling=scaling, imputing=imputing, dropna=dropna) if add_prefix: df2 = df2.add_prefix('dragon7.') df_desc = pd.concat([df1, df2], axis=1) df_fp = pd.concat([df_fp, df_fp2]).reset_index(drop=True) df1 = pd.DataFrame(df_fp.loc[:, 'Drug']) df2 = df_fp.drop('Drug', 1) df2 = impute_and_scale(df2, scaling=None, imputing=imputing, dropna=dropna) if add_prefix: df2 = df2.add_prefix('dragon7.') df_fp = pd.concat([df1, df2], axis=1) logger.info('Loaded combined dragon7 drug descriptors: %s', df_desc.shape) logger.info('Loaded combined dragon7 drug fingerprints: %s', df_fp.shape) return df_desc, df_fp def load_drug_descriptors(ncols=None, scaling='std', imputing='mean', dropna=None, add_prefix=True, feature_subset=None): df_info = load_drug_info() df_info['Drug'] = df_info['PUBCHEM'] df_desc = load_drug_set_descriptors(drug_set='Combined_PubChem', ncols=ncols) df_desc = pd.merge(df_info[['ID', 'Drug']], df_desc, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_desc2 = load_drug_set_descriptors(drug_set='NCI60', usecols=df_desc.columns.tolist() if ncols else None) df_desc = pd.concat([df_desc, df_desc2]).reset_index(drop=True) df1 = pd.DataFrame(df_desc.loc[:, 'Drug']) df2 = df_desc.drop('Drug', 1) if add_prefix: df2 = df2.add_prefix('dragon7.') if feature_subset: df2 = df2[[x for x in df2.columns if x in feature_subset]] df2 = impute_and_scale(df2, scaling=scaling, imputing=imputing, dropna=dropna) df_desc = pd.concat([df1, df2], axis=1) logger.info('Loaded combined dragon7 drug descriptors: %s', df_desc.shape) return df_desc def load_drug_fingerprints(ncols=None, scaling='std', imputing='mean', dropna=None, add_prefix=True, feature_subset=None): df_info = load_drug_info() df_info['Drug'] = df_info['PUBCHEM'] df_fp = load_drug_set_fingerprints(drug_set='Combined_PubChem', ncols=ncols) df_fp = pd.merge(df_info[['ID', 'Drug']], df_fp, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_fp2 = load_drug_set_fingerprints(drug_set='NCI60', usecols=df_fp.columns.tolist() if ncols else None) df_fp =
pd.concat([df_fp, df_fp2])
pandas.concat
""" Data structure for 1-dimensional cross-sectional and time series data """ # pylint: disable=E1101,E1103 # pylint: disable=W0703,W0622,W0613,W0201 import itertools import operator import sys import warnings from numpy import nan, ndarray import numpy as np from pandas.core.common import (isnull, notnull, _ensure_index, _is_bool_indexer, _default_index) from pandas.core.daterange import DateRange from pandas.core.generic import PandasObject from pandas.core.index import Index, MultiIndex from pandas.core.indexing import _SeriesIndexer, _maybe_droplevels import pandas.core.datetools as datetools import pandas._tseries as _tseries __all__ = ['Series', 'TimeSeries'] def _numpy_lt_151(): return np.__version__ < '1.5.1' #------------------------------------------------------------------------------- # Wrapper function for Series arithmetic methods def _arith_method(op, name): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ def wrapper(self, other): from pandas.core.frame import DataFrame if isinstance(other, Series): if self.index.equals(other.index): return Series(op(self.values, other.values), index=self.index) new_index = self.index + other.index this_reindexed = self.reindex(new_index) other_reindexed = other.reindex(new_index) arr = op(this_reindexed.values, other_reindexed.values) return Series(arr, index=new_index) elif isinstance(other, DataFrame): return NotImplemented else: # scalars return Series(op(self.values, other), index=self.index) return wrapper def _flex_method(op, name): def f(self, other, fill_value=None): return self._binop(other, op, fill_value=fill_value) f.__doc__ = """ Binary operator %s with support to substitute a fill_value for missing data in one of the inputs Parameters ---------- other: Series or scalar value fill_value : None or float value, default None Fill missing (NaN) values with this value. If both Series are missing, the result will be missing Returns ------- result : Series """ % name f.__name__ = name return f #------------------------------------------------------------------------------- # Series class class Series(np.ndarray, PandasObject): """ Generic indexed (labeled) vector, including time series Contains values in a numpy-ndarray with an optional bound index (also an array of dates, strings, or whatever you want the 'row names' of your series to be) Rows can be retrieved by index value (date, string, etc.) or relative position in the underlying array. Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. Parameters ---------- data : array-like, dict, or scalar value Contains data stored in Series index : array-like Index object (or other iterable of same length as data) Must be input if first argument is not a dict. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : numpy.dtype or None If None, dtype will be inferred copy : boolean, default False Copy input data Notes ----- If you combine two series, all values for an index position must be present or the value for that index position will be nan. The new index is the sorted union of the two Series indices. Data is *not* copied from input arrays by default """ _AXIS_NUMBERS = { 'index' : 0 } _AXIS_NAMES = dict((v, k) for k, v in _AXIS_NUMBERS.iteritems()) def __new__(cls, data, index=None, dtype=None, name=None, copy=False): if isinstance(data, Series): if index is None: index = data.index elif isinstance(data, dict): if index is None: index = Index(sorted(data.keys())) data = [data[idx] for idx in index] # Create array, do *not* copy data by default, infer type try: subarr = np.array(data, dtype=dtype, copy=copy) except ValueError: if dtype: raise subarr = np.array(data, dtype=object) if subarr.ndim == 0: if isinstance(data, list): # pragma: no cover subarr = np.array(data, dtype=object) elif index is not None: value = data # If we create an empty array using a string to infer # the dtype, NumPy will only allocate one character per entry # so this is kind of bad. Alternately we could use np.repeat # instead of np.empty (but then you still don't want things # coming out as np.str_! if isinstance(value, basestring) and dtype is None: dtype = np.object_ if dtype is None: subarr = np.empty(len(index), dtype=type(value)) else: subarr = np.empty(len(index), dtype=dtype) subarr.fill(value) else: return subarr.item() elif subarr.ndim > 1: raise Exception('Data must be 1-dimensional') if index is None: index = _default_index(len(subarr)) # This is to prevent mixed-type Series getting all casted to # NumPy string type, e.g. NaN --> '-1#IND'. if issubclass(subarr.dtype.type, basestring): subarr = np.array(data, dtype=object, copy=copy) # Change the class of the array to be the subclass type. subarr = subarr.view(cls) subarr.index = index subarr.name = name if subarr.index.is_all_dates(): subarr = subarr.view(TimeSeries) return subarr def __init__(self, *args, **kwargs): pass def __hash__(self): raise TypeError('unhashable type') _index = None def _get_index(self): return self._index def _set_index(self, index): indexTypes = ndarray, Index, list, tuple if not isinstance(index, indexTypes): raise TypeError("Expected index to be in %s; was %s." % (indexTypes, type(index))) if len(self) != len(index): raise AssertionError('Lengths of index and values did not match!') self._index = _ensure_index(index) index = property(fget=_get_index, fset=_set_index) def __array_finalize__(self, obj): """ Gets called after any ufunc or other array operations, necessary to pass on the index. """ self._index = getattr(obj, '_index', None) def toDict(self): return dict(self.iteritems()) def to_sparse(self, kind='block', fill_value=None): """ Convert Series to SparseSeries Parameters ---------- kind : {'block', 'integer'} fill_value : float, defaults to NaN (missing) Returns ------- sp : SparseSeries """ from pandas.core.sparse import SparseSeries return SparseSeries(self, kind=kind, fill_value=fill_value) def __contains__(self, key): return key in self.index def __reduce__(self): """Necessary for making this object picklable""" object_state = list(ndarray.__reduce__(self)) subclass_state = (self.index, ) object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" nd_state, own_state = state ndarray.__setstate__(self, nd_state) index, = own_state self.index = index def __getitem__(self, key): """ Returns item(s) for requested index/sequence, overrides default behavior for series[key]. Logic is as follows: - If key is in the index, return the value corresponding to that index - Otherwise, use key (presumably one integer or a sequence of integers) to obtain values from the series. In the case of a sequence, a 'slice' of the series (with corresponding dates) will be returned, otherwise a single value. """ try: if isinstance(self.index, MultiIndex): return self._multilevel_index(key) else: values = self.values try: return values[self.index.get_loc(key)] except KeyError: if isinstance(key, (int, np.integer)): return values[key] raise except TypeError: pass def _index_with(indexer): return Series(self.values[indexer], index=self.index[indexer]) # special handling of boolean data with NAs stored in object # arrays. Sort of an elaborate hack since we can't represent boolean # NA. Hmm if _is_bool_indexer(key): self._check_bool_indexer(key) key = np.asarray(key, dtype=bool) return _index_with(key) # TODO: [slice(0, 5, None)] will break if you convert to ndarray, # e.g. as requested by np.median try: return _index_with(key) except Exception: key = np.asarray(key) return _index_with(key) def _multilevel_index(self, key): values = self.values try: loc = self.index.get_loc(key) if isinstance(loc, slice): # TODO: what if a level contains tuples?? new_index = self.index[loc] new_index = _maybe_droplevels(new_index, key) return Series(values[loc], index=new_index) else: return values[loc] except KeyError: if isinstance(key, (int, np.integer)): return values[key] raise Exception('Requested index not in this series!') def get(self, key, default=None): """ Returns value occupying requested index, default to specified missing value if not present Parameters ---------- key : object Index value looking for default : object, optional Value to return if key not in index Returns ------- y : scalar """ if key in self.index: return self._get_val_at(self.index.get_loc(key)) else: return default # help out SparseSeries _get_val_at = ndarray.__getitem__ def __getslice__(self, i, j): """ Returns a slice of the Series. Note that the underlying values are COPIES. The reason that the getslice returns copies is that otherwise you will have a reference to the original series which could be inadvertently changed """ return Series(self.values[i:j].copy(), index=self.index[i:j]) def __setitem__(self, key, value): values = self.values try: loc = self.index.get_loc(key) values[loc] = value return except KeyError: if isinstance(key, (int, np.integer)): values[key] = value return raise Exception('Requested index not in this series!') except TypeError: # Could not hash item pass self._check_bool_indexer(key) # special handling of boolean data with NAs stored in object # arrays. Sort of an elaborate hack since we can't represent boolean # NA. Hmm if isinstance(key, np.ndarray) and key.dtype == np.object_: mask = isnull(key) if mask.any(): raise ValueError('cannot index with vector containing ' 'NA / NaN values') if set([True, False]).issubset(set(key)): key = np.asarray(key, dtype=bool) values[key] = value return values[key] = value def _check_bool_indexer(self, key): # boolean indexing, need to check that the data are aligned, otherwise # disallowed if isinstance(key, Series) and key.dtype == np.bool_: if not key.index.equals(self.index): raise Exception('can only boolean index with like-indexed ' 'Series or raw ndarrays') def __setslice__(self, i, j, value): """Set slice equal to given value(s)""" ndarray.__setslice__(self, i, j, value) def __repr__(self): """Clean string representation of a Series""" if len(self.index) > 500: return self._make_repr(50) elif len(self.index) > 0: return _seriesRepr(self.index, self.values) else: return '%s' % ndarray.__repr__(self) def _make_repr(self, max_vals=50): vals = self.values index = self.index num = max_vals // 2 head = _seriesRepr(index[:num], vals[:num]) tail = _seriesRepr(index[-(max_vals - num):], vals[-(max_vals - num):]) return head + '\n...\n' + tail + '\nlength: %d' % len(vals) def toString(self, buffer=sys.stdout, nanRep='NaN'): print >> buffer, _seriesRepr(self.index, self.values, nanRep=nanRep) def __str__(self): return repr(self) def __iter__(self): return iter(self.values) def copy(self): return Series(self.values.copy(), index=self.index) #------------------------------------------------------------------------------- # Arithmetic operators __add__ = _arith_method(operator.add, '__add__') __sub__ = _arith_method(operator.sub, '__sub__') __mul__ = _arith_method(operator.mul, '__mul__') __div__ = _arith_method(operator.div, '__div__') __truediv__ = _arith_method(operator.truediv, '__truediv__') __pow__ = _arith_method(operator.pow, '__pow__') __truediv__ = _arith_method(operator.truediv, '__truediv__') __radd__ = _arith_method(operator.add, '__add__') __rmul__ = _arith_method(operator.mul, '__mul__') __rsub__ = _arith_method(lambda x, y: y - x, '__sub__') __rdiv__ = _arith_method(lambda x, y: y / x, '__div__') __rtruediv__ = _arith_method(lambda x, y: y / x, '__truediv__') __rpow__ = _arith_method(lambda x, y: y ** x, '__pow__') # Inplace operators __iadd__ = __add__ __isub__ = __sub__ __imul__ = __mul__ __idiv__ = __div__ __ipow__ = __pow__ #------------------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self): """ Return number of observations of Series. Returns ------- nobs : int """ return notnull(self.values).sum() def sum(self, axis=None, dtype=None, out=None): """ Sum of non-null values """ return self._ndarray_statistic('sum') def mean(self, axis=None, dtype=None, out=None): """ Mean of non-null values """ return self._ndarray_statistic('mean') def _ndarray_statistic(self, funcname): arr = self.values retVal = getattr(arr, funcname)() if isnull(retVal): arr = remove_na(arr) if len(arr) == 0: return np.nan retVal = getattr(arr, funcname)() return retVal def quantile(self, q=0.5): """ Return value at the given quantile Parameters ---------- q : quantile 0 <= q <= 1 Returns ------- q : float """ from scipy.stats import scoreatpercentile return scoreatpercentile(self.valid().values, q * 100) def describe(self): """ Generate various summary statistics of columns, excluding NaN values Returns ------- DataFrame """ names = ['count', 'mean', 'std', 'min', '10%', '50%', '90%', 'max'] data = [self.count(), self.mean(), self.std(), self.min(), self.quantile(.1), self.median(), self.quantile(.9), self.max()] return Series(data, index=names) def min(self, axis=None, out=None): """ Minimum of non-null values """ arr = self.values.copy() if not issubclass(arr.dtype.type, np.int_): arr[isnull(arr)] = np.inf return arr.min() def max(self, axis=None, out=None): """ Maximum of non-null values """ arr = self.values.copy() if not issubclass(arr.dtype.type, np.int_): arr[isnull(arr)] = -np.inf return arr.max() def std(self, axis=None, dtype=None, out=None, ddof=1): """ Unbiased standard deviation of non-null values """ nona = remove_na(self.values) if len(nona) < 2: return nan return ndarray.std(nona, axis, dtype, out, ddof) def var(self, axis=None, dtype=None, out=None, ddof=1): """ Unbiased variance of non-null values """ nona = remove_na(self.values) if len(nona) < 2: return nan return ndarray.var(nona, axis, dtype, out, ddof) def skew(self): """ Unbiased skewness of the non-null values Returns ------- skew : float """ y = np.array(self.values) mask = notnull(y) count = mask.sum() np.putmask(y, -mask, 0) A = y.sum() / count B = (y**2).sum() / count - A**2 C = (y**3).sum() / count - A**3 - 3*A*B return (np.sqrt((count**2-count))*C) / ((count-2)*np.sqrt(B)**3) def cumsum(self, axis=0, dtype=None, out=None): """ Cumulative sum of values. Preserves NaN values Extra parameters are to preserve ndarray interface. Returns ------- """ arr = self.values.copy() do_mask = not issubclass(self.dtype.type, np.int_) if do_mask: mask = isnull(arr) np.putmask(arr, mask, 0.) result = arr.cumsum() if do_mask: np.putmask(result, mask, np.nan) return Series(result, index=self.index) def cumprod(self, axis=0, dtype=None, out=None): """ Overriding numpy's built-in cumprod functionality """ arr = self.values.copy() do_mask = not issubclass(self.dtype.type, np.int_) if do_mask: mask = isnull(arr) np.putmask(arr, mask, 1.) result = arr.cumprod() if do_mask: np.putmask(result, mask, np.nan) return Series(result, index=self.index) def median(self): """ Compute median value of non-null values """ arr = self.values if arr.dtype != np.float_: arr = arr.astype(float) arr = arr[notnull(arr)] return _tseries.median(arr) def corr(self, other): """ Compute correlation two Series, excluding missing values Parameters ---------- other : Series object Returns ------- correlation : float """ commonIdx = self.valid().index.intersection(other.valid().index) if len(commonIdx) == 0: return nan this = self.reindex(commonIdx) that = other.reindex(commonIdx) return np.corrcoef(this, that)[0, 1] def diff(self): """ 1st discrete difference of object Returns ------- TimeSeries """ return (self - self.shift(1)) def autocorr(self): """ Lag-1 autocorrelation Returns ------- TimeSeries """ return self.corr(self.shift(1)) def clip(self, upper=None, lower=None): """ Trim values at input threshold(s) Parameters ---------- lower : float, default None upper : float, default None Returns ------- y : Series """ result = self if lower is not None: result = result.clip_lower(lower) if upper is not None: result = result.clip_upper(upper) return result def clip_upper(self, threshold): """Return copy of series with values above given value truncated""" return np.where(self > threshold, threshold, self) def clip_lower(self, threshold): """Return copy of series with values below given value truncated""" return np.where(self < threshold, threshold, self) #------------------------------------------------------------------------------- # Iteration def keys(self): "Alias for Series index" return self.index @property def values(self): """ Return Series as ndarray Returns ------- arr : numpy.ndarray """ return self.view(ndarray) def iteritems(self): """ Lazily iterate over (index, value) tuples """ return itertools.izip(iter(self.index), iter(self)) #------------------------------------------------------------------------------- # Combination def append(self, other): """ Concatenate two Series. The indices should not overlap Parameters ---------- other : Series Returns ------- y : Series """ new_index = np.concatenate((self.index, other.index)) new_index = Index(new_index) new_index._verify_integrity() new_values = np.concatenate((self, other)) return Series(new_values, index=new_index) def _binop(self, other, func, fill_value=None): """ Parameters ---------- other : Series Returns ------- combined : Series """ # TODO: docstring assert(isinstance(other, Series)) new_index = self.index this = self if not self.index.equals(other.index): new_index = self.index + other.index this = self.reindex(new_index) other = other.reindex(new_index) this_vals = this.values other_vals = other.values if fill_value is not None: this_mask = isnull(this_vals) other_mask = isnull(other_vals) this_vals = this_vals.copy() other_vals = other_vals.copy() # one but not both mask = this_mask ^ other_mask this_vals[this_mask & mask] = fill_value other_vals[other_mask & mask] = fill_value result = func(this_vals, other_vals) return Series(result, index=new_index) add = _flex_method(operator.add, 'add') sub = _flex_method(operator.sub, 'subtract') mul = _flex_method(operator.mul, 'multiply') div = _flex_method(operator.div, 'divide') def combine(self, other, func, fill_value=nan): """ Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other Parameters ---------- other : Series or scalar value func : function fill_value : scalar value Returns ------- result : Series """ if isinstance(other, Series): new_index = self.index + other.index new_values = np.empty(len(new_index), dtype=self.dtype) for i, idx in enumerate(new_index): new_values[i] = func(self.get(idx, fill_value), other.get(idx, fill_value)) else: new_index = self.index new_values = func(self.values, other) return Series(new_values, index=new_index) def combineFirst(self, other): """ Combine Series values, choosing calling Series's values first. Parameters ---------- other : Series Returns ------- y : Series formed as union of two Series """ if self.index.equals(other.index): new_index = self.index # save ourselves the copying in this case this = self else: new_index = self.index + other.index this = self.reindex(new_index) other = other.reindex(new_index) result = Series(np.where(isnull(this), other, this), index=new_index) return result #---------------------------------------------------------------------- # Reindexing, sorting def sort(self, axis=0, kind='quicksort', order=None): """ Overridden NumPy sort, taking care with missing values """ sortedSeries = self.order(na_last=True) self[:] = sortedSeries self.index = sortedSeries.index def argsort(self, axis=0, kind='quicksort', order=None): """ Overriding numpy's built-in cumsum functionality """ values = self.values mask = isnull(values) if mask.any(): result = values.copy() notmask = -mask result[notmask] = np.argsort(values[notmask]) return Series(result, index=self.index) else: return Series(np.argsort(values), index=self.index) def order(self, na_last=True, ascending=True, **kwds): """ Sorts Series object, by value, maintaining index-value object Parameters ---------- na_last : boolean (optional, default=True) Put NaN's at beginning or end Returns ------- y : Series """ def _try_mergesort(arr): # easier to ask forgiveness than permission try: return arr.argsort(kind='mergesort') except TypeError: # stable sort not available for object dtype return arr.argsort() if 'missingAtEnd' in kwds: # pragma: no cover warnings.warn("missingAtEnd is deprecated, use na_last", FutureWarning) na_last = kwds['missingAtEnd'] arr = self.values sortedIdx = np.empty(len(self), dtype=np.int32) bad = isnull(arr) good = -bad idx = np.arange(len(self)) argsorted = _try_mergesort(arr[good]) if not ascending: argsorted = argsorted[::-1] if na_last: n = sum(good) sortedIdx[:n] = idx[good][argsorted] sortedIdx[n:] = idx[bad] else: n = sum(bad) sortedIdx[n:] = idx[good][argsorted] sortedIdx[:n] = idx[bad] return Series(arr[sortedIdx], index=self.index[sortedIdx]) def sortlevel(self, level=0, ascending=True): """ Sort multilevel index by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters ---------- level : int ascending : bool, default True Returns ------- sorted : Series """ if not isinstance(self.index, MultiIndex): raise Exception('can only sort by level with a hierarchical index') new_index, indexer = self.index.sortlevel(level, ascending=ascending) new_values = self.values.take(indexer) return Series(new_values, index=new_index) def unstack(self, level=-1): """ "Unstack" Series with multi-level index to produce DataFrame Parameters ---------- level : int, default last level Level to "unstack" Examples -------- >>> s one a 1. one b 2. two a 3. two b 4. >>> s.unstack(level=-1) a b one 1. 2. two 3. 4. >>> s.unstack(level=0) one two a 1. 2. b 3. 4. Returns ------- unstacked : DataFrame """ unstacker = _Unstacker(self.values, self.index, level=level) return unstacker.get_result() #---------------------------------------------------------------------- # function application def map(self, arg): """ Map values of Series using input correspondence (which can be a dict, Series, or function). Parameters ---------- arg : function, dict, or Series Returns ------- y : Series same index as caller """ if isinstance(arg, (dict, Series)): if isinstance(arg, dict): arg = Series(arg) indexer, mask = _tseries.getMergeVec(self, arg.index.indexMap) notmask = -mask new_values = arg.view(np.ndarray).take(indexer) if notmask.any(): if issubclass(new_values.dtype.type, np.integer): new_values = new_values.astype(float) np.putmask(new_values, notmask, np.nan) newSer = Series(new_values, index=self.index) return newSer else: return Series([arg(x) for x in self], index=self.index) merge = map def apply(self, func): """ Call function on elements on array. Can be ufunc or Python function expecting only single values Parameters ---------- func : function Returns ------- y : Series """ try: return func(self) except Exception: return Series([func(x) for x in self], index=self.index) applymap = apply def reindex(self, index=None, method=None): """Conform Series to new Index Parameters ---------- index : array-like Preferably an Index object (to avoid duplicating data) method : {'backfill', 'bfill', 'pad', 'ffill', None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap Returns ------- reindexed : Series """ if self.index.equals(index): return self.copy() index =
_ensure_index(index)
pandas.core.common._ensure_index
#!/usr/bin/env python #----------------------------------------------------------------------# ''' A module to analyze token trends on the BSC blockchain. This is very much a work in progress. ''' #----------------------------------------------------------------------# # System Module Imports import os import sys import datetime import configparser # Additional Module Imports import tqdm import pandas as pd import requests # Local Imports #----------------------------------------------------------------------# # Read in my API keys from a config file config = configparser.ConfigParser() config.read(os.path.join(os.getenv('HOME'), '.config', 'api_keys.ini')) #----------------------------------------------------------------------# # BITQUERY API #----------------------------------------------------------------------# url_bitquery = 'https://graphql.bitquery.io' #----------------------------------------------------------------------# def run_query(query): # A simple function to use requests.post to make the API call. headers = {'X-API-KEY': config['bitquery']['key']} request = requests.post(url_bitquery, json={'query': query}, headers=headers) if request.status_code == 200: return request.json() else: raise Exception('Query failed and return code is {}. {}'.format(request.status_code, query)) #----------------------------------------------------------------------# def q_pancake_recent_daily(start): return '''{ ethereum(network: bsc) { dexTrades( options: {limit: 10000, desc: "trades"} date: {since: "%s"} exchangeName: {in: ["Pancake", "Pancake v2"]} quoteCurrency: {is: "0xbb4cdb9cbd36b01bd1cbaebf2de08d9173bc095c"} ) { timeInterval { day(count: 1) } baseCurrency { symbol address } baseAmount quoteCurrency { symbol address } quoteAmount trades: count quotePrice open_price: minimum(of: block, get: quote_price) high_price: quotePrice(calculate: maximum) low_price: quotePrice(calculate: minimum) close_price: maximum(of: block, get: quote_price) } } } ''' % (start,) #----------------------------------------------------------------------# def q_ohlc_periods( address, start, period= 'minute', periods_per_candle= 1, limit_candles= None, quote_address= '0xbb4cdb9cbd36b01bd1cbaebf2de08d9173bc095c'): 'Construct a query to obtain OHLC data for a given address.' # Apply the limit if one was given limit = (limit_candles is not None) and f'options: {{limit: {limit_candles}, asc: "timeInterval.{period}"}}' or '' # Now construct and return the query return '''{ ethereum(network: bsc) { dexTrades(%s date: {since: "%s"} exchangeName: {in: ["Pancake", "Pancake v2"]} baseCurrency: {is: "%s"} quoteCurrency: {is: "%s"} ) { timeInterval { %s(count: %s) } baseCurrency { symbol address } trades: count open_price: minimum(of: block, get: quote_price) high_price: quotePrice(calculate: maximum) low_price: quotePrice(calculate: minimum) close_price: maximum(of: block, get: quote_price) } } } ''' % (limit, start, address, quote_address, period, periods_per_candle) #----------------------------------------------------------------------# def q_tokens_created(start_time, end_time): return '''{ ethereum(network: bsc) { smartContractCalls( options: {asc: "block.height", limit: 2147483647} smartContractMethod: {is: "Contract Creation"} smartContractType: {is: Token} time: {after: "%s", before: "%s"} ) { transaction { hash } block { height timestamp { iso8601 } } smartContract { contractType address { address annotation } currency { name symbol decimals tokenType } } caller { address } } } } ''' % (start_time, end_time) #----------------------------------------------------------------------# def get_recent_tokens(from_days_ago= 5, to_days_ago= 4): 'Find all tokens registered within a given time period.' # Construct the query now = datetime.datetime.now() start = now - datetime.timedelta(days=from_days_ago) end = now - datetime.timedelta(days= to_days_ago) query = q_tokens_created(start.isoformat(), end.isoformat()) # Now run the query result = run_query(query) # Basic error handling if 'errors' in result: raise RuntimeError(f'ERROR: New tokens query failed with {result["errors"]}') # Collect info on each new token new_tokens = [ { 'created' : datetime.datetime.fromisoformat(record['block']['timestamp']['iso8601'].rstrip('Z')), 'owner' : record['caller']['address'], 'address' : record['smartContract']['address']['address'], 'decimals' : record['smartContract']['currency']['decimals'], 'name' : record['smartContract']['currency']['name'], 'symbol' : record['smartContract']['currency']['symbol'], 'tokenType' : record['smartContract']['currency']['tokenType'], } for record in result['data']['ethereum']['smartContractCalls'] ] return new_tokens #----------------------------------------------------------------------# def float_nan(value): if value is None: return float('nan') return float(value) #----------------------------------------------------------------------# def get_ohlc(address, start_time, period= 'minute', periods_per_candle= 1, limit_candles= 24*60, quote_address= '0xbb4cdb9cbd36b01bd1cbaebf2de08d9173bc095c'): 'Obtain OHLC data on an address.' # Construct and run a query to get OHLC data query = q_ohlc_periods(address, start_time, period, periods_per_candle, limit_candles, quote_address) result = run_query(query) # Basic error handling if 'errors' in result: raise RuntimeError(f'ERROR: OHLC query ({address}, {start_time}, {period}, {periods_per_candle}, {limit_candles}) failed with {result["errors"]}') trades = result['data']['ethereum']['dexTrades'] times = [
pd.Timestamp(trade['timeInterval']['minute'])
pandas.Timestamp
#!/usr/bin/env python ''' Tools for generating SOWFA MMC inputs ''' __author__ = "<NAME>" __date__ = "May 16, 2019" import numpy as np import pandas as pd import os import gzip as gz boundaryDataHeader = """/*--------------------------------*- C++ -*----------------------------------*\\ ========= | \\\\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\\\ / O peration | Website: https://openfoam.org \\\\ / A nd | Version: 6 \\\\/ M anipulation | \\*---------------------------------------------------------------------------*/ // generated by mmctools.coupling.sowfa.BoundaryCoupling // https://github.com/a2e-mmc/mmctools/tree/dev {N:d} (""" class InternalCoupling(object): """ Class for writing data to SOWFA-readable input files for internal coupling """ def __init__(self, dpath, df, dateref=None, datefrom=None, dateto=None): """ Initialize SOWFA input object Usage ===== dpath : str Folder to write files to df : pandas.DataFrame Data (index should be called datetime) dateref : str, optional Reference datetime, used to construct a pd.DateTimeIndex with SOWFA time 0 corresponding to dateref; if not specified, then the time index will be the simulation time as a pd.TimedeltaIndex datefrom : str, optional Start date of the period that will be written out, if None start from the first timestamp in df; only used if dateref is specified dateto : str, optional End date of the period that will be written out, if None end with the last timestamp in df; only used if dateref is specified """ self.dpath = dpath # Create folder dpath if needed if not os.path.isdir(dpath): os.mkdir(dpath) # Handle input with multiindex if isinstance(df.index, pd.MultiIndex): assert df.index.names[0] == 'datetime', 'first multiindex level is not "datetime"' assert df.index.names[1] == 'height', 'second multiindex level is not "height"' df = df.reset_index(level=1) # Use dataframe between datefrom and dateto if datefrom is None: datefrom = df.index[0] if dateto is None: dateto = df.index[-1] # Make copy to avoid SettingwithcopyWarning self.df = df.loc[(df.index>=datefrom) & (df.index<=dateto)].copy() assert(len(self.df.index.unique())>0), 'No data for requested period of time' # Store start date for ICs self.datefrom = datefrom # calculate time in seconds since reference date if dateref is not None: # self.df['datetime'] exists and is a DateTimeIndex dateref = pd.to_datetime(dateref) tdelta = pd.Timedelta(1,unit='s') self.df.reset_index(inplace=True) self.df['t_index'] = (self.df['datetime'] - dateref) / tdelta self.df.set_index('datetime',inplace=True) elif isinstance(df.index, pd.TimedeltaIndex): # self.df['t'] exists and is a TimedeltaIndex self.df['t_index'] = self.df.index.total_seconds() else: self.df['t_index'] = self.df.index def write_BCs(self, fname, fieldname, fact=1.0 ): """ Write surface boundary conditions to SOWFA-readable input file for solver (to be included in $startTime/qwall) Usage ===== fname : str Filename fieldname : str or list-like Name of the scalar field (or a list of names of vector field components) to be written out; 0 may be substituted to indicate an array of zeroes fact : float Scale factor for the field, e.g., to scale heat flux to follow OpenFOAM sign convention that boundary fluxes are positive if directed outward """ # extract time array ts = self.df.t_index.values nt = ts.size # check if scalar or vector if isinstance(fieldname, (list,tuple)): assert len(fieldname) == 3, 'expected 3 vector components' fieldnames = fieldname fmt = [' (%g', '(%.12g', '%.12g', '%.12g))',] else: fieldnames = [fieldname] fmt = [' (%g', '%.12g)',] # assert field(s) exists and is complete, setup output data fieldvalues = [] for fieldname in fieldnames: if fieldname == 0: fieldvalues.append(np.zeros_like(ts)) else: assert(fieldname in self.df.columns), \ 'Field '+fieldname+' not in df' assert(~
pd.isna(self.df[fieldname])
pandas.isna
#!/usr/bin/python3 import sys import json import pandas as pd import spotipy from spotipy.oauth2 import SpotifyClientCredentials def autentica(client_id, client_secret): client_credentials_manager = SpotifyClientCredentials(client_id, client_secret) return spotipy.Spotify(client_credentials_manager = client_credentials_manager) def nome_artista(sp, uri_artista): artist = sp.artist(uri) return artist['name'].replace(' ','_') def features_top_tracks(sp, uri_artista): top_tracks = sp.artist_top_tracks(uri) uri_tracks = [] for track in top_tracks['tracks']: uri_tracks.append(track['uri']) return sp.audio_features(uri_tracks) def converte_json(features, artist): with open('features_' + artist.lower() + '.json','w') as fp: json.dump(features, fp) print('Features convertido para json.') def converte_csv(features, artist): df =
pd.DataFrame(features)
pandas.DataFrame
""" Given a software, find similar software using source code Currently based on software name that exist in the dataset TODO: find similar software using source code that is not in the existing pool """ from LASCAD.LDA.Clustering import Clustering import pandas as pd import numpy as np from scipy.spatial.distance import cosine from heapq import heappop, heappush from scipy.stats import entropy import multiprocessing import os from ast import literal_eval as make_tuple class SimilarSoftwareEngine: def __init__(self, NUM_TOPICS=50, max_df=0.5, min_df=0.1, n_clusters=20, maxTopSimilar=100, dataset='showcase1', verbose=True, normalize=True, loadSaved=False): self.clustering = Clustering(NUM_TOPICS, max_df, min_df, dataset, verbose, normalize) self.projects = self.clustering.proj_topic.index.values self.n_clutsers = n_clusters self.maxTopSimilar = maxTopSimilar similarAppsFilename = '../results/similarApps/' + 'similarApps_' + self.clustering.suffix + '.csv' if loadSaved: self.projectsMap = pd.read_csv(similarAppsFilename) self.projectsMap.drop('QueryProject', axis=1, inplace=True) self.projectsMap = self.projectsMap.as_matrix() for i, row in enumerate(self.projectsMap): self.projectsMap[i] = [make_tuple(j) for j in row] else: self.createDistanceMatrix() df =
pd.DataFrame(self.projectsMap)
pandas.DataFrame
import numpy as np import os import pandas as pd import matplotlib.pyplot as plt import pickle import korbinian import sys from multiprocessing import Pool ##########parameters############# list_number = 2 data_dir = r"/Volumes/Musik/Databases" data_dir = r"D:\Databases" repeat_randomisation = False seq_len = 2000 max_num_positions_mutated = 1600 n_mutations_array = np.arange(0, max_num_positions_mutated) real_perc_aa_subst_array = n_mutations_array / seq_len real_perc_aa_ident_array = 1 - real_perc_aa_subst_array ######################################################################################## # # # Setup paths for input and output files # # # ######################################################################################## List_rand_TM = os.path.normpath(os.path.join(data_dir, "summaries/{ln:02d}/List{ln:02d}_rand/List{ln:02d}_rand_TM.csv".format(ln=list_number))) List_rand_nonTM = os.path.normpath(os.path.join(data_dir, "summaries/{ln:02d}/List{ln:02d}_rand/List{ln:02d}_rand_nonTM.csv".format(ln=list_number))) pickle_with_artificial_AAIMONs = os.path.normpath(os.path.join(data_dir, "summaries/{ln:02d}/List{ln:02d}_rand/List{ln:02d}_rand_AAIMONs.pickle".format(ln=list_number))) fig_AAIMON_vs_perc_aa_sub_png = os.path.normpath(os.path.join(data_dir, "summaries/{ln:02d}/List{ln:02d}_rand/List{ln:02d}_rand_AAIMON_vs_aa_sub.png".format(ln=list_number))) fig_AAIMON_vs_perc_aa_sub_pdf = os.path.normpath(os.path.join(data_dir, "summaries/{ln:02d}/List{ln:02d}_rand/List{ln:02d}_rand_AAIMON_vs_aa_sub.pdf".format(ln=list_number))) ######################################################################################## # # # Get the AA propensity series for TM and nonTM # # # ######################################################################################## aa_prop_TM =
pd.Series.from_csv(List_rand_TM, sep="\t")
pandas.Series.from_csv
# -*- coding: utf-8 -*- """ Created on Mon Dec 2 17:03:06 2019 @author: Administrator """ import pdblp import pandas as pd import numpy as np import matplotlib.pyplot as plt #import seaborn as sns plt.style.use('seaborn') #con = pdblp.BCon(debug=True, port=8194, timeout=5000) con = pdblp.BCon(debug=False, port=8194, timeout=5000) con.start() index_tickers = ['NYA Index', 'SPX Index', 'CCMP Index' ,'CDAX Index' , 'ASX Index', 'TPX Index', 'SHCOMP Index' , 'SZCOMP Index', 'XUTUM Index', 'MEXBOL Index', 'IBOV Index', 'IMOEX Index' , 'JALSH Index'] from datetime import date start = '2004-1-1' today = date.today().strftime('%Y%m%d') firstday = '19991230' window_long = 52 window_short = 13 ohlc_tickers = ['OPEN','HIGH','LOW', 'LAST'] prices_open = con.bdh(index_tickers, 'PX OPEN',firstday , today) prices_open.columns = [i[0] for i in prices_open.columns] prices_open_int = prices_open.interpolate(method='linear')[index_tickers] prices_open_w = prices_open_int.groupby(pd.Grouper(freq='W')).first() prices_high = con.bdh(index_tickers, 'PX HIGH',firstday , today) prices_high.columns = [i[0] for i in prices_high.columns] prices_high_int = prices_high.interpolate(method='linear')[index_tickers] prices_high_w = prices_high_int.groupby(pd.Grouper(freq='W')).max() prices_low = con.bdh(index_tickers, 'PX LOW',firstday , today) prices_low.columns = [i[0] for i in prices_low.columns] prices_low_int = prices_low.interpolate(method='linear')[index_tickers] prices_low_w = prices_low_int.groupby(pd.Grouper(freq='W')).min() prices_close = con.bdh(index_tickers, 'PX LAST',firstday , today) prices_close.columns = [i[0] for i in prices_close.columns] prices_close_int = prices_close.interpolate(method='linear')[index_tickers] prices_close_w = prices_close_int.groupby(
pd.Grouper(freq='W')
pandas.Grouper
""" Abstract Base Class for PfLine. """ from __future__ import annotations # from . import single, multi #<-- moved to end of file from ..ndframelike import NDFrameLike from ..mixins import PfLineText, PfLinePlot, OtherOutput from ...prices.utils import duration_bpo from ...prices import convert from ...tools import nits from ...tools.types import Quantity, Value from abc import abstractmethod from typing import Dict, Iterable, Mapping, Union, TYPE_CHECKING import pandas as pd # Developer notes: we would like to be able to handle 2 cases with volume AND financial # information. We would like to... # ... handle the situation where, for some timestamp, the volume q == 0 but the revenue # r != 0, because this occasionally arises for the sourced volume, e.g. after buying # and selling the same volume at unequal price. So: we want to be able to store q and r. # ... keep price information even if the volume q == 0, because at a later time this price # might still be needed, e.g. if a perfect hedge becomes unperfect. So: we want to be # able to store q and p. # Both cases can be catered to. The first as a 'SinglePfLine', where the timeseries for # q and r are used in the instance creation. The price is not defined at the timestamp in # the example, but can be calculated for other timestamps, and downsampling is also still # possble. # The second is a bit more complex. It is possible as a 'MultiPfLine'. This has then 2 # 'SinglePfLine' instances as its children: one made from each of the timeseries for q # and p. if TYPE_CHECKING: from .single import SinglePfLine # noqa from .multi import MultiPfLine # noqa class PfLine(NDFrameLike, Mapping, PfLineText, PfLinePlot, OtherOutput): """Class to hold a related energy timeseries. This can be volume timeseries with q [MWh] and w [MW], a price timeseries with p [Eur/MWh] or both. """ def __new__(cls, data): # Catch case where user actually called PfLine(). if cls is PfLine: subclasses = [single.SinglePfLine, multi.MultiPfLine] # If data is instance of subclass: return copy of the object. for subcls in subclasses: if isinstance(data, subcls): return data # TODO: make copy instead # Try passing data to subclasses to see if they can handle it. for subcls in subclasses: try: return subcls(data) except (ValueError, TypeError): pass raise NotImplementedError( f"None of the subclasses ({', '.join([subcls.__name__ for subcls in subclasses])}) knows how to handle this data." ) # Otherwise, do normal thing. return super().__new__(cls) # Additional abstract methods to be implemented by descendents. @property @abstractmethod def children(self) -> Dict[str, PfLine]: """Children of this instance, if any.""" ... @property @abstractmethod def w(self) -> pd.Series: """(Flattened) power timeseries in [MW].""" ... @property @abstractmethod def q(self) -> pd.Series: """(Flattened) energy timeseries in [MWh].""" ... @property @abstractmethod def p(self) -> pd.Series: """(Flattened) price timeseries in [Eur/MWh].""" ... @property @abstractmethod def r(self) -> pd.Series: """(Flattened) revenue timeseries in [Eur].""" ... @property @abstractmethod def kind(self) -> str: """Kind of data that is stored in the instance. Possible values: - 'q': volume data only; properties .q [MWh] and .w [MW] are available. - 'p': price data only; property .p [Eur/MWh] is available. - 'all': price and volume data; properties .q [MWh], .w [MW], .p [Eur/MWh], .r [Eur] are available. """ ... @abstractmethod def df( self, cols: Iterable[str], flatten: bool = True, has_units: bool = False ) -> pd.DataFrame: """DataFrame for portfolio line in default units. Parameters ---------- cols : str, optional (default: all that are available) The columns (w, q, p, r) to include in the dataframe. flatten : bool, optional (default: True) - If True, include only aggregated timeseries (4 or less; 1 per dimension). - If False, include all children and their (intermediate and final) aggregations. has_units : bool, optional (default: True) - If True, return dataframe with ``pint`` units. (The unit can be extracted as a column level with ``.pint.dequantify()``). - If False, return dataframe with float values. Returns ------- pd.DataFrame """ ... @abstractmethod def __bool__(self) -> bool: """Return True if object (i.e., its children) contains any non-zero data.""" ... # Implemented directly here. @property def summable(self) -> str: """Which attributes/colums of this PfLine can be added to those of other PfLines to get consistent/correct new PfLine.""" return {"p": "p", "q": "q", "all": "qr"}[self.kind] @property def available(self) -> str: # which time series have values """Attributes/columns that are available. One of {'wq', 'p', 'wqpr'}.""" return {"p": "p", "q": "wq", "all": "wqpr"}[self.kind] def flatten(self) -> SinglePfLine: """Return flat instance, i.e., without children.""" return single.SinglePfLine(self) @property def volume(self) -> SinglePfLine: """Return (flattened) volume-only PfLine.""" return single.SinglePfLine({"q": self.q}) @property def price(self) -> SinglePfLine: """Return (flattened) price-only PfLine.""" return single.SinglePfLine({"p": self.p}) def _set_col_val(self, col: str, val: pd.Series | Value) -> SinglePfLine: """Set or update a timeseries and return the modified instance.""" # Get pd.Series of other, in correct unit. if isinstance(val, float) or isinstance(val, int): val = pd.Series(val, self.index) elif isinstance(val, Quantity): val = pd.Series(val.magnitude, self.index, dtype=nits.g(val.units)) if self.kind == "all" and col == "r": raise NotImplementedError( "Cannot set `r`; first select `.volume` or `.price` before applying `.set_r()`." ) # Create pd.DataFrame. # TODO: Use InOp data = {col: val.astype(nits.pintunit(nits.name2unit(col)))} if col in ["w", "q", "r"] and self.kind in ["p", "all"]: data["p"] = self["p"] elif col in ["p", "r"] and self.kind in ["q", "all"]: data["q"] = self["q"] df = pd.DataFrame(data) return single.SinglePfLine(df) def set_w(self, w: Union[pd.Series, float, int, Quantity]) -> SinglePfLine: """Set or update power timeseries [MW]; returns modified (and flattened) instance.""" return self._set_col_val("w", w) def set_q(self, q: Union[pd.Series, float, int, Quantity]) -> SinglePfLine: """Set or update energy timeseries [MWh]; returns modified (and flattened) instance.""" return self._set_col_val("q", q) def set_p(self, p: Union[pd.Series, float, int, Quantity]) -> SinglePfLine: """Set or update price timeseries [Eur/MWh]; returns modified (and flattened) instance.""" return self._set_col_val("p", p) def set_r(self, r: Union[pd.Series, float, int, Quantity]) -> SinglePfLine: """Set or update revenue timeseries [MW]; returns modified (and flattened) instance.""" return self._set_col_val("r", r) def set_volume(self, other: PfLine) -> SinglePfLine: """Set or update volume information; returns modified (and flattened) instance.""" if not isinstance(other, PfLine) or other.kind != "q": raise ValueError( "Can only set volume from a PfLine instance with kind=='q'. Use .volume to obtain from given instance." ) return self.set_q(other.q) def set_price(self, other: PfLine) -> SinglePfLine: """Set or update price information; returns modified (and flattened) instance.""" if not isinstance(other, PfLine) or other.kind != "p": raise ValueError( "Can only set price from a PfLine instance with kind=='p'. Use .price to obtain from given instance." ) return self.set_p(other.p) def po(self: PfLine, freq: str = "MS") -> pd.DataFrame: """Decompose the portfolio line into peak and offpeak values. Takes simple averages of volume [MW] and price [Eur/MWh] - does not hedge! Parameters ---------- freq : {'MS' (months, default), 'QS' (quarters), 'AS' (years)} Frequency of resulting dataframe. Returns ------- pd.DataFrame The dataframe shows a composition into peak and offpeak values. """ if self.index.freq not in ["15T", "H"]: raise ValueError( "Only PfLines with (quarter)hourly values can be turned into peak and offpeak values." ) if freq not in ["MS", "QS", "AS"]: raise ValueError( f"Value of paramater ``freq`` must be one of {'MS', 'QS', 'AS'} (got: {freq})." ) prods = ("peak", "offpeak") # Get values. dfs = [] if "w" in self.available: vals = convert.tseries2bpoframe(self.w, freq) vals.columns =
pd.MultiIndex.from_product([vals.columns, ["w"]])
pandas.MultiIndex.from_product
#!/usr/bin/env python # coding: utf-8 # In[1]: import requests import json import pandas as pd url = "https://glyconnect.expasy.org/api/glycosylations" # In[2]: ## send the correct params to query the api params = {'taxonomy':'Severe acute respiratory syndrome coronavirus 2 (2019-nCoV)', 'protein': 'Recombinant Spike glycoprotein (HEK293) - DRAFT DATA'} # Severe acute respiratory syndrome coronavirus2 (2019-nCoV)&protein=Recombinant Spike glycoprotein (HEK293) response = requests.get(url ,params=params) # In[3]: my_response = response.json() df_dump = pd.DataFrame() for r in range(len(my_response['results'])): df_results_uniprots =
pd.DataFrame(my_response['results'][r]['protein']['uniprots'],index=[r])
pandas.DataFrame
#-*- coding: utf-8 -*-PART II #使用K-Means算法聚类消费行为特征数据 """ Created on Fri Dec 20 20:39:11 2019 @author: winhl """ import pandas as pd inputfile = 'C:/Users/winhl/Downloads/kongtiao/喂丝间.xlsx' #data=pd.DataFrame(columns=('时间','1#','2#','3#')) df_tmp = [] for i in range(0,7,2): temp1 = pd.read_excel(inputfile,nrows=100000,skiprows = 1,header=None,usecols=[i]) #读取数据 #data = pd.concat([data,temp1],axis=1) df_tmp.append(temp1.values) # del temp1 data =
pd.DataFrame(df_tmp)
pandas.DataFrame
# -*- coding: utf-8 -*- import tensorflow_decision_forests as tfdf import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import pandas as pd import gradio as gr import urllib input_path = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income" input_column_header = "income_level" #Load data BASE_PATH = input_path CSV_HEADER = [ l.decode("utf-8").split(":")[0].replace(" ", "_") for l in urllib.request.urlopen(f"{BASE_PATH}.names") if not l.startswith(b"|")][2:] CSV_HEADER.append(input_column_header) train_data =
pd.read_csv(f"{BASE_PATH}.data.gz", header=None, names=CSV_HEADER)
pandas.read_csv
# -*- coding: utf-8 -*- # import pytest import pandas as pd import pandas.testing as tm import xnd from pandas.core.internals import ExtensionBlock import numpy as np import xndframes as xf TEST_ARRAY = ["Test", "string", None] def test_constructors(): v1 = xf.XndframesArray(TEST_ARRAY) assert isinstance(v1.dtype, xf.XndframesDtype) v2 = xf.XndframesArray(np.array(TEST_ARRAY)) assert isinstance(v2.dtype, xf.XndframesDtype) v3 = xf.XndframesArray(xnd.xnd(TEST_ARRAY)) assert isinstance(v3.dtype, xf.XndframesDtype) def test_concatenate_blocks(): v1 = xf.XndframesArray(TEST_ARRAY) sa = pd.Series(v1) result = pd.concat([sa, sa], ignore_index=True) EXPECTED_ARRAY = xnd.xnd(["Test", "string", None, "Test", "string", None]) expected = pd.Series(xf.XndframesArray(EXPECTED_ARRAY)) tm.assert_series_equal(result, expected) def test_series_constructor(): v = xf.XndframesArray(TEST_ARRAY) result = pd.Series(v) assert result.dtype == v.dtype assert isinstance(result._data.blocks[0], ExtensionBlock) def test_dataframe_constructor(): v = xf.XndframesArray(TEST_ARRAY) df =
pd.DataFrame({"A": v})
pandas.DataFrame
import json import io import plotly.graph_objects as go from plotly.subplots import make_subplots import dash from dash import html from dash import dcc import dash_bootstrap_components as dbc import pandas as pd import numpy as np import plotly.express as px from dash.dependencies import Output, Input, State from datetime import datetime, timedelta from server import app import plotly.graph_objects as go import plotly.express as px from sqlalchemy import create_engine from flask import send_file import os from joblib import Parallel, delayed from dash.exceptions import PreventUpdate # ----------------------------------------------------------------------------------------------------- 一级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取概览一级第一张图数据 def get_first_lev_first_fig_date(engine): res_数据时间缺失及汇总 = pd.DataFrame(columns=['业务类型', '问题数', '总数', '问题数量占比']) # 问题类别、问题数据量统计、全数据统计 bus_dic = { # '患者基本信息': ['select count(distinct caseid) as num from overall where in_time is null or out_time is null','select count(distinct caseid) as num from overall'], '入院时间': ['select count(distinct caseid) as num from overall where in_time is null ', 'select count(distinct caseid) as num from overall'], '出院时间': ['select count(distinct caseid) as num from overall where out_time is null', 'select count(distinct caseid) as num from overall'], '手术': ['select count(1) as num from oper2 where BEGINTIME is null or ENDTIME is null ','select count(1) as num from oper2 '], '给药': ['select count(1) as num from ANTIBIOTICS where BEGINTIME is null or ENDTIME is null ','select count(1) as num from ANTIBIOTICS '], '入出转': ['select count(1) as num from DEPARTMENT where BEGINTIME is null or ENDTIME is null ','select count(1) as num from DEPARTMENT '], '菌检出': ['select count(1) as num from BACTERIA where REQUESTTIME is null ','select count(1) as num from BACTERIA '], '体温': ['select count(1) as num from TEMPERATURE where RECORDDATE is null ','select count(1) as num from TEMPERATURE '], '药敏': ['select count(1) as num from DRUGSUSCEPTIBILITY where REQUESTTIME is null or REPORTTIME is null ','select count(1) as num from DRUGSUSCEPTIBILITY '], '检查': ['select count(1) as num from EXAM where EXAM_DATE is null ','select count(1) as num from EXAM '], '生化': ['select count(1) as num from ROUTINE2 where REQUESTTIME is null or REPORTTIME is null ','select count(1) as num from ROUTINE2 '], '三管': ['select count(1) as num from TREATMENT1 where BEGINTIME is null or ENDTIME is null ','select count(1) as num from TREATMENT1 '], } for bus in bus_dic: try: count_时间为空 = pd.read_sql(bus_dic[bus][0],con=engine)['num'][0] count_总 = pd.read_sql(bus_dic[bus][1],con=engine)['num'][0] res_数据时间缺失及汇总.loc[res_数据时间缺失及汇总.shape[0]] = [bus,count_时间为空,count_总,round(count_时间为空 / count_总, 4) * 100] except: res_数据时间缺失及汇总.loc[res_数据时间缺失及汇总.shape[0]] = [bus,-1,-1,-1] print('一级图一',bus) return res_数据时间缺失及汇总 # 更新一级图一 @app.callback( Output('first_level_first_fig','figure'), Output('general_situation_first_level_first_fig_data','data'), Input('general_situation_first_level_first_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_first_fig(general_situation_first_level_first_fig_data,db_con_url,count_time): if db_con_url is None : return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) if general_situation_first_level_first_fig_data is None: general_situation_first_level_first_fig_data = {} first_level_first_fig_data = get_first_lev_first_fig_date(engine) general_situation_first_level_first_fig_data['first_level_first_fig_data'] = first_level_first_fig_data.to_json(orient='split', date_format='iso') general_situation_first_level_first_fig_data['hosname'] = db_con_url['hosname'] general_situation_first_level_first_fig_data = json.dumps(general_situation_first_level_first_fig_data) else: general_situation_first_level_first_fig_data = json.loads(general_situation_first_level_first_fig_data) if db_con_url['hosname'] != general_situation_first_level_first_fig_data['hosname']: first_level_first_fig_data = get_first_lev_first_fig_date(engine) general_situation_first_level_first_fig_data['first_level_first_fig_data'] = first_level_first_fig_data.to_json(orient='split',date_format='iso') general_situation_first_level_first_fig_data['hosname'] = db_con_url['hosname'] general_situation_first_level_first_fig_data = json.dumps(general_situation_first_level_first_fig_data) else: first_level_first_fig_data = pd.read_json(general_situation_first_level_first_fig_data['first_level_first_fig_data'], orient='split') general_situation_first_level_first_fig_data = dash.no_update # fig_概览一级_时间缺失 = make_subplots(specs=[[{"secondary_y": True}]]) res_数据时间缺失及汇总 = first_level_first_fig_data.sort_values(['问题数'], ascending=False) # 各业务缺失数量--柱形图 fig_概览一级_时间缺失.add_trace( go.Bar(x=res_数据时间缺失及汇总['业务类型'], y=res_数据时间缺失及汇总['问题数'], name="问题数量", marker_color=px.colors.qualitative.Dark24, ), secondary_y=False, ) # 各业务缺失数量占比--折线图 fig_概览一级_时间缺失.add_trace( go.Scatter(x=res_数据时间缺失及汇总['业务类型'], y=res_数据时间缺失及汇总['问题数量占比'], name="问题数量占比", ), secondary_y=True, ) # 设置X轴title fig_概览一级_时间缺失.update_xaxes(tickangle=45,title_text="业务指标") # 设置Y轴title fig_概览一级_时间缺失.update_yaxes(title_text="缺失数量", secondary_y=False) fig_概览一级_时间缺失.update_yaxes(title_text="缺失占比(%)", secondary_y=True) # 设置水平图例及位置 fig_概览一级_时间缺失.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) # 设置图片边距 fig_概览一级_时间缺失.update_layout(margin=dict(l=20, r=20, t=20, b=20), ) return fig_概览一级_时间缺失,general_situation_first_level_first_fig_data # 下载一级图一明细 @app.callback( Output('first_level_first_fig_data_detail', 'data'), Input('first_level_first_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), prevent_initial_call=True, ) def download_first_level_first_fig_data_detail(n_clicks,db_con_url): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) engine = create_engine(db_con_url['db']) bus_dic = { '入院时间': 'select * from overall where in_time is null ', '出院时间': 'select * from overall where out_time is null', '手术': 'select * from oper2 where BEGINTIME is null or ENDTIME is null ', '给药': 'select * from ANTIBIOTICS where BEGINTIME is null or ENDTIME is null ', '入出转': 'select * from DEPARTMENT where BEGINTIME is null or ENDTIME is null ', '菌检出': 'select * from BACTERIA where REQUESTTIME is null ', '药敏': 'select * from DRUGSUSCEPTIBILITY where REQUESTTIME is null or REPORTTIME is null ', '检查': 'select * from EXAM where EXAM_DATE is null', '生化': 'select * from ROUTINE2 where REQUESTTIME is null or REPORTTIME is null ', '三管': 'select * from TREATMENT1 where BEGINTIME is null or ENDTIME is null ', } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key],con=engine) if temp.shape[0]>0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'],columns=[key]) error_df.to_excel(writer, sheet_name = key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}各业务时间缺失数量占比.xlsx') else: return dash.no_update # ----------------------------------------------------------------------------------------------------- 一级图二 ---------------------------------------------------------------------------------------------------------------------- # 获取概览一级第二张图数据 def get_first_lev_second_fig_date(engine,btime,etime): res_数据关键字缺失及汇总 = pd.DataFrame(columns=['业务类型', '问题数', '总数', '关键字缺失占比']) bus_dic = {'用药目的': [f"select count(1) as num from ANTIBIOTICS where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' and (GOAL is null or replace(GOAL,' ','') is null)", f"select count(1) as num from ANTIBIOTICS where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "], '药敏结果': [f"select count(1) as num from drugsusceptibility where substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and SUSCEPTIBILITY is null or replace(SUSCEPTIBILITY,' ','') is null", f"select count(1) as num from drugsusceptibility where substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' "], '手术名称': [f"select count(1) as num from oper2 where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' and (OPER_NAME is null or replace(OPER_NAME,' ','') is null)", f"select count(1) as num from oper2 where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "], '手术切口等级': [f"select count(1) as num from oper2 where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' and ( WOUND_GRADE is null or replace(WOUND_GRADE,' ','') is null)", f"select count(1) as num from oper2 where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "], '出入院科室': [f"select count(1) as num from overall where substr(IN_TIME,1,7)>='{btime}' and substr(IN_TIME,1,7)<='{etime}' and ( IN_DEPT is null or replace(IN_DEPT,' ','') is null or OUT_DEPT is null or replace(OUT_DEPT,' ','') is null )", f"select count(1) as num from overall where substr(IN_TIME,1,7)>='{btime}' and substr(IN_TIME,1,7)<='{etime}' "], '入出转科室': [f"select count(1) as num from department where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' and ( DEPT is null or replace(DEPT,' ','') is null)", f"select count(1) as num from department where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "] } for bus in bus_dic: try: count_时间为空 = pd.read_sql(bus_dic[bus][0],con=engine)['num'][0] count_总 = pd.read_sql(bus_dic[bus][1],con=engine)['num'][0] res_数据关键字缺失及汇总.loc[res_数据关键字缺失及汇总.shape[0]] = [bus,count_时间为空,count_总,round(count_时间为空 / count_总, 4) * 100] except: res_数据关键字缺失及汇总.loc[res_数据关键字缺失及汇总.shape[0]] = [bus,-1,-1,-1] print('一级图二', bus) return res_数据关键字缺失及汇总 # 更新一级图二 @app.callback( Output('first_level_second_fig','figure'), Output('general_situation_first_level_second_fig_data','data'), Input('general_situation_first_level_second_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_second_fig(general_situation_first_level_second_fig_data,db_con_url,count_time): if db_con_url is None : return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if general_situation_first_level_second_fig_data is None: general_situation_first_level_second_fig_data = {} first_level_second_fig_data = get_first_lev_second_fig_date(engine,btime,etime) general_situation_first_level_second_fig_data['first_level_second_fig_data'] = first_level_second_fig_data.to_json(orient='split', date_format='iso') general_situation_first_level_second_fig_data['hosname'] = db_con_url['hosname'] general_situation_first_level_second_fig_data['btime'] = btime general_situation_first_level_second_fig_data['etime'] = etime general_situation_first_level_second_fig_data = json.dumps(general_situation_first_level_second_fig_data) else: general_situation_first_level_second_fig_data = json.loads(general_situation_first_level_second_fig_data) if db_con_url['hosname'] != general_situation_first_level_second_fig_data['hosname']: first_level_second_fig_data = get_first_lev_second_fig_date(engine, btime, etime) general_situation_first_level_second_fig_data['first_level_second_fig_data'] = first_level_second_fig_data.to_json(orient='split',date_format='iso') general_situation_first_level_second_fig_data['hosname'] = db_con_url['hosname'] general_situation_first_level_second_fig_data['btime'] = btime general_situation_first_level_second_fig_data['etime'] = etime general_situation_first_level_second_fig_data = json.dumps( general_situation_first_level_second_fig_data) else: if general_situation_first_level_second_fig_data['btime'] != btime or general_situation_first_level_second_fig_data['etime'] != etime: first_level_second_fig_data = get_first_lev_second_fig_date(engine, btime, etime) general_situation_first_level_second_fig_data[ 'first_level_second_fig_data'] = first_level_second_fig_data.to_json(orient='split', date_format='iso') general_situation_first_level_second_fig_data['btime'] = btime general_situation_first_level_second_fig_data['etime'] = etime general_situation_first_level_second_fig_data = json.dumps(general_situation_first_level_second_fig_data) else: first_level_second_fig_data = pd.read_json(general_situation_first_level_second_fig_data['first_level_second_fig_data'], orient='split') general_situation_first_level_second_fig_data = dash.no_update print("一级第二张图数据:") print(first_level_second_fig_data) fig_概览一级_关键字缺失 = make_subplots() res_数据关键字缺失及汇总 = first_level_second_fig_data.sort_values(['关键字缺失占比'], ascending=False) fig_概览一级_关键字缺失.add_trace( go.Bar(x=res_数据关键字缺失及汇总['业务类型'], y=res_数据关键字缺失及汇总['关键字缺失占比'], marker_color=px.colors.qualitative.Dark24, ) ) fig_概览一级_关键字缺失.update_layout( margin=dict(l=20, r=20, t=20, b=20), #title=f"{btime}--{etime}", ) fig_概览一级_关键字缺失.update_yaxes(title_text="关键字缺失占比(%)") fig_概览一级_关键字缺失.update_xaxes(title_text="业务指标") return fig_概览一级_关键字缺失,general_situation_first_level_second_fig_data # 下载一级图二明细 @app.callback( Output('first_level_second_fig_data_detail', 'data'), Input('first_level_second_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_second_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'] etime = count_time['etime'] bus_dic = { '用药目的': f"select * from ANTIBIOTICS where (GOAL is null or replace(GOAL,' ','') is null) and BEGINTIME is not null and substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}' ", '药敏结果': f"select * from drugsusceptibility where (SUSCEPTIBILITY is null or replace(SUSCEPTIBILITY,' ','') is null) and REQUESTTIME is not null and substr(REQUESTTIME,1,10)>='{btime}' and substr(REQUESTTIME,1,10)<='{etime}' ", '手术名称': f"select * from oper2 where (OPER_NAME is null or replace(OPER_NAME,' ','') is null) and BEGINTIME is not null and substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}'", '手术切口等级': f"select * from oper2 where (WOUND_GRADE is null or replace(WOUND_GRADE,' ','') is null) and BEGINTIME is not null and substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}' ", '出入院科室': f" select * from overall where (IN_DEPT is null or replace(IN_DEPT,' ','') is null or OUT_DEPT is null or replace(OUT_DEPT,' ','') is null) and in_time is not null and substr(in_time,1,10)>='{btime}' and substr(in_time,1,10)<='{etime}' ", '入出转科室': f"select * from department where (DEPT is null or replace(DEPT,' ','') is null) and BEGINTIME is not null and substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}' ", } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}各业务关键字缺失数量占比.xlsx') else: return dash.no_update # ----------------------------------------------------------------------------------------------------- 一级图三 ---------------------------------------------------------------------------------------------------------------------- # 获取概览一级第三张图数据 def get_first_lev_third_fig_date(engine,btime,etime): res_数据科室信息缺失及汇总 = pd.DataFrame(columns=['业务类型', '问题数', '总数', '科室信息映射问题占比']) bus_dic = {'入院科室': [f" select count(1) as num from OVERALL t1 where not exists (select 1 from S_DEPARTMENTS t2 where t1.in_dept = t2.code) and t1.in_dept is not null and (substr(t1.IN_TIME,1,7)>='{btime}' and substr(t1.IN_TIME,1,7)<='{etime}') ", f"select count(1) as num from overall where substr(IN_TIME,1,7)>='{btime}' and substr(IN_TIME,1,7)<='{etime}' "], '出院科室': [ f" select count(1) as num from OVERALL t1 where not exists (select 1 from S_DEPARTMENTS t2 where t1.out_dept = t2.code) and t1.out_dept is not null and (substr(t1.IN_TIME,1,7)>='{btime}' and substr(t1.IN_TIME,1,7)<='{etime}') ", f"select count(1) as num from overall where substr(IN_TIME,1,7)>='{btime}' and substr(IN_TIME,1,7)<='{etime}' "], '入出转科室': [ f" select count(1) as num from department t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') ", f"select count(1) as num from department where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "], '抗菌药物医嘱科室': [ f" select count(1) as num from ANTIBIOTICS t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') ", f"select count(1) as num from ANTIBIOTICS where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "], '手术科室': [ f" select count(1) as num from OPER2 t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') ", f"select count(1) as num from OPER2 where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "], '菌检出送检科室': [ f" select count(1) as num from BACTERIA t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') ", f"select count(1) as num from BACTERIA where substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' "], '药敏送检科室': [ f" select count(1) as num from DRUGSUSCEPTIBILITY t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') ", f"select count(1) as num from DRUGSUSCEPTIBILITY where substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' "], '体温科室': [ f" select count(1) as num from TEMPERATURE t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.RECORDDATE,1,7)>='{btime}' and substr(t1.RECORDDATE,1,7)<='{etime}') ", f"select count(1) as num from TEMPERATURE where substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' "], '治疗科室': [ f" select count(1) as num from TREATMENT1 t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') ", f"select count(1) as num from TREATMENT1 where substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' "], '常规科室': [ f" select count(1) as num from ROUTINE2 t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') ", f"select count(1) as num from ROUTINE2 where substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' "], } for bus in bus_dic: try: count_时间为空 = pd.read_sql(bus_dic[bus][0], con=engine)['num'][0] count_总 = pd.read_sql(bus_dic[bus][1], con=engine)['num'][0] res_数据科室信息缺失及汇总.loc[res_数据科室信息缺失及汇总.shape[0]] = [bus, count_时间为空, count_总,round(count_时间为空 / count_总, 4) * 100] except: res_数据科室信息缺失及汇总.loc[res_数据科室信息缺失及汇总.shape[0]] = [bus, -1, -1, -1] return res_数据科室信息缺失及汇总 # 更新一级图三 @app.callback( Output('first_level_third_fig','figure'), Output('general_situation_first_level_third_fig_data','data'), Input('general_situation_first_level_third_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_third_fig(general_situation_first_level_third_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if general_situation_first_level_third_fig_data is None: first_level_third_fig_data = get_first_lev_third_fig_date(engine, btime, etime) general_situation_first_level_third_fig_data={} general_situation_first_level_third_fig_data['first_level_third_fig_data'] = first_level_third_fig_data.to_json(orient='split', date_format='iso') general_situation_first_level_third_fig_data['hosname'] = db_con_url['hosname'] general_situation_first_level_third_fig_data['btime'] = btime general_situation_first_level_third_fig_data['etime'] = etime general_situation_first_level_third_fig_data = json.dumps(general_situation_first_level_third_fig_data) else: general_situation_first_level_third_fig_data = json.loads(general_situation_first_level_third_fig_data) if db_con_url['hosname'] != general_situation_first_level_third_fig_data['hosname']: first_level_third_fig_data = get_first_lev_third_fig_date(engine, btime, etime) general_situation_first_level_third_fig_data['first_level_third_fig_data'] = first_level_third_fig_data.to_json(orient='split',date_format='iso') general_situation_first_level_third_fig_data['hosname'] = db_con_url['hosname'] general_situation_first_level_third_fig_data['btime'] = btime general_situation_first_level_third_fig_data['etime'] = etime general_situation_first_level_third_fig_data = json.dumps(general_situation_first_level_third_fig_data) else: if general_situation_first_level_third_fig_data['btime'] != btime or general_situation_first_level_third_fig_data['etime'] != etime: first_level_third_fig_data = get_first_lev_third_fig_date(engine, btime, etime) general_situation_first_level_third_fig_data['first_level_third_fig_data'] = first_level_third_fig_data.to_json(orient='split',date_format='iso') general_situation_first_level_third_fig_data['btime'] = btime general_situation_first_level_third_fig_data['etime'] = etime general_situation_first_level_third_fig_data = json.dumps(general_situation_first_level_third_fig_data) else: first_level_third_fig_data = pd.read_json(general_situation_first_level_third_fig_data['first_level_third_fig_data'], orient='split') general_situation_first_level_third_fig_data = dash.no_update fig_概览一级_科室映射缺失 = go.Figure() res_数据科室信息缺失及汇总 = first_level_third_fig_data.sort_values(['科室信息映射问题占比'], ascending=False) fig_概览一级_科室映射缺失.add_trace( go.Bar(x=res_数据科室信息缺失及汇总['业务类型'], y=res_数据科室信息缺失及汇总['科室信息映射问题占比'], marker_color=px.colors.qualitative.Dark24 ) ) fig_概览一级_科室映射缺失.update_layout( margin=dict(l=20, r=20, t=20, b=20), ) fig_概览一级_科室映射缺失.update_yaxes(title_text="科室信息映射问题占比(%)") fig_概览一级_科室映射缺失.update_xaxes(title_text="业务指标") return fig_概览一级_科室映射缺失,general_situation_first_level_third_fig_data # 下载一级图三明细 @app.callback( Output('first_level_third_fig_data_detail', 'data'), Input('first_level_third_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'] etime = count_time['etime'] bus_dic = { '入院科室': f" select * from OVERALL t1 where not exists (select 1 from S_DEPARTMENTS t2 where t1.in_dept = t2.code) and t1.in_dept is not null and substr(t1.IN_TIME,1,10)>='{btime}' and substr(t1.IN_TIME,1,10)<='{etime}' ", '出院科室': f" select * from OVERALL t1 where not exists (select 1 from S_DEPARTMENTS t2 where t1.out_dept = t2.code) and t1.out_dept is not null and substr(t1.IN_TIME,1,10)>='{btime}' and substr(t1.IN_TIME,1,10)<='{etime}' ", '入出转科室': f" select * from department t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and substr(t1.BEGINTIME,1,10) >='{btime}' and substr(t1.BEGINTIME,1,10) <='{etime}' ", '抗菌药物医嘱科室': f" select * from ANTIBIOTICS t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.BEGINTIME,1,10)>='{btime}' and substr(t1.BEGINTIME,1,10)<='{etime}') ", '手术科室': f" select * from OPER2 t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.BEGINTIME,1,10)>='{btime}' and substr(t1.BEGINTIME,1,10)<='{etime}') ", '菌检出送检科室': f" select * from BACTERIA t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.REQUESTTIME,1,10)>='{btime}' and substr(t1.REQUESTTIME,1,10)<='{etime}') ", '药敏送检科室': f" select * from DRUGSUSCEPTIBILITY t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.REQUESTTIME,1,10)>='{btime}' and substr(t1.REQUESTTIME,1,10)<='{etime}') ", '体温科室': " select * from TEMPERATURE t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.RECORDDATE,1,10)>='{btime}' and substr(t1.RECORDDATE,1,10)<='{etime}') ", '治疗科室': f" select * from TREATMENT1 t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.BEGINTIME,1,10)>='{btime}' and substr(t1.BEGINTIME,1,10)<='{etime}') ", '常规科室': f" select * from ROUTINE2 t1 where t1.dept is not null and not exists (select 1 from s_departments t2 where t1.dept = t2.code) and (substr(t1.REQUESTTIME,1,10)>='{btime}' and substr(t1.REQUESTTIME,1,10)<='{etime}') ", } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}科室映射缺失数量占比.xlsx') else: return dash.no_update # ----------------------------------------------------------------------------------------------------- 二级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取概二级各业务逻辑问题数据 def get_second_level_fig_date(engine,btime,etime): res_业务逻辑问题数据汇总 = pd.DataFrame(columns=['问题数据数量', '问题']) ques_dic = { '出院时间小于等于入院时间' : f""" select count(1) from overall where in_time is not null and out_time is not null and in_time >= out_time and (substr(in_time,1,7)>='{btime}' and substr(in_time,1,7)<='{etime}')""", '存在测试患者数据' : f""" select count(1) from overall where (pname like '%测试%' or pname like '%test%') and (substr(in_time,1,7)>='{btime}' and substr(in_time,1,7)<='{etime}') """, '存在住院时长超四个月患者' : f""" select count(1) from overall where (((out_time is null or out_time='9999') and ( trunc(sysdate)-to_date(substr(in_time,0,10),'yyyy-mm-dd') )> 120) or (out_time is not null and ( to_date(substr(out_time,0,10),'yyyy-mm-dd')-to_date(substr(in_time,0,10),'yyyy-mm-dd') )> 120)) and (substr(in_time,1,7)>='{btime}' and substr(in_time,1,7)<='{etime}') """, '存在住院天数不足一天患者' : f""" select count(1) from overall where (out_time is not null and out_time <> '9999' and ( to_date(substr(out_time,0,10),'yyyy-mm-dd')-to_date(substr(in_time,0,10),'yyyy-mm-dd') )< 1 ) and (substr(in_time,1,7)>='{btime}' and substr(in_time,1,7)<='{etime}') """, '转科时间在出入院时间之外' : f""" select count(1) from department t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') """, '转入时间大于等于转出时间' : f""" select count(1) from department where BEGINTIME is not null and ENDTIME is not null and BEGINTIME >= ENDTIME and (substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}') """, '治疗开始时间大于等于结束时间' : f""" select count(1) from TREATMENT1 where BEGINTIME is not null and ENDTIME is not null and BEGINTIME>= ENDTIME and (substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}') """, '治疗时间在出入院时间之外' : f""" select count(1) from TREATMENT1 t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') """, '医嘱开始时间大于结束时间' : f""" select count(1) from ANTIBIOTICS where BEGINTIME is not null and ENDTIME is not null and BEGINTIME> ENDTIME and (substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}')""", '医嘱时间在出入院时间之外' : f""" select count(1) from ANTIBIOTICS t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') """, '送检时间大于等于报告时间' : f""" select count(1) from BACTERIA where REQUESTTIME is not null and REPORTTIME is not null and REQUESTTIME>= REPORTTIME and (substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}')""", '送检时间在出入院时间之外' : f""" select count(1) from BACTERIA t1,overall t2 where ( t1.REQUESTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') """, '药敏送检时间大于等于报告时间' : f""" select count(1) from DRUGSUSCEPTIBILITY where REQUESTTIME is not null and REPORTTIME is not null and REQUESTTIME>= REPORTTIME and ( substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' )""", '药敏送检时间在出入院时间之外' : f""" select count(1) from DRUGSUSCEPTIBILITY t1,overall t2 where ( t1.REQUESTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') """, '手术开始时间大于结束时间' : f""" select count(1) from OPER2 where BEGINTIME is not null and ENDTIME is not null and BEGINTIME> ENDTIME and ( substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' )""", '手术时间在出入院时间之外' : f""" select count(1) from OPER2 t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,7)>='{btime}' and substr(t1.BEGINTIME,1,7)<='{etime}') """, 'OPERID重复' : f""" select count(1) from oper2 where operid in (select operid from oper2 group by operid having count(operid)>1) and ( substr(BEGINTIME,1,7)>='{btime}' and substr(BEGINTIME,1,7)<='{etime}' ) order by operid """, '体温值异常' : f""" select count(1) from TEMPERATURE where (VALUE > 46 or VALUE < 34 or VALUE is null) and ( substr(RECORDDATE,1,7) >='{btime}' and substr(RECORDDATE,1,7) <='{etime}') """, '体温测量时间在出入院时间之外' : f""" select count(1) from TEMPERATURE t1,overall t2 where ( t1.RECORDDATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.RECORDDATE<t2.IN_TIME or t1.RECORDDATE > t2.OUT_TIME ) and ( substr(t1.RECORDDATE,1,7)>='{btime}' and substr(t1.RECORDDATE,1,7)<='{etime}') """, '入出转入科时间重复': f""" select count(1) from department t1, (select caseid ,begintime from department where substr(begintime,1,7)>='{btime}' and substr(begintime,1,7)<='{etime}' group by caseid ,begintime having count(1)>1) t2 where t1.caseid=t2.caseid and t1.begintime = t2.begintime """, } for ques in ques_dic: try: ques_df = pd.read_sql(ques_dic[ques], con=engine) ques_df.columns = ['问题数据数量'] ques_df['问题'] = ques res_业务逻辑问题数据汇总 = res_业务逻辑问题数据汇总.append( ques_df ) except: res_业务逻辑问题数据汇总.loc[res_业务逻辑问题数据汇总.shape[0]] = [ -1 , ques ] print('二级图 ' , ques) return res_业务逻辑问题数据汇总 # def get_second_level_fig_date(engine,btime,etime): # res_业务逻辑问题数据汇总 = pd.DataFrame(columns=['问题数据数量', '问题','month']) # ques_dic = { # '出院时间小于等于入院时间' : f""" select count(1) as 问题数据数量, '出院时间小于等于入院时间' as 问题, substr(in_time,1,7) as month from overall where in_time is not null and out_time is not null and in_time >= out_time group by substr(in_time,1,7) """, # '存在测试患者数据' : f""" select count(1) as 问题数据数量, '存在测试患者数据' as 问题, substr(in_time,1,7) as month from overall where (pname like '%测试%' or pname like '%test%') group by substr(in_time,1,7) """, # '存在住院时长超四个月患者' : f""" select count(1) as 问题数据数量, '存在住院时长超四个月患者' as 问题, substr(in_time,1,7) as month from overall where # (((out_time is null or out_time='9999') and ( trunc(sysdate)-to_date(substr(in_time,0,10),'yyyy-mm-dd') )> 120) # or (out_time is not null and ( to_date(substr(out_time,0,10),'yyyy-mm-dd')-to_date(substr(in_time,0,10),'yyyy-mm-dd') )> 120)) # group by substr(in_time,1,7) ) # """, # '存在住院天数不足一天患者' : f""" select count(1) as 问题数据数量, '存在住院天数不足一天患者' as 问题, substr(in_time,1,7) as month from overall where # (out_time is not null and out_time <> '9999' and ( to_date(substr(out_time,0,10),'yyyy-mm-dd')-to_date(substr(in_time,0,10),'yyyy-mm-dd') )< 1 ) # group by substr(in_time,1,7) """, # '转科时间在出入院时间之外' : f""" select count(1) as 问题数据数量, '转科时间在出入院时间之外' as 问题, substr(t1.BEGINTIME,1,7) as month from department t1,overall t2 where # ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) # and t1.caseid = t2.caseid # and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) # group by substr(t1.BEGINTIME,1,7) # """, # '转入时间大于等于转出时间' : f""" select count(1) as 问题数据数量, '转入时间大于等于转出时间' as 问题, substr(t1.BEGINTIME,1,7) as month from department where # BEGINTIME is not null and ENDTIME is not null and BEGINTIME >= ENDTIME # group by substr( BEGINTIME,1,7) # """, # # '治疗开始时间大于等于结束时间' : f""" select count(1) as 问题数据数量, '治疗开始时间大于等于结束时间' as 问题, substr(BEGINTIME,1,7) as month from TREATMENT1 where # BEGINTIME is not null and ENDTIME is not null and BEGINTIME>= ENDTIME # group by substr(BEGINTIME,1,7) # """, # '治疗时间在出入院时间之外' : f""" select count(1) as 问题数据数量, '治疗时间在出入院时间之外' as 问题, substr(t1.BEGINTIME,1,7) as month from TREATMENT1 t1,overall t2 where # ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) # and t1.caseid = t2.caseid # and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) # group by substr(t1.BEGINTIME,1,7) # """, # '医嘱开始时间大于结束时间' : f""" select count(1) as 问题数据数量, '医嘱开始时间大于结束时间' as 问题, substr(BEGINTIME,1,7) as month from ANTIBIOTICS where # BEGINTIME is not null and ENDTIME is not null and BEGINTIME> ENDTIME # group by substr( BEGINTIME,1,7) # """, # '医嘱时间在出入院时间之外' : f""" select count(1) as 问题数据数量, '医嘱时间在出入院时间之外' as 问题, substr(t1.BEGINTIME,1,7) as month from ANTIBIOTICS t1,overall t2 where # ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) # and t1.caseid = t2.caseid # and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) # group by substr(t1.BEGINTIME,1,7) # """, # '送检时间大于等于报告时间' : f""" select count(1) as 问题数据数量, '送检时间大于等于报告时间' as 问题, substr(REQUESTTIME,1,7) as month from BACTERIA where # REQUESTTIME is not null and REPORTTIME is not null and REQUESTTIME>= REPORTTIME # group by substr( REQUESTTIME,1,7) # """, # '送检时间在出入院时间之外' : f""" select count(1) as 问题数据数量, '送检时间在出入院时间之外' as 问题, substr(t1.REQUESTTIME,1,7) as month from BACTERIA t1,overall t2 where # ( t1.REQUESTTIME is not null and t2.in_time is not null and t2.out_time is not null) # and t1.caseid = t2.caseid # and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) # group by substr(t1.REQUESTTIME,1,7) # """, # '药敏送检时间大于等于报告时间' : f""" select count(1) as 问题数据数量, '药敏送检时间大于等于报告时间' as 问题, substr(REQUESTTIME,1,7) as month from DRUGSUSCEPTIBILITY where # REQUESTTIME is not null and REPORTTIME is not null and REQUESTTIME>= REPORTTIME # group by substr( REQUESTTIME,1,7) # """, # '药敏送检时间在出入院时间之外' : f""" select count(1) as 问题数据数量, '药敏送检时间在出入院时间之外' as 问题, substr( t1.REQUESTTIME,1,7) as month from DRUGSUSCEPTIBILITY t1,overall t2 where # ( t1.REQUESTTIME is not null and t2.in_time is not null and t2.out_time is not null) # and t1.caseid = t2.caseid # and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) # group by substr(t1.REQUESTTIME,1,7) # """, # '手术开始时间大于结束时间' : f""" select count(1) as 问题数据数量, '手术开始时间大于结束时间' as 问题, substr(BEGINTIME,1,7) as month from OPER2 where # BEGINTIME is not null and ENDTIME is not null and BEGINTIME> ENDTIME # group by substr( BEGINTIME,1,7) # """, # '手术时间在出入院时间之外' : f""" select count(1) as 问题数据数量, '手术时间在出入院时间之外' as 问题, substr( t1.BEGINTIME,1,7) as month from OPER2 t1,overall t2 where # ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) # and t1.caseid = t2.caseid # and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) # group by substr(t1.BEGINTIME,1,7) # """, # 'OPERID重复' : f""" select count(1) as 问题数据数量, 'OPERID重复' as 问题, substr(BEGINTIME,1,7) as month from oper2 where # operid in (select operid from oper2 group by operid having count(operid)>1) # group by substr( BEGINTIME,1,7) # """, # '体温值异常' : f""" select count(1) as 问题数据数量, '体温值异常' as 问题, substr(RECORDDATE,1,7) as month from TEMPERATURE where # (VALUE > 46 or VALUE < 34 or VALUE is null) group by substr( RECORDDATE,1,7) """, # '体温测量时间在出入院时间之外' : f""" select count(1) as 问题数据数量, '体温测量时间在出入院时间之外' as 问题, substr(t1.RECORDDATE,1,7) as month from TEMPERATURE t1,overall t2 where # ( t1.RECORDDATE is not null and t2.in_time is not null and t2.out_time is not null) # and t1.caseid = t2.caseid # and (t1.RECORDDATE<t2.IN_TIME or t1.RECORDDATE > t2.OUT_TIME ) # group by substr( t1.RECORDDATE,1,7) # """, # } # # for ques in ques_dic: # try: # # ques_df = pd.read_sql(ques_dic[ques], con=engine) # # ques_df.columns = ['问题数据数量'] # # ques_df['问题'] = ques # # res_业务逻辑问题数据汇总 = res_业务逻辑问题数据汇总.append( ques_df ) # res_业务逻辑问题数据汇总 = res_业务逻辑问题数据汇总.append(pd.read_sql(ques_dic[ques], con=engine) ) # except: # res_业务逻辑问题数据汇总.loc[res_业务逻辑问题数据汇总.shape[0]] = [ -1 , ques ,] # print('二级图 ' , ques) # return res_业务逻辑问题数据汇总 # 获取概二级各业务逻辑问题明细数据数据 # 更新二级图 @app.callback( Output('second_level_fig','figure'), Output('general_situation_secod_level_fig_data','data'), Input('general_situation_secod_level_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_second_level_fig(general_situation_secod_level_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if general_situation_secod_level_fig_data is None: general_situation_secod_level_fig_data = {} second_level_fig_date = get_second_level_fig_date(engine, btime, etime) general_situation_secod_level_fig_data['second_level_fig_date'] = second_level_fig_date.to_json(orient='split', date_format='iso') general_situation_secod_level_fig_data['hosname'] = db_con_url['hosname'] general_situation_secod_level_fig_data['btime'] = btime general_situation_secod_level_fig_data['etime'] = etime general_situation_secod_level_fig_data = json.dumps(general_situation_secod_level_fig_data) else: general_situation_secod_level_fig_data = json.loads(general_situation_secod_level_fig_data) if db_con_url['hosname'] != general_situation_secod_level_fig_data['hosname']: second_level_fig_date = get_second_level_fig_date(engine, btime, etime) general_situation_secod_level_fig_data['second_level_fig_date'] = second_level_fig_date.to_json(orient='split',date_format='iso') general_situation_secod_level_fig_data['hosname'] = db_con_url['hosname'] general_situation_secod_level_fig_data['btime'] = btime general_situation_secod_level_fig_data['etime'] = etime general_situation_secod_level_fig_data = json.dumps(general_situation_secod_level_fig_data) else: if general_situation_secod_level_fig_data['btime'] != btime or general_situation_secod_level_fig_data['etime'] != etime: second_level_fig_date = get_second_level_fig_date(engine, btime, etime) general_situation_secod_level_fig_data['second_level_fig_date'] = second_level_fig_date.to_json(orient='split',date_format='iso') general_situation_secod_level_fig_data['btime'] = btime general_situation_secod_level_fig_data['etime'] = etime general_situation_secod_level_fig_data = json.dumps(general_situation_secod_level_fig_data) else: second_level_fig_date = pd.read_json(general_situation_secod_level_fig_data['second_level_fig_date'], orient='split') general_situation_secod_level_fig_data = dash.no_update print('二级图数据:') print(second_level_fig_date) fig_概览二级 = second_level_fig_date fig_概览二级_业务逻辑问题 = make_subplots() fig_概览二级 = fig_概览二级.sort_values(['问题数据数量'],ascending=False) fig_概览二级_业务逻辑问题.add_trace( go.Bar(x=fig_概览二级['问题'], y=fig_概览二级['问题数据数量'], marker_color=px.colors.qualitative.Dark24, ) ) fig_概览二级_业务逻辑问题.update_layout( margin=dict(l=20, r=20, t=20, b=20), #title=f"{btime}--{etime}", ) fig_概览二级_业务逻辑问题.update_yaxes(title_text="问题数据数量", ) fig_概览二级_业务逻辑问题.update_xaxes(title_text="业务问题", ) return fig_概览二级_业务逻辑问题,general_situation_secod_level_fig_data # 下载二级图明细 @app.callback( Output('second_level_fig_date_detail','data'), Input('second_level_fig_data_detail_down', 'n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_second_level_fig(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'] etime = count_time['etime'] ques_dic = { '出院时间小于等于入院时间': f""" select * from overall where in_time is not null and out_time is not null and in_time >= out_time and (substr(in_time,1,10)>='{btime}' and substr(in_time,1,10)<='{etime}')""", '存在测试患者数据': f""" select * from overall where (pname like '%测试%' or pname like '%test%') and (substr(in_time,1,10)>='{btime}' and substr(in_time,1,10)<='{etime}') """, '存在住院时长超四个月患者': f""" select * from overall where (((out_time is null or out_time='9999') and ( trunc(sysdate)-to_date(substr(in_time,0,10),'yyyy-mm-dd') )> 120) or (out_time is not null and ( to_date(substr(out_time,0,10),'yyyy-mm-dd')-to_date(substr(in_time,0,10),'yyyy-mm-dd') )> 120)) and (substr(in_time,1,10)>='{btime}' and substr(in_time,1,10)<='{etime}') """, '存在住院天数不足一天患者': f""" select * from overall where (out_time is not null and out_time <> '9999' and ( to_date(substr(out_time,0,10),'yyyy-mm-dd')-to_date(substr(in_time,0,10),'yyyy-mm-dd') )< 1 ) and (substr(in_time,1,10)>='{btime}' and substr(in_time,1,10)<='{etime}') """, '转科时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from department t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,10)>='{btime}' and substr(t1.BEGINTIME,1,10)<='{etime}') """, '转入时间大于等于转出时间': f""" select * from department where BEGINTIME is not null and ENDTIME is not null and BEGINTIME >= ENDTIME and (substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}') """, '治疗开始时间大于等于结束时间': f""" select * from TREATMENT1 where BEGINTIME is not null and ENDTIME is not null and BEGINTIME>= ENDTIME and (substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}') """, '治疗时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from TREATMENT1 t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,10)>='{btime}' and substr(t1.BEGINTIME,1,10)<='{etime}') """, '医嘱开始时间大于结束时间': f""" select * from ANTIBIOTICS where BEGINTIME is not null and ENDTIME is not null and BEGINTIME> ENDTIME and (substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}')""", '医嘱时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from ANTIBIOTICS t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,10)>='{btime}' and substr(t1.BEGINTIME,1,10)<='{etime}') """, '送检时间大于等于报告时间': f""" select * from BACTERIA where REQUESTTIME is not null and REPORTTIME is not null and REQUESTTIME>= REPORTTIME and (substr(REQUESTTIME,1,10)>='{btime}' and substr(REQUESTTIME,1,10)<='{etime}')""", '送检时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from BACTERIA t1,overall t2 where ( t1.REQUESTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,10)>='{btime}' and substr(t1.REQUESTTIME,1,10)<='{etime}') """, '药敏送检时间大于等于报告时间': f""" select * from DRUGSUSCEPTIBILITY where REQUESTTIME is not null and REPORTTIME is not null and REQUESTTIME>= REPORTTIME and ( substr(REQUESTTIME,1,10)>='{btime}' and substr(REQUESTTIME,1,10)<='{etime}' )""", '药敏送检时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from DRUGSUSCEPTIBILITY t1,overall t2 where ( t1.REQUESTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,10)>='{btime}' and substr(t1.REQUESTTIME,1,10)<='{etime}') """, '手术开始时间大于结束时间': f""" select * from OPER2 where BEGINTIME is not null and ENDTIME is not null and BEGINTIME> ENDTIME and ( substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}' )""", '手术时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from OPER2 t1,overall t2 where ( t1.BEGINTIME is not null and t1.ENDTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.BEGINTIME<t2.IN_TIME or t1.BEGINTIME > t2.OUT_TIME or t1.ENDTIME<t2.IN_TIME or t1.ENDTIME > t2.OUT_TIME ) and (substr(t1.BEGINTIME,1,10)>='{btime}' and substr(t1.BEGINTIME,1,10)<='{etime}') """, 'OPERID重复': f""" select * from oper2 where operid in (select operid from oper2 group by operid having count(operid)>1) and ( substr(BEGINTIME,1,10)>='{btime}' and substr(BEGINTIME,1,10)<='{etime}' ) order by operid """, '体温值异常': f""" select * from TEMPERATURE where (VALUE > 46 or VALUE < 34 or VALUE is null) and ( substr(RECORDDATE,1,10) >='{btime}' and substr(RECORDDATE,1,10) <='{etime}') """, '体温测量时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from TEMPERATURE t1,overall t2 where ( t1.RECORDDATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.RECORDDATE<t2.IN_TIME or t1.RECORDDATE > t2.OUT_TIME ) and ( substr(t1.RECORDDATE,1,10)>='{btime}' and substr(t1.RECORDDATE,1,10)<='{etime}') """, '体温测量时间在出入院时间之外': f""" select t1.* from department t1, (select caseid ,begintime from department where substr(begintime,1,10)>='{btime}' and substr(begintime,1,10)<='{etime}' group by caseid ,begintime having count(1)>1) t2 where t1.caseid=t2.caseid and t1.begintime = t2.begintime """, '入出转入科时间重复': f""" select t1.* from department t1, (select caseid ,begintime from department where substr(begintime,1,7)>='{btime}' and substr(begintime,1,7)<='{etime}' group by caseid ,begintime having count(1)>1) t2 where t1.caseid=t2.caseid and t1.begintime = t2.begintime """, } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in ques_dic.keys(): try: temp = pd.read_sql(ques_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}全院数据逻辑问题明细.xlsx') else: return dash.no_update # ----------------------------------------------------------------------------------------------------- 三级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取概览三级第一张图数据 def get_third_level_first_fig_date(engine): res_全业务 = pd.DataFrame(columns=['num', 'month', '业务类型']) bus_dic = { '入院人数':"select count(distinct caseid) as num ,substr(in_time,1,7) as month,'入院人数' as 业务类型 from overall where in_time is not null group by substr(in_time,1,7) having substr(in_time,1,7) <= to_char(sysdate,'yyyy-mm') and substr(in_time,1,7) >= '1990-01' order by substr(in_time,1,7)", '出院人数':"select count(distinct caseid) as num ,substr(out_time,1,7) as month,'出院人数' as 业务类型 from overall where in_time is not null and out_time is not null group by substr(out_time,1,7) having substr(out_time,1,7) <= to_char(sysdate,'yyyy-mm') and substr(out_time,1,7) >= '1990-01' order by substr(out_time,1,7)", '抗菌药物医嘱数':"select count( distinct CASEID||ORDERNO||ANAME ) as num ,substr(BEGINTIME,1,7) as month ,'抗菌药物医嘱数' as 业务类型 from antibiotics where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", '手术台数':"select count( distinct CASEID||OPERID ) as num ,substr(BEGINTIME,1,7) as month,'手术台数' as 业务类型 from oper2 where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", '菌检出结果记录数':"select count( distinct CASEID||TESTNO||BACTERIA ) as num ,substr(REQUESTTIME,1,7) as month ,'菌检出结果记录数' as 业务类型 from bacteria where REQUESTTIME is not null group by substr(REQUESTTIME,1,7) having substr(REQUESTTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(REQUESTTIME,1,7) >= '1990-01' order by substr(REQUESTTIME,1,7)", '药敏结果记录数':"select count( distinct CASEID||TESTNO||BACTERIA||ANTIBIOTICS ) as num ,substr(REQUESTTIME,1,7) as month ,'药敏结果记录数' as 业务类型 from DRUGSUSCEPTIBILITY where REQUESTTIME is not null group by substr(REQUESTTIME,1,7) having substr(REQUESTTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(REQUESTTIME,1,7) >= '1990-01' order by substr(REQUESTTIME,1,7)", '体温测量数':"select count( distinct CASEID||RECORDDATE ) as num ,substr(RECORDDATE,1,7) as month ,'体温测量数' as 业务类型 from TEMPERATURE where RECORDDATE is not null group by substr(RECORDDATE,1,7) having substr(RECORDDATE,1,7) <= to_char(sysdate,'yyyy-mm') and substr(RECORDDATE,1,7) >= '1990-01' order by substr(RECORDDATE,1,7)", '入出转记录数':"select count( distinct CASEID||BEGINTIME||DEPT ) as num ,substr(BEGINTIME,1,7) as month ,'入出转记录数' as 业务类型 from department where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", '常规结果记录数':"select count( distinct CASEID||TESTNO||RINDEX ) as num ,substr(REQUESTTIME,1,7) as month ,'常规结果记录数' as 业务类型 from ROUTINE2 where REQUESTTIME is not null group by substr(REQUESTTIME,1,7) having substr(REQUESTTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(REQUESTTIME,1,7) >= '1990-01' order by substr(REQUESTTIME,1,7)", '影像检查记录数':"select count( distinct CASEID||EXAM_NO ) as num ,substr(EXAM_DATE,1,7) as month ,'影像检查记录数' as 业务类型 from EXAM where EXAM_DATE is not null group by substr(EXAM_DATE,1,7) having substr(EXAM_DATE,1,7) <= to_char(sysdate,'yyyy-mm') and substr(EXAM_DATE,1,7) >= '1990-01' order by substr(EXAM_DATE,1,7)", '治疗记录数':"select count( distinct CASEID||TNO||TTYPE||DEPT ) as num ,substr(BEGINTIME,1,7) as month ,'治疗记录数' as 业务类型 from TREATMENT1 where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", '中心静脉插管记录数':"select count(1) as num ,substr(BEGINTIME,1,7) as month,'中心静脉插管记录数' as 业务类型 from treatment1 where TTYPE like '%中心%静脉%' and BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' ", '呼吸机记录数':"select count(1) as num ,substr(BEGINTIME,1,7) as month,'呼吸机记录数' as 业务类型 from treatment1 where TTYPE like '%呼吸机%' and BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' ", '泌尿道插管记录数':"select count(1) as num ,substr(BEGINTIME,1,7) as month,'泌尿道插管记录数' as 业务类型 from treatment1 where TTYPE like '%泌尿道%' and BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' ", } for bus in bus_dic: res_全业务 = res_全业务.append(pd.read_sql(bus_dic[bus],con=engine)) return res_全业务 # 获取概览三级第一张图数据 # def get_third_level_first_fig_date(engine,date_type): # res_全业务 = pd.DataFrame(columns=['num', 'month', '业务类型']) # if date_type == 'month': # bus_dic = { # '入院人数': "select count(distinct caseid) as num ,substr(in_time,1,7) as month,'入院人数' as 业务类型 from overall where in_time is not null group by substr(in_time,1,7) having substr(in_time,1,7) <= to_char(sysdate,'yyyy-mm') and substr(in_time,1,7) >= '1990-01' order by substr(in_time,1,7)", # '出院人数': "select count(distinct caseid) as num ,substr(out_time,1,7) as month,'出院人数' as 业务类型 from overall where in_time is not null and out_time is not null group by substr(out_time,1,7) having substr(out_time,1,7) <= to_char(sysdate,'yyyy-mm') and substr(out_time,1,7) >= '1990-01' order by substr(out_time,1,7)", # '抗菌药物医嘱数': "select count( distinct CASEID||ORDERNO||ANAME ) as num ,substr(BEGINTIME,1,7) as month ,'抗菌药物医嘱数' as 业务类型 from antibiotics where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", # '手术台数': "select count( distinct CASEID||OPERID ) as num ,substr(BEGINTIME,1,7) as month,'手术台数' as 业务类型 from oper2 where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", # '菌检出结果记录数': "select count( distinct CASEID||TESTNO||BACTERIA ) as num ,substr(REQUESTTIME,1,7) as month ,'菌检出结果记录数' as 业务类型 from bacteria where REQUESTTIME is not null group by substr(REQUESTTIME,1,7) having substr(REQUESTTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(REQUESTTIME,1,7) >= '1990-01' order by substr(REQUESTTIME,1,7)", # '药敏结果记录数': "select count( distinct CASEID||TESTNO||BACTERIA||ANTIBIOTICS ) as num ,substr(REQUESTTIME,1,7) as month ,'药敏结果记录数' as 业务类型 from DRUGSUSCEPTIBILITY where REQUESTTIME is not null group by substr(REQUESTTIME,1,7) having substr(REQUESTTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(REQUESTTIME,1,7) >= '1990-01' order by substr(REQUESTTIME,1,7)", # '体温测量数': "select count( distinct CASEID||RECORDDATE ) as num ,substr(RECORDDATE,1,7) as month ,'体温测量数' as 业务类型 from TEMPERATURE where RECORDDATE is not null group by substr(RECORDDATE,1,7) having substr(RECORDDATE,1,7) <= to_char(sysdate,'yyyy-mm') and substr(RECORDDATE,1,7) >= '1990-01' order by substr(RECORDDATE,1,7)", # '入出转记录数': "select count( distinct CASEID||BEGINTIME||DEPT ) as num ,substr(BEGINTIME,1,7) as month ,'入出转记录数' as 业务类型 from department where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", # '常规结果记录数': "select count( distinct CASEID||TESTNO||RINDEX ) as num ,substr(REQUESTTIME,1,7) as month ,'常规结果记录数' as 业务类型 from ROUTINE2 where REQUESTTIME is not null group by substr(REQUESTTIME,1,7) having substr(REQUESTTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(REQUESTTIME,1,7) >= '1990-01' order by substr(REQUESTTIME,1,7)", # '影像检查记录数': "select count( distinct CASEID||EXAM_NO ) as num ,substr(EXAM_DATE,1,7) as month ,'影像检查记录数' as 业务类型 from EXAM where EXAM_DATE is not null group by substr(EXAM_DATE,1,7) having substr(EXAM_DATE,1,7) <= to_char(sysdate,'yyyy-mm') and substr(EXAM_DATE,1,7) >= '1990-01' order by substr(EXAM_DATE,1,7)", # '治疗记录数': "select count( distinct CASEID||TNO||TTYPE||DEPT ) as num ,substr(BEGINTIME,1,7) as month ,'治疗记录数' as 业务类型 from TREATMENT1 where BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' order by substr(BEGINTIME,1,7)", # '中心静脉插管记录数': "select count(1) as num ,substr(BEGINTIME,1,7) as month,'中心静脉插管记录数' as 业务类型 from treatment1 where TTYPE like '%中心%静脉%' and BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' ", # '呼吸机记录数': "select count(1) as num ,substr(BEGINTIME,1,7) as month,'呼吸机记录数' as 业务类型 from treatment1 where TTYPE like '%呼吸机%' and BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' ", # '泌尿道插管记录数': "select count(1) as num ,substr(BEGINTIME,1,7) as month,'泌尿道插管记录数' as 业务类型 from treatment1 where TTYPE like '%泌尿道%' and BEGINTIME is not null group by substr(BEGINTIME,1,7) having substr(BEGINTIME,1,7) <= to_char(sysdate,'yyyy-mm') and substr(BEGINTIME,1,7) >= '1990-01' ", # } # for bus in bus_dic: # temp = pd.read_sql(bus_dic[bus], con=engine) # res_全业务 = res_全业务.append(temp) # return res_全业务 # else: # bus_dic = { # '入院人数': "select count(distinct caseid) as num ,to_char(to_date(substr(in_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month,'入院人数' as 业务类型 from overall where in_time is not null group by to_char(to_date(substr(in_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(in_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(in_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01'", # '出院人数': "select count(distinct caseid) as num ,to_char(to_date(substr(out_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month,'出院人数' as 业务类型 from overall where in_time is not null and out_time is not null group by to_char(to_date(substr(out_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(out_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(out_time,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '抗菌药物医嘱数': "select count( distinct CASEID||ORDERNO||ANAME ) as num , to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'抗菌药物医嘱数' as 业务类型 from antibiotics where BEGINTIME is not null group by to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '手术台数': "select count( distinct CASEID||OPERID ) as num ,to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month,'手术台数' as 业务类型 from oper2 where BEGINTIME is not null group by to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '菌检出结果记录数': "select count( distinct CASEID||TESTNO||BACTERIA ) as num , to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'菌检出结果记录数' as 业务类型 from bacteria where REQUESTTIME is not null group by to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01'", # '药敏结果记录数': "select count( distinct CASEID||TESTNO||BACTERIA||ANTIBIOTICS ) as num ,to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'药敏结果记录数' as 业务类型 from DRUGSUSCEPTIBILITY where REQUESTTIME is not null group by to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '体温测量数': "select count( distinct CASEID||RECORDDATE ) as num ,to_char(to_date(substr(RECORDDATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'体温测量数' as 业务类型 from TEMPERATURE where RECORDDATE is not null group by to_char(to_date(substr(RECORDDATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(RECORDDATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(RECORDDATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01'", # '入出转记录数': "select count( distinct CASEID||BEGINTIME||DEPT ) as num , to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'入出转记录数' as 业务类型 from department where BEGINTIME is not null group by to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01'", # '常规结果记录数': "select count( distinct CASEID||TESTNO||RINDEX ) as num ,to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'常规结果记录数' as 业务类型 from ROUTINE2 where REQUESTTIME is not null group by to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(REQUESTTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '影像检查记录数': "select count( distinct CASEID||EXAM_NO ) as num ,to_char(to_date(substr(EXAM_DATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'影像检查记录数' as 业务类型 from EXAM where EXAM_DATE is not null group by to_char(to_date(substr(EXAM_DATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(EXAM_DATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(EXAM_DATE,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01'", # '治疗记录数': "select count( distinct CASEID||TNO||TTYPE||DEPT ) as num ,to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month ,'治疗记录数' as 业务类型 from TREATMENT1 where BEGINTIME is not null group by to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '中心静脉插管记录数': "select count(1) as num ,to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month,'中心静脉插管记录数' as 业务类型 from treatment1 where TTYPE like '%中心%静脉%' and BEGINTIME is not null group by to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '呼吸机记录数': "select count(1) as num ,to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month,'呼吸机记录数' as 业务类型 from treatment1 where TTYPE like '%呼吸机%' and BEGINTIME is not null group by to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01' ", # '泌尿道插管记录数': "select count(1) as num ,to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') as month,'泌尿道插管记录数' as 业务类型 from treatment1 where TTYPE like '%泌尿道%' and BEGINTIME is not null group by to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') having to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') <= to_char(sysdate,'iyyy-iw') and to_char(to_date(substr(BEGINTIME,1,10),'yyyy-mm-dd'), 'iyyy-iw') >= '1990-01'", # } # # for bus in bus_dic: # temp = pd.read_sql(bus_dic[bus],con=engine) # temp['month'] = temp['month'].str.replace('-','年') +'周' # res_全业务 = res_全业务.append(temp) # return res_全业务 # 三级第一张图更新 @app.callback( Output('third_level_first_fig','figure'), Output('general_situation_third_level_first_fig_data', 'data'), Input('general_situation_third_level_first_fig_data', 'data'), Input("db_con_url", "data"), Input("count_time", "data"), Input('third_level_first_window_choice', 'value'), # Input('third_level_first_date_type_choice', 'value'), # prevent_initial_call=True, ) # def update_third_level_first_fig(general_situation_third_level_first_fig_data,db_con_url,count_time,window,date_type): def update_third_level_first_fig(general_situation_third_level_first_fig_data,db_con_url,count_time,window): # print(date_type) if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if general_situation_third_level_first_fig_data is None: general_situation_third_level_first_fig_data = {} # third_level_first_fig_date = get_third_level_first_fig_date(engine, 'week') # general_situation_third_level_first_fig_data['week'] = third_level_first_fig_date.to_json(orient='split', date_format='iso') # third_level_first_fig_date = get_third_level_first_fig_date(engine,'month') # general_situation_third_level_first_fig_data['month'] = third_level_first_fig_date.to_json(orient='split',date_format='iso') third_level_first_fig_date = get_third_level_first_fig_date(engine) general_situation_third_level_first_fig_data['third_level_first_fig_date'] = third_level_first_fig_date.to_json(orient='split',date_format='iso') general_situation_third_level_first_fig_data['hosname'] = db_con_url['hosname'] general_situation_third_level_first_fig_data = json.dumps(general_situation_third_level_first_fig_data) else: general_situation_third_level_first_fig_data = json.loads(general_situation_third_level_first_fig_data) if db_con_url['hosname'] != general_situation_third_level_first_fig_data['hosname']: # third_level_first_fig_date = get_third_level_first_fig_date(engine, 'week') # general_situation_third_level_first_fig_data['week'] = third_level_first_fig_date.to_json( orient='split', date_format='iso') # third_level_first_fig_date = get_third_level_first_fig_date(engine, 'month') # general_situation_third_level_first_fig_data['month'] = third_level_first_fig_date.to_json( orient='split', date_format='iso') third_level_first_fig_date = get_third_level_first_fig_date(engine) general_situation_third_level_first_fig_data[ 'third_level_first_fig_date'] = third_level_first_fig_date.to_json(orient='split', date_format='iso') general_situation_third_level_first_fig_data['hosname'] = db_con_url['hosname'] general_situation_third_level_first_fig_data = json.dumps( general_situation_third_level_first_fig_data) else: third_level_first_fig_date = pd.read_json(general_situation_third_level_first_fig_data['third_level_first_fig_date'],orient='split') general_situation_third_level_first_fig_data = dash.no_update # 布林图子图顺序 # bus = ['入院人数', '入出转记录数', '抗菌药物医嘱数', '手术台数', '菌检出结果记录数', '药敏结果记录数', '体温测量数', '常规结果记录数', '影像检查记录数', '治疗记录数'] bus = [ '抗菌药物医嘱数', '手术台数', '菌检出结果记录数', '药敏结果记录数', '体温测量数', '常规结果记录数', '影像检查记录数', '治疗记录数','中心静脉插管记录数','呼吸机记录数','出院人数','泌尿道插管记录数','入出转记录数','入院人数'] # print(third_level_first_fig_date) fig = make_subplots(rows= 7 , cols=2, shared_xaxes=True) # btime = pd.read_sql(f"select to_char(to_date('{btime}-01','yyyy-mm-dd'),'iyyy-iw') as week from dual",con=engine)['week'][0].replace('-','年')+'周' if date_type == 'week' else btime # etime = pd.read_sql(f"select to_char(to_date('{etime}-01','yyyy-mm-dd'),'iyyy-iw') as week from dual",con=engine)['week'][0].replace('-','年')+'周' if date_type == 'week' else etime for i in range(1, 8): temp1 = bus[(i - 1) * 2] temp2 = bus[i * 2 - 1] df1 = third_level_first_fig_date[third_level_first_fig_date['业务类型'] == temp1] df1 = df1[ (df1['month']>=btime) & (df1['month']<=etime) ] df1 = df1.sort_values(['month']) df2 = third_level_first_fig_date[third_level_first_fig_date['业务类型'] == temp2] df2 = df2[ (df2['month'] >= btime) & (df2['month'] <= etime)] df2 = df2.sort_values(['month']) print(df1, df2) fig.add_trace( go.Scatter(x=df1['month'], y=df1['num'], name=bus[(i - 1) * 2]), row=i, col=1 ) data = df1[['month', 'num']] mean_data = np.array([data[i: i + window]['num'].mean() for i in range(len(data) - window + 1)]) # 计算移动平均线,转换为ndarray对象数据类型是为了更方便的计算上下轨线 std_data = np.array([data[i: i + window]['num'].std() for i in range(len(data) - window + 1)]) # 计算移动标准差 up_line = pd.DataFrame(mean_data + 2 * std_data, columns=['num']) # 上轨线 down_line =
pd.DataFrame(mean_data - 2 * std_data, columns=['num'])
pandas.DataFrame
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path data = pd.read_csv(path) data = pd.DataFrame(data) data.rename(columns = {'Total':'Total_Medals'}, inplace = True) data.head(10) #Code starts here # -------------- #Code starts here import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path data = pd.read_csv(path) data = pd.DataFrame(data) data['Better_Event'] = None data['Better_Event'] = np.where(data['Total_Summer']>data['Total_Winter'], 'Summer', 'Winter') data['Better_Event'] =np.where(data['Total_Summer'] == data['Total_Winter'],'Both',data['Better_Event']) better_event = data['Better_Event'].value_counts().idxmax() print(better_event) # -------------- #Code starts here import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path set1 = [] set2 = [] set3 = [] s1 = [] common = [] data = pd.read_csv(path) data = pd.DataFrame(data) data.rename(columns = {'Total':'Total_Medals'}, inplace = True) top_countries = data.loc[:, ['Country_Name','Total_Summer', 'Total_Winter','Total_Medals'] ] print(top_countries.head()) top_countries.drop(top_countries.tail(1).index,inplace=True) def top_ten(df,col): country_list = [] top_10=df.nlargest(10, col) #print(top_10) print("="*50) country_list = top_10['Country_Name'].values.tolist() return country_list top_10_summer = top_ten(top_countries,"Total_Summer") top_10_winter = top_ten(top_countries,"Total_Winter") top_10 = top_ten(top_countries,"Total_Medals") set1 = set(top_10_summer) set2 = set(top_10_winter) set3 = set(top_10) s1 = set1.intersection(set2) common = list(s1.intersection(set3)) print(common) # -------------- #Code starts here import matplotlib.pyplot path set1 = [] set2 = [] set3 = [] s1 = [] common = [] data = pd.read_csv(path) data = pd.DataFrame(data) data.rename(columns = {'Total':'Total_Medals'}, inplace = True) top_countries = data.loc[:, ['Country_Name','Total_Summer', 'Total_Winter','Total_Medals'] ] print(top_countries.head()) top_countries.drop(top_countries.tail(1).index,inplace=True) def top_ten(df,col): country_list = [] top_10=df.nlargest(10, col) #print(top_10) print("="*50) country_list = top_10['Country_Name'].values.tolist() return country_list top_10_summer = top_ten(top_countries,"Total_Summer") top_10_winter = top_ten(top_countries,"Total_Winter") top_10 = top_ten(top_countries,"Total_Medals") summer_df = data[data['Country_Name'].isin(top_10_summer)] winter_df = data[data['Country_Name'].isin(top_10_winter)] top_df = data[data['Country_Name'].isin(top_10)] plt.figure(figsize=[14,8]) plt.xlabel("Country_Summer") plt.ylabel("No of Medals") plt.bar(summer_df['Country_Name'],summer_df['Total_Summer']) plt.show() plt.figure(figsize=[14,8]) plt.xlabel("Country_Winter") plt.ylabel("No of Medals") plt.bar(summer_df['Country_Name'],winter_df['Total_Winter']) plt.show() plt.figure(figsize=[14,8]) plt.xlabel("Country_Summer") plt.ylabel("No of Medals") plt.bar(summer_df['Country_Name'],top_df['Total_Medals']) plt.show() # -------------- #Code starts here import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path data = pd.read_csv(path) data =
pd.DataFrame(data)
pandas.DataFrame
import os import pickle import random from datetime import datetime import nltk import numpy from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from app import db, create_app import numpy as np from random import randint from matplotlib import pyplot as plt from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputClassifier from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix, accuracy_score, classification_report import pandas as pd import seaborn as sns from joblib import dump, load from app.base.db_models import ModelAPIMethods from numpy import array from numpy import argmax from sklearn.preprocessing import OneHotEncoder import mylib.data_manipulation.DataCoderProcessor from app.base.db_models.ModelProfile import ModelProfile from mylib.core.ModelProcessor import ModelProcessor from mylib.data_manipulation.AdjustDataFrame import remove_null_values, encode_data_frame, encode_prediction_data_frame, \ decode_predicted_values, deletemodelfiles, encode_one_hot, encode_one_hot_input_features, convert_data_to_sample from mylib.data_manipulation.DataCoderProcessor import DataCoderProcessor from mylib.utiles.CVSReader import getcvsheader, get_new_headers_list, reorder_csv_file from mylib.utiles.CVSReader import get_only_file_name from mylib.db_helper.AttributesHelper import add_features, add_labels, delete_encoded_columns, get_model_id, \ encode_testing_features_values, get_features, get_labels, get_encoded_columns, add_api_details, \ update_api_details_id import os import pickle from random import randint from flask import current_app import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn import metrics from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn import naive_bayes from app import db from app.base.db_models.ModelProfile import ModelProfile from app.base.db_models.ModelLabels import ModelLabels from app.base.db_models.ModelEncodedColumns import ModelEncodedColumns from app.base.db_models.ModelFeatures import ModelFeatures from app.base.db_models.ModelAPIDetails import ModelAPIDetails from mylib.data_manipulation.AdjustDataFrame import remove_null_values from mylib.db_helper.AttributesHelper import add_features, add_labels, delete_encoded_columns, get_model_id, \ encode_testing_features_values, get_features from mylib.utiles.CVSReader import get_only_file_name from mylib.utiles.CVSReader import getcvsheader, get_new_headers_list, reorder_csv_file class ModelController: def __init__(self): ''' Constructor for this class. ''' # Create some member animals self.members = ['Tiger', 'Elephant', '<NAME>'] def saveDSFile(self): return 'file uploaded successfully' pkls_location = 'pkls/' scalars_location = 'scalars/' df_location = 'app/data/' image_location = 'app/' root_path = '../app/' output_docs_location = 'app/base/output_docs/' def run_prediction_model(root_path, csv_file_location, predicted_columns, ds_source, ds_goal, demo): if demo == 'DEMO': return run_demo_model(root_path, csv_file_location, predicted_columns, ds_source, ds_goal) else: return run_prod_model(root_path, csv_file_location, predicted_columns, ds_source, ds_goal) def run_prod_model(root_path, csv_file_location, predicted_columns, ds_source, ds_goal): # ------------------Preparing data frame-------------------------# cvs_header = getcvsheader(csv_file_location) new_headers_list = get_new_headers_list(cvs_header, predicted_columns) reordered_data = reorder_csv_file(csv_file_location, new_headers_list) data =
pd.read_csv(csv_file_location)
pandas.read_csv
import re from pathlib import Path import json import logging import os import concurrent.futures from concurrent.futures import ThreadPoolExecutor from configparser import ConfigParser from typing import List, Dict, Any from datetime import datetime, timedelta import dateutil import requests import pandas as pd import sqlalchemy from ratelimit import rate_limited from peerscout.utils.collection import parse_list from peerscout.utils.tqdm import tqdm from peerscout.utils.requests import configure_session_retry from peerscout.utils.threading import lazy_thread_local from .convertUtils import unescape_and_strip_tags_if_not_none, flatten from .preprocessingUtils import get_data_path from ..shared.database import connect_managed_configured_database from ..shared.app_config import get_app_config LOGGER = logging.getLogger(__name__) PERSON_ID = 'person_id' DEFAULT_MAX_WORKERS = 10 DEFAULT_RATE_LIMIT_COUNT = 50 DEFAULT_RATE_LIMIT_INTERVAL_SEC = 1 DEFAULT_MAX_RETRY = 10 DEFAULT_RETRY_ON_STATUS_CODES = [429, 500, 502, 503, 504] Person = Dict[str, Any] PersonList = List[Person] ENRICH_DATA_CONFIG_SECTION = 'enrich-data' class Columns: FIRST_NAME = 'first_name' LAST_NAME = 'last_name' ORCID = 'ORCID' def get(url, session=None): LOGGER.debug('requesting: %s', url) response = (session or requests).get(url) LOGGER.debug('response received: %s (%s)', url, response.status_code) response.raise_for_status() return response.text def get_current_time(): return datetime.now() def get_file_time(file_path): return datetime.fromtimestamp(os.path.getmtime(file_path)) def is_file_expired(file_path, expire_after_secs): return ( expire_after_secs and get_file_time(file_path) + timedelta(seconds=expire_after_secs) <= get_current_time() ) def create_cache(f, cache_dir, serializer, deserializer, suffix='', expire_after_secs=0): """ Simple cache implementation that makes it easy to inspect the cached response, a file with the encoded url. """ cache_path = Path(cache_dir) cache_path.mkdir(exist_ok=True, parents=True) clean_pattern = re.compile(r'[^\w]') def clean_fn(fn): return clean_pattern.sub('_', fn) def cached_f(*args): cache_file = cache_path.joinpath( Path(clean_fn(','.join([str(x) for x in args]))).name + suffix) LOGGER.debug("filename: %s", cache_file) if cache_file.is_file() and not is_file_expired(cache_file, expire_after_secs): return deserializer(cache_file.read_bytes()) result = f(*args) if result is not None: cache_file.write_bytes(serializer(result)) return result return cached_f def str_serializer(x): if isinstance(x, str): return x.encode('utf-8') return x def str_deserializer(b): return b.decode('utf-8') def create_str_cache(*args, **kwargs): return create_cache(*args, **kwargs, serializer=str_serializer, deserializer=str_deserializer) def parse_datetime_object(datetime_obj): if datetime_obj is None: return None return dateutil.parser.parse(datetime_obj.get('date-time')) def extract_manuscript(item): return { 'title': unescape_and_strip_tags_if_not_none(' '.join(item.get('title', []))), 'abstract': unescape_and_strip_tags_if_not_none(item.get('abstract', None)), 'doi': item.get('DOI', None), 'subject_areas': item.get('subject', []), 'created_timestamp': parse_datetime_object(item.get('created', None)), 'manuscript_type': unescape_and_strip_tags_if_not_none(item.get('type')) } def contains_author_with_orcid(item, orcid): return True in [ author['ORCID'].endswith(orcid) for author in item.get('author', []) if 'ORCID' in author ] def is_first_name(given_name, first_name): return given_name == first_name or given_name.startswith(first_name + ' ') def contains_author_with_name(item, first_name, last_name): return len([ author for author in item.get('author', []) if is_first_name(author.get('given', ''), first_name) and author.get('family', '') == last_name ]) > 0 def remove_duplicates(objs): if len(objs) < 2: return objs return
pd.DataFrame(objs)
pandas.DataFrame
import os import datetime import numpy as np import pandas as pd pd.set_option('mode.chained_assignment', None) from sortasurvey import observing def make_data_products(survey): """ After target selection process is complete, information is saved to several csvs. All information is stored as attributes to the Survey class but running this function synthesizes all the relevant information into easier-to-read files. Parameters ---------- survey : survey.Survey updated Survey class object containing algorithm selections """ if survey.emcee: if survey.verbose and survey.progress: survey.pbar.update(1) if survey.n == survey.iter: if survey.verbose: print(" - %d MC steps completed"%(int(survey.n))) print(" - algorithm took %d seconds to run"%(int(survey.ranking_time))) else: if survey.verbose: print(" - algorithm took %d seconds to run"%(int(survey.ranking_time))) if survey.save: if not survey.emcee: survey = make_directory(survey) else: if survey.n == 1: survey = make_directory(survey) if not os.path.exists('%s/%d/'%(survey.path_save,survey.n)): os.makedirs('%s/%d/'%(survey.path_save,survey.n)) else: return survey = make_final_sample(survey) survey = make_ranking_steps(survey) survey = assign_priorities(survey) # survey = final_costs(survey) survey = program_overlap(survey) get_stats(survey) def make_directory(survey, i=1): """ Makes a directory for the output files Parameters ---------- survey : survey.Survey updated Survey class object containing algorithm selections Returns ------- survey : survey.Survey updated Survey class object with the new 'path_save' attribute """ now = datetime.datetime.now() name = now.strftime("%m-%d-%y") newdir = '%s/%s-%d'%(survey.outdir,name,i) if not os.path.exists(newdir): os.makedirs(newdir) else: while os.path.exists(newdir): i += 1 newdir = '%s/%s-%d'%(survey.outdir,name,i) os.makedirs(newdir) survey.path_save = newdir return survey def make_final_sample(survey, special=["SC2A", "SC4", "SC2Bii"], cols_to_drop=['select_DG','TSM','SC3_bin_rank','drop','finish','false','n_select']): """ Makes a directory for the output files Parameters ---------- survey : survey.Survey updated Survey class object containing algorithm selections Returns ------- survey : survey.Survey updated Survey class object with the new 'path_save' attribute """ for science in special: if science in survey.programs.index.values.tolist(): if science == 'SC2A' or science == 'SC4': # SC2A+SC4 have different observing approaches than a majority of TKS programs changes = survey.df.query('in_%s == 1 and in_other_programs == 1'%science) method = survey.programs.loc[science, 'method'] for i in changes.index.values.tolist(): df_temp = changes.loc[i] nobs_goal = int(float((method.split('-')[1]).split('=')[-1])) survey.df.loc[i, "nobs_goal"] = nobs_goal tottime = observing.cost_function(df_temp, method, include_archival=False) survey.df.loc[i, "tot_time"] = round(tottime/3600.,3) remaining_nobs = int(nobs_goal - survey.df.loc[i, "nobs"]) if remaining_nobs < 0: remaining_nobs = 0 survey.df.loc[i, "rem_nobs"] = remaining_nobs lefttime = observing.cost_function(df_temp, method) survey.df.loc[i, "rem_time"] = round(lefttime/3600.,3) elif science == 'SC2Bii': # we need to also add in our RM targets for target in survey.programs.loc['SC2Bii', 'high_priority']: survey.df.loc[survey.df['toi'] == target,'in_SC2Bii'] = 1 if np.isnan(survey.df.loc[survey.df['toi'] == target, 'priority'].values.tolist()[0]): survey.df.loc[survey.df['toi'] == target, 'priority'] = survey.df['priority'].max()+1 start = np.array([0]*len(survey.df)) for science in survey.programs.index.values.tolist(): start += survey.df['in_%s'%science].values.tolist() survey.df['in_other_programs'] = start else: # feel free to add other special cases here pass survey.df.drop(columns=cols_to_drop, errors='ignore', inplace=True) if survey.verbose and not survey.emcee: query_all = survey.df.query('in_other_programs != 0') query_star = query_all.drop_duplicates(subset = 'tic') print(' - %d targets were selected, containing a total of %d planets'%(len(query_star),len(query_all))) print(' - Making data products, including:') if survey.save: if survey.emcee: survey.df.to_csv('%s/%d/TOIs_perfect_final.csv'%(survey.path_save, survey.n), index=False) else: survey.df.to_csv('%s/%s_final.csv'%(survey.path_save, (survey.path_sample.split('/')[-1]).split('.')[0]), index=False) if survey.verbose and not survey.emcee: print(' - a copy of the updated sample') survey.final = survey.df.copy() return survey def make_ranking_steps(survey): """ Saves every step of the target selection process, referred to as the 'track' (and is actually the attribute it is saved as in the Survey). This is saved as 'ranking_steps.csv' to the current run's 'path_save' directory. Parameters ---------- survey : survey.Survey Survey class object containing algorithm selections Returns ------- survey : survey.Survey updated Survey class object with the new 'ranking_steps' attribute """ reorder = get_columns('track', survey.sciences.name.values.tolist()) track =
pd.DataFrame.from_dict(survey.track[survey.n], orient='index')
pandas.DataFrame.from_dict
import pandas as pd import datetime def main(): base_path = 'data/train/' for year in range(2015, 2022): for month in range(1, 13): print(year, month) if len(str(month)) == 1: month_str = '0' + str(month) else: month_str = str(month) date_str = str(year) + month_str if date_str == '202104': break final_path = base_path + 'CARD_SUBWAY_MONTH_' + date_str + '.csv' target_path = base_path + 'formatted/CARD_SUBWAY_MONTH_' + date_str + '.csv' df = pd.read_csv(final_path) # Reformat data to datetime df['date'] = df['사용일자'].apply(lambda d: datetime.datetime.strptime(str(d), '%Y%m%d').strftime('%m/%d/%Y')) df.drop('사용일자', inplace=True, axis=1) df = df[['date', '노선명', '역명', '승차총승객수', '하차총승객수', '등록일자']] df.to_csv(final_path,encoding='utf-8-sig', index=False) def remove_index(): base_path = 'data/train/' for year in range(2015, 2022): for month in range(1, 13): print(year, month) if len(str(month)) == 1: month_str = '0' + str(month) else: month_str = str(month) date_str = str(year) + month_str if date_str == '202005': break final_path = base_path + 'CARD_SUBWAY_MONTH_' + date_str + '.csv' target_path = base_path + 'formatted/CARD_SUBWAY_MONTH_' + date_str + '.csv' df = pd.read_csv(final_path, index_col=0) df.to_csv(final_path, index=False) # Create csv for each month by averaging the on/off count for each station def monthly_mean(): base_path = 'data/train/raw_data/' for year in range(2015, 2022): for month in range(1, 13): print(year, month) if len(str(month)) == 1: month_str = '0' + str(month) else: month_str = str(month) date_str = str(year) + month_str if date_str == '202104': break final_path = base_path + 'CARD_SUBWAY_MONTH_' + date_str + '.csv' target_path = base_path + 'monthly_mean/CARD_SUBWAY_MONTH_' + date_str + '.csv' df = pd.read_csv(final_path) station_names = df['역명'].unique() mean_df = pd.DataFrame(columns = ['date','노선명','역명','승차총승객수','하차총승객수']) # Loop through each station and calculate mean value for station in station_names: df_station = df[df['역명'] == station] on_mean = df_station['승차총승객수'].mean() off_mean =df_station['하차총승객수'].mean() data = { 'date': datetime.datetime(year, month, 1), '노선명': df_station['노선명'].unique()[0], '역명': station, '승차총승객수': on_mean, '하차총승객수': off_mean } mean_df = mean_df.append(data, ignore_index=True) mean_df.columns = ['date','노선명','역명','승차총승객수','하차총승객수'] mean_df.to_csv(target_path, encoding='utf-8-sig', index=False) # Congregate monthly data into a single csv for each year. def congregate_yearly(): base_path = 'data/train/' for year in range(2015, 2022): year_df = pd.DataFrame(columns = ['date','노선명','역명','승차총승객수','하차총승객수']) for month in range(1, 13): print(year, month) # Building CSV path if len(str(month)) == 1: month_str = '0' + str(month) else: month_str = str(month) date_str = str(year) + month_str if date_str == '202104': break final_path = base_path + 'monthly_mean/CARD_SUBWAY_MONTH_' + date_str + '.csv' target_path = base_path + 'yearly_congregated/CARD_SUBWAY_MONTH_' + str(year) month_df =
pd.read_csv(final_path)
pandas.read_csv
from __future__ import print_function import os import pandas as pd import xgboost as xgb import time import shutil from sklearn import preprocessing from sklearn.cross_validation import train_test_split import numpy as np from sklearn.utils import shuffle def archive_results(filename,results,algo,script): """ :type algo: basestring :type script: basestring :type results: DataFrame """ #assert results == pd.DataFrame now=time.localtime()[0:5] dirname='../archive' subdirfmt='%4d-%02d-%02d-%02d-%02d' subdir=subdirfmt %now if not os.path.exists(os.path.join(dirname,str(algo))): os.mkdir(os.path.join(dirname,str(algo))) dir_to_create=os.path.join(dirname,str(algo),subdir) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) os.chdir(dir_to_create) results.to_csv(filename,index=False,float_format='%.6f') shutil.copy2(script,'.') return ############################################################################################### def preprocess_data(train,test): y=train['is_screener'] id_test=test['patient_id'] train=train.drop(['patient_id','is_screener'],axis=1) test=test.drop(['patient_id'],axis=1) for f in train.columns: if train[f].dtype == 'object': print(f) lbl = preprocessing.LabelEncoder() lbl.fit(list(train[f].values) + list(test[f].values)) train[f] = lbl.transform(list(train[f].values)) test[f] = lbl.transform(list(test[f].values)) return id_test,test,train,y os.chdir('/home/cuoco/KC/cervical-cancer-screening/src') trainfile=('../input/patients_train.csv.gz') testfile=('../input/patients_test.csv.gz') train=pd.read_csv(trainfile,low_memory=False ) test=pd.read_csv(testfile,low_memory=False ) train_ex_file=('../input/train_patients_to_exclude.csv.gz') train_ex=pd.read_csv(train_ex_file,low_memory=False) train=train[train.patient_id.isin(train_ex.patient_id)==False] test_ex_file=('../input/test_patients_to_exclude.csv.gz') test_ex=pd.read_csv(test_ex_file,low_memory=False) test=test[test.patient_id.isin(test_ex.patient_id)==False] print(train.shape,test.shape) surgical=pd.read_csv('../features/surgical_pap.csv.gz') diagnosis=pd.read_csv('../features/diagnosis_hpv.csv.gz') procedure_cervi=pd.read_csv('../features/procedure_cervi.csv.gz') procedure_hpv=pd.read_csv('../features/procedure_hpv.csv.gz') procedure_vaccine=pd.read_csv('../features/procedure_vaccine.csv.gz') procedure_vagi=pd.read_csv('../features/procedure_vagi.csv.gz') procedure_plan_type=pd.read_csv('../features/procedure_plan_type.csv.gz') rx_payment=pd.read_csv('../features/rx_payment.csv.gz') train_pract_screen_ratio=pd.read_csv('../features/train_pract_screen_ratio.csv.gz') test_pract_screen_ratio=pd.read_csv('../features/test_pract_screen_ratio.csv.gz') visits=pd.read_csv('../features/visits.csv.gz') diagnosis_train_counts=pd.read_csv('../features/train_diagnosis_cbsa_counts.csv.gz') #print (diagnosis_train_counts.shape) #print(np.unique(len(diagnosis_train_counts['patient_id']))) diagnosis_test_counts=pd.read_csv('../features/test_diagnosis_cbsa_counts.csv.gz') state_screen_percent=pd.read_csv('../features/state_screen_percent.csv') days_supply_distribution=pd.read_csv('../features/days_supply_distribution.csv') surgical_procedure_type_code_counts_train=pd.read_csv('../features/surgical_procedure_type_code_counts_train.csv.gz') print (surgical_procedure_type_code_counts_train.shape) print(np.unique(len(surgical_procedure_type_code_counts_train['patient_id']))) surgical_procedure_type_code_counts_test=
pd.read_csv('../features/surgical_procedure_type_code_counts_test.csv.gz')
pandas.read_csv
import pytest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from finmarketpy.economics.techindicator import TechParams, TechIndicator tech_params = TechParams(fillna=True, atr_period=14, sma_period=3, green_n=4, green_count=9, red_n=2, red_count=13) tech_ind = TechIndicator() dates = pd.date_range(start='1/1/2018', end='1/08/2018') def get_cols_name(n): return ['Asset%d.close' % x for x in range(1, n + 1)] def test_sma(): indicator_name = 'SMA' # Test Case 1: constant prices cols = get_cols_name(1) data_df = pd.DataFrame(index=dates, columns=cols, data=1) tech_ind.create_tech_ind(data_df, indicator_name, tech_params) expected_signal_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name, 'Signal']) for col in cols], data=-1) expected_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name]) for col in cols], data=1) expected_signal_df.iloc[:tech_params.sma_period] = np.nan expected_df.iloc[:tech_params.sma_period - 1] = np.nan df = tech_ind.get_techind() signal_df = tech_ind.get_signal() assert_frame_equal(df, expected_df) assert_frame_equal(signal_df, expected_signal_df) # Test Case 2: Normal case with one single security data_df = pd.DataFrame(index=dates, columns=cols, data=list(range(1, 9))) tech_ind.create_tech_ind(data_df, indicator_name, tech_params) expected_signal_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name, 'Signal']) for col in cols], data=1) expected_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name]) for col in cols], data=data_df.shift().values) df = tech_ind.get_techind() signal_df = tech_ind.get_signal() expected_signal_df.iloc[:tech_params.sma_period] = np.nan expected_df.iloc[:tech_params.sma_period - 1] = np.nan assert_frame_equal(df, expected_df) assert_frame_equal(signal_df, expected_signal_df) # Test Case 3: Normal case with multiple securities cols = get_cols_name(10) col_prices = np.array(range(1, 9)) data_df = pd.DataFrame(index=dates, columns=cols, data=np.tile(col_prices, (len(cols), 1)).T) tech_ind.create_tech_ind(data_df, indicator_name, tech_params) expected_signal_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name, 'Signal']) for col in cols], data=1) expected_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name]) for col in cols], data=data_df.shift().values) df = tech_ind.get_techind() signal_df = tech_ind.get_signal() expected_signal_df.iloc[:tech_params.sma_period] = np.nan expected_df.iloc[:tech_params.sma_period - 1] = np.nan assert_frame_equal(df, expected_df) assert_frame_equal(signal_df, expected_signal_df) # Test Case 4: Decreasing price with multiple securities cols = get_cols_name(10) col_prices = np.array(range(8, 0, -1)) data_df = pd.DataFrame(index=dates, columns=cols, data=np.tile(col_prices, (len(cols), 1)).T) tech_ind.create_tech_ind(data_df, indicator_name, tech_params) expected_signal_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name, 'Signal']) for col in cols], data=-1) expected_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name]) for col in cols], data=data_df.shift().values) df = tech_ind.get_techind() signal_df = tech_ind.get_signal() expected_signal_df.iloc[:tech_params.sma_period] = np.nan expected_df.iloc[:tech_params.sma_period - 1] = np.nan assert_frame_equal(df, expected_df) assert_frame_equal(signal_df, expected_signal_df) # Test Case 5: With SOME missing data cols = get_cols_name(1) data_df = pd.DataFrame(index=dates, columns=cols, data=list(range(1, 9))) data_df.iloc[3] = np.nan tech_ind.create_tech_ind(data_df, indicator_name, tech_params) expected_signal_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name, 'Signal']) for col in cols], data=1) expected_df = pd.DataFrame(index=dates, columns=[' '.join([col, indicator_name]) for col in cols], data=[np.nan, np.nan, 2, 2.67, 3.67, 4.67, 6, 7]) df = tech_ind.get_techind() signal_df = tech_ind.get_signal() expected_signal_df.iloc[:tech_params.sma_period] = np.nan assert_frame_equal(df.apply(lambda x: round(x, 2)), expected_df)
assert_frame_equal(signal_df, expected_signal_df)
pandas.testing.assert_frame_equal
#!/usr/bin/python # -*- coding: utf-8 -*- import pandas as pd import numpy def calculate(mylist): return
pd.DataFrame(mylist[1:],columns=mylist[0])
pandas.DataFrame
import unittest import pandas as pd import pytest import riptable as rt # N.B. TL;DR We have to import the actual implementation module to override the module global # variable "tm.N" and "tm.K". # In pandas 1.0 they move the code from pandas/util/testing.py to pandas/_testing.py. # The "import pandas.util.testing" still works but because it doesn't contain the actual code # our attempt to override the "tm.N" and "tm.K" will not change the actual value for # makeTimeDataFrame, which will produce data with different shape and make the test # "test_accum_table" fail. Maybe we want to reconsider using the pandas internal testing utils. try: import pandas._testing as tm except ImportError: import pandas.util.testing as tm from riptable import * from numpy.testing import ( assert_array_equal, assert_almost_equal, assert_array_almost_equal, ) from riptable.rt_numpy import arange # To create AccumTable test data from riptable.Utils.pandas_utils import dataset_from_pandas_df from riptable.rt_datetime import DateTimeNano tm.N = 3 tm.K = 5 class Accum2_Test(unittest.TestCase): ''' TODO: add more tests for different types ''' def test_accum2(self): c = cut(arange(10), 3) self.assertTrue(sum(c._np - FA([1, 1, 1, 1, 2, 2, 2, 3, 3, 3])) == 0) c = cut(arange(10.0), 3) self.assertTrue(sum(c._np - FA([1, 1, 1, 1, 2, 2, 2, 3, 3, 3])) == 0) c = cut(arange(11), 3) self.assertTrue(sum(c._np - FA([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3])) == 0) c = cut(FA([2, 4, 6, 8, 10]), FA([0, 2, 4, 6, 8, 10])) self.assertTrue(sum(c._np - FA([1, 2, 3, 4, 5])) == 0) c = cut( FA([2, 4, 6, 8, 10]), FA([0, 2, 4, 6, 8, 10]), labels=['a', 'b', 'c', 'd', 'e'], ) self.assertTrue(sum(c._np - FA([1, 2, 3, 4, 5])) == 0) def test_qcut(self): c = qcut(arange(10), 3) self.assertTrue(sum(c._np - FA([2, 2, 2, 2, 3, 3, 3, 4, 4, 4])) == 0) c = qcut(arange(11), 3) self.assertTrue(sum(c._np - FA([2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4])) == 0) c = qcut(range(5), 3, labels=["good", "medium", "bad"]) self.assertTrue(sum(c._np - FA([2, 2, 3, 4, 4])) == 0) c = cut( FA([2, 4, 6, 8, 10]), FA([0, 2, 4, 6, 8, 10]), labels=['a', 'b', 'c', 'd', 'e'], ) def test_cut_errors(self): with self.assertRaises(ValueError): c = cut( FA([2, 4, 6, 8, 10]), FA([0, 2, 4, 6, 8, 10]), labels=['a', 'b', 'c', 'd', 'e', 'f'], ) def test_simple_cats(self): data = arange(1, 6) * 10 colnames = FastArray(['a', 'b', 'c', 'd', 'e']) c1 = Categorical(colnames) c2 = Categorical(arange(5)) # no filter ac = Accum2(c2, c1) result = ac.sum(data) self.assertEqual(result._ncols, 7) for i, colname in enumerate(colnames): arr = result[colname] self.assertEqual(arr[i], data[i]) def test_simple_cats_filter_accum(self): data = arange(1, 6) * 10 colnames = FastArray(['a', 'b', 'c', 'd', 'e']) c1 = Categorical(colnames) c2 = Categorical(arange(5)) # filtered accum object ac = Accum2(c2, c1, showfilter=True) result = ac.sum(data) self.assertEqual(result._ncols, 8) for i, colname in enumerate(colnames): arr = result[colname] self.assertEqual(arr[i + 1], data[i]) def test_simple_cats_filter_operation(self): data = arange(1, 6) * 10 colnames = FastArray(['a', 'b', 'c', 'd', 'e']) c1 = Categorical(colnames) c2 = Categorical(arange(5)) # filtered operation ac = Accum2(c2, c1) result = ac.sum(data, showfilter=True) self.assertEqual(result._ncols, 8) for i, colname in enumerate(colnames): arr = result[colname] self.assertEqual(arr[i + 1], data[i]) def test_multikey_cats(self): unsorted_str = FastArray(['c', 'e', 'b', 'd', 'a']) ints = arange(1, 6) * 10 data = np.random.rand(5) * 10 # unsorted no filter c1 = Categorical([unsorted_str, ints]) c2 = Categorical([unsorted_str, ints]) ac = Accum2(c2, c1) result = ac.sum(data) self.assertEqual(result._ncols, 8) for i, key1 in enumerate(unsorted_str): k1 = bytes.decode(key1) k2 = ints[i] full_colname = "('" + k1 + "', " + str(k2) + ")" arr = result[full_colname] self.assertEqual(arr[i], data[i]) # sorted no filter sortidx = np.argsort(unsorted_str) sorted_str = unsorted_str[sortidx] sorted_ints = ints[sortidx] sorted_data = data[sortidx] c1 = Categorical([unsorted_str, ints], ordered=True) c2 = Categorical([unsorted_str, ints], ordered=True) ac = Accum2(c2, c1) result = ac.sum(data) self.assertEqual(result._ncols, 8) for i, key1 in enumerate(sorted_str): k1 = bytes.decode(key1) k2 = sorted_ints[i] full_colname = "('" + k1 + "', " + str(k2) + ")" arr = result[full_colname] self.assertEqual(arr[i], sorted_data[i]) @pytest.mark.xfail(reason='20200416 This test was previously overridden by a later test in the file with the same name. Need to revisit and get back in a working state.') def test_multikey_cats_filter_accum_sorted(self): unsorted_str = FastArray(['c', 'e', 'b', 'd', 'a']) ints = arange(1, 6) * 10 data = np.random.rand(5) * 10 # unsorted filter accum object c1 = Categorical([unsorted_str, ints]) c2 = Categorical([unsorted_str, ints]) ac = Accum2(c2, c1, showfilter=True) result = ac.sum(data) self.assertEqual(result._ncols, 9) for i, key1 in enumerate(unsorted_str): k1 = bytes.decode(key1) k2 = ints[i] full_colname = "('" + k1 + "', " + str(k2) + ")" arr = result[full_colname] self.assertEqual(arr[i + 1], data[i]) # sorted filter accum object sortidx = np.argsort(unsorted_str) sorted_str = unsorted_str[sortidx] sorted_ints = ints[sortidx] sorted_data = data[sortidx] c1 = Categorical([unsorted_str, ints], sort_gb=True) c2 = Categorical([unsorted_str, ints], sort_gb=True) ac = Accum2(c2, c1, showfilter=True) result = ac.sum(data) self.assertEqual(result._ncols, 9) for i, key1 in enumerate(sorted_str): k1 = bytes.decode(key1) k2 = sorted_ints[i] full_colname = "('" + k1 + "', " + str(k2) + ")" arr = result[full_colname] # TODO fix this regression that was masked due to duplicate test names # self.assertAlmostEqual(arr[i + 1], sorted_data[i]) def test_multikey_cats_filter_accum_ordered(self): unsorted_str = FastArray(['c', 'e', 'b', 'd', 'a']) ints = arange(1, 6) * 10 data = np.random.rand(5) * 10 # unsorted filter accum object c1 = Categorical([unsorted_str, ints]) c2 = Categorical([unsorted_str, ints]) ac = Accum2(c2, c1) result = ac.sum(data, showfilter=True) self.assertEqual(result._ncols, 9) for i, key1 in enumerate(unsorted_str): k1 = bytes.decode(key1) k2 = ints[i] full_colname = "('" + k1 + "', " + str(k2) + ")" arr = result[full_colname] self.assertEqual(arr[i + 1], data[i]) # sorted filter accum object sortidx = np.argsort(unsorted_str) sorted_str = unsorted_str[sortidx] sorted_ints = ints[sortidx] sorted_data = data[sortidx] c1 = Categorical([unsorted_str, ints], ordered=True) c2 = Categorical([unsorted_str, ints], ordered=True) ac = Accum2(c2, c1) result = ac.sum(data, showfilter=True) self.assertEqual(result._ncols, 9) for i, key1 in enumerate(sorted_str): k1 = bytes.decode(key1) k2 = sorted_ints[i] full_colname = "('" + k1 + "', " + str(k2) + ")" arr = result[full_colname] self.assertEqual(arr[i + 1], sorted_data[i]) def test_dataset_accum2(self): # test from accum2 off dataset and with a filter ds = Dataset({'test': arange(10), 'data': arange(10) // 2}) x = ds.accum2('data', 'test').sum(ds.test, filter=ds.data == 3) totalcol = x.summary_get_names()[0] self.assertEqual(x[totalcol][3], 13) def test_accum2_mean(self): ds = Dataset({'time': arange(200.0)}) ds.data = np.random.randint(7, size=200) ds.data2 = np.random.randint(7, size=200) symbols = ['AAPL', 'AMZN', 'FB', 'GOOG', 'IBM'] ds.symbol = Cat(1 + arange(200) % 5, symbols) ac = Accum2(ds.data, ds.symbol).mean(ds.time) totalcol = ac[ac.summary_get_names()[0]] footer = ac.footer_get_values()['Mean'] for i in range(len(symbols)): s_mean = ds[ds.symbol == symbols[i], :].time.mean() self.assertEqual(footer[i + 1], s_mean) for i in range(7): s_mean = ds[ds.data == i, :].time.mean() self.assertEqual(totalcol[i], s_mean) def test_accum2_median(self): ds = Dataset({'time': arange(200.0)}) ds.data = np.random.randint(7, size=200) ds.data2 = np.random.randint(7, size=200) symbols = ['AAPL', 'AMZN', 'FB', 'GOOG', 'IBM'] ds.symbol = Cat(1 + arange(200) % 5, symbols) ac = Accum2(ds.data, ds.symbol).median(ds.time) totalcol = ac[ac.summary_get_names()[0]] footer = ac.footer_get_values()['Median'] for i in range(len(symbols)): s_median = ds[ds.symbol == symbols[i], :].time.median() self.assertEqual(footer[i + 1], s_median) for i in range(7): s_median = ds[ds.data == i, :].time.median() self.assertEqual(totalcol[i], s_median) def test_accum2_nanmedian_with_filter(self): ds = Dataset({'time': arange(200.0)}) ds.data = np.random.randint(7, size=200) ds.data2 = np.random.randint(7, size=200) symbols = ['AAPL', 'AMZN', 'FB', 'GOOG', 'IBM'] # N.B. make a copy here for testing symbol_categorical = Cat(1 + arange(200) % 5, symbols) # N.B. Categorical.copy and Categorical constructor doesn't do deep copy?! ds.symbol = Cat(1 + arange(200) % 5, symbols) chosen_symbols = ['AMZN', 'AAPL'] filt = symbol_categorical.isin(chosen_symbols) ac = Accum2(ds.data, ds.symbol) stat1 = ac.nanmedian(ds.time, filter=filt) totalcol = stat1[stat1.summary_get_names()[0]] footer = stat1.footer_get_values()['Median'] # Make sure we don't change the input data self.assertTrue(not rt.any(ds.symbol._fa == 0)) for sym in chosen_symbols: s_median = rt.nanmedian(ds[symbol_categorical == sym, :].time) i = rt.where(symbol_categorical.category_array == sym)[0].item() self.assertEqual(footer[i + 1], s_median) for i in range(7): s_median = rt.nanmedian(ds[(ds.data == i) & filt, :].time) self.assertEqual(totalcol[i], s_median) chosen_symbols = ['IBM', 'FB'] filt = symbol_categorical.isin(chosen_symbols) stat2 = ac.nanmedian(ds.time, filter=filt) totalcol = stat2[stat2.summary_get_names()[0]] footer = stat2.footer_get_values()['Median'] # Make sure we don't change the input data self.assertTrue(not rt.any(ds.symbol._fa == 0)) for sym in chosen_symbols: s_median = rt.nanmedian(ds[symbol_categorical == sym, :].time) i = rt.where(symbol_categorical.category_array == sym)[0].item() self.assertEqual(footer[i + 1], s_median) for i in range(7): s_median = rt.nanmedian(ds[(ds.data == i) & filt, :].time) self.assertEqual(totalcol[i], s_median) def test_showfilter_label_subclass(self): d = Date.range('20190201', '20190210') c = Categorical(d) c2 = Categorical(arange(10)) ac = Accum2(c, c2) result = ac.count(showfilter=True) self.assertTrue(isinstance(result.YLabel, Date)) self.assertTrue(result.YLabel.isnan()[0]) d = DateTimeNano.random(10) c = Categorical(d) c2 = Categorical(arange(10)) ac = Accum2(c, c2) result = ac.count(showfilter=True) self.assertTrue(isinstance(result.YLabel, DateTimeNano)) self.assertTrue(result.YLabel.isnan()[0]) d = DateSpan(arange(10, 20)) c = Categorical(d) c2 = Categorical(arange(10)) ac = Accum2(c, c2) result = ac.count(showfilter=True) self.assertTrue(isinstance(result.YLabel, DateSpan)) self.assertTrue(result.YLabel.isnan()[0]) d = TimeSpan(np.random.rand(10) * 10_000_000_000) c = Categorical(d) c2 = Categorical(arange(10)) ac = Accum2(c, c2) result = ac.count(showfilter=True) self.assertTrue(isinstance(result.YLabel, TimeSpan)) self.assertTrue(result.YLabel.isnan()[0]) def test_apply(self): arrsize = 200 numrows = 7 ds = Dataset({'time': arange(arrsize * 1.0)}) ds.data = np.random.randint(numrows, size=arrsize) ds.data2 = np.random.randint(numrows, size=arrsize) symbols = ['AAPL', 'AMZN', 'FB', 'GOOG', 'IBM'] ds.symbol = Cat(1 + arange(arrsize) % len(symbols), symbols) ds.accum2('symbol', 'data').sum(ds.data2) ds.accum2('symbol', 'data').sum(ds.data2, showfilter=True) ds.accum2('symbol', 'data').median(ds.data2, showfilter=True) ds.accum2('symbol', 'data').median(ds.data2, showfilter=False) ds.accum2('symbol', 'data').apply_reduce(np.median, ds.data2, showfilter=True) ds.accum2('symbol', 'data').apply_reduce(np.median, ds.data2, showfilter=False) f = logical(arange(200) % 2) ds.accum2('symbol', 'data').apply_reduce(np.median, ds.data2, filter=f) ds.accum2('symbol', 'data').apply_reduce( np.median, ds.data2, filter=f, showfilter=True ) ds.accum2('symbol', 'data').median(ds.data2, filter=f, showfilter=True) def test_apply_nonreduce(self): arrsize = 200 numrows = 7 ds = rt.Dataset({'time': rt.arange(arrsize * 1.0)}) ds.data = arange(arrsize) % numrows ds.data2 = (arange(arrsize) + 3) % numrows symbols = [ 'AAPL', 'AMZN', 'FB', 'GOOG', 'IBM', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', ] ds.symbol = rt.Cat(1 + rt.arange(arrsize) % len(symbols), symbols) result = ds.symbol.apply_reduce( lambda x, y: np.sum(np.minimum(x, y)), (ds.data, ds.data) ) ac = ds.accum2('symbol', 'data') newds = ac.apply_nonreduce(np.cumsum) ds2 = ac.apply_reduce( lambda x, y: np.sum(np.maximum(x, y)), (newds.data, newds.data2) ) x = np.maximum(newds.data, newds.data2) y = ac.apply_nonreduce( lambda x, y: np.maximum(x, y), (newds.data, newds.data2) )[0] self.assertTrue(np.all(x == y)) class AccumTable_Test(unittest.TestCase): @pytest.mark.skip(reason="Test needs to be re-written to remove the np.random.seed usage -- it's not stable across numpy versions.") def test_accum_table(self): # Create the test data def unpivot(frame): N, K = frame.shape data = { 'value': frame.values.ravel('F'), 'variable': np.asarray(frame.columns).repeat(N), 'date': np.tile(np.asarray(frame.index), K), } return
pd.DataFrame(data, columns=['date', 'variable', 'value'])
pandas.DataFrame
''' This file is used to extract features for gait classification. Machine learning model parameters are included. Users will have to provide their own data and ground truths to train the model. Input data is raw accelerometer data from wearable sensor on wrist location. ''' import pandas as pd from signal_preprocessing import preprocess from features import signal_features as sf import constants def extract_gait_classification_features(window_data_df, channels, fs): ''' Extract signal features applicable for gait classification for a given 3 second window of raw accelerometer data. :param window_data_df: Pandas DataFrame with columns ['ts','x','y','z'] :param channels: Desired channels to run features on (Ex: ['x','y','z']) :param fs: Sampling rate of raw accelerometer data (Float) :return: DataFrame of calculated features on 3 second windows for given raw data ''' features = pd.DataFrame() # Compute signal entropy feat_df_signal_entropy = sf.signal_entropy(window_data_df, channels) # Compute correlation coefficient feat_df_corr_coef = sf.correlation_coefficient(window_data_df, [['x_bp_filt_[0.25, 3.0]', 'y_bp_filt_[0.25, 3.0]'], ['x_bp_filt_[0.25, 3.0]', 'z_bp_filt_[0.25, 3.0]'], ['y_bp_filt_[0.25, 3.0]', 'z_bp_filt_[0.25, 3.0]']]) # Compute RMS feat_df_signal_rms = sf.signal_rms(window_data_df, channels) # Compute range feat_df_signal_range = sf.signal_range(window_data_df, channels) # Compute IQR of Autocovariance feat_df_iqr_auto = sf.iqr_of_autocovariance(window_data_df, channels) # Compute Dominant Frequency sampling_rate = fs frequncy_cutoff = 12.0 feat_df_dom_freq = sf.dominant_frequency(window_data_df, sampling_rate, frequncy_cutoff, channels) # Compute mean cross rate feat_df_mean_cross_rate = sf.mean_cross_rate(window_data_df, channels) # Compute range count percentage feat_df_range_count_percentage = sf.range_count_percentage(window_data_df, channels, min_value=-0.1, max_value=0.1) features = features.join(feat_df_signal_entropy, how='outer') features = features.join(feat_df_corr_coef, how='outer') features = features.join(feat_df_signal_rms, how='outer') features = features.join(feat_df_signal_range, how='outer') features = features.join(feat_df_iqr_auto, how='outer') features = features.join(feat_df_dom_freq, how='outer') features = features.join(feat_df_mean_cross_rate, how='outer') features = features.join(feat_df_range_count_percentage, how='outer') return features def build_gait_classification_feature_set(raw_accelerometer_data_df, fs): ''' Pre-process raw accelerometer data and compute signal based features on data. :param raw_accelerometer_data_df: Raw accelerometer data in a Pandas DataFrame wth columns = ['ts','x','y','z'] :param fs: Sampling rate of raw accelerometer data (Float) :return: Pandas DataFrame of calculated features for given raw accelerometer data ''' # Initialize final DataFrame final_feature_cache =
pd.DataFrame()
pandas.DataFrame
from nose.tools import * from os.path import abspath, dirname, join import numpy as np import pandas as pd from scipy.stats import norm, lognorm import wntr testdir = dirname(abspath(str(__file__))) datadir = join(testdir,'..','..','tests','networks_for_testing') packdir = join(testdir,'..','..','..') FC1 = wntr.scenario.FragilityCurve() FC1.add_state('Major', 2, {'Default': norm(loc=1, scale=2)}) FC1.add_state('Minor', 1, {'Default': norm(loc=0, scale=1)}) FC2 = wntr.scenario.FragilityCurve() FC2.add_state('Minor', 1, {'Default': lognorm(0.25, loc=0, scale=1), '3': lognorm(0.2, loc=0, scale=1)}) FC2.add_state('Major', 2, {'Default': lognorm(0.25, loc=1, scale=2)}) #x = np.linspace(-5,5,100) #for name, state in FC2.states(): # dist=state.distribution['Default'] # plt.plot(x,dist.cdf(x), label=name) #plt.ylim((0,1)) #plt.legend() def test_get_priority_map(): priority_map = FC1.get_priority_map() assert_dict_equal(priority_map, {None: 0, 'Minor': 1, 'Major': 2}) def test_cdf_probability(): x = pd.Series({'1': 0, '2': 1, '3': 2}) Pr = FC1.cdf_probability(x) assert_equal(Pr.loc['1','Minor'], 0.5) assert_less(Pr.loc['2','Minor']-0.841, 0.001) assert_less(Pr.loc['3','Minor']-0.977, 0.001) assert_equal(Pr.loc['2','Major'], 0.5) def test_sample_damage_state(): x =
pd.Series({'1': 0, '2': 1, '3': 2})
pandas.Series
"""Data visualization functions""" from fastapi import APIRouter, HTTPException, Depends from pydantic import BaseModel import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go from app.ml import City, validate_city from app.data.files.state_abbr import us_state_abbrev as abbr router = APIRouter() MODEL_CSV = 'https://media.githubusercontent.com/media/CityScape-Datasets/Workspace_Datasets/main/Models/nn_model/nn_model.csv' class CityData(): """ Locates specific city data - Demographics - Employement -> industry, employment - Crime -> violent crime, property crime - Air Quality Index """ def __init__(self, current_city): self.current_city = current_city self.dataframe = pd.read_csv(MODEL_CSV) self.subset = self.dataframe[self.dataframe['City'] == self.current_city.city] def demographics(self): return ['Hispanic', 'White', 'Black', 'Native', 'Asian', 'Pacific'] def industry(self): return ['PrivateWork', 'PublicWork', 'SelfEmployed', 'FamilyWork'] def employment(self): return ['Professional', 'Service', 'Office', 'Construction', 'Production'] def crime(self): return ['Violent crime', 'Property crime', 'Arson'] def violent_crime(self): return ['Murder and nonnegligent manslaughter','Rape', 'Robbery', 'Aggravated assault'] def property_crime(self): return ['Burglary','Larceny- theft', 'Motor vehicle theft'] def air_quality_index(self): return ['Days with AQI', 'Good Days', 'Moderate Days','Unhealthy for Sensitive Groups Days', 'Unhealthy Days','Very Unhealthy Days', 'Hazardous Days', 'Max AQI', '90th Percentile AQI', 'Median AQI', 'Days CO', 'Days NO2', 'Days Ozone', 'Days SO2', 'Days PM2.5', 'Days PM10'] @router.post("/api/demographics_graph") async def demographics_plot(current_city:City): """ Visualize demographic information for city args: - city returns: JSON string to render with react-plotly.js """ city = validate_city(current_city) city_data = CityData(city) # Demographics city_demographics = city_data.subset[city_data.demographics()] city_demographics['Not Specified'] = 100 - city_demographics.sum(axis=1) # Accounting for people that did not respond melt = pd.melt(city_demographics) melt.columns = ['demographic', 'percentage'] fig = px.pie(melt, values ='percentage', names ='demographic') fig.update_layout( title={ 'text': f'Demographics in {city}', 'y':0.98, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) fig.show() return fig.to_json() @router.post("/api/employment_graph") async def employment_plot(current_city:City): """ Visualize employment information for city - see industry breakdown and employment type args: - city returns: JSON string to render with react-plotly.js """ city = validate_city(current_city) city_data = CityData(city) # Industry industry_type = city_data.subset[city_data.industry()] industry_melt = pd.melt(industry_type) industry_melt.columns = ['industry', 'percentage'] # Employment Type employment_type = city_data.subset[city_data.employment()] type_melt = pd.melt(employment_type) type_melt.columns = ['employment type', 'percentage'] #Create subplots fig = make_subplots(rows=1, cols=2, subplot_titles = (f'Industry in {city}', f'Employment Types in {city}')) fig.add_trace(go.Bar(x = industry_melt['industry'], y = industry_melt['percentage'], marker = dict(color = industry_melt['percentage'], coloraxis = "coloraxis")), row = 1, col = 1) fig.add_trace(go.Bar(x =type_melt['employment type'], y =type_melt['percentage'], marker = dict(color = type_melt['percentage'], coloraxis = "coloraxis")), row = 1, col = 2) fig.update_layout( coloraxis=dict(colorscale = 'Bluered_r'), coloraxis_showscale = False, showlegend = False) fig.show() return fig.to_json() @router.post("/api/crime_graph") async def crime_plot(current_city:City): """ Visualize crime information for city - see overall crime breakdown - visualize breakdown of violent crime and property crime args: - city returns: JSON string to render with react-plotly.js """ city = validate_city(current_city) city_data = CityData(city) # Crime Categories crime_type = city_data.subset[city_data.crime()] crime_melt = pd.melt(crime_type) crime_melt.columns = ['categories', 'total'] # Violent Crime violent_crime_type = city_data.subset[city_data.violent_crime()] violent_crime_type_melt = pd.melt(violent_crime_type) violent_crime_type_melt.columns = ['violent crime type', 'total'] # Property Crime property_crime_type = city_data.subset[city_data.property_crime()] property_crime_melt = pd.melt(property_crime_type) property_crime_melt.columns = ['property crime type', 'total'] #Create subplots fig = make_subplots( rows=2, cols=2, subplot_titles = (f"Crime Breakdown in {city}", f"Violent Crime Breakdown in {city}", f"Property Crime Breakdown in {city}"), specs = [[{"type":"xy", 'rowspan':2}, {"type": "pie"}], [None, {"type": "pie"}]], ) fig.add_trace(go.Bar(name = 'Crime Types', x = crime_melt['categories'], y = crime_melt['total']), row = 1, col = 1) fig.add_trace(go.Pie(values = violent_crime_type_melt['total'], labels = violent_crime_type_melt['violent crime type']), row = 1, col = 2) fig.add_trace(go.Pie(values = property_crime_melt['total'], labels = property_crime_melt['property crime type']), row = 2, col = 2) fig.show() return fig.to_json() @router.post("/api/aqi_graph") async def air_quality_plot(current_city:City): """ Visualize air quality information for city args: - city returns: JSON string to render with react-plotly.js """ city = validate_city(current_city) city_data = CityData(city) # Air Quality air_quality_details = city_data.subset[city_data.air_quality_index()] air_quality_melt = pd.melt(air_quality_details) air_quality_melt.columns = ['air quality indicators', 'days'] fig = make_subplots(rows = 1, cols = 1) fig.add_trace(go.Bar(x = air_quality_melt['days'], y = air_quality_melt['air quality indicators'], marker = dict(color = air_quality_melt['days'], coloraxis = "coloraxis"), orientation = 'h')) fig.update_layout( coloraxis=dict(colorscale = 'Viridis'), coloraxis_showscale = False, xaxis_range = [0, 360], title={ 'text': f'Air Quality in {city}', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) fig.show() return fig.to_json() POPULATION_CSV = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/population2010-2019/csv/population_cleaned.csv' FORECAST_CSV = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/population2010-2019/csv/population_prediction.csv' @router.post('/api/population_forecast_graph') async def population_forecast_graph(city:City): """ Create visualization of historical and forecasted population args: - city: str -> The target city - periods: int -> number of years to forecast for returns: Visualization of population forecast - 10 year of historical data - forecasts for number of years entered """ city = validate_city(city) location = [city.city + ', ' + city.state] # Historical population data population = pd.read_csv(POPULATION_CSV) population = population[population['City,State'].isin(location)] population = population[['City,State', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019']] population_melt = population.melt(id_vars=['City,State'], var_name='ds', value_name='y') population_melt['ds'] = (population_melt['ds']).astype(int) # Predictions forecast = pd.read_csv(FORECAST_CSV) predictions = forecast[forecast['City,State'].isin(location)][9:] predictions['year'] = (predictions['year']).astype(int) # Graph Data ax = population_melt.plot(x = 'ds', y = 'y', label='Observed', figsize= (10, 8)) predictions[['year', 'yhat']].plot(ax = ax, x = 'year', y = 'yhat', label = "Forecast") # Fill to show upper and lower bounds # Graph predictions including the upper and lower bounds fig = go.Figure() fig.add_trace(go.Scatter( name = 'Original', x = population_melt['ds'], y = population_melt['y'], fill = None, mode = 'lines', line_color = 'black', showlegend = True )) fig.add_trace(go.Scatter( name = 'Forecast', x = predictions['year'], y = predictions['yhat'], fill = None, mode = 'lines', line_color = 'red', showlegend = True )) fig.add_trace(go.Scatter( name = 'Lower Bound', x = predictions['year'], y = predictions['yhat_lower'], fill = None, mode = 'lines', line_color = 'gray' )) fig.add_trace(go.Scatter( name = 'Upper Bound', x = predictions['year'], y = predictions['yhat_upper'], fill='tonexty', mode='lines', line_color = 'gray' )) # Edit the layout fig.update_layout({ 'autosize':True, 'title': f'{location[0]} Population Forecast', 'title_x': 0.5, 'xaxis_title': 'Year', 'yaxis_title': 'Population' }) fig.update_yaxes(automargin = True) fig.update_xaxes(automargin = True, nticks=20) fig.show() return fig.to_json() FMR_0 = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr0.csv' FMR_0_FORECAST_CSV = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr0_predictions.csv' FMR_1 = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr1.csv' FMR_1_FORECAST_CSV = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr1_predictions.csv' FMR_2 = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr2.csv' FMR_2_FORECAST_CSV = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr2_predictions.csv' FMR_3 = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr3.csv' FMR_3_FORECAST_CSV = 'https://raw.githubusercontent.com/jiobu1/labspt15-cityspire-g-ds/main/notebooks/model/rental/csv/fmr3_predictions.csv' @router.post('/api/rental_forecast_graph') def rental_forecast_graph(city:City, bed): """ Create visualization of historical and forecasted \n Fair Market Rents for studios - 3 bedrooms args: - city: str -> The target city - beds: int -> number of beds (0,1,2,3) returns: Visualization of Rental forecast - 5 year of historical data - 10 years forecasted data """ city = validate_city(city) location = [city.city + ', ' + city.state] if bed == "0": RENTAL_CSV = FMR_0 RENTAL_FORECAST_CSV = FMR_0_FORECAST_CSV elif bed == "1": RENTAL_CSV = FMR_1 RENTAL_FORECAST_CSV = FMR_1_FORECAST_CSV elif bed == "2": RENTAL_CSV = FMR_2 RENTAL_FORECAST_CSV = FMR_2_FORECAST_CSV else: RENTAL_CSV = FMR_3 RENTAL_FORECAST_CSV = FMR_3_FORECAST_CSV # Historical Rental data rental = pd.read_csv(RENTAL_CSV) rental = rental[rental['city, state'].isin(location)] rental = rental.drop(columns = ['metro_code', 'state_alpha', 'areaname']) rental_melt = rental.melt(id_vars=['city, state'], var_name='ds', value_name='y') rental_melt['ds'] =
pd.to_datetime(rental_melt['ds'])
pandas.to_datetime
from matplotlib import pyplot as plt import pickle from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \ classification_report from sklearn.utils import shuffle from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd import seaborn as sn """ Help functions including functions for saving the confusion matrix/scores, data scaling etc. """ CIC_col_names = ['Flow Duration', 'Tot Fwd Pkts', 'Tot Bwd Pkts', 'TotLen Fwd Pkts', 'TotLen Bwd Pkts', 'Fwd Pkt Len Max', 'Fwd Pkt Len Min', 'Fwd Pkt Len Mean', 'Fwd Pkt Len Std', 'Bwd Pkt Len Max', 'Bwd Pkt Len Min', 'Bwd Pkt Len Mean', 'Bwd Pkt Len Std', 'Flow Byts/s', 'Flow Pkts/s', 'Flow IAT Mean', 'Flow IAT Std', 'Flow IAT Max', 'Flow IAT Min', 'Fwd IAT Tot', 'Fwd IAT Mean', 'Fwd IAT Std', 'Fwd IAT Max', 'Fwd IAT Min', 'Bwd IAT Tot', 'Bwd IAT Mean', 'Bwd IAT Std', 'Bwd IAT Max', 'Bwd IAT Min', 'Fwd PSH Flags', 'Bwd PSH Flags', 'Fwd URG Flags', 'Bwd URG Flags', 'Fwd Header Len', 'Bwd Header Len', 'Fwd Pkts/s', 'Bwd Pkts/s', 'Pkt Len Min', 'Pkt Len Max', 'Pkt Len Mean', 'Pkt Len Std', 'Pkt Len Var', 'FIN Flag Cnt', 'SYN Flag Cnt', 'RST Flag Cnt', 'PSH Flag Cnt', 'ACK Flag Cnt', 'URG Flag Cnt', 'CWE Flag Count', 'ECE Flag Cnt', 'Down/Up Ratio', 'Pkt Size Avg', 'Fwd Seg Size Avg', 'Bwd Seg Size Avg', 'Fwd Byts/b Avg', 'Fwd Pkts/b Avg', 'Fwd Blk Rate Avg', 'Bwd Byts/b Avg', 'Bwd Pkts/b Avg', 'Bwd Blk Rate Avg', 'Subflow Fwd Pkts', 'Subflow Fwd Byts', 'Subflow Bwd Pkts', 'Subflow Bwd Byts', 'Init Fwd Win Byts', 'Init Bwd Win Byts', 'Fwd Act Data Pkts', 'Fwd Seg Size Min', 'Active Mean', 'Active Std', 'Active Max', 'Active Min', 'Idle Mean', 'Idle Std', 'Idle Max', 'Idle Min', 'Label'] CIC_types_dict = {'Flow Duration': int, 'Tot Fwd Pkts': int, 'Tot Bwd Pkts': int, 'TotLen Fwd Pkts': int, 'TotLen Bwd Pkts': int, 'Label': 'string'} CIC_types_dict.update({col: float for col in CIC_col_names if col not in CIC_types_dict}) def saveConfMatrix(y_true, y_pred, filepath_csv, filepath_png): cm = confusion_matrix(y_true, y_pred) pd.DataFrame(cm).to_csv(filepath_csv) # cm_display = ConfusionMatrixDisplay(cm).plot() df_cfm = pd.DataFrame(cm, index=['0', '1'], columns=['0', '1']) # plt.figure(figsize=(15, 12)) cfm_plot = sn.heatmap(df_cfm, annot=True, fmt='.1f') cfm_plot.figure.savefig(filepath_png) def saveScores(y_true, y_pred, filepath): # print("Metrics") report = classification_report(y_true, y_pred, output_dict=True) stats =
pd.DataFrame(report)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Feb 4 05:32:10 2021 @author: <NAME> The following script analyzes in vivo field data for cannula infusion experiments. To utilize this script, simply update the filepath with the folder to be analyzed and the savepath with the folder to save the post-processed data to, then press run. """ from scipy.io import loadmat import numpy as np import pandas as pd frequency_bands = np.array(['2-6', '6-12', '15-30', '40-70', '70-120']) filepath = 'C:/Users/<NAME>/Desktop/WB4101 natcom temp/analysis_bla/exported/' # path to folder containing exported .mat files from MatWAND savepath = 'C:/Users/<NAME>/Desktop/WB4101 natcom temp/analysis_bla/' # path to folder where post-processed data will be saved # This code will iterate through each exported bandpass filtered .mat file in the folderpath and save the post-processed data across frequency bands in the savepath # This code accepts 60 minute long bandpass filtered data (5 second bins [2.5 second overlap] = 24 datapoints per minute) exported from MatWAND. # Importing data of a different duration or samplerate will result in misleading outputs. for g in frequency_bands: if g == '2-6' : x = loadmat(filepath + 'bla_2_6 Hz_time.mat') elif g == '6-12' : x = loadmat(filepath + 'bla_6_12 Hz_time.mat') elif g == '15-30' : x = loadmat(filepath + 'bla_15_30 Hz_time.mat') elif g == '40-70' : x = loadmat(filepath + 'bla_40_70 Hz_time.mat') elif g == '70-120' : x = loadmat(filepath + 'bla_70_120 Hz_time.mat') # restructure data into 4 treatments powerarea = x['power_area'] base = {} # Baseline inj1 = {} # Saline inj2 = {} # Saline or Antagonist (depending on the experiment being analyzed) inj3 = {} # Drug or Drug w/ Antagonist (depending on the experiment being analyzed) power_area = {} for i in range(powerarea.shape[0]) : power_area[str(i)] = powerarea[i][:] power_area[str(i)] = np.reshape(power_area[str(i)], (4, int(len(power_area[str(i)])/4))) base[str(i)] = power_area[str(i)][0] inj1[str(i)] = power_area[str(i)][1] inj2[str(i)] = power_area[str(i)][2] inj3[str(i)] = power_area[str(i)][3] # Normalize to baseline and restructure into 1 minute bins base_norm = {} for key, value in base.items(): base_norm[str(key)] = value/np.mean(value) base_norm[str(key)] = np.mean(base_norm[str(key)].reshape(-1,24), axis = 1) inj1_norm = {} for (key, value), (k, v) in zip(inj1.items(), base.items()): inj1_norm[str(key)] = value/np.mean(v) inj1_norm[str(key)] = np.mean(inj1_norm[str(key)].reshape(-1,24), axis = 1) inj2_norm = {} for (key, value), (k, v) in zip(inj2.items(), base.items()): inj2_norm[str(key)] = value/np.mean(v) inj2_norm[str(key)] = np.mean(inj2_norm[str(key)].reshape(-1,24), axis = 1) inj3_norm = {} for (key, value), (k, v) in zip(inj3.items(), base.items()): inj3_norm[str(key)] = value/np.mean(v) inj3_norm[str(key)] = np.mean(inj3_norm[str(key)].reshape(-1,24), axis = 1) # export normalized timeseries data to excel base_norm = pd.DataFrame(base_norm) base_norm.to_excel(savepath + 'base_'+g+'.xlsx') inj1_norm = pd.DataFrame(inj1_norm) inj1_norm.to_excel(savepath + 'inj1_'+g+'.xlsx') inj2_norm = pd.DataFrame(inj2_norm) inj2_norm.to_excel(savepath + 'inj2_'+g+'.xlsx') inj3_norm = pd.DataFrame(inj3_norm) inj3_norm.to_excel(savepath + 'inj3_'+g+'.xlsx') # Get average first 10 mins values for Two-Way ANOVA w/ multiple comparisons * [normalized data] * base_mc = np.array([]) for key, value in base_norm.items(): base_mc = np.append(base_mc, np.mean(value[:(int(len(value)/6))])) inj1_mc = np.array([]) for key, value in inj1_norm.items(): inj1_mc = np.append(inj1_mc, np.mean(value[:(int(len(value)/6))])) inj2_mc = np.array([]) for key, value in inj2_norm.items(): inj2_mc = np.append(inj2_mc, np.mean(value[:(int(len(value)/6))])) inj3_mc = np.array([]) for key, value in inj3_norm.items(): inj3_mc = np.append(inj3_mc, np.mean(value[:(int(len(value)/6))])) if g == '2-6' : slow_theta = np.concatenate(([base_mc], [inj1_mc], [inj2_mc], [inj3_mc]), axis=0) elif g == '6-12' : fast_theta = np.concatenate(([base_mc], [inj1_mc], [inj2_mc], [inj3_mc]), axis=0) elif g == '15-30' : beta = np.concatenate(([base_mc], [inj1_mc], [inj2_mc], [inj3_mc]), axis=0) elif g == '40-70' : slow_gamma = np.concatenate(([base_mc], [inj1_mc], [inj2_mc], [inj3_mc]), axis=0) elif g == '70-120' : fast_gamma = np.concatenate(([base_mc], [inj1_mc], [inj2_mc], [inj3_mc]), axis=0) # Export average normalized first 10 mins values to excel slow_theta =
pd.DataFrame(slow_theta)
pandas.DataFrame
from src.evaluation.gnn_evaluation_module import eval_gnn from src.models.gat_models import MonoGAT#, BiGAT, TriGAT from src.models.rgcn_models import MonoRGCN, RGCN2 from src.models.appnp_model import MonoAPPNPModel from src.models.multi_layered_model import MonoModel#, BiModel, TriModel from torch_geometric.nn import GCNConv, SAGEConv, GATConv, RGCNConv, SGConv, APPNP, ClusterGCNConv from src.data.data_loader import GraphDataset import warnings import pandas as pd import os import argparse import numpy as np import pickle import torch from src.evaluation.network_split import NetworkSplitShchur from src.data.create_modified_configuration_model import generate_modified_conf_model from torch_geometric.utils import from_networkx, to_networkx from community import best_partition import networkx as nx def parse_args(): parser = argparse.ArgumentParser(description="Test accuracy for GCN/SAGE/GAT/RGCN/SGC/APPNP") parser.add_argument('--size', type=int, default=96, help='Channel size. Default is 12.') parser.add_argument('--lr', type=float, default=0.01, help='Learning rate. Default is 0.01.') parser.add_argument('--wd', type=float, default=0.01, help='Regularization weight. Default is 0.01.') parser.add_argument('--dropout', type=float, default=0.8, help='Dropout probability. Default is 0.6.') parser.add_argument('--conf', type=bool, default=False, help='Is configuration model evaluation. Default is False.') parser.add_argument('--shifting', type=bool, default=False, help='Is shifting evaluation. Default is False.') parser.add_argument('--sbm', type=bool, default=False, help='Is SBM evaluation. Default is False.') parser.add_argument('--sbm_label', type=bool, default=False, help='Is SBM_label evaluation. Default is False.') parser.add_argument('--flipped', type=bool, default=False, help='Evaluating with flipped edges? Default is False.') parser.add_argument('--removed_hubs', type=bool, default=False, help='Evaluating with removed hubs? Default is False.') parser.add_argument('--added_2hop_edges', type=bool, default=False, help='Evaluating with added 2-hop edges? Default is False.') parser.add_argument('--label_sbm', type=bool, default=False, help='Evaluating with SBMs created from labels? Default is False.') parser.add_argument('--heads', type=int, default=4, help='Attention heads. Default is 4.') parser.add_argument('--attention_dropout', type=float, default=0.4, help='Attention dropout for GAT. Default is 0.4.') parser.add_argument('--dataset', default="cora", help='Dataset name. Default is cora.') parser.add_argument('--model', default="gcn", help='Model name. Default is GCN.') parser.add_argument('--splits', type=int, default=100, help='Number of random train/validation/test splits. Default is 100.') parser.add_argument('--runs', type=int, default=20, help='Number of random initializations of the model. Default is 20.') parser.add_argument('--conf_inits', type=int, default=10, help='Number of configuration model runs. Default is 10.') parser.add_argument('--sbm_inits', type=int, default=10, help='Number of SBM runs. Default is 10.') parser.add_argument('--directionality', default='undirected', help='Directionality: undirected/directed/reversed. Default is undirected.') parser.add_argument('--train_examples', type=int, default=20, help='Number of training examples per class. Default is 20.') parser.add_argument('--val_examples', type=int, default=30, help='Number of validation examples per class. Default is 30.') args = parser.parse_args() return args name2conv = {'gcn': GCNConv, 'sage': SAGEConv, 'gat': GATConv, 'rgcn': RGCNConv, 'rgcn2':RGCN2, 'sgc':SGConv, 'appnp':APPNP, 'cgcn':ClusterGCNConv} def eval_archs_gat(dataset, dataset_name, channel_size, dropout, lr, wd, heads,attention_dropout,runs,splits,train_examples,val_examples, models=[MonoGAT],isDirected = False): if isDirected: models = [MonoGAT] return eval_gnn(dataset, dataset_name, GATConv, channel_size, dropout, lr, wd, heads=heads, attention_dropout=attention_dropout, models=models, num_runs=runs, num_splits=splits, test_score=True, train_examples = train_examples, val_examples = val_examples) def eval_archs_gcn(dataset, dataset_name, conv, channel_size, dropout, lr, wd, runs,splits,train_examples,val_examples, models=[MonoModel], isDirected=False): if isDirected: models = [MonoModel] return eval_gnn(dataset, dataset_name, conv, channel_size, dropout, lr, wd, heads=1,attention_dropout=0.3, # dummy values for heads and attention_dropout models=models, num_runs=runs, num_splits=splits,test_score=True, train_examples = train_examples, val_examples = val_examples) def eval_archs_appnp(dataset, dataset_name, conv, channel_size, dropout, lr, wd, runs,splits,train_examples,val_examples, models=[MonoAPPNPModel]): return eval_gnn(dataset, dataset_name, conv, channel_size, dropout, lr, wd, heads=1,attention_dropout=0.3, # dummy values for heads and attention_dropout models=models, num_runs=runs, num_splits=splits,test_score=True, train_examples = train_examples, val_examples = val_examples) def eval_archs_rgcn(dataset, dataset_name, conv, channel_size, dropout, lr, wd, runs,splits,train_examples,val_examples, models=[MonoRGCN]): return eval_gnn(dataset, dataset_name, conv, channel_size, dropout, lr, wd, heads=1,attention_dropout=0.3, # dummy values for heads and attention_dropout models=models, num_runs=runs, num_splits=splits,test_score=True, train_examples = train_examples, val_examples = val_examples) def eval(model, dataset, dataset_name, channel_size, dropout, lr, wd, heads, attention_dropout, runs, splits, train_examples, val_examples, isDirected): if model == 'gat': return eval_archs_gat(dataset, dataset_name, channel_size, dropout, lr, wd, heads, attention_dropout, splits=splits, runs=runs, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) elif model == 'rgcn' or model == 'rgcn2': return eval_archs_rgcn(dataset, dataset_name, name2conv[model], channel_size, dropout, lr, wd, splits=splits, runs=runs, train_examples = train_examples, val_examples = val_examples) elif model == 'appnp': return eval_archs_appnp(dataset, dataset_name, name2conv[model], channel_size, dropout, lr, wd, splits=splits, runs=runs, train_examples = train_examples, val_examples = val_examples) else: return eval_archs_gcn(dataset, dataset_name, name2conv[model], channel_size, dropout, lr, wd, splits=splits, runs=runs, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) def eval_original(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}', dataset_name, f'data/graphs/processed/{dataset_name}/{dataset_name}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads, attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) return df_cur def eval_shuffled_features(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}', dataset_name, f'data/graphs/processed/{dataset_name}/{dataset_name}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] dataset.x = dataset.x[torch.randperm(dataset.x.size()[0])] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads, attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) return df_cur def eval_random_features(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}', dataset_name, f'data/graphs/processed/{dataset_name}/{dataset_name}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] dataset.x = torch.randint(0, 2, dataset.x.shape, dtype=torch.float) df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads, attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) return df_cur def eval_cm_communities(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(inits): dataset = GraphDataset(f'data/tmp/{dataset_name}-cm_communities-{i}', dataset_name, f'data/graphs/cm_communities/{dataset_name}/{dataset_name}_cm_communities_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] # G = to_networkx(dataset) # G = nx.DiGraph(G) # node_communities = best_partition(nx.to_undirected(G)) # nx.set_node_attributes(G,node_communities,'label') # # print(dataset.edge_index) # old_edges = dataset.edge_index # G = generate_modified_conf_model(G) # # dir_path = f'data/graphs/cm_communities/{dataset_name}' # # if not os.path.exists(dir_path): # # os.mkdir(dir_path) # # nx.write_edgelist(G, f'{dir_path}/{dataset_name}_cm_communities_{i}.cites') # dataset.edge_index = torch.tensor(data=np.array(list(G.edges)).T,dtype=torch.long) # print((torch.tensor(data=np.array(list(G.edges)).T,dtype=torch.long)-old_edges).abs().sum()) # print(dataset.edge_index) df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads, attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['graph'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_random(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, random_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(random_inits): dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-random{i}', dataset_name, f'data/graphs/random/{dataset_name}/{dataset_name}_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['random_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_erdos(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, erdos_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(erdos_inits): dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-erdos{i}', dataset_name, f'data/graphs/erdos/{dataset_name}/{dataset_name}_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['erdos_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_injected_edges(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, inits, num_edges, hubs_experiment): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() last_edge = None for e in num_edges: for i in range(inits): dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-injected_{e}_{i}_{hubs_experiment}', dataset_name, f'data/graphs/injected_edges/{dataset_name}/{dataset_name}_{hubs_experiment}_{e}_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] # print(f'data/graphs/injected_edges/{dataset_name}/{dataset_name}_{hubs_experiment}_{e}_{i}.cites') # print(dataset.edge_index.shape) # print(dataset.edge_index) # if last_edge is None: # last_edge = dataset.edge_index # continue # print((1-last_edge.eq(last_edge).double()).sum()) # continue df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['init_num'] = i df_cur['injected_edges'] = e df_val = pd.concat([df_val, df_cur]) return df_val def eval_injected_edges_degree_cat(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, inits, num_edges, percentile): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() last_edge = None e = num_edges hubs_experiment = 'global_edges' for i in range(inits): for frm in range(0,100,percentile): to = frm + percentile dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-injected_{e}_{i}_{hubs_experiment}_{frm}_to_{to}', dataset_name, f'data/graphs/injected_edges_degree_cat/{dataset_name}/{dataset_name}_{hubs_experiment}_{e}_{i}_{frm}_to_{to}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['init_num'] = i df_cur['injected_edges'] = e df_cur['from'] = frm df_cur['to'] = to df_val = pd.concat([df_val, df_cur]) return df_val def eval_injected_edges_constant_nodes(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, inits, control_ratio, edges_per_node, percentile): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() last_edge = None hubs_experiment = 'global_edges' for frm in range(0,100,percentile): for i in range(inits): for e in edges_per_node: to = frm + percentile dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-injected_{e}edges_{control_ratio}nodes_{i}_{hubs_experiment}_{frm}_to_{to}', dataset_name, f'data/graphs/injected_edges_constant_nodes/{dataset_name}/{dataset_name}_global_edges{e}_nodes{control_ratio:.3f}_{i}_{frm}_to_{to}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['init_num'] = i df_cur['edges_per_node'] = e df_cur['control_ratio'] = control_ratio df_cur['from'] = frm df_cur['to'] = to df_val = pd.concat([df_val, df_cur]) return df_val def eval_injected_edges_attack_target(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, inits, control_ratio, edges_per_node, percentile): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() last_edge = None hubs_experiment = 'global_edges' for atkfrm in range(0,100,percentile): for tgtfrm in range(0,100,percentile): for i in range(inits): for e in edges_per_node: atkto = atkfrm + percentile tgtto = tgtfrm + percentile dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-injected_{e}edges_{control_ratio:.3f}nodes_{i}_{hubs_experiment}_atk{atkfrm}_{atkto}_tgt{tgtfrm}_{tgtto}', dataset_name, f'data/graphs/injected_edges_attack_target/{dataset_name}/{dataset_name}_global_edges{e}_nodes{control_ratio:.3f}_{i}_atk{atkfrm}_{atkto}_tgt{tgtfrm}_{tgtto}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['init_num'] = i df_cur['edges_per_node'] = e df_cur['control_ratio'] = control_ratio df_cur['atkfrm'] = atkfrm df_cur['atkto'] = atkto df_cur['tgtfrm'] = tgtfrm df_cur['tgtto'] = tgtto df_val = pd.concat([df_val, df_cur]) return df_val def eval_injected_edges_sbm(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, inits, num_edges, hubs_experiment): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() last_edge = None for e in num_edges: for i in range(inits): dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-injected_sbm_{e}_{i}_{hubs_experiment}', dataset_name, f'data/graphs/injected_edges_sbm/{dataset_name}/{dataset_name}_{hubs_experiment}_{e}_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['init_num'] = i df_cur['injected_edges'] = e df_val = pd.concat([df_val, df_cur]) return df_val def eval_label_sbm(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples,hubs_experiment): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-label_sbm_{hubs_experiment}', dataset_name, f'data/graphs/label_sbm/{dataset_name}/{dataset_name}_{hubs_experiment}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads, attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) return df_cur def eval_conf(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, conf_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(conf_inits): dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-confmodel{i}', dataset_name, f'data/graphs/confmodel/{dataset_name}/{dataset_name}_confmodel_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['confmodel_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_shifting(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, shifting_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for change in 'CL': for inc in [True, False]: for r in [0.16,0.32,0.64]: #[0.02,0.04,0.08]: for i in range(shifting_inits): output_prefix = f'data/graphs/shifting/{dataset_name}/{dataset_name}_shifting' output_suffix = '.cites' graph_path = f'{output_prefix}_{change}_{"inc" if inc else "dec"}_r{r:.2f}_{i}{output_suffix}' if not os.path.exists(graph_path): print(f'File not found: {graph_path}') continue dataset = GraphDataset(f'data/tmp/{dataset_name}_shifting_{change}_{"inc" if inc else "dec"}_r{r:.2f}_{i}{output_suffix}', dataset_name, graph_path, f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['graph_num'] = i df_cur['inc'] = inc df_cur['change'] = change df_cur['r'] = r df_val = pd.concat([df_val, df_cur]) return df_val def eval_sbm(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, sbm_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(sbm_inits): print(f'data/graphs/processed/{dataset_name}/{dataset_name}.content') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-sbm{i}', dataset_name, f'data/graphs/sbm/{dataset_name}/{dataset_name}_sbm_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['sbm_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_sbm_label(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, sbm_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(sbm_inits): print(f'data/graphs/processed/{dataset_name}/{dataset_name}.content') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-sbm_label{i}', dataset_name, f'data/graphs/sbm_label/{dataset_name}/{dataset_name}_sbm_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['sbm_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_modcm(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, modcm_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(modcm_inits): print(f'data/graphs/processed/{dataset_name}/{dataset_name}.content') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-modcm{i}', dataset_name, f'data/graphs/modcm/{dataset_name}/{dataset_name}_modcm_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['modcm_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_modsbm(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, modsbm_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(modsbm_inits): print(f'data/graphs/processed/{dataset_name}/{dataset_name}.content') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-modsbm{i}', dataset_name, f'data/graphs/modsbm/{dataset_name}/{dataset_name}_modsbm_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['modsbm_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val def eval_reglabel(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, reglabel_inits): isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val = pd.DataFrame() for i in range(reglabel_inits): print(f'data/graphs/processed/{dataset_name}/{dataset_name}.content') dataset = GraphDataset(f'data/tmp/{dataset_name}{("_" + directionality) if isDirected else ""}-reglabel{i}', dataset_name, f'data/graphs/reglabel/{dataset_name}/{dataset_name}_reglabel_{i}.cites', f'data/graphs/processed/{dataset_name}/{dataset_name}.content', directed=isDirected, reverse=isReversed)[0] df_cur = eval(model=model, dataset=dataset, dataset_name=dataset_name, channel_size=size, lr=lr, splits=splits, runs=runs, dropout=dropout, wd=wd, heads=heads,attention_dropout=attention_dropout, train_examples = train_examples, val_examples = val_examples,isDirected=isDirected) df_cur['reglabel_num'] = i df_val = pd.concat([df_val, df_cur]) return df_val ################## Synthetic part ##################################### def load_communities(path): with open(path, 'rb') as handle: ret = pickle.load(handle) return ret def load_labels(path): label = {} with open(path, 'r') as handle: label = {} for line in handle: s = line.strip().split() label[s[0]] = s[-1] return label def agg(x): return len(x.unique()) def calc_uncertainty(df_community,dataset_name,labeled=False,seed=0): if dataset_name == 'cora': df_community.label = df_community.label.apply(lambda x : ''.join([c for c in x if c.isupper()])) if labeled: df_community = df_community[df_community[f'labeled{seed}']] communities = df_community.community.unique() labels = df_community.label.unique() mtx = df_community.pivot_table(index='community', columns='label',values='node',aggfunc=agg).fillna(0) / len(df_community) def Pmarg(c): return len(df_community[df_community.community == c]) / len(df_community) def Pcond(l,c): return mtx.loc[c,l]/Pmarg(c) H = 0 for c in communities: h = 0 for l in labels: if Pcond(l,c) == 0: continue h += Pcond(l,c) * np.log2(1./Pcond(l,c)) H += h * Pmarg(c) def Pl(l): return len(df_community[df_community.label == l]) / len(df_community) Hl = 0 for l in labels: if Pl(l) == 0: continue Hl += Pl(l) * np.log2(1./Pl(l)) IG = Hl-H return IG/Hl def eval_sbm_swap(model, dataset_name, directionality, size, dropout, lr, wd, heads,attention_dropout, splits, runs, train_examples, val_examples, sbm_inits, is_sbm): step = 10 isDirected = (directionality != 'undirected') isReversed = (directionality == 'reversed') df_val =
pd.DataFrame()
pandas.DataFrame
import IPython import base64 import cv2 import json import numpy as np import pandas as pd import pravega.grpc_gateway as pravega from matplotlib import pyplot as plt import time def ignore_non_events(read_events): for read_event in read_events: if len(read_event.event) > 0: yield read_event def opencv_image_to_mpl(img): return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) class StreamBase(): def __init__(self, pravega_client, scope, stream, create=False): self.pravega_client = pravega_client self.scope = scope self.stream = stream if create: self.create_stream() def create_stream(self, min_num_segments=1): return self.pravega_client.CreateStream(pravega.pb.CreateStreamRequest( scope=self.scope, stream=self.stream, scaling_policy=pravega.pb.ScalingPolicy(min_num_segments=min_num_segments), )) def get_stream_info(self): return self.pravega_client.GetStreamInfo(pravega.pb.GetStreamInfoRequest( scope=self.scope, stream=self.stream, )) class OutputStream(StreamBase): def __init__(self, pravega_client, scope, stream, create=True): super(OutputStream, self).__init__(pravega_client, scope, stream, create) def write_video_from_file(self, filename, crop=None): cap = cv2.VideoCapture(filename) video_frames = self.opencv_video_frame_generator(cap) cropped_video_frames = (self.cropped_video_frame(f, crop) for f in video_frames) events_to_write = self.video_frame_write_generator(cropped_video_frames) write_response = self.pravega_client.WriteEvents(events_to_write) return write_response def opencv_video_frame_generator(self, vidcap): while True: pos_frames = vidcap.get(cv2.CAP_PROP_POS_FRAMES) success, image = vidcap.read() if not success: return video_frame = dict( image=image, frameNumber=int(pos_frames), timestamp=int(time.time() * 1000), ) yield video_frame def cropped_video_frame(self, video_frame, crop): if crop: left, top, right, bottom = crop video_frame['image'] = video_frame['image'][top:bottom, left:right] return video_frame def video_frame_write_generator(self, video_frame_iter, camera=0): for video_frame in video_frame_iter: event_dict = video_frame.copy() event_dict['camera'] = camera event_dict['ssrc'] = 0 success, png_array = cv2.imencode('.png', video_frame['image']) event_dict['data'] = base64.b64encode(png_array.tobytes()).decode(encoding='UTF-8') del event_dict['image'] to_log_dict = event_dict.copy() to_log_dict['data'] = '(%d bytes)' % len(event_dict['data']) # print('video_frame_write_generator: ' + json.dumps(to_log_dict)) event_json = json.dumps(event_dict) event_bytes = event_json.encode(encoding='UTF-8') event_to_write = pravega.pb.WriteEventsRequest( scope=self.scope, stream=self.stream, event=event_bytes, routing_key=str(camera), ) yield event_to_write class UnindexedStream(StreamBase): def __init__(self, pravega_client, scope, stream): super(UnindexedStream, self).__init__(pravega_client, scope, stream) def read_events(self, from_stream_cut=None, to_stream_cut=None): read_events_request = pravega.pb.ReadEventsRequest( scope=self.scope, stream=self.stream, from_stream_cut=from_stream_cut, to_stream_cut=to_stream_cut, ) return ignore_non_events(self.pravega_client.ReadEvents(read_events_request)) def read_event_to_video_frame(self, read_event): event_json = read_event.event video_frame = json.loads(event_json) image_png = base64.b64decode(video_frame['data']) del video_frame['data'] image_png_array = np.frombuffer(image_png, dtype=np.uint8) image_array = cv2.imdecode(image_png_array, cv2.IMREAD_UNCHANGED) video_frame['image_array'] = image_array video_frame['timestamp'] = pd.to_datetime(video_frame['timestamp'], unit='ms', utc=True) return video_frame def read_video_frames(self, from_stream_cut=None, to_stream_cut=None): read_events = self.read_events(from_stream_cut, to_stream_cut) return (self.read_event_to_video_frame(read_event) for read_event in read_events) def play_video(self, from_stream_cut=None, to_stream_cut=None, show_frame_interval=1): read_events = self.read_video_frames(from_stream_cut, to_stream_cut) for i, video_frame in enumerate(read_events): if i % show_frame_interval == 0: IPython.display.clear_output(wait=True) plt.title('frameNumber=%d, timestamp=%s' % (video_frame['frameNumber'], video_frame['timestamp'])) plt.imshow(opencv_image_to_mpl(video_frame['image_array'])); plt.show() class IndexedStream(): def __init__(self, pravega_client, scope, stream, from_stream_cut=None, timestamp_col='timestamp'): self.pravega_client = pravega_client self.scope = scope self.stream = stream self.from_stream_cut = from_stream_cut self.timestamp_col = timestamp_col self.index_df = None def build_index(self): stream_info = self.pravega_client.GetStreamInfo( pravega.pb.GetStreamInfoRequest(scope=self.scope, stream=self.stream)) # print('stream_info=%s' % str(stream_info)) from_stream_cut = stream_info.head_stream_cut if self.from_stream_cut is None else self.from_stream_cut to_stream_cut = stream_info.tail_stream_cut read_events_request = pravega.pb.ReadEventsRequest( scope=self.scope, stream=self.stream, from_stream_cut=from_stream_cut, to_stream_cut=to_stream_cut, ) # print(read_events_request) read_events = ignore_non_events(self.pravega_client.ReadEvents(read_events_request)) index_list = [self.read_event_to_index(read_event) for read_event in read_events] df =
pd.DataFrame(index_list)
pandas.DataFrame
# coding=utf-8 import pandas as pd from mock import MagicMock from sparkmagic.livyclientlib.exceptions import BadUserDataException from nose.tools import assert_raises, assert_equals from sparkmagic.livyclientlib.command import Command import sparkmagic.utils.constants as constants from sparkmagic.livyclientlib.sendpandasdftosparkcommand import ( SendPandasDfToSparkCommand, ) def test_send_to_scala(): input_variable_name = "input" input_variable_value = pd.DataFrame({"A": [1], "B": [2]}) output_variable_name = "output" maxrows = 1 sparkcommand = SendPandasDfToSparkCommand( input_variable_name, input_variable_value, output_variable_name, maxrows ) sparkcommand._scala_command = MagicMock(return_value=MagicMock()) sparkcommand.to_command( constants.SESSION_KIND_SPARK, input_variable_name, input_variable_value, output_variable_name, ) sparkcommand._scala_command.assert_called_with( input_variable_name, input_variable_value, output_variable_name ) def test_send_to_r(): input_variable_name = "input" input_variable_value =
pd.DataFrame({"A": [1], "B": [2]})
pandas.DataFrame
""" Tests compressed data parsing functionality for all of the parsers defined in parsers.py """ import os from pathlib import Path import zipfile import pytest from pandas import DataFrame import pandas._testing as tm @pytest.fixture(params=[True, False]) def buffer(request): return request.param @pytest.fixture def parser_and_data(all_parsers, csv1): parser = all_parsers with open(csv1, "rb") as f: data = f.read() expected = parser.read_csv(csv1) return parser, data, expected @pytest.mark.parametrize("compression", ["zip", "infer", "zip2"]) def test_zip(parser_and_data, compression): parser, data, expected = parser_and_data with tm.ensure_clean("test_file.zip") as path: with zipfile.ZipFile(path, mode="w") as tmp: tmp.writestr("test_file", data) if compression == "zip2": with open(path, "rb") as f: result = parser.read_csv(f, compression="zip") else: result = parser.read_csv(path, compression=compression) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("compression", ["zip", "infer"]) def test_zip_error_multiple_files(parser_and_data, compression): parser, data, expected = parser_and_data with tm.ensure_clean("combined_zip.zip") as path: inner_file_names = ["test_file", "second_file"] with zipfile.ZipFile(path, mode="w") as tmp: for file_name in inner_file_names: tmp.writestr(file_name, data) with pytest.raises(ValueError, match="Multiple files"): parser.read_csv(path, compression=compression) def test_zip_error_no_files(parser_and_data): parser, _, _ = parser_and_data with tm.ensure_clean() as path: with zipfile.ZipFile(path, mode="w"): pass with pytest.raises(ValueError, match="Zero files"): parser.read_csv(path, compression="zip") def test_zip_error_invalid_zip(parser_and_data): parser, _, _ = parser_and_data with
tm.ensure_clean()
pandas._testing.ensure_clean
# coding: utf-8 # In[1]: #first commit -Richie import pandas as pd import numpy as np # In[2]: data_message =
pd.read_csv('../../data/raw_data/AAPL_05222012_0930_1300_message.tar.gz',compression='gzip')
pandas.read_csv
import pandas as pd import path_utils from Evolve import Evolve, replot_evo_dict_from_dir import traceback as tb import os, json, shutil import numpy as np import matplotlib.pyplot as plt import itertools from copy import deepcopy import pprint as pp from tabulate import tabulate import seaborn as sns import shutil import psutil, time import ray ''' This is very similar to Benchmark.py, but that one was designed (when I had a previous setup in mind) to run a set of parameters MULTIPLE times each. I.e., it would create an Evolve object and do evo_obj.evolve() several times to create a distribution. Now, there's no "time dependence", so we really just want to be able to look at separate parameter settings, but only running them once each. I'm also getting rid of the whole "solved" aspect for now because it's based on numbers that are hard to explain, making it a bit pointless. run_param_dict() is the most basic function, just doing an evolution for a passed param_dict. Other functions basically involve calling it given various inputs. ''' ################################ Statistics functions @path_utils.timer def run_param_dict(param_dict, N_gen, N_trials, base_dir): ''' Pass a single params dict to run an evolve() of, including the env_name. Also pass an output_dir, or it will use the default output folder. This only runs each setting ONCE. ''' # deepcopy, just to be safer params = deepcopy(param_dict) assert 'env_name' in params.keys(), 'Must supply an env_name!' env_name = params['env_name'] params.pop('env_name') params['base_dir'] = base_dir try: # Run a single parameters setting e = Evolve(env_name, **params) evo_dict = e.evolve(N_gen, N_trials=N_trials, print_gen=True) e.save_all_evo_stats(evo_dict, save_plots=True) return evo_dict except: print(f'\n\nError in evolve with params: {params}. Traceback:\n') print(tb.format_exc()) print('\n\nAttempting to continue...\n\n') return {} @ray.remote def run_param_dict_wrapper(param_dict, N_gen, N_trials, base_dir): # If a run_fname_label is provided, use that to create a more informative dir name. # Otherwise, just use the date. if 'run_fname_label' in param_dict.keys(): run_fname_label = param_dict['run_fname_label'] else: run_fname_label = 'vary_params' # Make plots for this params set if 'run_plot_label' in param_dict.keys(): run_plot_label = param_dict['run_plot_label'] else: run_plot_label = run_fname_label # Run dir for this set of params params_dir = os.path.join(base_dir, '{}_{}'.format(run_fname_label, path_utils.get_date_str())) os.mkdir(params_dir) # Doing this so it just saves directly to this dir, which has a more # informative name than Evolve.__init__() would create. param_dict['run_dir'] = params_dir print('\n\nNow running with params:') pp.pprint(param_dict, width=1) print('\n\n') stats_dict = run_param_dict(param_dict, N_gen, N_trials, base_dir) return stats_dict @path_utils.timer def run_multi_envs(env_list, **kwargs): ''' Iterates over a list of env names you give it, running them and recording info. ''' N_gen = kwargs.get('N_gen', 1000) N_trials = kwargs.get('N_trials', 1000) # Create dir for the results of this stats set. stats_dir = os.path.join(path_utils.get_output_dir(), 'Stats_{}'.format(path_utils.get_date_str())) os.mkdir(stats_dir) # Dict to hold results on timing, etc. stats_dict = {} for env_name in env_list: print(f'\nGetting stats for env {env_name} now...\n') param_dict = deepcopy(kwargs) param_dict['env_name'] = env_name stats_dict[env_name] = run_param_dict(param_dict, N_gen, N_trials, stats_dir) # Save distributions to file with open(os.path.join(stats_dir, 'multi_env_stats.json'), 'w+') as f: json.dump(stats_dict, f, indent=4) def run_classic_control_envs(**kwargs): ''' Loads gym_envs_info.json. This contains info about the envs we want to analyze. It then calls run_multi_envs() for the classic control envs. ''' with open(os.path.join(path_utils.get_src_dir(), 'gym_envs_info.json'), 'r') as f: envs_dict = json.load(f) env_list = [k for k,v in envs_dict.items() if v['env_type']=='classic_control'] print(f'Getting stats for: {env_list}') run_multi_envs(env_list, **kwargs) def run_param_dict_list(params_dict_list, **kwargs): ''' Pass this a list of dicts, where each has the different parameters you want to gather stats for. It then iterates through this list, doing a run for each dict. Note that it modifies the passed params_dict_list to add the results to it. ''' # Create dir for the results of this stats run if one isn't provided. stats_dir = kwargs.get('stats_dir', None) if stats_dir is None: stats_dir = os.path.join(path_utils.get_output_dir(), 'Stats_{}'.format(path_utils.get_date_str())) os.mkdir(stats_dir) # Produce results in parallel for d in params_dict_list: # For non-ray use '''d['result'] = run_param_dict_wrapper( d, kwargs.get('N_gen', 100), kwargs.get('N_trials', 10), stats_dir)''' # For use with ray d['result_ID'] = run_param_dict_wrapper.remote( d, kwargs.get('N_gen', 100), kwargs.get('N_trials', 10), stats_dir) # Retrieve results from ID for d in params_dict_list: d['stats_dict'] = ray.get(d['result_ID']) d.pop('result_ID') #d['stats_dict'] = d['result'] # for non-ray use #d.pop('result') # Return passed list, which should have dicts # modified with the results return params_dict_list @path_utils.timer def run_vary_params(constant_params_dict, vary_params_dict, **kwargs): ''' This is a convenience function to easily vary parameters for analysis. You pass it constant_params_dict, which is a dict with the values that you want to remain constant between runs. Then, pass it vary_params_dict, which should have each parameter that you want to vary as a list of the values it should take. Example: constant_params_dict = { 'env_name' : 'CartPole-v0', 'N_gen' : 1000, 'N_dist' : 100, 'NN' : 'FFNN_multilayer' } vary_params_dict = { 'N_hidden_units' : [2, 4, 8], 'act_fn' : ['tanh', 'relu'] } This will do 3*2 = 6 runs, for each of the combinations of varying parameters. ''' # Create informative dir name vary_params = list(vary_params_dict.keys()) stats_dir = os.path.join( path_utils.get_output_dir(), 'Stats_vary_{}_{}'.format('_'.join(vary_params), path_utils.get_date_str())) print(f'\nSaving statistics run to {stats_dir}') os.mkdir(stats_dir) # Create runs dir all_runs_dir = os.path.join(stats_dir, 'all_runs') print(f'\nSaving all runs to {all_runs_dir}') os.mkdir(all_runs_dir) # Create dict of const and vary params, as separate items all_params = { 'const_params' : constant_params_dict, 'vary_params' : vary_params_dict } other_run_params = ['N_gen', 'N_trials'] for p in other_run_params: if p in kwargs.keys(): all_params[p] = kwargs.get(p, None) # Save params to file with open(os.path.join(stats_dir, 'all_params.json'), 'w+') as f: json.dump(all_params, f, indent=4) # Flatten list, pass to other function flat_param_list = vary_params_cross_products(constant_params_dict, vary_params_dict) flat_param_list = run_param_dict_list(flat_param_list, stats_dir=all_runs_dir, **kwargs) # Parse results for d in flat_param_list: # For now I'll still keep vary_params_stats.csv, but I think it's not # actually necessary. # Get rid of this now d.pop('stats_dict') # Save results to csv for later parsing/plotting df = pd.DataFrame(flat_param_list) print(tabulate(df, headers=df.columns.values, tablefmt='psql')) df_fname = os.path.join(stats_dir, 'vary_params_stats.csv') df.to_csv(df_fname, index=False) ################################# Plotting functions def plot_all_agg_stats(stats_dir): ''' For plotting all the heatmaps/etc for a stats_dir. ''' agg_stats_dir = os.path.join(stats_dir, 'agg_stats') if os.path.exists(agg_stats_dir): shutil.rmtree(agg_stats_dir) print(f'\nSaving all aggregate stats to {agg_stats_dir}') os.mkdir(agg_stats_dir) all_params_fname = os.path.join(stats_dir, 'all_params.json') with open(all_params_fname, 'r') as f: all_params_dict = json.load(f) # Import all scores all_scores_fname = os.path.join(stats_dir, 'all_scores.csv') df = pd.read_csv(all_scores_fname) vary_params_dict = all_params_dict['vary_params'] const_params_dict = all_params_dict['const_params'] vary_params = list(vary_params_dict.keys()) N_vary_params = len(vary_params) # Only need to do if more than 2 params were varied. if N_vary_params >= 2: # Get envs info to find out percent of runs that "solved" the env. with open(os.path.join(path_utils.get_src_dir(), 'gym_envs_info.json'), 'r') as f: envs_dict = json.load(f) # Create heatmap plots dir heatmap_dir = os.path.join(agg_stats_dir, 'heatmap_plots') if os.path.exists(heatmap_dir): shutil.rmtree(heatmap_dir) print(f'\nSaving heatmap plots to {heatmap_dir}') os.mkdir(heatmap_dir) # Iterate over all unique pairs of vary params, plot heatmaps of them for pair in itertools.combinations(vary_params, 2): print(f'Making heatmaps for {pair}') other_params_flat = [(k, v) for k,v in vary_params_dict.items() if k not in pair] other_params = [x[0] for x in other_params_flat] other_vals = [x[1] for x in other_params_flat] print(f'other params: {other_params}') # Create dir for specific pivot pivot_name = 'vary_{}_{}'.format(*pair) pivot_dir = os.path.join(heatmap_dir, pivot_name) os.mkdir(pivot_dir) # Select for each of the combos of the other params. for other_params_set in itertools.product(*other_vals): # This part just selects for the rows that have the correct # params/etc. other_sel_dict = dict(zip(other_params, other_params_set)) fname_label = path_utils.param_dict_to_fname_str(other_sel_dict) df_sel = df.loc[(df[list(other_sel_dict)] == pd.Series(other_sel_dict)).all(axis=1)] df_no_scores = df_sel.drop('all_scores', axis=1) #print(df_no_scores.columns.values) df_params_only = df_no_scores.drop_duplicates() all_row_dfs = [] # Iterate through table, for each run label, find its corresponding dir, # walk through it, get all its scores, create a dataframe from them, # then concatenate all these df's into a big one, that we can plot. for index, row in df_params_only.iterrows(): # Only get the params varied, turn them into a dict row_dict = row[df_no_scores.columns.values].to_dict() df_row = df_sel.loc[(df[list(row_dict)] == pd.Series(row_dict)).all(axis=1)] row_scores = df_row['all_scores'].values row_dict['index'] = index row_dict['mean_score'] = np.mean(row_scores) row_dict['best_score'] = np.max(row_scores) solved_reward = envs_dict[row_dict['env_name']]['solved_avg_reward'] N_solved_scores = np.sum(np.where(row_scores >= solved_reward)) row_dict['percent_solved_scores'] = N_solved_scores/len(row_scores) # pandas has the nice perk that if you create a df from a dict where # some of the entries are constants and one entry is a list, it duplicates # the constant values. row_df = pd.DataFrame(row_dict, index=[index]) all_row_dfs.append(row_df) all_scores_df = pd.concat(all_row_dfs) #print(tabulate(all_scores_df, headers=all_scores_df.columns.values, tablefmt='psql')) heatmap_plot(all_scores_df, *pair, 'mean_score', pivot_dir, label=fname_label) heatmap_plot(all_scores_df, *pair, 'best_score', pivot_dir, label=fname_label) heatmap_plot(all_scores_df, *pair, 'percent_solved_scores', pivot_dir, label=fname_label) #heatmap_plot(df_sel, *pair, perc_cutoff_str, pivot_dir, label=fname_label) def heatmap_plot(df, xvar, yvar, zvar, output_dir, **kwargs): #df = pd.read_csv(csv_fname) df = df.pivot(yvar, xvar, zvar) plt.close('all') plt.figure() ax = plt.gca() label = kwargs.get('label', '') sns.heatmap(df, annot=True, fmt=".1f", cmap='viridis', ax=ax) ax.set_title(f'{zvar} for constant {label}') plt.savefig(os.path.join(output_dir, f'vary_{xvar}_{yvar}__{zvar}_heatmap__const_{label}.png')) if kwargs.get('show_plot', False): plt.show() def make_total_score_df(stats_dir): # Load csv that holds the names of all the dirs stats_overview_fname = os.path.join(stats_dir, 'vary_params_stats.csv') overview_df = pd.read_csv(stats_overview_fname) # unique fname labels in table run_fname_labels = overview_df.run_fname_label.unique() # Get the params that are varied all_params_fname = os.path.join(stats_dir, 'all_params.json') with open(all_params_fname, 'r') as f: all_params_dict = json.load(f) const_params = list(all_params_dict['const_params'].keys()) vary_params = list(all_params_dict['vary_params'].keys()) print(f'Params varied: {vary_params}') all_row_dfs = [] runs_dir = os.path.join(stats_dir, 'all_runs') # Iterate through table, for each run label, find its corresponding dir, # walk through it, get all its scores, create a dataframe from them, # then concatenate all these df's into a big one, that we can plot. for index, row in overview_df.iterrows(): # Only get the params varied, turn them into a dict #row_dict = row[vary_params].to_dict() row_dict = row[vary_params + const_params].to_dict() #row_dict = row.to_dict() run_label = row['run_fname_label'] # Get the one dir that has the run_fname_label in its name match_dirs = [x for x in os.listdir(runs_dir) if run_label in x] assert len(match_dirs)==1, 'Must only have one dir matching label!' vary_dir = match_dirs[0] # Clumsy, but: walk through this dir until you find the evo_stats.json, # then add its scores to the row_dict for root, dirs, files in os.walk(os.path.join(runs_dir, vary_dir)): if 'evo_stats.json' in files: with open(os.path.join(root, 'evo_stats.json'), 'r') as f: evo_dict = json.load(f) row_dict['all_scores'] = evo_dict['all_scores'] # pandas has the nice perk that if you create a df from a dict where # some of the entries are constants and one entry is a list, it duplicates # the constant values. row_df = pd.DataFrame(row_dict) all_row_dfs.append(row_df) all_scores_df =
pd.concat(all_row_dfs)
pandas.concat
# -*- coding: utf-8 -*- """ :author: <NAME> :url: https: // github.com / LiJinfen """ from bleach import clean, linkify from flask import flash from markdown import markdown import json import os import collections as ct import pickle from textstat.textstat import textstat from nltk.tokenize import sent_tokenize import pandas as pd import time import random import numpy as np import nltk from sklearn.metrics.pairwise import cosine_similarity def to_html(raw): allowed_tags = ['a', 'abbr', 'b', 'br', 'blockquote', 'code', 'del', 'div', 'em', 'img', 'p', 'pre', 'strong', 'span', 'ul', 'li', 'ol','h1','h2','h3'] allowed_attributes = ['src', 'title', 'alt', 'href', 'class'] html = markdown(raw, output_format='html', extensions=['markdown.extensions.fenced_code', 'markdown.extensions.codehilite']) clean_html = clean(html, tags=allowed_tags, attributes=allowed_attributes) return linkify(clean_html) def flash_errors(form): for field, errors in form.errors.items(): for error in errors: flash(u"Error in the %s field - %s" % ( getattr(form, field).label.text, error) ) def save_messages(messages,revised_messages): APP_ROOT = os.path.dirname(os.path.abspath(__file__)) filepath = os.path.join(APP_ROOT + "/static/downloads/") filename = "%s-%s.xlsx" % ('messages', time.strftime('%Y%m%d')) writer =
pd.ExcelWriter(filepath + filename,engine='xlsxwriter')
pandas.ExcelWriter
import json import pandas as pd import plotly import plotly.graph_objs as go from flask import Flask, render_template, request app = Flask(__name__) data = pd.read_csv("items.csv") data=data.drop([0,1,3,17,18],axis=0) data=data.sort_values(by=['product_price']) new_data=data[0:5] DVDs=new_data.iloc[:,0] Prices=new_data.iloc[:,1] movies = pd.read_csv("movies.csv") movies=movies.sort_values(by=['movie_rating']) new_data=movies.drop([17,9,16,18,1,15,6,10,7,14],axis=0) movies_name=new_data.iloc[:,0] movies_rating=new_data.iloc[:,1] prime = pd.read_csv("prime.csv") prime=prime.drop([1,2,3,5,8,10,12,13],axis=0) prime=prime.reindex([4, 15, 9, 6,11,0,14,7]) prime.index = range(8) prime_name=prime.iloc[:,0] prime_reviews=prime.iloc[:,1] prime = pd.read_csv("editors.csv") prime=prime.drop([3,6,12,15],axis=0) df1=prime['Editor'].value_counts() df2=pd.DataFrame(df1) df2.reset_index(level=0, inplace=True) editor_name=df2.iloc[:,0] editor_occurence=df2.iloc[:,1] @app.route('/') def index(): feature = 'Amazon DVDs' bar = create_plot(feature) return render_template('index.html', plot=bar) def create_plot(feature): if feature == 'Amazon DVDs': x = DVDs y = Prices df = pd.DataFrame({'x': x, 'y': y}) # creating a sample dataframe data = [ go.Bar( x=df['x'], # assign x as the dataframe column 'x' y=df['y'] ) ] fig = go.Figure(data=[go.Bar(x=df['x'], y=df['y'], )]) # Customize aspect fig.update_traces(marker_color='rgb(158,202,225)', marker_line_color='rgb(8,48,107)', marker_line_width=3.5, opacity=0.6) fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') fig.update_layout(title_text='DVDs sortis lors du dernier mois', yaxis=dict( title='Prix (dollars)', titlefont_size=16, tickfont_size=14, )) fig.update_layout( autosize=False, width=1300, height=700, ) elif feature=='IMDB movies': colors = ['lightslategray', ] * 5 x = movies_name y = movies_rating df = pd.DataFrame({'x': x, 'y': y}) # creating a sample dataframe data = [ go.Bar( x=df['x'], # assign x as the dataframe column 'x' y=df['y'] ) ] fig = go.Figure(data=[go.Bar(x=df['x'], y=df['y'], )]) # Customize aspect fig.update_traces(marker_color='blue', marker_line_color='rgb(8,48,107)', marker_line_width=3.5, opacity=0.6,), fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') fig.update_layout(title_text='TOP 10 films de 2019', yaxis=dict( title='Metascore', titlefont_size=16, tickfont_size=14, )) fig.update_layout( autosize=False, width=1300, height=700, ) elif feature == 'Amazon movies': x = prime_name y = prime_reviews df = pd.DataFrame({'x': x, 'y': y}) # creating a sample dataframe data = [ go.Bar( x=df['x'], # assign x as the dataframe column 'x' y=df['y'] ) ] fig = go.Figure(data=[go.Bar(x=df['x'], y=df['y'], )]) # Customize aspect fig.update_traces(marker_color='lightslategray', marker_line_color='rgb(8,48,107)', marker_line_width=3.5, opacity=0.6) fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') fig.update_layout(title_text='Films proposés par Amazon Prime', yaxis=dict( title='Nombre de reviews', titlefont_size=16, tickfont_size=14, )) fig.update_layout( autosize=False, width=1300, height=700, ) elif feature == 'Amazon VGs': x = editor_name y = editor_occurence df =
pd.DataFrame({'x': x, 'y': y})
pandas.DataFrame